
1R - 952

MONITORING REPORT

05/05/2009

RECEIVED

2009 MAY 8 AM 11 43

May 5, 2009

Mr. Glenn Von Gonten, Sr. Hydrologist State of New Mexico – Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE:

OCD Remediation Project No. 1RP-952, North 10" Pipeline Release Delineation and Excavation Closure Report, Targa Midstream Services, LP, Unit B (NW/4, NE/4), Section 22, Township 21 South, Range 37 East, Lea County, New Mexico

Dear Mr. Von Gonten:

This report is submitted to the State of New Mexico Oil Conservation Division on behalf of Targa Midstream Services, LP (Targa) by Larson and Associates, Inc., its agent, and presents the results of remedial actions performed at referenced pipeline leak.

Based upon the results of this investigation, Targa believes the extended chloride contamination is not associated with the referenced pipeline release, but is the result of oilfield practices at nearby wells. Targa requests OCD case closure.

If you have any questions or concerns, please call me at 432.687.0901 to discuss.

Sincerely,

LARSON & ASSOCIATES, INC.

William D. Green, PG No. 136

Texas Licensed Professional Geologist

wgreen@laenvironmental.com

Attachments

CC

Mr. Don Embrey - Targa, Midland, TX

Mr. Cal Wrangham – Targa, Midland, TX

Mr. Larry Johnson - OCD District 1

RECEIVED 2009 MAY 8 AM 11 43

Pipeline Release Delineation and Excavation Closure Report

North 10" Pipeline Unit B, Section 22, T21S, R37E Lea County, New Mexico

OCD Remediation Project No. 1RP-952

LAI Project No. 8-0132

May 5, 2009

Prepared for: Targa Midstream Services, LP 6 Desta Drive, Suite 3300 Midland, Texas 79705

Prepared by: William D. Green, PG No. 136 Texas Registered Professional Geologist

Larson & Associates, Inc. 507 North Marienfeld, Suite 200 Midland, Texas 79701

May 5, 2009

Responsible Party Conta Release Information General Site Characteria Soil Investigation Excavation Closure	
•	4
List of Tables Table 1 Table 2 Table 3 Table 4	Soil Analytical Data Summary Monitor Well Completion and Gauging Summary Groundwater Metals Summary Groundwater Anion and TDS Summary
List of Figures Figure 1 Figure 2	Topographic Map Aerial Map
Figure 3 Figure 4 Figure 5	Groundwater Gradient Map Chlorides in Groundwater Map TDS in Groundwater Map
List of Appendices Appendix A Appendix B Appendix C Appendix D	OCD Communications Photographic Documentation Boring Logs Laboratory Reports

May 5, 2009

Executive Summary

This report is submitted to the State of New Mexico Oil Conservation Division (OCD) on behalf of Targa Midstream Services, LP (Targa) by Larson and Associates, Inc. (LAI), its agent, and presents the results of delineation and remedial actions performed at referenced pipeline leak. The report has been prepared based upon the *Guidelines for Remediation of Leaks, Spills and Releases* (OCD, August 13, 1993).

Responsible Party Contact Information

Targa's contact for environmental concerns is:

Mr. Don Embrey, Advisor
Targa Resources – Permian Basin Region
6 Desta Drive, Suite 3300
Midland, Texas 79705
Office – 432.688.0542, Cell – 432.557.8831
Email – dembrey@targaresources.com

Release Information

The release occurred on August 16, 2002, about 2.8 miles northeast of Eunice, New Mexico, and was reported to the OCD on form C-141. The reported volume released was less than 5 barrels (bbl) of liquid which infiltrated near the point of release with no apparent overland flow. No product was recovered. Figure 1 presents the site and water well locations plotted on a topographic map. Appendix C presents the initial and final Form C-141.

General Site Characteristics

The release is located at latitude 32° 28′ 05.36″ north and longitude 103° 08′ 52.41″ west (Figure 1). The surface estate is owned by Mr. Charlie Bettis and is used for livestock grazing and oil and gas production. A railroad right-of-way is located about 250 feet west of the release.

The surface elevation is approximately 3,410 feet above mean sea level and slope gently east-southeast toward Monument Draw located about 4,500 feet east of the release. Surface soil is comprised of windblown sand with a vegetation cover of mesquite, with occasional shin oak, sand burr grass, and yucca. The nearest residence and domestic well is located about 900 feet north (up and cross gradient) of the release.

An oil well (Apache Corporation Northeast Drinkard Unit Well #824) is adjacent to northeast of the release location, and in the topological upgradient direction. Several other pipelines are either within the release response area, or are adjacent to the point of release (Figure 2).

Depth to groundwater is approximately 58.5 feet below ground surface (bgs), based on the four monitor wells completed at surface grade.

May 5, 2009

Soil Investigation

Initial release abatement measures included Targa excavating soil to expose, blind, and abandon the pipeline. Targa then contracted Environmental Plus, Inc. (EPI) to delineate the release, with activities conducted on July 19, 2005, August 29, 2005, August 31, 2005, October 24, 2005 and February 2, 2006. Soil investigation activities included collecting soil samples from the bottom of the excavation, backhoe trenches, and soil borings. Two borings (BH-1 and SB-4) were advanced below the groundwater level, with a temporary monitoring well (TMW-1) installed in boring SB-4.

The investigation results were submitted to the OCD in a letter dated June 30, 2006 (Site Characterization and Soil Remediation Proposal, Targa Resources, Inc. – North 10-Inch Release Site (Ref. #210010), NW1/4 of the NE1/4, Section 22, T21S, R37E, Lea County, New Mexico). In this report, Recommended Remediation Action Levels (RRALs) were determined using criteria published by Guidelines for Remediation of Leaks, Spills and Releases. The following RRAL were assigned to the site based on the total ranking score of 30:

Benzene: 10 milligrams per kilogram (mg/kg)

BTEX (benzene, toluene, ethylbenzene, and total xylenes): 50 mg/kg
TPH: 100 mg/kg

In September 2006, EPI deepened the excavation to approximately 11 feet bgs and expanded the sides to the current configuration. On October 16, 2006, twenty-one soil samples were collected from the sides of the expanded excavation. Fourteen samples were tested for chloride and reported concentrations from less than 16 mg/kg (SW-20) to 864 mg/kg (SW-10), with the highest chloride concentrations observed near the southwest corner of the excavation. The EPI soil sample results reported no concentrations of benzene, BTEX, nor TPH above the calculated RRAL.

On October 29 and 30, 2008, LAI installed six soil borings (B1 through B4, MW-1 and MW-2). Two soil borings (MW-1 and MW-2) were completed as temporary monitoring wells. TPH was below the RRAL (100 mg/kg) in all soil samples.

Chloride levels for soil in the upgradient-background boring (MW-1) ranged from 35.3 mg/kg to 371 mg/kg, with the high value observed in the 10 feet bgs sample. Please note, MW-1 is approximately 145 feet northwest and upslope from the point of release. Soil samples from MW-2 did not exhibit chloride concentrations above laboratory reporting levels until 30 feet bgs, where 281 mg/kg were detected. Chloride persisted in declining concentrations to 50 feet bgs. MW-2 is located approximately 130 feet south-southeast, and downslope, of release source. Sampling results indicated chlorides extended vertically to the groundwater; the lateral limits of the chlorides in soil were not determined during this phase of investigation.

On November 21, 2009, the results of the soil investigation, including final C-141, was submitted to the OCD in Hobbs and Santa Fe New Mexico. The report included a notice of groundwater water impairment due to chloride in groundwater that exceeded the New Mexico Water Quality Control Commission (WQCC) domestic water quality standard. The report proposed installing three monitor wells, installing a 20-mil thick liner in the excavation, and backfilling the excavation to the surface grade.

May 5, 2009

The workplan was approved by the OCD in Santa Fe on January 6, 2009. OCD communications and approval are presented in Appendix A.

Excavation Closure

On January 21, 2009, Akome Inc. installed a 20-mil thick high-density polyethylene (HDPE) liner in the excavation. The excavation was filled with clean soils acquired from a borrow area about ½-mile east of the site. The surface water contoured for drainage. Photographic document of the closure is presented in Appendix B.

Groundwater Investigation

On February 10, 2006, EPI collected groundwater sample aliquots from temporary monitor well TMW-1 for laboratory BTEX, chloride, and sulfate determination. The temporary well was subsequently plugged.

Groundwater laboratory samples from TMW-1 exhibited benzene (0.221 milligrams per liter, mg/l) at concentrations exceeding the New Mexico Water Quality Control Commission (WQCC) human health standard of 0.01 mg/l; toluene (0.298 mg/l), ethylbenzene (0.037 mg/l) and xylenes (0.075 mg/l) were less than the WQCC human health standards. Chloride and sulfate exhibited 3,799 mg/l and 468 mg/l, respectively. The chloride value exceeded the WQCC domestic water quality standard of 250 mg/l.

On October 29 and 30, 2008, LAI installed MW-1 and MW-2 north-northwest and south-southeast, respectfully, to approximate the known regional groundwater flow direction. Groundwater samples were collected and analyzed for BTEX volatile organic compounds, metals, and inorganics other than metals. BTEX was not reported above the method detection limits or WQCC human health standards in the groundwater samples. No dissolved metals, except manganese (0.255 mg/l, MW-1), exceeded the WQCC human health or domestic water quality standards. Chloride was reported at 190 mg/l and 824 mg/l in samples from wells MW-1 (upgradient) and MW-2 (downgradient), respectively. The sample from MW-2 exceeded the WQCC domestic water quality standard for chlorides (250 mg/l). Total Dissolved Solids (TDS) was 1,330 mg/l and 1,800 mg/l in samples from MW-1 and MW-2, respectively; both exceeded the WQCC domestic water quality standard of 1,000 mg/l.

On February 17, 2009, LAI mobilized to the site to install three monitor wells, and to convert the two temporary monitor wells to permanent monitor wells. MW-3 was installed approximately 115 feet southwest of the point of release; MW-4 was installed approximately 170 feet east-southeast from the point of release; MW-5 was installed in an excavation approximately 450 feet south-southeast from the point of release. Chloride concentrations observed in all soil samples from these three monitor wells was below action levels. Lateral soil delineation in these directions from the source was achieved.

After the installation of MW-3 through MW-5, all five site monitor wells were gauged, and the new monitor wells developed and sampled on March 2, 2009. Gauging data (Table 2) confirmed the groundwater flow direction towards the south-southeast, consistent with the regional gradient (Figure 3). Groundwater gradient at the site is calculated to be 0.00633 foot/foot.

May 5, 2009

The requested analyses for the newly-installed wells (MW-3 through MW-5) included heavy metals and common cations (Table 3), total alkalinity (as calcium carbonate), chloride and sulfate anions, and TDS (Table 4). Metals did not exceed WQCC action levels, but all three wells exhibited chloride and TDS concentrations exceeding the WQCC-published values. For holistic site evaluation purposes, analytical data from MW-1 and MW-2 (October 30, 2008), and the new monitor wells were plotted without regard to temporal variations. Laboratory data was plotted using Surfer® software. Chloride data plots indicate a chloride source emanating northeast of the Targa release as the primary influence on chemical distribution in the groundwater. A similar distribution of TDS is seen in those plotted values. Since both of these data plots have similar features, it is assumed from this data that groundwater chloride and TDS impacts are diffusing from a source northeast to easterly of the pipeline release.

Table 1 summarizes soil TPH and Chloride laboratory analyses. Appendix C presents boring lithology logs. Appendix D presents analytical laboratory report.

Conclusions

- Soil chlorides that may have emanated from the North 10" release have been delineated both vertically and horizontally.
- Groundwater flows from the north-northwest to the south-southeast at an approximate gradient of 0.00633 foot/foot.
- The data collected suggests that groundwater chloride and TDS concentration may be associated with a source to the northeast that is not a Targa asset.

Based on the presented data, Targa respectfully request site closure.

Table 1 Soil Analytical Data Summary North 10-Inch Release (1RP-952) - Unit B, Sec 22, T21S, R37E Targa Midstream Services, L.P. Lea County, New Mexico

Sample ID	Date	PID	GRO	DRO	TPH	Chlorides
DDAL	L		C6-C12	C12-C28	C6-C28	250
RRAL:	7/10/2005	77.0			1,000	250
DMNSN10071905ESW	7/19/2005	77.2	<10.0	<10.0	<10.0	29.0
DMNSN10071905WSW	7/19/2005	2,551	15.2	281	296.2	148
DMNSN10071905NSW	7/19/2005	16.1	<10.0	<10.0	<10.0	168
DMNSN10071905SSW	7/19/2005	6.7	<10.0	<10.0	<10.0	1,130
DMNSN10071905BH	7/19/2005	2,224	<10.0	<10.0	<10.0	18.8
BH-1 10'	8/31/2006	40.9	<10.0	<10.0	<10.0	84
BH-1 25'	8/31/2005	25.4	<10.0	<10.0	<10.0	4,926
BH-1 10'	10/24/2005	3.1				112
BH-1 15'	10/24/2005	3.5				3,567
BH-1 20'	10/24/2005	0.8				1,536
BH-1 25'	10/24/2005	0.5				2,383
BH-1 30'	10/24/2005	0.5				144
BH-1 35'	10/24/2005	0.5				3,535
BH-1 40'	10/24/2005	0.6				1,344
BH-1 45'	10/24/2005	0.5				1,296
BH-1 50'	10/24/2005	0.3				960
BH-1 55'	10/24/2005	1.1				672
BH-1 60'	10/24/2005	0.3				512
SB-4 10'-11'	2/2/2006		<10.0	<10.0	<10.0	25.2
SB-4 15'-16'	2/2/2006		<10.0	<10.0	<10.0	49.4
SB-4 65'-66'	2/2/2006		<10.0	<10.0	<10.0	331
SB-4 70'	2/2/2006		<10.0	<10.0	<10.0	695
B1-1'	10/29/2008	0.3	<15.7	<15.7	<15.7	<5.00
B1-5'	10/29/2008	0.3	<16.2	<16.2	<16.2	23.3
B1-10'	10/29/2008	0.3	<16.1	<16.1	<16.1	230
B1-15'	10/29/2008	0.3	<16.9	<16.9	<16.9	581
B1-20'	10/29/2008	0.4	<16.8	<16.8	<16.8	818
B1-30'	10/29/2008	0.2	<17.9	<17.9	<17.9	1,230
B1-40'	10/29/2008	0.2	<16.9	<16.9	<16.9	1,730
B1-50'	10/29/2008	0.2	<16.8	24.1	24.1	590
B2-1'	10/29/2008	0.2	<16.1	<16.1	<16.1	6.43
B2-5 ¹	10/29/2008	0.3	<16.5	<16.5	<16.5	233
B2-10'	10/29/2008	0.2	<16.6	<16.6	<16.6	628
B2-15'	10/29/2008	0.2	<16.2	<16.2	<16.2	707
B2-20'	10/29/2008	0.2	<16.1	<16.1	<16.1	1,080
B2-30'	10/29/2008	0.0	<18.5	<18.5	<18.5	3,310
B2-40	10/29/2008	0.0	<17.0	<17.0	<17.0	2,100
B2-50'	10/29/2008	0.0	<17.1	<17.1	<17.1	1,840

Table 1 Soil Analytical Data Summary North 10-Inch Release (1RP-952) - Unit B, Sec 22, T21S, R37E Targa Midstream Services, L.P. Lea County, New Mexico

Committee VD	Data	DID	GRO	DRO	TPH	Chlorides
Sample ID	Date	PID	C6-C12	C12-C28	C6-C28	Chlorides
RRAL:					1,000	250
B3-1'	10/29/2008	0.0	<15.7	<15.7	<15.7	<10.5
B3-5'	10/29/2008	0.0	<15.8	<15.8	<15.8	16.6
B3-10'	10/29/2008	0.0	<16.2	17.2	17.2	60.2
B3-15'	10/29/2008	0.0	<16.6	<16.6	<16.6	678
B3-20'	10/29/2008	0.0	<15.8	<15.8	<15.8	429
B3-30'	10/29/2008	0.0	<19.9	<19.9	<19.9	<13.3
B3-40¹	10/29/2008	0.0	<16.0	<16.0	<16.0	<5.34
B3-50'	10/29/2008	0.0	<17.0	<17.0	<17.0	<11.3
B4-1'	10/30/2008	0.0	<16.4	<16.4	<16.4	240
B4-5'	10/30/2008	0.0	<15.6	<15.6	<15.6	181
B4-10'	10/30/2008	0.2	<16.6	<16.6	<16.6	<54.5
B4-15'	10/30/2008	0.0	<16.5	<16.5	<16.5	<52.0
B4-20'	10/30/2008	0.0	<16.0	<16.0	<16.0	<107
B4-30'	10/30/2008	0.0	<16.4	<16.4	<16.4	190
B4-40'	10/30/2008	0.0	<16.5	<16.5	<16.5	251
B4-50'	10/30/2008	0.0	<15.8	<15.8	<15.8	196
MW-1-1'	10/29/2008	0.7	<16.6	<16.6	<16.6	<5.00
MW-1-5'	10/29/2008	0.8	<16.2	<16.2	<16.2	35.3
MW-1-10'	10/29/2008	0.9	<17.1	<17.1	<17.1	371
MW-1-15'	10/29/2008	0.9	<15.8	<15.8	<15.8	171
MW-1-20'	10/29/2008	0.7	<15.7	<15.7	<15.7	110
MW-1-30'	10/29/2008	0.7	<16.8	<16.8	<16.8	82.7
MW-1-40'	10/29/2008	0.9	<16.6	<16.6	<16.6	90.7
MW-1-50'	10/29/2008	0.5	<16.6	<16.6	<16.6	140
MW-2-1'	10/30/2008	0.3	<16.8	<16.8	<16.8	<56.0
MW-2-5'	10/30/2008	0.4	<16.1	<16.1	<16.1	<53.5
MW-2-10'	10/30/2008	0.4	<16.9	<16.9	<16.9	<56.2
MW-2-15'	10/30/2008	0.3	<16.4	<16.4	<16.4	<109
MW-2-20'	10/30/2008	0.2	<15.4	<15.4	<15.4	<103
MW-2-30 ¹	10/30/2008	0.0	<17.4	<17.4	<17.4	281
MW-2-40'	10/30/2008	0.0	<17.5	<17.5	<17.5	240
MW-2-50'	10/30/2008	0.0	<16.9	<16.9	<16.9	181

Table 1

Soil Analytical Data Summary

North 10-Inch Release (1RP-952) - Unit B, Sec 22, T21S, R37E

Targa Midstream Services, L.P.

Lea County, New Mexico

Canada (C	D-4-	DID	GRO	DRO	ТРН	Chlasidae
Sample ID	Date	PID	C6-C12	C12-C28	C6-C28	Chlorides
RRAL:					1,000	250
MW-3-1'	2/17/2009	0.1				<5.44
MW-3-5'	2/17/2009	0.1				<5.22
MW-3-10'	2/17/2009	0.1				<5.30
MW-3-15'	2/17/2009	0.1				12.0
MW-3-20 ¹	2/17/2009	0.1				<5.21
MW-3-30'	2/17/2009	0.1				61.1
MW-3-40'	2/17/2009	0.1				186
MW-3-50'	2/17/2009	0.1				136
MW-3-60'	2/17/2009					96.1
MW-4-1'	2/17/2009	2.1				<5.25
MW-4-5'	2/17/2009	1.7				<5.20
MW-4-10'	2/17/2009	1.5		 -		<5.32
MW-4-15'	2/17/2009	1.7				6.40
MW-4-20'	2/17/2009	1.5				<11.2
MW-4-30'	2/17/2009	1.7				81.5
MW-4-40'	2/17/2009	1.5				47.6
MW-4-50'	2/17/2009	1.3				57.1
MW-4-60'	2/17/2009	1.1				77.0
MW-5-1'	2/17/2009	1.7			~	14.1
MW-5-5'	2/17/2009	1.5				8.8
MW-5-10'	2/17/2009	1.1				74.4
MW-5-15'	2/17/2009	1.5			~	54.4
MW-5-20'	2/17/2009	1.5				84.1
MW-5-30'	2/17/2009	1.3				124
MW-5-40'	2/17/2009	1.1			****	81.0
MW-5-50'	2/17/2009	1.3				9.6
MW-5-60'	2/17/2009	1.1				62.0

Notes

RRAL - Recommended Remediation Action Level

Total Petroleum Hydrocarbons analyzed via EPA SW Method 8015 Mod.

Chlorides analyzed via EPA Method 300.

All values reported in Milligrams per Kilogram - dry (mg/kg, parts per million).

Bold and blue indicates the value exceeds NMOCD requirements.

Samples collected after 10/29/2008 conducted by Larson & Associates, Inc.

Table 2
Monitoring Well Completion and Gauging Summary
North 10 Inch Release Site (1RP-952) - Unit B, Sec 22, T21S, R37E
Targa Midstream Services, L.P.

Lea County, New Mexico	

Well Information	nation								Groundwater Data	r Data		
Well ID	Date Drilled	Drilled Depth (bgs)	Well Depth from TOC	Well Diameter (inches)	Surface Elevation	Screen Interval (bgs)	Casing Stickup	TOC	Date Gauged	Depth to Fluid	Depth to Water	Corrected Water Elevation
MW-01	MW-01 10/29/2008	75	74.57	2	3,410.68	52 - 72	3.08	3,413.76	3/2/2009	1	58.66	3,355.10
MW-02	10/30/2008	7.5	74.25	2	3409.72	52 - 72	3.15	3,412.87	3/2/2009	1	58.34	3,354.53
MW-03	2/17/2009	70	70.81	2	3,410.54	50 - 70	2.49	3,413.03	3/2/2009	l	58.28	3,354.75
MW-04	2/17/2009	72	74.31	2	3,409.93	52 - 72	2.69	3,412.62	3/2/2009	1	58.46	3,354.16
MW-05	2/17/2009	7.2	77.66	2	3,403.35	57 - 77	2.59	3,405.94	3/2/2009	1	52.44	3,353.50

Motos

All values are in feet, unless otherwise noted.

bgs - below ground surface

TOC - top of casing

Elevations are above mean sea level referenced to 1984 Geodetic Datum.

Wells drilled and installed by Scarbrough Drilling, Inc., Lamesa, Texas. Schedule 40 threaded PVC casing and screen set.

Table 3
Groundwater Metals Summary
North 10-Inch Release (1RP-952) - Unit B, Sec 22, T21S, R37E
Targa Midstream Services, L.P.
Lea County, New Mexico

Sample ID	Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Lead
WQCC:			0.1	1.0		0.01		0.05	0.05
MW-1	10/30/2008	>0.006	0.017	669.0	0.0012	<0.001	464	0.025	0.014
MW-2	10/30/2008	>0.006	0.016	0.409	0.001	<0.001	282	0.022	0.010
MW-3	3/2/2009	<0.008	0.00628	0.114	<0.0003	<0.0003	220	<0.002	<0.0003
MW-4	3/2/2009	<0.008	0.00678	0.0684	<0.0003	<0.0003	230	<0.002	<0.0003
MW-5	3/2/2009	<0.0008	0.011	0.0405	<0.0003	<0.0003	214	<0.002	<0.0003

Sample ID	Date	Manganese	Magnesium	Mercury	Nickel	Potassium	Selenium	Silver	Sodium
WQCC:		0.2		0.002	0.2		0.05	0.05	
MW-1	10/30/2008	0.255		<0.0001	0.037	13.6	0.014	<0.002	183
MW-2	10/30/2008	0.198	i	<0.0001	0.027	12.9	0.018	<0.002	302
MW-3	3/2/2009	1	116	<0.00008	<0.003	9.90	0.018	<0.001	227
MW-4	3/2/2009	1	126	<0.00008	<0.003	12.4	0.0274	<0.001	644
MW-5	3/2/2009	1	121	<0.00008	<0.003	9.39	0.0555	<0.001	254

Notes

WQCC - Water Quality Control Commission action level

Metals except mercury analyzed via EPA SW Method 6020.

Mercury analyzed via EPA SW Method 7470A.

Bold and blue indicates the value exceeds regulatory requirements.

Table 4

Groundwater Anion TDS Summary North 10-Inch Release (1RP-952) - Unit B Sec 22, T215, R37E

Targa Midstream Services, L.P. Lea County, New Mexico

Sample ID	Date	Total Alkalinity	Chlorides	Sulfate	Total Dissolved Solids
WQCC:			250	600	1,000
TMW-1	2/10/2006		3,799	468	
MW-1	10/30/2008	156	190	511	1,330
MW-2	10/30/2008	208	824	303	1,800
MW-3	3/2/2009	199	883	256	2,270
MW-4	3/2/2009	173	1,600	532	4,440
MW-5	3/2/2009	154	618	855	2,440

Notes

WQCC - Water Quality Control Commission action level

Bold and blue indicates the value exceeds regulatory requirements.

Samples collected after 10/29/2008 conducted by Larson & Associates, Inc.

Figure 1- Topographic Map

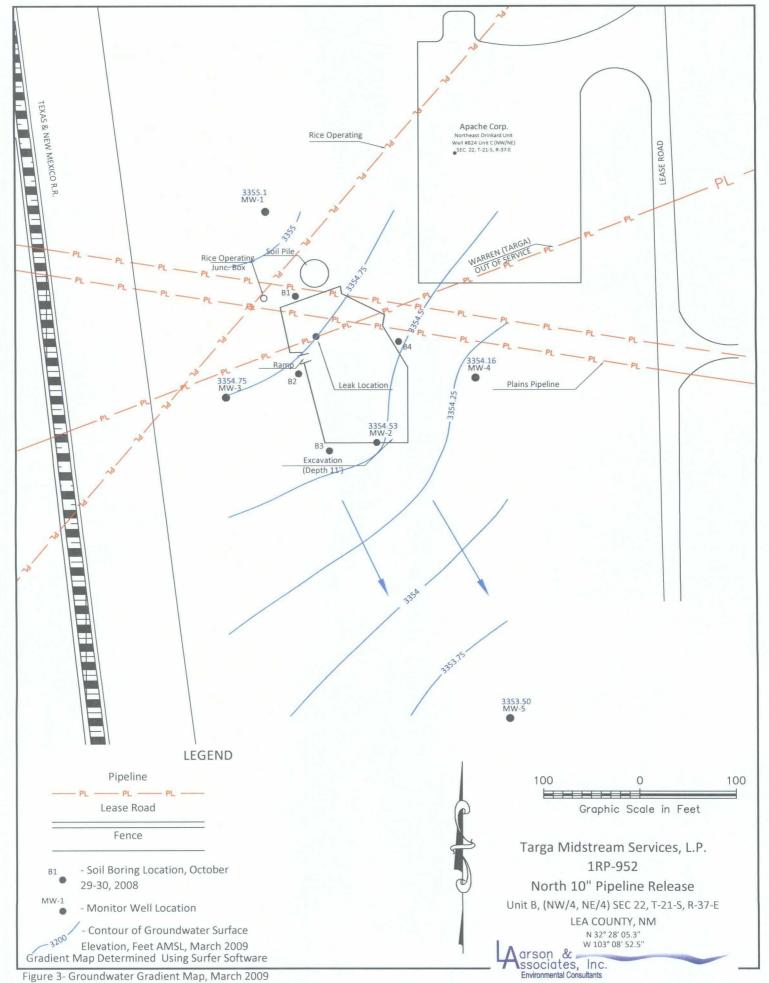


Figure 2 - Aerial Map

Google Image 2004

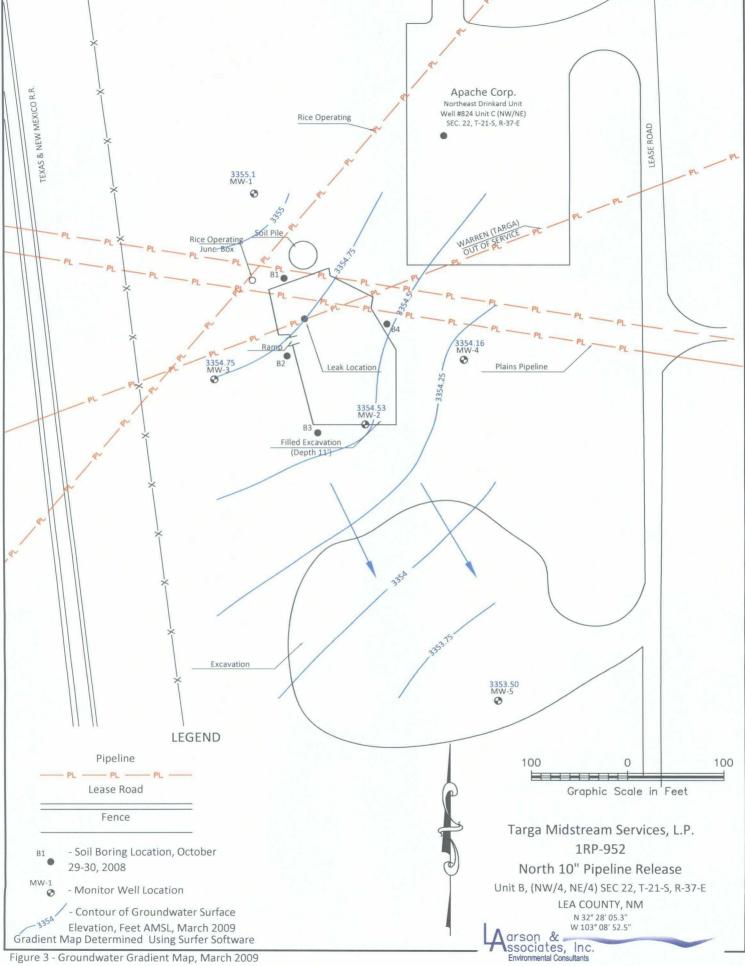


Figure 3 - Groundwater Gradient Map, March 2009

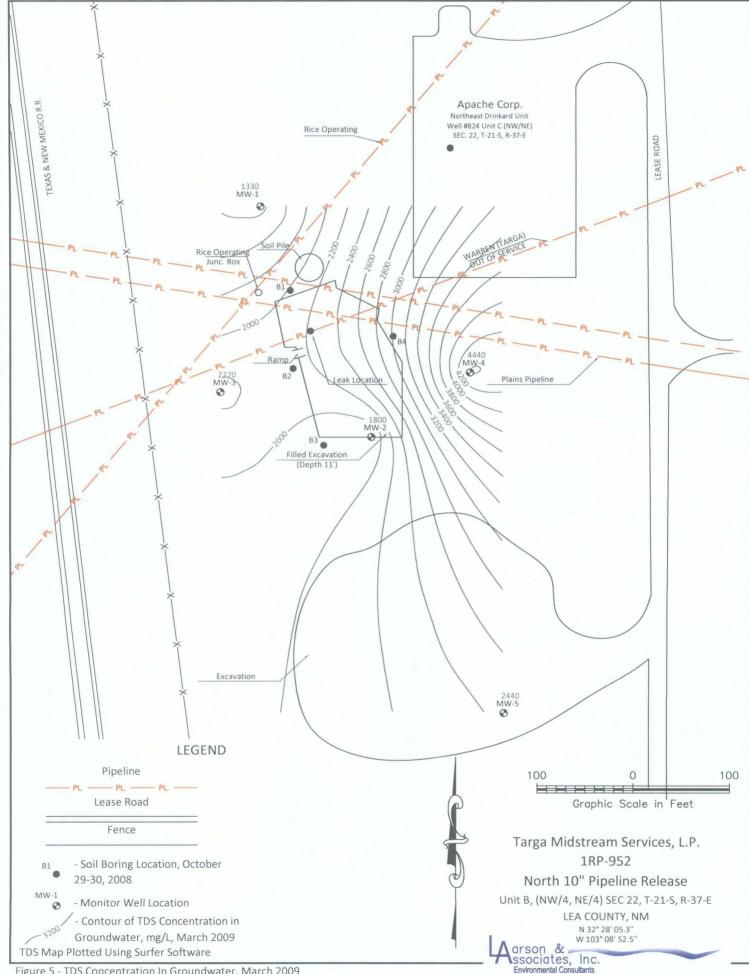


Figure 5 - TDS Concentration In Groundwater, March 2009

Mark Larson

From:

Price, Wayne, EMNRD [wayne.price@state.nm.us]

Sent:

Tuesday, January 06, 2009 11:00 AM

To:

Mark Larson

Cc:

Johnson, Larry, EMNRD; VonGonten, Glenn, EMNRD

Subject:

RE: 1RP-952, Notification of Groundwater Impairment - North 10" Pipeline Release, Targa

Midstream Services, L.P., Unit B (NW/4, NE/4), S. 22, T. 22S., R. 37 E., Lea County, New

Mexico

Attachments:

image001.jpg

Dear Mark, I now remember this site. OCD hereby approves of the backfilling and disposal of the contaminated soil. Please submit a report when complete and a path forward for the groundwater monitoring, including recommendations by March 31, 2009. Also make this E-mail part of the record.

From: Mark Larson [mailto:Mark@laenvironmental.com]

Sent: Monday, January 05, 2009 3:15 PM

To: Price, Wayne, EMNRD

Subject: RE: 1RP-952, Notification of Groundwater Impairment - North 10" Pipeline Release, Targa Midstream Services,

L.P., Unit B (NW/4, NE/4), S. 22, T. 22S., R. 37 E., Lea County, New Mexico

Wayne,

This release was originally investigated by Environmental Plus, Inc. (EPI) which excavated the release to about 11 feet below ground surface and collected soil samples from the bottom and sides of the excavation. EPI's analysis showed no benzene, BTEX or total petroleum hydrocarbons (TPH) in soil above the OCD thresholds, however, chloride was reported at 1,040 mg/Kg in a sample from about 50 feet near the center of the excavation. The excavation has been open since August 2002. On October 29 and 30, 2008, Larson and Associates, Inc. (LAI) collected soil samples to 50 feet at 6 locations, including a background location, and installed 2 monitoring wells (upgradient and downgradient) to determine if the release had impacted groundwater. No benzene, BTEX or TPH exceeded the OCD recommended remediation action levels in soil samples and chloride was delineated in all directions except on the west side of the location. No BTEX was reported in the groundwater samples. Chloride was 824 milligrams per liter (mg/L) in the downgradient sample (MW-2) and 190 mg/L in the upgradient sample (MW-1). Soil from the excavation is currently piled on the north side of the excavation and has chloride from 532 to 1,190 milligrams per kilogram (mg/Kg). The stock piled soil will be hauled to an OCD approved disposal facility (e.g., Sundance Services, Inc.) and a barrier consisting of either compacted clay or 20-mill thickness liner will be placed in the bottom of the excavation and the excavation filled with clean soil and seeded. Three (3) additional monitoring well will be installed to delineate chloride in the vadose zone and groundwater.

Thanks,

Mark J. Larson Sr. Project Manager / President 507 N. Marienfeld St., Ste. 202 Midland, Texas 79701 (432) 687-0901 (office) (432) 687-0456 (fax) (432) 556-8656 (cell) mark@laenvironmental.com

From: Price, Wayne, EMNRD [mailto:wayne.price@state.nm.us]

Sent: Monday, January 05, 2009 3:46 PM **To:** Mark Larson; Johnson, Larry, EMNRD

Cc: Embrey, Donald M; ilingnau@targaresources.com

Subject: RE: 1RP-952, Notification of Groundwater Impairment - North 10" Pipeline Release, Targa Midstream Services,

L.P., Unit B (NW/4, NE/4), S. 22, T. 22S., R. 37 E., Lea County, New Mexico

Dear Mark, normally all groundwater impacts are approved out of Santa Fe. How can we help you?

Wayne Price-Environmental Bureau Chief Oil Conservation Division 1220 S. Saint Francis Santa Fe, NM 87505 E-mail wayne.price@state.nm.us

Tele: 505-476-3490 Fax: 505-476-3462

----Original Message----

From: Mark Larson [mailto:Mark@laenvironmental.com]

Sent: Mon 1/5/2009 2:33 PM To: Johnson, Larry, EMNRD

Cc: Price, Wayne, EMNRD; Embrey, Donald M; jlingnau@targaresources.com

Subject: Re: 1RP-952, Notification of Groundwater Impairment - North 10" Pipeline Release, Targa Midstream Services, L.P., Unit B

(NW/4, NE/4), S. 22, T. 22S., R. 37 E., Lea County, New Mexico

Dear Larry,

On November 21, 2008, Larson & Associates, Inc. (LAI), as consultant to Targa Midstream Services, L.P. (Targa), submitted the above-referenced report to the New Mexico Oil Conservation Division (OCD) District 1 and Santa Fe offices to report groundwater impairment from a natural gas liquids pipeline release that occurred on August 16, 2002. The report included a proposal for the following:

- 1) Dispose of the contaminated soil piled north side of the excavation at a OCD approved disposal facility;
- 2) Install an impermeable barrier (i.e., compacted clay or 20-mil thickness polyethylene liner) in the bottom of the excavation, fill the excavation with clean soil, crown the surface for drainage and seed the surface to landowner specifications;
- 3) Install three (3) monitoring wells (MW-3, MW-4 and MW-5) to delineate the vadose zone and groundwater impact;
- 4) Analyze soil samples for chloride and groundwater samples for anions, cations and TDS;
- 5) Prepare a report that includes excavation closure summary, soil and groundwater investigation summary, geological logs and cross

sections, iopleth maps for chloride and TDS concentrations in groundwater; Groundwater remedial alternative.

Your approval of the proposal is requested. Please do not hesitate to contact me with questions.

Sincerely,

Mark J. Larson

Sr. Project Manager / President

507 N. Marienfeld St., Ste. 202

Midland, Texas 79701

(432) 687-0901 (office)

(432) 687-0456 (fax)

(432) 556-8656 (cell)

mark@laenvironmental.com

I am using the Free version of SPAMfighter <http://www.spamfighter.com/len> We are a community of 5.8 million users fighting spam.

SPAMfighter has removed 3489 of my spam emails to date.

The Professional version does not have this message

This inbound email has been scanned by the MessageLabs Email Security System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

I am using the Free version of <u>SPAMfighter</u>
We are a community of 5.8 million users fighting spam.
SPAMfighter has removed 3489 of my spam emails to date.
The Professional version does not have this message

This inbound email has been scanned by the MessageLabs Email Security System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

Mark Larson

From:

Price, Wayne, EMNRD [wayne.price@state.nm.us]

Sent: To:

Monday, January 05, 2009 3:46 PM Mark Larson; Johnson, Larry, EMNRD

Cc:

Embrey, Donald M; jlingnau@targaresources.com

Subject:

RE: 1RP-952, Notification of Groundwater Impairment - North 10" Pipeline Release. Targa

Midstream Services, L.P., Unit B (NW/4, NE/4), S. 22, T. 22S., R. 37 E., Lea County, New

Mexico

Attachments:

image001.jpg

Dear Mark, normally all groundwater impacts are approved out of Santa Fe. How can we help you?

Wayne Price-Environmental Bureau Chief Oil Conservation Division 1220 S. Saint Francis Santa Fe, NM 87505

Tele:

E-mail wayne.price@state.nm.us 505-476-3490

Fax:

505-476-3462

----Original Message----

From: Mark Larson [mailto:Mark@laenvironmental.com]

Sent: Mon 1/5/2009 2:33 PM To: Johnson, Larry, EMNRD

Cc: Price, Wayne, EMNRD; Embrey, Donald M; jlingnau@targaresources.com

Subject: Re: 1RP-952, Notification of Groundwater Impairment - North 10" Pipeline Release, Targa Midstream Services, L.P., Unit B

(NW/4, NE/4), S. 22, T. 22S., R. 37 E., Lea County, New Mexico

Dear Larry,

On November 21, 2008, Larson & Associates, Inc. (LAI), as consultant to Targa Midstream Services, L.P. (Targa), submitted the above-referenced report to the New Mexico Oil Conservation Division (OCD) District 1 and Santa Fe offices to report groundwater impairment from a natural gas liquids pipeline release that occurred on August 16, 2002. The report included a proposal for the following:

- Dispose of the contaminated soil piled north side of the 1) excavation at a OCD approved disposal facility;
- Install an impermeable barrier (i.e., compacted clay or 20-mil thickness polyethylene liner) in the bottom of the excavation, fill the excavation with clean soil, crown the surface for drainage and seed the surface to landowner specifications;
- Install three (3) monitoring wells (MW-3, MW-4 and MW-5) to delineate the vadose zone and groundwater impact;
- Analyze soil samples for chloride and groundwater samples for anions, cations and TDS:
- Prepare a report that includes excavation closure summary, soil and groundwater investigation summary, geological logs and cross sections, iopleth maps for chloride and TDS concentrations in

groundwater; 6) Groundwater remedial alternative. Your approval of the proposal is requested. Please do not hesitate to contact me with questions. Sincerely, Mark J. Larson Sr. Project Manager / President 507 N. Marienfeld St., Ste. 202 Midland, Texas 79701 (432) 687-0901 (office) (432) 687-0456 (fax) (432) 556-8656 (cell) mark@laenvironmental.com

I am using the Free version of SPAMfighter < http://www.spamfighter.com/len We are a community of 5.8 million users fighting spam. SPAMfighter has removed 3489 of my spam emails to date. The Professional version does not have this message

This inbound email has been scanned by the MessageLabs Email Security System.

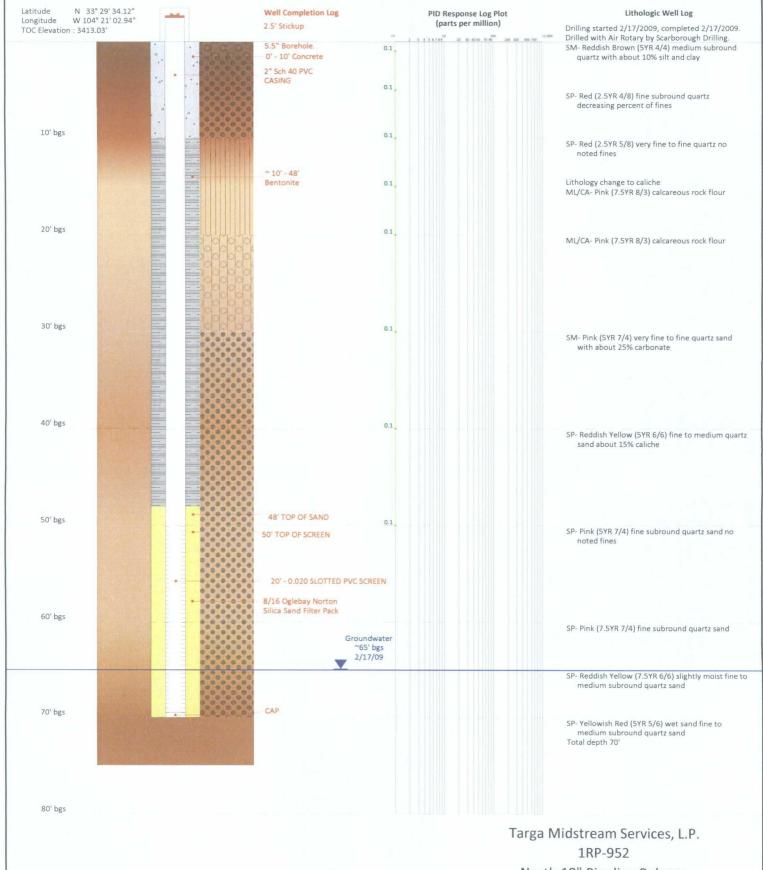
Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

Pipeline Release Excavation Looking Southwest, October 29, 2008

Pipeline Release Excavation Northeast, October 29, 2008

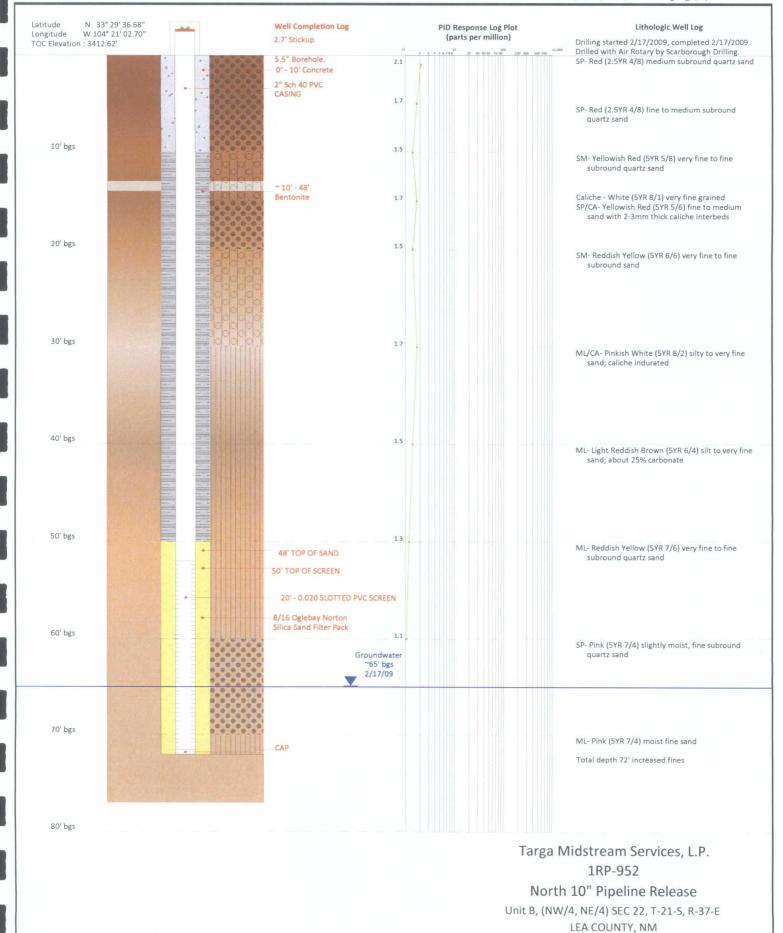
Liner Installation Looking North, January 21, 2009

Liner Installation Looking Northeast January 21, 2009


Excavation Filling Looking North, January 23, 2009

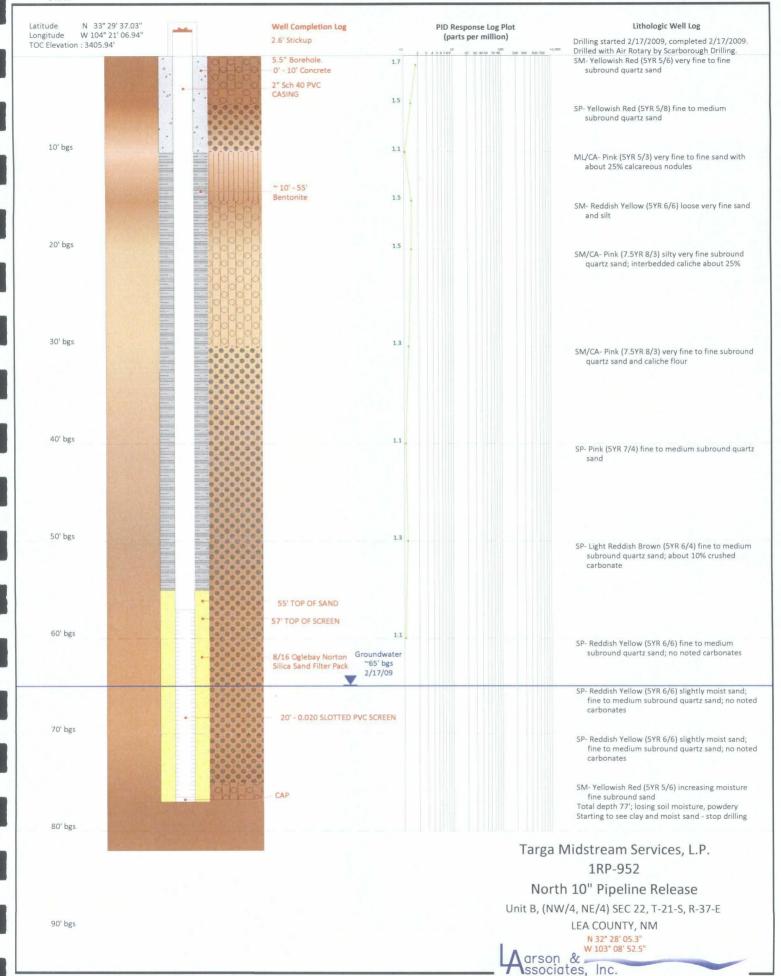
Excavation Filling Looking Northeast, January 23, 2009

Excavation Filling Looking South, January 23, 2009

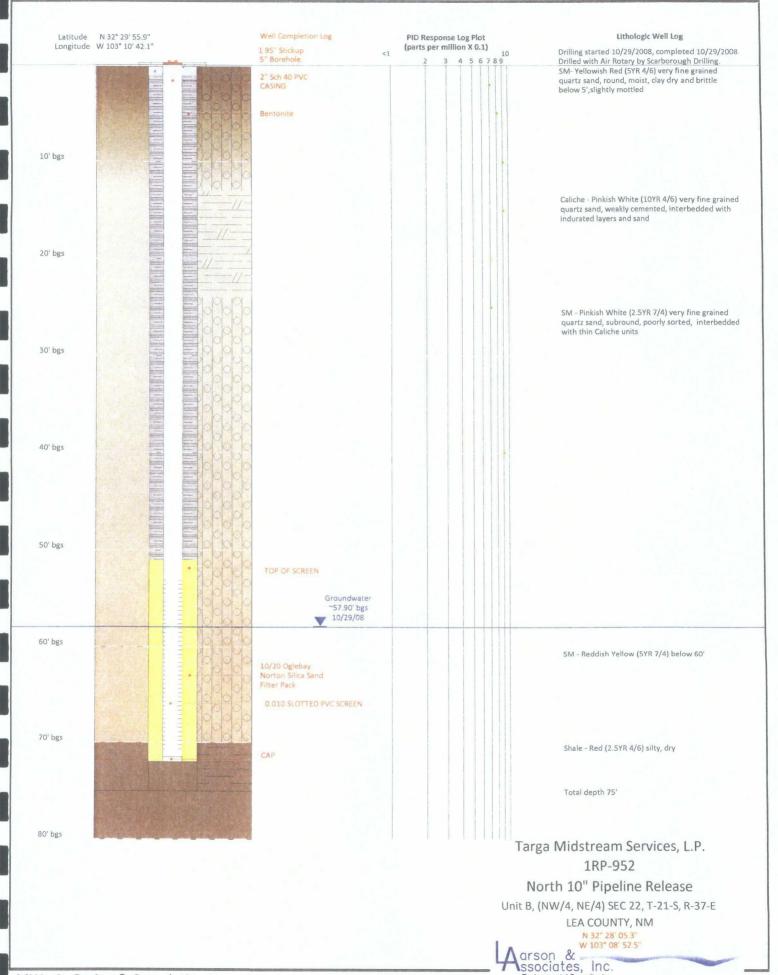

North 10" Pipeline Release
Unit B, (NW/4, NE/4) SEC 22, T-21-S, R-37-E
LEA COUNTY, NM

N 32° 28' 05.3" W 103° 08' 52.5"

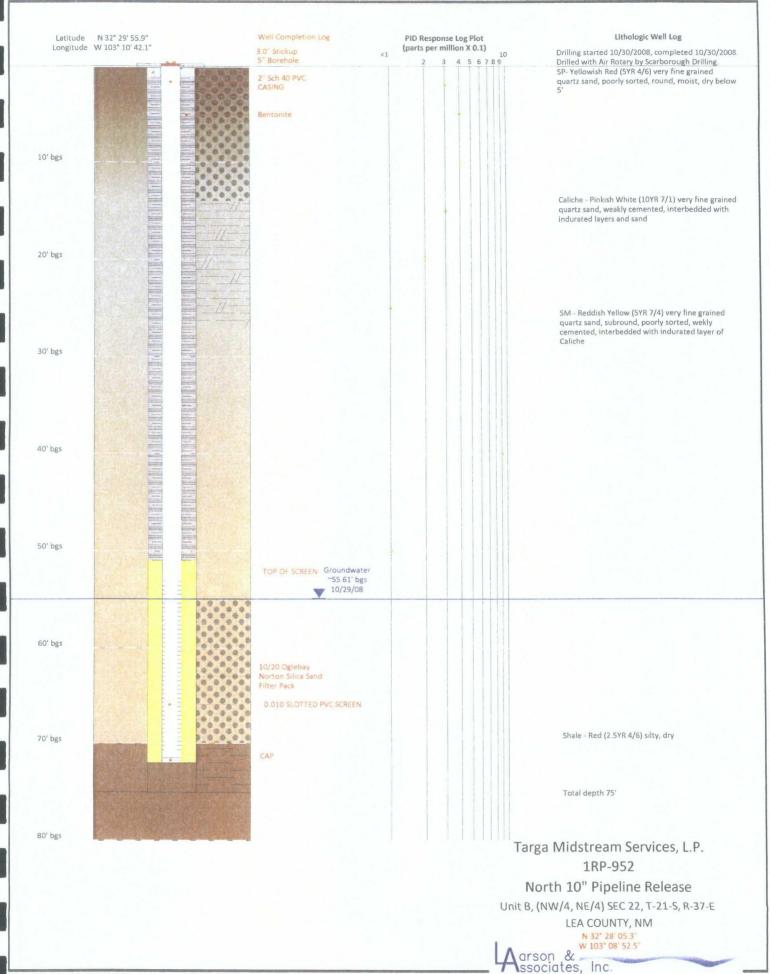
Agrson & Inc.
Environmental Consultants

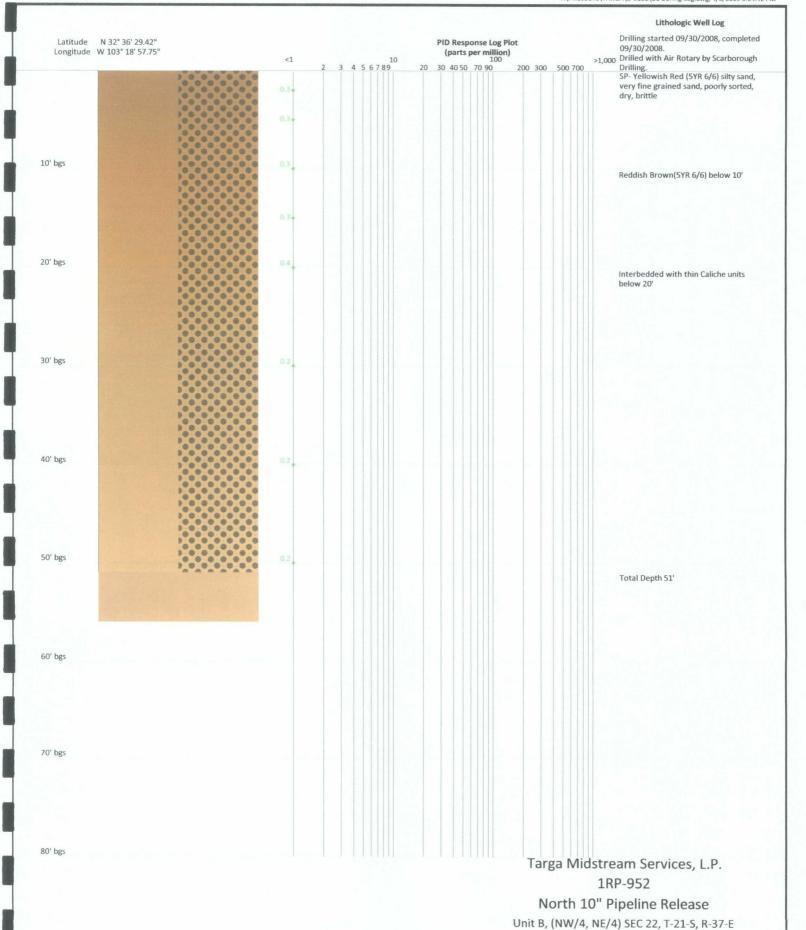

N 32° 28' 05.3" W 103° 08' 52.5"

arson & ssociates, Inc. Environmental Consultants

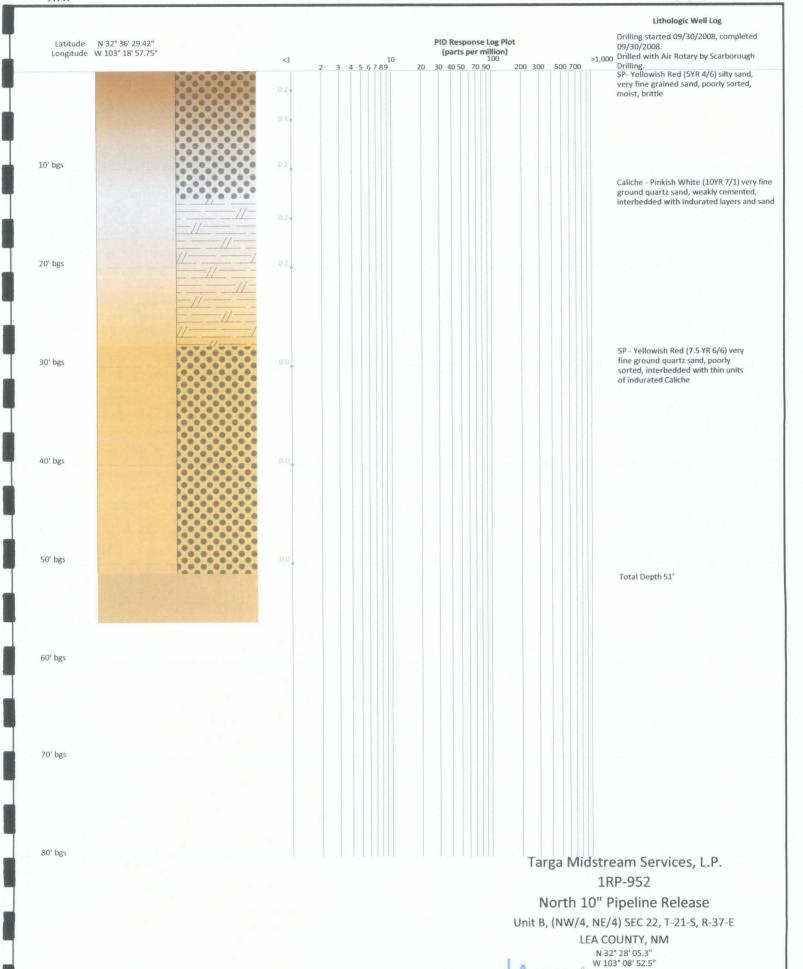


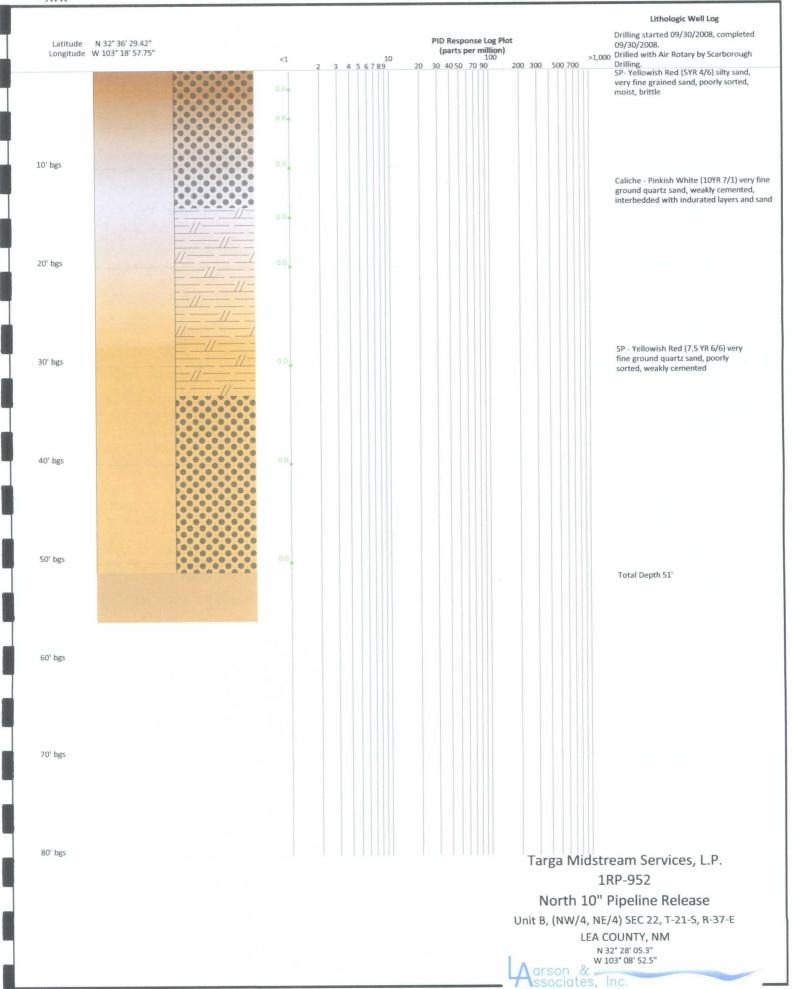
MW - 4 - Boring & Completion Log

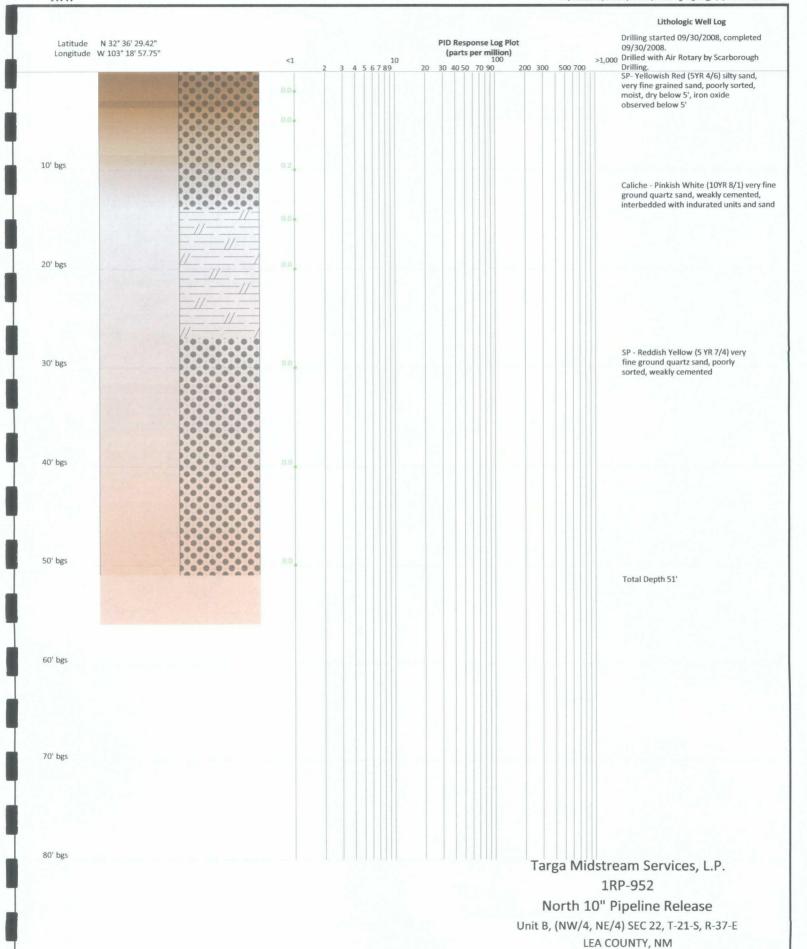

Environmental Consultants



Environmental Consultants

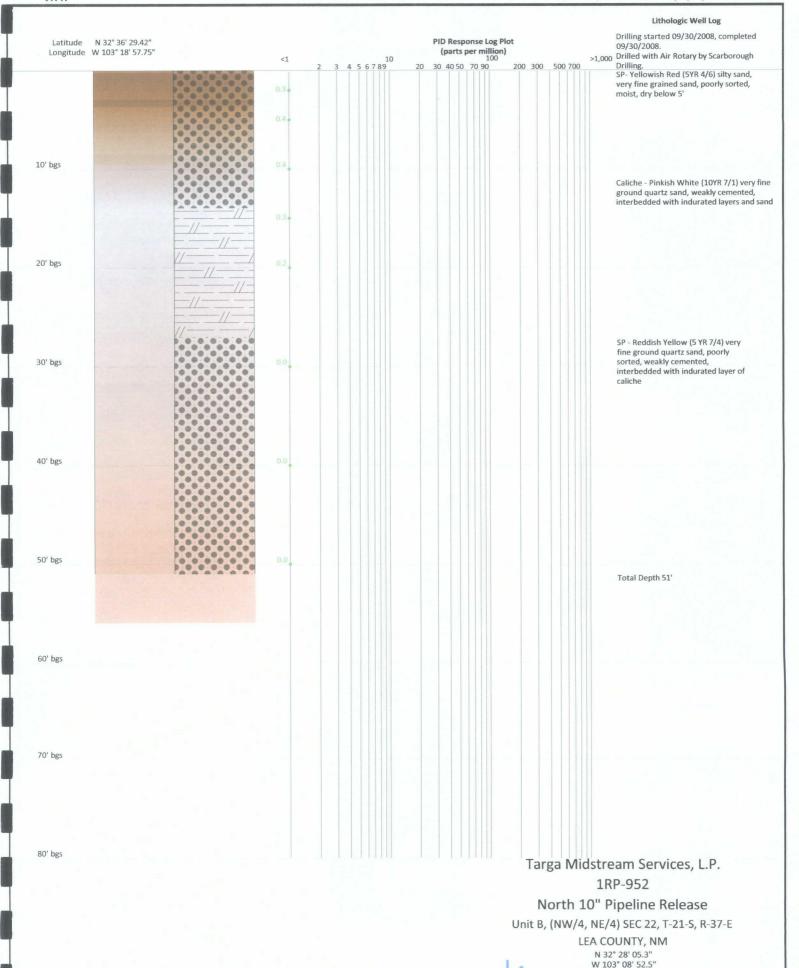

Environmental Consultants




N 32° 28' 05.3"
W 103° 08' 52.5"
Aarson &
ssociates, Inc.
Environmental Consultants

LEA COUNTY, NM

arson & ssociates, Inc.



w 103° 08' 52.5"

Agrson & Sociates, Inc.
Environmental Consultants

N 32° 28' 05.3"

arson & ssociates,

Analytical Report 325237

for

Larson & Associates

Project Manager: Michelle Green

North 10" 8-0132

19-FEB-09

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215-08B-TX - Odessa/Midland, TX T104704400-08-TX

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

19-FEB-09

Project Manager: Michelle Green

Larson & Associates P.O. Box 50685 Midland, TX 79710

Reference: XENCO Report No: 325237

North 10"
Project Address:

Michelle Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 325237. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 325237 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 325237

Larson & Associates, Midland, TX North 10"

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW 3 (0-1')	S	Feb-17-09 08:21	0 - 1 ft	325237-001
MW 3 (5')	S	Feb-17-09 08:22	5 ft	325237-002
MW 3 (10')	S	Feb-17-09 08:25	10 ft	325237-003
MW 3 (15')	S	Feb-17-09 08:27	15 ft	325237-004
MW 3 (20')	S	Feb-17-09 08:30	20 ft	325237-005
MW 3 (30')	S	Feb-17-09 08:33	30 ft	325237-006
MW 3 (40')	S	Feb-17-09 08:36	40 ft	325237-007
MW 3 (50')	S	Feb-17-09 08:43	50 ft	325237-008
MW 3 (60')	S	Feb-17-09 09:00	60 ft	325237-009
MW 5 (0-1')	S	Feb-17-09 09:57	0 - 1 ft	325237-010
MW 5 (5')	S	Feb-17-09 09:59	5 ft	325237-011
MW 5 (10')	S	Feb-17-09 10:00	10 ft	325237-012
MW 5 (15')	S	Feb-17-09 10:01	15 ft	325237-013
MW 5 (20')	S	Feb-17-09 10:04	20 ft	325237-014
MW 5 (30')	S	Feb-17-09 10:06	30 ft	325237-015
MW 5 (40')	S	Feb-17-09 10:10	40 ft	325237-016
MW 5 (50')	S	Feb-17-09 10:14	50 ft	325237-017
MW 5 (60')	S	Feb-17-09 10:20	60 ft	325237-018
MW 4 (0-1')	S	Feb-17-09 13:00	0 - 1 ft	325237-019
MW 4 (5')	S	Feb-17-09 13:03	5 ft	325237-020
MW 4 (10')	S	Feb-17-09 13:04	10 ft	325237-021
MW 4 (15')	S	Feb-17-09 13:05	15 ft	325237-022
MW 4 (20')	S	Feb-17-09 13:07	20 ft	325237-023
MW 4 (30')	S	Feb-17-09 13:10	30 ft	325237-024
MW 4 (40')	S	Feb-17-09 13:14	40 ft	325237-025
MW 4 (50')	S	Feb-17-09 13:20	50 ft	325237-026
MW 4 (60')	S	Feb-17-09 13:29	50 ft	325237-027

Projectivame: worth 10

Project 1d: 8-0132

Contact: Michelle Green

Project Location:

Report Date: 19-FEB-09

Brent Barron II Project Mor

Date Received in Lab: Tue Feb-17-09 04:47 pm

					Project Manager: Brent Barron, II	Brent Barron, II	
	Lab Id:	325237-001	325237-002	325237-003	325237-004	325237-005	325237-006
H	Field Id:	MW 3 (0-1')	MW 3 (5')	MW 3 (10')	MW 3 (15')	MW 3 (20')	MW 3 (30')
Analysis Kequesiea	Depth:	0-1 ft	S ft	10 ft	15 ft	20 ft	30 ft
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Feb-17-09 08:21	Feb-17-09 08:22	Feb-17-09 08:25	Feb-17-09 08:27	Feb-17-09 08:30	Feb-17-09 08:33
Anions by FPA 300	Extracted:	į					
	Analyzed:	Feb-18-09 15:05	Feb-18-09 15:05	Feb-18-09 15:05	Feb-18-09 15:05	Feb-18-09 15:05	Feb-18-09 15:05
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		ND 5.44	ND 5.22	ND 5.30	12.0 5.27	ND 5.21	61.1 12.2
Percent Moisture	Extracted:						
	Analyzed:	Feb-18-09 09:00	Feb-18-09 09:00	Feb-18-09 09:00	Feb-18-09 09:00	Feb-18-09 09:00	Feb-18-09 09:00
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		8.06 1.00	4.24 1.00	5.66 1.00	5.17 1.00	4.09 1.00	17.72 1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our flability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Project wame: worth 10

Project Id: 8-0132

Contact: Michelle Green

Project Location:

Date Received in Lab: Tue Feb-17-09 04:47 pm Report Date: 19-FEB-09

Project Manager: Brent Barron, II

sis Requested Field Id: MW 3 (40) MW 3 (50) MW 3 (60) MW 5 (0-1) MW 5 (0-		Lab Id:	325237-007	325237-008	325237-009	325237-010	325237-011	325237-012
Anions by EPA 300 Extracted: Depth: 40 ft 50 ft 60 ft 0-1 ft Anions by EPA 300 Extracted: Soll. Feb-17-09 09:07 Feb-17-09 09:07 Feb-18-09 15:07 Feb-18-09 15:07 Feb-18-09 15:07 Feb-18-09 15:07 Feb-18-09 15:05 Feb-18-18-09 15:05 Feb-18-18-18-18-18-18-18-18-18-18-18		Field Id:	MW 3 (40')	MW 3 (50')	MW 3 (60')	MW 5 (0-1')	MW 5 (5')	MW 5 (10')
Anions by EPA 300 Extracted: Feb-17-09 08:36 Feb-17-09 08:43 Feb-17-09 08:43 Feb-17-09 09:57 Feb-18-09 15:05 Feb-18-09 09:00 Feb-18-09 09:	Analysis Requesiea	Depth:	40 ft	50 ft	# 09	0-1 ft	5 ft	10 ft
Anions by EPA 300 Extracted: Feb-17-09 08:36 Feb-17-09 08:43 Feb-17-09 09:00 Feb-17-09 09:07 Feb-18-09 15:05 Feb-18-09 15:05 Feb-18-09 15:05 Feb-18-09 15:05 Feb-18-09 09:00 Feb-18-09 09:		Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Anions by EPA 300 Extracted: Feb-18-09 15:05 Feb-18-09 15:		Sampled:	Feb-17-09 08:36	Feb-17-09 08:43	Feb-17-09 09:00	Feb-17-09 09:57	Feb-17-09 09:59	Feb-17-09 10:00
Percent Moisture Extracted: Analyzed: Feb-18-09 15:05	Anions by EPA 300	Extracted:						
Percent Moisture Extracted: RED-18-09 09:00 RED-18-09 09:00 RED-18-09 09:00 Feb-18-09 09:0		Analyzed:	Feb-18-09 15:05					
Percent Moisture Extracted: 186 12.2 136 10.7 96.1 5.34 14.1 5.22 Percent Moisture Extracted: Analyzed: Feb-18-09 09:00 Feb-18-09 09:00 <t< th=""><th></th><th>Units/RL:</th><th></th><th></th><th></th><th></th><th>mg/kg RL</th><th>mg/kg RL</th></t<>		Units/RL:					mg/kg RL	mg/kg RL
rcent Moisture Extracted: Analyzed: Feb-18-09 09:00	Chloride						8.76 5.44	74.4 22.3
Analyzed: Feb-18-09 09:00 Feb-18-09 09:00<	Percent Moisture	Extracted:						
Units/RL: % RL % RL % RL % RL % RL % RL %		Analyzed:	Feb-18-09 09:00					
001 001 117 001 001		Units/RL:					% RL	% RL
18.05 1.00 6.22 1.00 6.45 1.00 4.29 1.00	Percent Moisture		18.05 1.00	6.22 1.00	6.45 1.00	4.29 1.00	8.13 1.00	10.51 1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Projectivame: North 10

Project Id: 8-0132

Contact: Michelle Green

Project Location:

Date Received in Lab: Tue Feb-17-09 04:47 pm Report Date: 19-FEB-09

Project Manager: Brent Barron, II

Analysis Requested Field Id: MW 5 (15') Depth: 15 ft Matrix: SOIL Sampled: Feb-17-09 10:01 Anions by EPA 300 Extracted: Feb-18-09 15:05			010-167676	110-167676	323237-010
Depth: Matrix: Sampled: Extracted: Analyzed:	MW 5 (20')	MW 5 (30')	MW 5 (40')	MW 5 (50')	MW 5 (60')
Matrix: Sampled: Extracted: Analyzed:	20 ft	30 ft	40 ft	50 ft	u 09
Sampled: Extracted: Analyzed:	SOIL	SOIL	SOIL	SOIL	SOIL
Extracted: Analyzed:	Feb-17-09 10:04	Feb-17-09 10:06	Feb-17-09 10:10	Feb-17-09 10:14	Feb-17-09 10:20
Analyzed:					
	5 Feb-18-09 15:05	Feb-18-09 15:05	Feb-18-09 15:05	Feb-18-09 15:05	Feb-18-09 20:24
Units/RL: mg/kg RL	RL mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride 54.4 11.4	1.4 84.1 11.2	124 11.7	81.0 5.45	9.60 5.34	62.0 5.47
Percent Moisture Extracted:					
Analyzed: Feb-18-09 09:30) Feb-18-09 09:30	Feb-18-09 09:30	Feb-18-09 09:30	Feb-18-09 09:30	Feb-18-09 09:30
Units/RL: % RL	RL % RL	% RL	% RL	% RL	% RL
Percent Moisture 12.06 1.00	00 10.46 1.00	14.63 1.00	8.34 1.00	6.39 1.00	8.56 1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our hability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Project Ivame: North 10

Project Id: 8-0132

Contact: Michelle Green

Project Location:

Date Received in Lab: Tue Feb-17-09 04:47 pm

Report Date: 19-FEB-09

Project Manager: Brent Barron, II

						000 00000	100 200300
	Tap Id:	325237-019	325237-020	325237-021	325237-022	325237-023	323237-024
R	Field Id:	MW 4 (0-1')	MW 4 (5')	MW 4 (10')	MW 4 (15')	MW 4 (20')	MW 4 (30')
Analysis Kequesiea	Depth:	0-1 ft	5 ft	10 ft	15 ft	20 ft	30 ft
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Feb-17-09 13:00	Feb-17-09 13:03	Feb-17-09 13:04	Feb-17-09 13:05	Feb-17-09 13:07	Feb-17-09 13:10
Anions by FPA 300	Extracted:						
	Analyzed:	Feb-18-09 20:24					
	Units/RL:	mg/kg RL					
Chloride		ND 5.25	ND 5.20	ND 5.32	6.40 5.44	ND 11.2	81.5 11.3
Percent Moisture	Extracted:						
	Analyzed:	Feb-18-09 09:30					
	Units/RL:	% RL					
Percent Moisture		4.81 1.00	3.80 1.00	6.00 1.00	8.16 1.00	10.67 1.00	11.13 1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Projectivame: Tvorth 10

Project Id: 8-0132

Contact: Michelle Green

Project Location:

Date Received in Lab: Tue Feb-17-09 04:47 pm

Report Date: 19-FEB-09

Project Manager: Brent Barron. II

	Lab Id:	325237-025	325237-026	325237-027	
And the State of t	Field Id:	MW 4 (40')	MW 4 (50')	MW 4 (60')	
Analysis Neduesiea	Depth:	40 ft	50 ft	50 ft	
	Matrix:	SOIL	SOIL	SOIL	
	Sampled:	Feb-17-09 13:14	Feb-17-09 13:20	Feb-17-09 13:29	
Anions by FPA 300	Extracted:				
	Analyzed:	Feb-18-09 20:24	Feb-18-09 20:24	Feb-18-09 20:24	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	
Chloride		47.6 5.47	57.1 5.28	77.0 5.34	
Percent Moisture	Extracted:				
	Analyzed:	Feb-18-09 09:30	Feb-18-09 09:30	Feb-18-09 09:30	
	Units/RL:	% RL	% RL	% RL	
Percent Moisture		8.58 1.00	5.31 1.00	6.45 1.00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and OUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr. Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Blank Spike Recovery

Project Name: North 10"

Work Order #: 325237

Project ID:

8-0132

Lab Batch #: 750049

Sample: 750049-1-BKS

Matrix: Solid

Date Analyzed: 02/18/2009

Date Prepared: 02/18/2009

Analyst: LATCOR

Reporting Units: mg/kg	Batch #: 1	BLANK /	BLANK SPI	KE REC	COVERY	STUDY
Anions by EPA 300) Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes	[A]		[C]	[D]	/ UK	
Chloride	ND	10.0	11.1	111	90-110	Н

Lab Batch #: 750050

Sample: 750050-1-BKS

Matrix: Solid

Date Analyzed: 02/18/2009

Date Prepared: 02/18/2009

Analyst: LATCOR

Reporting Units: mg/kg

1 BLANK/BLANK SPIKE RECOVERY STUDY

Reporting Units. hig/kg	Daten #:	DLAINK /	DLAINK SFI	KE KEC	OVERT	51001
Anions by EPA 300	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]	[B]	Result [C]	%R [D]	%R	
Chloride	ND	10.0	10.5	105	90-110	

Form 3 - MS Recoveries

Project Name: North 10"

Work Order #: 325237

Lab Batch #: 750049

QC-Sample ID: 325200-001 S

Date Analyzed: 02/18/2009 Date Prepared: Project ID: 8-0132

02/18/2009

Analyst: LATCOR

Batch #:

1

Matrix: Soil

Reporting Units: mg/kg	MATE	RIX / MA	TRIX SPIKE	RECOV	ERY STU	DY
Inorganic Anions by EPA 300	Parent Sample Result [A]	Spike Added B	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	[/*]	IPI				
Chloride	117	120	246	108	80-120	

Lab Batch #: 750050

Date Analyzed: 02/18/2009

02/18/2009 Date Prepared:

Analyst: LATCOR

QC- Sample ID: 325237-018 S

Batch #:

1

Soil Matrix:

Reporting Units: mg/kg	MATE	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	62.0	109	179	107	80-120	

Sample Duplicate Recovery

Project Name: North 10"

Work Order #: 325237

Lab Batch #: 750049

QC- Sample ID: 325200-001 D

Date Analyzed: 02/18/2009

Date Prepared: 02/18/2009 Project ID: 8-0132

Analyst: LATCOR

Batch #:

Matrix: Soil

Reporting Units: mg/kg

SAMPLE / SAMPLE DUPLICATE RECOVERY

Anions by EPA 300 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	117	118	1	20	

Lab Batch #: 750050

Date Analyzed: 02/18/2009

02/18/2009 Date Prepared:

Analyst: LATCOR

QC- Sample ID: 325237-018 D

Anions by EPA 300

Batch #:

Matrix: Soil

Reporting Units: mg/kg

SAMPLE/SAMPLE DUPLICATE RECOVERY Sample Control Parent Sample RPD Result Duplicate Limits Flag Result %RPD [A] [B]

Analyte Chloride 62.0 63.6 3 20

Lab Batch #: 749984

Date Analyzed: 02/18/2009

Date Prepared: 02/18/2009 Analyst: BEV

QC-Sample ID: 325242-001 D

Batch #:

Matrix: Soil

SAMPLE/SAMPLE DUPLICATE RECOVERY Reporting Units: % **Percent Moisture** Parent Sample Sample **Control** RPD Duplicate Limits Result Flag Result %RPD [A] [B] Analyte F Percent Moisture 4.81 6.79 34 20

Lab Batch #: 749985

Date Analyzed: 02/18/2009

Date Prepared: 02/18/2009 Analyst: BEV

QC-Sample ID: 325237-013 D

Batch #:

Matrix: Soil SAMPLE / SAMPLE DUPLICATE RECOVERY Reporting Units: %

Percent Moisture	Parent Sample Result [A]	Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Percent Moisture	12.1	10.5	14	20	

2300 Double Creek Drive • Round Rock, TX 78664 Phone (512) 388-8222 • FAX (512) 388-8229

LIENT: Larson +	1	Asserbates	ales								- DATE:		2-17	7-3009	5
(DDRESS:	. !								İ	·					古
HONE: 432- 68				FA				İ			- PROJ	5	LOCATI	PROJECT LOCATION OR NAME:	<u>iii</u>
DDITIONAL REPORT COPIES TO	COPIES	· '	ر اورود								CUE	7	CLIENT PROJECT #:	# 8-0133	(32)
Authorize 5%	S=SOIL	l g	P=PAINT	J.C.E.			PRE	SER	PRESERVATION	8			101		C Kage
TARP report?	w≥wA A≂AIR		SL=SLOUGI OT=OTHER	 2 (E									Yel C	OF T	TO STATE
□Yes □No						stenis		HOBN			_ / O	/ <i>/&</i> ,	1700 25.00 2	Sie Cest	CASA
Field Sample I.D.	DHL Lab#	Date	Time	Matrix	Container Type	moO to #	нсі	□'os'н 'омн	ECE	NAPRES	100000 100000 100000 1000000	13/10/			\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Mw. ? (0-1')	5	2-76	0%	5	407										
MW3 (5.1			1780	j.				_		1					
Mw 3 (10')	O.5		5480							7					
ر ر	75		८३५१												
Mw3 (20)	Ŝ		0830					-			,				
٠ <u>٠</u>	Ç		5580					-							
Mw3 (40')	- ,		0336	-		_		-							-
105) (20)	ن:		084		 			_		\dashv		:			<u></u>
MW3 (60')	<u>-</u> ;		30,0					\dashv							+
AWS (0-1)	2		C(5)					+							
MWS (5)	7.1		9540				1	+		ŀ		_			-
Mw.5 (10)	نب		(60)		-		+	_		_		i			
MW5 (15)	65	-	[कु				\dashv	+				-			
(3c) Smw	ヹ		400)	-			\dashv	\dashv				1			
Mw5(50)	ا درا		1001	-	6	-6					1				1
TOTAL												_			_
REDNOUISHED BY SIG	Signature)		DATE/TII	DATE/TIME	۲۶.		RECEIVED BY:	% ₹∑	(Signature)	ture)	:	•	A NUCL TUSH O	TURN AROUND TIME RUSH (7 CALL FIRST	A C
RELINQUISHED BY: (Signature)	nature)			DATE/TIME	 	ECE	RECEIVED BY:		(Signature)	ture)			1 DAY 7	DAY 7 CALL FIRST	CUS T
RELINQUISHED BY: (Signature)	nature)			DATE/TIME		ECE	RECEIVED BY:		(Signature)	(au		T	2 DAY J NORMAL J	/	2 C
		the of \$5 00 each	POSAI	10 5 A	pach		7 Return					_	OTHER 1		i E

ANALYTICAL

2300 Double Creek Drive • Round Rock, TX 78664 Phone (512) 388-8222 • FAX (512) 388-8229

2-17-09	Q	≯	CLIENT PROJECT # 8 - 0133	707.1248	Salar Salar	1															TURN AROUND TIME LAB	- RUSH O CALL FIRST RECI	CALL FIRST	1	OTHER I
DATE:	₩ BO	PROJ	CUEN		ì		12														(a)		(a)	(a)	
			\$	PRESERVATION		DHOBN	HCI HCI														RECEIVED BY: (Signature)	A TO ANTALA	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	
						siners	Container CO	405							1			7			14.7	2			
		FAX		T	E E		Matrix	5													DATE/TIME	10.11	DATE/TIME	DATE/TIME	
100	ļ	الله الله الله الله الله الله الله الله		P=PAINT	SL=SLUDGE OT=OTHER		Time	7010	10.14	35.7	1300	1303	1304	1305	[30]	130	<u>Y</u>	380	_		į	7			
Assertates		-030	S TO:		T T		Date	24759			-				 										
1-1		2 1 5	COPIE	S=SOIL	W=WAIEH A=AIR		DHL Lab#	2		3)	14	3	72	3	23	1.7	25	3			Signature)	1	Signature)	gnature)	
CLIENT: Larson	ر زن ا	PHONE: 432 - 68	ADDITIONAL REPORT COPIES TO	Authorize 5%	TRRP report?	□ Yes □ No	Field Sample I.D.	MW 5 (40)	NW 5 (50)	MW 5 (60')	(10) H MW	(S) K M &	(10.) 1 10.	\\ \(\) \(7	MW 41 (30)	(,0H) IT MW	('08') H ('80')		TOTAL	NISHEDIBY.	1 00 1 WW.	RELINQUISHED BY: (Sig	RELINOUISHED BY: (Signature)	

#2	Shipping container in good condition?	Yes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present
#4	Custody Seals intact on sample bottles/ container?	Yes	No	CNot Present ²
#5	Chain of Custody present?	Yes	No	
#6	Sample instructions complete of Chain of Custody?	Yes	No	
#7	Chain of Custody signed when relinquished/ received?	Yes	No	
#8	Chain of Custody agrees with sample label(s)?	Yeş	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	Yes	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No	
#11	Containers supplied by ELOT?	Yes	No	
#12	Samples in proper container/ bottle?	Yes	No	See Below
#13	Samples properly preserved?	₹ es′	No	See Below
#14	Sample bottles intact?	Ves'	No	
#15	Preservations documented on Chain of Custody?	Yee	No	
#16	Containers documented on Chain of Custody?	Yes	No	
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below
#18		Yes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	Yes	No	Not Applicable

Variance Documentation

Contact:		Contacted by:	Date/ Time:
Regarding:			
Corrective Action Taker	1:		
Check all that Apply:		See attached e-mail/ fax Client understands and would like to proceed with analy Cooling process had begun shortly after sampling even	

Gracie Avalos Project Assistant Xenco Labs - Odessa 432-563-1800 Office 432-4563-1713 Fax gracie.avalos@xenco.com

CONFIDENTIALITY STATEMENT

This electronic message contains information from the XENCO Laboratories and is confidential or privileged. The information is intended to be for the use of the individual or entity named above. If you are not the intended recipient, be aware that any disclosure, copying, distribution or use of the contents of this message is prohibited. If you have received this electronic message in error, please notify us immediately by telephone.

Please consider the environment before printing this email.

2/19/2009

auuject. aarripie

Brent,

Bill and Don drop off samples yesterday for project #8-0132.

Please add the project name: North 10"

Thank you,

Michelle L. Green Larson & Associates, Inc. 507 N Marienfeld, Suite 200 Midland, TX 79701

Office: 432.687.0901 Fax: 432.687.0456 Cell: 432.934.3231

March 11, 2009

Order No: 0903005

Michelle Green Larson & Associates 507 N. Marienfeld #200 Midland, TX 79701

TEL: (432) 687-0901 FAX: (432) 687-0456

RE: North 10"

Dear Michelle Green:

DHL Analytical received 3 sample(s) on 3/3/2009 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont Lab Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-08B-TX

Table of Contents

Miscellaneous Documents	3
Case Narrative	6
Sample Summary	7
Prep Dates Report	8
Analytical Dates Report	9
Sample Results	10
Analytical OC Summary Report	13

CHAIN-OF-CUSTODY

							·			DATE	E: 3/	3/2/09	9-				•		PAGE	/ OF)F /	
V arson ₹					507 N	₽ -: ×	507 N. Marienfeld, Ste. 200	id, St	e. 20		₩				LÆ	WOR	X ORD	ER#:	LAB WORK ORDER #: 0 503 005	300	کر	
V SSOCICIES, INC.	Tes, Inc	(\ <u>\</u>			≥	Vidlar 133	Midland, IX /Y/UI	7,4/	<u></u>	PRC	JECT	PROJECT LOCATION OR NAME: North	O NOI	R NAN	√ Æ	Sorti	1101 4			,		,
Data Reported to:		···· ·				432	/00	0.60		FA	LAI PROJECT #:	:CT #:_	9	132			TOO T	COLLECTOR	JR:	Ma		,
									-			X		1	8	K		/	100	4		$\overline{}$
TRRP report?	S=SOIL W=WATER A=AIR	P=PAINI SL=SLUI OT=OTH	P=PAIN I SL≕SLUDGE OT≃OTHER	. —		PRE	PRESERVATION	MTIO	_ 	ego! right		STOP RESIDENCE OF THE STOP OF		(A) (B) (B)				ON NOW	TAININGS TO STANDARD CONTRACTOR STANDARD CONTR			
TIME ZONE: Time zone/State:					iners	-	NaOH [EKVED	83	178	0510	(\$}\?	(15) (15) (15) (15) (15) (15) (15) (15)		000			Con			
NM IMST			į		conta		□ 70			STA	XV.3		X/8°			(\f)				\		
Field Sample I.D.	Lab#	Date	-MS1 Time	Matrix	# of C	нсі	OS ^z H ^E ONH	ICE	20	108 po 10 40 10 10 10 10 10 10 10 10 10 10 10 10 10		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				₹			<u> </u>	FIELD NOTES	OTES	
MW-3	10	3/2/09	hhal	×	8		-	2						/	×.				Met	Metalo: Let	1 7.1th	7 4
4-WW	- \	-	esti	W			-					"		-				1	3	CO.45m	×	-
MW-S	23	4	1135	M	- 10			-							-				RCRI	9+ Sb,	RCRA+ Sb, BC,Ni	
						_													ر ا ا	Cw, Mg, K, NW	, NE	
									<u> </u>											•		
		-					-		ļ													
-																						
									<u> </u>													
				:								,										
		_																				П
(TOTAL																						
RELINGUISHED BY (Signature)	Signature)		DATE/TIME	ME 424.AST		IVED	RECEIVED BY: (Signature)	Y: (Signature)	re)		ب	TURN AROUND TIME	UND TIE		ABOR	TORY L	LABORATORY USE ONLY:			č		
RELINGUISHED BY:(Signature)	Şignature)	' 	DATE	U			RECEIVED BY: (Signature)		e i	<u> </u>		NOKMAL X		<u></u> (RECEIVI	NG TEN	RECEIVING TEMP: 1.1	⊢ ;	THERM #: 5.7	ر ا ا	- 0711170	
RELINQUISHED BY:(Signature)	らignature)	<u>}</u>	C2 L2 LO L DATE/TIME	0 1 1	X SS SS SS SS SS SS SS SS SS SS SS SS SS	KECEIVED BY	RECEIVED BY: (&gnature)	gnatu	₹	\ \ \ \ \	12.E	2 DAY 🗅 OTHER 🗀		J 17	OSIOL CARR	CUSTODY SEALS -	g \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	S S S S S S S S S S S S S S S S S S S	CARRIER BILL # ROLL OF COLOR	1		
										,	<u> </u>				HANC	CI HAND DELIVERED	RED					

Self-in Ascring Astronomy

1

- - 4 -

Sample Receipt Checklist

Client Name Larson & Associates		Date Received: 3/3/2009	
Work Order Number 0903005		Received by JB	
Checklist completed by: Signature	3 3 3 109 Date	Reviewed by Dinitials 3 3 69 Date	
Carrie	er name: <u>LoneStar</u>		
Shipping container/cooler in good condition?	Yes 🗹	No Not Present	
Custody seals intact on shippping container/cooler?	Yes 🗹	No Not Present	
Custody seals intact on sample bottles?	Yes 🗌	No ☐ Not Present 🗹	
Chain of custody present?	Yes 🗹	No 🗆	
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗔	
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌	
Samples in proper container/bottle?	Yes 🗹	No 🗌	
Sample containers intact?	Yes 🗹	No 🗆	
Sufficient sample volume for indicated test?	Yes 🗹	No 🗆	
All samples received within holding time?	Yes 🔽	No 🗔	
Container/Temp Blank temperature in compliance?	Yes 🗹	No	
Water - VOA vials have zero headspace?	Yes	No ☐ No VOA vials submitted ☑	
Water - pH acceptable upon receipt?	Yes 🗌	No ☐ Not Applicable ☑	
Adjusted?	(Checked by	
Any No response must be detailed in the comments section	below. ====================================		
Client contacted Date contact	cted:	Person contacted	
Contacted by: Regarding:			
Comments:			
Corrective Action			

Date: 03/11/09

CLIENT:

Larson & Associates

Project: Lab Order: North 10" 0903005

CASE NARRATIVE

Sample was analyzed using the methods outlined in the following references:

Method SW6020 - Metals Analysis Method SW7470A - Mercury Analysis Method E300 - Anions Analysis Method M2320 B (18th edition) - Alkalinity Analysis Method M2540C (18th Edition) - TDS Analysis

LOG IN

Samples were received and log-in performed on 3/3/09. A total of 3 samples were received. The time of collection was Mountain Standard Time. The samples arrived in good condition and were properly packaged.

METALS ANALYSIS

For Metals analysis performed on 3/6/09 the matrix spike and matrix spike duplicate recoveries were out of control limits for a few analytes. These are flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate was from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis performed on 3/6/09 the RPD for the serial dilution was above control limits for Selenium. This is flagged accordingly. The PDS was within control limits for this analyte. No further corrective actions were taken.

Date: 03/11/09

CLIENT: Project: Lab Order: Larson & Associates

North 10" 0903005 Work Order Sample Summary

Client Sample ID Tag Number **Date Collected** Date Recv'd Lab Smp ID 0903005-01 MW-3 03/02/09 10:44 AM 03/03/09 0903005-02 MW-4 03/02/09 12:50 PM 03/03/09 0903005-03 MW-5 03/02/09 11:35 AM 03/03/09

D--- 7 - 6 2

Date: 03/11/09

CLIENT: Larson & Associates
Project: North 10"
Lab Order: 0903005

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date Batch ID
0903005-01A	MW-3	03/02/09 10:44 AM	Aqueous	SW7470A	Mercury Aq Prep, Total	03/04/09 09:48 AM 33775
	MW-3	03/02/09 10:44 AM	Aqueous	SW3005A	Aq Prep Metals: Dissolved - 0.45μ Filter	03/04/09 09:52 AM 33777
	MW-3	03/02/09 10:44 AM	Aqueous	SW3005A	Aq Prep Metals: Dissolved - 0.45μ Filter	03/04/09 09:52 AM 33777
	MW-3	03/02/09 10:44 AM	Aqueous	SW3005A	Aq Prep Metals: Dissolved - 0.45μ Filter	03/04/09 09:52 AM 33777
0903005-01C	MW-3	03/02/09 10:44 AM	Aqueous	E300	Anion Preparation	03/03/09 09:00 AM 33765
	MW-3	03/02/09 10:44 AM	Aqueous	E300	Anion Preparation	03/03/09 09:00 AM 33765
	MW-3	03/02/09 10:44 AM	Aqueous	M2320 B	Alkalinity Preparation	03/03/09 10:45 AM 33762
	MW-3	03/02/09 10:44 AM	Aqueous	M2540C	TDS Preparation	03/04/09 10:15 AM 33803
0903005-02A	MW-4	03/02/09 12:50 PM	Aqueous	SW7470A	Mercury Aq Prep, Total	03/04/09 09:48 AM 33775
	MW-4	03/02/09 12:50 PM	Aqueous	SW3005A	Aq Prep Metals: Dissolved - 0.45μ Filter	03/04/09 09:52 AM 33777
	MW-4	03/02/09 12:50 PM	Aqueous	SW3005A	Aq Prep Metals: Dissolved - 0.45μ Filter	03/04/09 09:52 AM 33777
	MW-4	03/02/09 12:50 PM	Aqueous	SW3005A	Aq Prep Metals: Dissolved - 0.45μ Filter	03/04/09 09:52 AM 33777
	MW-4	03/02/09 12:50 PM	Aqueous	SW3005A	Aq Prep Metals: Dissolved - 0.45μ Filter	03/04/09 09:52 AM 33777
0903005-02C	MW-4	03/02/09 12:50 PM	Aqueous	E300	Anion Preparation	03/03/09 09:00 AM 33765
	MW-4	03/02/09 12:50 PM	Aqueous	E300	Anion Preparation	03/03/09 09:00 AM 33765
	MW-4	03/02/09 12:50 PM	Aqueous	E300	Anion Preparation	03/03/09 09:00 AM 33765
	MW-4	03/02/09 12:50 PM	Aqueous	M2320 B	Alkalinity Preparation	03/03/09 10:45 AM 33762
	MW-4	03/02/09 12:50 PM	Aqueous	M2540C	TDS Preparation	03/04/09 10:15 AM 33803
0903005-03A	MW-5	03/02/09 11:35 AM	Aqueous	SW7470A	Mercury Aq Prep, Total	03/04/09 09:48 AM 33775
	MW-5	03/02/09 11:35 AM	Aqueous	SW3005A	Aq Prep Metals: Dissolved - 0.45μ Filter	03/04/09 09:52 AM 33777
	MW-5	03/02/09 11:35 AM	Aqueous	SW3005A	Aq Prep Metals; Dissolved - 0.45μ Filter	03/04/09 09:52 AM 33777
	MW-5	03/02/09 11:35 AM	Aqueous	SW3005A	Aq Prep Metals: Dissolved - 0.45μ Filter	03/04/09 09:52 AM 33777
0903005-03C	MW-5	03/02/09 11:35 AM	Aqueous	E300	Anion Preparation	03/03/09 09:00 AM 33765
	MW-5	03/02/09 11:35 AM	Aqueous	E300	Anion Preparation	03/03/09 09:00 AM 33765
	MW-5	03/02/09 11:35 AM	Aqueous	M2320 B	Alkalinity Preparation	03/03/09 10:45 AM 33762
	MW-5	03/02/09 11:35 AM	Aqueous	M2540C	TDS Preparation	03/04/09 10:15 AM 33803

D... 0 . C.1

Date: 03/11/09

CLIENT:	Larson & Associates
roject:	North 10"
ab Order:	0903005

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Rum ID
0903005-01A	MW-3	Aqueous	SW6020	Dissolved Metals-ICPMS (0.45μ)	33777	1	03/05/09 02:09 PM	ICP-MS3_090305A
	MW-3	Aqueous	SW6020	Dissolved Metals-ICPMS (0.45µ)	33777	100	03/06/09 03:34 PM	ICP-MS3_090306B
	MW-3	Aqueous	SW6020	Dissolved Metals-ICPMS (0.45µ)	33777	-	03/06/09 06:35 PM	ICP-MS3_090306B
	MW-3	Aqueous	SW7470A	Mercury Filtered (0.45μ)	33775	-	03/04/09 03:34 PM	CETAC_HG_090304C
0903005-01C	MW-3	Aqueous	M2320 B	Alkalinity	33762	-	03/03/09 11:12 AM	TITRATOR_090303B
	MW-3	Aqueous	E300	Anions by IC method - Water	33765	10	03/03/09 11:28 AM	IC_090303A
	MW-3	Aqueous	E300	Anions by IC method - Water	33765	100	03/03/09 11:44 AM	IC_090303A
	MW-3	Aqueous	M2540C	Total Dissolved Solids	33803	_	03/04/09 10:15 AM	WC_090304A
0903005-02A	MW-4	Aqueous	SW6020	Dissolved Metals-ICPMS (0.45µ)	33777		03/05/09 01:43 PM	ICP-MS3_090305A
	MW-4	Aqueous	SW6020	Dissolved Metals-ICPMS (0.45µ)	33777	100	03/06/09 03:18 PM	ICP-MS3_090306B
	MW-4	Aqueous	SW6020	Dissolved Metals-ICPMS (0.45µ)	33777	5	03/06/09 04:06 PM	ICP-MS3_090306B
	MW-4	Aqueous	SW6020	Dissolved Metals-ICPMS (0.45μ)	33777		03/06/09 06:09 PM	ICP-MS3_090306B
	MW-4	Aqueous	SW7470A	Mercury Filtered (0.45μ)	33775	-	03/04/09 03:36 PM	CETAC_HG_090304C
0903005-02C	MW-4	Aqueous	M2320 B	Alkalinity	33762	_	03/03/09 11:26 AM	TITRATOR_090303B
	MW-4	Aqueous	E300	Anions by IC method - Water	33765	100	03/03/09 12:00 PM	IC_090303A
	MW-4	Aqueous	E300	Anions by IC method - Water	33765	100	03/10/09 11:15 AM	IC_090310A
	MW-4	Aqueous	E300	Anions by IC method - Water	33765	10	03/10/09 11:30 AM	IC_090310A
	MW-4	Aqueous	M2540C	Total Dissolved Solids	33803	-	03/04/09 10:15 AM	WC_090304A
0903005-03A	MW-5	Aqueous	SW6020	Dissolved Metals-ICPMS (0.45µ)	33777	_	03/05/09 02:14 PM	ICP-MS3_090305A
	MW-5	Aqueous	SW6020	Dissolved Metals-ICPMS (0.45µ)	33777	100	03/06/09 03:39 PM	ICP-MS3_090306B
	MW-5	Aqueous	SW6020	Dissolved Metals-ICPMS (0.45µ)	33777	_	03/06/09 06:40 PM	ICP-MS3_090306B
	MW-5	Aqueous	SW7470A	Mercury Filtered (0.45μ)	33775		03/04/09 03:38 PM	CETAC_HG_090304C
0903005-03C	MW-5	Aqueous	M2320 B	Alkalinity	33762	_	03/03/09 11:31 AM	TITRATOR_090303B
	MW-5	Aqueous	E300	Anions by IC method - Water	33765	10	03/03/09 12:31 PM	IC_090303A
	MW-5	Aqueous	E300	Anions by IC method - Water	33765	100	03/03/09 01:52 PM	IC_090303A
	MW-5	Aqueous	M2540C	Total Dissolved Solids	33803		03/04/09 10:15 AM	WC_090304A

1100.0....

Date: 03/11/09

CLIENT:

Larson & Associates

Project: Project No: North 10" 8-0132

Lab Order:

0903005

Client Sample ID:

Lab ID:

Collection Date: Matrix:

MW-3

0903005-01 03/02/09 10:44 AM

Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Mercury Filtered (0.45µ)	S	W7470A					Analyst: LM
Mercury	ND	0.0000800	0.000200		mg/L	1	03/04/09 03:34 PM
Dissolved Metals-ICPMS (0.45µ)	S	W6020	-				Analyst: CZ
Antimony	ND	0.000800	0.00250		mg/L	1	03/05/09 02:09 PM
Arsenic	0.00628	0.00200	0.00600		mg/L	1	03/05/09 02:09 PM
Barium	0.114	0.00300	0.0100		mg/L	1	03/05/09 02:09 PM
Beryllium	ND	0.000300	0.00100		mg/L	1	03/06/09 06:35 PM
Cadmium	ND	0.000300	0.00100		mg/L	1	03/05/09 02:09 PM
Calcium	220	10.0	30.0		mg/L	100	03/06/09 03:34 PM
Chromium	ND	0.00200	0.00600		mg/L	1	03/05/09 02:09 PM
Lead	ND	0.000300	0.00100		mg/L	1	03/05/09 02:09 PM
Magnesium	116	10.0	30.0		mg/L	100	03/06/09 03:34 PM
Nickel	ND	0.00300	0.0100		mg/L	1	03/05/09 02:09 PM
Potassium	9.90	0.100	0.300		mg/L	1	03/05/09 02:09 PM
Selenium	0.0180	0.00200	0.00600		mg/L	1	03/06/09 06:35 PM
Silver	ND	0.00100	0.00200		mg/L	1	03/05/09 02:09 PM
Sodium	227	10.0	30.0		mg/L	100	03/06/09 03:34 PM
Anions by IC method - Water	E	300					Analyst: JBC
Chloride	883	30.0	100		mg/L	100	03/03/09 11:44 AM
Sulfate	256	10.0	30.0		mg/L	10	03/03/09 11:28 AM
Alkalinity	N	12320 B					Analyst: JBC
Alkalinity, Bicarbonate (As CaCO3)	199	10.0	20.0		mg/L	1	03/03/09 11:12 AM
Alkalinity, Carbonate (As CaCO3)	ND	10.0	20.0		mg/L	1	03/03/09 11:12 AM
Alkalinity, Hydroxide (As CaCO3)	ND	10.0	20.0		mg/L	1	03/03/09 11:12 AM
Alkalinity, Total (As CaCO3)	199	10.0	20.0		mg/L	1	03/03/09 11:12 AM
Total Dissolved Solids	N	/12540C					Analyst: AAD
Total Dissolved Solids (Residue, Filterable)		10.0	10.0		mg/L	1	03/04/09 10:15 AM

Qualifiers:	*	Value exceeds TCLP N
	В	Analyte detected in the

Maximum Concentration Level e associated Method Blank Sample Result or QC discussed in the Case Narrative C DF

Analyte detected between MDL and RL J MDL Method Detection Limit

Ν Parameter not NELAC certified ND Not Detected at the Method Detection Limit

RLReporting Limit Spike Recovery outside control limits

D... 10 .£21

Dilution Factor TPH pattern not Gas or Diesel Range Pattern

Date: 03/11/09

CLIENT:

Larson & Associates

Project:
Project No:
Lab Order:

North 10" 8-0132

0903005

Client Sample ID:

Lab ID:

MW-4 0903005-02 03/02/09 12:50 PM

Collection Date: Matrix:

Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Mercury Filtered (0.45µ)	SW7470A						Analyst: LM
Mercury	ND	0.0000800	0.000200		mg/L	1	03/04/09 03:36 PM
Dissolved Metals-ICPMS (0.45µ)	S	W6020					Analyst: CZ
Antimony	ND	0.000800	0.00250		mg/L	1	03/05/09 01:43 PM
Arsenic	0.00678	0.00200	0.00600		mg/L	1	03/05/09 01:43 PM
Barium	0.0684	0.00300	0.0100		mg/L	1	03/05/09 01:43 PM
Beryllium	ND	0.000300	0.00100		mg/L	1	03/06/09 06:09 PM
Cadmium	ND	0.000300	0.00100		mg/L	1	03/05/09 01:43 PM
Calcium	230	10.0	30.0		mg/L	100	03/06/09 03:18 PM
Chromium	ND	0.00200	0.00600		mg/L	1	03/05/09 01:43 PM
Lead	ND	0.000300	0.00100		mg/L	1	03/05/09 01:43 PM
Magnesium	126	10.0	30.0		mg/L	100	03/06/09 03:18 PM
Nickel	ND	0.00300	0.0100		mg/L	1	03/05/09 01:43 PM
Potassium	12.4	0.500	1.50		mg/L	5	03/06/09 04:06 PM
Selenium	0.0274	0.00200	0.00600		mg/L	1	03/06/09 06:09 PM
Silver	ND	0.00100	0.00200		mg/L	1	03/05/09 01:43 PM
Sodium	644	10.0	30.0		mg/L	100	03/06/09 03:18 PM
Anions by IC method - Water	E	300					Analyst: JBC
Chloride	1600	30.0	100		mg/L	100	03/10/09 11:15 AM
Sulfate	532	10.0	30.0		mg/L	10	03/10/09 11:30 AM
Alkalinity	M	12320 B					Analyst: JBC
Alkalinity, Bicarbonate (As CaCO3)	173	10.0	20.0		mg/L	1	03/03/09 11:26 AM
Alkalinity, Carbonate (As CaCO3)	ND	10.0	20.0		mg/L	1	03/03/09 11:26 AM
Alkalinity, Hydroxide (As CaCO3)	ND	10.0	20.0		mg/L	1	03/03/09 11:26 AM
Alkalinity, Total (As CaCO3)	173	10.0	20.0		mg/L	1	03/03/09 11:26 AM
Total Dissolved Solids	M	12540C					Analyst: AAD
Total Dissolved Solids (Residue, Filterable)	4440	10.0	10.0		mg/L	1	03/04/09 10:15 AM

Qualifiers:	*	Value exceeds TCLP Maximum Concentration Level
-	В	Analyte detected in the associated Method Blank
	C	Sample Result or QC discussed in the Case Narrative

DF Dilution Factor
E TPH pattern not Gas or Diesel Range Pattern

J Analyte detected between MDL and RL MDL Method Detection Limit

N Parameter not NELAC certified
ND Not Detected at the Method Detection Limit

RL Reporting Limit
S Spike Recovery outside control limits

D. . . 11 -621

CLIENT: Larson & Associates

Project: North 10"
Project No: 8-0132
Lab Order: 0903005

Client Sample ID: Lab ID:

Collection Date:

MW-5 0903005-03

Date: 03/11/09

03/02/09 11:35 AM Aqueous

Matrix:	Aqueou
TATOM TAY.	riqueou

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Mercury Filtered (0.45µ)	SW7470A						Analyst: LM
Mercury	ND	ND 0.0000800 0.000200			mg/L	1	03/04/09 03:38 PM
Dissolved Metals-ICPMS (0.45µ)	S	W6020					Analyst: CZ
Antimony	ND	0.000800	0.00250		mg/L	1	03/05/09 02:14 PM
Arsenic	0.0110	0.00200	0.00600		mg/L	1	03/05/09 02:14 PM
Barium	0.0405	0.00300	0.0100		mg/L	1	03/05/09 02:14 PM
Beryllium	ND	0.000300	0.00100		mg/L	1	03/06/09 06:40 PM
Cadmium	ND	0.000300	0.00100		mg/L	1	03/05/09 02:14 PM
Calcium	214	10.0	30.0		mg/L	100	03/06/09 03:39 PM
Chromium	ND	0.00200	0.00600		mg/L	1	03/05/09 02:14 PM
Lead	ND	0.000300	0.00100		mg/L	1	03/05/09 02:14 PM
Magnesium	121	10.0	30.0		mg/L	100	03/06/09 03:39 PM
Nickel	ND	0.00300	0.0100		mg/L	1	03/05/09 02:14 PM
Potassium	9.39	0.100	0.300		mg/L	1	03/05/09 02:14 PM
Selenium	0.0555	0.00200	0.00600		mg/L	1	03/06/09 06:40 PM
Silver	ND	0.00100	0.00200		mg/L	1	03/05/09 02:14 PM
Sodium	254	10.0	30.0		mg/L	100	03/06/09 03:39 PM
Anions by IC method - Water	E	300					Analyst: JBC
Chloride	618	30.0	100		mg/L	100	03/03/09 01:52 PM
Sulfate	855	10.0	30.0		mg/L	10	03/03/09 12:31 PM
Alkalinity	N	12320 B					Analyst: JBC
Alkalinity, Bicarbonate (As CaCO3)	154	10.0	20.0		mg/L	1	03/03/09 11:31 AM
Alkalinity, Carbonate (As CaCO3)	ND	10.0	20.0		mg/L	1	03/03/09 11:31 AM
Alkalinity, Hydroxide (As CaCO3)	ND	10.0	20.0		mg/L	1	03/03/09 11:31 AM
Alkalinity, Total (As CaCO3)	154	10.0	20.0		mg/L	1	03/03/09 11:31 AM
Total Dissolved Solids	N	12540C					Analyst: AAD
Total Dissolved Solids (Residue, Filterable)	2440	10.0	10.0		mg/L	1	03/04/09 10:15 AM

Qualifiers:	*	Value exceeds TCLP Maximum Concentration Level
•	В	Analyte detected in the associated Method Blank
	C	Sample Result or QC discussed in the Case Narrative
	DF	Dilution Factor

TPH pattern not Gas or Diesel Range Pattern

Е

J Analyte detected between MDL and RL
MDL Method Detection Limit
N Parameter not NELAC certified
ND Not Detected at the Method Detection Limit
RL Reporting Limit

S Spike Recovery outside control limits

Date: 03/11/09

CLIENT:

Larson & Associates 0903005

Work Order: Project:

North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: CETAC_HG_090304C

Sample ID: SampType:	MB-33775 MBLK	Batch ID: Run ID:	33775 CETAC_HG_090304C	TestNo: Analysis Date:	SW7470A 03/04/09 03:01 PM	Units: mg/L Prep Date: 03/04/09
Analyte Mercury	WIDEK	Result ND	RL SPK value 0.000200	Ref Val %REC	LowLimit HighLimit	%RPD RPD Limit Qual
Sample ID:	Filter Blank-33775	Batch ID:	33775	TestNo:	SW7470A	Units: mg/L
SampType: Analyte Mercury	MBLK	Run ID: Result ND	CETAC_HG_090304C RL SPK value 0.000200	Analysis Date: Ref Val %REC	03/04/09 03:03 PM LowLimit HighLimit	Prep Date: 03/04/09 %RPD RPD Limit Qual
Sample ID:	LCS-33775	Batch ID:	33775	TestNo:	SW7470A	Units: mg/L
SampType:	LCS	Run ID: Result	CETAC_HG_090304C RL SPK value	Analysis Date: Ref Val %REC	03/04/09 03:09 PM LowLimit HighLimit	Prep Date: 03/04/09 %RPD RPD Limit Qual
Analyte Mercury		0.00194	0.000200 0.00200	0 97.0	85 115	ANTO KID EIIIII Quai
Sample ID:	LCSD-33775	Batch ID:	33775	TestNo:	SW7470A	Units: mg/L
SampType:	LCSD	Run ID:	CETAC_HG_090304C	Analysis Date:	03/04/09 03:11 PM	Prep Date: 03/04/09
Analyte Mercury		Result 0.00200	RL SPK value 0.000200 0.00200	Ref Val %REC 0 100	LowLimit HighLimit 85 115	%RPD RPD Limit Qual 3.05 15
Sample ID:	0902127-02C SD	Batch ID:	33775	TestNo:	SW7470A	Units: mg/L
SampType:	SD	Run ID:	CETAC_HG_090304C	Analysis Date:	03/04/09 03:15 PM	Prep Date: 03/04/09
Analyte Mercury		Result 0	RL SPK value 0.00100 0	Ref Val %REC	LowLimit HighLimit	%RPD RPD Limit Qual 0 10
Sample ID:	0902127-02C PDS	Batch ID:	33775	TestNo:	SW7470A	Units: mg/L
SampType:	PDS	Run ID:	CETAC_HG_090304C	Analysis Date:	03/04/09 03:17 PM	Prep Date: 03/04/09
Analyte Mercury		Result 0.00252	RL SPK value 0.000200 0.00250	Ref Val %REC 0 101	LowLimit HighLimit 85 115	%RPD RPD Limit Qual
Sample ID:	0902127-02C MS	Batch ID:	33775	TestNo:	SW7470A	Units: mg/L
SampType:	MS	Run ID:	CETAC_HG_090304C	Analysis Date:	03/04/09 03:19 PM	Prep Date: 03/04/09
Analyte Mercury		Result 0.00212	RL SPK value 0.000200 0.00200	Ref Val %REC 0 106	LowLimit HighLimit 80 120	%RPD RPD Limit Qual
Sample ID:	0902127-02C MSD	Batch ID:	33775	TestNo:	SW7470A	Units: mg/L
SampType:	MSD	Run ID:	CETAC_HG_090304C	Analysis Date:	03/04/09 03:25 PM	Prep Date: 03/04/09
Analyte		Result	RL SPK value	Ref Val %REC	LowLimit HighLimit	%RPD RPD Limit Qual

Qualifiers:	В	Analyte detected in the associated Method Blank
•	DF	Dilution Factor
	J	Analyte detected between MDL and RL
	MDL.	Method Detection Limit

Not Detected at the Method Detection Limit

ND

R	RPD outside accepted control limits
RL	Reporting Limit
S	Spike Recovery outside control limits
J	Analyte detected between SDL and RL

N Parameter not NELAC certified

D. . . 10 . CO1

Date: 03/11/09

CLIENT: Work Order: Larson & Associates 0903005

Work Orde: Project: 0903005 North 10" ANALYTICAL QC SUMMARY REPORT

RunID: CETAC_HG_090304C

Sample ID:	ICV-090304	Batch ID:	R42187		TestNo:		SW7470A		Units:	mg/L
SampType:	ICV	Run ID:	CETAC_H	G_090304C	Analysis 1	Date:	03/04/09 03	2:57 PM	Prep D	ate:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Mercury		0.00400	0.000200	0.00400	0	100	90	110		
Sample ID:	CCV1-090304	Batch ID:	R42187		TestNo:		SW7470A		Units:	mg/L
SampType:	CCV	Run ID:	CETAC_H	G_090304C	Analysis	Date:	03/04/09 0	3:21 PM	Prep D	Date:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Mercury		0.00207	0.000200	0.00200	0	104	90	110		
Sample ID:	CCV2-090304	Batch ID:	R42187		TestNo:		SW7470A		Units:	mg/L
SampType:	CCV	Run ID:	CETAC_H	G_090304C	Analysis	Date:	03/04/09 0	3:42 PM	Prep D	Pate:
Analyte		Result	RL _	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Mercury		0.00215	0.000200	0.00200	0	108	90	110		

Qualifiers:	В	Analyte detected in the associated Method Blank
	DF	Dilution Factor
	J	Analyte detected between MDL and RL
	MDL.	Method Detection Limit

Not Detected at the Method Detection Limit

ND

R RPD outside accepted control limits
RL Reporting Limit

S Spike Recovery outside control limits
J Analyte detected between SDL and RL
N Parameter not NELAC certified

D. . . 14 .£21

CLIENT:

Larson & Associates 0903005

Work Order: Project:

Qualifiers:

DF

MDL

ND

J

Dilution Factor

Method Detection Limit

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL

Not Detected at the Method Detection Limit

North 10"

ANALYTICAL QC SUMMARY REPORT

RPD outside accepted control limits

Spike Recovery outside control limits

Analyte detected between SDL and RL

D. . . 1 1

Parameter not NELAC certified

Reporting Limit

R RL

S

Ν

RunID: ICP-MS3_090305A

Sample ID:	MB-33777	Batch ID:	33777		TestNo:		SW6020		Units:		ıg/L
SampType:	MBLK	Run ID:	ICP-MS3_0	90305A	Analysis I		03/05/09 12		Prep Da		3/04/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lim	it Qual
Antimony		ND	0.00250								
Arsenic		ND	0.00600								
Barium		ND	0.0100								
Cadmium		ND	0.00100								
Calcium		ND	0.300								
Chromium		, ND	0.00600								
Lead		ND	0.00100								
Magnesium		ND	0.300								
Nickel		ND	0.0100								
Potassium		ND	0.300								
Selenium		ND	0.00600								
Silver		ND	0.00200								
Sodium		ND	0.300								
Sample ID:	Filter Blank-33777	Batch ID:	33777		TestNo:		SW6020		Units:	n	ng/L
SampType:	MBLK	Run ID:	ICP-MS3_0	090305A	Analysis I	Date:	03/05/09 12	2:45 PM	Prep D	ate: 0	3/04/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lim	nit Qual
Antimony		ND	0.00250								
Arsenic		ND	0.00600								
Barium		ND	0.0100								
Cadmium		ND	0.00100								
Calcium		ND	0.300								
Chromium		ND	0.00600								
Lead		ND	0.00100								
Magnesium		ND	0.300								
Nickel		ND	0.0100								
Potassium		ND	0.300								
Selenium		ND	0.00600								
Silver		ND	0.00200								
Sodium		ND	0.300								
Sample ID:	LCS-33777	Batch ID:	33777		TestNo:		SW6020		Units:	n	ng/L
SampType:	LCS	Run ID:	ICP-MS3_	090305A	Analysis 1	Date:	03/05/09 12		Prep D		3/04/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lin	nit Qua
Antimony		0.198	0.00250	0.200	0	99.2	80	120			
Arsenic		0.200	0.00600	0.200	0	99.8	80	120			
Barium		0.208	0.0100	0.200	0	104	80	120			
Cadmium		0.199	0.00100	0.200	0	99.4	80	120			
Calcium		4.87	0.300	5.00	0	97.4	80	120			
Chromium		0.201	0.00600	0.200	0	100	80	120			
Lead		0.214	0.00100	0.200	0	107	80	120			
		4.71	0.300	5.00	0	94.2	80	120			
Magnesium											
Magnesium Nickel		0.188	0.0100	0.200	0	94.2	80	120			

CLIENT: Work Order: Project:	Larson & Ass 0903005 North 10"	ociates			ANAL	YTIC	CAL QC				EPORT _090305A
0.1	.,,	0.200	0.00600	0.200		100	80	120			
Selenium		0.200	0.00600	0.200	0	100		120			
Silver		0.196	0.00200	0.200	0	98.1	80	120			
Sodium		4.77	0.300	5.00	0	95.4	80	120			
Sample ID:	LCSD-33777	Batch ID:	33777		TestNo:		SW6020		Units:		mg/L
SampType:	LCSD	Run ID:	ICP-MS3_	090305A	Analysis I	Date:	03/05/09 12	2:55 PM	Prep D	ate:	03/04/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qua
Antimony		0.198	0.00250	0.200	0	99.2	80	120	0.0504	15	
Arsenic		0.201	0.00600	0.200	0	100	80	120	0.600	15	
Barium		0.208	0.0100	0.200	0	104	80	120	0.0481	15	
Cadmium		0.200	0.00100	0.200	0	100	80	120	0.602	15	
Calcium		4.90	0.300	5.00	0	98.0	80	120	0.593	15	
Chromium		0.201	0.00600	0.200	0	101	80	120	0.249	15	
Lead		0.216	0.00100	0.200	0	108	80	120	0.558	15	
Magnesium		4.70	0.300	5.00	0	94.1	80	120	0.127	15	
Nickel		0.190	0.0100	0.200	0	94.8	80	120	0.635	15	
Potassium		5.00	0.300	5.00	0	100	80	120	0.581	15	
Selenium		0.203	0.00600	0.200	0	102	80	120	1.44	15	
Silver		0.197	0.00200	0.200	0	98.4	80	120	0.305	15	
Sodium		4.76	0.300	5.00	0	95.2	80	120	0.168	15	
Souluiii		4.70	0.500	5.00	U	93.2	80	120	0.100	13	
Sample ID:	0903005-02A SD	Batch ID:	33777		TestNo:		SW6020		Units:		mg/L
SampType:	SD	Run ID:	ICP-MS3_	090305A	Analysis I	Date:	03/05/09 01		Prep D		03/04/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD		Limit Qua
Antimony		0	0.0125	0	0				0	10	
Arsenic		0	0.0300	0	0.00678				0	10	
Barium		0.0682	0.0500	0	0.0684				0.351	10	
Cadmium		0	0.00500	0	0				0	10	
Chromium		0	0.0300	0	0				0	10	
Lead		0	0.00500	0	0				0	10	
Nickel		0	0.0500	0	0				0	10	
Silver		0	0.0100	0	0				0	10	
Sample ID:	0903005-02A PDS	Batch ID:	33777		TestNo:		SW6020		Units:		mg/L
SampType:	PDS	Run ID:	ICP-MS3_	090305A	Analysis l	Date:	03/05/09 0	1:53 PM	Prep D	ate:	03/04/09
Analyte		Result	RL	SPK value	Ref Val		LowLimit	HighLimit	_		Limit Qua
Antimony		0.184	0.00250	0.200	0	92.2	75	125			
Arsenic		0.193	0.00600	0.200	0.00678		75	125			
Barium		0.276	0.0100	0.200	0.0684	104	75	125			
Cadmium		0.158	0.00100	0.200	0	78.8	75	125			
Chromium		0.185	0.00600	0.200	0	92.6	75	125			
Lead		0.226	0.00100	0.200	0	113	75 75	125			
Nickel		0.163	0.00100	0.200	0	81.5	75 75	125			
Silver		0.163	0.00200	0.200	0	81.9	75 75	125			
Sample ID:	0903005-02A MS	Batch ID:	33777		TestNo:	_	SW6020		Units:		mg/L
SampType:	MS	Run ID:	ICP-MS3_	090305A	Analysis 1	Date:	03/05/09 0	1:59 PM	Prep D	ate:	03/04/09
		 	11			_					
ers: B	Analyte detected in th	e associated N	Method Blank	ζ.		R		ide accepted	control l	mits	
DF J	Dilution Factor Analyte detected betw	een MDL a-	4 D I			RL S	Reporting	g Limit covery outsid	a control	limita	
J MDL	Method Detection Lin		1 IVL			5 J		covery outsid letected betw			

CLIENT: Work Order Project:	:	Larson & Asso 0903005 North 10"	ociates			ANAL	YTIC	CAL QC			Y REP MS3_09	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lin	nit Qual
Antimony			0.191	0.00250	0.200	0	95.4	80	120			
Arsenic			0.198	0.00600	0.200	0.00678	95.8	80	120			
Barium			0.291	0.0100	0.200	0.0684	111	80	120			
Cadmium			0.166	0.00100	0.200	0	82.8	80	120			
Chromium			0.191	0.00600	0.200	0	95.6	80	120			
Lead			0.232	0.00100	0.200	0	116	80	120			
Nickel			0.170	0.0100	0.200	0	85.0	80	120			
Silver			0.167	0.00200	0.200	0	83.3	80	120			
Sample ID:	090300	05-02A MSD	Batch ID:	33777		TestNo:		SW6020		Units:	n	ng/L
SampType:	MSD		Run ID:	ICP-MS3_	090305A	Analysis I	Date:	03/05/09 02	2:04 PM	Prep D	ate: 0	3/04/09
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lin	nit Qual
Antimony			0.190	0.00250	0.200	0	95.2	80	120	0.262	15	
Arsenic			0.191	0.00600	0.200	0.00678	92.3	80	120	3.59	15	
Barium			0.285	0.0100	0.200	0.0684	108	80	120	1.98	15	
Cadmium			0.162	0.00100	0.200	0	80.8	80	120	2.44	15	
Chromium			0.188	0.00600	0.200	0	94.2	80	120	1.47	15	
Lead			0.232	0.00100	0.200	0	116	80	120	0.172	15	
Nickel			0.167	0.0100	0.200	0	83.6	80	120	1.72	15	
Silver			0.168	0.00200	0.200	0	83.8	80	120	0.539	15	

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	- S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

CLIENT:

Larson & Associates 0903005

Work Order: Project: North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_090305A

Sample ID:	ICV1-090305	Batch ID:	R42202		TestNo:		SW6020		Units:		mg/L	
SampType:	ICV	Run ID:	ICP-MS3_	090305A	Analysis 1		03/05/09 12	2:14 PM	Prep D	ate:		
Analyte		Result	RL	SPK value	Ref Val			HighLimit	%RPD	RPD L	imit Ç	() () ()
Antimony		0.0984	0.00250	0.100	0	98.4	90	110				
Arsenic		0.100	0.00600	0.100	0	100	90	110				
Barium		0.103	0.0100	0.100	0	103	90	110				
Cadmium		0.0985	0.00100	0.100	0	98.5	90	110				
Calcium		2.52	0.300	2.50	0	101	90	110				
Chromium		0.104	0.00600	0.100	0	104	90	110				
Lead		0.107	0.00100	0.100	0	107	90	110				
Magnesium		2.45	0.300	2.50	0	98.1	90	110				
Nickel		0.0945	0.0100	0.100	0	94.5	90	110				
Potassium		2.52	0.300	2.50	0	101	90	110				
Selenium		0.0972	0.00600	0.100	0	97.2	90	110				
Silver		0.0957	0.00200	0.100	0	95.6	90	110				
Sodium		2.46	0.300	2.50	0	98.5	90	110				
Sample ID:	CCV1-090305	Batch ID:	R42202		TestNo:		SW6020		Units:		mg/L	
SampType:	CCV	Run ID:	ICP-MS3_	090305A	Analysis 1	Date:	03/05/09 01	1:11 PM	Prep D	ate:	_	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD L	imit Ç	Qual
Antimony		0.196	0.00250	0.200	0	98.0	90	110				
Arsenic		0.202	0.00600	0.200	0	101	90	110				
Barium		0.209	0.0100	0.200	0	104	90	110				
Cadmium		0.200	0.00100	0.200	0	99.8	90	110				
Calcium		4.85	0.300	5.00	0	97.0	90	110				
Chromium		0.200	0.00600	0.200	0	99.8	90	110				
Lead		0.212	0.00100	0.200	0	106	90	110				
Magnesium		4.66	0.300	5.00	0	93.1	90	110				
Nickel		0.187	0.0100	0.200	0	93.3	90	110				
Potassium		5.02	0.300	5.00	0	100	90	110				
Selenium		0.209	0.00600	0.200	0	104	90	110				
Silver		0.196	0.00200	0.200	0	98.2	90	110				
Sodium		4.62	0.300	5.00	0	92.5	90	110				
Sample ID:	CCV2-090305	Batch ID:	R42202		TestNo:		SW6020		Units:		mg/L	
SampType:	CCV	Run ID:	ICP-MS3_	090305A	Analysis 1	Date:	03/05/09 02	2:19 PM	Prep D	ate:	J -	
Analyte		Result	RL _	SPK value	-	%REC		HighLimit	-		imit C	Qual
Antimony		0.204	0.00250	0.200	0	102	90	110			•	•
Arsenic		0.208	0.00600	0.200	0	104	90	110				
Barium		0.214	0.0100	0.200	0	107	90	110				
Cadmium		0.204	0.00100	0.200	0	102	90	110				
Chromium		0.204	0.00600	0.200	0	102	90	110				
Lead		0.213	0.00100	0.200	0	107	90	110				
Nickel		0.182	0.0100	0.200	0	90.8	90	110				
Potassium		5.02	0.300	5.00	0	100	90	110				
Silver		0.199	0.00200	0.200	0	99.6	90	110				
SHYCI		U. 1 <i>77</i>	0.00200	0.200	v	99.U	70	110				

Qualifiers:	В	Ar
	DF	Di
	I	Ar

Analyte detected in the associated Method Blank ilution Factor

MDL Method Detection Limit ND

Analyte detected between MDL and RL Not Detected at the Method Detection Limit

R RPD outside accepted control limits RL Reporting Limit S

J

Ν

Spike Recovery outside control limits Analyte detected between SDL and RL Parameter not NELAC certified

D... 10 .£21

CLIENT: Work Order: Project:

Larson & Associates 0903005 North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_090305B

Sample ID: SampType: Analyte Beryllium	MB-33777 MBLK	Batch ID: Run ID: Result ND	33777 ICP-MS3_ RL 0.00100	090305B SPK value	TestNo: Analysis I Ref Val	Date: %REC	SW6020 03/05/09 00 LowLimit	5:25 PM HighLimit	Units: Prep D %RPD	mg/L Date: 03/04/09 RPD Limit Qual
Sample ID: SampType: Analyte Beryllium	Filter Blank-33777 MBLK	Batch ID: Run ID: Result ND	33777 ICP-MS3_0 RL 0.00100	090305B SPK value	TestNo: Analysis I Ref Val	Date: %REC	SW6020 03/05/09 00 LowLimit	5:30 PM HighLimit	Units: Prep D %RPD	mg/L Date: 03/04/09 RPD Limit Qual
Sample ID: SampType: Analyte Beryllium	LCS-33777 LCS	Batch ID: Run ID: Result 0.201	33777 ICP-MS3_0 RL 0.00100	090305B SPK value 0.200	TestNo: Analysis I Ref Val		SW6020 03/05/09 00 LowLimit 80	5:36 PM HighLimit 120	Units: Prep D %RPD	8
Sample ID: SampType: Analyte Beryllium	LCSD-33777 LCSD	Batch ID: Run ID: Result 0.200	33777 ICP-MS3_0 RL 0.00100	090305B SPK value 0.200	TestNo: Analysis Ref Val		SW6020 03/05/09 00 LowLimit 80	5:41 PM HighLimit 120	Units: Prep D %RPD 9.60	mg/L Date: 03/04/09 RPD Limit Qual

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

D--- 10 -631

Date: 03/11/09

CLIENT:

Larson & Associates

Work Order: (Constitution of the Project: (Constitution of the Pro

0903005 North 10" ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_090305B

ICV1-090305 Batch ID: R42205 TestNo: Sample ID: SW6020 Units: mg/L SampType: **ICV** Run ID: ICP-MS3_090305B Analysis Date: 03/05/09 05:54 PM Prep Date: Analyte Result RLSPK value Ref Val %REC LowLimit HighLimit %RPD RPD Limit Qual Beryllium 0.0994 0.00100 0.100 99.4 110 mg/L Sample ID: CCV1-090305 Batch ID: R42205 TestNo: SW6020 Units: SampType: CCV Run ID: ICP-MS3_090305B 03/05/09 06:46 PM Analysis Date: Prep Date: Analyte Result RLSPK value Ref Val %REC LowLimit HighLimit %RPD RPD Limit Qual Beryllium 0.197 0.0010098.3 0.200 0 90 110

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NEL AC certified

CLIENT: Work Order:

Larson & Associates 0903005

Project:

North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3 090306B

Project:	North 10							Kuiii), ICF-	IVI 0.0_	_0903000
Sample ID:	0903005-02A SD	Batch ID:	33777		TestNo:		SW6020		Units:		mg/L
SampType:	SD	Run ID:	ICP-MS3_	090306B	Analysis I	Date:	03/06/09 03	:24 PM	Prep D	ate:	03/04/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Calcium		234	150	0	230				1.62	10	
Magnesium		129	150	0	126				2.86	10	
Sodium		678	150	0	644				5.22	10	
Sample ID:	0903005-02A PDS	Batch ID:	33777		TestNo:		SW6020		Units:		mg/L
SampType:	PDS	Run ID:	ICP-MS3_	090306B	Analysis l	Date:	03/06/09 03	3:29 PM	Prep D	ate:	03/04/09
Analyte		Result	RL -	SPK value	Ref Val		LowLimit	HighLimit	_		Limit Qual
Calcium		684	30.0	500	230	90.8	75	125			•
Magnesium		585	30.0	500	126	91.8	75	125			
Sodium		1110	30.0	500	644	92.9	75	125			
Sample ID:	0903005-02A SD	Batch ID:	33777		TestNo:		SW6020		Units:		mg/L
SampType:	SD	Run ID:	ICP-MS3_	090306B	Analysis l	Date:	03/06/09 04	1:11 PM	Prep D	ate:	03/04/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Potassium		12.1	7.50	0	12.4			_	2.16	10	
Sample ID:	0903005-02A PDS	Batch ID:	33777		TestNo:		SW6020		Units:		mg/L
SampType:	PDS	Run ID:	ICP-MS3_	090306В	Analysis 1	Date:	03/06/09 04	1:17 PM	Prep D	ate:	03/04/09
Analyte	•	Result	RL	SPK value	Ref Val			HighLimit	-		Limit Qual
Potassium		37.3	1.50	25.0	12.4	99.4	75	125	,,		
Sample ID:	0903005-02A SD	Batch ID:	33777		TestNo:		SW6020		Units:		mg/L
SampType:	SD	Run ID:	ICP-MS3_	090306B	Analysis 1	Date:	03/06/09 0	5:14 PM	Prep D	Date:	03/04/09
Analyte		Result	RL -	SPK value	•	%REC		HighLimit	%RPD		Limit Qual
Beryllium		0	0.00500	0	0			J	0	10	•
Selenium		0.0338	0.0300	0	0.0274				20.9	10	R
Sample ID:	0903005-02A PDS	Batch ID:	33777		TestNo:		SW6020		Units:		mg/L
SampType:	PDS	Run ID:	ICP-MS3_	090306B	Analysis 1	Date:	03/06/09 06	5:19 PM	Prep D	Date:	03/04/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	-		Limit Qual
Beryllium		0.199	0.00100	0.200	0	99.4	75	125			
Selenium		0.200	0.00600	0.200	0.0274	86.1	75	125			
Sample ID:	0903005-02A MS	Batch ID:	33777		TestNo:		SW6020		Units:		mg/L
SampType:	MS	Run ID:	ICP-MS3_	090306B	Analysis 1	Date:	03/06/09 06	5:24 PM	Prep D	ate:	03/04/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Beryllium		0.174	0.00100	0.200	0	86.8	80	120			
Calcium		215	0.300	5.00	216	-26.0	80	120			S
Magnesium		120	0.300	5.00	120	-12.0	80	120			S
Potassium		18.5	0.300	5.00	13.0	111	80	120			
Selenium		0.207	0.00600	0.200	0.0274	89.9	80	120			
Sodium		642	0.300	5.00	656	-262	80	120			S

Qualifiers: В Analyte detected in the associated Method Blank

Dilution Factor DF

Analyte detected between MDL and RL J

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit R RPD outside accepted control limits

RLReporting Limit

Ν

S Spike Recovery outside control limits J Analyte detected between SDL and RL

Parameter not NELAC certified

D--- 01 - 601

Date: 03/11/09

CLIENT: Work Order:

Project:

Larson & Associates 0903005

0903005 North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_090306B

SampType: MSD	Run ID:	ICP-MS3_0	090306B	Analysis l	Date:	03/06/09 0	5:30 PM	Prep I	Date: 03/	/04/09
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit	t Qual
Beryllium	0.198	0.00100	0.200	0	99.0	80	120	13.1	15	
Calcium	217	0.300	5.00	216	16.0	80	120	0.973	15	S
Magnesium	124	0.300	5.00	120	60.0	80	120	2.96	15	S
Potassium	17.8	0.300	5.00	13.0	97.6	80	120	3.74	15	
Selenium	0.200	0.00600	0.200	0.0274	86.5	80	120	3.34	15	
Sodium	655	0.300	5.00	656	-16.0	80	120	1.90	15	S

Qualifiers: Analyte detected in the associated Method Blank В R RPD outside accepted control limits DF Dilution Factor RLReporting Limit Analyte detected between MDL and RL S Spike Recovery outside control limits MDL Method Detection Limit Analyte detected between SDL and RL J ND Not Detected at the Method Detection Limit Ν Parameter not NELAC certified

CLIENT:

Larson & Associates

Work Order: Project:

0903005 North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_090306B

Sample ID:	ICV1-090306	Batch ID:	R42218		TestNo:		SW6020		Units:	n	ng/L
SampType:	ICV	Run ID:	ICP-MS3_0	090306B	Analysis I	Date:	03/06/09 01	1:10 PM	Prep D	ate:	
Analyte		· Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lim	it Qual
Beryllium		0.104	0.00100	0.100	0	104	90	110			
Calcium		2.57	0.300	2.50	0	103	90	110			
Magnesium		2.55	0.300	2.50	0	102	90	110			
Potassium		2.59	0.300	2.50	0	104	90	110			
Selenium		0.0985	0.00600	0.100	0	98.5	90	110			
Sodium		2.59	0.300	2.50	0	104	90	110			
Sample ID:	CCV2-090306	Batch ID:	R42218		TestNo:		SW6020		Units:	п	ıg/L
SampType:	CCV	Run ID:	ICP-MS3_0	090306B	Analysis I	Date:	03/06/09 03	3:03 PM	Prep D		-8
Analyte		Result	RL	SPK value	Ref Val			HighLimit	_	RPD Lim	it Oual
Calcium		4.79	0.300	5.00	0	95.8	90	110	,,,,,		
Magnesium		4.84	0.300	5.00	0	96.9	90	110			
Sodium		4.86	0.300	5.00	0	97.3	90	110			
Sample ID:	CCV3-090306	Batch ID:	R42218		TestNo:		SW6020		Units:	n	ıg/L
-	CCV	Run ID:	ICP-MS3_	0002067		Data	03/06/09 03	2.45 DM	Prep D		Ig/L
SampType:	CCV	Result	RL		Analysis l			HighLimit	-	RPD Lim	it Oual
Analyte		4.89		SPK value	Ref Val			_	70KPD	KPD LIII	ni Qua
Calcium			0.300	5.00	0	97.8	90	110			
Magnesium		4.80	0.300	5.00	0	95.9	90	110			
Potassium		5.13	0.300	5.00	0	103	90	110			
Sodium		4.82	0.300	5.00	0	96.3	90	110			
Sample ID:	CCV4-090306	Batch ID:	R42218		TestNo:		SW6020		Units:		ng/L
SampType:	CCV	Run ID:	ICP-MS3_		Analysis l		03/06/09 04		Prep D		
Analyte		Result	RL	SPK value	Ref Val	%REC		HighLimit	%RPD	RPD Lim	iit Qual
Potassium		5.20	0.300	5.00	0	104	90	110			
Sample ID:	CCV5-090306	Batch ID:	R42218		TestNo:		SW6020		Units:	n	ng/L
SampType:	CCV	Run ID:	ICP-MS3_	090306B	Analysis 1	Date:	03/06/09 0	5:43 PM	Prep D)ate:	
Analyte		Result	RL	SPK value	Ref Val		LowLimit	HighLimit	%RPD	RPD Lim	iit Qual
Beryllium		0.207	0.00100	0.200	0	103	90	110			
Calcium		4.93	0.300	5.00	0	98.6	90	110			
Magnesium		4.94	0.300	5.00	0	98.8	90	110			
Potassium		5.33	0.300	5.00	0	107	90	110			
Selenium		0.212	0.00600	0.200	0	106	90	110			
Sodium		4.95	0.300	5.00	0	99.0	90	110			
Sample ID:	CCV6-090306	Batch ID:	R42218		TestNo:		SW6020		Units:		ng/L
SampType:	CCV	Run ID:	ICP-MS3_	090306B	Analysis 1	Date:	03/06/09 0	6:55 PM	Prep D)ate:	
		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lim	nit Qual
Analyte											
		0.202	0.00100	0.200	0	101	90	110			
Analyte			0.00100 0.300	0.200 5.00	0	101 100	90 90	110 110			
Analyte Beryllium		0.202									

Qualifiers:

ers: B Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit

R RPD outside accepted control limits

RL Reporting Limit

S Spike Recovery outside control limits

Applyto detected between SDL and BL

J Analyte detected between SDL and RL N Parameter not NELAC certified

n--- 22 -£21

Date: 03/11/09

CLIENT: Larson & Associates Work Order: 0903005 Project: North 10"				ANALYTICAL QC SUMMARY REPORT RunID: ICP-MS3_090306B					
Selenium Sodium	0.205 4.79	0.00600 0.300	0.200 5.00	0	103 95.7	90 90	110 110		

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

CLIENT:

Work Order: Project:

Larson & Associates 0903005 North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: IC_090303A

Sample ID: SampType:	LCS-33765 LCS	Batch ID: Run ID:	33765 IC_0903034	A.	TestNo: Analysis l	Date:	E300 03/03/09 09	9:46 AM	Units: Prep D	ate:	mg/L 03/03/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit Qual
Chloride		10.2	1.00	10.00	0	102	90	110			
Sulfate		30.0	3.00	30.00	0	100	90	110			
Sample ID:	LCSD-33765	Batch ID:	33765		TestNo:		E300		Units:		mg/L
SampType:	LCSD	Run ID:	IC_090303A	4	Analysis 1	Date:	03/03/09 10	0:02 AM	Prep D	ate:	03/03/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Chloride		10.2	1.00	10.00	0	102	90	110	0.0530	20	
Sulfate		30.0	3.00	30.00	0	100	90	110	0.104	20	
Sample ID:	MB-33765	Batch ID:	33765		TestNo:		E300		Units:		mg/L
SampType:	MBLK	Run ID:	IC 090303	A	Analysis 1	Date:	03/03/09 10	0:17 AM	Ргер Г	Date:	03/03/09
Analyte		Result	- RL	SPK value	•	%REC	LowLimit	HighLimit	%RPD		Limit Qual
Chloride		ND	1.00					Ü			•
Sulfate		ND	3.00								
Sample ID:	0903005-02C MS	Batch ID:	33765		TestNo:		E300		Units:		mg/L
SampType:	MS	Run ID:	IC_090303.	A	Analysis	Date:	03/03/09 03	2:08 PM	Prep D	Date:	03/03/09
Analyte		Result	_ RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD :	Limit Qual
Chloride		2160	100	1000	1098	107	90	110			
Sulfate		3290	300	3000	342.0	98.3	90	110			
Sample ID:	0903005-02C MSD	Batch ID:	33765		TestNo:		E300		Units:		mg/L
SampType:	MSD	Run ID:	IC 090303.	A	Analysis	Date:	03/03/09 0	3:53 PM	Prep I	Date:	03/03/09
Analyte		Result	- RL	SPK value	Ref Val		LowLimit	HighLimit	%RPD		Limit Qual
Chloride		2200	100	1000	1098	110	90	110	1.52	20	
Sulfate		3330	300	3000	342.0	99.8	90	110	1.31	20	
							-				

Qualifiers:	В	Analyte detected in the associated Method Blank
~	DF	Dilution Factor
	J	Analyte detected between MDL and RL

ND

Method Detection Limit MDL

Not Detected at the Method Detection Limit

R RPD outside accepted control limits RLReporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL

Parameter not NELAC certified

N

D--- 05 .601

CLIENT: Work Order:

Larson & Associates 0903005

Project:

North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: IC_090303A

Sample ID: SampType:	ICV-090303 ICV	Batch ID: Run ID:	R42155 IC_090303A	X	TestNo: Analysis l	Date:	E300 03/03/09 09	9:28 AM	Units: Prep D		g/L 3/03/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lim	it Qual
Chloride		26.2	1.00	25.00	0	105	90	110			
Sulfate		77.9	3.00	75.00	0	104	90	110			
Sample ID:	CCV1-090303	Batch ID:	R42155		TestNo:		E300		Units:	m	g/L
SampType:	CCV	Run ID:	IC_090303A		Analysis l	Date:	03/03/09 13	2:47 PM	Prep D	ate: 03	3/03/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lim	it Qual
Chloride		10.4	1.00	10.00	0	104	90	110			
Sulfate		30.3	3.00	30.00	0	101	90	110			
Sample ID:	CCV2-090303	Batch ID:	R42155		TestNo:		E300		Units:	m	g/L
SampType:	CCV	Run ID:	IC_090303A	1	Analysis]	Date:	03/03/09 03	2:39 PM	Prep D	ate: 03	3/03/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lim	it Qual
Chloride		10.4	1.00	10.00	0	104	90	110			
Sulfate		30.4	3.00	30.00	0	101	90	110			
Sample ID:	CCV3-090303	Batch ID:	R42155		TestNo:		E300		Units:	m	g/L
SampType:	CCV	Run ID:	IC_090303A	1	Analysis 1	Date:	03/03/09 0	4:17 PM	Prep D	ate: 03	3/03/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Lim	it Qual
Chloride		10.3	1.00	10.00	0	103	90	110			
Sulfate		30.2	3.00	30.00	0	101	90	110			

Qualifiers:	В	Analyte
-------------	---	---------

detected in the associated Method Blank DF Dilution Factor

Analyte detected between MDL and RL J

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit R RPD outside accepted control limits

RL

Reporting Limit
Spike Recovery outside control limits S J Analyte detected between SDL and RL

N Parameter not NELAC certified

D--- 07 . C21

Date: 03/11/09

CLIENT: Work Order:

Project:

Larson & Associates 0903005 North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: IC_090310A

Sample ID: SampType:	MB-33765 MBLK	Batch ID: Run ID:	33765 IC_090310	A	TestNo: Analysis l	Date:	E300 03/10/09 10):59 AM	Units: Prep D		mg/L 03/03/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Li	imit Qual
Chloride		ND	1.00								
Sulfate		ND	3.00								

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

Date: 03/11/09

CLIENT: Work Order: Project:

Larson & Associates 0903005 North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: IC_090310A

Sample ID: SampType:	ICV-090310 ICV	Batch ID: Run ID:	R42253 IC_090310A	1	TestNo: Analysis l	Date:	E300 03/10/09 10	D:38 AM	Units: Prep D	mg/L eate: 03/10/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Chloride		26.3	1.00	25.00	0	105	90	110		
Sulfate		77.3	3.00	75.00	0	103	90	110		
Sample ID:	CCV1-090310	Batch ID:	R42253		TestNo:		E300		Units:	mg/L
SampType:	CCV	Run ID:	IC_090310A	1	Analysis l	Date:	03/10/09 11	1:46 AM	Prep D	ate: 03/10/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Chloride		10.3	1.00	10.00	0	103	90	110		
Sulfate		30.2	3.00	30.00	0	101	90	110		

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

Larson & Associates 0903005

CLIENT: Work Order: Project:

North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: TITRATOR_090303B

Sample ID:	MB-33762	Batch ID:	33762		TestNo:		M2320 B		Units:	mg/L
SampType:	MBLK	Run ID:	TITRATO	R_090303B	Analysis 1	Date:	03/03/09 13	1:04 AM	Prep D	ate: 03/03/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Alkalinity, Bica	arbonate (As CaCO3)	ND	20.0							
Alkalinity, Car	bonate (As CaCO3)	ND	20.0							
Alkalinity, Hyd	droxide (As CaCO3)	ND	20.0							
Alkalinity, Tota	al (As CaCO3)	ND	20.0							
Sample ID:	LCS-33762	Batch ID:	33762		TestNo:		M2320 B		Units:	mg/L
SampType:	LCS	Run ID:	TITRATO	R_090303B	Analysis	Date:	03/03/09 1	1:08 AM	Prep D	ate: 03/03/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua
Alkalinity, Tota	al (As CaCO3)	54.7	20.0	50.00	0	109	74	129		
Sample ID:	0903005-01C DUP	Batch ID:	33762		TestNo:		M2320 B		Units:	mg/L
SampType:	DUP	Run ID:	TITRATO	R_090303B	Analysis	Date:	03/03/09 1	1:16 AM	Prep D	ate: 03/03/09
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua
Alkalinity, Bic	arbonate (As CaCO3)	199	20.0	0	199.4				0.402	20
Alkalinity, Car	bonate (As CaCO3)	0	20.0	0	0				0	20
Alkalinity, Hyd	droxide (As CaCO3)	0	20.0	0	0				0	20
Alkalinity, Tot	al (As CaCO3)	199	20.0	0	199.4				0.402	20

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

Date: 03/11/09

Larson & Associates 0903005

CLIENT: Work Order: Project:

North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: TITRATOR_090303B

D... 20 .£21

Sample ID: ICV-090303 SampType: ICV	Batch ID: Run ID:	R42153 TITRATOR	R_090303B	TestNo: Analysis	Date:	M2320 B 03/03/09 1	1:03 AM	Units: Prep Date	mg/L :: 03/03/09
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PD Limit Qual
Alkalinity, Bicarbonate (As CaCO3)	8.56	20.0	0						
Alkalinity, Carbonate (As CaCO3)	93.8	20.0	0						
Alkalinity, Hydroxide (As CaCO3)	0	20.0	0						
Alkalinity, Total (As CaCO3)	102	20.0	100.0	0	102	98	102		
Sample ID: CCV-090303	Batch ID:	R42153		TestNo:		M2320 B		Units:	mg/L
SampType: CCV	Run ID:	TITRATO	R_090303B	Analysis Date: 03/03/09 11:36 A		1:36 AM	Prep Date	: 03/03/09	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD R	PD Limit Qual
Alkalinity, Bicarbonate (As CaCO3)	13.3	20.0	0						
Alkalinity, Carbonate (As CaCO3)	89.4	20.0	0						
Alkalinity, Hydroxide (As CaCO3)	0	20.0	0						
Alkalinity, Total (As CaCO3)	103	20.0	100.0	0	103	90	110		

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

CLIENT: Work Order:

Project:

Larson & Associates 0903005 North 10"

ANALYTICAL QC SUMMARY REPORT

RunID: WC_090304A

D--- 21 -621

Sample ID: MB-33 SampType: MBLK		33803 WC_0903	304A	TestNo: Analysis l	Date:	M2540C 03/04/09 10	D:15 AM	Units: Prep D	ate:	mg/L 03/04/09
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit Qual
Total Dissolved Solids	(Residue, Fi ND	10.0								
Sample ID: LCS-33	Batch ID:	33803		TestNo:		M2540C		Units:		mg/L
SampType: LCS	Run ID:	WC_090	304A	Analysis 1	Date:	03/04/09 1	0:15 AM	Prep I	ate:	03/04/09
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit Qual
Total Dissolved Solids	(Residue, Fi 795	10.0	745.6	0	107	90	113			
Sample ID: 090300	5-02C-DUP Batch ID:	33803		TestNo:		M2540C		Units:		mg/L
SampType: DUP	Run ID:	WC_090	304A	Analysis 1	Date:	03/04/09 1	0:15 AM	Prep D	ate:	03/04/09
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit Qual
Total Dissolved Solids	(Residue, Fi 4350	10.0	0	4440				2.05	5	

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified