GW - 001

REPORTS

Investigation Report Group 3

12/2009

SUSANA MARTINEZ
Governor

JOHN A. SANCHEZ Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030

www.nmenv.state.nm.us

DAVE MARTIN Secretary

RAJ SOLOMON, P.E. Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

January 24, 2011

Mr. Randy Schmaltz Environmental Manager Western Refining, Southwest, Inc. Bloomfield Refinery P.O. Box 159 Bloomfield, New Mexico 87413

RE: NOTICE OF DISAPPROVAL
INVESTIGATION REPORT GROUP 3
WESTERN REFINING SOUTHWEST INC., BLOOMFIELD REFINERY
EPA ID# NMD089416416
HWB-WRB-10-001

Dear Mr. Schmaltz:

The New Mexico Environment Department (NMED) has received Western Refining Southwest, Inc., Bloomfield Refinery (the Respondents) Investigation Report Group 3 (SWMU No. 4 Transportation Terminal Sump, SWMU No. 5 Heat Exchanger Bundle Cleaning Area, AOC No. 22 Product Loading Rack and Crude Receiving Loading Racks, AOC No. 23 Southeast Holding Ponds, AOC No. 24 Tank Areas 41 and 43, AOC No. 25 Auxiliary Warehouse and 90-day Storage Area, and AOC NO. 26 Tank Area 44 and 45) (Report) dated December 2009. NMED has reviewed the Report and hereby issues this Notice of Disapproval (NOD) with the following comments.

Comment 1

In Section 3.3 (Soil Boring Installation, Field Screening, and Soil Sample Collection), under SWMU No. 4, page 10, the Respondents state, "[o]ne soil boring (SWMU 4-1) was drilled in a location west of Bullet 23 within the vicinity of the former transportation sump." It is not clear

R. Schmaltz January 24, 2011 Page 2 of 14

from the statement if "Bullet 23" is referring to bullet tank 23. Soil boring location SWMU 4-1 is provided in Figure 6 (SWMU No. 4 Sample Location Map); however, the location of "Bullet 23" was not included. Revise the Report to identify the structure of "Bullet 23" and show it on Figure 6.

Comment 2

The Respondents discuss monitoring well development and groundwater sampling in various sections throughout the Report, including Section 3.4 (Monitoring Well Installation, Completion, and Development), Section 3.6 (Ground Water Sampling and Vadose Zone Vapor Sampling), Section 4.5 (Monitor Well Development), Section 6.4 (Ground Water Sampling) and Appendix F (Field Methods). Each Section must be referenced to know what monitoring well development and groundwater sampling activities occurred during the investigation. Revise the Report to include one section, and subsections as appropriate, that addresses all monitoring well development and groundwater sampling activities (e.g. sampling methods and procedures), or include all details in an Appendix (e.g., Appendix F) and reference the Section or Appendix throughout the Report, where appropriate.

Comment 3

In Section 3.6 (Ground Water Sampling and Vadose Zone Vapor Sampling), pages 14 and 15, the Respondents list the analytes and analytical methods conducted for the groundwater samples. The *Investigation Work Plan Group 3, dated June 2008* (Work Plan) required the analysis of manganese as part of the general chemistry parameters. Manganese was not listed in Section 3.6 but was analyzed. Further, the analytical information provided in Section 3.6 does not correspond with the groundwater information provided in Section 6.6 (Groundwater Chemical Analytical Results) (e.g., Section 6.6 includes the analyses of manganese; however, manganese was the only general chemistry parameter not addressed in Section 3.6). Revise the Report to clarify these discrepancies and provide the correct information. The Respondents may choose to cross-reference a section containing the appropriate information, rather than listing the information twice.

Comment 4

In Section 3.6 (Ground Water Sampling and Vadose Zone Vapor Sampling), page 15, bullet 9, the Respondents list analysis for "[d]issolved metals (iron, calcium, magnesium, potassium, and sodium) by USEPA method 6010B." In Section 5.8 (Chemical Analyses), page 14 (Work Plan), the Respondents state, "[i]n addition, groundwater samples will also be analyzed for the following general chemistry parameters" and then lists bicarbonate, chloride, sulfate, calcium, magnesium, sodium, potassium, manganese, nitrate/nitrite, and ferric/ferrous iron. The Respondents do not include a reference to dissolved metals in the Work Plan, nor indicate that

R. Schmaltz January 24, 2011 Page 3 of 14

the general chemistry parameters would be collected as dissolved. This also does not correspond with the analytical information provided in Section 6.6 (Ground Water Chemical Analytical Results) of the Report. Revise the Report to clarify this discrepancy. If water samples were collected for dissolved metals analysis in addition to sample collection for total metals analysis, the Report must address the sampling methods associated with collecting dissolved samples (e.g., 0.45 micronfilter use).

Comment 5

In Section 3.6 (Ground Water Sampling and Vadose Zone Vapor Sampling), page 15, the Respondents state, "[t]he depth to groundwater and depth-to-SPH were measured to the nearest 0.01 ft and recorded relative to the surveyed well casing rim." The Respondents do not identify the instrument used to collect the depth to water and depth to separate phase hydrocarbon (SPH) measurements. Revise the Report to provide the instrument(s) used to collect these measurements, and revise this section to address how the monitoring wells were purged and the amount purged. Alternatively, reference Appendix F (see also Comment 2).

Comment 6

The Respondents discuss quality assurance/quality control measures in Section 3.8 and address the collection of equipment blanks, field duplicates, and field blanks. The Respondents do not discuss the use of trip blanks. Revise the Report to discuss trip blanks, if used. If trip blanks were not used, provide a discussion of why the trip blanks were not included with the sample shipments to and from the laboratory.

Comment 7

In Section 3.10 (Collection and Management of Investigation Derived Waste), page 17, the Respondents state, "[a] total of three composite samples were collected from drums containing soil with known constituent concentrations above NMED residential screening levels. A composite sample was collected to characterize soil for waste disposal from AOC No. 24, AOC No. 26, AOC No. 22, and SWMU No. 4....Each composite soil sample was analyzed for the following: [Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)] and [Methyl tertiary butyl ether (MTBE)] by EPA Method 8021B; Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8310; TCLP RCRA 8 Metals by EPA Method 6010B; and Ignitability, Corrosivity, and Reactivity." Revise the Report to explain how the composite samples were collected so that VOC loss was minimized (e.g., soils were mixed in a steel bowl and placed into a four ounce glass jar; soil samples were placed directly into a four ounce jar and compacted for zero headspace). Homogenized samples analyzed for BTEX are inappropriate because of the potential loss of volatiles. All future samples analyzed for VOCs must be collected as discrete samples unless the composite sampling method is approved by NMED.

R. Schmaltz January 24, 2011 Page 4 of 14

Comment 8

In Section 4.3 (Subsurface Conditions), page 21, the Respondents describe the underground piping associated with AOC No. 22, AOC No. 24, and AOC No. 26. In accordance with the Order, Section X.C.13 Item 2, utilities must be shown on the site plan/figures. Provide and label all utilities on all figures; New Mexico One Call, Inc. color coding may be used.

Comment 9

In Section 4.4 (Soil Boring Installation, Monitoring Well Construction, and Boring Abandonment) and Section 6.1 (Soil Sampling), the Respondents provide an adequate detailed discussion of the activities associated with soil sampling. Descriptions of the methods used for groundwater sampling are not as detailed. Revise Section 4 (Field Investigation Results) of the Report to provide more information regarding type and purpose of field investigation activities performed, field screening measurements, and sampling results for groundwater, and expand Section 6.4 (Ground Water Sampling) to include more information that explains the methods used for sample logging, and field screening, and field screening results (see also Comment 2).

Comment 10

In Section 4.4 (Soil Boring Installation, Monitoring Well Construction, and Boring Abandonment), the Respondents describe the methods and details of soil boring installation, monitoring well construction, and soil boring abandonment activities. However, the Respondents do not use the same format when describing the investigation details for each SWMU or AOC. Examples included:

- a. The Respondents address the number of surface samples and soil borings installed at SWMU No. 5, AOC No. 22, AOC No. 24, AOC No. 25, AOC No. 26, but this information was not included for SWMU No. 4.
- b. The Respondents discuss impacts being detected or not detected based on field screening results and visual or olfactory observations for some SWMUs and AOCs, while other descriptions do not include this information. For example, AOC No. 22, page 24, the Respondents state, "[t]here was no indications of impacts based on the field screening results nor was there any visual or olfactory evidence of impacts from the surface to a depth of 10 feet bgl [below ground level]." This information was not included for AOC 24-5 and AOC 24-6; the Respondents state, on page 28 that "[o]n April 8, 2009 the drilling rig was set up on location AOC 24-5 [and AOC 24-6]. Sample collection was accomplished using the HSA drilling method and split spoon samplers. The sampling terminated at 10 feet bgl. The borehole was grouted to the surface on April 9, 2009."

R. Schmaltz January 24, 2011 Page 5 of 14

Revise this Section of the Report to provide consistent information when describing investigation details for each SWMU and AOC.

Comment 11

In Section 4.4 (Soil Boring Installation, Monitoring Well Construction, and Boring Abandonment), under AOC 22-13, the Respondents state, "[g]round water sample AOC 22-13-GW was collected using a disposable bailer. The ground water in the augers was not purged [prior] to sampling since saturation had been encountered less than 24 hours earlier and would be representative of the formation's ground water." AOC 22-13 was not designated for a well installation, but because of the field screening measurements and visual observation, the Respondents decided to collect a groundwater sample. However, AOC 22-12/TW-01 was completed as a temporary well; the Respondents do not discuss well purging or if a sample was collected after the well was purged. The Respondents state, "[o]n April 14, 2009 the temporary well was gauged and the depth to ground water was measured at 37.95 feet bgl. The total depth of the well was gauged as 42.51 feet bgl. Ground water sample AOC 22-12-GW was collected using a disposable bailer. It was decided to not plug and abandon the boring but rather to complete the boring as a temporary well TW-01." Revise the Report to indicate if the temporary well was purged prior to sampling (see also Comment 2).

Comment 12

Section 4.4 (Soil Boring Installation, Monitoring Well Construction, and Boring Abandonment), pages 29 and 30, discusses the drilling of MW-65 and states, "[d]uring the installation of the well the bentonite formed a "bridge" between the ODEX casing and the well casing. When the ODEX casing was being removed from the borehole the well casing moved, which caused the proposed well settings to be adjusted. The ODEX casing and well casing were removed from the borehole and the field activities ceased for the day. On April 17, 2009 the borehole for AOC 26-8/MW-65 was re-entered and reamed out to a depth of 44.5 feet bgl using the HSA drilling method...The rig was sent back to this location on April 20, 2009 to collect and screen the soils from 2 feet to 10 feet bgl. The borehole was grouted to the land surface." It is not clear from the description if a second borehole was drilled to collect soil samples from two to ten feet and then abandoned. Revise the Report to clarify if a second borehole was drilled specifically to collect samples on April 20, 2009.

Comment 13

In Section 5 (Regulatory Criteria), page 34, the Respondents state, "[t]he screening levels in Table 9 are based on residential land use. Since the investigation data for SWMU No. 4, SWMU No. 5, AOC No. 23, and AOC No. 25 indicate there is no threat to ground water in these areas, the applicable screening levels do not include the soil-to-groundwater leachate pathway." Revise

R. Schmaltz January 24, 2011 Page 6 of 14

this section to explain how it was determined that there is no threat to groundwater at SWMU No. 4, SWMU No. 5, AOC No. 23, and AOC No. 25.

Comment 14

In Section 5 (Regulatory Criteria), page 34, the Respondents state, "[t]he total petroleum hydrocarbon (TPH) screening levels are taken from NMED's October 2006 TPH Screening Guidelines [NM TPH SSL]...Where information is available to identify particular product types, the screening level is selected accordingly from either Table 2a or 2b of NMED guidance. If two products have been handled in the same area (e.g., both diesel and gasoline at the product loading rack), then the most conservative (lowest) screening level of the two products is used." It is not clear how the Respondents will apply the lowest screening level of two products (gasoline and diesel) when there is no numeric standard for one of them (gasoline). Revise the Report to clarify this discrepancy.

Comment 15

In Section 5 (Regulatory Criteria), page 34, the Respondents state, "[t]he total petroleum hydrocarbon (TPH) screening levels are taken from NMED's October 2006 TPH Screening Guidelines...[w]here information is available to identify particular product types, the screening level is selected accordingly from either Table 2a or 2b of NMED guidance...[s]creening values from Table 2b are used only in situations where impacts to shallow soils do not pose a threat to underlying groundwater and there is limited potential for exposure to impacted soil (e.g., elevated concentrations occur mostly at depth and not at the land surface)."

- a. In accordance with the NM TPH SSLs, the values from Table 2b should only be applied to situations where "depth to groundwater is less than 15 feet from the ground surface and within 30 feet of an occupied structure." According to the boring logs, groundwater was encountered from approximately 36 to 55 feet bgs. Values from Table 2b are therefore not appropriate. Revise the Tables to reflect the use of only Table 2a.
- b. Revise the Report to describe the specific site conditions for applying Table 2a.

Comment 16

In Section 5 (Regulatory Criteria), pages 34 and 35, the Respondents state, "[s]imilarly, there were detections of constituents in ground water samples that do not have screening levels. This includes the four constituents listed above for soil and magnesium, phenanthrene, bicarbonate, calcium, potassium and sodium. None of these constituents are classified as a carcinogen." The first sentence references detections in groundwater while the second sentence addresses

R. Schmaltz January 24, 2011 Page 7 of 14

constituents in soil. Revise the Report to correct this discrepancy, or otherwise clarify the meaning.

Comment 17

In Section 6.1.3 (AOC No. 22 – Product Loading Racks and Crude Receiving Loading Racks) and Section 6.1.7 (AOC No. 26 – Tank Area 44 and 45), pages 44, 50 and 51, the Respondents describe cumulative risk evaluations for AOC No. 22 and 26. The Respondents indicate the cumulative effects of certain constituents (e.g. cobalt, manganese) are not a concern because they are non-carcinogenic. It is inappropriate to make cumulative risk conclusions solely on whether the constituent is a carcinogen or a non-carcinogen. The Respondents must refer to Section 5 of the *Technical Background Document for Development of Soil Screening Levels (Revision 5.0 dated August 2009)* to determine cumulative risk. The Respondents must evaluate the data using a conservative approach by applying the maximum concentrations across the entire data set. All calculations and results from the assessments must be included in the revised Report.

Comment 18

In Section 6.1.3 (AOC No. 22 – Product Loading Racks and Crude Receiving Loading Racks), page 45, the Respondents state, "[f]ive of the constituents are listed as potential carcinogens based on the NMED and EPA sources referenced in Section 5.0. This could result in a cumulative carcinogenic risk level of 5.0 E-5." The Respondents must provide all calculations, results, and other supporting information from the risk assessments in the revised Report.

Comment 19

In Section 6.1.4 (AOC No. 23 – Southeast Holding Ponds) and Section 6.1.6 (AOC No. 25 – Auxiliary Warehouse and 90-Day Storage Area), the Respondents references the DAF of 20. Table 9 applies the DAF of 1. Revise the Report to clarify this discrepancy.

Comment 20

In Section 6.1.5, (AOC No. 24 – Tank Areas 41 and 43), under AOC 24-6, page 47, the Respondents state, "[a]ll the analytical results for the samples collected at AOC 24-6 were less than the non-residential screening levels with the exception of DRO in sample AOC 24-6 (1.5-2.0')." According to Table 11 the DRO concentration for AOC 24-6 is 1,400 mg/kg, which is less than the industrial screening level for DRO of 2.00E+03 mg/kg, as indicated in Table 11. Revise the Report to correct this discrepancy.

R. Schmaltz January 24, 2011 Page 8 of 14

Comment 21

In Section 6.1.7 (AOC No. 26 – Tank Area 44 and 45), under AOC 26-9/MW-66, page 50, the Respondents state, "[t]here are numerous organic constituents, including volatile and semi-volatile organics that have concentrations above the non-residential screening levels in soil sample AOC 26-9 (36-38'). The concentration detected in AOC 26-9 at 36-38' are believed to be associated with ground water impacts in the area and not a soil source in the immediate area." Explain why the detections are believed to result from groundwater impacts and not a soil source, and discuss the suspected source of groundwater contamination that is affecting soils at 36-38 ft bgs. Revise the Report accordingly.

Comment 22

In Section 6.1.7, (AOC No. 26 – Tank Areas 44 and 45) under AOC 26-9/MW-66, and Section 7 (Conclusions and Recommendations) under AOC No. 22 – Product Loading Racks and Crude Receiving Loading Racks, pages 51, 59, and 60, the Respondents state, "[t]he screening level included in Table 10 for cobalt assumes a DAF of 1 for the soil-to-ground water pathway; however, cobalt is not detected in concentrations above the screening level in any of the ground water samples collected during the site investigation effort. Cobalt does not appear to present a threat to ground water and the soil-to-ground water pathway should not be considered to be complete at AOC No. [22 and 26]." Cobalt can be found in the catalyst used to remove sulfur from crude oil and its presence could be a result of refinery operations and not representative of a background concentration. Provide evidence for the assertion that cobalt is not a threat to groundwater. Concomitantly, re-evaluate the applicability of the DAF of 1 and consider calculating a site-specific DAF to determine if cobalt is a threat to groundwater. If a site-specific DAF is calculated, all calculations and results must be included in the revised Report.

Comment 23

In Section 7, (Conclusions and Recommendations) under AOC No. 22 and AOC No. 24, pages 60 and 61, the Respondents state that certain constituents (e.g., lead, arsenic, and manganese) "may not be an indication of actual impacted ground water but rather possible sampling artifacts resulting from the use of a bailer to purge the wells and collect ground water samples." The Respondents do not provide a description of the potential effects of the use of a bailer. In any event, such a conclusion cannot be made until the background study has been completed. No revision is necessary.

R. Schmaltz January 24, 2011 Page 9 of 14

Comment 24

In Section 7 (Conclusions and Recommendations), pages 58 through 62, the Respondents recommend additional assessment for SWMU No. 4, and SWMU No. 5, and additional investigation for AOC No. 22 and AOC No. 26.

- a. Provide the current and future status (operational/active, interim, and inactive) of all the SWMUs and AOCs in the Group 3 Investigation Report. Indicate if the SWMUs/AOCs are operational and how long will they remain active. Indicate if the structures in the SWMUs/AOCs will be completely removed once they are no longer in operation.
- b. The Respondents recommend "[a]dditional assessment...to delineate the lateral extent of the impacts in soils near [SWMU 4-1]." Revise the Report to provide more information regarding the sump, including but not limited to dimensions of the sump, history of releases, if sampling was completed over the entire cross-section of the old sump area prior to backfilling, and if the Respondents intend on removing soil from the former sump area.
- c. The Respondents recommend "[a]dditional assessment...at SWMU No. 5 to delineate the lateral impact to surface soils based on the reported concentrations of mercury." Revise the Report to include more information describing how cleaning activities were conducted for the heat exchangers and provide information regarding historical uses of the bundle cleaning pad (e.g., documentation of overflows from the concrete pad to the ground surface, and historical management of waste not associated with bundle cleaning).
- d. The Respondents recommend "[a]dditional investigation ...for the impacted soils within AOC No. 22 for the area near borings AOC 22-4, and AOC 22-13. Some additional delineation of ground water impacts may also be useful and should be completed in consideration of any additional investigation to be completed at other nearby SWMUs/AOCs." Revise the Report to provide more information about the underground piping in relation to groundwater contamination. Indicate if all lines are still active/abandoned, and if any lengths have been replaced because of damage. Also provide information about historical releases that occurred near this area and list possible contaminants of concern.
- e. The Respondents recommend "[a]dditional soil sampling near AOC 26-5...to confirm the limited presence of MTBE that was detected in the 1.5-2.0' sample interval. Additional monitoring wells may be considered to better define the up-gradient extent of ground water impacts." The Respondents must provide more information about the tanks, including but not limited to history of releases, condition of containment structures, valves, fittings, piping, and if tanks 44 and 45 are currently in use.

R. Schmaltz January 24, 2011 Page 10 of 14

Comment 25

In Section 7 (Conclusions and Recommendations), under AOC No. 23, page 61, the Respondents state, "[t]he analyses for the soil samples did not detect the presence of any constituents at concentrations above the residential screening levels and most of the organic results were non-detect, with the exception of a few constituents that were qualified ... due to laboratory contaminants (e.g., methylene chloride and acetone)...The ground water samples collected from MW-62 identified only manganese at concentrations above the screening levels (Table 16). The presence of only manganese above screening levels and no detections of petroleum constituents in water samples collected from MW-62 indicates that the manganese could be representative of background conditions rather than impacts from site operations; however, no background value has been established for manganese at this time...Corrective Action Complete without Controls is recommended for AOC No. 23."

- a. Provide additional information for AOC No. 23 to include the current and future status of the AOC. Indicate if the AOC is operational/inactive, if the AOC structures will be completely removed once it becomes inactive, and discuss any history of releases.
- b. Provide additional information to demonstrate that all groundwater and soil detections are below the Residential SSLs in order for AOC No. 23 to be considered for Corrective Action Complete. The Respondents must be able to demonstrate manganese is not a concern, and will not be a concern in the future, through a risk assessment or demonstrate that the detected concentration is within the range of background concentrations.

Comment 26

In Section 7, (Conclusions and Recommendations) under AOC No. 24 – Tank Areas 41 and 43, page 61-62, the Respondents state, "[o]ther inorganic constituents detected above screening levels include chloride, nitrate, and sulfate. Chloride and sulfate are naturally occurring constituents with wide-spread occurrence in ground water in the San Juan River Basin (Stone, W.J. and others, 1983). The absences of any refinery-related constituents (i.e. petroleum hydrocarbons) in the ground water sample collect[ed] from MW-64 indicates that the inorganic constituents might not be related to site operations." Chloride, sulfate, and high total dissolved solids are commonly found at high concentrations in refinery-produced water and at petroleum-contaminated sites. No response required.

Comment 27

In Section 7, (Conclusions and Recommendations) under AOC No. 24 – Tank Areas 41 and 43, page 61-62, the Respondents state, "[a]n assessment to evaluate the risk posed by the limited occurrence of TPH at location AOC 24-6 is recommended instead of any additional assessment

R. Schmaltz January 24, 2011 Page 11 of 14

and/or remediation." Discuss how the risk will be evaluated without conducting additional investigation activities and revise the Report accordingly.

Comment 28

In Section 7 (Conclusions and Recommendations), under AOC No. 25, page 62, the Respondents state, "[t]here were not detections of any constituents at concentrations above the residential screening levels in the soil samples. There were also no constituents detected in the ground water samples above the screening levels, with the single exception of manganese, which was only slightly over the screening level. There was not a sufficient volume of ground water present in MW-60 to collect a ground water sample during the second sampling event conducted in July 2009. Corrective Action Complete without Controls is recommended for AOC No. 25."

- a. Provide additional information to include the current and future status of AOC No. 25. Indicate if AOC No. 25 is operational/inactive, discuss if the AOC No. 25 structures will be completely removed once it becomes inactive, and discuss the history of releases.
- b. There is insufficient historical data for MW-60 to demonstrate that manganese or other constituents are not a concern. All groundwater and soil detections must be below the Residential SSLs in order for Corrective Action Complete to be considered. The Respondents must be able to demonstrate manganese is not a concern, and will not be a concern in the future, through a risk assessment or demonstrate that the detected concentration is within the range of background concentrations.

Comment 29

In Section 7 (Conclusions and Recommendations), under SWMU No. 4 Transportation Terminal Sump, page 58, the Respondents state, "[a]n additional assessment is recommended to delineate the lateral extent of the impacts in soils near AOC 4-1." The text of the Report references the Transportation Terminal Sump as SWMU No. 4 and Figure 6 (SWMU No. 4 Sample Locations Map) which identifies SWMU 4-1/MW-59 as a boring/monitoring well. There is no reference to an AOC 4-1. Revise the Report to correct this discrepancy.

Comment 30

Table 6 (Residential Soil Screening Levels) contains some apparent typographical errors. The residential values presented in the Table for arsenic and ethylbenzene are 3.59E+00 and 6.96E+01, respectively. The residential values listed in the New Mexico Soil Screening Levels (NMSSLs) for these constituents are 3.90E+00 and 6.97E+01, respectively. These errors were also carried over into the other tables within the Report. Revise all tables within the Report to correct these discrepancies.

R. Schmaltz January 24, 2011 Page 12 of 14

Comment 31

The Respondents titled Table 9 as *Group 3 Soil Analytical Results Summary – AOC 23 and AOC 25*, which implies the table only presents data collected from AOCs 23 and 25. The table also includes data for SWMU No. 4 and SWMU No. 5. The Respondents titled Table 11 as *Group 3 Soil Analytical Results Summary – SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24*, which implies the data provided in the table is only from these sites. The table does not include data from SWMUs 4 and 5. Ensure table titles correctly reference the data presented.

Comment 32

The Respondents apply non-residential screening levels in Tables 10 and 11. It is not clear how the Respondents determined which of the seven standards indicated in the footnotes were applied (e.g., Table 10 applied the DAF 1 to acetone for all depths; for bromobenzene the EPA Protection of Groundwater Risk-based SSL was applied for all depths). The data were applied to a mix of screening levels. To alleviate confusion and apply a more systematic approach, revise the tables and text of the Report to apply the data to the most conservative non-residential scenario (e.g., construction worker or industrial) and the residential scenario. Upon determining the most conservative scenario, explain why the selected screening level was chosen. Revise the Report accordingly.

Comment 33

In Table 11, column "AOC 22-16 (36-38')" has a superscript "1." This superscript is not defined in the footnotes on page 10 of 15 of Table 11. Revise the Report to define the superscript.

Comment 34

In Table 16, columns "MW-61, 05/13/2009," "MW-61, 07/16/2009," and "MW-62, 05/13/2009" the Respondents did not highlight the sample results above the screening level for manganese. Revise Table 16 accordingly.

Comment 35

NMED has the following comments on figures:

a. Report all sample results, including non-detects, in the figures. If a sample was not collected or the well is dry, this must be noted and indicated on the legend and the figure. For example, Figure 6 (SWMU No. 6 Sample Locations Map) reports the sample results for benzene and DRO for all the sampling locations, but Figure 14 (AOC No. 23 Sample Location Map) does not present any results for the sampling location at AOC No. 23.

- b. Expand the scale of Figures 17 through 20 to include all Group 3 SWMUs and AOCs (i.e. include AOC No. 23) and report all sample results for all new, temporary, and current monitoring wells. If a sample was not collected or the well is dry, indicate this in the legend and note it as such on the figures.
- c. Define all symbols on all figures (e.g., cross hatch shading on Figures 8 through 15).

Comment 36

On Figures 2, 5, 8 through 13, and 16 through 20, there are several tanks that are not identified.

- a. Identify the unlabeled tanks west of Tank 44 in Figures 2, 5, 8 through 13 and 16 through 20.
- b. Identify the unlabeled tanks south of SWMU No. 4 and west of Tank 41 in Figures 2, 5, and 17 through 20.
- c. Identify the unlabeled tank north of B-12 thru B-21 in Figures 2, 5, and 17 through 20.
- d. Provide an additional figure that identifies all Group 3 SWMU and AOC locations similar to Figure 17 to include AOC No. 23 and the diesel AST southwest of AOC No. 25.
- e. Verify that tank 34 holds water and not product (e.g., label contents on the map or provide color symbolizing tank contents).
- f. All tank details addressed in items a through e above must be summarized in a table and included in the revised Report. The table must contain the following headings: Tank ID, status (Active/Inactive), contents (e.g., gas, water, crude), location (e.g., southwest of AOC No. 25), and comments (e.g., release history, if known).

Comment 37

Provide more information for the crude sampling rack east of AOC No. 22, the L.P.G. loading area north of SWMU No. 4, the diesel AST southwest of AOC No. 25, and the gasoline pumps west of AOC No. 25 to determine whether they are operational/inactive. Include a discussion of any historical releases, description of the activities conducted at the SWMUs/AOCs, and indicate if these SWMUs/AOCs should be included in the Phase II investigation.

R. Schmaltz January 24, 2011 Page 14 of 14

Comment 38

Revise Appendix F to include sections that describe field methods pertaining to the soil investigation and groundwater monitoring activities. The groundwater monitoring section must be expanded to describe how the monitoring wells were sampled (e.g., at each monitoring well the depth to water and depth to product measurements were collected using an oil/water interface probe, monitoring wells were purged and sampled using a dedicated bailer, samples were collected in pre-cleaned laboratory prepared containers). Include description of purging methods and how purge volumes were calculated, and all field equipment used while collecting soil and groundwater samples (see also Comment 2).

The Respondents must address all comments contained in this NOD and submit a revised Report to NMED on or before May 1, 2011. The revised Report must be submitted with a response letter that details where all revisions have been made, cross-referencing NMED's numbered comments. In addition, an electronic version of the revised Report must be submitted that identifies where all changes were made in red-line strikeout format.

If you have any questions regarding this letter, please contact Leona Tsinnajinnie of my staff at (505) 476-6057.

Sincerely,

James P. Bearzi

Chief

Hazardous Waste Bureau

cc:

J. Kieling, NMED HWB

D. Cobrain, NMED HWB

H. Monzeglio, NMED HWB

L. Tsinnajinnie, NMED HWB

C. Chavez, OCD

A. Hains, Western

File: HWB-WRB-10-001 and Reading 2010

RECEIVED

2009 DEC 18 PM 1 25

December 17, 2009

James Bearzi, Bureau Chief New Mexico Environmental Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303

Re:

Giant Refining Company, Bloomfield Refinery (currently know as Western Refinery Southwest, Inc. – Bloomfield Refinery) Order No. HWB 07-34 (CO) Investigation Report Group No. 3

Dear Mr. Bearzi:

Western Refining Southwest Inc. - Bloomfield Refinery submits the referenced Investigation Report pursuant to Section IV.B.7 of the July 2007 HWB Order. The Investigation Report summarizes the site environmental investigation activities completed for the SWMUs and AOCs designated as Group 3. These include SWMU No. 4 Transportation Terminal Sump, SWMU No. 5 Heat Exchanger Bundle Cleaning Area, AOC No. 22 Product Loading Rack and Crude Receiving Loading Racks, AOC No. 23 Southeast Holding Ponds, AOC No. 24 Tank Areas 41 and 43, AOC No. 25 Auxiliary Warehouse and 90-Day Storage Area, and AOC No. 26 Tank Area 44 and 45. The Report was developed and formatted to meet the requirements of Section X.C of the July 2007 HWB Order.

If you have any questions or would like to discuss the Investigation Report, please contact me at (505) 632-4171.

Sincerely.

Names R. Schmaltz

Environmental Manager

Western Refining Southwest, Inc.

Bloomfield Refinery

cc:

Hope Monzeglio – NMED HWB

Carl Chavez – NMOCD (w/attachment)

Dave Cobrain - NMED HWB

Laurie King – EPA Region 6 (w/attachment)

Todd Doyle - Bloomfield Refinery

Allen Hains – Western Refining El Paso

404 Camp Craft Rd., Austin, Texas 78746, USA
T +1 512 347 7588 F +1 512 347 8243 W www.rpsgroup.com

INVESTIGATION REPORT GROUP 3

(SWMU No. 4 Transportation Terminal Sump, SWMU No. 5 Heat Exchanger Bundle Cleaning Area, AOC No. 22 Product Loading Rack and Crude Receiving Loading Racks, AOC No. 23 Southeast Holding Ponds, AOC No. 24 Tank Areas 41 and 43, AOC No. 25 Auxiliary Warehouse and 90-Day Storage Area, and AOC No. 26 Tank Area 44 and 45)

Bloomfield Refinery
Western Refining Southwest, Inc.
#50 Rd 4990
Bloomfield, New Mexico 87413

December 2009

James R. Schmaltz Environmental Manager

Western Refining Southwest, Inc.

aul

Bloomfield Refinery

Scott T. Crouch, P.G. Senior Consultant

RPS

404 Camp Craft Rd. Austin, Texas 78746

Executive Summary

The Bloomfield Refinery, which is located in the Four Corners Area of New Mexico, has been in operation since the late 1950s. Past inspections by State and federal environmental inspectors have identified locations where releases to the environment may have occurred. These locations are generally referred to as Solid Waste Management Units (SWMUs) or Areas of Concern (AOCs).

Pursuant to the terms and conditions of an Order issued on July 27, 2007 by the New Mexico Environment Department (NMED) to San Juan Refining Company and Giant Industries Arizona, Inc. for the Bloomfield Refinery, this environmental site investigation was completed for the SWMUs and AOCs designated as Group 3. This group includes SWMU No. 4 Transportation Terminal Sump; SWMU No. 5 Heat Exchanger Bundle Cleaning Area; AOC No. 22 Product Loading Rack and Crude Receiving Loading Racks; AOC No. 23 Southeast Holding Ponds; AOC No. 24 Tank Areas 41 and 43; AOC No. 25 Auxiliary Warehouse and 90-Day Storage Area; and AOC No. 26 Tank Areas 44 and 45.

The Order requires that San Juan Refining Company and Giant Industries Arizona, Inc. determine and evaluate the presence, nature, and extent of historical releases of contaminants at the aforementioned SWMUs and AOCs. A Class I permit modification was approved on June 10, 2008 to reflect the change in ownership of the refinery to Western Refining Southwest, Inc. The operator is now Western Refining Southwest, Inc. – Bloomfield Refinery.

The investigation activities included collection and analysis of soil and ground water samples for potential site-related constituents beginning on April 6, 2009 and continuing through July 29, 2009. This included the completion of 13 soil borings with two of the borings completed as temporary monitoring wells and eight completed as permanent monitoring wells. In addition, surface soil samples (i.e., 0-0.5' and 1.5-2.0') were collected at 29 locations. A summary of the results of the investigation is provided as follows:

- SWMU No. 4: One soil boring (SWMU 4-1) that was completed as a permanent monitoring well (MW-59) at SWMU No. 4 encountered impacted soils that appear to be associated with the historical transportation terminal sump. Ground water impacts were also observed in MW-59, which is down-gradient of a larger area of impact that extends up-gradient to the product loading rack.
- SWMU No. 5 and AOC No. 25: Six surface sample locations around SWMU No. 5 contained mercury in concentration soil above the NMED residential screening level of 7.71 mg/kg. Mercury impacts are limited to within the upper 6-inches of surface soils. An

additional surface soil sample and deeper soil boring (AOC 25-2/MW-60) was completed at AOC No. 25, which is adjacent to SWMU No. 5. There were no detections of constituents in soil above the respective residential screening levels. The ground water sample collected from MW-60 did not indicate impacts to ground water from SWMU No. 5 or AOC No. 25.

- AOC No. 22: At the Crude Receiving area, two soil borings (AOC 22-14) and AOC 22-16) were installed, with AOC 22-16 completed as a permanent monitoring well (MW-63). At the Product Loading Rack area, a total of three soil borings (AOC 22-13, AOC 22-12, and AOC 22-15) were installed; soil boring AOC 22-15 was completed as a permanent monitoring well (MW-61), and soil boring AOC 22-12 was completed as a temporary well (TW-01). A total of 40 soil samples were collected within AOC No. 22. Soil impacts are evident near the sump located north of the product loading rack. Ground water impacts, while extending over a larger area, appear to be centered near the product loading sump and product loading rack.
- AOC No. 23: One soil boring/monitoring well (AOC 23-1/MW-62) was installed near and down gradient of AOC No. 23. There were no documented impacts to soil and only manganese was identified in ground water above the screening levels.
- AOC No. 24: Four surface soil sample locations and three soil borings, one of which was converted to a monitoring well (AOC 24-7/MW-64), were completed at AOC No. 24. Limited soil impacts were observed at one sampling location. Site-related constituents (e.g., petroleum hydrocarbons) were not detected in ground water, but two metals (arsenic and manganese) and three naturally occurring inorganic constituents (chloride, sulfate, and nitrate) were identified at concentrations above the screening levels.
- AOC No. 26: Seven surface soil sample locations and two soil borings, both of which
 were completed as permanent monitoring wells (AOC 26-8/MW-65 and AOC 26-9/MW66), were completed at AOC No. 26. Only MTBE was detected in one vadose zone soil
 sample at low concentrations that exceeded the screening level protective of soil-toground water, yet below the EPA Regional screening level for residential soil. Ground
 water samples collected at MW-65 and MW-66 both indicated the presence of petroleum
 hydrocarbons and fuel additives.

Conclusions and Recommendations

Based on the investigation results, "Corrective Action Complete without Controls" designation is recommended for AOC No. 23 and AOC No. 25. Additional assessment and delineation of impacted soils is recommended for SWMU No. 4, SWMU No. 5, AOC No. 22-4, AOC No. 22-13, and near AOC 26-5. Additional assessment of risk posed by the limited occurrence of TPH at AOC No. 24-6 is recommended instead of additional assessment and/or remediation.

Ground water impacts documented during the assessment of SWMU No. 4 and AOCs No. 22 and 26 indicate that the primary constituents exceeding the screening levels across these areas are similar and appear to be associated with operations at the product loading rack. Additional

delineation of ground water impacts at AOCs No. 22 and 26 is recommended to better define the distribution of constituents within these areas and to distinguish potential sources.

A separate investigation work plan will be prepared to detail proposed additional investigation activities for soil and ground water.

Table of Contents

List of Sections

Executive Si	ummary	}
Section 1	Introduction	1
Section 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7	Background	3 4 5 5
Section 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	Scope of Activities Background Information Research. Utility Clearance Soil Boring Installation, Field Screening, and Soil Sample Collection. Monitoring Well Installation, Completion, and Development Soil Boring Plug and Abandonment Ground Water Sampling and Vadose Zone Vapor Sampling Decontamination Procedures. Quality Assurance / Quality Control Measures Field Equipment Calibration Collection and Management of Investigation Derived Waste Surveys	8 9 14 14 15 16 17
Section 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Field Investigation Results Surface Conditions Exploratory Drilling Investigations Subsurface Conditions Soil Boring Installation, Monitoring Well Construction, and Boring Abandonment Monitor Well Development Ground Water Conditions Surface Water Conditions	19 21 22 31 31
Section 5	Regulatory Criteria	33
Section 6 6.1	Site Impacts Soil Sampling 6.1.1 SWMU No. 4 Transportation Terminal Sump 6.1.2 SWMU No. 5 - Heat Exchanger Bundle Cleaning Area 6.1.3 AOC No. 22 - Product Loading Racks and Crude Receiving Racks 6.1.4 AOC No. 23 - Southeast Holding Ponds 6.1.5 AOC No. 24 - Tank Areas 41 and 43 6.1.6 AOC No. 25 - Auxiliary Warehouse and 90-Day Storage Area 6.1.7 AOC No. 26 - Tank Area 44 and 45	36 37 38 39 45 46 47
6.2 6.3 6.4	Soil Sample Field Screening Results Soil Sampling Chemical Analytical Results Ground Water Sampling	52

Table of Contents (Continued)

6.5	General Ground Water Chemistry	54
6.6	Ground Water Chemical Analytical Results	54
	Air and Subsurface Vapor Sampling/Field Screening Results	
Section 7	Conclusions and Recommendations	57
Section 8	References	66

List of Tables

Table 1	Historical Volatile Organic Ground Water Analytical Results Summary
Table 2	Historical Total Metals Ground Water Analytical Results Summary
Table 3	Historical Dissolved Metals Ground Water Analytical Results Summary
Table 4	Historical General Chemistry Ground Water Analytical Results Summary
Table 5	Historical Soil Analytical Results Summary
Table 6	Residential Soil Screening Levels
Table 7	Non-Residential Soil Screening Levels
Table 8	Ground Water Screening Levels
Table 9	Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC No. 23 and
	AOC No. 25
Table 10	Group 3 Soil Analytical Results Summary – AOC No. 22 (Product Loading Rack)
	and AOC No. 26
Table 11	Group 3 Soil Analytical Results Summary – AOC No. 22 (Crude Receiving Rack)
	and AOC No. 24
Table 12	Surface Soil Samples – Vapor Screening Results
Table 13	Soil Boring Samples – Vapor Screening Results
Table 14	Field Screening Results – Ground Water & Subsurface Vapors
Table 15	Water Level Measurements
Table 16	Ground Water Analytical Results Summary

List of Figures

Figure 1	Site Location Map
Figure 2	SWMU Group No. 3 SWMU/AOC Locations
Figure 3	Cross Section A-A' West to East
Figure 4	Cross Section B-B' North to South
Figure 5	Potentiometric Surface Map August 2009
Figure 6	SWMU No. 4 Sample Locations Map
Figure 7	SWMU No. 5 and AOC No. 25 Sample Locations Map
Figure 8	AOC No. 22 1,2,4-Trimethylbenzene Soil Map
Figure 9	AOC No. 22 1,3,5-Trimethylbenzene Soil Map
Figure 10	AOC No. 22 Benzene Soil Map
Figure 11	AOC No. 22 Diesel Range Organics Soil Map
Figure 12	AOC No. 22 Naphthalene Soil Map
Figure 13	AOC No. 22 Xylenes Soil Map
Figure 14	AOC No. 23 Sample Location Map

Table of Contents (Continued)

Figure 15	AOC No. 24 Diesel Range Organics Soil Map
Figure 16	AOC No. 26 Benzene Soil Map
Figure 17	Benzene Ground Water Concentration Map
Figure 18	MTBE Ground Water Concentration Map
Figure 19	Naphthalene Ground Water Concentration Map
Figure 20	Xylenes Ground Water Concentration Map
Figure 21	Manganese Ground Water Concentration

List of Appendices

- Appendix A Photographs
 Appendix B Correspondence
- Appendix C Analytical Data Reports
- Appendix D Survey Data Appendix E Boring Logs
- Appendix F Field Methods
- Appendix G Laboratory Chromatograms
- Appendix H Quality Assurance/Quality Control Review

Section 1 Introduction

The Bloomfield Refinery is located immediately south of Bloomfield, New Mexico in San Juan County (Figure 1). The physical address is #50 Road 4990, Bloomfield, New Mexico 87413. The Bloomfield Refinery is located on approximately 263 acres. Bordering the facility is a combination of federal and private properties. Public property managed by the Bureau of Land Management lies to the south. The majority of undeveloped land in the vicinity of the facility is used extensively for oil and gas production and, in some instances, grazing. U.S. Highway 44 is located approximately one-half mile west of the facility. The topography of the main portion of the site is generally flat with steep bluffs to the north where the San Juan River intersects Tertiary terrace deposits.

The Bloomfield Refinery is a crude oil refinery currently owned by Western Refining Southwest, Inc., which is a wholly owned subsidiary of Western Refining Company, and it is operated by Western Refining Southwest, Inc. – Bloomfield Refinery. The Bloomfield Refinery has an approximate refining capacity of 18,000 barrels per day. Various process units are operated at the facility, including crude distillation, reforming, fluidized catalytic cracking, sulfur recovery, merox treater, catalytic polymerization, and diesel hydro treating. Current and past operations have produced gasoline, diesel fuels, jet fuels, kerosene, propane, butane, naphtha, residual fuel, fuel oils, and LPG.

On July 27, 2007, the New Mexico Environment Department (NMED) issued an Order to San Juan Refining Company and Giant Industries Arizona, Inc. ("Western") requiring investigation and corrective action at the Bloomfield Refinery. This Investigation Report has been prepared for the Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) designated as Group 3 in the Order. This includes:

- SWMU No. 4 Transportation Terminal Sump;
- SWMU No. 5 Heat Exchanger Bundle Cleaning Area;
- AOC No. 22 Product Loading Rack and Crude Receiving Loading Racks;
- AOC No. 23 Southeast Holding Ponds;
- AOC No. 24 Tank Areas 41 and 43;
- AOC No. 25 Auxiliary Warehouse and 90-Day Storage Area; and
- AOC No. 26 Tank Areas 44 and 45.

The locations of the individual investigation units are shown on Figure 2 and all of the Group 3 SWMUs/AOCs are located on the southeastern portion of the refinery property, south of Country Road 4990.

The purpose of the site investigation is to determine and evaluate the presence, nature, and extent of releases of contaminants in accordance with 20.4.1.500 New Mexico Administrative Code (NMAC) incorporating 40 Code of Federal Regulations (CFR) Section 264.101. The investigation activities were conducted in accordance with Section IV of the Order and focused on soils and ground water as those are the environmental media in these areas that may potentially contain contaminants. The investigation was completed pursuant to the Investigation Work Plan dated June 2008 (revised January 2009), which was approved by the NMED on February 18, 2009. Activities conducted that deviate from the approved Investigation Work Plan are discussed in Section 3.3, Section 6.3, and Section 6.6 of this report.

Soil and ground water samples were analyzed for volatile and semi-volatile organic constituents, total petroleum hydrocarbons, and metals. In addition, ground water samples were analyzed for inorganic general chemistry constituents. The results of these analyses are compared to applicable State or federal cleanup and screening levels as specified in Section VII. of the Order.

Section 2 Background

This section presents background information for each of the investigation units, including a review of historical waste management activities for each location to identity the following:

- Type and characteristics of waste and contaminants handled in the subject SWMU or AOC;
- Known and possible sources of impacts;
- History of releases; and
- Known extent of impacts prior to the current investigation.

2.1 SWMU No. 4 Transportation Terminal Sump

The Transportation Terminal Sump is located to the northeast of the auxiliary warehouse/90-day storage area and immediately west of bullet tanks B-22 and B-23. The use of the sump was discontinued in 1986 and the sump was backfilled. There are no documented specific instances of releases at the sump but use of the area for truck cleaning may have resulted in small releases over time.

During an inspection conducted by EPA in 1984, two water samples (an aqueous phase and oily phase) and one soil sample were collected from the sump for analysis of cadmium and chromium. The soil sample contained cadmium at a concentration of 2.2 ppm and an oily phase water sample contained 1.3 ppm cadmium and 40 ppm chromium (Giant Industries, 2003). During a subsequent Phase II RCRA Facility Investigation (RFI) conducted in 1994, two soil borings (B-1 and B-2) were installed near the sump (Figure 6). Soils were screened continuously at each boring to a depth of 12 feet (ft) below ground level (bgl). Based on the highest photo ionization detection (PID) readings, one sample was collected from each boring for analysis. The samples were analyzed for volatile organic compounds (VOCs; USEPA method 8240), semi-volatile organic compounds (SVOCs; USEPA method 8270), total petroleum hydrocarbons (TPH; USEPA method 418.1), and metals (USEPA method 6010/7000 series). The results of these soil analyses are summarized in Table 5. Because no organic constituents were detected in either sample and the metal concentrations were reported within background ranges included in the Phase II RFI Report, Giant Refining Company requested no

further action for this SWMU in their Solid Waste Management Unit Assessment Report (Giant Industries, 2003).

2.2 SWMU No. 5 Heat Exchanger Bundle Cleaning Area

The Heat Exchanger Bundle Cleaning Area, which has been identified as SWMU No. 5, is located at the east end of the auxiliary warehouse (Figure 2). Heat exchanger bundles are periodically cleaned at this location to remove scale deposits. The cleaning usually takes place on a concrete slab at the east end of the auxiliary warehouse, which has concrete curbs, portable side wall curtains, and drains to a sump located inside the warehouse. There are large metal doors that open at the east end of the warehouse and occasionally during the winter, cleaning operations take place inside the warehouse in a fully enclosed room with sheet metal walls, concrete floor, and concrete lined collection sump (i.e., the 90-day storage area). The sump, which is designed to collect all wash water and any waste materials generated during cleaning operations, is approximately four feet wide, four feet deep and 50 feet long. Any sludge that collects in the sump is removed upon completion of cleaning operations, containerized and sent off-site for disposal as hazardous waste in accordance with 90-day onsite storage regulations. There is no indication of documented spills in this area. The likely constituents of concern are organic petroleum constituents and metals.

No soil samples have been collected and analyzed from the Heat Exchanger Bundle Cleaning Area in the past; however, ground water quality has been assessed down-gradient of this area. Figure 5 shows the potentiometric surface of the shallow ground water, which underlies the refinery property. Monitor well MW-13 is located approximately 250 feet down-gradient and ground water samples have been routinely collected from this well and analyzed for potential constituents of concern. Methyl tertiary butyl ether (MTBE) is the only potential refinery-related constituent detected in the ground water samples. The historical ground water analyses are summarized in Tables 1 through 4.

2.3 AOC No. 22 Product Loading Rack And Crude Receiving Loading Racks

The loading racks are used to unload crude oil, which is transported to the refinery via tanker trucks, and to load out refined product onto tanker trucks for distribution at retail gasoline stations (Figure 2). The primary constituents of concern are petroleum constituents and to a lesser extent additives (e.g., MTBE and ethanol), which may be present in the area of the

product loading racks. Documented releases of petroleum products and crude oil have occurred at the loading racks.

Two soil borings (B-3 and B-4) were installed at the loading racks during the Phase II RFI in 1994 (Figure 8). Each boring was completed to a depth of 12 ft bgl with soil samples continuously screened with a PID. No indication of impacts was recorded at the B-3 location and a sample was collected from the 6-8' interval based on the depth of underground piping in the area. The 10-12' interval was selected at B-4 based on the highest PID reading. These samples were analyzed for VOCs, SVOCs, TPH, and metals, and the results are presented in Table 5. Only one organic constituent was detected in the sample collected at B-3 (methylene chloride at 0.11 mg/kg). Benzene, toluene, ethylbenzene, and xylene (BTEX) were detected at low concentrations in sample B-4 (10-12'). Metals were detected in both samples but were reported to be within background ranges included in the Phase II RFI Report (Groundwater Technology, Inc., 1994).

2.4 AOC No. 23 Southeast Holding Ponds

The southeast holding ponds are located at the southeastern most corner of the active portion of the refinery property (Figure 2). There are two ponds, which each cover approximately 4.5 acres. The "ponds" were constructed in 1995 as double lined (60-millimeter high density polyethylene) surface impoundments with a leak detection system. Treated process water is routinely pumped directly from the Refinery aeration lagoons to the on-site injection well for disposal. However, as needed during scheduled injection well maintenance events and/or process conditions, the ponds serve as temporary storage for treated process water. Any temporary accumulation of treated process water at the ponds is pumped to the injection well for final disposal.

There has not been any indication of leaks from the ponds. As the pond are used sporadically to store treated wastewater, the potential constituents of concern would be petroleum constituents.

2.5 AOC No. 24 Tank Areas 41 and 43

Tanks 41 and 43 are located at the southern edge of the active portion of the refinery property (Figure 2). These tanks are associated with the crude oil receiving racks and have been used to temporarily store crude oil that contains an unacceptably high fraction of water. Tank 43 is

not currently in service. There was a small spill of approximately 100 to 150 gallons of oily water that spilled near Tank 43 in 2006.

No soil investigations were previously conducted in this area but a monitor well (MW-6) was installed immediately to the west during the 1994 RFI. This well was dry when installed and remains dry.

2.6 AOC No. 25 Auxiliary Warehouse and 90-Day Storage Area

The auxiliary warehouse and 90-day storage area are located in the same building, which is approximately 300 feet south of Sullivan Road and 650 feet west of the crude oil loading rack (Figure 2). Photographs of the area are provided in Appendix A. The metal building was originally used as a truck terminal prior to relocation of the terminal to its current location in 1984. The truck terminal was used for general maintenance and repair of tanker trucks and auxiliary equipment. No drains or sumps are located within the portion of the building currently used as the warehouse, but there is a sump in the 90-day storage area that collects water that drains from the Heat Exchanger Bundle Cleaning Pad. The sump, which is designed to collect all wash water and any waste materials generated during cleaning operations, is approximately four feet wide, four feet deep and 50 feet long. Any sludge that collects in the sump is removed upon completion of cleaning operations, containerized and sent off-site for disposal as hazardous waste in accordance with 90-day on-site storage regulations. There are no documented releases associated with the historical truck terminal operations; however, the types of potential constituents of concern associated with these activities include petroleum constituents (e.g., fuels, motor oil, transmission fluids, etc.) and chlorinated solvents (e.g., tetrachloroethylene and trichloroethylene).

The auxiliary warehouse is currently used to store dry materials (e.g., large bags of catalyst beads) and auxiliary equipment (e.g., small pumps and generators). An employee health center is located in the far western end of the warehouse. There have been no documented spills at the warehouse and there are no associated potential types of constituents for assessment beyond those identified above for the historical truck terminal operations. The 90-day storage area is used for temporary storage of wastes that are shipped off-site for disposal at approved disposal facilities. The types of wastes stored primarily include spill cleanup materials (e.g., contaminated soil and absorbent materials), heat exchange bundle sludge, tank bottoms, etc. that are containerized in steel drums or plastic lined totes. The storage area has a roof to

prevent contact with stormwater, a concrete floor and a large concrete lined sump to collect any material that may leak. There have not been any documented releases from the 90-day storage area.

No soil samples were previously collected and analyzed from the area near the auxiliary warehouse or 90-day storage area; however, ground water quality has been assessed downgradient of this area. Figure 5 shows the potentiometric surface of the shallow ground water, which underlies the refinery property. Monitor well MW-13 is located approximately 250 feet down-gradient and ground water samples have been routinely collected from this well and analyzed for potential constituents of concern. MTBE is the only organic constituent detected in the ground water samples above screening levels. The historical ground water analyses are summarized in Tables 1 through 4.

2.7 AOC No. 26 Tank Areas 44 and 45

Tanks 44 and 45 are located a short distance south of Sullivan Road and immediately northeast of the product loading rack (Figure 2). These tanks are used to store additives, which are blended at the product loading racks. The materials stored in the tanks have included MTBE, naphtha, and ethanol. There are no documented reportable spills from these tanks.

No soil samples or ground water samples were previously collected in the immediate vicinity of Tanks 44 and 45. The types of potential constituents of concern in the area include petroleum constituents, MTBE, and ethanol.

Section 3 Scope of Activities

Pursuant to Section IV of the Order, an investigation of soils and ground water was conducted to determine and evaluate the presence, nature, extent, fate, and transport of contaminants for designated AOC and SWMU areas associated with Group 3. The section provides a brief summary of the activities performed during this investigation event. A more detailed description of each activity is included in Section 4 Field Investigation Results and Section 6 Site Impacts.

3.1 Background Information Research

Documents containing the results of previous investigations and subsequent routine ground water monitoring data from monitoring wells were reviewed to facilitate development of the Investigation Work Plan. The previously collected data provides valuable information on the overall subsurface conditions, including hydrogeology and contaminant distribution within ground water. The data collected under this investigation supplements the historical ground water data and provide SWMU/AOC-specific information regarding contaminant occurrence and distribution within soils and ground water. Section 2 provides a more detailed summary of historic operations and review of historical waste management activities for each Group 3 SWMU and AOC area.

3.2 Utility Clearance

Prior to the start of drilling and field sampling activities, Western initiated the New Mexico One Call System notification to identify existing active utility lines within the vicinity of each proposed soil boring and monitoring well location. Historic and current Refinery process unit and utility site drawings were also reviewed to identify abandoned and/or active Refinery pipelines. The locations of each proposed soil boring and monitoring well were marked in the field prior to drilling, and the locations were reviewed in the field by the Refinery Safety Manager and Terminals Manager to ensure drilling activities would not impact current Site operations, nor cause any additional safety concerns during drilling and sampling activities.

3.3 Soil Boring Installation, Field Screening, and Soil Sample Collection

In efforts to determine and evaluate the presence, nature, extent, fate, and transport of contaminants, soil borings were drilled and/or soil samples were collected at the following SWMUs/AOCs:

- SWMU No. 4 Transportation Terminal Sump;
- SWMU No. 5 Heat Exchanger Bundle Cleaning Area;
- AOC No. 22 Product Loading Racks and Crude Receiving Loading Racks;
- AOC No. 23 Southeast Holding Ponds;
- AOC No. 24 Tank Areas 41 and 43;
- AOC No. 25 Auxiliary Warehouse and 90- Day Storage Area; and
- AOC No. 26 Tank Areas 44 and 45.

A total of 13 soil borings were drilled using hollow-stem auguring (HSA) method or air rotary-ODEX method to a minimum depth of 10 feet bgl. Soils were screened continuously using split spoon samplers and logged by a qualified geologist in accordance with USCS nomenclature (Appendix E).

Surface soil samples (0 to 2 ft bgl) and subsurface soil samples (deeper than 2 ft bgl) were collected at each soil boring location using split spoon samplers. In general, soil samples were collected from the following depth intervals:

- 0-0.5' bgl;
- 1.5'-2.0' bgl;
- 6-inch interval above the top of saturation (for deeper soil borings only;
- The interval from each boring with the greatest apparent degree of impact based on field observations and field screening; and
- Any additional intervals as determined based on field screening to exhibit potentially significant impacts.

At least one boring at each of the individual SWMUs/AOCs was drilled to the top of saturation, with the exception of SWMU No. 5 where only surface soil sampling was conducted. At designated locations where only surface soil samples were collected (i.e. sample collected from 0-0.5' bgl and 1.5-2.0' bgl), sampling was accomplished using a hand auger with the soil samples collected from the auger bucket. The soil samples were logged by a qualified geologist in accordance with USCS nomenclature (Appendix E).

All surface and subsurface soil samples were field screened. Field screening included visual screening for evidence of staining caused by petroleum-related compounds, and headspace vapor screening using a photo-ionization detector (PID). The maximum PID reading was documented. Field screening results were recorded on the exploratory boring logs (see Appendix E). The field screening results were used to aid in the selection of additional soil samples for laboratory analysis.

All soil samples were sent to Hall Environmental Analytical Laboratory in Albuquerque, New Mexico and analyzed for the following in accordance with the approved Work Plan:

- Volatile organic compounds (VOCs) by USEPA Method 8260B;
- Semi-volatile organic compounds (SVOCs) by USEPA Method 8270;
- Gasoline and diesel range organics by SW-846 Method 8015B;
- Total recoverable metals (Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, nickel, selenium, silver, vanadium, and zinc) by SW846 Method 6010/6020;
- Cyanide by SW-846 method 9012; and
- Mercury by EPA Method 7470.

Soil samples were placed in pre-cleaned, laboratory-prepared sample containers for laboratory analysis. All soil samples were collected and soil boring installed in locations pursuant to the approved Investigation Work Plan, with the exception of three soil borings, which were moved with NMED concurrence. A request was submitted to the NMED on March 27, 2009 via email to move the locations of two monitoring wells (MW-61 and MW-65) and one soil boring (AOC 24-6) based on the presence of underground utilities. Approval was granted via email on March 27, 2009 and a copy of the correspondence with a map showing the changed locations is included in Appendix B. The number of soil samples collected, soil borings drilled, and monitoring wells installed for each of the SWMUs/AOCs is discussed below.

SWMU No. 4

One soil boring (SWMU 4-1) was drilled in a location west of Bullet 23 within the vicinity of the former transportation sump. The soil boring extended to approximately 44.25 ft bgl and was completed as a permanent monitoring well (MW-59).

A total of 4 soil samples were collected at this location for laboratory analysis. Figure 6 shows the sample location for SWMU No.4.

SWMU No. 5

Surface soil samples were collected from six locations (SWMU 5-1, SWMU 5-2, SWMU 5-3, SWMU 5-4, SWMU 5-5, AND SWMU 5-6) around the perimeter of SWMU No. 5 on the north, east, and south sides. The sample locations were approximately 3 ft beyond the existing concrete containment curbing.

A total of 13 soil samples, including one field duplicate, were collected for laboratory analysis. Figure 7 shows the sample locations for SWMU No. 5.

AOC No. 22

The drilling and sample collection effort at AOC No. 22 includes the Crude Receiving Rack and the Product Loading Rack. Figure 8 shows the sample locations for AOC No. 22.

Crude Receiving Rack Area

At the Crude Receiving Rack area, two soil borings (AOC 22-14 and AOC 22-16) were drilled near the Crude Receiving sump area. The soil borings extended to approximately 10 ft bgl and 46 ft bgl, respectively. Soil boring AOC 22-16 was completed as a permanent monitoring well (MW-63).

A total of 16 soil samples, including one field duplicate sample, were collected from the two soil borings and five additional surface sample locations (AOC 22-7 through AOC 22-11) within the Crude Receiving Rack area. All soil samples were submitted to the analytical laboratory for analysis.

Product Loading Rack Area

At the Product Loading Rack, a total of three soil boring (AOC 22-13, AOC 22-12, and AOC 22-15) were drilled near the Product Loading Rack sump area and adjacent to the west. The soil borings extended to approximately 42.5 ft bgl, 42 ft bgl, and 40.25 ft bgl, respectively. Soil boring AOC 22-15 was completed as permanent monitoring well (MW-61), and soil boring AOC 22-12 was completed as a temporary well (TW-01).

A total of 27 soil samples, including two field duplicate samples, were collected from the three soil borings and from six additional surface sample locations (AOC 22-1 through AOC 22-6) within the Product Loading Rack area. All soil samples were submitted to the analytical laboratory for analysis.

AOC No. 23

At AOC No. 23, one soil boring (AOC 23-1) was drilled in a location down gradient of the Evaporation Ponds, south of the Truck Shop. The soil boring extended to approximately 58.25 ft bol and was completed as a permanent monitoring well (MW-62).

A total of 4 soil samples, including one field duplicate sample, were collected for laboratory analysis. Figure 14 shows the sample locations for AOC No. 23.

AOC No. 24

At AOC No. 24, three soil borings (AOC 24-5, AOC 24-6, and AOC 24-7) were drilled in locations north and west of Tank 41 and slightly down gradient of the AOC No. 24 area. The soil borings extended to approximately 10 ft, 10 ft, and 50.25 ft bgl, respectively. Soil boring AOC 24-7 was completed as a permanent monitoring well (MW-64).

A total of 17 soil samples, including two field duplicate samples, were collected from the three soil borings and four additional surface soil sample locations (AOC 24-1 through AOC 24-4) for laboratory analysis. Figure 15 shows the sample locations for AOC No. 24.

AOC No. 25

At AOC No. 25, one soil boring (AOC 25-2) was drilled in a location along the north side of current auxiliary warehouse. The soil boring extended to approximately 45.5 ft bgl and was completed as a permanent monitoring well (MW-60).

A total of 6 soil samples, including one field duplicate sample, were collected from the one soil boring and one additional surface soil sample location (AOC 25-1) for laboratory analysis. In addition, one set of ground water samples were collected from MW-60 following monitoring well completion and development activities. A second set of ground water samples were not collected due to the lack of ground water in the well. Figure 7 shows the sample locations for AOC No. 25.

AOC No. 26

At AOC No. 26, two soil boring (AOC 26-8 and AOC 26-9) were drilled in a location west of Tank 44 and slightly down gradient of the AOC No. 26 area. The soil borings extended to approximately 44.25 ft and 43.25 ft bgl, respectively. Soil boring AOC 26-8 and AOC 26-9 were completed as permanent monitoring wells (MW-65 and MW-66, respectively).

A total of 22 soil samples, including two field duplicate samples, were collected from the two soil boring and seven additional surface soil sample locations (AOC 26-1 through AOC 26-7) for laboratory analysis

3.4 Monitoring Well Installation, Completion, and Development

Monitoring Well Installation

Each of the eight permanent monitoring wells (MW-59 through MW-66) were completed in accordance with the requirements of Section IX of the Order. Each monitoring well was drilled to the top of bedrock (Nacimiento Formation). Slotted (0.01-inch) PVC well screen was placed at the bottom of the well, extending for 10 to 15 feet to ensure that each well is screened across the water table and, to the extent possible; the entire saturated zone is open to the well, with approximately five feet of screen above the water table. A 10/20 sand filter pack was installed a minimum of two feet over the top of the well screen, and a bentonite annular seal was installed on top of the filter pack at a minimum of 2 feet thick. A grout seal was installed on top of the annular seal, and extends to within a few feet of ground surface. The grout seal was allowed to cure for a minimum of 24-hours before the concrete surface pad was installed.

Monitoring Well Completion

The surface completions consisted of either flush mount completions or stickup completions. The flush mount completions consisted of an 8-inch well vault centered within a concrete pad. The concrete pad was wire reinforced. The stickup completions consisted of a protective aluminum enclosure with a cap that was secured in a concrete pad. The aluminum protective casing extended approximately 4 ft above the top surface of the concrete pad. One permanent monitoring well (MW-60) was completed as a flush-mounted well. The other seven monitoring wells, including the one temporary monitoring well (TW-01) was completed with above-grade completions. MW-60 is protected with a well cap and steel meter box installed around the well

casing, which is equipped with a rubber gasket to minimize surface water accumulation. Each monitoring well above-grade completion includes the installation of four bollards located near each corner of the surface pad.

Monitoring Well Development

Following monitoring well completion activities, each of the new monitoring wells were developed using a combination of mechanical surging and air-lift techniques. Initially, a surge block attached to the end of the drill rod was used to swab the inside of the well casing within the screen interval. The repeated plunging motion drew filter pack fines and loosened sediment into the well casing, improving the water quality within the surrounding formation and filter pack.

Once the well was surged, the air-lift apparatus was used to remove the loosened sediment and fines from inside the well casing. Using an air compressor and dedicated 1-inch PVC eductor piping, compressed air was injected into the well. The air flow rate was manually adjusted to produce a continuous flow of water/sediment mixture out the top of the well casing via the 1-inch eductor piping. Air lifting ceased once the purge water was relatively clear.

3.5 Soil Boring Plug and Abandonment

Each soil boring not completed as a permanent or temporary monitoring well was pressure grouted via the tremie pipe method from the bottom of the borehole to the ground surface. The soil borings were plugged so that the borehole would not act as a conduit for migration of surface water to the lower soil and to ground water.

3.6 Ground Water Sampling and Vadose Zone Vapor Sampling

Two rounds of water sampling were conducted following completion of well development activities at each of the eight permanent monitoring wells (MW-59 through MW-66). In addition, two sets of ground water samples were collected from temporary well TW-01 (located at boring AOC 22-12) and one set of ground water samples were collected at AOC 22-13 (sample ID was AOC 22-13 (GW)). A total of 18 ground water samples were collected as part of the Group 3 investigation activities using disposable bailers. All ground water samples were sent to Hall Environmental Analytical Laboratory in Albuquerque, New Mexico and analyzed using the following:

Volatile Organic Compounds (VOCs) by SW-846 Method 8260;

- Semi-Volatile Organic Compounds (SVOCs) by SW-846 Method 8270;
- Gasoline, diesel, and motor oil range petroleum hydrocarbons by SW-846 Method 8015B;
- Total recoverable metals (Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, nickel, selenium, silver, vanadium, and zinc) by SW846 Method 6010/6020;
- Cyanide by SW-846 method 9012;
- Mercury by EPA Method 7470;
- Ethanol by SW-846 Method 8015 (AOC 26 samples only);
- Anions (chloride, Nitrate/Nitrite, and sulfate) by USEPA Method 300.0;
- Alkalinity (total alkalinity, carbonate, and bicarbonate) by USEPA Method 310.1;
- Dissolved metals (iron, calcium, magnesium, potassium, and sodium) by USEPA Method 6010B; and
- Total dissolved solids by SM-2540C

All samples were placed in pre-cleaned, laboratory-prepared sample containers for laboratory chemical analysis. Prior to collection of the ground water sample at each well, a total well vapor sample was collected and field analyzed for percent carbon dioxide and oxygen. Field vapor measurements were collected using a multi-gas meter, and the results recorded on a field sampling log.

In addition, ground water level and separate-phase hydrocarbon (SPH) thickness measurements were collected from each new monitoring well prior to well purging. Measurement data and pertinent field information was recorded on field sampling log. The depth-to-groundwater and depth-to-SPH were measured to the nearest 0.01 ft and recorded relative to the surveyed well casing rim.

3.7 Decontamination Procedures

Drilling equipment was decontaminated between each borehole using a high pressure portable water wash. Sampling equipment that were in direct contact with the samples (e.g. hand augers and split-spoon samplers) were decontaminated using a brush, as necessary, to remove larger

particulate matter followed by a rinse with potable water, wash with non-phosphate detergent, rise with potable water, and double rinse with deionized water. The field methods are also summarized in Appendix F.

In the event that more than one SWMU/AOC was investigated during the day, a new batch of wash water and rinse water was prepared for the new SWMU/AOC prior to decontamination. The decontamination water was collected in buckets and placed in open top 55-gallon drums, which were labeled and sealed at the end of each work day.

3.8 Quality Assurance / Quality Control Measures

Quality Assurance/Quality Control (QA/QC) samples were collected to monitor the validity of the soil sample and ground water sample collection procedures, as well as to monitor any cross contamination during sample shipment and/or sample contamination during laboratory analysis activities. QA/QC samples collected during field investigation activities included the collection of field duplicates at a rate of 10%, equipment blanks at a rate of 10% or one per day when disposable sampling equipment was used, and field blanks at a rate of one per day.

A total of 80 QA/QC samples were collected during the Group 3 investigation event. A data validation assessment was completed that included review of the field sample data, laboratory QA/QC summaries, and results of the QA/QC samples. The field data was qualified accordingly based on results of the data validation process. Appendix H provides a detailed data validation summary for the field samples collected as part of the Group 3 investigation activities.

3.9 Field Equipment Calibration

Field sampling equipment was calibrated daily prior to commencement of field sampling activities. For soil sampling, headspace vapor screening for soil samples was conducted using a MiniRae 2000 portable VOC monitor. The instrument was calibrated at the beginning of each work day to a concentration of 100 ppm isobutylene.

Field vapor monitoring was completed using a multi-gas Eagle Meter manufactured by RKI Instruments, Inc. The meter was calibrated with 15% CO₂, 12.0% O₂, and 100 ppm isobutylene each work day.

An Ultrameter 6P manufactured by Myron L Company was used to measure ground water stabilization parameters. The calibration solutions used at the beginning of each day are as follows:

- 4.0 pH solution;
- 7.0 pH solution;
- 10.0 pH solution; and
- 1.413 mS/cm conductivity solution.

3.10 Collection and Management of Investigation Derived Waste

Drill cuttings, excess sample material and decontamination fluids, and all other investigation derived waste (IDW) associated with soil borings were contained and characterized based on the boring location and type of contaminants suspected or encountered in DOT certified 55-gallon drums.

A total of three composite samples were collected from drums containing soil with known constituent concentrations above NMED residential soil screening levels. A composite sample was collected to characterize soil for waste disposal from AOC No. 24, AOC No. 26, AOC No. 22, and SWMU No. 4. One composite sample was collected for soil from AOC No. 22 and SWMU No. 4 since less than one drum of cuttings was generated from investigations at SWMU No. 4, and the investigation results shown that only a limited impact of TPH was detected at a concentration higher than NMED residential screening levels, but below NMED industrial screening level for waste oil. Each composite soil sample was analyzed for the following:

- BTEX and MTBE by EPA Method 8021B;
- Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8310;
- TCLP RCRA 8 Metals by EPA Method 6010B; and
- Ignitability, Corrosivity, and Reactivity.

The associated analytical is included in Appendix C. Composite samples were not collected for soils cuttings generated from AOC 23 and AOC 25 because investigation sample results show that the detected concentrations in the soil were below NMED residential screening levels. All analytical results for waste characterization purposes were submitted to Waste Management, Inc. for review and approval of acceptance. Soils were disposal of at the Painted Desert Landfill, In Joseph City, Arizona.

All purged ground water and decontamination water was disposed in the refinery wastewater treatment system upstream of the API Separator. Personal protective equipment (e.g., gloves) was disposed in the refinery's general waste bins.

3.11 Surveys

Known site features and/or site survey grid markers were used as references to locate each boring and surface sample location prior to surveying the locations using a registered professional land surveyor. The boring locations were measured to the nearest foot, and locations were placed on a scaled map. In addition, a hand-held GPS receiver was used to record the coordinates of each soil boring. These coordinates were recorded on the boring logs. The soil boring locations were subsequently surveyed by a registered surveyor.

The horizontal coordinates and elevation of each surface sampling location; the surface coordinates and elevation of each boring, the top of each monitoring well casing, and the ground surface at each monitoring well location; and the locations of all other pertinent structures were determined by a registered New Mexico professional land surveyor in accordance with the State Plane Coordinate System (NMSA 1978 47-1-49-56 (Repl. Pamp. 1993)). The surveys were conducted in accordance with Sections 500.1 through 500.12 of the Regulations and Rules of the Board of Registration for Professional Engineers and Surveyors Minimum Standards for Surveying in New Mexico. Horizontal positions were measured to the nearest 0.1-ft, and vertical elevations were measured to the nearest 0.01-ft. The survey data is included in Appendix D.

Section 4 Field Investigation Results

This section provides a summary of the procedures used and the results of all field investigation activities conducted at the site as part of Group 3 investigation activities. This summary includes the dates that investigation activities were conducted, the type and purpose of field investigation activities performed, field screening measurements, logging and sampling results, monitoring well construction details and conditions observed. Field observations or conditions that altered the planned work or may have influenced the results of sampling, testing and logging are also reported in this section.

4.1 Surface Conditions

Regionally, the surface topography slopes toward the floodplain of the San Juan River, which runs along the northern boundary of the refinery complex. To the south of the refinery, the drainage is to the northwest. North of the refinery, across the San Juan River, surface water flows in a southeasterly direction toward the San Juan River. The active portion of the refinery property, where the process units and storage tanks are located, is generally of low relief with an overall northwest gradient of approximately 0.02 ft/ft. The refinery sits on an alluvial floodplain terrace deposit and there is a steep bluff (approx. drop of 90 feet) at the northern boundary of the refinery where the San Juan River intersects the floodplain terrace, which marks the southern boundary of the floodplain.

There are two locally significant arroyos, one immediately east and another immediately west of the refinery, which collect most of the surface water flows in the area, thus significantly reducing surface water flows across the refinery. A minor drainage feature is located on the eastern portion of the refinery, where the Landfill Pond (SWMU No. 9) was located and there are several steep arroyos along the northern refinery boundary that primarily capture local surface water flows and minor ground water discharges.

The refinery complex is bisected by County Rd #4990 (Sullivan Road), which runs east-west. The process units, storage tanks (crude oil and liquid products), and wastewater treatment systems are located north of the county road. The crude oil and product loading racks, LPG storage tanks and loading racks, maintenance buildings/90-day storage area, pipeline offices, transportation truck shop, and the Class I injection well are located south of the county road. There is very little vegetation throughout these areas with most surfaces composed of concrete,

asphalt, or gravel. The area between the refinery and the San Juan River does have limited vegetation on slopes that are not too steep to support vegetation.

4.2 Exploratory Drilling Investigations

A total of 13 soil borings were drilled as part of Group 3 investigation activities using hollow-stem auguring (HSA) method or air rotary-ODEX method. All soil borings were drilled to a minimum depth of 10 feet with at least one boring at each of the individual potential source areas drilled to the top of saturation, with the exception of SWMU No. 5 where only surface soil samples were collected. If there was any indication of impacts based on field screening results at 10 feet or evidence of waste materials or other signs of impacts, then the boring was drilled deeper until reaching a depth of five feet below any observed impacts (e.g., odors or elevated PID readings) or to the top of saturation, whichever was achieved first. If impacted media was detected at the water table, then the boring was drilled five feet below the water table or to refusal (whichever occurred first) to facilitate collection of ground water samples. Total depths of each soil boring completed as a permanent monitoring well ranged between 10 ft to 59 ft bgl, with the deepest soil boring/monitoring well being AOC 23-1/MW-62.

At designated locations where only surface soil samples were collected (i.e. sample intervals being (0-0.5') and (1.5-2.0') below ground level only), sampling was accomplished using a hand auger with the soil samples collected from the auger bucket. Soil samples collected from soil borings extending greater than 2 ft below ground level were collected using split spoon samplers.

Soil samples were screened continuously from split spoon samplers or hand auger and logged by a qualified geologist. The soil descriptions were made in accordance with USCS nomenclature and recorded on the individual field boring logs. As shown on the boring logs (Appendix E), the data recorded included the lithologic interval, USCS symbol, percent recovery and a sample description of the cuttings and core samples.

The drilling equipment was decontaminated between each borehole using a high pressure potable water wash. The split-spoon samplers and hand augers were decontaminated between each use using a potable water rinse, an Alconox wash and then a distilled water rinse. In the event that more than one SWMU/AOC was investigated during the day, a new batch of wash water and rinse water was prepared for the new SWMU/AOC prior to decontamination. The decontamination water was collected in buckets and placed in open top 55-gallon drums, which

were labeled and sealed at the end of each work day. Soil cuttings were also placed in labeled open top 55-gallon drums and were sealed when not in use.

4.3 Subsurface Conditions

Numerous soil borings and monitoring wells have been completed across the refinery property during previous site investigations and installation of the slurry wall, which runs along the northern and western refinery boundary. Thirteen soil borings, eight of which were completed as permanent monitoring wells, were completed under this scope of work for Group No. 3. One additional temporary well designated as TW-01 was installed in the AOC No. 22 area.

Based on the available site-specific and regional subsurface information, the site is underlain by the Quaternary Jackson Lake terrace deposits, which unconformably overlie the Tertiary Nacimiento Formation. The Jackson Lake deposits consist of fine grained sand, silt and clay that grades to coarse sand, gravel and cobble size material closer to the contact with the Nacimiento Formation. The Jackson Lake Formation is over 40 feet near thick near the southeast portion of the site and generally thins to the northwest toward the San Juan River. The Nacimiento Formation is primarily composed of fine grained materials (e.g., carbonaceous mudstone/claystone with interbedded sandstones) with a reported local thickness of approximately 570 feet (Groundwater Technology, 1994).

Figures 3 and 4 present cross-sections of the shallow subsurface based on borings logs from on-site monitoring well completions.

Underground piping is present in the area of AOC Nos. 22, 24, and 26 (see Figure No. 2), which includes piping used to transfer crude oil from the loading racks to AOC No. 22, piping for gasoline additives from AOC No. 26 to the product loading rack, crude oil transfer piping to the tank farm north of County Rd. 4990, product transfer piping from the tank farm to product loading rack, and piping used to transfer product and crude oil within the individual loading racks. There was no indication that the underground piping is acting as a preferential pathway for contaminant migration and the generally transmissive nature of the native soils would tend to lesson any affects from the underground utilities.

4.4 Soil Boring Installation, Monitoring Well Construction, and Boring Abandonment

This section describes the methods and details of soil boring installation, monitoring well construction, and soil boring abandonment activities. Details of soil sample collection activities conducted during soil boring installation are provided in Section 6. Each soil boring is discussed under the appropriate SWMU or AOC. The borings are discussed in chronological order within each SWMU/AOC. Copies of the boring and well construction logs are provided in Appendix E. A description of the surface soil sampling at each SWMU or AOC is discussed in Section 6.1.

Soil borings completed as a permanent or temporary monitoring well were drilled to the top of bedrock (Nacimiento Formation). The completion depths ranged between 40 to 59 feet. Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 10 to 15 feet to ensure that the entire saturated zone is open to the well. Rigid PVC with threads was utilized for the well casing and no glues/solvents were utilized. Permanent monitoring wells were constructed with 4-inch diameter PVC casing; the temporary wells were constructed using 2-inch diameter PVC casing. A 10/20 sand filter pack was installed to a minimum of two feet over the top of the well screen. A 6-inch sand bed was also installed at the base of the monitor well. Pursuant to Section IX.C. of the Order, a minimum of two feet of bentonite seal was placed over the filter pack and hydrated. An annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours before surface pad and protective casing were installed.

The surface completions consisted of either flush mount completions or stickup completions. The flush mount completions consisted of an 8-inch well vault centered within a concrete pad measuring 4-feet by 4-feet wide by 6-inches thick. The concrete pad was wire reinforced. The stickup completions consisted of a protective aluminum enclosure with cap that was secured in a concrete pad measuring 4-feet by 4-feet wide by 6-inches thick. The concrete pad was wire reinforced. The aluminum protective casing extended 4 feet above the top surface of the concrete pad.

Four-inch diameter steel bollards were installed 6 inches from each corner of the concrete pad to further protect the monitoring wells constructed with stick-up completions. Bollards were not placed around temporary well TW-01 since its location is not near vehicle access areas. The bollards were installed two feet below grade and extended three feet above grade. The bollards were installed vertically level and extend the same height. The holes for the bollards were dug

by hand with the diameter of the borehole measured a minimum of 6-inches. Each bollard was cemented into the ground with the cement extending from the bottom of the hole to the surface. The bollard was filled with cement. Each bollard was pretreated to remove rust, primed, and painted with two coats of safety-yellow paint.

SWMU No. 4 - Transportation Terminal Sump

SWMU 4-1/MW-59

On April 6, 2009 the drilling rig was set up on location SWMU 4-1/MW-59 (Figure 6). Sample collection began with the use of the HSA drilling method and split spoon samplers. The borehole was advanced to a depth of 36 feet bgl. The rig was modified to drill using the ODEX drilling method and sampling continued. The sampling was terminated at 43.5 feet bgl.

As shown on the well construction log for MW-59, the Nacimiento Formation was encountered at 42.5 feet bgl and consisted of dense, damp, yellowish brown sandstone. In order to accommodate the well setting, the borehole was advanced to a depth of 44.25 feet bgl.

Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 15 feet (28 to 43 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. A 6-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was installed to two feet over the top of the well screen. As the sand was installed in the wellbore the ODEX casing was removed. Two feet of bentonite was placed over the filter pack and hydrated. On April 7, 2009 an annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours. On April 10, 2009, the surface pad and protective aluminum stick-up cover were installed. Soil cuttings were placed in open-top 55 gallon drums that were sealed when not in use.

SWMU No. 5 - Heat Exchanger Bundle Cleaning Area

As described in Section 6, 12 surface soil samples (i.e., 0-0.5' and 1.5–2') were collected in the SWMU No. 5 area (Figure 7). The samples were collected from sample locations SWMU 5-1, SWMU 5-2, SWMU 5-3, SWMU 5-4, SWMU 5-5, and SWMU 5-6. No deep soil borings or monitor wells were installed at the SWMU; however, a soil boring and permanent monitoring well (AOC 25-2/MW-60) was installed at AOC No. 25, which is adjacent to SWMU No. 5.

AOC No. 22 - Product Loading Racks and Crude Receiving Loading Racks

In addition to the five soil borings installed at AOC No. 22 as described below, surface samples only were collected at eleven additional designated locations (AOC 22-1 through AOC 22-11). Details pertaining to surface sample collection is provided in Section 6 of this report.

AOC 22-14

On April 8, 2009 the drilling rig was set up on location AOC 22-14 (Figure 8). Sample collection was accomplished using the HSA drilling method and split spoon samplers. There were no indications of impacts based on the field screening results nor was there any visual or olfactory evidence of impacts from the surface to a depth of 10 feet bgl. The sampling terminated at 10 feet bgl. The borehole was grouted to the surface on April 9, 2009.

AOC 22-13

On April 8, 2009 the drilling rig was set up on location AOC 22-13. Sample collection was accomplished using the HSA drilling method and split spoon samplers. As shown on the soil boring log, AOC 22-13, the Nacimiento Formation was encountered at 40.5 feet bgl. The sampling was terminated at 42.5 feet bgl.

This location was not designated for a well installation. However, due the elevated PID readings, the visual observation of staining, and the presence of odor throughout the soil boring it was decided that a ground water sample would be collected from the boring. As temporary well supplies were not immediately available for installation, the augers were left in the borehole overnight. Soil cuttings were placed in open-top 55 gallon drums and that sealed when not in use.

On April 9, 2009 the borehole was gauged and the depth to ground water was measured at 37.80 feet bgl. The total depth of the borehole was gauged as 38.75 feet bgl. Ground water sample AOC 22-13-GW was collected using a disposable bailer. The ground water in the augers was not purged prior to sampling since saturation had been encountered less than 24 hours earlier and would be representative of the formation's ground water. The augers were removed and the borehole was grouted to the surface.

AOC 22-12/TW-01

On April 13, 2009 the drilling rig was set up on location AOC 22-12. Sample collection was accomplished using the HSA drilling method and split spoon samplers. As shown on the soil boring log for AOC 22-12, the Nacimiento Formation was encountered at 41 feet bgl and consisted of clayey/sand-weathered sandstone. The sampling was terminated at 42 feet bgl.

Due the elevated PID readings, the visual observation of soil discoloration, and the presence of odor, it was decided that a ground water sample would be collected from the boring. Slotted (0.01 inch) rigid PVC well screen was placed at the bottom and extended for five feet (36.5 to 41.5 feet). Rigid 2-inch diameter Schedule 40 PVC with threads was utilized for the well casing. A 10/20 sand filter pack was installed to 3.5 feet over the top of the well screen. As the sand was installed in the wellbore the hollow stem augers were removed. Two feet of bentonite was placed over the filter pack and hydrated. Soil cuttings were placed in open-top 55 gallon drums that were sealed when not in use.

On April 14, 2009 the temporary well was gauged and the depth to ground water was measured at 37.95 feet bgl. The total depth of the well was gauged as 42.51 feet bgl. Ground water sample AOC 22-12-GW was collected using a disposable bailer. It was decided to not plug and abandon the boring but rather to complete the boring as a temporary well TW-01. On April 17, 2009 an annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours. A stickup surface completion was installed at this location.

AOC 22-16/MW-63

On April 13, 2009 the drilling rig was set up on location AOC 22-16. Sample collection was accomplished using the HSA drilling method and split spoon samplers. There were no indications of impacts based on the field screening results nor was there any visual or olfactory evidence of impacts from the surface to a depth of 34 feet bgl. The drilling and sampling continued to a depth of 34 feet bgl before shutting down for the day.

On April 14, 2009 the drilling and sampling resumed with the ODEX drilling method and split spoon samplers. As shown on the well construction log for MW-63, the Nacimiento Formation was encountered at 44 feet bgl and consisted of dense, fine grained, dry, greenish gray

weathered sandstone. In order to accommodate the well setting the borehole was advanced to a depth of 46 feet bgl.

Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 15 feet (29.75 to 44.75 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. A 6-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was installed to 2.75 feet over the top of the well screen. As the sand was installed in the well bore the ODEX casing was removed. Two feet of bentonite was placed over the filter pack and hydrated. On April 17, 2009 an annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours. On April 23, 2009 the surface pad and protective aluminum cover were installed. Soil cuttings were placed in open-top 55 gallon drums that were sealed when not in use.

AOC 22-15/MW-61

On April 15, 2009 the drilling rig was set up on location AOC 22-15. Sample collection was accomplished using the HSA drilling method and split spoon samplers to a depth of 36 feet. The rig was modified to drill using the ODEX drilling method and sampling continued. As shown on the well construction log, MW-61, the Nacimiento Formation was encountered at 38 feet bgl and consisted of low plasticity, firm, dry to damp, yellowish brown to greenish gray silty sandy clay. In order to accommodate the well setting the borehole was advanced to a depth of 40.25 feet bgl.

Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 15 feet (24 to 39 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. A 6-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was installed to two feet over the top of the well screen. As the sand was installed in the well bore the ODEX casing was removed. Two feet of bentonite was placed over the filter pack and hydrated. On April 17, 2009 an annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours. On April 23, 2009 the surface pad and a flush mount vault were installed. Soil cuttings were placed in open-top 55 gallon drums that were sealed when not in use.

AOC No. 23 - Southeast Holding Ponds

AOC 23-1/MW-62

On April 21, 2009 the drilling rig was set up on location AOC 23-1 (Figure 14). Sample collection was initially accomplished using the HSA drilling method and split spoon samplers. After encountering gravelly sand at 8 to 10 feet bgl the rig was modified to drill using the ODEX drilling method. Sampling continued to a depth of 31 feet bgl before shutting down for the day.

On April 22, 2009 the drilling and sampling resumed with the ODEX drilling method and split spoon samplers. As shown on the well construction log for MW-62, the Nacimiento Formation was encountered at 55.5 feet bgl and consisted of very dense, black, dry, silt/shale. In order to accommodate the well setting, the borehole was advanced to a depth of 58.25 feet bgl.

Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 15 feet (42 to 57 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. A 6-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was installed to two feet over the top of the well screen. As the sand was installed in the well bore the ODEX casing was removed. Two feet of bentonite was placed over the filter pack and hydrated. On April 23, 2009 an annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours. On April 24, 2009 the surface pad and protective aluminum cover were installed. Soil cuttings were placed in open-top 55 gallon drums that were sealed when not in use.

AOC No. 24 - Tank Areas 41 and 43

In addition to the three soil borings installed at AOC No. 24 as described below, surface samples only were collected at four additional designated locations (AOC 24-1 through AOC 24-4). Details pertaining to surface sample collection is provided in Section 6 of this report.

AOC 24-7/MW-64

On April 7, 2009 the drilling rig was set up on location AOC 24-7 (Figure 15). Sample collection was initially accomplished using the HSA drilling method and split spoon samplers. After encountering gravelly sand at 38 feet bgl, the rig was modified to drill using the ODEX drilling method. Sampling continued to a depth of 51 feet bgl before shutting down for the day. As

shown on the well construction log for MW-64, the Nacimiento Formation was encountered at 49 feet bgl and consisted of dense, very stiff, dry to damp, yellowish brown sandy clay. On April 8, 2009, the borehole was advanced to a depth of 58.25 feet bgl in order to accommodate the well setting.

Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 15 feet (34 to 49 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. A 6-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was installed to 2.25 feet over the top of the well screen. As the sand was installed in the well bore the ODEX casing was removed. Approximately 3.25 feet of bentonite was placed over the filter pack and hydrated. On April 9, 2009 an annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours. On April 23, 2009 the surface pad and protective aluminum cover were installed. Soil cuttings were placed in open-top 55 gallon drums that were sealed when not in use.

AOC 24-5

On April 8, 2009 the drilling rig was set up on location AOC 24-5. Sample collection was accomplished using the HSA drilling method and split spoon samplers. The sampling terminated at 10 feet bgl. The borehole was grouted to the surface on April 9, 2009.

AOC 24-6

On April 8, 2009 the drilling rig was set up on location AOC 24-6. Sample collection was accomplished using the HSA drilling method and split spoon samplers. The sampling terminated at 10 feet bgl. The borehole was grouted to the surface on April 9, 2009.

AOC No. 25 - Auxiliary Warehouse and 90- Day Storage Area

In addition to the one soil boring installed at AOC No. 25 as described below, surface samples only were collected at one additional designated location (AOC 25-1). Details pertaining to surface sample collection are provided in Section 6 of this report.

AOC 25-2/MW-60

On April 5, 2009 the drilling rig was set up on location AOC 25-2 (Figure 16). Sample collection was initially accomplished using the HSA drilling method and split spoon samplers. After

encountering gravelly sand at 38 feet bgl the rig was modified to drill using the ODEX drilling method. Sampling continued to a depth of 45.5 feet bgl. As shown on the well construction log for MW-60, the Nacimiento Formation was encountered at 43.5 feet bgl and consisted of dense, fine grain, damp, light yellowish brown weathered sandstone. The borehole was advanced to a depth of 45.5 feet bgl in order to accommodate the well setting.

Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 15 feet (28.75 to 43.75 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. A 6-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was installed to 2.25 feet over the top of the well screen. As the sand was installed in the well bore the ODEX casing was removed. Two feet of bentonite was placed over the filter pack and hydrated. On April 9, 2009 an annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours. On April 23, 2009 the surface pad and protective aluminum cover were installed. Soil cuttings were placed in open-top 55 gallon drums that were sealed when not in use.

AOC No. 26 - Tank Area 44 and 45

In addition to the two soil borings installed at AOC No. 26 as described below, surface samples only were collected at seven additional designated sample locations (AOC 26-1 through AOC 26-7). Details pertaining to surface sample collection are provided in Section 6 of this report.

AOC 26-8/MW-65

On April 16, 2009 the drilling rig was set up on location AOC 26-8 (Figure 16). The boring had been hydroexcavated to 10 feet to clear utilities. Soil sampling with the rig began at 10 feet bgl and was accomplished using the HSA drilling method and split spoon samplers. The rig was modified to the ODEX drilling method after a gravelly sand was encountered at 32 feet bgl.

As shown on the well construction log for MW-65, the Nacimiento Formation was encountered at 41.75 feet bgl and consisted of fine grain, very stiff, damp, yellowish brown sandy clay/clayey sand. In order to accommodate the well setting the borehole was advanced to a depth of 44.25 feet bgl. During installation of the well the bentonite formed a "bridge" between the ODEX casing and the well casing. When the ODEX casing was being removed from the bore hole the

well casing moved, which caused the proposed well settings to be adjusted. The ODEX casing and well casing were removed from the borehole and the field activities ceased for the day.

On April 17, 2009 the borehole for AOC 26-8/MW-65 was re-entered and reamed out to a depth of 44.25 feet bgl using the HSA drilling method. Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 15 feet (28 to 43 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. A 6-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was installed to two feet over the top of the well screen. As the sand was installed in the well bore the augers were removed. Approximately 2.5 feet of bentonite was placed over the filter pack and hydrated.

The rig was sent back to this location on April 20, 2009 to collect and screen the soils from 2 feet to 10 feet bgl. The borehole was grouted to the land surface.

On April 23, 2009 an annular grout was pumped by tremie method into well completion borehole to within two feet of the ground surface and allowed to cure for a minimum of 24 hours. On April 24, 2009 the surface completion and protective cover were installed. Soil cuttings were placed in open-top 55 gallon drums that were sealed when not in use.

AOC 26-9/MW-66

On April 20, 2009 the drilling rig was set up on location AOC 26-9. Soil sampling was initially conducted using the HSA drilling method and split spoon samplers. The rig was modified to the ODEX drilling method after reaching 36 feet bgl. As shown on the well construction log for MW-66, the Nacimiento Formation was encountered at 41 feet bgl and consisted of a sandy silty clay that was stiff to very stiff, dry and grayish green. In order to accommodate the well setting, the borehole was advanced to a depth of 43.25 feet bgl, and the field activities ceased for the day.

On April 21, 2009 MW-66 was installed. Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 15 feet (27 to 42 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. A 6-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was installed to 2.25 feet over the top of the well screen. As the sand was installed in the well bore the augers were removed. Approximately 2.25 feet of bentonite was placed over the filter pack and hydrated. On April 23, 2009 an annular grout was pumped by tremie method to within two

feet of the ground surface and allowed to cure for a minimum of 24 hours. On April 24, 2009 the surface completion and protective cover were installed. Soil cuttings were placed in open-top 55 gallon drums that were sealed when not in use.

4.5 Monitor Well Development

Following monitoring well completion activities, each of the new monitoring wells were developed using a combination of mechanical surging and air-lift techniques. The following well development activities were conducted at each new monitoring well prior to ground water sampling activities.

Using a surge block attached to the end of the drill rod, ground water was forced to flow in and out of the well screen by the repeated upward and downward motion of the surge block along the entire length of the well screen. The repeated plunging motion drew filter pack fines and loosened sediment into the well casing, improving the water quality within the surrounding formation and filter pack.

Once the well was surged for a minimum of 20-minutes, the surge block was removed and the air-lift apparatus was used to remove the loosened sediment and fines from inside the well casing. Using an air compressor and dedicated 1-inch PVC eductor piping, compressed air was injected into the well. The air flow rate was manually adjusted to produce a continuous flow of water/sediment mixture out the top of the well casing via the 1-inch eductor piping. The groundwater/sediment mixture discharged directly into a 55-gallon drum. A glass jar was used to capture a sample of the purge water every 15 minutes to monitor the improving clarity of the purge water. Air lifting ceased once the purge water was relatively clear.

4.6 Ground Water Conditions

The uppermost aquifer is under water table conditions and occurs within the sand and gravel deposits of the Jackson Lake Formation. The Nacimiento Formation functions as an aquitard at the site and prevents site related contaminants from migrating to deeper aquifers. The potentiometric surface as measured in July/August 2009 is presented in Figure 5 and shows the ground water flowing to the northwest, toward the San Juan River. The potentiometric surface at the site is consistent with the regional gradient in that movement is toward to the San Juan River, which is a location of regional ground water discharge.

The depth to water in the area of the Group No. 3 SWMUs varies from approximately 34 feet near AOC No. 26 to 53 feet at AOC No. 23. Approximately 0.5 feet of separate phase hydrocarbon (SPH) was measured in one of the new wells (MW-61) installed during this investigation.

The saturated thickness in the water table aquifer varies from zero feet in the southern portion of the site to a maximum of approximately eight feet along the northern portion of the refinery. The areas with the greatest saturated thickness are found near and along the Hammond Ditch and on-site surface impoundments (i.e., the current and former Raw Water Ponds). The predominant source of recharge to the shallow aquifer beneath the refinery is recharge from man-made features (e.g., the Hammond Ditch and on-site surface impoundments).

4.7 Surface Water Conditions

The only local surface water body, excluding on-site surface impoundments and the Hammond Irrigation Ditch, is the San Juan River, which flows along the northern most property boundary. There were no accumulations of surface water observed during the site investigation or conditions likely to result in the future accumulation of surface water. Regionally, the surface topography slopes toward the floodplain of the San Juan River, and across most of the refinery and to the south of the refinery, the drainage is to the northwest. The active portion of the refinery property, where the process units and storage tanks are located, is generally of low relief with an overall northwest gradient of approximately 0.02 ft/ft. There is a steep bluff (approx. drop of 90 feet) at the northern boundary of the refinery where the San Juan River intersects the floodplain terrace, which marks the southern boundary of the floodplain.

There are two locally significant arroyos, one immediately east and another immediately west of the refinery, which collect most of the surface water flows in the area. A minor drainage feature is located on the eastern portion of the refinery, where the Landfill Pond (SWMU No. 9) was located, and there are several steep arroyos along the northern refinery boundary that primarily capture local surface water flows.

The average annual rainfall is only approximately 7.5 inches, thus the threat of surface water transport of contaminants as suspended load or dissolved phase is low. Further, the refinery implements a Stormwater Pollution Prevention Plan to ensure that surface waters of the State are not impacted by refinery operations.

Section 5 Regulatory Criteria

The applicable screening and cleanup levels are specified in Section VII of the Order issued by NMED on July 2, 2007. The soil cleanup levels are based on a target excess cancer risk of 10⁻⁵ for carcinogenic contaminants and a target hazard index of 1.0 for noncarcinogenic contaminants. The Order specifies a hierarchy of screening levels, with the screening levels based on NMED guidance taking precedence over EPA's Region VI Human Health Medium Specific Screening Levels with one exception for ground water that is discussed below. Based on direction received from NMED subsequent to issuance of the Order, EPA's Region VI Human Health Medium Specific Screening Levels have been replaced with EPA Regional Screening Levels dated April 2009. NMED guidance used to establish cleanup levels includes the *Technical Background Document for Development of Soil Screening Levels* (Revision 5.0 dated August 2009) and *Total Petroleum Hydrocarbon (TPH) Screening Guidelines* (dated October 2006).

For non-residential properties (e.g., the Bloomfield Refinery), the soil screening levels must be protective of commercial/industrial workers throughout the upper two feet of surface soils and construction workers throughout the upper ten feet based on NMED criteria. NMED residential soil screening levels are applied to the upper ten feet and soil screening levels for protection of ground water apply throughout the vadose zone. EPA soil screening levels for direct contact exposure apply to the upper two feet of the vadose zone. To achieve closure as "corrective action complete without controls", the affected media must meet residential screening levels, which are presented in Table 6. Table 7 provides a list of the available NMED and EPA soil screening levels for non-residential properties.

The ground water cleanup levels are based on New Mexico WQCC standards (20.6.2.7 WW NMAC, 20.6.2.3103, and 20.6.2.4103) unless there is a federal maximum contaminant level (MCL), in which case the lower of the two values is selected as the cleanup level. If neither a WCQQ standard nor an MCL is available, then the cleanup level is based on an EPA Regional Screening Level. Table 8 presents the ground water cleanup levels, with the applicable cleanup level highlighted.

The screening levels that are compared to individual sample results are presented in Tables 9, 10, and 11 for soils and Table 14 for ground water. Table 9 includes soil samples results for

SWMUs No. 4 and 5, and AOCs No. 23 and 25. The screening levels in Table 9 are based on residential land use. Since the investigation data for SWMU No. 4, SWMU No. 5, AOC No. 23, and AOC No. 25 indicate there is no threat to ground water in these areas, the applicable screening levels do not include the soil-to-ground water leachate pathway. Table 10 includes soil sample results for samples collected near the product loading rack portion of AOC No. 22 and AOC No. 26. The screening levels in Table 10 are based on non-residential land use and include the potential for constituents to migrate to ground water using a dilution attenuation factor (DAF) of 1.0. The soil analytical results for AOC No. 22 (crude receiving rack) and AOC No. 24 are presented in Table 11. The screening levels in Table 11 are based on non-residential land use. Based on investigation data discussed in Section 6, the constituents in Table 11 do not pose a threat to ground water, and thus these screening levels do not include the soil-to-ground water pathway.

The total petroleum hydrocarbon (TPH) screening levels are taken from NMED's October 2006 TPH Screening Guidelines. When no or insufficient information (e.g., site operational knowledge or laboratory chromatograms) is available to determine the type of petroleum product (e.g., diesel fuel, gasoline, or crude oil), the default product type of "unknown oil" is used to select a screening level for comparison to the gasoline range and diesel range organic analyses. Where information is available to identify particular product types, the screening level is selected accordingly from either Table 2a or 2b of NMED guidance. If two products have been handled in the same area (e.g., both diesel and gasoline at the product loading rack), then the most conservative (lowest) screening level of the two products is used. Screening values from Table 2b are used only in situations where impacts to shallow soils do not pose a threat to underlying ground water and there is limited potential for exposure to impacted soil (e.g., elevated concentrations occur mostly at depth and not at the land surface).

The motor oil range organic (MRO) results are compared to the "waste oil" screening levels, as waste oil is the only petroleum product category in the NMED guidance that includes similar carbon ranges as reported in the MRO analyses. The waste oil is assumed to be composed of 100% C19-C36 aliphatics and the MRO analyses include the C28 – C36 carbon range.

Some of the individual constituents reported by the laboratory did not have screening levels but were all non-detect in soil samples except 4-isopropyltoluene, n-butylbenzene, n-propylbenzene, and sec-butylbenzene. Similarly, there were detections of constituents in ground water samples that do not have screening levels. This includes the four constituents

listed above for soil and magnesium, phenanthrene, bicarbonate, calcium, potassium and sodium. None of these constituents are classified as a carcinogen.

Section 6 Site Impacts

This section provides a description of sampling intervals and methods for detection of surface and subsurface impacts in soils and ground water. It explains the methods of sample collection, sample logging methods, screening sample selection methods, and field screening results. The analytical results are presented and compared to applicable screening levels, as described in Section 5.0.

6.1 Soil Sampling

Shallow soil sampling down to a maximum of 2 feet bgl was accomplished using a hand auger. These "surface" soil samples were collected from the auger bucket. The soil borings greater than 2 feet in depth were drilled using hollow-stem auguring (HSA) method or air rotary-ODEX method. Sample collection for analysis was completed with split-spoon samplers. The drilling equipment was decontaminated between each borehole using a high pressure potable water wash. The sampling equipment coming in direct contact with the samples (e.g., hand augers and split-spoon samplers) were decontaminated using a brush, as necessary, to remove larger particulate matter followed by a rinse with potable water, wash with nonphosphate detergent, rinse with potable water, and double rinse with deionized water. The field methods are also summarized in Appendix F.

All soil borings were drilled to a minimum depth of 10 feet with at least one boring at each of the individual potential source areas drilled to the top of saturation, with the exception of SWMU No. 5 where only shallow soil samples were collected. If there was any indication of impacts based on field screening results at 10 feet or evidence of waste materials or other signs of impacts, then the boring was drilled deeper until reaching a depth five feet below any indications of impacts or to the top of saturation, whichever was achieved first. If impacts were detected at the water table, then the boring was drilled five feet below the water table or to refusal, whichever occurred first.

Soil samples were collected continuously and logged by a qualified geologist. The soil sample descriptions were made in accordance with USCS nomenclature and recorded on the individual field boring logs. As shown on the boring logs (Appendix E) the data recorded included the lithologic interval, symbol, percent recovery and a sample description of the cuttings and core samples.

Known site features and/or site survey grid markers were used as references to locate each boring prior to surveying the location. The boring locations were measured to the nearest foot, and locations were placed on a scaled map. In addition, a hand held GPS receiver was used to record the coordinates of each soil boring. These coordinates were recorded on the boring logs. The soil boring locations were subsequently surveyed by a registered surveyor.

Samples obtained from the borings were screened in the field on 2 foot intervals for evidence of contaminants. Field screening results were recorded on the soil boring logs. Field screening results were used to aid in the selection of soil samples for laboratory analysis. The primary screening methods include: (1) visual examination, (2) olfactory examination, and (3) headspace vapor screening for volatile organic compounds.

Visual screening included examining the soil samples for evidence of staining caused by petroleum-related compounds or other substances that may have caused staining of natural soils such as elemental sulfur or cyanide compounds. Headspace vapor screening was conducted as described in Section 6.2.

The selected portion of the sample interval was placed in pre-cleaned, laboratory-prepared sample containers for laboratory chemical analysis. Two soil samples were collected for VOC analysis. An Encore® Sampler was used for collection of soil samples for low-level VOC analysis and the second sample was placed in a laboratory-prepared container with a methanol preservative.

6.1.1 SWMU No. 4 Transportation Terminal Sump

One soil boring was advanced in the area of SWMU No 4 (Figure 6) on April 6, 2009. This boring was subsequently converted to monitor well MW-59. The drilling and well installation is discussed in Section 4. The following text summarizes the soil sampling that was conducted at location SWMU 4-1.

As discussed in Section 4.4, soil was continuously logged at SWMU 4-1 to a depth of 43.5 feet bgl. Elevated PID readings were recorded in the interval from 4 to 12 feet bgl. The highest reading was at 6 to 8 feet bgl (214 ppm). A soft, black, sticky material mixed with clayey silt was encountered from 4 to 8 feet and soil discoloration and odor were observed down to 12 feet. None of the PID readings below 12 feet exceeded 10 ppm nor were there any visual or olfactory evidence of impacts below 12 feet.

Soil samples were collected at the following intervals from SWMU 4-1:

- 0 − 0.5 feet;
- 1.5 2 feet;
- 6 8 feet (interval with highest PID reading); and
- 36 38 feet (interval above saturation).

No constituents were detected at concentrations above the residential screening levels in either of the two surface soil samples (i.e., 0-0.5' and 1.5-2') or the deepest sample (36-38') collected just above the depth of saturation. TPH as DRO and MRO was detected at concentrations exceeding the residential screening levels (Table 9) in the sample with the highest PID reading in the 6-8' interval. The applicable screening levels used in Table 9 do not include the soil-to-ground water pathway because the impacted soil is vertically limited to the upper 12 feet and there is no indication that the relatively low concentrations of constituents are a threat to ground water that is already impacted by up-gradient sources.

Because only TPH was detected at concentrations above the screening levels, no cumulative risk evaluation was performed. The TPH screening levels were conservatively based on "unknown oil" for the DRO fraction and "waste oil" for the MRO fraction.

6.1.2 SWMU No. 5 - Heat Exchanger Bundle Cleaning Area

Soil samples were collected from six surface soil locations (SWMU 5-1, SWMU 5-2, SWMU 5-3, SWMU 5-4, SWMU 5-5, and SWMU 5-6) in the SWMU No. 5 area (Figure 7). On April 23, 2009 discrete soil samples, including one field duplicate sample (SWMU 5-5 (1.5-2.0')), were collected from all six surface soil locations at SWMU No. 5 for laboratory analyses from 0 to 0.5 feet bgl and 1.5 to 2 feet bgl. The samples were collected using a hand auger.

There were no indications of impacts based on the field screening results nor was there any visual or olfactory evidence of impacts in 0 to 2 foot interval in any of the six sample locations. No conditions that occurred during the field activities are considered to be capable of influencing the results of the field screening.

No organic constituents were detected at concentrations exceeding the residential screening levels; however, mercury and arsenic were detected in surface soil samples (0-0.5' interval) at concentrations above the residential screening levels. Mercury was exceeded at sample locations SWMU 5-1, SWMU 5-2, SWMU 5-3, SWMU 5-4, SWMU 5-5, and SWMU 5-6, while arsenic was

exceeded only at SWMU 5-3. The applicable screening levels do not include the soil-to-ground water pathway because the impacted soil is vertically limited to surface soils and neither mercury nor arsenic was detected in ground water above the screening levels. The concentrations of mercury (as well as arsenic) attenuated very rapidly from the surface (0-0.5') samples to shallow subsurface (1.5-2.0') samples. The analytical results are summarized in Table 9.

6.1.3 AOC No. 22 - Product Loading Racks and Crude Receiving Loading Racks

Soil sampling was conducted at the following locations at AOC No. 22:

- Eleven surface soil sample locations AOC 22-1 thru AOC 22-11;
- Two soil borings AOC 22-13 and AOC22-14 (discussed in Section 4); and
- Three soil borings converted to monitor wells AOC 22-12/TW-01, AOC 22-15/MW-61 and AOC 22-16/MW-63 area (discussed in Section 4).

The following text summarizes the soil sampling that was conducted at AOC No. 22 in chronological order and the resulting analyses. The analytical results for AOC No. 22 are separated into two summary tables. The samples collected near the product loading rack are presented in Table 10 and the samples collected near the crude receiving rack are included in Table 11. The screening levels used in both tables are based on non-residential land use but Table 10 includes the soil-to-ground water pathway using a DAF of 1.0; whereas Table 11 screening levels do not include the soil-to-ground water pathway. A DAF of 1.0 is used in Table 10 due to the greater potential for constituents in soils to migrate to ground water and the soil-to-ground water pathway is eliminated for samples presented in Table 11 because the constituents in these areas do not indicate a threat to ground water.

The TPH screening criteria are also different for the areas near the crude rack vs. the product loading rack. The product type at the crude receiving rack is a weathered crude oil based on operations information and a review of chromatograms of samples collected in this area. Chromatograms for several soil samples characteristic of the crude receiving area are included in Appendix G. For comparison, chromatograms are also included for three fresh crude oils. No NMED screening level is provided for crude oil, weathered or otherwise, therefore "unknown oil" is utilized.

The TPH at the product loading racks is a mix of gasoline and diesel based on operations information. Since there is no NMED TPH screening level for gasoline, the screening level for diesel was utilized for evaluation of samples collected near the product loading rack.

AOC 22-14

Soil boring AOC 22-14 was extended to a depth of 10 feet on April 8, 2009. There were no indications of impacts based on the field screening results nor was there any visual or olfactory evidence of impacts from the surface to the termination depth. No conditions that occurred during the field activities are considered to be capable of influencing the results of the field screening. Soil samples were collected from AOC 22-14 at the following intervals:

- 0 0.5 feet; and
- 1.5 2 feet;

The analytical results for samples AOC 22-14 (0-0.5') and (1.5-2.0') are presented in Table 11. As shown, none of the concentrations exceed their respective screening levels.

AOC 22-13

Soil boring AOC 22-13 was drilled to a depth of 39 feet on April 8, 2009. Elevated PID readings were recorded from the surface to the termination depth. The readings ranged from 908 ppm (35 -37 feet) to 1,694 ppm (32 -33 feet). Soil discoloration was apparent from 20 to 39 feet bgl and the soil cores exhibited odor throughout the entire soil boring. Soil samples were collected from AOC 22-13 at the following intervals:

- 0 0.5 feet;
- 1.5 2 feet;
- 18 20 feet (high PID reading 1660 ppm silty sand);
- 32 34.5 feet (high PID reading 1694 ppm sand); and
- 37 39 feet (interval above saturation).

The analytical results, which are summarized in Table 10, indicate the presence of multiple volatile and semi-volatile organic constituents, cobalt, DRO, and GRO at concentrations above the respective screening levels protective of migration to ground water; however, detected concentrations of all SVOCs and cobalt were below the respective residential screening levels for direct contact.

AOC 22-12/TW-01

Soil boring AOC 22-12 was extended to a depth of 37.75 feet on April 13, 2009. Elevated PID readings were recorded from 28 to the termination depth. The readings ranged from 22.7 ppm (28 - 30 feet) to 220 ppm (36 – 37.75 feet). Soil discoloration and an odor were apparent in the soil cores from 26 to 37.75 feet bgl. The soil cores collected from the saturated portion of the boring also exhibited an odor. Soil samples were collected at AOC 22-12 from the following intervals:

- 0 0.5 feet also duplicated;
- 1.5 2 feet;
- 32 35 feet (highest PID reading 68 ppm); and
- 36 37.75 feet (interval above saturation).

As summarized in Table 10, cobalt was identified at concentrations above the non-residential screening level protective of migration to ground water; however the detected concentrations of cobalt were below the EPA Regional screening level for residential soils via direct contact. Concentrations of several organic constituents were detected in the 36-37.75 foot interval sample but are below the screening levels, with the exception of naphthalene that was detected at 6.22 µg/kg which exceed the respective screening level protective of ground water migration (4.19 µg/kg). However, the detected concentration of naphthalene was below the respective NMED residential soil screening level via direct contact.

AOC 22-16/MW-63

Soil boring AOC 22-16 drilled to a depth of 46 feet bgl on April 13 and 14, 2009. There were no indications of impacts based on the field screening results nor was there any visual or olfactory evidence of impacts from the surface to the termination depth. Soil samples were collected at AOC 22-16 from the following intervals:

- 0 0.5 feet:
- 1.5 2 feet; and
- 36-38 feet (interval above saturation).

All analytical results for the AOC 22-16 soil samples were below the screening levels (Table 11).

AOC 22-7 through AOC 22-9

On April 13, 2009 discrete soil samples were collected from three surface soil locations at AOC No. 22 (AOC 22-7, AOC 22-8, and AOC 22-9) for laboratory analyses from 0 to 0.5 feet bgl and

1.5 to 2 feet bgl. Soil samples collected include one field duplicate sample (AOC 22-8 (1.5-2.0')). The samples were collected using a hand auger. There were no indications of impacts based on the field screening results nor were there any visual or olfactory evidence of impacts in 0 to 2 foot interval in any of the three soil borings. The analytical results (Table 11) for samples collected at locations AOC 22-7 through AOC 22-9 did not indicate the presence of constituents above the respective non-residential screening levels listed in Table 11. In addition, all detected concentrations were below respective residential soil screening levels for direct contact.

AOC 22-10 and AOC 22-11

On April 14, 2009 discrete soil samples were collected from two surface soil locations at AOC No. 22 for laboratory analyses from 0 to 0.5 feet bgl and 1.5 to 2 feet bgl. There were no indications of impacts based on the field screening results nor were there any visual or olfactory evidence of impacts in the 0 to 2 foot interval in either of soil borings. The analytical results (Table 11) for soil samples collected at locations AOC 22-10 and AOC 22-11 do not indicate the presence of constituents above the screening levels.

AOC 22-15/MW-61

Soil boring AOC 22-15 was extended to a depth of 40.25 feet on April 15, 2009. Slightly elevated PID readings were observed from 1.5 feet to 32 feet. The highest readings were found between 1.5 to 4 feet (29.5 ppm and 23.4 ppm). There was no visual or olfactory evidence of impacts from the surface to a depth of 30 feet bgl. Two soil samples were collected from the upper most part of the boring at AOC 22-15:

- 1.0 1.5 feet; and
- 1.5 2 feet (duplicated).

In the interval from 30 to 32 feet, staining was observed, an odor was evident and the PID reading increased to 165 ppm. A PID reading of 510 ppm was collected from 34 to 36 feet. Soil samples were collected for laboratory analysis from both intervals (30-32' and 34-36').

Cobalt was detected above the screening level in all samples collected at AOC 22-15. Several organic constituents, including methylene chloride, MTBE, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene were detected at concentrations above the screening levels. The results are presented in Table 10.

AOC 22-1 through AOC 22-4

On April 15, 2009 discrete soil samples were collected from four surface soil locations at AOC No. 22 for laboratory analyses from 0 to 0.5 feet bgl and 1.5 to 2 feet bgl. The samples were collected using a hand auger.

No conditions that occurred during the field activities are considered to be capable of influencing the results of the field screening. There were no indications of impacts based on the field screening results nor were there any visual or olfactory evidence of impacts in 0 to 2 foot interval in soil borings AOC 22-1 or AOC 22-3.

At surface soil location AOC 22-2 the surface soil had a PID reading of 16.1 ppm. No staining or odor was apparent. In surface soil location AOC 22-4 the soil encountered in the 1.5 to 2 foot interval had a PID reading of 2429 ppm. No staining was apparent; however, the soil did exhibit an odor.

AOC 22-4 (1.5 – 2.0') was the only sample at locations AOC 22-1 through AOC 22-4 with multiple detections of organic constituents above the respective screening levels protective of migration to ground water, which is consistent with the field screening results. There were multiple volatile and semi-volatile organic constituents, DRO and cobalt with concentrations above the screening levels listed in Table 10; however the detected concentrations are below the NMED and/or EPA Regional screening levels for residential soil via direct contact. AOC 22-3 (1.5-2') contained methylene chloride at 11 μ g/kg, which slightly exceeds the screening level of 10.7 μ g/kg.

<u>AOC</u> 22-5 and AOC <u>22-6</u>

On April 23, 2009 discrete soil samples were collected from two surface soil locations at AOC No. 22 for laboratory analyses from 0 to 0.5 feet bgl and 1.5 to 2 feet bgl. The samples were collected using a hand auger.

There were no indications of impacts based on the field screening results nor was there any visual or olfactory evidence of impacts in 0 to 2 foot interval at either location. No conditions that occurred during the field activities are considered to be capable of influencing the results of the field screening.

No constituents, with the exception of cobalt, were detected at concentrations above the respective screening level protective of ground water migration in any of the soil samples collected from locations AOC 22-5 or 22-6. However, the detected concentration of cobalt was below the EPA Regional soil screening level for residential soil via direct contact. The analytical results are summarized in Table 10.

AOC No. 22 Cumulative Risk Evaluation

As multiple constituents were detected at concentrations above the screening levels in soil samples collected at AOC No. 22, a cumulative risk evaluation was conducted. The constituents with concentrations above the screening level are listed below with a notation if they are considered to be carcinogenic or non-carcinogenic. For non-carcinogens, the target organ is listed.

Constituent	Carcinogenic vs. Non- Carcinogenic	Non-Carcinogenic Target Organ
Cobalt	Non-Carcinogenic	Lungs (National Toxicology Program, 2009)
1,2,4-Trimethylbenzene	Non-Carcinogenic	Eyes, skin, respiratory, central nervous system (NIOSH, 2004)
1,3,5-Trimethylbenzene	Non-Carcinogenic	Liver, neurotoxicity (NIOSH, 2002),
1-Methylnaphthalene	Carcinogenic	Not applicable
2-Methynaphthalene	Non-Carcinogenic	Lungs (IRIS, 2009a)
Benzene	Carcinogenic	Not applicable
Ethylbenzene	Carcinogenic	Not applicable
Methylene chloride	Carcinogenic	Not applicable
Naphthalene	Carcinogenic	Not applicable
Toluene	Non-Carcinogenic	Kidney (IRIS, 2009b)
Xylenes	Non-Carcinogenic	neurological effects (IRIS, 2009c)
DRO	Not specified in NMED guidance	NA
MRO	Not specified in NMED guidance	NA

Based on the aforementioned sources, two of the non-carcinogens could have similar target organs (i.e., lungs). Cobalt and 2-methylnaphthalene are both present at concentrations that exceed the soil-to-ground water screening level based on a DAF of 1 but are not present at concentrations that exceed the direct contact screening levels as provided in Table 7. Cumulative effects are not a concern for cobalt and 2-methylnaphthalene.

Five of the constituents are listed as potential carcinogens based on the NMED and EPA sources referenced in Section 5.0. This could result in a cumulative carcinogenic risk level of 5.0 E-5.

The screening level included in Table 10 for cobalt assumes a DAF of 1 for the soil-to-ground water pathway; however, cobalt is not detected in concentrations above the screening level in any of the ground water samples collected during this site investigation effort. Cobalt does not appear to present a threat to ground water and the soil-to-ground water pathway should not be considered to be complete at AOC No. 22.

6.1.4 AOC No. 23 - Southeast Holding Ponds

One soil boring was advanced in the area of AOC No. 23 (Figure 14) on April 13, 2009. This boring was subsequently converted to monitor well MW-62. The drilling, sampling and well installation is discussed in Section 4. The following text summarizes the soil sampling that was conducted at location AOC 23-1.

Soil boring AOC 23-1 extended to a depth of 58.25 feet bgl. There were no indications of impacts based on the field screening results nor was there any visual or olfactory evidence of impacts from the surface to the termination depth. Soil samples were collected from AOC 23-1 on April 21, 2009 from the following intervals:

- 0 − 0.5 feet (duplicate);
- 1.5 2 feet; and
- 52-53 feet (interval above saturation).

None of the analytical results for the soil samples collected at AOC 23 indicate concentrations of constituents above the residential screening levels and the results are summarized in Table 9. The residential screening levels do not include the soil-to-ground water pathway because there is no indication of the presence of site-related impacts to soil and all of the concentrations of constituents detected are low with only cobalt present above the soil-to-ground water screening level with a DAF of 20. Cobalt is present in all of the soil samples analyzed from the SWMU Group #3 areas at similar concentrations but does not appear in any of the ground water samples at concentrations above the ground water screening level. The soil-to-ground water exposure pathway is not considered to be complete at AOC No. 23.

6.1.5 AOC No. 24 - Tank Areas 41 and 43

The following field activities were conducted at AOC No. 24:

- Four surface soil samples AOC 24-1 thru AOC 24-4;
- Two soil borings AOC 24-5 and AOC 24-6 (discussed in Section 4); and
- One soil boring converted to a monitor well AOC 24-7/MW-64 (discussed in Section 4).

The following text summarizes the soil sampling that was conducted at location AOC No. 24 in chronological order. The chemical analyses are summarized in Table 11, where screening levels are based on non-residential land use without the soil-to-ground water pathway. The field screening data and chemical analyses indicate the few detections of constituents, which indicate site-related impacts, are limited to shallow soils and do not threaten to impact ground water, which occurs at nearly 40 feet beneath the land surface.

AOC 24-7/MW-64

Soil boring AOC 24-7 was extended a depth of 51 feet bgl on April 7, 2009. Drilling resumed the next day to a depth of 58.25'. There were no indications of impacts based on the field screening results nor was there any visual or olfactory evidence of impacts from the surface to the termination. Soil samples were collected from the following intervals:

- 0 0.5 feet;
- 1.5 2 feet; and
- 39 42 feet (interval above saturation).

There are no analytical results for the three samples collected at AOC 24-7 that exceed the screening levels. The analyses are summarized in Table 11.

AOC 24-5

Soil Boring AOC 24-5 extended to a depth of 10 feet bgl. There were no indications of impacts based on the field screening results nor was there any visual or olfactory evidence of impacts from the surface to the termination depth. The sampling terminated at 10 feet bgl. Soil samples were collected from AOC 24-5 on April 18, 2009 from the following intervals:

- 0 − 0.5 feet (duplicate); and
- 1.5 2 feet;

All of the analytical results for the samples collected at AOC 24-5 were less than the non-residential screening levels. All of the results are summarized in Table 11.

AOC 24-6

Soil boring AOC 24-6 extended to a depth of 10 feet bgl. There were no indications of impacts based on the field screening results nor was there any visual or olfactory evidence of impacts from the surface to the termination depth. Soil samples were collected on April 8, 2009 from the following intervals:

- 0 0.5 feet; and
- 1.5 2 feet;

All of the analytical results for the samples collected at AOC 24-6 were less than the non-residential screening levels with the exception of DRO in sample AOC 24-6 (1.5-2.0'). All of the results are summarized in Table 11.

AOC 24-1 through AOC 24-4

On April 23, 2009 discrete soil samples were collected from four surface soil locations at AOC No. 24 for laboratory analyses from 0 to 0.5 feet bgl and 1.5 to 2 feet bgl. The soil samples collected include one field duplicate sample (AOC 24-4 (1.5-2.0')). The samples were collected using a hand auger.

There were no indications of impacts based on the field screening results nor were there any visual or olfactory evidence of impacts in 0 to 2 foot interval in soil borings AOC 24-1 through AOC 24-4. No conditions that occurred during the field activities are considered to be capable of influencing the results of the field screening.

All of the analytical results for the samples collected at AOC 24-1 through 24-4 are less than the non-residential screening levels. The analytical results are summarized in Table 11.

6.1.6 AOC No. 25 - Auxiliary Warehouse and 90-Day Storage Area

The following field activities were conducted at AOC No. 25:

- One surface soil location AOC 25-1; and
- One soil boring converted to a monitor well AOC 25-2/MW-60 (discussed in Section 4).

The following text summarizes the soil sampling that was conducted at location AOC No. 25 in chronological order. The analytical results are summarized in Table 9 and are compared to the residential screening levels that do not include the soil-to-ground water pathway. An initial review of the analytical results shows that only cobalt is present at concentrations above the soil-to-ground water screening levels using a DAF of 20. The cobalt concentrations are similar to all of the other analyses for cobalt performed at the site and do not indicate elevated concentrations near AOC No. 25. Cobalt is not detected in ground water above the screening level at MW-60 and the soil-to-ground water exposure pathway is not considered to be complete at AOC No. 25.

AOC 25-2/MW-60

Soil boring AOC 25-2 extended to a depth of 45.5 feet bgl. There were no indications of impacts based on the field screening results nor was there any visual or olfactory evidence of impacts from the surface to the termination depth. Soil samples were collected from AOC 25-2 on April 5, 2009 from the following intervals:

- 0 0.5 feet (duplicate);
- 1.5 2 feet; and
- 36–38 feet (interval above saturation).

All of the analytical results for the samples collected at AOC 25-2 were less than the screening levels. All of the results are summarized in Table 9.

AOC 25-1

On April 23, 2009 two discrete soil samples were collected from AOC 25-1 for laboratory analyses from 0 to 0.5 feet bgl and 1.5 to 2 feet bgl. The samples were collected using a hand auger. There were no indications of impacts based on the field screening results nor were there any visual or olfactory evidence of impacts in 0 to 2 foot interval. No conditions that occurred during the field activities are considered to be capable of influencing the results of the field screening.

All of the analytical results for the samples collected at AOC 25-1 were less than the screening levels. The results are summarized in Table 9.

6.1.7 AOC No. 26 - Tank Area 44 and 45

The following field activities were conducted at AOC No. 26:

- Seven surface soil locations AOC 26-1 thru AOC 26-7; and
- Two soil borings converted to monitor wells AOC 26-8/MW-65 and AOC 26-9/MW-66 (discussed in Section 4).

The following text summarizes the soil sampling that was conducted at location AOC No. 26 in chronological order. The analytical results are presented in Table 10, where they are compared to the non-residential screening levels. The soil-to-ground water screening level is based on a DAF of 1.0 based on documented ground water impacts in the area of chemicals that were historically stored in Tanks 44 and 45.

AOC 26-8/MW-65

Soil boring AOC 26-8 extended to a depth of 44.25 feet on April 16, 2009. A faint odor was initially detected at 28 feet bgl and became stronger with depth. Elevated PID readings were observed from 30 feet to 36 feet. The highest reading was 145 ppm in the core sample from 34 feet to 36 feet bgl. Surface soil samples were collected from AOC 26-8 from the following intervals:

- 0 to 1.0 feet (duplicate);
- 1.5-2 feet: and
- 32-36 feet.

Barium and cobalt are detected in the soil samples collected at AOC 26-8 at concentrations above the NMED DAF=1 screening level protective of groundwater, and the EPA protection of ground water risk-based screening level, respectively; however, detected concentrations of both analytes are below the respective NMED and EPA Regional screening level for residential soils via direct contact. All of the results are summarized in Table 10.

AOC 26-9/MW-66

On April 20, 2009, soil boring AOC 26-9 as drilled to a total depth of 43.25 feet. Elevated PID readings were observed from 34 feet to 38 feet. The highest reading was 3939 ppm in the core sample from 36 feet to 38 feet bgl. An odor was initially detected at 36 feet bgl and was also evident in the saturated soils.

Soil samples were collected from the following intervals:

- 0 to 0.5 feet;
- 1.5 to 2 feet; and
- 36-38 feet.

All of the analytical results for the surface soil samples (0-0.5' and 1.5-2.0') collected at AOC 26-9 are less than the screening levels with the exception of cobalt, which is detected at low concentrations above the EPA protection of groundwater risk-based screening level in all samples; however the detected cobalt concentrations were below the EPA Regional screening level for residential soils via direct contact. There are numerous organic constituents, including volatile and semi-volatile organics that have concentrations above the non-residential screening levels in soil sample AOC 26-9 (36-38'). The concentration detected in AOC 26-9 at 36-38' are believed to be associated with ground water impacts in the area and not a soil source in the immediate area. All of the soil analytical results are summarized in Table 10.

AOC 26-1 through AOC 26-7

On April 20, 2009 discrete soil samples were collected from seven surface soil locations at AOC No. 26 for laboratory analyses from 0 to 0.5 feet bgl and 1.5 to 2 feet bgl. Soil samples collected include one duplicate sample (AOC 26-3 (1.5-2.0')). The samples were collected using a hand auger.

All borings were advanced to a depth of 2 feet bgl. There were no indications of impacts based on the field screening results nor were there any visual or olfactory evidence of impacts in 0 to 2 foot interval in soil borings AOC 26-1 through AOC 26-7. No conditions that occurred during the field activities are considered to be capable of influencing the results of the field screening.

All of the analytical results for the soil samples collected at AOC 26-1 through 26-7 are less than the non-residential screening levels on Table 10 with the exception of Barium at 26-4 (0-0.5'), MTBE at 26-5 (1.5-2'), and cobalt; however the detected concentrations of barium, MTBE, and cobalt were below the respective NMED and/or EPA Regional soil screening levels for residential soil via direct contact..

An evaluation of the cumulative risk from the presence of multiple constituents is presented below. Each of the constituents with concentration exceeding the screening levels are listed,

with the exception of the constituents detected in sample AOC 26-9 (36-38'), which are associated with ground water impacts and not a soil source.

Constituent	Carcinogenic vs. Non-Carcinogenic	Non-Carcinogenic Target Organ
Barium	Non-Carcinogenic	Kidney (IRIS, 2009d)
Cobalt	Non-Carcinogenic	Lungs (National Toxicology Program, 2009)
MTBÉ	Carcinogenic	Not applicable

The two non-carcinogens affect different target organs and thus the hazard index is 1. In addition, the concentrations of barium and cobalt are all less than the screening levels for direct contact exposures. There is only one carcinogenic constituents present above screening levels, thus the cumulative risk is 1E-05.

The screening level included in Table 10 for cobalt assumes a DAF of 1 for the soil-to-ground water pathway; however, cobalt is not detected in concentrations above the screening level in any of the ground water samples collected during this site investigation effort. Cobalt does not appear to present a threat to ground water and the soil-to-ground water pathway should not be considered to be complete at AOC No. 26.

6.2 Soil Sample Field Screening Results

Headspace vapor screening was conducted by placing a soil sample in a plastic sealable bag allowing space for ambient air. The bag was sealed, labeled and then shaken gently to expose the soil to the air trapped in the container. The sealed bag was then allowed to set for a minimum of 5 minutes while the vapors equilibrated. Vapors present within the sample bag's headspace were then measured by inserting the probe of a MiniRae 2000 volatile organic compound monitor (i.e., photoionization detector) in a small opening in the bag. The maximum value and the ambient air temperature were recorded on the field boring log for each sample. The MiniRae 2000 was calibrated to 100 ppm isoButylene each day to the manufacturer's standard for instrument operation. Field screening results and any conditions that were considered to be capable of influencing the results of the field screening were recorded on the field logs. A summary of the vapor screening results for surface soil samples is located in Table 12 and screening results for the soil samples collected from the soil borings are included in Table 13.

The screening results are discussed above in Section 6.1 for each individual soil boring/sample location.

6.3 Soil Sampling Chemical Analytical Results

Soil samples were sent to Hall Environmental Analysis Laboratory in Albuquerque, New Mexico for analysis using the following methods for organic constituents:

- SW-846 Method 8260 volatile organic compounds;
- SW-846 Method 8270 semi-volatile organic compounds; and
- SW-846 Method 8015B gasoline, diesel, and motor oil range petroleum hydrocarbons.

In addition, soil samples were analyzed for the following metals using the indicated analytical methods.

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

The soil analytical results are presented in Tables 9, 10, and 11. There were no conditions observed during the sample collection efforts that are thought to have had any impact on the analytical results. The site screening levels, as described in Section 5, are included in each table

to facilitate a comparison between the reported concentrations and the applicable screening levels. Concentrations that exceed the applicable screening levels are bolded. Some of the samples have two analyses reported for VOCs. All data is reported to the lowest achievable limits expressed in units of ug/kg where possible. A second set of data has a higher reporting limit expressed in units of mg/kg due to higher concentrations being present in the samples.

The soils analyses were completed as provided in the site investigation work plan with only two exceptions. Soil sample AOC 22-12 (36-37.75') was inadvertently not analyzed for cyanide due to laboratory mis-communication; however analysis was completed for all other requested constituents for sample AOC 22-12 (36-37.75'). Due to limited sample recovery, sample AOC 22-13 (37-39') was not analyzed for metals and SVOCs; all other required analyses were completed. The data exceptions to the approved work plan are also discussed in the Data Validation Report in Appendix H. Also, additional analyses for ethanol were conducted for some soil samples at AOC No. 26, beyond those required in the NMED letter of February 18, 2009, which approved the investigation work plan.

Four metals (arsenic, barium, cobalt, and mercury) were detected at concentrations above the screening levels. Eleven organic constituents (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 1-methylnaphthalene, 2-methylnaphthalene, benzene, ethylbenzene, methylene chloride, naphthalene, toluene, xylenes, and MTBE) and gasoline, diesel, and motor oil range hydrocarbons were also identified in concentrations exceeding the screening levels in soils. The constituents that exceed screening levels were identified in one or more samples collected from SWMU No. 4, SWMU No. 5, and AOCs No. 22. Maps showing the distribution of detected constituents with concentrations exceeding the applicable cleanup levels that are the most widespread or representative are included as Figures 6 - 16. For soil and ground water quality assurance/quality control sampling and analysis information is discussed in Appendix H and laboratory data reports are included Appendix C.

6.4 Ground Water Sampling

Ground water samples were collected from both temporary wells and all permanent monitoring wells as described below. Ground water samples were also collected from each of the eight permanent wells (MW 59 through MW-66) installed throughout the area south of County Road 4990 (Figure 17). The temporary wells were installed in soil borings AOC 22-12 and AOC 22-13, as discussed above in Section 4.4. Water samples were collected from the temporary and

permanent wells using disposable bailers. The samples from temporary wells were collected within 24 hours of well installation.

The permanent wells installed for the Group No. 3 SWMUs include MW-59 (SWMU 4-1), MW-60 (AOC 25-2), MW-61 (AOC 22-15), MW-62 (AOC 23-1), MW-63 (AOC 22-16), MW-64 (AOC 24-7), MW-65 (AOC 26-8), and MW-66 (AOC 26-6). Two ground water sampling events were completed at the permanent monitoring wells. The first sampling event was conducted at the end of the initial well installation field effort on May 12 through May 14, 2009 and the second (confirmation) sampling event was completed on July 15, 16, and 29, 2009.

The fluid levels are presented in Table 15 and the depths to water are essentially the same as the collection depth because there is only a few feet or less of water in each well. The water samples were collected from each well for analysis as specified in the Investigation Work Plan.

6.5 General Ground Water Chemistry

The measurement of field purging parameters included measurements of pH, specific conductance, total dissolved solids, dissolved oxygen concentrations, oxidation-reduction potential, and temperature. The measurements were taken using an Ultrameter 6P manufactured by Myron L Company. The Ultrameter was calibrated daily (pH calibrated with 4.0, 7.0, and 10.0 solutions and conductivity calibrated with 1,413 uS/cm solution). A minimum of three well volumes were removed from each permanent monitoring well prior to sample collection. There were no conditions encountered during sample collection that affected field screening results. The measurements are included in Table 14.

6.6 Ground Water Chemical Analytical Results

The ground water samples were analyzed for organic constituents by the following methods:

- SW-846 Method 8260 volatile organic compounds;
- SW-846 Method 8270 semi-volatile organic compounds;
- SW-846 Method 8015B gasoline, diesel, and motor oil range organics; and
- SW-846 Method 8015 ethanol (for AOC 26 samples only).

Ground water samples were analyzed for the following metals using the indicated analytical methods.

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

In addition, ground water samples were analyzed for the following general chemistry parameters.

Analyte	Analytical Method
Bicarbonate/Carbonate/Alkalinity	SM-2320B
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	EPA method 6010B
Magnesium	EPA method 6010B
Sodium	EPA method 6010B
Potassium	EPA method 6010B
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	EPA method 6010B
Fluoride	EPA method 300.0
Phosphorus	EPA method 300.0
Total Dissolved Solids	SM-2540C
Specific Conductance	EPA 120.1

The ground water analyses were completed as approved in the site investigation work plan with the exceptions noted in the following discussion. During the initial sampling event, separate analyses of nitrate and nitrite were completed for water samples collected from MW-61, MW-62, AOC 22-12/TW-01, and AOC 22-13, and total results for nitrate plus nitrite was reported for MW-59, MW-60, MW-63, MW-64, MW-65, and MW-66. For the second or confirmation sampling

event, a separate analysis for nitrate and nitrite was reported for MW-63, MW-64, MW-66 and TW-01, and total results for nitrate plus nitrite was reported for MW-59, MW-61, MW-62, and MW-65. Samples must be analyzed within the 48-hour hold time to report nitrate and nitrite separately.

The work plan listed analyses for ferric/ferrous iron. The laboratory reported iron by method 6010B Total Recoverable Metals, which represents the sum of both ferric and ferrous iron. In addition, the analyses include iron by method 6010B dissolved metals, which represents ferrous iron. Ferric iron can be calculated by subtracting the dissolved analytical result from the total recoverable result.

There were no field conditions observed during sample collection that should have affected the analytical results. The analytical results and the applicable cleanup levels are presented in Table 16. The individual results that exceed the applicable cleanup levels are bolded. The results for the associated QA/QC samples are provided in Appendix H. Thirteen organic constituents (1,2,4-trimethylbenzene, 1,2-dichloroethane, 1,3,5-trimethylbenzene, 1-methylnaphthalene, 2-methylnaphthalene, benzene, bis(2-ethylhexyl)phthalate, ethylbenzene, MTBE, naphthalene, phenol, toluene, and xylenes) and gasoline and diesel range hydrocarbons were detected in concentrations exceeding the screening levels. Four metals (arsenic, iron, manganese, and lead) were detected at concentrations that exceed the screening levels. The distribution of manganese concentrations in ground water is presented in Figure 21.

6.7 Air and Subsurface Vapor Sampling/Field Screening Results

Subsurface vapor samples were screened during ground water sample collection activities for the presence of carbon dioxide, oxygen, and organic vapors. A total well vapor sample was screened in the field for percent carbon dioxide and oxygen. The vapor monitoring was completed by sealing the top of the well with a cap containing a sample port. Polyethylene tubing was inserted through the sample port and attached to a low-velocity pump and an Eagle Meter manufactured by RKI Instruments, Inc., which was calibrated to 15% CO₂, 12.0% O₂, and 100 ppm Isobutylene. The results are included in Table 14.

Section 7 Conclusions and Recommendations

An investigation of soil and ground water was conducted at the Group 3 SWMUs and AOCs to assess and evaluate the presence, nature, extent, fate, and transport of contaminants. To accomplish this objective, soil samples and/or ground water samples were collected at each of the SWMUs/AOCs and analyzed for potential site-related contaminants.

All soil borings were drilled to a minimum depth of 10 feet with at least one boring at each of the main potential source areas drilled to the top of saturation. Surface soil samples were also collected, with depths extending to two feet bgl. Ground water samples were collected at eight permanent and two temporary monitoring wells. Soil samples were collected continuously at all borings and logged by a qualified geologist in accordance with USCS nomenclature. A summary of the investigation results at each SWMU/AOC is provided below, along with conclusions and recommendations based on the investigation results.

SWMU No. 4 Transportation Terminal Sump

At SWMU No. 4, a black material was observed in soils at boring SWMU 4-1 from four to eight feet bgl. It appears that this boring may have penetrated the actual location of the former sump. Field screening results using a PID identified elevated readings from four feet to 10 feet bgl (with significantly lower PID readings below 10 feet) indicate that soil impacts related to the sump are limited in vertical extent. In addition, analytical results from the deeper sample (SWMU 4-1 (36-38')), which detected only one organic constituent (methylene chloride) at very low concentrations, indicate that the materials encountered at four to 10 feet do not pose a threat to ground water. The screening levels included in Table 9 are based on residential land use without inclusion of the cross-media soil-to-ground water screening level. Only the concentrations for motor oil and diesel range organics exceeds the NMED residential soil screening level.

Boring SWMU 4-1 was extended to the top of the Nacimiento and completed as MW-59. Ground water samples collected from the well indicate the presence of 1,2,4-trimethylbenzene, 1,2-dichloroethane, 1-methylnaphthalene, benzene, MTBE, naphthalene, gasoline range organics, diesel range organics, arsenic, and manganese in ground water at concentrations above the respective screening levels listed in Table 16. The presence of 1,2-dichloroethane and MTBE in ground water samples and not in the soil samples suggests that ground water is

١

impacted from up-gradient source. Subsurface vapor samples did not indicate significant concentrations of organic constituents with PID readings ranging from 37.5 to 41.1 ppm. Measurements of oxygen and carbon dioxide in subsurface vapor samples did not indicate significant biological activity with oxygen levels at approximately 19% by volume and carbon dioxide measured at approximately 0.5 % (Table 14). Additional assessment is recommended to delineate the lateral extent of the impacts in soils near AOC 4-1.

SWMU No. 5 Heat Exchanger Bundle Cleaning Area

Surface soil samples were collected from depths of 0-0.5 feet and 1.5-2.0 feet at 6 locations (SWMU 5-1 through SWMU 5-6) around the northern, eastern, and southern sides of the bundle cleaning pad to locate any evidence of impacts from historical site operations. The western side of the cleaning area abuts the eastern wall of AOC No. 25 Auxiliary Warehouse and 90-Day Storage Area. The majority of the organic analyses are non-detect, with none of the results exceeding the residential screening levels. The metals are concentrated in the upper 6 inches, with the deeper samples (collected in the 1.5 – 2.0 foot interval) having significantly lower concentrations below applicable screening levels. The significant reduction in concentrations of metals over one foot of vertical interval indicates that metals are not migrating into deeper soils and do not pose a threat to the underlying ground water, which occurs at a depth of approximately 42 feet. The soil-to-ground water exposure pathway is not considered to be complete at SWMU No. 5. The soil analytical results for metals indicate that arsenic and mercury are present in surface soils (0-0.5') at concentrations above the residential screening level in the immediate vicinity of the pad (Figure 7). The analytical results are summarized in Table 9.

The bundle cleaning pad drains to a concrete sump located inside the eastern end of AOC No. 25 Auxiliary Warehouse and 90-Day Storage Area. To assess the potential for ground water impacts, a monitoring well (MW-60) was installed down-gradient of the sump, on the north side of AOC No. 25 (Figure 17). The analyses of the ground water samples collected from MW-60 did not indicate any impacts to ground water from activities at either SWMU No. 5 or AOC 25. Subsurface vapor samples collected from MW-60 did not indicate the presence of organic impacts (Table 14). All concentrations of reported constituents are below their respective screening levels with the single exception of manganese, which is barely over the screening level (Table 16).

Additional assessment may be necessary at SWMU No. 5 to delineate the lateral impact to surface soils based on the reported concentrations of mercury. The analytical data indicate that the impacts are limited to the surface soils and do not pose of threat to underlying ground water.

AOC No. 22 - Product Loading Racks and Crude Receiving Loading Racks

Samples were collected from 11 surface soil sample locations and five soil borings at the product loading and crude receiving racks. The sample locations were placed in areas most likely to be impacted from historical and current operations and included sumps, overflow areas and locations down-gradient of the racks, where surface spills could flow beyond the concrete covered surfaces.

The analytical results for soil samples collected at AOC No. 22 are presented in Tables 10 and 11. Figures 8 through 13 show the distribution of individual constituents within AOC No. 22. The analyses indicate that the primary area with impacted soils is near the sump located north of the product loading rack. Sample locations AOC 22-4 and AOC 22-13 both have soil samples with concentrations of multiple organic constituents (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, benzene, ethylbenzene, toluene, xylenes, and diesel range organics) that exceed the applicable screening levels listed in Table 10.

Naphthalene was detected at a low concentration but above the screening level at a depth of 36 to 37.7 feet below ground surface at AOC 22-12. However, the concentration of naphthalene is lower and did not exceed the screening level in any of the shallower soil samples at this location. Naphthalene is present in ground water in this area and it is likely the detection of naphthalene in the sample collected at 36-37.7 feet is a capillary fringe impact from the underlying ground water rather than the result of an overlying soil source. There is a similar occurrence at AOC 22-15, where a few organic constituents (MTBE, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene) are detected at concentrations above the screening level in the deepest soil samples near the depth of saturation but are not present in concentrations above the screening level in shallower samples. Methylene chloride was detected at low concentrations that are slightly above the screening level at locations AOC 22-3, AOC 22-13, and AOC 22-15. All of these detections of methylene chloride are qualified due to potential laboratory impacts (see Appendix H).

The screening level included in Table 10 for cobalt assumes a DAF of 1 for the soil-to-ground water pathway; however, cobalt was not detected in concentrations above the screening level in any of the ground water samples collected during the investigation. Cobalt does not appear to

present a threat to ground water and the soil-to-ground water pathway should not be considered to be complete at AOC No. 22.

Ground water samples were collected from four locations within AOC No. 22 (AOC 22-12/TW-01, AOC 22-13, AOC 22-15/MW-61, and AOC 22-16/MW-63). The sample results identified multiple constituents at concentrations exceeding the screening levels, including 1,2,4-trimethylbenzene, 1,2-dichloroethane, 1,3,5-trimethylbenzene, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, benzene, ethylbenzene, toluene, xylenes, MTBE, bis(2-ethylhexyl)phthalate, phenol, gasoline range organics, diesel range organics, arsenic, iron, lead, and manganese. The arsenic and lead concentrations were only slightly above the screening level and one of the three detections in the first monitoring event was from a sample collected from a temporary monitoring well at soil boring AOC 22-13. The arsenic and lead detections may not be an indication of actual impacted ground water but rather possible sampling artifacts resulting from the use of a bailer to purge the wells and collect ground water samples. Many of the organics detected above screening levels were also detected in soils above screening levels and are most likely associated with historical site operations with the possible exception of bis(2-ethylhexyl) phthalate, which is a common laboratory contaminant (EPA, 1992). Laboratory quality control data is discussed in Appendix H.

Subsurface vapor samples collected from MW-61, MW-63, and TW-1 have reduced oxygen concentrations and elevated concentrations of carbon dioxide and elevated PID readings. The vapor results are consistent with the presence of organic constituents detected in both soil and ground water, and provide evidence of biological degradation of the organic constituents.

The analytical data indicate that impacts to ground water are elevated in the northern portion of AOC No. 22, which appear to be concentrated near the sump located north of the product loading rack. Figures 18 through 21 show the distribution of representative constituents that are detected in ground water.

Additional investigation is recommended for the impacted soils within AOC No. 22 for the area near borings AOC 22-4, and AOC 22-13. Some additional delineation of ground water impacts may also be useful and should be completed in consideration of any additional investigation to be completed at other nearby SWMUs/AOCs.

AOC No. 23 - Southeast Holding Ponds

To assess the potential for releases from the holding/evaporation ponds, a soil boring/monitoring well (AOC 23-1/MW-62) was installed down-gradient of the ponds. The analyses for the soil samples did not detect the presence of any constituents at concentrations above the residential screening levels and most of the organic results were non-detect, with the exception of a few constituents that were qualified bias due to laboratory contaminants (e.g., methylene chloride and acetone) (EPA, 1992). The soil analyses are summarized in Table 9 and the laboratory quality control information is discussed in Appendix H.

The ground water samples collected from MW-62 identified only manganese at concentrations above the screening levels (Table 16). The presence of only manganese above screening levels and no detections of petroleum constituents in water samples collected from MW-62 indicates that the manganese could be representative of background conditions rather than impacts from site operations; however, no background value has been established for manganese at this time. Subsurface vapor samples screened for oxygen and carbon dioxide did not indicate the presence of biological degradation of organic constituents (Table 14). Corrective Action Complete without Controls is recommended for AOC No. 23.

AOC No. 24 - Tank Areas 41 and 43

Soil samples were collected from four surface sample locations and three soil borings, one of which was completed as a permanent monitoring well (AOC 24-7/MW-64). All analytes were below the respective soil screening levels (Figure 15).

The analyses of the ground water samples collected from MW-64 identified low concentrations of arsenic and manganese. The analytical results for the first samples collected in May 2009 did not show concentrations of arsenic or manganese above the screening level; however, the results for the July 2009 samples identified low concentrations that exceeded the screening levels. The low concentrations may have been an artifact of sample collection using a bailer rather than a release at the site. Other inorganic constituents detected above screening levels include chloride, nitrate, and sulfate. Chloride and sulfate are naturally occurring constituents with wide-spread occurrence in ground water in the San Juan Basin (Stone, W. J. and others, 1983). The absence of any refinery-related constituents (i.e., petroleum hydrocarbons) in the ground water samples collect from MW-64 indicates that the inorganic constituents might not be related to site operations. The screening results of subsurface vapor samples for the presence of oxygen and carbon dioxide, as

well as, organic vapors with a PID did not indicate the presence of organic constituents in the subsurface (Table 14).

An assessment to evaluate the risk posed by the limited occurrence of TPH at location AOC 24-6 is recommended instead of any additional assessment and/or remediation.

AOC No. 25 - Auxiliary Warehouse and 90-Day Storage Area

Samples were collected from one surface location and one soil boring, which was completed as a permanent monitoring well (AOC 25-2/MW-60) (Figure 7). There were no detections of any constituents at concentrations above the residential screening levels in the soil samples. There were also no constituents detected in the ground water samples above the screening levels, with the single exception of manganese, which was only slightly over the screening level. There was not a sufficient volume of ground water present in MW-60 to collect a ground water sample during the second sampling event conducted in July 2009. Corrective Action Complete without Controls is recommended for AOC No. 25.

AOC No. 26 - Tank Area 44 and 45

Soil samples were collected from seven surface sample locations and two soil borings, both of which were completed as permanent monitoring wells (Figure 16). Cobalt was detected at concentrations above the EPA risk-based screening level protective of soil-to-groundwater in all soil samples (Table 10); however all detected concentrations were below the EPA Regional screening level (23 mg/kg) for residential soils via direct contact.

Barium was detected in two soil samples (AOC 26-4 (0-0.5') and AOC 26-8 (0-0.1') above the NMED screening level protective of ground water (DAF=1); however both detected concentrations were below NMED residential soil screening level (15,600 mg/kg).

MTBE was detected in one soil sample (AOC 26-5 (1.5-2.0') above EPA risk-based soil screening level protective of soil-to-ground water; however the detected concentration is below EPA Regional screening level for residential soil (39 mg/kg)

Since cobalt and/or barium were not detected in ground water at concentrations above the screening level, the soil-to-ground water exposure pathway should not be complete for these two constituents. Detected concentration of barium, cobalt, and MTBE below residential screening levels indicates that the constituents do not cause an unacceptable risk of exposure.

Additional constituents were detected at concentrations above the screening level in a 36-38' soil sample collected from boring AOC 26-9. This sample was collected just above the depth of saturation, and the detected constituents are most likely the result of capillary fringe impacts from impacted ground water that has migrated to this location since there is no analytical or field screening evidence (i.e., PID readings of individual soil samples) of overlying soil sources in this area.

Two permanent monitoring wells (MW-65 and MW-66) were completed in the immediate area of AOC No. 26. Monitoring well MW-65 is located down-gradient of Tank 44 and MW-66 is located down-gradient of Tank 45 and the underground pipeline that connects Tank 45 to the product loading rack. The analyses of the ground water samples collected from these two wells indicate impacts from the storage and handling of petroleum products and additives (e.g., MTBE and 1,2-dichloroethane).

Subsurface vapor samples collected at MW-65 and MW-66 have reduced oxygen levels and elevated carbon dioxide levels. PID readings are also elevated in vapor samples collected from both wells (Table 14). This information is consistent with the presence of and biological degradation of organic constituents, which were detected in ground water and capillary fringe soil samples.

Although MTBE was not detected in surface soil samples collected at AOC 26-6 and AOC 26-7, nor was MTBE detected in shallow and deeper soil samples collected from the down-gradient soil boring AOC 26-9, additional soil sampling near AOC 26-5 may be considered to confirm the limited presence of MTBE that was detected in the 1.5-2.0' sample interval. Additional monitoring wells may be considered to better define the up-gradient extent of ground water impacts.

Ground Water General Chemistry

All of the nitrite results are non-detect and the concentrations of nitrate in samples where both species were reported are very low (Table 16). The data does not indicate potential reducing conditions but is not definitive. Most of the nitrate + nitrite concentrations are also low, with the highest concentrations identified in up-gradient wells (MW-63 and MW-64). Similarly, the highest concentrations of sulfate and total dissolved solids were identified at up-gradient wells MW-62, MW-63, and MW-64. The only chloride concentration above the screening level was identified at MW-64, which is an up-gradient well that did not show any indication of hydrocarbon impacts.

The analyses for iron were reported as dissolved metals and as total recoverable metals. The dissolved metals analyses represent ferrous iron concentrations and analyses of total recoverable metals include concentrations of both ferrous and ferric iron. The ferric iron concentrations can be derived by subtracting the dissolved iron concentrations from the total iron concentrations. In unaffected areas of the site where the aerobic ground water conditions should exist, iron is expected to be present as ferric (Fe⁺³) iron. In impacted areas, as petroleum hydrocarbons in ground water are degraded, reducing conditions may develop with ferric iron being reduced to ferrous (Fe⁺²) iron. The percentage of iron present in the ferrous state was elevated in ground water samples collected at AOC 22-13, MW-61, MW-65, and MW-66. Ground water samples collected from these same locations also demonstrates significant hydrocarbon impacts. Ground water samples collected from temporary wells TW-01 (AOC 22-12) and AOC 22-13, and MW-61, MW-65, and MW-66 contained concentrations of dissolved iron above the screening level.

Manganese was detected in ground water samples at concentrations above the screening level of 0.2 mg/l at all locations. The results at MW-60 were barely over the screening level and one of the two samples collected at MW-64 did not exceed the screening level. A review of the facility-wide ground water sampling information reveals that manganese is widespread across the refinery property (Figure 21). There is no direct evidence (e.g., a soil source area) to associate manganese's presence in shallow ground water beneath Group 3 SWMUs or AOCs with site operations or waste management activities. However, there does appear to be a correlation between the dissolved oxygen concentrations in ground water and the dissolved manganese concentrations. This relationship is discussed in detail in the Site Investigation Report for SWMU Group No. 2 (RPS JDC, 2009). Elevated dissolved manganese concentrations may be the result of natural degradation of petroleum hydrocarbons causing reducing conditions, which in turn could mobilize manganese that was previously adsorbed to the aquifer matrix (Western Refining Southwest, Inc., 2009).

Summary and Recommendations

<u>Soils</u>

Based on the results of the investigation of the Group 3 SWMUs/AOCs, additional assessment of impacted soils is to be considered for SWMU 4-1, SWMU No. 5, AOC 22-4, AOC 22-13, and AOC 26-5.

Ground Water

Ground water impacts documented during the assessment of SWMU No. 4 and AOCs No. 22 and 26 indicate that the primary constituents exceeding the screening levels across these areas are very similar and appear to be associated with operations at the product loading rack.

Additional ground water investigation at AOCs No. 22 and 26 is recommended to better define the distribution of constituents within these areas and to distinguish potential sources.

A separate investigation work plan will be prepared to detail proposed additional investigation activities for soil and ground water.

Section 8 References

- EPA, 1992, Guidance for Data Useability in Risk Assessment (Part A) Final; United States Environmental Protection Agency Office of Emergency and Remedial Response, PB92-963356, p. 279.
- Giant Industries, 2003, Solid Waste Management Unit Assessment Report, Giant Refining Company Bloomfield Refinery.
- Groundwater Technology Inc., 1994, RCRA Facility Investigation/Corrective Measures Study Report Bloomfield Refining Company #50 County Road 4990 Bloomfield, New Mexico, p.51.
- IRIS, 2009a, Integrated Risk Information System; 2-methylnaphthalene (CASRN 91-57-6): retrieved online 9/21/2009 http://www.epa.gov/ncea/1006.htm#reforal.
- IRIS, 2009b, Integrated Risk Information System; Toluene (CASRN 108-88-3): retrieved online 9/21/2009 http://www.epa.gov/ncea/subst/0118.htm#studoral.
- IRIS, 2009c, Integrated Risk Information System; Xylenes (CASRN 1330-20-7): retrieved online 9/21/2009 http://www.epa.gov/ncea/iris/subst/0270.htm#studoral.
- IRIS, 2009d, Integrated Risk Information System; Barium (CASRN 7440-39-3): retrieved online 9/21/2009 http://www.epa.gov/ncea/iris/subst/0010.htm#studoral.
- National Toxicology Program, 2009, TR-471 Cobalt Sulfate Heptahydrate, Target Organs and Levels of Evidence, retrieved online 9/21/2009 http://ntp.niehs.nih.gov/.
- NIOSH (National Institute for Occupational Safety and Health). 2002. 1,3,5-Trimethylbenzene. International Chemical Safety Cards, ICSC 1155 retrieved online 9/21/2009. http://www.cdc.gov/niosh/ipcsneng/neng1155.html.
- NIOSH (National Institute for Occupational Safety and Health). 2004. 1,2,4-Trimethylbenzene. NIOSH Pocket Guide 39 to Chemical Hazards. NIOSH, Cincinnati, OH. retrieved online 9/21/2009. http://www.cdc.gov/niosh/npg/npgd0638.html.
- RPS JDC, 2009, Investigation Report Group 2; Bloomfield Refinery, Western Refining Southwest, Inc., Bloomfield New Mexico, p. 41.
- Stone, W.J., Lyford, F.P., Frenzel, P.F., Mizell, N.H., and Padgett, E.T., 1983, Hydrogeology and water resources of San Juan Basin, New Mexico; New Mexico Bureau of Mines and Minerals Hydrologic Report 6, p. 70.
- Western Refining Southwest, Inc., 2009, Facility-Wide Groundwater Monitoring Report, Bloomfield Refinery Bloomfield New Mexico, p.37.

Tables

Table 1 Historical Volatile Organic Ground Water Analytical Results Summary Group 3 Investigation Bloomfield Refinery - Bloomfield, New Mexico

			****	Parameters		
		Benzene	Toluene	Ethylbenzene	Xylene	MTBE
		(mg/L)	(mġ/L)	(mg/L)	(mg/L)	(mg/L)
	Screening Level (mg/L):	0.005 ⁽²⁾	0.75 ⁽¹⁾	0.7 (2)	0.62 (1)	0.012 ⁽³⁾
Well ID:	Date Sampled:					
MW #3	4/5/2006	<0.001	<0.001	<0.001	<0.003	<0.0025
	8/5/2005	<0.001	<0.001	<0.001	<0.001	<0.001
	4/11/2005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0025
	8/21/2003	<0.001	<0.001	<0.001	<0.001	<0.001
MW-5	Dry					
MW-6	Dry					
MW #13	4/1/2007	<0.001	<0.001	<0.001	<0.002	0.0048
	8/15/2006	<0.001	<0.001	<0.001	<0.003	0.007
	4/5/2006	<0.001	<0.001	<0.001	<0.003	0.01
	8/5/2005	<0.001	<0.001	<0.001	<0.001	0.015
	4/11/2005	<0.0005	<0.0005	<0.0005	<0.0005	0.014
	8/23/2004	<0.0005	<0.0005	<0.0005	<0.0005	0.027
	3/3/2004	<0.0005	<0.0005	<0.0005	<0.0005	0.02
	8/21/2003	<0.001	<0.001	<0.001	<0.001	0.061
	3/3/2003	<0.0005	<0.0005	<0.0005	0.0012	0.049
MW #30	4/1/2007	5.7	3.3	5.4	21	<0.620
	4/5/2006	3.5	1.4	2.6	6.8	<0.620
	4/11/2005	5.7	3.7	4.4	12	<0.10
	8/23/2004	1.7	0.37	1.9	2.5	<0.10
MW #31	4/1/2007	4.3	<0.100	1.4	4.7	<0.250
	4/5/2006	6.1	1.5	0.94	4.5	<0.120
	4/11/2005	2.6	0.062	0.45	1.2	<0.250
	8/23/2004	3.7	0.4	0.32	1.2	<0.250
MW #44	4/1/2007	<0.001	0.0058	0.0026	0.034	<0.0025
	4/5/2006	<0.001	<0.001	<0.001	<0.003	0.0028
	4/11/2005	<0.0005	<0.0005	< 0.0005	<0.0005	0.0041

Notes:

mg/L = milligram per liter

MW = monitoring well

MTBE = methyl tertiary butyl ether

MW-5 and MW-6 have been dry since at least 2003.

- 1 WQCC 20 NMAC 6.2.3101 = New Mexico Standard for Ground Water of 10,000 ug/L TDS or less.
- 2 EPA Maximum Contaminant Level
- 3 EPA Regional Screening Levels (April 2009)

Table 2 Historical Total Metals Ground Water Analytical Results Summary Group 3 Investigation Bloomfield Refinery - Bloomfield, New Mexico

					Paramet	ers			
		Arsenic (mg/L)	Barium (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Lead (mg/L)	Selenium (mg/L)	Silver (mg/L)	Mercury (mg/L)
Scre	ening Level (mg/l)	0.01 ⁽¹⁾	2.0 (1)	0.005 (1)	NE (2)	0.015 ⁽¹⁾	0.05 (1)	NE (2)	0.002 (1)
Well ID:	Date Sampled:				•				
MW #3	8/5/2005	NA	NA	NA	0.016	<0.005	NA	NA	NA
	8/21/2003	NA	NA	NA	0.029	0.022	NA	NA	<0.0002
MW-5	Dry			-					
MW-6	Dry		1	•	-				-
MW #13	8/15/2006	<0.02	0.025	<0.002	<0.006	0.0078	<0.05	<0.005	<0.0002
	8/5/2005	NA	NA	NA	0.012	<0.005	NA	NA	NA
	8/23/2004	<0.02	0.028	<0.002	0.085	<0.005	<0.05	<0.005	<0.0002
	8/21/2003	NA	NA	NA	0.45	<0.005	NA	NA	<0.0002
MW #30	8/23/2004	<0.02	0.24	<0.002	0.0073	0.011	<0.05	<0.005	0.00023
MW #31	8/23/2004	<0.02	0.35	<0.002	0.0088	<0.005	<0.05	<0.005	0.00022
MW #44	8/23/2004	<0.02	0.084	<0.002	0.1	0.036	<0.05	<0.005	0.00033

Notes:

mg/L = milligram per liter MW = monitoring well

NA= not analyzed

MW-5 and MW-6 have been dry since at least 2003.

1- 40 CFR 141.62 MCL = National Primar Drinking Water Regulations: Maxiumum Contaminant Levels

2 - NE = No applicable screening level established for total analysis.

Historical Dissolved Metals Ground Water Analytical Results Summary Group 3 Investigation Bloomfield Refinery- Bloomfield, New Mexico Table 3

									ď	Parameters							
		Arsenic	Barium	Cadmium	Calcium	Chromium	Copper	Iron	Lead	Magnesium	Manganese	Potassium	Selenium	Silver	Sodium	Uranium	Zinc
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	Screening Level (mg/L):	0.01 (1)	1 (2)	0.005 (1)	NE	0.05 (2)	1 (2)	1 (2)	0.015 (1)		0.2 (2)	NE	0.05 (2)	0.05 (2)	NE	0.11 (2)	10 (2)
Well ID:	Date Sampled:																
MW #3	8/5/2005	<0.02	0.018	<0.002	480	900'0>	900.0>	0.047	<0.005	130	0.43	7.6	40.05	<0.005	1300	<0.1	0.018
	8/21/2003	<0.02	0.3	<0.002	490	900:0>	>0.006	0.27	<0.005	140	0.58	10	0.024	<0.005	1100	<0.1	0.094
MW-5	Dry		1	1	ŀ	-	-	-	-						1	1	1
MW-6	Dry	-	-				-	-	-	-			:	-	1		1
MW #13	8/15/2006	<0.02	0.025	<0.002	250	900:0>	0.0063	<0.02	8/00.0	82	1.1	3.6	<0.05	<0.005	620	<0.10	0.061
	8/5/2005	<0.02	0.028	<0.002	240	900'0>	900'0>	<0.02	<0.005	85	1.1	3.8	<0.05	<0.005	570	<0.1	0.0088
	8/23/2004	<0.02	0.022	<0.002	210	900'0>	900.0>	0.046	<0.005	80	0.58	3.6	<0.05	<0.005	610	<0.1	0.021
-	8/21/2003	<0.02	0.33	<0.002	270	900'0>	9600'0	0.04	<0.005	110	1.1	5.3	0.16	<0.005	089	<0.1	0.09
MW #30	8/23/2004	<0.02	0.13	<0.002	320	900'0>	0.0061	4.7	0.0051	88	2.1	<10.0	<0.05	<0.005	750	<0.1	0.046
MW #31	8/23/2004	<0.02	0.35	<0.002	220	900'0>	900'0>	0.46	<0.005	29	0.58	4.8	<0.05	<0.005	640	<0.1	0.019
MW #44	8/23/2004	<0.02	0.046	<0.002	520	0.034	0.027	9/	0.015	87	1.7	44	<0.05	<0.005	920	<0.10	0.084

Notes:

mg/L = milligram per liter MW = monitoring well NE = not established

MW-5 and MW-6 have been dry since at least 2003.
1- 40 CFR 141.62 MCL = National Primar Drinking Water Regulations: Maxiumum Contaminant Levels 2 - WQCC 20 NMAC 6.2.3101 = New Mexico Standard for Ground Water of 10,000 ug/L or less

Historical General Chemistry Ground Water Analytical Results Summary Bloomfield Refinery - Bloomfield, New Mexico **Group 3 Investigation** Table 4

							Parameters					
		Fluoride	Chloride	Bromide	Nitrite	Nitrogen	Phosphorus	Sulfate	SQL	E.C.	202	Alk
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(muhos/cm)	(mg/L)	(mg/L)
	Screening Level (mg/L):	1.6 (1)	250 (1)	NE	1 (2)	10 (1)	NE	(1) 009	1000 (1)	NE	NE	R
Well ID:	Date Sampled:											
MW #3	8/5/2005	0.33	1200	4.5	<0.50	42	<0.50	2300	6200	8300	089	089
!	8/21/2003	0.17	1400	22	NA	41	<0.50	1900	00/5	8500	NA	N A
MW-5	Dry	1	1	1	-	-			*	1	!	
MW-6	Dry	-	1	1	1				-	1	!	
MW #13	8/15/2006	0.12	310	3.7	8.3	NA	<0.50	1100	3000	4300	910	096
	8/5/2005	0.15	320	4.6	0.23	6.1	<0.50	1000	3000	4600	1000	1000
	8/23/2004	0.2	330	4.3	1.6	9.9	<0.50	950	2800	3400	098	950
	8/21/2003	0.19	510	13	<0.10	12	<0.50	840	3100	2000	1000	917
MW #30	8/23/2004	0.18	360	5.6	<0.10	<0.10	<0.10	720	3100	3900	1200	1400
MW #31	8/23/2004	0.19	370	7.2	<0.10	0.14	<0.50	750	2800	3700	086	1100
MW #44	8/23/2004	0.3	210	62.0	<0.10	<0.10	<0.50	2800	4800	5200	400	450
												ĵ

Notes: Alk = alkalinity, total CO_2 = Carbon Dioxide

E.C. = electrical conductivity
TDS = total dissolved solids
umhos/cm = micro-mhos per centimeter
mg/L = milligram per liter
NE = not established

NA = not analyzed

MW = monitoring well MW-5 and MW-6 have been dry since at least 2003.

1 - WQCC 20 NMAC 6.2.3101 = New Mexico Standard for Ground Water of 10,000 ug/L or less
2 - 40 CFR 141.62 MCL = National Primar Drinking Water Regulations: Maxiumum Contaminant Levels

Table 5
Historical Soil Analytical Results Summary
Group 3 Investigation
Bloomfield Refinery - Bloomfield, New Mexico

										Pai	Parameters								
			Acotono	Benzone Tolliene		Ethylhonzone	m.p-	O-Yvlono	Methylene	Semi-	Total		To day	1		700	1030114	111111111111111111111111111111111111111	7:2
			(mg/kg)	(mg/kg) (mg/kg)	_	(mg/kg)	Xylene	(mg/kg)		Volatile	Petroleum	(mg/kg)	(mg/kg)	(mg/kg) (mg/kg) (mg/kg)		(mg/kg)	(mg/kg) (mg/kg)		(mg/kg)
							(BV/BI)		(By/Bil)	Organics	Organics nydrocarbons						;		
SWMU 4	SWMU 4 & AOC 22 (Crude Loading Rack)	oading Rack)	263000 (1)	474 (2)	24400 (1)	6630 (2)	0420 (1)	(1) 0070	10000 (2)	VIV	VIV	444 (1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
Soi	Soil Screening Levels (mg/kg):	(mg/kg):	70000	4/1	21100	0000		0010	00001	(2	7 44		447,000 (1,12400 (1,0))(1,000 (1,000 (1,0))(1,000 (1,000 (1,0))(1,000 (1,0))(1,000 (1,0))(1,000 (1,0))(1,000 (1,0) (1,000 (1,0))(1,0)(1,0)(1,0)(1,0)(1,0)(1,0)(1,0	12400	2008	. 06L9	20.4	00676
Sample No.	Sample Location	Date Sampled																	
B-1 (2.5-4.5')	at SWMU No. 4	2/22/1994	QN	ND	ND	ND	QN	ΩN	QN	QN	ND	99.0	4.5	9.7	12	Q.	8.6	25	46
B-2 (10-12')	at SWMU No. 4	2/22/1994	QN	ND	ND	ND	ND	QN	ND	ND	ND	0.53	3	8.5	8.9	Q	7	15	34
B-3 (e-8')	at AOC No. 22	2/22/1994	QN	ND	ND	ND	QN	QN	0.11	QN	QN	0.54	3.2	∞	8.8	Q	7.4	15	35
AO	AOC 22 (Product Loading Rack) Soil Screening Levels (mg/kg):	ng Rack) (mg/kg):	3.84 (3)	0.00185 (3) 1.38 (3)	1.38 (3)	0.0146 (3)	0.176(1)	0.176 (1)	0.0107 (3)	Ą	NA	57.7 (3)	1.37 (3)	447,000 ⁽¹⁾ 12400 ⁽¹⁾ 800 ⁽¹⁾ 47.7 ⁽³⁾ 0.172 ⁽³⁾	12400 (1)	(1)	47.7 (3)	ı.	682 (3)
B-4 (10-12')	at AOC No. 22	2/22/1994	QN	0.012	0.023	0.004J	0.031	0.022	QN	QN	QN	0.53	3.1	6.6	8.2	ND	7.2	19	32

Notes: mg/kg = milligram per kilogram ND - not detected, quantitation limit not provided in 1994 RFI Investigation Report NA = not available

Soil Screening Levels - Revision 5.0 (August 2009) J = estimated concentration

NMED - Technical Background Document for Development of ((1) NMED - Construction Worker (0-10')

(2) NMED - Industrial (0-2') and Construction Worker (2-10')

(3) NMED DAF=1 SoilGW (All depths)

TABLE 6
Residential Soil Screening Levels
Bloomfield Refinery - Bloomfield, New Mexico

					Cross Me	edia Soil-to-G	round Water]
	NMI	ED	EPA	\	NMED		PA .	1
Analyte	Residential Soil (mg/kg)	Endpoint	Residential Soil (mg/kg)		DAF1 (mg/kg)	GW_Risk- based SSL (mgkg)	GW_MCL- based SSL (mg/kg)	Constituen Detected
Applicable depth interval	0-1	0,	0-2'	L ,		All depths		
Acenaphthene	3.44E+03	ns	3.40E+03	n	2.05E+01	2.70E+01	-	N
Acenaphthylene	- 0.442.00	-	3.40L100		2.002.01	2.702.01	-	N
Acetone	6.75E+04	n	6.10E+04	n	3.84E+00	4.40E+00	-	Y
Aniline	0.702.04	-	8.50E+01	c**	2.042.00	3.40E-03		N
Anthracene	1.72E+04	ns	1.70E+04	n	3.37E+02	4.50E+02		N N
Antimony	3.13E+01	n	3.10E+01	n	6.61E-01	6.60E-01	2.70E-01	N
Arsenic	3.59E+00	c	3.90E-01	c*	1.31E-02	1.30E-03	2.90E-01	Y
Azobenzene	- 0.002.00	-	4.90E+00	С	- 1.0 / 2 02	5.10E-04	- 2.002 01	N
Barium	1.56E+04	n	1.50E+04	n	3.01E+02	3.00E+02	8.20E+01	Y
Benz(a)anthracene	4.81E+00		1.50E-01	C	3.20E-01	1.40E-02	-	N
Benzene	1.55E+01	c	1.10E+00	c*	1.85E-03	2.30E-04	2.80E-03	.Y
Benzo(a)pyrene	4.81E-01	c	1.50E-02	С	1.09E-01	4.60E-03	3.10E-01	Y
Benzo(b)fluoranthene	4.81E+00	c	1.50E-02	c	1.11E+00	4.70E-02	-	N
Benzo(g,h,i)perylene		-	- 1.552-51		-			N
Benzo(k)fluoranthene	4.81E+01	С	1.50E+00	С	1.09E+01	4.60E-01	-	N N
Benzoic acid	-	-	2.40E+05	nm	-	3.30E+01	_	N
Benzyl alcohol	_		3.10E+04	n		4.20E+00	_	Y
Beryllium	1.56E+02	n	1.60E+02	n	5.77E+01	5.80E+01	3.20E+00	Ÿ
Bis(2-chloroethoxy)methane	1.002.02	- "	1.80E+02	'n	<u> </u>	2.30E-02	3.202.100	Ň
Bis(2-chloroethyl)ether	2.56E+00	С	1.90E-01	C	2.33E-05	2.70E-06		N
Bis(2-chloroisopropyl)ether	9.15E+01	C	1.502-01	-	2.56E-03	2.702-00	_	N
Bis(2-ethylhexyl)phthalate	2.80E+02	c	3.50E+01	c*	1.19E+01	1.60E+00	2.00E+00	N
Bromobenzene		-	9.40E+01	n	-	1.50E-02	2.002.00	N
Bromodichloromethane	5.25E+00	С	2.80E-01	С	2.76E-04	3.30E-05	-	N
Bromoform		<u> </u>	6.10E+01	c*	-	2.30E-03	_	N N
Bromomethane	2.23E+01	n	7.90E+00	n	1.94E-03	2.20E-03	-	N
4-Bromophenyl phenyl ether	-	-	-	-	-	-	_	N
2-Butanone (MEK)	3.96E+04	n	2.80E+04	ns	1.27E+00	1.50E+00	_	Y
Butyl benzyl phthalate			2.60E+02	c*	-	6.70E-01	-	N
Cadmium	7.79E+01	n	7.00E+01	n	1.37E+00	1.40E+00	3.80E-01	Y
Carbazole		-	-	-		- 1.102.00	-	N
Carbon disulfide	1.94E+03	ns	6.70E+02	ns	2.52E-01	2.70E-01	_	N
Carbon tetrachloride	4.38E+00	С	2.50E-01	С	7.39E-04	7.90E-05	2.00E-03	N
Chlorobenzene	5.08E+02	ns	3.10E+02	n	5.38E-02	6.80E-02	7.50E-02	N
Chloroethane	-	-	-	-	-	-		N
Chloroform	5.72E+00	С	3.00E-01	С	4.68E-04	5.50E-05	-	N
Chloromethane	3.56E+01	С	1.20E+02	n	4.18E-03	4.90E-02	-	N
4-Chloro-3-methylphenol	-	-	-	-	-		-	N
4-Chloroaniline	-		2.40E+00	С	-	1.20E-04	-	N
4-Chlorophenyl phenyl ether			-		_	-	<u>-</u>	N
4-Chlorotoluene		-	5.50E+03	ns		2.80E+00	-	N
2-Chloronaphthalene	6.26E+03	ns	6.30E+03	ns	1.35E+01	1.80E+01	-	N
2-Chlorophenol	3.91E+02	n	3.90E+02	n	1.53E-01	2.00E-01	-	N
2-Chlorotoluene	1.56E+03	ns	1.60E+03	ns	6.24E-01	8.00E-01		N
Chromium	1.13E+05	nl	1.20E+05	nm	9.86E+07	9.90E+07	-	Υ
Chrysene	4.81E+02	С	1.50E+01	С	3.26E+01	1.40E+00	-	N
cis-1,2-DCE	7.82E+02	n	7.80E+02	n ·	9.43E-02	1.10E-01	2.10E-02	N
cis-1,3-Dichloropropene	2.35E+01	С	1.70E+00	C*	1.35E-03	1.60E-04	-	N
Cobalt	-	-	2.30E+01	n	-	4.90E-01	-	Υ
Cyanide	1.56E+03	n	1.60E+03	n	7.44E+00	7.40E+00	2.00E+00	N
1,1-Dichloroethane	6.29E+01	С	3.40E+00	С	6.09E-03	7.00E-04	-	N
1,1-Dichloroethene	6.18E+02	n	2.50E+02	n	1.19E-01	1.20E-01	2.60E-03	N

TABLE 6
Residential Soil Screening Levels
Bloomfield Refinery - Bloomfield, New Mexico

					Cross Me	dia Soil-to-G	round Water	1
	NME	-D	EPA		NMED		PA	-
Г	INIVIE			Ī	ININIED			
Analyte	Residential Soil	Endpoint		ResSoil		GW_Risk- based SSL	GW_MCL- based SSL	Constituent
	(mg/kg)		Soil (mg/kg)	key	(mg/kg)	(mgkg)	(mg/kg)	Detected
Applicable depth interval	0-1	0'	0-2'			All depths	· · · · · · · · · · · · · · · · · · ·	
1,1-Dichloropropene	-	-	-	-	-	_	-	N
1,2-Dibromo-3-chloropropane	1.94E-01	С	5.60E-03	С	2.97E-06	1.50E-07	9.20E-05	N
1,2-Dibromoethane (EDB)	5.74E-01	С	3.40E-02	С	1.58E-05	1.90E-06	1.50E-05	N
1,2-Dichlorobenzene	3.01E+03	ns	2.00E+03	ns	3.13E-01	4.00E-01	6.60E-01	N
3,3'-Dichlorobenzidine	8.71E+00	С	1.10E+00	С	1.70E-02	2.30E-03	-	N
1,2-Dichloroethane (EDC)	7.74E+00	С	4.50E-01	С	3.65E-04	4.40E-05	1.50E-03	N
1,2-Dichloropropane	1.47E+01	С	9.30E-01	c*	1.11E-03	1.30E-04	1.70E-03	N
1,3-Dichlorobenzene	-	-	_	-	-	-	-	N
1,3-Dichloropropane	-	-	1.60E+03	n	-	2.70E-01	-	N
1,4-Dichlorobenzene	3.21E+01	С	2.60E+00	С	3.57E-03	4.60E-04	8.10E-02	N
2,2-Dichloropropane	-	-		-	-	-	-	N
2,4-Dichlorophenol	1.83E+02	n	1.80E+02	n	1.37E-01	1.80E-01	-	N
2,4-Dimethylphenol	1.22E+03	n	1.20E+03	n	9.12E-01	1.20E+00	-	N
4,6-Dinitro-2-methylphenol	-	-	-	-	-	-	-	N
2,4-Dinitrophenol	1.22E+02	n	1.20E+02	n	5.25E-02	6.80E-02	-	N
2,4-Dinitrotoluene	1.26E+01	С	1.60E+00	C*	1.56E-03	2.00E-04	-	N
2,6-Dinitrotoluene	6.12E+01	n	6.10E+01	n	2.67E-02	3.40E-02	-	N
Dibenz(a,h)anthracene	4.81E-01	С	1.50E-02	С	3.62E-01	1.50E-02	-	N
Dibenzofuran	-	-	-	-	-	-	-	N
Dibromochloromethane	1.13E+01	С	7.00E-01	С	3.38E-04	4.00E-05	-	N
Dibromomethane	-	-	7.80E+02	n	-	9.10E-02	-	N
Dichlorodifluoromethane	4.81E+02	n	1.90E+02	n	7.23E-01	6.10E-01	-	N
Diethyl phthalate	4.89E+04	n	4.90E+04	n	1.06E+01	1.30E+01	-	N
Dimethyl phthalate	6.11E+05	nl	-	-	8.36E+01	-	-	N
Di-n-butyl phthalate	6.11E+03	n	-	-	8.63E+00	_	-	N
Di-n-octyl phthalate	-	-	-	-	-	-	-	N
Ethylbenzene	6.96E+01	С	5.70E+00	С	1.46E-02	1.90E-03	8.90E-01	Y
Fluoranthene	2.29E+03	n	2.30E+03	n	1.55E+02	2.10E+02	-	N
Fluorene	2.29E+03	ns	2.30E+03	n	2.50E+01	3.30E+01	-	N
Hexachlorobenzene	2.45E+00	С	3.00E-01	С	2.21E-03	2.90E-04	7.00E-03	N
Hexachlorobutadiene	-	-	6.20E+00	C**	-	1.90E-03	-	N
Hexachlorocyclopentadiene	3.67E+02	n	3.70E+02	n	6.13E-01	8.00E-01	1.80E-01	N
Hexachloroethane	6.11E+01	n	3.50E+01	C**	1.93E-02	3.20E-03	-	N
2-Hexanone	-	-	-	-	-	-	-	N
Indeno(1,2,3-cd)pyrene	4.81E+00	С	1.50E-01	С	3.70E+00	1.60E-01	-	N
Isophorone	4.13E+03	С	5.10E+02	c*	1.85E-01	2.20E-02	-	N
Isopropylbenzene (cumene)	3.21E+03	ns	2.20E+03	ns	9.86E-01	1.30E+00	-	Y
4-Isopropyltoluene	-	-	-	-	-	-	-	Υ
Lead	4.00E+02	IEUBK	4.00E+02	nL	-	-	-	Y
Mercury	7.71E+00	ns	4.30E+00	ns	2.93E-02	3.00E-02	1.00E-01	Y
Methyl tert-butyl ether (MTBE)	8.62E+02	С	3.90E+01	С	2.29E-02	2.70E-03	-	Y
Methylene chloride	1.99E+02	С	1.10E+01	С	1.07E-02	1.20E-03	1.30E-03	Υ
1-Methylnaphthalene		-	2.20E+01	С		1.50E-02		Y
2-Methylnaphthalene	-	-	3.10E+02	n		9.00E-01	-	Y
2-Methylphenol	-	-	3.10E+03	n		2.00E+00		N
3+4-Methylphenol	-	-	3.10E+02	n	-	1.90E-01	-	N
4-Methyl-2-pentanone	-	-		_	_	-		N
2-Nitroaniline	-	-	1.80E+02	n		3.30E-02		N
3-Nitroaniline	-	-	-	-	-	-	-	N
4-Nitroaniline	-	-	2.40E+01	c*	_	1.00E-03	-	N
2-Nitrophenol	-		-			-		N
4-Nitrophenol	-	-	-	-	-	-	-	N

TABLE 6
Residential Soil Screening Levels
Bloomfield Refinery - Bloomfield, New Mexico

			•		Cross Me	dia Soil-to-G	round Water	1
	NMI	-D	EPA	······································	NMED		PA	i
Analyte	Residential Soil (mg/kg)			ResSoil key		GW_Risk- based SSL (mgkg)	GW_MCL- based SSL (mg/kg)	Constituent Detected
Applicable depth interval	0-1	0'	0-2'			All depths		
Naphthalene	4.50E+01	С	3.90E+00	c*	4.19E-03	5.50E-04	_	Y
n-Butylbenzene	-			-	-	-	-	Y
Nickel	1.56E+03	n	1.40E+04	С	4.77E+01	4.80E+01	-	Y
Nitrobenzene	4.94E+01	С	4.40E+00	c*	6.86E-03	7.10E-05	-	N
N-Nitrosodi-n-propylamine	_		6.90E-02	С	-	1.10E-05	-	N
N-Nitrosodiphenylamine	8.00E+02	С	9.90E+01	С	1.29E+00	1.70E-01	-	N
n-Propylbenzene	-	-	-	-	-	-	-	Υ
Pentachlorophenol	2.07E+01	С	3.00E+00	С	2.94E-02	3.90E-03	7.00E-03	N
Phenanthrene	1.83E+03	ns	-	-	8.34E+01	-	_	Y
Phenol	1.83E+04	n	1.80E+04	n	6.30E+00	8.10E+00	-	N
Pyrene	1.72E+03	ns	1.70E+03	n	1.12E+02	1.50E+02	-	.Y
Pyridine	-	-	7.80E+01	n	-	9.70E-03	_	N
sec-Butylbenzene	-	-	_	-	-	-		Υ
Selenium	3.91E+02	n	3.90E+02	n	9.65E-01	9.50E-01	2.60E-01	N
Silver	3.91E+02	n	3.90E+02	n	1.57E+00	1.60E+00	-	N
Styrene	8.97E+03	ns	6.50E+03	ns	1.56E+00	2.00E+00	1.20E-01	N
1,2,3-Trichlorobenzene	_	-	-	-	-	-	-	N
1,1,1,2-Tetrachloroethane	2.92E+01	С	2.00E+00	C	1.73E-03	2.10E-04	-	N
1,1,1-Trichloroethane	2.18E+04	ns	9.00E+03	ns	2.98E+00	3.30E+00	7.20E-02	N
1,1,2,2-Tetrachloroethane	7.97E+00	С	5.90E-01	С	2.25E-04	2.80E-05	_	N
1,1,2-Trichloroethane	1.72E+01	С	1.10E+00	С	6.74E-04	8.20E-05	1.70E-03	N
2,4,5-Trichlorophenol	6.11E+03	n	6.10E+03	n	7.13E+00	9.40E+00	-	N
2,4,6-Trichlorophenol	6.11E+01	n	4.40E+01	c**	7.13E-02	1.60E-02	_	N
1,2,3-Trichloropropane	9.15E-01	С	9.10E-02	С	3.56E-05	4.40E-06	-	N
1,2,4-Trichlorobenzene	1.43E+02	ns	8.70E+01	n	1.02E-02	1.30E-02	1.10E-01	N
1,2,4-Trimethylbenzene	-	-	6.70E+01	n	-	2.40E-02	_	Y
1,3,5-Trimethylbenzene	_	-	4.70E+01	n	-	2.00E-02	-	Y
tert-Butylbenzene		-	_	-	-	-	-	N
Tetrachloroethene (PCE)	6.99E+00	С	5.70E-01	С	4.49E-04	5.20E-05	2.40E-03	N
Toluene	5.57E+03	ns	5.00E+03	ns	1.38E+00	1.70E+00	7.60E-01	Y
trans-1,2-DCE	2.73E+02	n	1.10E+02	n	3.01E-02	3.40E-02	3.20E-02	N
trans-1,3-Dichloropropene	2.35E+01	С	1.70E+00	C*	1.35E-03	1.60E-04	-	N
Trichloroethene (TCE)	4.57E+01	_ с	2.80E+00	С	5.30E-03	6.10E-04	1.90E-03	N
Trichlorofluoromethane	2.01E+03	ns	8.00E+02	n	9.01E-01	8.40E-01	-	N
Vanadium	3.91E+02	n	5.50E+02	n	1.83E+02	2.60E+02	-	Υ
Vinyl chloride	8.65E-01	С	6.00E-02	С	2.88E-04	5.60E-06	7.00E-04	N
Xylenes, Total	1.09E+03	ns	6.00E+02	ns	1.76E-01	2.30E-01	1.10E+01	Υ
Zinc	2.35E+04	n	2.30E+04	n	6.82E+02	6.80E+02	-	Υ

c - carcinogen n - noncarcinogen

nl - noncarcinogen, SSL may exceed ceiling limit
nls - noncarcinogen, SSL may exceed both saturation and ceiling limit

ns - noncarcinogen, SSL may exceed saturation

no screenig value currently available

NMED - Technical Background Document for Development of Soil Screening Levels - Revision 5.0 (August 2009) EPA - Regional Screening Levels (April 2009)

cs - carcinogen, SSL may exceed saturation

TABLE 7 Non- Residential Soil Screening Levels Bloomfield Refinery - Bloomfield, New Mexico

							Cross Me	dia Soil-to-G	round Water	1
		NM	D		EPA	·	NMED		PA	1
Analyte	IndOccSoil (mg/kg)	IndOccSoil (Endpoint)	ConsWork (mg/kg)	ConsWork Soil (Endpoint)	Industrial (mg/kg)	IndSoil _key	DAF1 (mg/kg)	GW_Risk- based SSL (mg/kg)	GW_MCL- based SSL (mg/kg)	Constituer Detected
		21		101	0.01	L		All domains		
Applicable depth interval		2'		10'	0-2'			All depths		
Acenaphthene	3.67E+04	ns	1.86E+04	n	3.30E+04	n	2.05E+01	2.70E+01		N N
Acenaphthylene	- 0.545+05		2 625 105		6.405.05		3.84E+00	4 405 : 00		N Y
Acetone Aniline	8.51E+05	nls	2.63E+05	nls -	6.10E+05 3.00E+02	nms c*	3.846+00	4.40E+00 3.40E-03		N
Anthracene	1.83E+05	nl	6.68E+04	ns .	1.70E+05	nm	3.37E+02	4.50E+02		N N
Antimony	4.54E+02	n	1.24E+02	n	4.10E+02	n	6.61E-01	6.60E-01	2.70E-01	N
Arsenic	1.77E+01	С	6.54E+01	n	1.60E+00	С	1.31E-02	1.30E-03	2.90E-01	Y
Azobenzene	-	-	_	_	2.20E+01	С	•	5.10E-04	-	N
Barium	2.24E+05	nl	4.35E+03	n	1.90E+05	nm	3.01E+02	3.00E+02	8.20E+01	Y
Beryllium	2.26E+03	n	1.44E+02	n	2.00E+03	n	5.77E+01	5.80E+01	3.20E+00	N.
Benz(a)anthracene	2.34E+01 8.54E+01	c	2.13E+02 4.71E+02	C	2.10E+00 5.60E+00	c*	3.20E-01 1.85E-03	1.40E-02 2.30E-04	2.80E-03	Y
Benzene Benzo(a)pyrene	2.34E+00	C C	2.13E+01	n C	2.10E-01	6	1.09E-01	4.60E-03	3.10E-01	N
Benzo(b)fluoranthene	2.34E+01	c	2.13E+02	c	2.10E+00	c	1.11E+00	4.70E-02	0.10L-01	N
Benzo(g,h,i)perylene	-		-		-		-	-		N
Benzo(k)fluoranthene Benzoic acid	2.34E+02	C 	2.06E+03		2.10E+01 2.50E+06	C nm	1.09E+01	4.60E-01 3.30E+01	-	. N Y
Benzyl alcohol	-	-	-	-	3.10E+05	nm	-	4.20E+00		Υ
Bis(2-chloroethoxy)methane	-	-	-	-	1.80E+03	n	-	2.30E-02		N
Bis(2-chloroethyl)ether	1.36E+01	С	1.47E+02	С	9.00E-01	С	2.33E-05	2.70E-06	<u> </u>	N
Bis(2-chloroisopropyl)ether	4.54E+02	С	3.10E+03	cs	-	-	2.56E-03	-	-	N N
Bis(2-ethylhexyl)phthalate	1.37E+03	<u> </u>	4.76E+03	n	1.20E+02	С	1.19E+01	1.60E+00	2.00E+00	N
Bromobenzene Bromodichloromethane	2.92E+01	- C	3.50E+03	- CS	4.10E+02 1.40E+00	n C	2.76E-04	1.50E-02 3.30E-05		N
Bromoform	2.922-01	-	3.30E+03		2.20E+02	c*	2.702-04	2.30E-03	<u> </u>	N
Bromomethane	8.36E+01	n	6.71E+01	n	3.50E+01	n	1.94E-03	2.20E-03	_	N
4-Bromophenyl phenyl ether	-	-	-	-	-	-	-	-	-	N
2-Butanone (MEK)	3.69E+05	nl	1.48E+05	nis	1.90E+05	nms	1.27E+00	1.50E+00	-	Y
Butyl benzyl phthalate	-	-	-	-	9.10E+02	·c	-	6.70E-01	-	N
Cadmium	1.12E+03	n	3.09E+02	n	8.00E+02	n	1.37E+00	1.40E+00	3.80E-01	Y
Carbazole	7.545+02		5.89E+03		3.00E+03		2.52E-01	2.70E-01		N N
Carbon disulfide Carbon tetrachloride	7.54E+03 2.43E+01	ns C	1.99E+02	ns n	1.30E+00	ns C	7.39E-04	7.90E-05	2.00E-03	N
Chlorobenzene	2.14E+03	n	1.58E+03	ns	1.50E+03	ns	5.38E-02	6.80E-02	7.50E-02	N
Chloroethane	-	-	-	-	- 1.002	-	-	-	-	N N
Chloroform	3.19E+01	С	6.71E+02	С	1.50E+00	С	4.68E-04	5.50E-05		N
Chloromethane	1.98E+02	С	1.13E+03	n	5.10E+02	n	4.18E-03	4.90E-02	•	N
4-Chloro-3-methylphenol	-		•		-		-	-	-	N
4-Chloroaniline		<u> </u>		-	8.60E+00	С		1.20E-04		N
4-Chlorophenyl phenyl ether 4-Chlorotoluene	-	-	-	-	7.20E+04	-	<u>-</u>	2.80E+00	-	N N
2-Chloronaphthalene	9.08E+04	ns	2.48E+04	ns	8.20E+04	ns ns	1.35E+01	1.80E+01		N N
2-Chlorophenol	5.68E+03	n	1.55E+03	n	5.10E+03	n	1.53E-01	2.00E-01		N
2-Chlorotoluene	2.27E+04	ns	6.19E+03	ns	2.00E+04	ns	6.24E-01		-	N
Chromium	1.57E+06	nl	4.47E+05	nl	1.50E+06	nm	9.86E+07			Y
Chrysene	2.34E+03	C	2.06E+04	С	2.10E+02	С	3.26E+01	1.40E+00		N_
cis-1,2-DCE	1.14E+04	ns	3.10E+03	cs	1.00E+04	ns o*	9.43E-02	1.10E-01	2.10E-02	N _
cis-1,3-Dichloropropene Cobalt	1.26E+02		5.10E+02	n	8.40E+00 3.00E+02	c* n	1.35E-03	1.60E-04 4.90E-01	<u> </u>	N Y
Cyanide	2.27E+04	n -	6.19E+03	n	2.00E+04	n	7.44E+00	7.40E+00	2.00E+00	N
1,1-Dichloroethane	3.50E+02	C	6.88E+03	cs	1.70E+01	c	6.09E-03	7.40E+00 7.00E-04	2.002.100	N
1,1-Dichloroethene	2.22E+03	ns	1.83E+03	ns	1.10E+03	n	1.19E-01	1.20E-01	2.60E-03	N
1,1-Dichloropropene					-			-	•	N
1,2-Dibromo-3-chloropropane	1.09E+00	С	2.30E+01	С	7.30E-02	С	2.97E-06	1.50E-07	9.20E-05	N
1,2-Dibromoethane (EDB)	3.14E+00	C	4.86E+01	С	1.70E-01	С	1.58E-05	1.90E-06	1.50E-05	N
1,2-Dichlorobenzene	1.43E+04	ns	9.71E+03	ns	1.00E+04	ns	3.13E-01	4.00E-01	6.60E-01	N N
3,3'-Dichlorobenzidine 1,2-Dichloroethane (EDC)	4.26E+01 4.28E+01	C	3.71E+02 7.51E+02	C C	3.80E+00 2.20E+00	C C	1.70E-02 3.65E-04	2.30E-03 4.40E-05	1.50E-03	N N
1,2-Dichloropropane	8.17E+01	c	1.17E+02	n	4.70E+00	c*	1.11E-03	1.30E-04	1.70E-03	N
1,3-Dichlorobenzene	1	-	-	-	-	-	-	-		N
1,3-Dichloropropane	1 -	-	-	-	2.00E+04	ns	-	2.70E-01		N
1,4-Dichlorobenzene	1.80E+02	С	3.78E+03	cs	1.30E+01	С	3.57E-03	4.60E-04	8.10E-02	N
2,2-Dichloropropane	-	-	-		-	-	_	-		N
2,4-Dichlorophenol	2.05E+03	n	7.15E+02	n	1.80E+03	ก	1.37E-01	1.80E-01		N
	2.05E+03 1.37E+04	n n	7.15E+02 4.76E+03	n n	1.80E+03 1.20E+04	n n	1.37E-01 9.12E-01	1.80E-01 1.20E+00	-	N N

TABLE 7 Non- Residential Soil Screening Levels Bloomfield Refinery - Bloomfield, New Mexico

									round Water]
		NME	ED		EPA		NMED	E	PA	
	ا ي م	1-400.0	0	ConsWork	1 4 4 - 4 - 4		DAE.	GW_Risk-	GW_MCL-	Comedition
Analyte	IndOccSoil	IndOccSoil	ConsWork	Soil	Industrial	IndSoil	DAF1	based SSL	based SSL	Constituer
	(mg/kg)	(Endpoint)	(mg/kg)	(Endpoint)	(mg/kg)	_key	(mg/kg)	(mg/kg)	(mg/kg)	Detected
A - 1'- 1 to double lot - 1	0-	21		10'	0.21	L		All dooths	<u> </u>	
Applicable depth interval				10'	0-2'	,		All depths		
2,4-Dinitrotoluene	1.03E+02	С	4.76E+02	n	5.50E+00	С	1.56E-03	2.00E-04	-	N N
2,6-Dinitrotoluene	6.87E+02	n	2.39E+02	n	6.20E+02	n	2.67E-02	3.40E-02	-	N N
Dibenz(a,h)anthracene	2.34E+00	C	2.13E+01	c	2.10E-01	<u> </u>	3.62E-01	1.50E-02	 -	N
Dibenzofuran Dibromochloromethane	6.13E+01	- C	1,99E+03	- c	3.40E+00	c	3.38E-04	4.00E-05	-	N N
Dibromomethane	0.13E+01	<u> </u>	1,992+03		1.00E+04	ns	3.36E-04	9.10E-02		N
Dichlorodifluoromethane	1.55E+03	ns	1.37E+03	ns	7.80E+02	n	7.23E-01	6.10E-01		N N
Diethyl phthalate	5.47E+05	nì	1.91E+05	n)	4.90E+05	nm	1.06E+01	1.30E+01	_	N
Dimethyl phthalate	6.84E+06	nl	2.38E+06	nl	-	-	8.36E+01	-		N
Di-n-butyl phthalate	6.84E+04	n	2.38E+04	n		-	8.63E+00	-		N
Di-n-octyl phthalate	-		-	-	-	-		-	-	N
Ethylbenzene	3.85E+02	C	6.63E+03	cs	2.90E+01	С	1.46E-02	1.90E-03	8.90E-01	Y
Fluoranthene	2.44E+04	n	8.91E+03	n	2.20E+04	n	1.55E+02	2.10E+02		N
Fluorene	2.44E+04	ns	8.91E+03	ns	2.20E+04	n	2.50E+01	3.30E+01		N
Hexachlorobenzene	1.20E+01	С	1.03E+02	С	1.10E+00	С	2.21E-03	2.90E-04	7.00E-03	N
Hexachlorobutadiene			-	-	2.20E+01	c*		1.90E-03	-	- N
Hexachlorocyclopentadiene	4.10E+03	n	8.11E+02	n	3.70E+03	n	6.13E-01	8.00E-01	1.80E-01	N N
Hexachloroethane	6.84E+02	n	2.38E+02	n	1.20E+02	C**	1.93E-02	3.20E-03	<u> </u>	N
2-Hexanone				-	-		- 705.00	1 005 01	-	N N
Indeno(1,2,3-cd)pyrene	2.34E+01 2.02E+04	C	2.13E+02 4.75E+04	C	2.10E+00 1.80E+03	C*	3.70E+00	1.60E-01 2.20E-02	-	N N
Isophorone	1.49E+04	_ c	1.03E+04	<u>n</u>	1.10E+04		1.85E-01 9.86E-01	1.30E+00		Y
Isopropylbenzene (cumene) 4-Isopropyltoluene	1.49E+04	ns	1.03E+04	ns	1.10E+04	ns	9.80E-01	1.30E+00	<u> </u>	
Lead	8.00E+02	IEUBK	8.00E+02	IEUBK	8.00E+02	nL		-	-	Ÿ
Mercury	4.99E+01	n	6.36E+01	ns	2.40E+01	ns	2.93E-02	3.00E-02	1.00E-01	Ÿ
Methyl tert-butyl ether (MTBE)	4.69E+03	C	6.55E+04	CS	1.90E+02	C	2.29E-02	2.70E-03	1.002-01	Y
Methylene chloride	1.09E+03	C	1.06E+04	ns	5.40E+01	c	1.07E-02	1.20E-03	1.30E-03	Y
1-Methylnaphthalene	-		-	-	9.90E+01	c	-	1.50E-02	-	Ÿ
2-Methylnaphthalene	-				4.10E+03	ns		9.00E-01		Ý
2-Methylphenol	-	-	-		3.10E+04	n	-	2.00E+00	-	N
3+4-Methylphenol	_				3.10E+03	n	-	1.90E-01		N
4-Methyl-2-pentanone	~	<u> </u>			-	-			-	N
2-Nitroaniline			-		1.80E+03	n		3.30E-02	-	N
3-Nitroaniline	-									N_
4-Nitroaniline	-				8.60E+01	c*	-	1.00E-03		N
2-Nitrophenol						<u> </u>				N .
4-Nitrophenol	0.505.00	<u> </u>	7.005.00		0.005.04		4 405 00	5.505.04		N N
Naphthalene	2.52E+02	cs	7.02E+02	ns	2.00E+01	c*	4.19E-03	5.50E-04	-	Y
n-ButylbenzeneNickel	2.27E+04	n -	6.19E+03	n -	6.90E+04	- C	4.77E+01	4.80E+01		Y
Nitrobenzene	2.77E+02		5.20E+02	n	2.20E+01	C*	6.86E-03	7.10E-05		N
N-Nitrosodi-n-propylamine	2.712.02		- 0.202 02		2.50E-01	c	0.00L-03	1.10E-05		N
N-Nitrosodiphenylamine	3.91E+03	С	3.40E+04	С	3.50E+02	c	1,29E+00	1.70E-01		N
n-Propylbenzene	-		-		-		,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	-	-	Ÿ
Pentachlorophenol	1.00E+02	U	1.03E+03	c	9.00E+00	С	2.94E-02	3.90E-03	7.00E-03	N
Phenanthrene	2.05E+04	ns	7.15E+03	ns	-	-	8.34E+01	-	-	Y
Phenol	2.05E+05	nl	6.88E+04	n	1.80E+05	nm	6.30E+00	8.10E+00		N
Pyrene	1.83E+04	ns	6.68E+03	ns	1.70E+04	n	1.12E+02	1.50E+02		Y
Pyridine	-				1.00E+03	ก		9.70E-03		N
sec-Butylbenzene			-							Y
Selenium	5.68E+03	n	1.55E+03	<u>n</u>	5.10E+03	n	9.65E-01	9.50E-01	2.60E-01	N N
Silver	5.68E+03	n	1.55E+03	<u> </u>	5.10E+03	n	1.57E+00		4 005 04	N N
Styrene 1,2,3-Trichlorobenzene	5.12E+04	ns	3.03E+04	ns -	3.80E+04	ns -	1.56E+00	2.00E+00	1.20E-01	N N
1,1,1,2-Tetrachloroethane	1.61E+02	- 0	2.78E+03		9.80E+00	C	1.73E-03	2.10E-04	 -	N N
1,1,1-Trichloroethane	7.71E+04	ns	6.43E+04	CS ns	3.90E+04	ns	2.98E+00	3.30E+00	7.20E-02	N
1.1.2.2-Tetrachloroethane	4.33E+01	C	5.99E+02	C	2.90E+00	C	2.25E-04	2.80E-05	1.201.02	- N
1,1,2-Trichloroethane	9.43E+01		1.24E+03	ns	5.50E+00	c	6.74E-04	8.20E-05	1.70E-03	N N
2,4,5-Trichlorophenol	6.84E+04	n	2.38E+04	n	6.20E+04	n	7.13E+00		-	N
2,4,6-Trichlorophenol	6.84E+02	n	2.38E+02	n	1.60E+02	C**	7.13E-02	1.60E-02	-	N N
1,2,3-Trichloropropane	4.54E+00	C	3.10E+01	C	4.10E-01	c	3.56E-05	4.40E-06		N N
1,2,4-Trichlorobenzene	5.25E+02	ns	4.27E+02	ns	4.00E+02	ns	1.02E-02	1.30E-02	1.10E-01	N
1,2,4-Trimethylbenzene		-			2.80E+02	ns	-	2.40E-02	-	Y
1,3,5-Trimethylbenzene			-	-	2.00E+02	n		2.00E-02		Υ
tert-Butylbenzene	-					-	-	-		N
Tetrachloroethene (PCE)	3.64E+01	С	3.38E+02	cs	2.70E+00	С	4.49E-04	5.20E-05	2.40E-03	N
Toluene	5.79E+04	ns	2.11E+04	ns	4.60E+04	ns	1.38E+00	1.70E+00	7.60E-01	Y

TABLE 7 Non- Residential Soil Screening Levels Bloomfield Refinery - Bloomfield, New Mexico

							Cross Me	dia Soil-to-G	round Water]
		NM	ED		EPA	\	NMED	E	PA	
Analyte	IndOccSoil (mg/kg)	IndOccSoil (Endpoint)	ConsWork (mg/kg)	ConsWork Soil (Endpoint)	Industrial (mg/kg)	IndSoil _key	DAF1 (mg/kg)	GW_Risk- based SSL (mg/kg)	GW_MCL- based SSL (mg/kg)	Constituent Detected
Applicable depth interval	0-	2'	0-	10'	0-2'			All depths		
trans-1,2-DCE	9.95E+02	n	8.14E+02	n	5.00E+02	n	3.01E-02	3.40E-02	3.20E-02	N
trans-1,3-Dichloropropene	1.26E+02	С	5.10E+02	n	8.40E+00	c*	1.35E-03	1.60E-04	-	N
Trichloroethene (TCE)	2.53E+02	С	4.60E+03	cs	1.40E+01	С	5.30E-03	6.10E-04	1.90E-03	N
Trichlorofluoromethane	6.76E+03	ns	5.82E+03	ns	3.40E+03	ns	9.01E-01	8.40E-01	-	N
Vanadium	5.68E+03	n	1.55E+03	n .	7.20E+03	n	1.83E+02	2.60E+02	-	Y
Vinyl chloride	2.59E+01	С	2.48E+02	С	1.70E+00	С	2.88E-04	5.60E-06	7.00E-04	N
Xylenes, Total	3.61E+03	ns	3.13E+03	ns	2.60E+03	ns	1.76E-01	2.30E-01	1.10E+01	Y
Zinc	3.41E+05	nl	9.29E+04	n	3.10E+05	nm	6.82E+02	6.80E+02	-	Υ

c - carcinogen

nl - noncarcinogen, SSL may exceed ceiling limit

nls - noncarcinogen, SSL may exceed both saturation and ceiling limit

ns - noncarcinogen, SSL may exceed saturation

no screenig value currently available

NMED - Technical Background Document for Development of Soil Screening Levels - Revision 5.0 (August 2009) EPA - Regional Screening Levels (April 2009)

n - noncarcinogen

cs - carcinogen, SSL may exceed saturation

TABLE 8 Ground Water Screening Levels Bloomfield Refinery - Bloomfield, New Mexico

	NMED		PA]
Analyte	New Mexico WQCC Standards (ug/L)	EPA Screening Levels.Tap Water (ug/L)	TapW_key	MCL (ug/L)	Constituent Detected
Acenaphthene		2200	n	-	Y
Acenaphthylene	-	-	-	<u> </u>	N
Acetone	-	22000	n	-	Υ
Aniline	-	12	c*	-	N
Anthracene	-	11000	n	-	N
Antimony	-	15	n	6	Y
Arsenic	100	0.045	С	10	Y
Azobenzene	-	0.12	С	-	N
Barium	1000	7300	n	2000	Y
Benz(a)anthracene	-	0.029	С	-	N
Benzene	10	0.41	С	5	Y
Benzo(a)pyrene	0.7	0.0029	С	0.2	N
Benzo(b)fluoranthene	-	0.029	c		N
Benzo(g,h,i)perylene		-			N
Benzo(k)fluoranthene		0.29	С		N
Benzoic acid		150000	n		N
Benzyl alcohol		18000	n n		N
Beryllium		73	n	4	N
Bis(2-chloroethoxy)methane		110	n		N
Bis(2-chloroethyl)ether		0.012	C	-	N
Bis(2-chloroisopropyl)ether		- 0.012	-		N
Bis(2-ethylhexyl)phthalate	_	4.8	С	6	Y
Bromobenzene		20	n		N
Bromodichloromethane	-	0.12	C	-	N
Bromoform		8.5	c*		N
Bromomethane	_	8.7	n	_	N
4-Bromophenyl phenyl ether	- 	- 0.7	- ''		N
Butyl benzyl phthalate		35	c		N
2-Butanone (MEK)		7100	n	<u> </u>	N
Cadmium	10	18	n	5	N
Carbazole	- 10	-	- "		N
Carbon disulfide	-	1000	n		N
Carbon tetrachloride	10	0.2	C		N
Chlorobenzene	-	91	n	100	N
Chloroethane	-		-	- 100	N
Chloroform	100	0.19	С	-	Y
Chloromethane	-	190	c		N
4-Chloro-3-methylphenol	-	-	-	<u>-</u> -	N N
4-Chloroaniline		0.34	С		N
4-Chlorophenyl phenyl ether		0.54	-		N
4-Chlorotoluene	-	2600	n		N
2-Chloronaphthalene	- 	2900	n		N
2-Chlorophenol		180	n		N N
2-Chlorotoluene		730			N
Chromium	50	55000	n	-	Y
Chrysene	- 30	2.9	n C	<u>-</u>	N N
Only Selle		J 4.3	, ,	-] IV

TABLE 8 Ground Water Screening Levels Bloomfield Refinery - Bloomfield, New Mexico

	NMED	E	PA .		
Analyte	New Mexico WQCC Standards (ug/L)	EPA Screening Levels.Tap Water (ug/L)	TapW_key	MCL (ug/L)	Constituent Detected
Cobalt	50	11	n n	-	Υ
Cyanide	200	730	n	200	Υ
Dibenz(a,h)anthracene	-	0.0029	С		N
Dibenzofuran	-	-	-		N
Dibromochloromethane	-	0.15	С	-	N
cis-1,2-DCE		370	n	70	N
trans-1,2-DCE	-	110	n	100	N
cis-1,3-Dichloropropene	-	-	-	-	N
trans-1,3-Dichloropropene	-	0.43	С	-	N
Dibromomethane		370	n		N
1,2-Dibromo-3-chloropropane	-	0.00032	С	0.2	N
1,2-Dibromoethane (EDB)	0.1	0.0065	c	0.05	N
1,2-Dichlorobenzene		370	n	600	N
1,3-Dichlorobenzene			-		N
1,4-Dichlorobenzene		0.43	С	75	N
3,3´-Dichlorobenzidine		0.15	c		N
Dichlorodifluoromethane		390	n		N
1,1-Dichloroethane	25	2.4	C		N N
1,2-Dichloroethane (EDC)	10	0.15	c		Y
1,1-Dichloroethene	5	340		$\frac{-3}{7}$	N
2,4-Dichlorophenol		110	n		N
		0.39	n c*	5	N N
1,2-Dichloropropane	-	 			
2,2-Dichloropropane		720			N
1,3-Dichloropropane	-	730	n		N
1,1-Dichloropropene	-				N N
Diethyl phthalate		29000	n	<u> </u>	N
Dimethyl phthalate			-		N
2,4-Dimethylphenol	<u>-</u>	730	n		Y
4,6-Dinitro-2-methylphenol	<u>-</u>	-	-		N
2,4-Dinitrophenol	<u> </u>	73	n		N
2,4-Dinitrotoluene		0.22	n		N
2,6-Dinitrotoluene	<u>-</u>	37	n		N
Di-n-butyl phthalate					N
Di-n-octyl phthalate	-	-		<u> </u>	N
Ethylbenzene	750	1.5	СС	700	Y
Fluoranthene		1500	n		N
Fluorene		1500	n		Y
Hexachlorobenzene		0.042	С	1	N
Hexachlorobutadiene	-	0.86	С*	-	N_
Hexachlorocyclopentadiene	<u> </u>	220	n	50	N
Hexachloroethane	•	4.8	C**		N
2-Hexanone	•	-		<u>-</u>	N
Indeno(1,2,3-cd)pyrene	-	0.029	С	-	N
Isophorone	-	71	С		N
Isopropylbenzene (Cumene)		680	n	-	Y
4-Isopropyltoluene	-	-	-	-	Y

TABLE 8
Ground Water Screening Levels
Bloomfield Refinery - Bloomfield, New Mexico

	NMED	E	PA		7
Analyte	New Mexico WQCC Standards (ug/L)	EPA Screening Levels.Tap Water (ug/L)	TapW_key	MCL (ug/L)	Constituent Detected
Lead	50	-	-	15	Y
Magnesium	-	-	-		Y
Manganese	200	880	n		Y
Mercury	2	0.57	n	2	Y
Methyl tert-butyl ether (MTBE)		12	С	-	Y
Methylene chloride	100	4.8	С	5	N
1-Methylnaphthalene	-	2.3	С	-	Y
2-Methylnaphthalene	-	150	n	-	Y
2-Methylphenol	-	1800	n	-	Y
3+4-Methylphenol	-	180	n	-	Υ
4-Methyl-2-pentanone	-	-	-	-	N
Naphthalene	-	0.14	c*	-	Υ
n-Butylbenzene	-	-	-	-	Υ
Nickel	200	730	n	-	Υ
2-Nitroaniline	<u>-</u>	110	n	•	N
3-Nitroaniline	-	-	-		N
4-Nitroaniline	-	3.4	C*	•	N
2-Nitrophenol	-	-	-	-	N
4-Nitrophenol	-	-	-	-	N
Nitrobenzene	-	0.12	С		N
N-Nitrosodimethylamine	-	0.00042	С		N
N-Nitrosodi-n-propylamine	-	0.0096	С	-	N
N-Nitrosodiphenylamine	-	14	С	-	N
n-Propylbenzene	_	-	-	-	Υ
Pentachlorophenol	-	0.56	С	1	N
Phenanthrene	-	-	-	-	Υ
Phenol	5	11000	n	-	Υ
Pyrene	-	1100	n		Y
Pyridine	-	37	n	-	N
sec-Butylbenzene	-	-	-	-	Y
Selenium	50	180	n	50	Υ
Silver	50	180	n	-	N
Styrene	-	1600	n	100	N
tert-Butylbenzene	-	-	-	•	N
Tetrachloroethene (PCE)	20	0.11	С	5	N
1,1,1,2-Tetrachloroethane	-	0.52	С	-	N
Toluene	750	2300	n	1000	Υ
1,2,3-Trichlorobenzene	-	-	•	-	N
1,2,4-Trichlorobenzene	-	8.2	n	70	N
2,4,5-Trichlorophenol	-	3700	n	-	N
2,4,6-Trichlorophenol	-	6.1	C**	-	N
1,2,3-Trichloropropane	-	0.0096	С	-	N
1,2,4-Trichlorobenzene	-	8.2	n	70	N
1,2,4-Trimethylbenzene	-	15	n	-	Υ
1,1,1-Trichloroethane	60	9100	n	200	N
1,1,2,2-Tetrachloroethane	10	0.067	С	-	N

TABLE 8 Ground Water Screening Levels Bloomfield Refinery - Bloomfield, New Mexico

	NMED	E	PA]
Analyte	New Mexico WQCC Standards (ug/L)	EPA Screening Levels.Tap Water (ug/L)	TapW_key	MCL (ug/L)	Constituent Detected
1,1,2-Trichloroethane	10	0.24	С	5	N
Trichloroethene (TCE)	100	1.7	С	5	N
Trichlorofluoromethane		1300	n		N
1,3,5-Trimethylbenzene	-	12	n		Y
Vanadium	-	260	n	_	N
Vinyl chloride	1	0.016	С	2	N
Xylenes, Total	620	200	n	10000	Y
Zinc	10000	11000	n	-	Y
General Chemistry					
Alkalinity	_	<u>-</u>	-	-	Y
Bicarbonate	-	-	-	-	Υ
Carbonate	-	-	-		N
Calcium	-	-	-		Υ
Chloride	250000				Υ
Fluoride	1600				Υ
Iron	1000	26000	n		Υ
Nitrite		3700	n	1000	Y
Nitrate (NO3 as N)	10000	58000	n	10000	Y _
Potassium	-		-		Υ
Sodium		•	-		Y
Sulfate	600000	-	-		Y
Total Dissolved Solids	1000000				Υ
Motor Oil Range Organics (MRO)	-	<u></u>	-		N
Diesel Range Organics (DRO)	-		-	<u> </u>	Υ
Gasoline Range Organics (GRO)	-	- 407 - 61	-		Υ

c - cancer, * = where n SL < 100X c SL, ** = where n SL < 10X c SL

620 - Bolded value is applicable screening level

- no screenig value currently available

EPA - Regional Screening Levels (April 2009)

NMED WQCC standards - Title 20 Chapter 6, Part 2, - 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less

n - noncancer

Table 9
Group 3 Soil Analytical Results Summary - AOC 23 and AOC 25
Bloomfield Refinery, Bloomfield, New Mexico

Residential e Soil Con Screening Scr	. 1	g)	λι				}	m _n	Cvanide (1,56E+03 (1)		Aur	Nickel 1.56E+03 (1) mg/Kg	mn	Vanadium 3 915+02 (1)		tile Organic Compo	1,1,1,2-Tetrachloroethane 2.92E+01 (1)	1,1,1-Trichloroethane 2,18E+04 (1)	Jane	1,1,2-Trichloroethane 1.72E+01 (1)		1, I-Dichlorographs 6. 10E+02 (1)	Trichlorohenzene		$\overline{}$	6.70E+01	1.94E-01			1.2-Dichloropropane 147E+01 (1)	4.70E+01	1	1,3-Dichloropropane 1.60E+03 (2)	3.21E+01	2.20E+02	-	K) 3.96E+04	1.56E	!	2-Methylnaphthalene 3.10E+02 (2)	5.50E+03	4-Isopropyitoluene		Acetone 6.75E+04 (1)
-	П		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	ma/Ka	mg/Kg	mg/Kg	mg/Kg	mg/kg	mg/Kg	ma/Ka	mg/kg	mg/Kg	Mg/Kg	mg/Kg	mg/Kg	mg/Kg	_	Mo/Kg	╀	mg/Kg	Щ	_	_	4	mg/Kg	↓	╄	╙	┖	Ļ	L.	_	_	_) mg/Kg	_	mg/Kg	4	mg/Kg
('6-0-6')	-	l F	<2.5	<2.5	120	0.3	01.0	+	+	╁	Н	4.2	C.2.5	12	20	-		<0.050	+	+	40.10 40.10	+	2 0	+	<0.050	H	\dashv	+	+	<0.050	╀	╁	-	┝	┝	<0.10	Н	<0.050	<0.50	<0.20	<0.050	<0.050	\$0.50 2.71	<0.75
(1.5-2.0') t-4 UWW	+		<2.5	<2.5 4.50	160	0.31	0.10	4.4	<0.5	3.6	<0.033	4.4	2007	11	19	-	<0.050	<0.050	<0.050	<0.050	01.0	<0.000 <0.100 <0.100	0 0	<0.10	<0.050	<0.050	<0.10	<0.050	<0.050 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.20	<0.10	<0.50	<0.050	<0.50	<0.20	<0.050	<0.050 50.050	20.30	c/.U>
(6-8°) (4-1 (6-8°)	+		<13	<13	2/0	27.02	3.1	¥ 4	<0.5	\vdash	Н	9	2 5	19	110		<0.10	<0.10	<0.10	0.10	07.0	\$0.10 \$0.00	\$0.20	<0.20	<0.10	8.1	<0.20	<0.10 5.45	0.10	\$0.10 \$0.10	3.4	<0.10	<0.10	<0.10	<20	<0.20	<1.0	<0.10	×1.0	29	\$ 0.10 8.00	0.82	0.1	C.I.>
64-1 (36-38°)			<2.5 5.7	<2.5	140	\$ 0.15	20.10	4.1	<0.5	-	<0.033	1.3	20.05	7	7.4			;	1	-	1			1	-	ı	-	1			:	;	-	1	-	1	1	1	1	1	1	1	:	:
(0-0.5')	/23/2009 4/		+	+	+	+	+-	+	+	╁	Н	26	╁	╁	╁		-	1	1	-			;	1	-	1	1	1	1			:	1	-	-	-	:	1	-		1	+	1	-
(1.5-2.0) 1-3 UMW8	/23/2009 4		<13	<13	110	20.75	4.50	2.5	<0.5	5.6	0.04	5.5	25	14	23		-	!	-	-	1	1			-	1	1	1	1		-		1	-	-	-	-	1	-	1	1	-	+	;
SWMU 5-2 (0-0.5°)	60	,	+	+	+	+	+	+	<0.5	\vdash	H	-	20.05	╁	╁		-	-	-	1	1	1 1				1	1	1	1		ì	1	1		-	1	1	-	-	-		1	+	:
(1.5-2.0) S-2 UMWS	909	1	+	+	+	+	+	+	-	-	Н	3.8	+	+	-	1	-	1	1		1	+		-	-	-	1	1	1	;	1			-	-	1	1	+	-	1	1	1	1	
5-3 (0-0.5°)		Ĥ	+	+	+	+	+	+	+	\vdash	Н	11	+	+	+	1	-	-	+	-	1		-	,		1	1		:		1		1		-	-	-	-	-	1	1		+	
(1.5-2.0') S-3 UMWS	23/2009 4/2		\downarrow	4	+	\downarrow	+	+	+	-		4.4	+	\perp	ļ		-		-	-	+	+		1	-	1	-	:			-		1	-		-	-		:	-	1	1		!
(0-0.5') 5-4 (0-0.5')	3/2009 4/2	}	+	+	+	+	+	+	-	-	\sqcup	6.4	+	+	+		1	-	-	-				-	-	1	:	1	•		1			-	-	. 1	;	-	1	-	1			
(1.5-2.0') I- 3 UMW8	3/2009 4/2:	}	+	+	+	+	+	+	-	-		6.2	+	+	╀	} }	1	-		1	1	+		-	1	-	;	1	1 1				1	-	1	1	1		-	-				
SWMU 5-5 (0-0.5°)		-	+	+	+	+	+	+	+-	\vdash	\square	300	+	+	_		1			1	-	 -				-						-	-		-			-						
('0.S-2.1)	/2009 4/23/	}	+	+	+	-	+	+	+	H	Ц	6.5	\downarrow	+	19 1			-	-		1		'					<u>'</u>	<u>' </u>	'								<u>'</u>	<u>'</u>	1		1 1	-	_
JG (1.6-2.0') D-8 UMW8	2009 4/23/	· [+	+	+	+	+	+	╁		Н	4.8	+	+	╀	}				<u> </u>	<u>' </u>		<u>'</u> .	<u> </u> -		'	<u>'</u>					' - ;	-					-	}		<u> </u>		<u> </u>	_
5.0-0) 9-9 NWW	4/2		\dashv	+	+	+	+	+	+	\vdash	Н	11 4.3	+	+-	20			<u>'</u>	!	<u>'</u>	1		'	<u>'</u> -		1	-	!	-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	' 	-			1	; 	<u>'</u>	-		1	<u>'</u>	-	-
7OC 53-1 (0-0.5')			+	+	+	+	+	+	╁	\vdash	H	4.6	+	╁	\perp		<0.0	0.0 0.0	<0.050	0.0	7.00	, Ç	9	<u>^</u>	<0.0	<0.0	\	0.0	0.00	000	0.0	0.0	0.0	<0.0	<0.2	<0.1	<0.5	0.0	0.5	<0.2	<0.050	0.0	00.00	\.O.

<0.15 <0.978 <0.978 <0.978 <0.978 ('6.0-0) r-ES 20A <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 SWMU 5-6 (1.5-2.0') 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923
 0.923 (.5.0-0) 8-8 UMWS ŀ 1 ł 996.0 996.0 996.0 996.0 996.0 996.0 996.0 996.0 996.0 996.0 996.0 996.0 996.0 996.0 996.0 996.0 996.0 996.0 996.0 AUG ('0.5-2.1) 2-2 UMWS Ł 1 1 -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 ł 1 0.951 1 1 1 1 1 1 1 | 1 | 1 | ł SWMU 5-5 (1.5-2.0') 0.892
 0.892
 0.892
 0.892
 0.892
 0.892
 0.892
 0.892
 0.892
 0.892
 0.892
 0.892
 0.892 ('8.0-0) 3-3 UMWS 1 1 1 1 1 1 I ì 1 1 0.918 SWMU 5-4 (1.5-2.0") 1 1 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 3 | 1 | 1 | 1 | 1 | 1 | 1 ł 1 1 1 ł 0.914 0.914 0.914 0.914 0.914 0.914 0.914 0.914 0.914 0.914 0.914 <0.914 1 1 (0-0.5') 1 1 1 1 1 | | | | | | | | 1]1[1]1 1 1 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 1 ŀ 1 | 1 | 1 | 1 | 1 | 1 | 1 | ł (1.5-2.0') S-3 UMWS (0.893
(0.893
(0.893
(0.893
(0.893
(0.893
(0.893
(0.893
(0.893
(0.893
(0.893
(0.893
(0.893
(0.893
(0.893
(0.893
(0.893
(0.893 SWMU 5-3 (0-0.5') 1 0.935 0. 1 SWMU 5-2 (1.5-2.0') 1 ł ŀ 1 l 1 1 ł t 1 ١. 1 1 1 1 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.962
 0.963
 0.962
 0.963
 0.963
 0.963
 0.964
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 0.965
 1 ı 1 ('6.0-0) S-2 UMWS 666.0 66 <0.999 (10.2-2.1) 1-2 UMWS 4 1 ŀ 1 \$\begin{align*}
\$\cdot 0.930 \\
\$\cdot 0.930 \ 1 4 ì ('8.0-0) 1-3 UMWS 4.02
 4.02
 4.02
 6.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.02
 7.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03
 8.03< SWMU 4-1 (36-38') <0.10 5.6 <0.20 1.1 (8-8') t-4 UMW8 6-10 (6-8') <0.20 <0.10 3 3 3 3 3 ; ŀ 1 1 1 1 1 1 1 <0.10<0.050<0.050<0.050<0.050<0.050<0.050<0.050<0.050 (1.5-2.0') 1-4 UMWW | 050 | 05 <0.050<0.050<0.050<0.10<0.50<0.10 <0.050 <0.050<0.050<0.050<0.050<0.050<0.050<0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.10 <0.991 <0.991<0.991<0.991<0.991<0.991 <0.991 <0.991 <0.991 991 991 8 ('8.0-0) r-4 UMW2 6.050 0.050 0.10 40.050 40.050 40.050 40.050 40.050 40.050 0.933 0. \$\left\{ \cdot \cd <0.50 Units

Day/Kg

Day/Kg
 Volatile Organic Compounds - (EPA Method 8260B) pg/kg-dr

 1,1,1,2-Tetrachloroethane
 2.92E+04
 (1) µg/kg-dr

 1,1,1,2-Tetrachloroethane
 7.97E+03
 (1) µg/kg-dr

 1,1,2-Trichloroethane
 1.72E+04
 (1) µg/kg-dr

 1,1-Dichloroethane
 6.29E+04
 (1) µg/kg-dr

 1,1-Dichloroethane
 6.29E+04
 (1) µg/kg-dr

 1,1-Dichloroethane
 6.18E+05
 (1) µg/kg-dr
 (1) µg/Kg (2) µg/Kg (1) µg/Kg (1) µg/Kg (1) µg/K 5.57E+03 (1)
2.73E+02 (1)
2.35E+01 (1)
4.57E+01 (1)
2.01E+03 (1)
8.65E-01 (1) (3) (2)Source <u>ଅଟାଟାଟା</u> 2.23E+01 1.94E+03 5.72E+00 3.56E+01 7.82E+02 2.35E+01 1.13E+01 7.80E+02 4.81E+02 6.96E+01 6.20E+01 3.21E+03 8.62E+02 1.99E+02 4.50E+01 Soil Screening 9.40E+01 5.25E+00 6.10E+02 4.38E+00 5.08E+02 6.99E+00 Residentia 8.97E+03 1.43E+05 6.70E+04 1.94E+02 5.74E+02 3.01E+06 9.15E+02 Level ŀ Isopropylbenzene Methyl tert-butyl ether (MTBE) Methylene chloride Naphthalene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,1,1,2-Tetrachloroethane
1,1,1,2,2-Tetrachloroethane
1,1,2,2-Trichloroethane
1,1,2-Trichloroethane
1,1-Dichloroethane
1,1-Dichloroethene
1,1-Dichloroptopene trans-1,2-DCE trans-1,3-Dichloropropene Trichloroethene (TCE) Trichlorofluoromethane Chloroethane
Chloroform
Chloromethane
cis-1,2-DCE
cis-1,3-Dichloropropene Bromobenzene Bromodichloromethane Bromoform Bromomethane tert-Butylbenzene Tetrachloroethene (PCE) Dichlorodifluoromethane Analytes Dibromochloromethane ,2,4-Trimethylbenzene ,2,3-Trichlorobenzene ,2,4-Trichlorobenzene ,2,3-Trichloropropane Ethylbenzene Hexachlorobutadiene Carbon tetrachloride n-Propylbenzene sec-Butylbenzene Dibromomethane Carbon disulfide n-Butylbenzene Chlorobenzene Xylenes, Total Vinyl chloride Toluene Styrene

Soil Analytical Results Summary - AOC 23 and AOC 25 Bloomfield Refinery, Bloomfield, New Mexico

Group 3

<0.978 AOC 23-1 (0-0.5') <0.874
<0.874
<3.49
<0.874
<0.874
<0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.874 <0.87 <0.87 (1.5-2.0) 8-8 UMWS \$\left\{ \cdot \cd 40.923 40.923 40.923 40.923 43.69 <0.923 <0.923 1.84 <0.923 <0.923 <0.923 <0.923 8.88 SWMU 5-6 (0-0.5') 0.966 <0.966
 <0.966
 <0.966
 <0.966
 <0.966
 <0.966
 <0.966
 <0.966 <0.966<0.966<0.966<0.966<3.87<0.966 <0.966 <0.966 <0.966
<0.966
<3.87
<3.87
<0.966
<0.966< 40.966 40.966 60.966 SWWD 5-5 (1.5-2.0") DUF 40.951
40.951
40.951
40.951
40.951
40.951
40.951
43.80 <0.951<0.951<3.80<0.951<0.951<0.951<0.951 0 951
 0 951
 0 951
 0 951
 0 951
 0 951
 0 951
 0 951 (1.5-2.0') S-8 UMWS (0.892
 (0.892
 (0.892
 (0.892
 (0.892
 (0.892
 (0.892
 (0.892
 (0.892
 (0.892
 (0.892
 (0.892
 (0.892
 (0.892
 (0.892 <0.892 <0.892 <0.892 <3.57 <0.892 <0.892 <0.892<0.892<0.892<0.892<0.892<0.892 <0.892 <0.892 ('8.0-0) 8-8 UMWS ő 8 <0.918<0.918<0.918<0.918<3.67<3.67 <0.918 <0.918<0.918<0.918<0.918<0.918<3.67 <0.9187.32<0.918<0.918<0.918 <0.918 <0.918 <0.918 <0.918 <0.918 <0.918 SWMU 5-4 (1.5-2.0") <0.914
 <0.914
 <0.914
 <0.914
 <0.914
 <0.914
 <0.914
 <0.914 <0.914 <0.914 <3.66 <0.914<0.914<0.914<0.914<0.914 (°6.0-0) 4-3 UMW2 6.9 4.0-0 € 1.0-0.5° 11.1 <0.914 <0.914 <0.914 <0.914 <0.914 <0.914 <0.914 <0.914 <0.914 <0.914 <0.914 2.75 <0.914 <0.914 <0.914 <0.914 <0.914 <0.914 <0.914 <0.914 SWMU 5-3 (1.5-2.0') \$\left\{ \text{0.893} \\ \cdot \text{0.893} <0.893<0.893<0.893<0.893<0.893<0.893<0.893<0.893 <0.893 <0.893 <0.893 <0.893 SWMU 5-3 (0-0.5') ô. 40.935 40.935 40.935 40.935 40.935 40.935 40.935 40.935 40.935 40.935 40.935 40.935 40.935 40.935 40.935 40.935
 3.28
 40.935
 40.935
 40.935
 40.935
 40.935 <0.935
<0.935
<0.935
<0.935
<0.935
<0.935
<0.935 (35) S-2 (1.5-2.0°) <0.935 <0.935 0.962 0. (0-0.5°) SWMU 5-2 (0-0.5°) 14.3 (0.962) (0.962 <0.999
<0.999
<0.999
<0.999
<4.00
<4.00
<4.00 <0.999 <0.999 <4.00 5.74 <0.999 <0.999 <0.999 <0.999 <4.00 666.0 66 <0.999 <0.999 666 <0.999 SWMU 5-1 (1.5-2.0') 0 0> 6 6 \$\begin{align*}
\(\cdot \) \\ \cdot \) \\ \cdot \) \\ \cdot \cdot \) \\ \cdot \) \\\ \cdot \) \\ \cdot \) \\\ \cdot \) \\\ \cdot \) \\ \c <0.930 4.05 <0.930 <0.930 <0.930 <0.930 <0.930 <0.930 1.02 <0.930 <0.930 <0.930 6.94 <0.930 <0.930 ('2.0-0) 1-2 UMWS 102 102 102 102 102 102 103 <1.02
<1.02
<1.02
<4.07
<4.07
<4.07
<4.07
<1.02
<1.02
<1.02
<1.02</pre> <1.02 <1.02 <1.02 <1.02 <1.02 <1.02 <1.02 3.0 SWMU 4-1 (36-38') ('8-8) r-4 UMWR <0.991 <3.96 <3.96 \$\cdot 0.991 0.9910.9910.9910.9910.9910.991 \$0.991 \$0.991 \$0.991 \$0.991 \$0.991 \$0.991 \$0.991 <0.991 <0.991 <0.991 <0.991 <0.991 <0.991 <0.991 <0.991 <0.99 (1.5-2.1) 1-4 UMWS ô. ô 0.933 0. (0.933
 (0.933
 (0.933
 (0.933
 (0.933
 (0.933
 (0.933
 (0.933
 (0.933
 (0.933 <0.933</p><0.933</p><0.933</p><0.933</p><0.933</p> <0.933<0.933<0.933<0.933<0.933<0.933<0.933 <0.933 <0.933 ('8.0-0) 1-4 UMWS (1) µg/kg-dry µg/kg-dry µg/kg-dry µg/kg-dry (1) µg/kg-dry (1) µg/kg-dry (1) µg/kg-dry (g-dry Kg-dry Kg-dry Kg-dry Kg-dry Kg-dry Kg-dry **Sg-dry Sg-dry Sg-dry** (g-dry 6.75E+07 (1) µg/Kc 6.75E+04 (1) µg/Kc 9.40E+04 (2) µg/Kc 5.25E+03 (1) µg/Kc 6.10E+05 (3) µg/Kc 2.23E+04 (1) µg/Kc 1.94E+06 (1) µg/Kc 4.38E+03 (1) µg/Kc 5.08E+05 (1) µg/Kc 6.99E+03 (1) µg/kg 5.57E+06 (1) µg/kg 2.73E+05 (1) µg/kg 2.35E+04 (1) µg/kg 4.57E+04 (1) µg/kg 2.01E+06 (1) µg/kg 8.65E+02 (1) µg/kg 1.09E+06 (1) µg/kg (1) µg/K(5.72E+03 (1) µg/K 3.56E+04 (1) µg/K 7.82E+05 (1) µg/K 2.35E+04 (1) µg/K 7.80E+05 (2) µg/K 4.81E+05 (1) µg/K 6.96E+04 (1) µg/K (2) µg/K (1) µg/K (1) µg/K (1) µg/K (1) µg/K (2) µg/K (2) µg/K (1) Jg/K (1) µg/K (1) µg/K (1) µg/K (2) µg/K (2) µg/K (S) hg/ (1) µg/r Source 1.47E+04 4.70E+04 8.97E+06 7.74E+03 6.20E+04 1.60E+06 3.21E+04 5.50E+06 3.21E+06 8.62E+05 1.99E+05 4.50E+04 Screening 3.96E+07 1.56E+06 Residentia Level Soil 1 Methyl tert-butyl ether (MTBE) Methylene chloride trans-1,2-DCE trans-1,3-Dichloropropene ,2-Dichloroethane (EDC Trichloroethene (TCE)
Trichlorofluoromethane
Vinyl chloride
Xylenes, Total Bromobenzene Bromodichloromethane Bromoform Bromomethane etrachloroethene (PCE) cis-1,2-DCE cis-1,3-Dichloropropene Dichlorodifluoromethane ,3,5-Trimethylbenzene,3-Dichlorobenzene Dibromochloromethane Analytes 4-Methyl-2-pentanone Hexachlorobutadiene 1,2-Dichloropropane 1,3-Dichloropropane 2-Dichloropropane Carbon tetrachloride n-Propylbenzene sec-Butylbenzene 4-Isopropyltoluene tert-Butylbenzene Isopropylbenzene 2-Butanone 2-Chlorotoluene Dibromomethane Carbon disulfide 4-Chlorotoluene n-Butylbenzene Chlorobenzene Chloromethane Chloroethane Ethylbenzene 2-Hexanone Naphthalene Chloroform Benzene Acetone Toluene Styrene

Table 9
Group 3 Soil Analytical Results Summary - AOC 23 and AOC 25
Bloomfield Refinery, Bloomfield, New Mexico

Table 9
Group 3 Soil Analytical Results Summary - AOC 23 and AOC 25
Bloomfield Refinery, Bloomfield, New Mexico

AOC 23-1 (0-0.5')	02.07	0.20	<0.20	<0.20	<0.20	<0.20	<0.40	<0.30	<0.40	<0.50 5	0.00	\$0.20 \$0.20	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	<0.50 \$0.50	×0.20	20.50	800	<0.25	<0.20	<0.20	\$ 0.20 \$ 0.20	0.20	<0.20	<0.20	<0.20	<0.20 20.20	00.00	<0.50	<0.20	<0.20	<0.20	<0.20	<0.50	07.00	<0.20	<0.20	<0.20
(1.5-2.0') 8-6 UMWS	000	02.02	<0.20	<0.20	<0.20	<0.20	<0.40	<0.30	<0.40	0.50	\$0.50 \$7.50	02.02	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	40.50	20.20	VO.50	20,00	<0.25	<0.20	<0.20	<0.20	0.20	<0.20	<0.20	<0.20	\$ 0.20 \$	00.00	<0.50 <0.50	<0.20	<0.20	<0.20	<0.20 2.00	0.50	02.00	<0.20	<0.20	<0.20
SWMU 5-6 (0-0.5°)	000	20.20	<0.20	<0.20	<0.20	<0.20	<0.40	<0.30	<0.40	\$ 0.50 5	00.00	02.02	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	\$ 0.50 \$	07:00	V0.50	30.00	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	00.00	<0.50 <0.50	<0.20	<0.20	<0.20	<0.20	<0.50 \$	02.00	<0.20	<0.20	<0.20
70.5-2.1) 5-5 UMWS	000	02.02	<0.20	<0.20 <0.20	<0.20	<0.20	<0.40	<0.30	<0.40	0.50	20.50	22.02	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	<0.50	20.70	20.50	8.00	<0.25	<0.20	<0.20	40.20 50.20	200	<0.20	<0.20	<0.20	\$ 0.20 20 20 20 20 20 20 20 20 20 20 20 20 2	00.00	VO.50	<0.20	<0.20	<0.20	<0.20	02.00	\$0.20	<0.20	<0.20	<0.20
(1.5-2.0') 5-5 UMWS	000	02.02	<0.20 <0.20	<0.20	<0.20	<0.20	<0.40	<0.30	<0.40	\$ 0.50 5	20.50	02.02	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	\$ 0.50 \$ 0.50	20.20	0.50	2000	<0.25	<0.20	<0.20	<0.20	07.00	<0.20 <0.20	<0.20	<0.20	\$ 0.20 20.20	2 5	<0.50 <0.50	<0.20	<0.20	<0.20	<0.20 5	20.50	\$0.20	<0.20	<0.20	<0.20
SWMU 5-5 (0-0.5')	00.07	20.20	<0.20	<0.20	<0.20	<0.20	<0.40	<0.30	<0.40	\$ 0.50 5	50.50 25.05	20.20	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	<0.50 50.50 50.50	20.20	0.30	22.50	<0.25	<0.20	<0.20	<0.20	02.02	<0.20 <0.20	<0.20	0.22	\$ 0.20 \$	00.00	<0.50	<0.20	<0.20	<0.20	<0.20 5.50 5.50 5.00 5.00 5.00 5.00 5.00	0.50	\$0.20	<0.20	<0.20	<0.20
('0.5-2.1) 4-3 UMWS	00.07	02.00	<0.20	<0.20	<0.20	<0.20	<0.40	<0.30	<0.40	0.50	20.50	02.02	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	\$ 50.50 \$ 20	40.20 5	00.00	00.00	<0.25	<0.20	<0.20	<0.20	0.20	<0.20	<0.20	<0.20	\$ 0.20 5	20.00	<0.50	<0.20	<0.20	<0.20	<0.20	0.50	\$0.20 \$0.20	<0.20	<0.20	<0.20
(°6.0-0) 4-3 UMWS	00,00	07.02	\$0.20 \$0.20	<0.20 <0.20	<0.20	<0.20	<0.40	<0.30	<0.40	\$ 0.50 5	00.00	20.02	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	\$ 0.50 50 50 50 50 50 50	\$0.20 20.20	0.50	2000	<0.25	<0.20	<0.20	<0.20	0,20	<0.20	<0.20	<0.20	0.20	00.00	<0.50	0.86	<0.20	<0.20	<0.20	0.50	07.00	<0.20	<0.20	<0.20
5-3 (1.5-2.0°)		07.0	02.00	\$0.20 \$0.20	<0.20	<0.20	<0.40	<0.30	<0.40	\$ 0.50 2	0.00	0.00	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	0.50	07.0	20.50	60.00	<0.25	<0.20	<0.20	<0.20	0.20	<0.20	<0.20	<0.20	40.20	00.00	<0.50	<0.20	<0.20	<0.20	<0.20	40.50 50.50	07.0	<0.20	<0.20	<0.20
SWMU 5-3 (0-0.5°)	00.07	02.0	0.20	\$0.20	<0.20	<0.20	<0.40	<0.30	<0.40	\$0.50 2	00.50	02.0>	<0.25 <0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	0.50	07.00	0.50	00.00	<0.25	<0.20	<0.20	<0.20	40.20 20.20	<0.20	<0.20	0.48	<0.20 5	00.00	\$0.50 \$0.50	0.5	<0.20	<0.20	<0.20	<0.50 0.50	07.02	<0.20	<0.20	<0.20
(1.5-2.1) S-3 UMWS		20.50	<0.20 <0.20 <0.20	<0.20	<0.20	<0.20	<0.40	<0.30	<0.40	\$ 0.50 2	0.50	0.20	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	6 .50	07.0	6.50	20.00	<0.25	<0.20	<0.20	<0.20	0.20	<0.20	<0.20	<0.20	0.20	00.00	<0.50 <0.50	<0.20	<0.20	<0.20	<0.20	\$ 0.50 5	02.02	<0.20	<0.20	<0.20
(0-0.5') S-2 (NWS	00.07	02.02	02.02	02.05	<0.20	<0.20	<0.40	<0.30	<0.40	<0.50	20.50	0.02	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	¢0.50	07.0	20.50	800	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	00.00	\$0.50 \$0.50	<0.20	<0.20	<0.20	<0.20	<0.50	02.02	<0.20	<0.20	<0.20
(1.5-2.0')	000	02.00	02.02	02.05	<0.20	<0.20	<0.40	<0.30	<0.40	<0.50	0.50	02.02	<0.25 <0.25	<0.50 <0.50	<0.20	<0.20	<0.25	<0.20	<0.20	\$ 0.50 5 0.50	0.20	20.50	00.00	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	00.00	<0.50	<0.20	<0.20	<0.20	<0.20	<0.50	0.20	40.20 40.20	<0.20	<0.20
(0-0.5')	000	02.0	200	02.05	<0.20	<0.20	<0.40	<0.30	<0.40	<0.50	0.50	22.02	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	CO.50	0.20	0.50	00.00	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	00.00	0.50 0.50	<0.20	<0.20	<0.20	<0.20	<0.50	0.20	<0.20	<0.20	<0.20
SWMU 4-1 (36-38')	000	07.0	02.02	\$0.50 \$0.20	<0.20	<0.20	<0.40	<0.30	<0.40	<0.50	00.50	02.0	<0.25	<0.50	<0.20	<0.20	<0.25	<0.20	<0.20	¢0.50	40.20 5	0.50	200	<0.25	<0.20	<0.20	<0.20	<0.20 20.20	<0.20	<0.20	<0.20	<0.20	00.50	<0.20	<0.20	<0.20	<0.20	<0.20	<0.50	02.0	<0.20	<0.20	<0.20
(8-8') t-4 UMWS	7	5 6	0.0	0 V	0.10	v-1.0	<2.0	<1.5	<2.0	<2.5	47.5	ر د د د	33.5	<2.5	4.0	4.0	<1.3	<1.0	<1.0	<2.5	0.12	47.5	7,70	43	×1.0	<1.0	<1.0	0.7	0.10	<1.0 1.0	<1.0	√ 1.0	7 7	5.5	0.7	<1.0	<1.0	<1.0	<2.5	0 7	0.1	<1.0	<1.0
('0.5-3.1) t-4 UMW2	000	0,000	02.02	2020	\$0.20 \$0.20	<0.20	<0.40	<0.30	<0.40	<0.50	0.50	50.00	0.25	<0.50 <0.50 <0.50	<0.20	<0.20	<0.25	<0.20	<0.20	<0.50 8	0.20	20.50	200	<0.25	<0.20	<0.20	<0.20	¢ 0.50	02.02	<0.20	<0.20	<0.20	000	20.50	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.20 <0.20	<0.20	<0.20
('6.0-0) f-4 UMWS	000	40.20 40.20	02.00	02.02	40.20 40.20	<0.20	<0.40	<0.30	<0.40	<0.50	40.50	\$ 6.23	40.25 0.25 0.25 0.25	<0.50	40.20 40.20	<0.20	<0.25	<0.20	<0.20	<0.50	\$0.20	\$ 50.50	20.00	<0.20 <0.25	40.20 40.20	<0.20	<0.20	\$ 0.20 \$	02.02	<0.20	<0.20	<0.20	0.50	V0.20	<0.20	<0.20	<0.20	<0.20	<0.50	40.20 20.20	<0.20	<0.20	<0.20
Units		mg/Kg	mg/Kg	BO/KG	ma/Ka	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/kg	mg/Kg	mo/Ko	mo/Ko	ma/Ka	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	ma/Ka	mg/Kg	mg/Kg	mg/Kg	mg/Kg	ma/Ka	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	ma/Ka	mg/Kg	mg/Kg
Source	9	Ξ		Ē	Έ	Ξ	Ξ	Ξ	Ξ	Ξ	$\widehat{\Xi}$	ΞĒ	<u> </u>	2 (5	10	ì	Ξ	(2)				Ś	গ্ৰ	e e		Ξ		ଚ୍ଚି	<u> </u>	Ξ	Ξ	E	Ę	3	3 (0	2	Ξ	(I	Ξ	<u>ල</u>	Ξ	$\hat{\epsilon}$	
	od 8270) mg/kg	1.43E+02	3.01=+03	3.21E+01	6 11F+03	6.11E+01	1.83E+02	1.22E+03	1.22E+02	1.26E+01	6.12E+01	9.20E+U3	3.91E+02 3.10E+02	3 10F+03	1.80E+02		8.71E+00	3.10E+02	1	-	1		Z.40E+01	2 40F+02		3.44E+03		8.50E+02	4 90F+01	4.81E+00	4.81E-01	4.81E+00	1 04 04	2 40E+01	3 10F+04	1.80E+02	2.56E+00	9.15E+01	2.80E+02	2.60E+03	4.81E+02	4.81E-01	
Analytes	Semi Volatile Organics - (EPA Method 8270)	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Diction Operations 2 4 5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chioronaphthalene	2-Ciliotophierioi	2-Methylphanol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3+4-Methylphenol	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chiorophenyi phenyi etner	4-Nitrophenol	Acenaphthene	Acenaphthylene	Aniline	Azobenzene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Denzoic acid	Renzyl alcohol	Bis(2-chloroethoxy)methane	Bis(2-chloroethyl)ether	Bis(2-chloroisopropyl)ether	Bis(2-ethylhexyl)phthalate	Butyl benzyl phthalate	Chysene	Dibenz(a,h)anthracene	Dibenzofuran

Group 3 Soil Analytical Results Summary - AOC 23 and AOC 25 Bloomfield Refinery, Bloomfield, New Mexico Table 9

				0	2	_	_			C	2				_							}	Γ		Π
AOC 23-1 (0-0.5')	<0.20	<0.20	<0.50	<0.20	<0.2	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.2(<0.50	<0.2(<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		<10	<5.0	<50
SWMU 5-6 (1.5-2.0°)	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		44	<5.0	88
SWMU 5-6 (0-0.5')	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		99	<5.0	200
7UG ('0.S-2.1) 5-3 UMWS	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		<10	<5.0	<50
(1.5-2.0°)	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		<10	<5.0	<50
('8.0-0) 8-8 UMW8	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	0.24	<0.50		210	<5.0	610
(1.5-2.0°)	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		42	<5.0	130
('8.0-0) 4-3 UMWS	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		520	<5.0	530
(1.5-2.0°) 8-3 UMWS	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		<10	<5.0	<50
6-3.0-0) E-3 UMWS	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		370	<5.0	1200
(1.5-2.0°)	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		<10	6.2	<20
SWMU 5-2 (0-0.5°)	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		130	<5.0	009
(1.5-2.0')	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		70	<5.0	<50
SWMU 5-1 (0-0.5')	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		280	<5.0	640
('8E-3E) 1-4 UMWS	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		<10	<5.0	<50
(.8-9) r-4 UMWS	<1.0	<1.0	<2.5	<1.0	<1.3	<2.5	<1.0	<1.0	<1.0	<1.0	<1.3	<2.5	8.2	<2.5	<1.0	<1.0	<2.0	2.8	<1.0	<1.0	<2.5		7800	110	4000
(1.5-2.0') NWWS	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		<10	<5.0	<50
('6-0') r-4 UMWS	<0.20	<0.20	<0.50	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.40	<0.20	<0.20	<0.20	<0.50		<10	<5.0	<50
Units	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg
Source	(1)	(1)	<u>(1)</u>		(1)	(J)	Ξ	(3)	<u>(1</u>	Ξ	Ξ	<u>(1</u>	(1)	(1)	(3)	(1)	(1)	(1)	[(1)	(1)	(2)		(4)	(4)	(2)
Residential Soil Screening Level	4.89E+04	6.11E+05	6.11E+03	-	2.29E+03	2.29E+03	2.45E+00	6.20E+01	3.67E+02	6.11E+01	4.81E+00	4.13E+03	4.50E+01	4.94E+01	6.90E-01	8.00E+02	2.07E+01	1.83E+03	1.83E+04	1.72E+03	7.80E+01	Method 80	8.00E+02	8.00E+02	2.50E+03
R Analytes	Diethyl phthalate	Dimethyl phthalate		Di-n-octyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene		Naphthalene		N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Pyridine	Total Petroleum Hydrocarbons - (EPA Method 8015B)			Motor Oil Range Organics (MRO)

-- No screening level or analytical result available (1) NMED - Technical Background Document for Development of Soil Screening Levels - Revision 5.0 (August 2009)

(2) EPA - Regional Screening Levels (April 2009)
(3) EPA - Regional Screening Levels (April 2009) multiplied by 10 pursuant to Provision VII.B. of the July 7, 2007 NMED Order because the constituent is listed as carcinogenic
(4) NMED Oct. 2006 TPH Screening Guidelines - Unknown oil for residential exposure via vapor migration and inhalation of ground

water (5) NMED Oct. 2006 TPH Screening Guidelines - Waste oil forwapor migration and inhalation of ground water

Table 9
Group 3 Soil Analytical Results Summary - AOC 23 and AOC 25
Bloomfield Refinery, Bloomfield, New Mexico

				ļ		}						
	Residential Soil	nrce		9Ua ('8.0-0	(.0.2-9.)	22-23,)	(.5.0-0	(.0.2-3.1)	('8.0-(9UG-('8.0-0	(.6-2.0')	(.88-98
	Screening Level	os		OC 53-1 ((OC 53-1 (4	OC 53-1 (6	OC 52-1 ((OC 52-1 (.	OC 52-5 ((OC 52-5 ((OC 52-5 (.	OC 52-5 (:
Analytes			Units	V			V S	V) V	A	A	A
Sample Date		ŀ		4/21/2009	4/21/2009	4/22/2009	4/23/2009	4/23/2009	4/5/2009	4/5/2009	4/5/2009	4/5/2009
Metals (mg/kg) Antimony	3.13E+01	(1)	ma/Ka	<2.5	<2.5	<2.5	<2.5	<13	<12	<2.5	<2.5	<2.5
Arsenic	3.59E+00	Ξ	mg/Kg	<2.5	<2.5	<2.5	<2.5	<13	<12	<2.5	<2.5	<2.5
Barium	1.56E+04	(1)	mg/Kg	140	130	6.9	120	160	130	150	120	88
Beryllium	1.56E+02	Ξ	mg/Kg	0.28	0.3	0.27	0.2	<0.75	<0.75	0.26	0.23	<0.15
Cadmium	7.79E+01	(1)	mg/Kg	<0.10	<0.10	<0.10	0.41	<0.50	<0.50	<0.10	<0.10	<0.10
Chromium	1.13E+05	Ξ	mg/Kg	3.4	3.7	2.2	4.4	5.1	6.4	3.7	2.9	1.0
Cobalt	2.30E+01	<u> </u>	mg/kg	د در	2.5	2.4	4.4	4.5 7.05	4.0 5.5	4.6	7.7	4.0
Cyallide	4 DOF+02	E	ma/Ka	5.07	3.5	23	2 6	5.1	5.7	2.7	286	2.9
Mercilly	7.71E+00	Ē	ma/Ka	<0.033	<0.033	<0.032	0,1	<0.033	<0.033	<0.033	<0.033	<0.033
Nickel	1.56E+03	Ξ	mg/Kg	4.7	4.2	2.3	4.1	6.0	6.0	4.2	3.2	2.7
Selenium	3.91E+02	(1)	mg/Kg	<13	<13	<13	<13	<13	<12	<13	<13	<2.5
Silver	3.91E+02	(1)	mg/Kg	<0.25	<0.25	<0.25	<0.25	<1.3	<1.2	<0.25	<0.25	<0.25
Vanadium	3.91E+02	Ξ	mg/Kg	11	11	4.4	9.6	15	15	9.3	9.5	5.5
Zinc	2.35E+04		mg/Kg	17	17	12	61	25	28	20	14	9.5
Volatile Organic Compounds - (EPA Method 8260B)	Method 826		mg/kg									
1,1,1,2-Tetrachloroethane	2.92E+01	Ξ	mg/Kg	<0.050	<0.050	:	;	1	<u>'</u>	1	1	1
1,1,1-Trichloroethane	2.18E+04	Ξ	mg/Kg	<0.050	<0.050	:	:	:	;	:	:	:
1,1,2,2-Tetrachloroethane	7.97E+00	Ξ	mg/Kg	<0.050	<0.050	;	:	:	;	:	;	:
1,1,2-Trichloroethane	1.72E+01		mg/Kg	<0.050	<0.050	1	:		:	:	'	:
1,1-Dichloroethane	6.29E+01		mg/Kg	<0.10	<0.10	:	:	1	:	,		:
1,1-Dichloroethene	6.18E+UZ		mg/Kg	00.050	<0.050 50.050	:	:	1	:	:	:	-
1,1-Dichloropropene			mg/Kg	<0.10	0.10	•	:	1	ı	:	;	:
1,2,3-Trichlorobenzene	0 450 04	5	mg/kg	0.70	0.70	:	:	:	:	:	•	:
1,2,3- i richloropropane	9.15E-01	Ξξ	mg/Kg	<0.10 <0.050	20.10	:	:	1	•	:	' '	: :
1.2.4- ricilolobelizelle	6.70E+01	0	mg/Ka	<0.050	<0.050	: 1	: :	: :	: ;	: :	: ;	: :
1,2-Dibromo-3-chloropropane	1.94E-01	Ξ	mg/Kg	<0.10	<0.10	:	1	ŧ	1	:	:	;
1,2-Dibromoethane (EDB)	5.74E-01	(1)	mg/Kg	<0.050	<0.050		;	:	;	1	1	:
1,2-Dichlorobenzene	3.01E+03	<u>(</u>	mg/Kg	<0.050	<0.050		:	1	;	:		;
1,2-Dichloroethane (EDC)	7.74E+00		mg/Kg	<0.050	<0.050	;	1	:	:	1	:	:
1,2-Ulchloropropane	4 70E±01	2	mg/kg	20.020	0.030	:	•	:	:	: :	: ;	: :
1,3,3-11iilletiiyibelizelle 1,3-Dichlorabanzana	1 1		ma/Ka	<0.050	<0.050	.		:	: 1	;	!	;
1.3-Dichloropropane	1.60E+03	(2)	mg/Kg	<0.050	<0.050	:	:	:	,	:	:	:
1,4-Dichlorobenzene	3.21E+01	Ξ	mg/Kg	<0.050	<0.050	1	i		:	:	1	1
1-Methylnaphthalene	2.20E+02	(3)	mg/Kg	<0.20	<0.20	:	1	:	:	:	:	1
2,2-Dichloropropane	1		mg/Kg	<0.10	<0.10	:	:		:	:	•	-
2-Butanone (MEK)	3.96E+04	Ξ	mg/Kg	<0.50	<0.50	:	1	:				
2-Chlorotoluene	1.56E+03	Ξ	mg/Kg	<0.050	<0.050	1	;	:	;	•	:	:
2-Hexanone	1 10	1	mg/Kg	<0.50	0.50	:		:	:	:	:	1
2-Methylnaphthalene	3.10E+02	2	mg/Kg	<0.20	\$ 0.20 \$ 0.50	1		:	:	:	;	:
4-Chlorotoluene	5.50E+U3		mg/Kg	<0.050	<0.050		;	:	:	:		!
4-Isopropyltoluene		†	mg/Kg	<0.050	\$0.050 \$0.50	: ;	: :	: :	-	: :	: :	: :
4-Metnyr-z-pentanone	6 75F+04	15	Bayka Bayka	0.50 75 75	<0.75	: :	: ;	: :	: ;		: :	i '
Benzene	1.55E+01	E	ma/Ka	<0.050	<0.050	1	,				:	
3:150			,									

Table 9
Group 3 Soil Analytical Results Summary - AOC 23 and AOC 25
Bloomfield Refinery, Bloomfield, New Mexico

	Residential Soil	onrce		40a ('8.0-0)	(1.5-2.0')	(25-23.)	(.5.0-0)	(1.5-2.0')	(.5.0-0	40a-('8:0-0 <u>)</u>	(1.5-2.0')	(.86-38.)
	Level	PS		3-1	3-1 () r-e:) L-S) L-S	2-5	2-5	2-5	2-S
Analytes			Units	∀ OC 5	7 00 v	700 v	7 00 v	7 OC 5	√00 S	∀0C 5	doc 2	∀ OC 5
Bromobenzene	9.40E+01	(2)	mg/Kg	<0.050	<0.050	' :		1	1		′ :	
Bromodichloromethane	5.25E+00	(ı)	mg/Kg	<0.050	<0.050	:	:	;	1	1	1	:
Bromoform	6.10E+02	ල	mg/Kg	<0.050	<0.050	1	1	1	1	1		1
Bromomethane	2.23E+01	Ξ	mg/Kg	<0.10	<0.10	:	1	ŀ	:	ł	:	1
Carbon disulfide	1.94E+03	Ξ	mg/Kg	<0.50	<0.50	1		:	:	1	1	•
Carbon tetrachloride	4.38E+00	<u> </u>	mg/Kg	<0.10	<0.10 2.10	:	:	;	;	;	1	1
Chlorobenzene	5.08E+02		mg/Kg	<0.050	<0.050 40.050	:	:	:		:	:	1
Chloroethane		-	mg/kg	01.0 0.10	0.70	!	<u>ا</u> ا	:	:	:	1	;
Chloromethane	3.72E+00	E	mg/Kg	<0.050 <0.050 <0.050	V0.030	;	3 1	•	: :	: ;	: :	: :
cis-1 2-DCE	7.82E+02	ΞΞ	mg/Ka	<0.050	<0.050	: :	: :	: :	: 1	; ;	: :	; ;
cis-1,3-Dichloropropene	2.35E+01	E	ma/Kg	<0.050	<0.050	;	:	1		1	1	'
Dibromochloromethane	1.13E+01	Ξ	mg/Kg	<0.050	<0.050		;	:	1	:	1	,
Dibromomethane	7.80E+02	(2)	mg/Kg	<0.10	<0.10	-	:		;	:	:	;
Dichlorodifluoromethane	4.81E+02	(1)	mg/Kg	<0.050	<0.050	-	:		:		•	;
Ethylbenzene	6.96E+01	Ξ	mg/Kg	<0.050	<0.050			ı	1	1	1	1
Hexachlorobutadiene	6.20E+01	<u>ල</u>	mg/Kg	0.10	<0.10	-	-	!	:	:		:
Isopropylbenzene	3.21E+03	$\overline{\Xi}$	mg/Kg	<0.050	<0.050	-	:	i	1	;	:	1
Methyl tert-butyl ether (MTBE)	8.62E+02	$\bar{\epsilon}$	mg/Kg	<0.050	<0.050	<u>-</u>	:	i	:	:	1	:
Methylene chloride	1.99E+02	Ξ	mg/Kg	40.15 6	\$0.15 50.15	:	;	-	:	-	1	•
Naphthalene	4.50E+01		mg/Kg	<0.10	<0.10	;	:	;	:	:	:	:
n-Butylbenzene		\downarrow	mg/kg	00.00	40.030	-	1	:	1	1	:	<u>ا</u> ا
n-Propyibenzene	1	1	mg/kg	00.00	00.00	•	1	:	:	:	:	1
Styrene	8 97E+03	Ξ	ma/Ka	<0.050 <0.050	×0.050 ×0.050	: :	: :	: :	: :	: :	: :	: :
tert-Butylbenzene			mg/Kg	<0.050	<0.050		1	;	1	1	1	!
Tetrachloroethene (PCE)	6.99E+00	<u>(E)</u>	mg/Kg	<0.050	<0.050			;		:	i	1
Toluene	5.57E+03	(£)	mg/Kg	<0.050	<0.050	-	1	:	1	1	:	1
trans-1,2-DCE	2.73E+02	(1)	mg/Kg	<0.050	<0.050		:	1			1	1
trans-1,3-Dichloropropene	2.35E+01	(E)	mg/Kg	<0.050	<0.050	:	:	;	;	1	ł	1
Trichloroethene (TCE)	4.57E+01	Ξ	mg/Kg	<0.050	<0.050	:	:	1	1	1	1	:
l richlorofluoromethane	2.01E+03		mg/Kg	0.050	00:050	:		:	:	1	:	:
Vinyi chioriae	4 00E±02		mg/ng	50.030 40	, v. 030	1	-	:	:	:	•	!
Volatile Organic Compounds - (FPA Method 8260	A Method 8260		a/Ka-dry	20.00	200	•	-	•	:	•	:	:
1,1,1,2-Tetrachloroethane	2.92E+04	E	(1) µg/Kg-dry	<0.991	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
1,1,1-Trichloroethane		Ξ	ug/Kg-dry	<0.991	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
1,1,2,2-Tetrachloroethane	7.97E+03	Ξ	µg/Kg-dry	<0.991	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	×1.02
1,1,2-Trichloroethane	1.72E+04	<u> </u>	µg/Kg-dry	<0.991	<1.12	×1.10	<0.861	<0.903	<0.898	<0.902	<0.926	\
1,1-Dichloroethane	6.29E+04	豆	ug/Kg-dry	<0.991	<1.12	<u>7</u> 2	<0.861	<0.903	<0.898	<0.902	<0.926	V 1.02
1,1-Dichloroethene	6.18E+05	<u> </u>	pg/Kg-dry	<0.991	×1.12	7.10	<0.861	<0.903	<0.898	<0.902	<0.926	7 2
1,1-Dichloropropene	-	1	ug/Kg-dry	<0.991 60.091	71.12	21.70	<0.001	<0.903	<0.0390	<0.902	<0.92b	V 1.02
1,2,3-Trichlorobenzene	0.455±02	5	ng/Kg-dry	<0.991	<1.12 4.13	7 7 7	<0.861	<0.903	<0.898	<0.902	<0.926	7 2
1,2,3-Trichloropropane	9.15E+02 1.43E+05	$\bar{\epsilon}$	ug/Kg-dry	<0.991	×1.12 ×1.12	√1.10 √1.10	<0.00 0.861	<0.903 <0.903	<0.0898 <0.898	<0.902	<0.926	2 \ \ 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1,2,4-Trimethylbenzene	6.70E+04	(2)	ug/Kg-dry	<0.991	<1.12	4.10	<0.861	<0.903	<0.898	<0.902	<0.926	4 02
1,2-Dibromo-3-chloropropane	1.94E+02	Ξ	µg/Кg-dry	<0.991	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
1,2-Dibromoethane (EDB)	5.74E+02	$\overline{\Xi}$	µg/Kg-dry	<0.991	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	\ <u>^</u>
1,2-Dichlorobenzene	3.01E+06	<u>(1)</u>	µg/Kg-dry	<0.991	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02

Table 9
Group 3 Soil Analytical Results Summary - AOC 23 and AOC 25
Bloomfield Refinery, Bloomfield, New Mexico

	Residential Soil	901	9UG ('8.0-	6-2.0")	5-23.)	(.5.0-	(.0.2-9	(.5.0-	9UQ-('8.0-	(.0.2-5.	(.86-3
	Screening Level	nos	OC 23-1 (0·	OC 23-1 (1.	OC 53-1 (5:	OC 52-1 (0·	OC 52-1 (1.	OC 52-5 (0-	OC 52-2 (0-	OC 52-2 (1.	OC 52-5 (30
Analytes 1.2-Dichloroethane (EDC)	7.74E+03	(1) µg/Kg-dry	<0.991	▲ 1.12	√ 1.10	√ 0.861	<0.903	√ 0.898	<0.902	<0.926	▲ 1.02
1,2-Dichloropropane	1.47E+04	(1) µg/Kg-dry	<0.991	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
1,3,5-Trimethylbenzene	4. /UE+U4	(z) µg/Kg-dry	<0.991	<1.12	01.70	0.861 0.861	<0.903	0.898 0.898 0.898 0.898	<0.902	<0.926 <0.926	<1.02 <1.02
1.3-Dichloropropane	1.60E+06	(2) µg/Kg-dry	<0.991	<1.12	4.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
1,4-Dichlorobenzene	3.21E+04	+	<0.991	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
2,2-Dichloropropane	000	_	<0.991	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
2-Sutanone	3.30E+0/ 1.56F+06	(1) pg/kg-dry	\$0.50 \$0.991	4.30	\$ \frac{1}{2}	\$0.861	<0.903	868 O>	<0.902	<0.926	<1.02
2-Hexanone		_	.L	<4.50	<4.38	<3.44	<3.61	<3.59	<3.61	<3.71	<4.08
4-Chlorotoluene	5.50E+06	(2) µg/Kg-dry	<0.991	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
4-Isopropyitoluene	1	$\overline{}$		<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02 1.02 1.02
4-Methyl-2-pentanone	2751.07	_	_L	4.50	4.38	43.44	<3.61	<3.59 50 50 50 50 50 50 50 50 50 50 50 50 50	43.61	2.5.5	4.00
Acetone	6.75E+U/ 1 55E+04	(1) µg/Kg-dry	42.4 <0.991	20.7 <1.12	16.2	1/b <0.861	33.9	<0.59	<3.01	<0.57 0.926 0.926	4.21 <1.02
Bromobenzene	9.40E+04		i_	<1.12	41.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
Bromodichloromethane	5.25E+03	-	1	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
Bromoform	6.10E+05	(3) µg/Kg-dry	Ш	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
Bromomethane	2.23E+04	_		<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
Carbon disulfide	1.94E+06	_	1	<4.50	<4.38	<3.44	<3.61	<3.59	<3.61	<3.71	<4.08
Carbon tetrachloride	4.38E+03	(1) µg/Kg-dry	$_{ m L}$	<1.12	4.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
Chlorobenzene	5.U8E+U5	(1) pg/kg-dry	l_	41.12 74.43	41.10 4.10	<0.801	<0.903	×0.890	<0.90Z	<0.920	×1.02
Chloroform	5 72E+03	(1) IIO/Kg-dry	<0.99	<1.12	4.15	<0.001 <0.861	<0.903	<0.050 <0.050 <0.050	<0.902	<0.920	<1.02
Chloromethane	3.56E+04		1	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
cis-1,2-DCE	7.82E+05	-	1_1	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
cis-1,3-Dichloropropene	2.35E+04	-	<0.991	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	41.02
Dibromochloromethane	1.13E+04	$\overline{}$		<1.12	4.10	<0.861	<0.903	<0.898	<0.902	976.0>	Z1.02
Dichlorodiffuoromethane	7.80E+05 4.81F+05	(1) pg/kg-dry	<0.991	<1.12	×1.10	<0.861	<0.903	<0.898 <0.898 <0.898	<0.902	<0.926	<1.02
Ethylbenzene	6.96E+04	-	1	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
Hexachlorobutadiene	6.20E+04	$\overline{}$)	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
Isopropylbenzene	3.21E+06	(1) µg/Kg-dry	ı	<1.12	4.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02 4.02
Methyl tert-butyl ether (MTBE)	8.62E+U5	(1) µg/kg-ary	<0.991 8 12	21.12	413	40.801 8 30	25.8	40.89841.80	<0.90z	<1.85	20.02
Naphthalene	4.50E+04	-	ľ	<1.12	4.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
n-Butylbenzene	1	1	\mathbf{L}	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
n-Propylbenzene	1	hg/Kg-dry	1	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
sec-Butylbenzene	1	_	4	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	-1.02 -1.02
Styrene	8.97E+06	(1) µg/Kg-dry	<0.991	<1.12	4.10	<0.861	<0.903	<0.898	<0.902	476.02	×1.02
Tetrachloroethera (PCE)	- 6 99E+03	(1) IId/Kg-dry		<1.12	4.10	<0.001	<0.903	<0.030	<0.902	<0.920	×102
Tolliene	5 57E+06	7	<0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	141	4 10	<0.861	<0.903	<0.936	×0.902	<0.926	<1 02
trans-1.2-DCE	2.73E+05	(1) pg/kg-dry		<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
trans-1,3-Dichloropropene	2.35E+04		1'	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
Trichloroethene (TCE)	4.57E+04		1 1	<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
Trichlorofluoromethane	2.01E+06			<1.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	<1.02
Vinyl chloride	8.65E+02		<0.991	4.12	<1.10	<0.861	<0.903	<0.898	<0.902	<0.926	V V
Xylenes, Total	1.09E+00	(1) µg/kg-dry	_	< 1.12	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.2	<0.800	<0.030	<0.302	~0.32v I	40.1%

Table 9
Group 3 Soil Analytical Results Summary - AOC 23 and AOC 25
Bloomfield Refinery, Bloomfield, New Mexico

(b)

	Residential Soil Screening	onrce		4UG ('8.0-0)	(1.5-2.r)	(25-23.)	(0-0-5')	(1.5-2.0')	(0-0-0)	4UG-('8.0-0)	(1.5-2.0')	(3e-38.)
Analytes	Level	S	Units	V-62 20-1	VOC 23-1	VOC 33-1	VOC 52-1	VOC 52-1	VOC 52-5	∀OC 52-5	VOC 52-5	VOC 52-5
l so l	- (EPA Method 8270) mg/kg	9	ma/ka	06.07	000	0000	00.07	00.07	00.0	00.07	00.07	000
1,z,4-1 richlorobenzene 1,2-Dichlorobenzene	3.01E+03	ΞΞ	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	40.20 40.20
1,3-Dichlorobenzene			mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,4-Dichlorobenzene	3.21E+01	(1)	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4,5-Trichlorophenol	6.11E+03	Ξ	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4,6-Trichlorophenol	6.11E+01	E	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4-Dichlorophenol	1.83E+02	E	mg/Kg	0.40	<0.40	0.40	0.40 20.40	0.40 20.40	0.40	0.40 20.40	0.40	0.40
2,4-Dimetnylphenol	1.22E+U3	Ξ	mg/Kg	~U.3U	\$0.30 \$0.40	<0.00 <0.40	<0.30 <0.40	<0.30	50.30 <0.40	^U.3U <0.40	50.95 <0.40 <0.40	50.30 <0.40 <0.40
2.4-Unitrophenol	1.22E+02		ma/Ka	VO.40	20.50	0.50	<0.40	V0.40	VO. 40	V0.40	0.50	0 20 V
2,4-Dinitrotoluerie	6.12E+01	ΞΞ	ma/Ka	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
2-Chloronaphthalene	6.26E+03	Ξ	mg/Kg	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
2-Chlorophenol	3.91E+02	(1)	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Methylnaphthalene	3.10E+02	(2)	mg/Kg	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
2-Methylphenol	3.10E+03	(2)	mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
2-Nitroaniline	1.80E+02	(5)	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Nitrophenol	1 17	-	mg/Kg	<0.20	<0.20	07.0>	<0.20	<0.20	<0.20 50.20	<0.20	40.20 20.20	40.20
3,3 -Dichlorobenzidine	8./1E+00	Ξ Ś	mg/kg	\$0.25	\$0.20	\$0.20	\$0.20	\$7.05	\$0.25	\$2.0	\$0.20	\$ 60.63
3+4-Methylphenoi	3.105702	(2)	BO/Kg	07.0	20.20	02.02	07:0>	02.02	07.07	20.20	0.20	0000
3-Nitroarilline 4 6-Dinitro-2-methylphenol		\perp	ma/Ka	<0.50	<0.50	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	<0.50
4-Bromophenyl phenyl ether	1		mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
4-Chloro-3-methylphenol			mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
4-Chloroaniline	2.40E+01	(2)	mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
4-Chlorophenyl phenyl ether	1	į	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
4-Nitroaniline	2.40E+02	<u> </u>	mg/Kg	<0.25	\$2.0	<0.25	<0.25	<0.25	<0.25	<0.25 0.25 0.20 0.20 0.20 0.20 0.20 0.20	<0.25	<0.25 <0.25 <0.25
4-Initiopileilol Acenaphthene	3 44E+03	Ξ	ma/Ka	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthylene	1		mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Aniline	8.50E+02	(3)	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Anthracene	1.72E+04	Ξ	mg/Kg	<0.20	<0.20 5.30	<0.20	<0.20	<0.20 \$	<0.20	\$ 0.20 \$ 50	<0.20	<0.20
Azobenzene Bonz/a)arthracane	4.90E+01	<u>ව</u> ද	mg/kg	20.20	\$0.20 \$0.20	<0.20	<0.20	<0.20 <0.20	20.20	02.02	\$0.20 \$0.20	\$0.20 \$0.20
Benzo(a)avrene	4.81E-01	<u> </u>	ma/Ka	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(b)fluoranthene	4.81E+00	Ξ	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	1		mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Benzo(k)fluoranthene	4.81E+01	<u> </u>	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzoic acid	2.40E+U5	7	mg/Kg	<0.50	VC.50	\c\.	<0.5U	<0.50 00.00	VU.50	40.50 00.50	VU:3U	VC.U>
Berzyl alcohol	3.10E+04	(7)	mg/Kg mg/Kg	07:0>	07.0×	07.0>	<0.20	<0.20	<0.20	\$0.20 \$0.20	\$0.20 \$0.20	<0.20 <0.20
Bis(2-chloroethyl)ether	2.56E+00	įΞ	ma/Ka	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bis(2-chloroisopropyl)ether	9.15E+01	įΞ	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bis(2-ethylhexyl)phthalate	2.80E+02	(J)	mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Butyl benzyl phthalate	2.60E+03	<u>(c)</u>	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	\$0.20 20.20
Carbazole	v v v v v v v v v v v v v v v v v v	=	mg/Kg	<0.20	\$0.20 \$0.20	40.20 20.20	<0.20	<0.20	<0.20	40.20 20.20	<0.20	\$0.20 \$0.20
Onlysene Dibenzía h)anthracene	4.01E+02 4.81E-01	ΞΞ	ma/Ka	×0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibenzofuran	1 1 2 1	<u>;</u>	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
]										}

Group 3 Soil Analytical Results Summary - AOC 23 and AOC 25 Bloomfield Refinery, Bloomfield, New Mexico Table 9

Units		Residential Soil Screening Level	Source		4UG ('8.0-0) 1-	(1.5-2.0') r-	-1 (52-53')	(.9·0-0) l-	(1.5-2.0')	-2 (0-0·2.)	AUŒ-('8.0-0) S-	-2 (۱،5-2،0)	-5 (36-38')
A	Analytes			Units	¥0C 53	POC 53	¥0C 53	VOC SE	VOC 52	VOC 52	∀OC 52	∀ OC 52	∀OC 52
Monthalate 6.11E+05 (1) mg/kg -0.20	Diethyl phthalate	4.89E+04	Ξ	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
My printalate	Dimethyl phthalate	6.11E+05	(1)	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
there there	Di-n-butyl phthalate	6.11E+03	(1)	mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
threne 2226E+03 (1) mg/kg <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.0	Di-n-octyl phthalate	1		mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Control Cont	Fluoranthene	2.29E+03	(1)	mg/Kg	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Incoherization	Fluorene	2.29E+03	(1)	mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
International conditional co	Hexachlorobenzene	2.45E+00	Ξ	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Control Copenitation	Hexachlorobutadiene	6.20E+01	(3)	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1.23-cd)pyrene	Hexachlorocyclopentadiene	3.67E+02	(1)	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
12.3-cd)pyrene	Hexachloroethane	6.11E+01	(1)	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
one 4,18E+03 (1) mg/kg <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50	Indeno(1,2,3-cd)pyrene	4.81E+00	Ξ	mg/Kg	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
According to the Particular Background Document for Development of provision VII.B. of the July 7, 2007 NMED Order. 2005 To 1500 Co. 200 Co.	Isophorone	4.13E+03	Ξ	mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Color Colo	Naphthalene	4.50E+01	Ξ	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Sequency	Nitrobenzene	4.94E+01	Ξ	mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Social pole mylamine	N-Nitrosodi-n-propylamine	6.90E-01	<u>ල</u>	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1.83E+03 1.97E+01 1.9 mg/kg 0.040 0.020 0.	N-Nitrosodiphenylamine	8.00E+02	Ξ	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
threne 1.83E+04 (1) mg/Kg	Pentachlorophenol	2.07E+01	Ξ	mg/Kg	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
1.83E+04 (1) mg/kg	Phenanthrene	1.83E+03	Ξ	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1.72E+03 (1) mg/Kg <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.	Phenol	1.83E+04	Ξ	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
7.80E+01 (2) mg/kg <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.	Pyrene	1.72E+03	Ξ	mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
- (EPA Method 8015B) mg/kg	Pyridine	7.80E+01	<u>(</u> 2		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
<10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <td>Total Petroleum Hydrocarbons - (E</td> <td>PA Method 80</td> <td>158)</td> <td>-1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Total Petroleum Hydrocarbons - (E	PA Method 80	158)	-1									
<5.0	Diesel Range Organics (DRO)	8.00E+02	Ŧ	mg/Kg	×10	9	92	22	<10	92	<10	<10	<10 <10
<50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Gasoline Range Organics (GRO)	8.00E+02	(mg/Kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
 - No screening level or analytical result available (1) NMED - Technical Background Document for Development of Soil Screening Levels - Revision 5.0 (August 2009) (2) EPA - Regional Screening Levels (April 2009) (3) EPA - Regional Screening Levels (April 2009) multiplied by 10 pursuant to Provision VII.B. of the July 7, 2007 NMED Order because the constituent is listed as carcinogenic (4) NMED Oct. 2006 TPH Screening Guidelines - Unknown oil for residential exposure via vapor migration and inhalation of ground water (5) NMED Oct. 2006 TPH Screening Guidelines - Waste oil for vapor migration and inhalation of ground water 	Motor Oil Range Organics (MRO)	2.50E+03	(2)	mg/Kg	² 50	<50	<50	140	<50	² 20	<50	<50	<50
(2) EPA - Regional Screening Levels (April 2009) (2) EPA - Regional Screening Levels (April 2009) (3) EPA - Regional Screening Levels (April 2009) multiplied by 10 pursuant to Provision VII.B. of the July 7, 2007 NMED Order because the constituent is listed as carcinogenic (4) NMED Oct. 2006 TPH Screening Guidelines - Unknown oil for residential exposure via vapor migration and inhalation of ground water (5) NMED Oct. 2006 TPH Screening Guidelines - Waste oil for vapor migration and inhalation of ground water	No screening level or analytical res	sult available	noley	ment of									
 (2) EPA - Regional Screening Levels (April 2009) (3) EPA - Regional Screening Levels (April 2009) multiplied by 10 pursuant to Provision VII.B. of the July 7, 2007 NMED Order because the constituent is listed as carcinogenic (4) NMED Oct. 2006 TPH Screening Guidelines - Unknown oil for residential exposure via vapor migration and inhalation of ground water (5) NMED Oct. 2006 TPH Screening Guidelines - Waste oil for vapor migration of ground water 	Soil Screening Levels - Revision 5.0	(August 2009)		5									
(3) EPA - Regional Screening Levels (April 2009) multiplied by 10 pursuant to Provision VII.B. of the July 7, 2007 NMED Order because the constituent is listed as carcinogenic (4) NMED Oct. 2006 TPH Screening Guidelines - Unknown oil for residential exposure via vapor migration and inhalation of ground water (5) NMED Oct. 2006 TPH Screening Guidelines - Waste oil for vapor migration of ground water	(2) FPA - Regional Screening Levels	(April 2009)											
pursuant to Provision VII.B. of the July 7, 2007 NMED Order because the constituent is listed as carcinogenic (4) NMED Oct. 2006 TPH Screening Guidelines - Unknown oil for residential exposure via vapor migration and inhalation of ground water (5) NMED Oct. 2006 TPH Screening Guidelines - Waste oil for vapor migration of ground water	(3) EPA - Regional Screening Levels	(April 2009) mu	ıltiplie	³d by 10									
because the constituent is listed as carcinogenic (4) NMED Oct. 2006 TPH Screening Guidelines - Unknown oil for residential exposure via vapor migration and inhalation of ground water (5) NMED Oct. 2006 TPH Screening Guidelines - Waste oil for vapor migration of ground water	pursuant to Provision VII.B. of the Ju	ly 7, 2007 NMEI	ŏ	Jer									
(4) NMIED OCt. 2000 1PH Screening Guidelines - Orknown oil for residential exposure via vapor migration and inhalation of ground water (5) NMED Oct. 2006 TPH Screening Guidelines - Waste oil for vapor migration of ground water	because the constituent is listed as c	arcinogenic	1	174 11									
water (5) NMED Oct. 2006 TPH Screening Guidelines - Waste oil for vapor migration and inhalation of ground water	(4) NMED OC. ZOON I PH SCREENING residential exposure via vapor migral	Guidelines - Un tìon and inhalatic	iknow on of	n oil tor ground									
(5) NMED Oct. 2006 TPH Screening Guidelines - Waste oil for vapor migration and inhalation of ground water	water		;	5									
vapor migration and inhalation of ground water	(5) NMED Oct. 2006 TPH Screening	Guidelines - Wa	aste (oil for									
	vapor migration and inhalation of gro	und water											

Table 10
Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26
Bloomfield Refinery, Bloomfield, New Mexico

Level Level 2 one	noN		_	_		_			_				_					_				_	
1 1 1 1 1 1 1 1 1 1	Analytes	No Reside Scree Lev (2-10'			%AOC 22-1 (0-0.5')	5/2009 5/2009 5/4/1	<u> </u>	(70.0-2.1) S-SS (20.0) (7009 4/15/7) AOC 22-3 (0-0 F-)	009 4/15/2(AOC 22-3 (1.5'-2.0')	AOC 22-4 (0-0.5')	00.S.2.1) A-SS DOA (1.5-2.0)	472/2009 472/2009	423/2009 AOC 22-5 1.5-2.0')	23/AOC 22-6 (0-0.5')		13/2009 A2-12 (0-0.5")	AOC 22-12 (0-0.5') DUP	141	NZO09 413 (32-35')			4	\(\frac{13}{2}\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1.1.1	/kg)	01 661E-01	6.61E-01	ıL	<25	<25	li		5 0			*		<2.5	 		<2.5		2.5 <2		-	\vdash	2.5
	1316	-02 1.31E-01	1.31E-02		t	+	╁	╁	╁	╀	╀	<2.5	×13	<2.5	╀	+	+	+	╀	\vdash	⊢	╀	2.5
	3.01	+02 3.01E+02	3.01E+02		+	╀	╁	╁	+	╄	H	210	180	230	╁	+	+	-	-	\vdash	\vdash	├	37
	5.77	+01 5.77E+01	5.77E+01	1_	t	+	╁	+	┼-	╀-	-	0.16	<0.75	0.17	-	\vdash	┝	-	├	┝	⊢	┝	.15
Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles </td <td>1.37E+</td> <td>+00 1.37E+00</td> <td>1.37E+00</td> <td></td> <td>\vdash</td> <td>\vdash</td> <td>H</td> <td>-</td> <td></td> <td>\vdash</td> <td>H</td> <td><0.10</td> <td><0.50</td> <td><0.10</td> <td>Н</td> <td>H</td> <td>Н</td> <td>Н</td> <td>╌</td> <td>Н</td> <td>-</td> <td>-</td> <td>.10</td>	1.37E+	+00 1.37E+00	1.37E+00		\vdash	\vdash	H	-		\vdash	H	<0.10	<0.50	<0.10	Н	H	Н	Н	╌	Н	-	-	.10
Application of the property of	4.47E-	+05 4.47E+05	9.86E+07			⊢	H	├	H	H	Н	5.3	5.3	8.8	Н	-	Н	\dashv	\dashv	\dashv			.7
	4.90E	-01 4.90E-01	4.90E-01		Н	Н	_	-		Н		2.1	2.6	2.6	\dashv	-	-	-	-	\dashv	-	\dashv	٤.
1	7.44E	+00 7.44E+00	7.44E+00		-			-				<0.5	<0.5	<0.5	\dashv	Н	-	\dashv	\dashv	\dashv		\dashv	0.5
2.5.5.2	8.00E+	+02 8.00E+02	!		\vdash	H	Н	Н	\vdash	Н	Н	4.2	3.8	2.9	Н	Н	Н	Н	Н	Н	\dashv	\vdash	8.
17.55.00. 17.55.00. 18	2.93E	-02 2.93E-02	2.93E-02		-	-	-	H	-	-	\vdash	<0.033	<0.033	<0.033	Н	Н	H	Н	Н	Н	-	Н	.033
1986-100 (1) milling of 35 of	4.77E	+01 4.77E+01	4.77E+01		-	-	-	H		-		2.5	3.4	3.3	_	_	_			-		Н	2
	9.65E	-01 9.65E-01	9.65E-01		⊢	┝	H	\vdash	├-	\vdash	\vdash	<13	<13	<13	-	-	⊢	-	-	-	-		2.5
1.1 1.1.	1.57E-	+00 1.57E+00	1.57E+00	1	-	-	-	\vdash	-	H	H	<0.25	<1.3	<0.25	Н	Н	Н	Н	Н	Н		Н	.25
	1.83E+	+02 1.83E+02	1.83E+02		-	┝	_	\vdash		-	_	13	14	14			-	Н	\dashv		-	\dashv	5
1796-04 (1) mg/kg	6.82E+	+02 6.82E+02	6.82E+02	L	Н	H	\dashv	\vdash	-	\dashv		14	16	20			-		_		-	_	<u>-</u>
1985-60 (1) mg/kg	ganic Compounds - (EPA Methe	od 8260B) mg/kg											ł									ŀ	
2.288640 (1) mg/kg	rachloroethane 1.73E	-03 1.73E-03	1.73E-03		1	1		_	1	;	<0.50	•	-	1	:	;	!	-	_	-	1	\dashv	.50
2.566.40 (1) mg/40, 2	oroethane 2.98E-	+00 2.98E+00	2.98E+00	_	1	1	1	-			<0.50	1	:	:	ı	:	ı					-	52
196 196	achloroethane 2.25E	-04 2.25E-04	2.25E-04		-	-	_	-	1	1	<0.50	;	•	1	1	1	;	•				\dashv	.50
119EG (1) mg/ld	proethane 6.74E	-04 6.74E-04	6.74E-04				:	1	1		<0.50	:	-	-	-	1		-			+	┪	22
119EGN (1) mg/kg	ethane 6.09E	-03 6.09E-03	6.09E-03		:	-	-	•	!		<1.0	•	-	•	•	:	:	1			-	-	힏
Mindright Mind	ethene 1.19E	-01 1.19E-01	1.19E-01			-	-				<0.50	'	•	:	1	!	1	1		_	-	-	55
	propene	1		mg/Kg	1	,	;		1	-	<1.0	,	1	:	1	1	1	:				+	0 6
		_	\rightarrow	_	1	-	-	' 	<u>'</u>		<1.0	•	•	1	+	<u> </u>	-					+	2 9
Name	-				1	1	1	1	<u>'</u>	-	<1.0	•	-	1	:	'	1	-	1		+	\dashv	9
2.97E-0.0 2.97E-0.0 1.97E-0.0 2.97E-0.0 2.97E-0.0 <t< td=""><td></td><td></td><td>\rightarrow</td><td></td><td>1</td><td>1</td><td>:</td><td>1</td><td>-</td><td> </td><td><0.50</td><td>,</td><td>•</td><td>1</td><td>-</td><td>1</td><td>1</td><td>1</td><td>$\frac{1}{1}$</td><td>1</td><td>+</td><td>+</td><td>05</td></t<>			\rightarrow		1	1	:	1	-		<0.50	,	•	1	-	1	1	1	$\frac{1}{1}$	1	+	+	05
2.000-0.0 2.000-0.0 0.00		\dashv	\neg		•	-	-	1	:		270	-		1	;	-	1	-	:	- 2	\dashv	+	2
1.38E-04 1.58E-04 1.58E-05 1.0 mg/kg	_	_	-+	_4	'	1	-	-		-	V.0	'	•	;	:	1	1	;		<u> </u>	+	+	9
3.615-6.01 3.615-6.01 (1) mg/kg 1.		Ш	-		:	1	-	1	1	-	<0.50	;	:	;	ı	;	1	-			1	\dashv	S
3.56E-04 3.66E-04					-	1	;			_	<0.50	'	-	-	1	1	;	1			-	+	22
111E-03 111E-03 10 mg/kg					•	-	!				<0.50	'	<u> </u>	•			-			_	_	-	က
2.00E-01 CODE-02 <	\vdash	_	_		1	-	1				<0.50		1	:	1				4		-	\dashv	.50
1.00 1.00 <th< td=""><td>_</td><td>L</td><td>-</td><td></td><td>1</td><td>-</td><td>:</td><td>-</td><td>•</td><td></td><td>86</td><td>1</td><td>:</td><td>1</td><td>:</td><td>;</td><td>;</td><td></td><td>:</td><td>-</td><td>-</td><td></td><td>Σ.</td></th<>	_	L	-		1	-	:	-	•		86	1	:	1	:	;	;		:	-	-		Σ.
2 70E-01 2 70E-01 2 70E-01 2 70E-01 2 70E-01 2 70E-01 3 70E-01 3 70E-01 3 70E-01 3 70E-01 4 70E-01	┢	-	-	ᆫ	:	:	-	•		-	<0.50	-	-	1	-	1	•						.50
35FE-03 35FE-04 10 mg/kg	t	L	-	L		1	,	1	1	:	<0.50	;	-	ı			:					_	.50
1.50E-01 1.50E-01		L	!	Ļ.			;		:	1	<0.50	1	1	ı		i						-	.50
177E-00 127E-10 100Mg/s 1.	T	Ļ	+-	Ļ.,			:				30	1		:	:	1	:				_	\vdash	-
1.27E+00 1.27E+00		L	+-	<u> </u>						-	<1.0	:	1	1	;	:	;				_	_	1.0
6.24E-01 6.24E-01		-	+	↓_						_	<5.0	,	,			,	-				_	_	2.0
1.00 1.00		\downarrow	+-	↓.					_	-	<0.50			-	,	,	:			_			S
100E-01 100E		+	+-	4_		+				-	<5.0				-	-		-	-	-	+	├	٥
Substitution Subs		4	+	4				 -		$\frac{1}{1}$	3					 - -		-			╁	╀	
2.80E+00 3.80E+00		4	+	4	:	•		+		+	25 0	1		+	+	+	+	1		\dagger	+	+	
""" State-tool """ Sta		_	-	_	:	1	;				\$0.50	:	•	:	:	:	•	+	1	+	+	+	3
3.84E+00	luene	1	- I	mg/Kg	-		1	1	•	-	5.5	1	•	•	•					_	-	\dashv	<u>~</u>
3.84E+00 3.84E+00 3.84E+00 3.84E+00 3.84E+00 3.84E+00 3.84E+00 3.84E+00 3.84E+00 4.56		L	-	mg/Kg		1	,	:	1		<5.0	;	-	1	1	;	!		-		_		0.0
1.86E-03 1.85E-03 1.3 mg/kg		Ļ	┰	_	;	-			1	_	<7.5	ŧ	:	-	1	:						_	7.5
1,50E-02 1,50E-03 1,50E-03 1,50E-04		Ļ	+-	L					;	-	0.78											H	2
1.30E-02 1.30E-03 1.30E-03		4	_	1						-	CO 50			†	-				-	<u> </u>		+	5
2.76E-04 2.76E-02 3.76E-02 3.76E-03 3.76E-03 <td< td=""><td></td><td>4</td><td>_</td><td>_</td><td>1</td><td>!</td><td>-</td><td>· -</td><td><u>'</u></td><td>+</td><td>0.00</td><td>'</td><td> </td><td>+</td><td>+</td><td>+</td><td> </td><td></td><td><u>'</u></td><td></td><td>+</td><td>+</td><td>3 5</td></td<>		4	_	_	1	!	-	· -	<u>'</u>	+	0.00	'		+	+	+			<u>'</u>		+	+	3 5
2.30E-02 2.30E-02 1.34E-03 (4) mg/Kg		4	_	_	:	1	1			+	0.00 0.00	'	<u>'</u>	;	•	1		+		: 	1	+	8
1.94E-03 1.94E-03 1.94E-03 (1) mg/Kg		_	\dashv	_	ı	:	:			1	<0.50	•	-	<u>'</u>	:	-	1	1			+	+	3
2.52E-01 2.52E-01 (1) mg/Kg					•	:	-	1	!		<1.0	'	•	1	1	:	1	_	•	-	1	-	<u>.</u>
7.39E-04 7.39E-04 7.39E-02 5.38E-02 5.38E-02 (1) mg/Kg		_				1	-				<5.0	:	:	-	1	;	•		1	•	_	-	0.0
5.38E-02 5.38E-02 5.38E-02 (1) mg/Kg		L	_	Щ	:	'	,				<1.0	1	-	:	•		1			_		_	0
		╄	+	L	-			 	_	-	<0.50	'		;	 :	-	:	-			_		50

	AOC 22-13 (18-20')	4/8/2009	<1.0	00.50	<0.50 <0.50	<0.50	<0.50	0.15	22	<1.0	3.7	40.50 7.1.17	12	7.9	6.6	7.7	V0.50	<0.50	28	\$ 0.50 5	\$0.50 \$0.50	<0.50	<0.50	2		:	· [·	:	:		-	:	:[:		:	:	: 1	ı		•	: :	:		: :	:
	AOC 22-13 (1.5-2.0')	4/8/2009	<2.0	0.0	0.0	o.f>	<1.0	0.20	19	<2.0	2.5	0.0	32	4.4	8.5	2,	0.0	41.0	47	7.0	0.0	<1.0	×1.0	067	-	:		ı	:	: :	:	-	1 1		:		: :	:		1	: 1	;	:	: :	:
	AOC 22-13 (0-0.5')	4/8/2009	:	<u>'</u>		1	-	:	0.28	1	•	:	2.6	2.8	:	0.094	 	1	0.78	:	: :	:	1 6	63	<1.10	4.10	4.10	<1.10	₹ 7.4	V V	<1.10	<1.10	-1 10	×1.10	×1.10	7.10	2 -	<1.10	<1.10	<u>7</u> 7	<4.45 4.42	<1.10	<4.42		<4.42
	AOC 22-12 (36-37.75')	4/13/2009	:	-	: :	:	:	: :		1	1	-			;	-	-	,		'	: :		:	!	<0.939	<0.939	<0.939	<0.939	<0.939	<0.939	<0.939	<0.939	16.1	<0.939	<0.939	<0.939	5.42	<0.939	<0.939	<0.939	4.96	<0.939	<3.76	<0.939	<3.76
	∀OC 35-15 (35-32,)	4/13/2009	:	1	: :	:	1	: :		1	1			ŀ	1	:	; ;	;	1	:		:	1	:	<0.971	<0.971	<0.971	<0.971	<0.971	<0.971	<0.971	<0.971	<0.971	<0.971	<0.971	<0.971	<0.971	<0.971	<0.971	<0.971	4.66	<0.971	<3.88	<0.971	<3.88
	AOC 22-12 (1.5-2.0')	4/13/2009	1	1	:		1	•	: ;	,	:	:	<u>,</u>	:		:		;	:	1	: :		1	•	<1.03	41.03	4.03	<1.03	√ 7.03	V V	<1.03	<1.03	2 2	4.03	<1.03	7 7 7 8 8	× 1.03	<1.03	<1.03	7.03	×4.10	<1.03	4.10	4.03	<4.10
	AUG (20-0) S1-SS 200A	600	1		' '	:	,	-	;		,	-		:	-	-		,	:	1	1	-	1	-	<1.01	2 5	v 101	<1.01	<u>2</u>	2 0	<1.01	×1.01	5 5	10.1	<1.01	20.0	10.1	×1.01	<1.01	2 2	404	<1.01	40.4	10.1	×4.04
	VOC 22-12 (0-0.5')	4/13/2009	1			,	ı	;			1	:	:	:	1	1		:	:	:			:	·	<1.11	<u>↑</u> ;	<u>1</u>	<1.11	<u> </u>	\ 	<1.11	<1.11	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4.17	<1.11	1.7	4.17	<1.11	<1.11	7 7	<4.45	<1.11	<4.45	11.1	<4.45
	AOC 22-6 (1.5-2.0')	1/23/2009		-	: ;			:		-	:	:	;		-	:	<u> </u>	1	1	:	: :		:	- 	<0.999	66.0>	666.0>	<0.999	0.999	666.0>	<0.999	<0.999	×0.999	<0.999	<0.999	<0.999	>0.999	<0.999	<0.999	666.0>	<3.99	<0.999	<3.99	\$66.0> <0.999	<3.99
	∀OC 22-6 (0-0.5')	1/23/2009	:	-	: :	1	,	, ,		,	1	1	,	:	•	-	; ;	;	1	-	: :	-	:	- -	<0.954	<0.954	<0.954	<0.954	<0.954	<0.954 <0.954	<0.954	<0.954	40.954	<0.954	<0.954	<0.954	<0.954	<0.954	<0.954	<0.954	<3.82	<0.954	<3.82	<0.954	<3.82
and AOC 26	AOC 22-5 1.5-2.0')	4/23/2009	1		: :	1	:	:	: :		:	:	' '	:		-		1	:	-	· '	-	:	- -	<0.911	<0.911	<0.911	<0.911	0.911	\$0.911 \$0.911	<0.911	<0.911	\$0.911 \$0.04	<0.911	<0.911	0.911	0.911	<0.911	<0.911	0.911	<3.64	<0.911	<3.64	<0.911	<3.64
_	∀OC 22-5 (0-0.5')	4/23/2009		1	1	:	1	, ,	1	,	1	1		1	1	,	1 1	,	,	1	,	1	1	•	<0.967	<0.967	<0.967	<0.967	<0.967	<0.967 <0.967	<0.967	296.0>	<0.967	<0.967	<0.967	<0.967	×0.967 ×0.967	<0.967	<0.967	<0.967	<3.87	<0.967	<3.87	<0.967	<3.87
uct Loadin w Mexico	AOC 22-4 (1.5-2.0)	4/15/2009	<1.0	0.50	V 020	\$0.50 \$0.50	<0.50	0.15	1	4.0 -	3.6	0.50	45	14	15	5.5	0.50	¢0.50	14	<0.50	20.50	<0.50	<0.50	nes	1	1		1			1									,		,		: 1	
r0 C 22 (Prod omfield, Ne	∀OC 22-4 (0-0.5')	4/15/2009	:	:	: ,	1	1	:	· '		-	;	•	1	:	:	·	'	:	:	: .		1	:	<0.984	<0.984	<0.984	<0.984	<0.984	<0.984 0.984	<0.984	<0.984	40.984	<0.984	<0.984	<0.984	0.984	<0.984	<0.984	<0.984	3.94	<0.984	<3.94	<0.984 <0.984	<3.94
Table 10 al Results Summary - AOC 22 (Product Loadii Bloomfield Refinery, Bloomfield, New Mexico	AOC 22-3 (1.5'-2.0')	4/15/2009	:	-			1					;		1	:			:	÷		;		:	1	<0.951	<0.951	<0.951	<0.951	<0.951	<0.951	<0.951	<0.951	0.951 0.951	<0.951	<0.951	<0.951	<0.951	<0.951	<0.951	<0.951	3.80	<0.951	<3.80	<0.951	<3.80
tesults Sun	AOC 22-3 (0-0.5')	4/15/2009	1	1	: ,		:	1 1				:	•	1	-		1 1	1		1	: :		1	-	<0.960	096.0>	<0.960	<0.960	0960	096.0>	<0.960	096.0>	098.0	<0.960	<0.960	<0.960	096.0	<0.960	<0.960	<0.960	43.84 84	<0.960	<3.84	096.0	<3.84
nalytical R Blo	AOC 22-2 (1.5-2.0')	4/15/2009	:	:	: :		:		1	:		1		-		:	: :	-	1		: :		1	•	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952 <0.052	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<3.81	<0.952	<3.81	<0.952	<3.81
Table 10 Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) Bloomfield Refinery, Bloomfield, New Mexico	AOC 22-2 (0-0.5')	4		-	: :	;	1			1	:			:	-	1	: :	:	1	1	: :	1	1	-	<0.957	<0.957	<0.957	<0.957	<0.957	<0.957	<0.957	<0.957	<0.95/	<0.957	<0.957	<0.957	<0.957	<0.957	<0.957	<0.957	3.83	<0.957	<3.83	<0.957 <0.957	<3.83
õ	AOC 22-1 (1.5-2.0')	4/15/2009	;	:	1 1	:		1 1		-	**	:	:	-	:	-		;	:	1			:	•	<0.944	<0.944	<0.944	<0.944	<0.944	<0.944 <0.944	<0.944	<0.944	<0.944 <0.044	<0.944	<0.944	<0.944	<0.944	<0.944	<0.944	<0.944	<3.78	<0.944	<3.78	<0.944	<3.78
	AOC 22-1 (0-0.5')	4/15/2009	1	:	: :	:			1	1	••	1	:	•	ľ	1	: :	1	:	1			1	•	l i	_ [868.0>	I. I	<0.898	<0.898	<0.898	868.0>	×0.898	<0.898	<0.898	<0.898	<0.898	<0.898	1 1			1 1	<3.59	- 1	11
	Units		Ц		mg/Kg	_	Ш		Т.		Ш		ma/Ka	Ш	mg/Kg	4	mg/Kg	┦	Ш	_	mg/Kg	1		mg/kg			ug/Kg-dry		_	ug/Kg-dry	-		_	ug/Kg-dry	-		ug/Kg-dry						µg/Kg-dry		µg/Kg-dry
	Non- Residential Screening Levels (>10' bgs)		广	-+		1.35E-03 (1)	H	9.10E-02 (3) 7.23E-01 (1)	+	1	-	+	4.19E-03 (1)	\vdash	41-1	- 101	1.55E+00 (1)	4.49E-04 (1)		-	1.35E-03 (1) 5.30F-03 (1)	+-	2.88E-04 (1)	1./05-01	1.73E+00	2.98E+03	6.74E-01 (1)	6.09E+00	1.19E+02	1 1	3.56E-02 (1)	1.02E+01 (1)	2.40E+01 (3)	+	┦	3.65E-01 (1)		+-	2.70E+02 (3)		+-	6.24E+02 (1)		+-	: .
	Non- Residential Screening Levels (2-10' bgs)		-	4.68E-04	9.43F-02	1.35E-03	3.38E-04	9.10E-02 7.23E-01	1.46E-02	2.20E+02	9.86E-01	2.29E-02	4.19E-03	-	+ ;	- 101	1.56=+00	4.49E-04	1.38E+00	3.01E-02	1.35E-03 5.30F-03	9.01E-01	2.88E-04	1.70E-01	1.73E+00	2.98E+03	6.74E-01	6.09E+00	1.19E+02	1 1	3.56E-02	1.02E+01	2.40E+01	1.58E-02	\vdash	3.65E-01	+	+	2.70E+02	+		6.24E+02		2.80E+03	
	Non- Residential Screening Levels (0-2' bgs)		- !	4.68E-04	9.43E-02	1.35E-03	3.38E-04	9.10E-02 7.23E-01	1.46E-02	2.20E+02	9.86E-01	2.29E-02	4.19E-03		1	- 101	1.56E+00	4.49E-04	1.38E+00	3.01E-02	1.35E-03 5.30E-03	9.01E-01	2.88E-04	1.70E-U1	1.73E+00 1.73E+00	2.98E+03	6.74E-01	6.09E+00	1.19E+02	1 1	3.56E-02	1.02E+01	2.40E+01	1.58E-02	3.13E+02	3.65E-01	2.00E+01		2.70E+02	3.57E+00	1.27E+03	6.24E+02	- 2000	2.80E +U3 	
	Analytes	Sample Date	Chloroethane	Chloroform	Cis. 1 2.DCF	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane Dishlorodiff promethane	Ethylbenzene	Hexachlorobutadiene	Isopropylbenzene	Mothyl tert-butyl ether (M I BE)	Naphthalene	n-Butylbenzene	n-Propylbenzene	sec-Butylbenzene	Styrene tert-Butylhenzene	Tetrachloroethene (PCE)	Toluene	trans-1,2-DCE	Trichloroethene (TCE)	Trichlorofluoromethane	Vinyl chloride	Voletile Organia Compounds (E)	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,Z-1 ettactiloroettialle 1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1, 1-Dichioropene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-1 rimethylbenzene	1,2-Dibromoethane (EDB)	1,2-Dichlorobenzene	1,2-Dichloroethane (EDC)	1,2-Dichiolopiopane 1,3-5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,z-bidiiotopioparie 2-Butanone	2-Chlorotoluene	2-Hexanone	4-Chiorotoliuene 4-Isopropyltoluene	4-Methyl-2-pentanone

AOC 22-13 (18-20') (N.S-8.1) E1-SS 200/ AOC 22-13 (0-0.5') | 0.20 | AOC 22-12 (36-37.75') (32-35') AOC 22-12 (32-35') (1.6.2-3.1) ST-SS DOA (1.6-2.0") |₩ AOC 22-12 (0-0.5') DUP \$\\\ \text{\cappa}\\ \text{\ca AOC 22-12 (0-0.5') \$\\\ \text{\chi} \\ \ AOC 22-6 (1.5-2.0') 0.954 0.9554 0.95 AOC 22-6 (0-0.5') Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26 Bloomfield Refinery, Bloomfield, New Mexico AOC 22-5 1.5-2.0') (0.967 40.967
 40.967
 40.967
 40.967
 40.967
 40.967
 40.967
 40.967
 40.967 A A A 255 VOC 55-2 (0-0.5') AOC 22-4 (1.5-2.0) <0.984<0.984<0.984<0.984 <0.984<0.984<0.984<0.9848.26 AOC 22-4 (0-0.5') 4/15/2009 4.3.80 6.951 6.95 0.951 AOC 22-3 (1.5'-2.0') AOC 22-3 (0-0.5') AOC 22-2 (1.5-2.0') AOC 22-2 (0-0.5') AOC 22-1 (1.5-2.0') 0.0898 0. AOC 22-1 (0-0.5') (1) µg/Kg-dy 9/8/89 mg/Kg Source 4.68E-01 (1 4.18E+00 (1 9.43E+01 (1 1.35E+00 (1 9.10E+01 (1 1.90E+01 (1 1.90E+ 4.49E-01 1.38E+03 3.01E+01 1.35E+00 5.30E+00 9.01E+02 2.88E-01 1.76E+02 3.57E-03 7.13E-02 7.13E-02 1.37E-01 9.12E-01 5.25E-02 1.56E-03 2.67E-02 1.35E+01 1.53E-01 9.00E-01 2.00E+00 3.30E-02 Non-Residential Screening Levels (>10' bgs) 02 +03 1.02E-02 3.13E-01 1.70E-0 1.56E+ 3.84E+ 1.85E+ 1.50E+ 2.30E+ 1.94E+ 7.39E+ 5.38E+ Trichloroetherie (1 CL)

Trichloroetherie (1 TCE+02)

Trichloroetherie (1 TCE+03)

Trichloroetherie (
 4.49E-01
 4.49E-01

 1.38E+03
 1.38E+03

 3.01E+01
 3.01E+01

 1.35E+00
 1.35E+00

 5.30E+00
 5.30E+00

 9.01E+02
 9.01E+02

 2.88E-01
 2.88E-01

 1.76E+02
 1.76E+02
 Non-Residential Screening Levels (2-10' bgs) 4.68E-01 4.18E+00 9.43E+01 1.35E+00 3.38E-01 9.10E+01 7.23E+02 1.46E+01 2.20E+05 9.86E+02 2.29E+01 1.07E+01 4.19E+00 1560 4.68E-01 4.18E+00 9.43E+01 1.35E+00 3.38E-01 9.10E+01 7.23E+02 1.46E+01 2.20E+03 9.86E+02 2.29E+01 1.07E+01 4.19E+00 Non-Residential Screening Levels (0-2' bgs) 1560 Chlorotorm
Chloromethane
cis-1,2-DCE
cis-1,3-Dichloropropene
Dibromonethane
Dibromonethane
Dichlorodifluoromethane
Ethylbenzene
Hexachlorobutadiene
Isopropylbenzene
Metryl tert-butyl ether (MTBE)
Metrylene chloride Styrene tert-Butylbenzene Tetrachloroethene (PCE) Sample Date
Acetone
Benzene
Bromobenzene
Bromodichloromethane
Bromoform
Bromomethane
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chlorobenzene Analytes

Table 10

1300 1300 500 AOC 22-13 (18-20') **8600** 1900 540 (1.5-2.0') PAC 22-0') **4400** 180 1000 ('8.0-0) E1-SS OOA 8 5 8 8 8 AOC 22-12 (36-37.75') \$50.05 AOC 22-12 (32-35') 74 <5.0 AOC 22-12 (1.5-2.0') 87 67 63 4UG ('6.0-0) SY-SS DOA 56 <5.0 62 AOC 22-12 (0-0.5') \$\\\ \text{0.20}{\quad \quad \qquad \quad \quad \quad \quad \qq \quad \q 45.0 64 4OC 22-6 (1.5-2.0') 130 Z Z Z Table 10
Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26
Bloomfield Refinery, Bloomfield, New Mexico 73 <5.0 320 AOC 22-5 1.5-2.0') 270 270 **VOC 55-2 (0-0.5')** 7700 2200 AOC 22-4 (1.5-2.0) \$5.0 \$50 <0.50 VOC 55-4 (0-0.5') 음양왕 AOC 22-3 (1.5'-2.0') 450 450 450 VOC 55-3 (0-0.5') 130 140 140 4OC 22-2 (1.5-2.0') \$ 50 05 **VOC 55-5 (0-0.5')** 4/15/200 6/20 6/ 23 45.0 86 \$50.50 \$6 AOC 22-1 (1.5-2.0') 25.0 75.0 AOC 22-1 (0-0.5') mg/Kg mg/Kg mg/gm 996 Source 1.09E+01 3.30E+01 4.20E+00 2.30E-02 2.53E-03 1.19E+01 6.70E+00 1.55E+02 2.50E+01 1.90E-02 6.13E-01 1.93E-02 3.70E+00 1.85E-01 4.19E-03 6.86E-03 1.10E-04 1.29E+00 2.94E-02 8.34E+01 6.30E+00 9.70E-03 3.40E-02 3.37E+02 3.37E+02 5.10E-03 3.20E-01 1.09E-01 1.11E+00 1.06E+01 8.36E+01 8.63E+00 Non-Residential Screening 19 ဗ 힏힏 1120 1120 5000 gs) |8| Levels (>10' bgs) 1.90E-(1.20E-(1.00E-(Non-Residential Screening Levels (2-10' bgs)
 Total Petroleum Hydrocarbons - (EPA Method 8015B) mg/kg

 Diesel Range Organics (DRO)
 1120
 1120

 Gasoline Range Organics (GRO)
 1120
 1120

 Motor Oil Range Organics (MRO)
 5000
 5000
 1.55E+02 2.50E+01 2.21E-03 1.90E-02 6.13E-01 1.93E-02 3.70E+00 1.85E-01 4.19E-03 6.86E-03 1.10E-04 1.29E-100 2.94E-02 8.34E+01 6.30E+00 1.12E+02 9.70E-03 1.06E+01 8.36E+01 8.63E+00 3.40E-02 3.37E+02 5.10E-03 3.20E-01 1.09E-01 1.09E+01 3.30E+01 4.20E+00 2.30E-02 2.30E-02 2.56E-03 1.19E+01 6.70E+00 2.05E+01 1.20E-03 1.00E-02 1.90E-01 1.55E+02 2.50E+01 2.21E-03 1.90E-02 6.13E-01 1.93E-02 3.70E+00 4.19E-03 1.10E-04 1.29E+00 2.94E-02 8.34E+01 6.30E+00 1.12E+02 9.70E-03 1.09E+01 3.30E+01 4.20E+00 2.30E-02 2.33E-05 2.56E-03 1.19E+01 6.70E+00 1.06E+01 8.36E+01 8.63E+00 3.26E+01 3.62E-01 3.40E-02 3.37E+02 5.10E-03 3.20E-01 1.09E-01 1.11E+00 Non-Residential Screening Levels (0-2' bgs) 1.00E-02 1.90E-01 2.05E+01 1.20E-03 Sample Date
3+4.Methylphenol
3-Nitroaniline
4,6-Dinitro-2-methylphenol
4-Bromophenyl phenyl ether
4-Chloroaniline
4-Chloroaniline
4-Chloroaniline
4-Chloroaniline
4-Chloroaniline
4-Chloroaniline
4-Nitrophenol
Acenaphthylene
Acenaphthylene
Acenaphthylene
Aniline
Anthracene
Benz(a)anthracene
Benz(a)anthracene
Benz(a)prene
Benz(a)prene
Benz(a)prene
Benz(a)prene
Benzolopylene
Benzolopylether
Bis(2-chloroethyl)ether
Bis(2-chloroethyl)ether
Bis(2-chloroethyl)ether
Bis(2-chloroethyl)phthalate
Carbazole
Carbazole
Carbazole
Cinysene
Dibenz(a,h)anthracene
Dibenz(a,h)anthralate
Dibenz(a,h)anthralate Hexachlorobutadiene
Hexachlorocyclopentadiene
Hexachloroethane
Indeno(1,2,3-cd)pyrene
Isophorone
Naphthalene
Nitrobenzene
N-Nitrosodi-n-propylamine
N-Nitrosodiphenylamine
Pentachlorophenol Analytes

Table 10 Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26 Bloomfield Refinery, Bloomfield, New Mexico

Non-																							
Units				Non- sidential reening		(.6.0-0)	(1.5-2.1)	(.5.0-0)	(1.5-2.0')				(.5.0-0)	1.5-2.0')	(.5.0-0)	(1.5-2.1)	(0-0-0)						
415/2009 4115/20	Analytes					¥OC 55-1	VOC 25-1	VOC 55-5	VOC 22-2				VOC 55-2	∀OC 55-2	VOC 55-6	VOC 55-6	VOC 55-13						
	Sample Date					4/15/2009	4/15/2009				2009 4/15/2	-	10	-	_		_	_	-	-	₩.	┼	⊢
	Ethanol	1		1	mg/Kg		:	;	:								,			1		<u>'</u>	
WRED. Techrical Background Document for Development of Soil Screening - Weyes. Pewide State Pewelopment of Soil Screening - Weyes. Pewelopment of Soil Screening - Weyes Pewelopment of Soil Screening - Will and the Committee Pewelopment of Soil Screening - Will a Soil Soil Soil Soil Soil Soil Soil Soil	-* Laboratory inadvertently did no -* No screening level or analytical	not analyze for Cyanide I result available	for AOC (22-12	2 (36-37.78	5)					Į:													
FPA - Regional Screening Levels (April 2009) 1) NMED DAF=1 SoilGW (All depths) 2) NMED Constitute (A.10), NMED Soil Constitute (A.10), A.10) 3) An exploration of the July 7, 2007 NMED Order because the constitute is listed as a marcinogenic & Exploration (A.10), A.10) 3) An exploration of the July 7, 2007 NMED Order because the constitute is listed as a marcinogenic & Exploration (A.10), A.10) 3) An exploration of the July 7, 2007 NMED Order because the constitute is listed as a marcinogenic & Exploration (A.10), A.10) 4) Exploration of the July 7, 2007 NMED Order because the constitute is listed in industrial exposure is direct contact. 5) NMED Oct. 2006 TPH Screening Guidelines - waste oil for industrial exposure is direct contact. 6) All Constitute (A.10) An exploration of the A.10) An exploration of the A.10	NMED - Technical Background D	Socument for Developm		ening																			
1) NMED DAF=1 SoilGW (All depths) 2) NMED ConstWork (0-10'), NMED Soil-to-ground water DAF=1 (>10') 3) EPA Profection of Ground Water Risk-based SSL (All depths) 4) EPA - Regional Screening Levels (April 2009 must pile do 10 pursuant to a constituent is itsed a constituent is itsed and of the July 7, 2007 NMED Const bound to the July 7, 2007 NMED Construction of Ground Water Risk-based SSL (All depths) 5) NMED ConstVork Soil (0-10') 6) NMED ConstVork Soil (0-10') 7) NMED Oct. 2006 TPH Screening Guidelines - waste oil for industrial exposure is direct contact. 8) NMED Coct. 2006 TPH Screening Guidelines - waste oil for industrial exposure in direct contact.	FPA - Regional Screening Levels	s (April 2009)																					
2) NMED ConstWork (0-10), NMED Soil-to-ground water DAF=1 (>10) 3) EPA Protection of Ground Water Risk-based SSL (All depths) 4) EPA - Regional Screening Levels (April 2009) multiplied by 10 pursuant to a revisit of the July 2, 2007 NMED Order because the constituent is listed as carcinous on 10-6 risk-based SSL. 5) NMED ConstWork Soil (0-10) 6) NMED ConstWork Soil (0-10) 6) NMED Oct. 2006 TPH Screening Guidelines - diesel fuel for industrial exposure ia direct contact 7) And Exposure as a for industrial exposure in the contact of the contact and the contact of the contact and the co	1) NMED DAF=1 SoilGW (All de	tpths)																					
4) EPA - Regional Screening Levels (April 2009) multiplied by 10 pursuant to Provision VII.B. of the July 7, 2007 NMED Order because the constituent is listed Provision VII.B. of the July 7, 2007 PMED Order because the constituent is listed Provision VII.B. of the July 7, 2007 PMED Order because the constituent is listed Provision VII.B. of the July 7, 2007 PMED Order because the constituent is listed Provision VII.B. of the July 7, 2007 PMED Order Contact Provision VII.B. of the July 7, 2007 PMED Order Contact Provision VII.B. of the July 7, 2007 PMED Order Contact Provision VII.B. of the July 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	2) NMED ConstWork (0-10'), NN 3) EPA Protection of Ground Wa	MED Soil-to-ground wat afer Risk-based SSL (A	er DAF=1 (>10 Il depths));																			
ss carcinogenic & EPA screening level based on 10-6 risk-based SSL 5) NMED ConsWork Soil (0-10') 6) NMED Oct. 2006 TPH Screening Guidelines - diesel fuel for industrial exposure 7) NMED Oct. 2006 TPH Screening Guidelines - waste oil for industrial exposure 7) NMED Oct. 2006 TPH Screening Guidelines - waste oil for industrial exposure 7) addirect contact	4) EPA - Regional Screening Leveroision VII.B. of the July 7, 200	evels (April 2009) multip 17 NMED Order becaus	lied by 10 purs e the constitue	suant to ant is listed	_																		
b) NMED Oct. 2006 TPH Screening Guidelines - diesel fuel for industrial exposure is direct contact 7) NMED Oct. 2006 TPH Screening Guidelines - waste oil for industrial exposure is direct contact	is carcinogenic & EPA screening	g level based on 10-6 riv	sk-based SSL																				
7) NMED Oct. 2006 TPH Screening Guidelines - waste oil for industrial exposure ia direct contact	 NMED ConsWork Soil (0-10') NMED Oct. 2006 TPH Screen ia direct contact 	ı ning Guidelines - diesel	fuel for industri	rial exposuı	ē																		
	7) NMED Oct. 2006 TPH Screen ia direct contact	ning Guidelines - waste	oil for industria	al exposure	av.																		

Table 10
Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26
Bloomfield Refinery, Bloomfield, New Mexico

									-	-						-	-	-	-	-			
1,11,11. 1,11. 1,11. 1,11. 1,11. 1,11. 1,11. 1,11. 1,11. 1,1.	Analytes Sample Date	Non- Residential Screening Levels (0-2' bgs)	Non- Residential Screening Levels (2-10' bgs)				1/5	/4	/4	4	.4	10-0.5°) AOC 26-1 (0-0.5°)	A20/2009	14	AOC 26-2 (1.5-2.0')	4	O/2006 26-3 (1.5-2.0')	2009 4/20/2	AOC 26-4 (1.5-2.0')		4	4/20/2009 4/20/2009	4/20/2009 AOC 26-6 (1.5-2.0°)
19 19 19 19 19 19 19 19	Wetals (mg/kg)	6 645 04	6 645 04	6 61E 04	ΙL	! L	ΙL	Ш	╎├	l -	11	1 1	5		1 27	1 1	7	0	1	()	Ιi	277	
	Arsenic	1.31E-02	1.31E-02	1.31E-02		<2.5	+-	+	+-	+	+-	+	× 13	43	<12	+	╁	+	+	< 12 < 12	× 13	<12	< 12 < 12
	Sarium	3.01E+02	3.01E+02	3.01E+02		130		Н	Н	-	+	╁	200	190	210	╁╌	-	-	+-	╀	170	200	180
	Seryllium	5.77E+01	5.77E+01	5.77E+01	Ц.	<0.15	$\mid \mid$		\vdash	H	H	Н	<0.75	<0.75	<0.75	\vdash	\vdash	⊢┼	Н	Н	<0.75	<0.75	<0.75
	Sadmium	1.3/E+00	1.37E+00	1.3/E+00		<0.10 8.5	+	┿		+	+	+	<0.50	<0.50 7.6	<0.50	+	+	+	+	+	<0.50 8.4	<0.50	<0.50
No. 10 N	Sobalt	4.90E-01	4.90E-01	4.90E-01		2		+-	+	╀	╀	╁	6.5	6.7	9	+	+	┿	╁	+	2.8	5.7	5.8
1	yanide	7.44E+00	7.44E+00	7.44E+00	1	<0.5		╀	╀	┼-	\vdash	+	¢0.1	¢0.1	\$0.1	╁	+	╀	╁	╀	<0.5	<0.5	<0.5
1,50,50,50,10 1,50,50,50 1,50,50,50,50 1,50,50,50,50 1,50,50,50,50 1,50,50 1,50,50,50 1,50,50,50 1,50,50,50 1,50,50,50 1,50,50,50 1,50,50,50 1,50,50,50 1,50,50,50 1,50,50,50 1,50,50,50 1,50,50,50 1,50,50,50 1,50,50,50 1,50,50,50 1	ead	8.00E+02	8.00E+02	1	ш	6.2		Н	┨	Н	H	╁┤	9	\vdash	Н	Н	H	H	Н	\vdash	5.3	10	5.4
	Aercury	2.93E-02	2.93E-02	2.93E-02		<0.033	\dagger	-+	+	\dashv	\dashv	+	<0.033	+	+	+	+	-	+	-+	<0.032	<0.033	<0.032
	lickel Selenium	9.7/E+01	4.77E+01	4.7/E+U1 0.65E-01		2.2	\dagger	+	+	+	+	+	8.8	+	+	+	+	+	+	+	1.7	5,	6.7
	ilver	1.57E+00	1.57E+00	1.57E+00		<0.25	+	+-	+	+	+-	+	43	+	+	+	+	+	+	+	√ 2 \ 3 \ 3 \ 3 \ 3 \ 3 \ 4 \ 3 \ 5	412	<12
Figure 11 marks 1.05 marks 1.05 mark 1.05 marks	anadium	1.83E+02	1.83E+02	1.83E+02	1_	9.8	Н	+	Н	\vdash	\vdash	+	23	+	+	+	+	+	╁	╀	21	19	23
1,50,50,10 1,0 mg/sq	inc	6.82E+02	6.82E+02	6.82E+02	Ш	14	Н	Н	Н	Н	Н	Н	41	\vdash	Н	Н	Н	H	Н	Н	33	83	36
256E-501 (1) markly of closed sign of close	Volatile Organic Compounds - (EPA Method 82	60B) mg/kg	4 705 00	L	02007	0 3/			-					-	\vdash	╌	⊢	-	╌		0.00	0.00
2.556-64 (1) mm/54 original size (1) original s	1.1.z-1etrachiorethane	1.73E-03	7.73E-U3	1.73E-U3		<0.050 <0.050 <0.050	<5.0		+		· ·	-		' '	+	+		+	+	+	;	<0.050 <0.050	<0.050
1.05 1.05	1,2,2-Tetrachloroethane	2.25E-04	2.25E-04	2.25E-04	1	<0.050	<5.0				1	-	,	1	t	┼	┼	+	╀	╀	1	<0.050	<0.050
198E-83 10 mg/sg 43 0 64 0	1,2-Trichloroethane	6.74E-04	6.74E-04	6.74E-04	1. 1	<0.050	<5.0	1	'		1	-	,			\vdash	\vdash	╁┼┤	┦	\vdash	!	<0.050	<0.050
1967 1988 1989 2010	1-Dichloroethane	6.09E-03	6.09E-03	6.09E-03		<0.10	410	:	<u>'</u>	<u>' </u>	•	-	,	-	+		-	+	\dashv	+	:	<0.10	<0.10
1.56 1.56	1-Ulchloropropage	1.19E-01	1.19E-01	1.19E-01	. 1	<0.050 40.050	\$5.0		· '		1	1		•	+	+	+	+	+		•	<0.050	<0.050
1.10.1.1. 1.10.1. 1.	2,3-Trichlorobenzene				ma/Ka	<0.10	49	<u> </u>			1		,	1	T	+-	╁	+	+	-	,	0 0	\$0.10
1000-01-01-01-01-01-01-01-01-01-01-01-01	2,3-Trichloropropane	3.56E-05	3.56E-05	_	Ш	<0.10	<10									Н	\vdash	┦	\sqcup	$\vdash \vdash$		<0.10	<0.10
1,000,000 1,000,000 1,000,000 1,000,000 1,00	2,4-Trichlorobenzene	1.02E-02	1.02E-02	-		<0.050	<5.0	•		<u>: </u>	1 0	-		'	_	-	+	+	+	+	1	<0.050	<0.050
1.58E-674 315E-674 (1) mg/kg 4 0.0569	2-Dibromo-3-chloropropane	2.97E-06	2.40E-02 2.97E-06	_	_	<0.10	410 410		1		1.05	-		• •	†		+-	+-	-+-		: :	\$ 0.000 \$ 10	\$0.050 \$0.10
318E-01 318E	2-Dibromoethane (EDB)	1.58E-05	1.58E-05	1-1	$oldsymbol{\sqcup}$	<0.050	<5.0				:	1	,		П	╁┼	\vdash	╂	┦┤	\vdash		<0.050	<0.050
110 110	2-Dichlorobenzene	3.13E-01	3.13E-01	$\overline{}$	_	<0.050	5.0	+		+	•	:	-	+	\dagger	+	-	+		+	4	<0.050	<0.050
2.00E-02	2-Dichloropropane	3.00E-04	3.55E-04 1 11E-03			<0.050	<5.0		+		-	-		: :	-	+	+	+	┵	+	_	40.050 0.050 0.050	<0.050
2.776-21 2.776-21	3,5-Trimethylbenzene	2.00E-02	2.00E-02	_		4.4	140	1			0.26		,		\vdash	+	+	+	╀	+	L	<0.050	<0.050
1,270-10 1,270-10	3-Dichlorobenzene		1	_	Ш	<0.050	<5.0			-	:	-	J	:	H		⊢	\vdash	\vdash	Н		<0.050	<0.050
1.50E-01	3-Dichlorobenzene	3 57E 03	2.70E-01	\neg		<0.050	0.00		+		•			•	+	-	+	+	-	+	1	<0.050	<0.050
The control of the	Methylnaphthalene	1.50E-01	1.50E-01	_	_	1.9	45	-		-				•		+	+	+-	+	+-	\perp	<0.030	<0.20
12FF+00 12FF	2-Dichloropropane			\vdash		<0.10	<10				'	1	,			-	╌┤	\vdash	Н	Н		<0.10	<0.10
Control of Control o	Butanone (MEK)	1.27E+00	1.27E+00	27E+00	_	<0.50	\$50	-	+	+	:	-	;	+	+	-	-+	\dashv		-+		<0.50	<0.50
10 10 10 10 10 10 10 10	Jevanope Jevanope	0.24E-UI	6.24E-U1	24E-UI		<0.050	<5.U	1	+	+	1		•	:	\dagger	+	+	+-		+	\downarrow	00.020 50	<0.050
Control Cont	Vethylnanhthalene	9 00E-01	9 00E-01	-	_	34.30	12	-	+	+					\dagger	+	╁	╁	+	+	_	8 8	00.00
Column C	Chlorotoluene	2.80E+00	2.80E+00	╅╌		<0.050	<5.0	<u> </u>	-	-		[:				+	╀	╁	+	+	_	<0.50	<0.050
1.85E-04 3.84E+00 3.84E+00 4.050	sopropyltoluene			+—		0.46	9			-					\dagger	+-	+-	╀	╀	╀		<0.050	<0.050
3.84E+00 4.05G 6.05G 6.05G </td <td>Methyl-2-pentanone</td> <td>-</td> <td>,</td> <td>1</td> <td>mg/Kg</td> <td><0.50</td> <td><50</td> <td> </td> <td>_</td> <td></td> <td>,</td> <td>-</td> <td></td> <td> </td> <td>-</td> <td>-</td> <td></td> <td>├-</td> <td>├-</td> <td>├-</td> <td>ŀ</td> <td><0.50</td> <td><0.50</td>	Methyl-2-pentanone	-	,	1	mg/Kg	<0.50	<50		_		,	-			-	-		├-	├-	├-	ŀ	<0.50	<0.50
1.85E-03 4.050 <td>setone</td> <td>3.84E+00</td> <td>3.84E+00</td> <td>\vdash</td> <td></td> <td><0.75</td> <td><75</td> <td>-</td> <td></td> <td></td> <td>•</td> <td>:</td> <td>-</td> <td>1</td> <td></td> <td>-</td> <td>\dashv</td> <td>Н</td> <td>-</td> <td>Щ</td> <td></td> <td><0.75</td> <td><0.75</td>	setone	3.84E+00	3.84E+00	\vdash		<0.75	<75	-			•	:	-	1		-	\dashv	Н	-	Щ		<0.75	<0.75
1.50E-02	enzene	1.85E-03	1.85E-03	\rightarrow	_	990.0	7.7		1	1	•	1	-	-	_	\dashv	\dashv	+			1	<0.050	<0.050
Langle Size 1.0 2.70E-04 2.70E-05 40.050	omobenzene	1.50E-02	1.50E-02	\rightarrow	\perp	<0.050	\$50	+	+	1	-	-	•	:	\dagger	+	+	+	+	+	:	<0.050	<0.050
2.52E-01	omoform	2.70E-04	2.70E-04		_	×0.050	<5.0			+	+	,	•	-	\dagger	+	+	+	+	+	•	00.050	00.050
2.52E-01	omomethane	1 94F-03	2.30E-02 1 94E-03			<0.030	410			+	! !		<u> </u>	: :	\dagger	+	+	+	+	+	: :	×0.030	V0.030
7.39E-04 7.39E-04 7.39E-04 7.39E-04 7.39E-02 7.3	rbon disulfide	2.52E-01	2.52E-01	+-	1	<0.50	\$ 200		<u> </u>	-	-				\dagger	+-	╀	╀	+	╀	ļ :	<0.50	<0.50
5.38E-02 5.38E-02 (1) mg/Kg <0.050 <5.0 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 - 0.050 - <0.050	rbon tetrachloride	7.39E-04	7.39E-04	+	┸	<0.10	<10			-	-	ı	,		\vdash	╁	⊢	-	╁	╀	1	<0.10	<0.10
	lorobenzene	5.38E-02	5.38E-02	-	_	<0.050	<5.0		1	1		-	,	:	-		\vdash	Н	\vdash	┝		<0.050	<0.050

Table 10
Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26
Bloomfield Refinery, Bloomfield, New Mexico

	AOC 26-6 (1.5-2.0')	4/20/2009	<0.10	<0.050 <0.050	050	<0.050	<0.050	<0.10	<0.050	<0.10	<0.050	<0.15	<0.10	<0.050 <0.050 <0.050	<0.050	<0.050	<0.050	<0.030 <0.030 <0.050	<0.050	<0.050	<0.050 <0.050	<0.050	<0.10	40 001	<0.991	<0.991	0.99	<0.991	40.991	\$0.98 \$0.991	<0.991	40.991	\$0.99 \$0.994	<0.991	<0.991	<0.991	<0.991	0 991	<0.991	<3.97	<0.991	<0.991	<0.991	<3.97
	AOC 26-6 (0-0.5')	4	<0.10	<0.050 <0.050 <0.050	<0.030	<0.050	<0.050	<0.10	<0.050	<0.10	<0.050	<0.15	<0.10	<0.050 <0.050 <0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.10	008 07	<0.899	<0.899	×0.899	<0.899	<0.899	40.839 40.899	<0.899	¢0.899	\$0.09 \$0.899	<0.899	<0.899	<0.899	<0.899	0.899	<0.899	<3.60	<0.899	<0.899 <0.899	<0.899	<3.60
	AOC 26-5 (1.5-2.0')	4/20/2009	1	: 1		:	:	1	: :	 - 	0.22		1	. .		:	;	. .		:	1 1	1	:	14.04	<1.01	<1.01	10.15 10.15	<1.01	×1.01	4.01	<1.01	41.01	10.10	<1.01	×1.01	×1.01 ×1.01	<1.01	V 2 03	<1.01	<4.05	<1.01	<4.05 <1.01	<1.01	<4.05
	AOC 26-5 (0-0.5')	4/20/2009	<0.10 0.10	V 050	00.000	<0.050	<0.050	<0.10	<0.050	<0.10	<0.050	<0.15	<0.10	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050 <0.050	<0.050	<0.10	80 77	×1.08	×1.08	21.08	<1.08	×1.08	80.12	<1.08	<1.08	80.10	<1.08	<1.08	× V	<1.08	7.08	×1.08	<4.33	×1.08	<4.33 <1.08	<1.08	<4.33
	AOC 26-4 (1.5-2.0')	4/20/2009	<0.10	<0.050	00.00	<0.050	<0.050	<0.10	<0.050	<0.10	<0.050	<0.15	<0.10	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.10	74.02	<1.02	<1.02	×1.02	<1.02	<1.02	×1.02	<1.02	<1.02	×1.02 ×1.02	<1.02	<1.02	×1.02 ×1.02	<1.02	41.02	<1.02	<4.06	<1.02	<4.00 <1.02	<1.02	<4.06
	AOC 26-4 (0-0.5')	41	- 1		- 1	<0.050		1 1	- 1	1 1	<0.050		<0.10	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.10	/0.047	<0.917	<0.917	<0.917	<0.917	<0.917	<0.917	<0.917	<0.917	<0.917	<0.917	<0.917	<0.917	<0.917	<0.917	<0.917	<3.67	<0.917	<0.917	<0.917	<3.67
	4UG (1.5-2.0') DUP	4/20/2009	\$ 0.10 \$ 55 \$ 55 \$ 55 \$ 55 \$ 55 \$ 55 \$ 55 \$ 5	\$0.050 \$0.050 \$0.050	0.020	<0.050	<0.050	<0.10	<0.050 <0.050 <0.050	<0.10	<0.050	<0.15	<0.10	020 020	<0.050	<0.050	\$ 0.050 \$ 0.050	VO.030	<0.050	<0.050	<0.050	<0.050	<0.10	C90 0/	<0.962	<0.962	<0.962	<0.962	<0.962	<0.962	<0.962	<0.962	<0.962 <0.962	<0.962	<0.962	<0.962	<0.962	<0.962	<0.962	<3.85	<0.962	<0.962	<0.962	<3.85
		4	\$0.10 \$0.50 \$0.50	0.050	V0.050	<0.050	<0.050	<0.10	<0.050 <0.050 <0.050	<0.10	<0.050	<0.15	<0.10	<0.050 <0.050 <0.050	<0.050	<0.050	<0.050 0.050	<0.050 <0.050 <0.050	<0.050	<0.050	<0.050	<0.050	<0.10	7	4.01	×1.01	21.01	<1.01	7.01	-101 -101 -101	<1.01	×1.01	2 0	<1.01	<1.01	10.12	<1.01	2 2	2 5	<4.05	41.01	<4.05 <1.01	<1.01	<4.05
	AOC 26-3 (0-0.5')	4/20/2009	<0.10	<0.050	00.05	<0.050	<0.050	<0.10	<0.050 <0.050 <0.050	<0.10	<0.050	<0.15	<0.10	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050 <0.050	<0.050	<0.10	70.052	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<0.952	<3.81	<0.952	<0.952	<0.952	<3.81
		4/20/2009	1		: :			1	: :	1	: :		1	'	:		1	. .		1	1 1		:	70.064	<0.964	<0.964	<0.964 <0.964	<0.964	<0.964	<0.964 <0.964	<0.964	<0.964	<0.964 <0.964	<0.964	<0.964	<0.964 <0.964	<0.964	<0.964	<0.964	<3.85	<0.964	<0.964	<0.964	<3.85
		4/20/2009	•	•	: :			1	: :		1 1		1			:	•	: ;	-	1	: :	'	ľ	800 07	<0.908	<0.908	806.0×	<0.908	<0.908	806.0> 0.908 0.908	<0.908	<0.908	×0.908 ×0.908	<0.908	<0.908	\$06.0 \$0.908	<0.908	40.908 V	<0.908	<3.63	\$0.908 \$25	<0.908	<0.908	<3.63
	AOC 26-1 (1.5-2.0')	4/20/2009	1		: ;				: :	1	;		1	:		,	:	. .	-	1		:		000	<0.999	<0.999	666.0>	<0.999	<0.999	666.0>	<0.999	<0.999	666.0>	<0.999	<0.999	40.999 40.999	<0.999	<0.999	<0.999	<4.00	<0.999	<0.999	<0.999	×4.00
		4/20/2009		; ;			-		:		1	:	;			1	-	;	-	:	: ,		:	/4 43	<1.13	<1.13	131314151516161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616<	<1.13	<1.13	^1.13 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<1.13	<1.13	4 13 13 13 13 13 13 13 13 13 13 13 13 13	<1.13	<1.13	4 13 5 13 13 13 13 13 13 13 13 13 13 13 13 13	<1.13	7.13	<1.13	<4.53	×1.13	<4.53 <1.13	<1.13	<4.53
	VOC 35-12 (34-36.)	4	:	: :	: :		ŀ		: :		-		1			1		1		1			1	7	41.01	<1.01	\$ \$10.1 \$ 10.1	<1.01	<1.01	V V	<1.01	- 3	0.0	<1.01	<1.01	10.10	<1.01	7.01	V V	<4.03	<1.01	4.03		<4.03
}	ŀ	4/15/2009			; ;	1 1	:		1		1		1			1	•	!		:	<u>, </u>	!	1	370.07	<0.976	<0.976	9/6.0>	<0.976	926.0>	<0.976	<0.976	<0.976	40.976 <0.976	<0.976	<0.976	9/6.0>	<0.976	<0.976	<0.976	<3.90	<0.976	<0.976	<0.976	<3.90
		4/15/2009	:		'		,	,			1	1 1		, ,		,	;	,	1	1	1 1		,	070	<0.918	<0.918	<0.918 <0.918	<0.918	<0.918	<0.918	<0.918	<0.918	<0.918	<0.918	<0.918	<0.918	<0.918	<0.918	<0.918	<3.67	<0.918	<3.67	<0.918	<3.67
	('0.S-2.1) &1-SS DOA				<u>.</u>	. .			; ;	-	1		-			!	1		-	-		,		5	41.00	× 1.00	2 0	<1.00	<1.00	2 V	<1.00	<1.00	2 2	<1.00	×1.00	V V	<1.00	7 7	V V	4 .01	×1.00	24.01 1.00	×1.00	<4.01
		4/15/2009	:		: ;		<u> </u> .		: :				1	: !		:	:	: :	1		<u> </u>	!	1	10000	<0.924	<0.924	<0.924	<0.924	<0.924	<0.924	<0.924	<0.924	<0.924	<0.924	<0.924	<0.924	<0.924	<0.924	<0.924	<3.70	<0.924	<3.70	<0.924	<3.70
		4	000	\$ \$0.0 \$5.0	2 2	<5.0	<5.0	<10	420	<10	12	<15	49	£1 %	10	<5.0	\$ 20	0.0	<5.0	<5.0	\$50 \$50	<5.0	760		. ,		!!				!	'	<u> </u>				:	'	: :	!	-	: :		
	VOC 55-13 (35-34.5')	4/8/2009	\$ 0.10 \$ 0.50	00.050 050 050 050	40.050 050 050	<0.050	<0.050	<0.10	<0.050	<0.10	0.55	<0.15	2.5	2.3	0.67	<0.050	<0.050	1.6	<0.050	<0.050	<0.050 <0.050 <0.050	<0.050	44		1 1					1				-		1 1		1	1 1	:	-	1 1		
	Source Units			mg/Kg		_	丄	\sqcup	mg/Kg) mg/Kg	mg/Kg	ma/Ka	₩	_1	Ц.	1) mg/Kg		1_	ш	Jan 1977	(1) pg/kg-dry) µg/Kg-dry) µg/Kg-dry		µg/Kg-dry) µg/Kg-dry) µg/Kg-dry) µg/Kg-dry) µg/Kg-dry	ug/Kg-dry) µg/Kg-dry						µg/Kg-dry
	Non- Residential Screening Levels (>10' bgs)		_	_	$\overline{}$		_	-	_	+	9.86E-01 (1)	_	4.19E-03 (1)	1 1	1 1	1.56E+00 (1)	_	-	_	1.35E-03 (1)	+	+-	1.76E-01	1 725+00	2.98E+03	2.25E-01	6.74E-01 (1) 6.09F+00 (1)	1.19E+02	1	3.56F-02 (1)	+-	\vdash	2.9/E-03 (1) 1.58E-02 (1)	+	3.65E-01 (1)	_	-	2.70E+02 (3)	+	1.27E+03 (1)	-+	2.80E+03 (3)	+	
	Non- Residential F Screening Levels (2-10' bgs)		+	+	+	+	╁	H	+	╁	9.86E-01	+		1 1		1.56E+00	;	+	+	1.35E-03	+	+-	1.76E-01	1B) µg/Kg-dry	2.98E+03	2.25E-01	6.74E-01	1.19E+02	1	3.56E-02	\vdash	H	\top	+	3.65E-01	╁	+	2.70E+02	╁	1.27E+03	6.24E+02	2 80F+03	1	
-	Non- Residential Screening Levels (0-2' bgs)		- L	4.68E-04	4.18E-03	1.35E-03	3.38E-04	9.10E-02	7.23E-01	2.20E+02	9.86E-01	1.07E-02	4.19E-03		: '	1.56E+00	4	4.49E-04	┵	1.35E-03	4	4-	1.76E-01	2A Method 826	2.98E+03 2.98E+03	2.25E-01	6.74E-01	1.19E+02	-	3 56E-02	╀	H	_	\bot	3.65E-01	4	\sqcup	2.70E+02	3.5/E+00	1.27E+03	6.24E+02	2 80F+03	200	-
	Analytes	Sample Date	Chloroethane	Chloroform	Chloromethane	cis-1, Z-UCE	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Hexachlorobutadiene	Isopropylbenzene	Methylene chloride	Naphthalene	n-Butylbenzene	II-r Iopyibelizelle sec-But/thenzene	Styrene	tert-Butylbenzene	Tellione	rans-1,2-DCE	trans-1,3-Dichloropropene	I richloroethene (ICE)	Vinyl chloride	Kylenes, Total	Volatile Organic Compounds - (EP	1,1,1,2-1 etrachioroethane	ane	1			1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane (EDC)	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichloropropane	2-Butanone	2-Chlorotoluene	2-Hexanone 4-Chlorotolijene	1-Isopropyltoluene	4-Methyl-2-pentanone

AOC 26-6 (1.5-2.0') AOC 26-6 (0-0.5') AOC 26-5 (1.5-2.0') 60.20</l AOC 26-5 (0-0.5') AOC 26-4 (1.5-2.0') AOC 26-4 (0-0.5') AOC 26-3 (1.5-2.0') DUP 60.20 60 AOC 26-3 (1.5-2.0') AOC 26-3 (0-0.5') AOC 26-2 (1.5-2.0') Table 10 Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26 Bloomfield Refinery, Bloomfield, New Mexico 60.20 60 AOC 26-2 (0.0.5') 47.002009 4.100 \$\\\ \phi \\ \ AOC 26-1 (1.5-2.0') AOC 26-1 (0-0.5') \$20 \text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\fra VOC 55-12 (34-36.) \$\\ \text{\cong} \\ \text{\con AOC 22-15 (30-32') (6.20 AOC 22-15 (1.5-2.0') DUP 6.20 AOC 22-15 (1.5-2.0') 715/2008 9.84 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.027 AOC 22-15 (1.0-1.5') |&|&|&|&|&|& ('ee-7E) Er-SS OOA 8 Ø 40C 22-13 (32-34.5') (1) µg/Kg-dry mg/Kg mg/Kg mg/Kg Units Source | පට්ප්ට්ට්ට්ට්ට්ම්මම
 3.57E-03
 3.57E-03
 3.57E-03
 3.57E-03
 3.57E-03
 (7.13E+00
 7.13E+00
 7.13E-02
 7.13E-02
 7.13E-02
 7.13E-02
 7.13E-01
 7.13 Non-Residential Screening Levels (>10' bgs) 4.49E 1.38E 1.35E 5.30E 9.01E 2.88E 1.76E 4.68E 9.43E 1.35E 9.10E 7.23E 1.90E 9.86E 2.29E 4.19E
 Semi Volatile Organics - (EPA Method 8270) mg/kg

 1,2,4-Trichlorobenzene
 1.02E-02

 1,2-Dichlorobenzene
 3.13E-01

 1,3-Dichlorobenzene
 3.57E-03

 1,4-Dichlorobenzene
 3.57E-03

 2,4,5-Trichlorophenol
 7.13E-00

 2,4-Dichlorophenol
 7.13E-02

 2,4-Dichlorophenol
 1.37E-01

 2,4-Dintrophenol
 1.37E-01

 2,4-Dintrophenol
 5.25E-02

 2,4-Dinitrophenol
 5.25E-02

 2,4-Dinitrophenol
 5.25E-02

 2,4-Dinitrophenol
 5.25E-02

 2,4-Dinitrophenol
 1.56E-03

 2,5-Dinitrophenol
 1.56E-03

 2,5-Dinitrophenol
 1.55E-01

 2,5-Dinitrophenol
 2.67E-02

 2,5-Dinitrophenol
 2.67E-02

 2,5-Dinitrophenol
 2.67E-02

 2,5-Dinitrophenol
 2.67E-02

 2,5-Dinitrophenol
 1.35E-01

 2,5-Dinitrophenol
 1.35E-01
 Non-Residential Screening Levels (2-10' bgs)
 4.49E-01
 4.49E-01

 1.38E+03
 1.38E+03

 3.01E+01
 3.01E+01

 1.35E+00
 1.35E+00

 5.30E+00
 5.30E+00

 9.01E+02
 9.01E+02

 2.88E-01
 2.88E-01

 1.76E+02
 1.76E+02
 4.68E-01 4.18E+00 9.43E+01 1.35E+00 3.38E-01 9.10E+01 7.23E+02 1.46E+01 2.20E+05 9.86E+02 2.29E+01 1.07E+01 4.19E+00 3.84E+03 1.85E+00 1.50E+01 2.76E-01 2.30E+01 1.94E+00 2.52E+02 7.39E-01 5.38E+01 1560 1.70E-02 4.68E-01 4.18E+00 9.43E+01 1.35E+00 3.38E-01 9.10E+01 7.23E+02 1.46E+01 2.20E+05 9.86E+02 2.29E+01 1.07E+01 4.19E+00 3.84E+03 1.85E+00 1.50E+01 2.76E-01 2.30E+01 1.94E+00 2.52E+02 7.39E-01 5.38E+01 Non-Residential Screening Levels (0-2' bgs) 1.70E-02 1560 Sample Date
Acetone
Benzene
Bromobenzene
Bromodichloromethane
Bromoform
Bromomethane
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Chlorotethane
Chlorotethane
Cis-1,2-DCE
cis-1,3-Dichloropropene
Dibromomethane
Cis-1,3-Dichloropropene
Dibromomethane
Eitylbenzene
Distromochloromethane
Eitylbenzene
Hexachlorobutadiene
Isopropylbenzene
Isopropylbenzene
Methyl tert-butyl ether (MTBE)
Methylene chloride
Naphthalene trans-1,2-DCE trans-1,3-Dichloropropene Trichloroethene (TCE) Trichlorofluoromethane Styrene tert-Butylbenzene Tetrachioroethene (PCE) Toluene Analytes 2-Nitrophenol 3,3'-Dichlorobenzidine 2-Methylnaphthalene 2-Methylphenol n-Propylbenzene sec-Butylbenzene n-Butylbenzene Vinyl chloride Xylenes, Total

Table 10
Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26
Bloomfield Refinery, Bloomfield, New Mexico

	AOC 26-6 (1.5-2.0°)	4/20/2009	<0.20	<0.20	¢0.50	<0.20	200	\$0.20 \$0.20	<0.25	<0.20	<0.20	40.20 20.20	<0.20	<0.20	<0.20	\$ 0.20 \$	07.00	<0.20	<0.50	<0.20	<0.20	<0.20 <0.20 <0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.20 <0.20	<0.50	<0.20	<0.23	<0.20	<0.20	0.20	<0.25	<0.50	<0.20	20.00	<0.20	<0.40	<0.20 50.30	0.20	<0.50		450 450	<50 <50
	VOC Se-6 (0-0.5')	4/20/2009		<0.20		<0.20	- [1	Į.	1 1				1	1 1			1	1	ΙI		- 1	1		\$0.20 \$0.20		11	- 1	1 1		1				1	<0.50	<0.20	\$0.50 \$0.50	<0.20	<0.40	40.20	02.00	<0.50	140	250	\$50 \$50
	AOC 26-5 (1.5-2.0')	4/20/2009	<0.20	<0.20	<0.50	<0.20	200	\$0.20	<0.25	<0.20	<0.20	40.20	<0.20	<0.20	<0.20	\$ 0.20 5 5	07.0	\$0.20 \$0.20	<0.50	<0.20	<0.20	0.20	<0.50	<0.20	<0.20 <0.20 <0.20	<0.20	<0.20 5.50 5.50 5.50 5.50 5.50 5.50 5.50	\$0.20 \$0.20	<0.50	<0.20 25 25 25 25 25 25 25 25 25 25 25 25 25	\$ 0.50	<0.20	<0.20	0.20	<0.25	<0.50	\$0.20 20 20 20 20	\$0.50 \$0.50	<0.20	<0.40	\$ 0.20 \$ 50.20	07.00	<0.50	7	\$50 \$50	550
	VOC 56-5 (0-0.5')	4/20/2009	<0.20	<0.20	<0.50	<0.20	00.00	\$0.20 \$0.20		1 1		- 1	1		- 1	- 1	- 1		ı	ll					\$0.20 \$0.20		11		П			П			Т	<0.50	<0.20	0.50	<0.20	<0.40	\$ 0.20 \$ 50.30	02.00	<0.50	7	250	3,50
	AOC 26-4 (1.5-2.0')	4/20/2009	<0.20	<0.20	<0.50	\$ 0.20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.50	020	1	1 1	1	- 1	1	1 1	1	1	1	1	1	1	- 1	ì	1		40.20 40.20	1	1		1 1	- 1	1	1 1	- 1	- 1	1	1 1	- 1	- 1	1	1	- 1	- 1	1 1	1	01×	\$ 250
	VOC Se-4 (0-0.5')	4/20/2009	<0.20	<0.20	<0.50	<0.20	0.50	\$0.50 \$0.20	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 \$	\$0.20 \$0.50	<0.20	<0.50	<0.20	<0.20	<0.20	<0.50	<0.20	<0.20 <0.20 <0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.23	<0.20	<0.20	<0.20	<0.25	<0.50	\$ 50.20	<0.30 <0.20	<0.20	<0.40	<0.20	<0.20	<0.50	7	×10 ×20	\$ 20
	AOC 26-3 (1.5-2.0') DUP	4/20/2009	<0.20	<0.20	<0.50	<0.20 50.20	20.50	\$0.50 \$0.50	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	40.20 50.20	40.20 40.20 50.50	<0.20 <0.20	<0.50	<0.20	<0.20	<0.20 <0.20 <0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.20 <0.20	<0.50	<0.20 20.20	<0.50 <0.50 <0.50	<0.20	<0.20	<0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.00 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00	<0.25	<0.50	<0.20	<0.50 <0.20 <0.20	<0.20	<0.40	<0.20 20.20	07.00	<0.50	4	×10 ×5.0	67
	AOC 26-3 (1.5-2.0')	4/20/2009	<0.20	<0.20	<0.50	<0.20	20.50	\$0.20 \$0.20	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	\$0.20 \$0.50	<0.20	<0.50	<0.20	<0.20 20.20	<0.20 <0.20 <0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.20 <0.20	<0.50	<0.20 20.20 30.20	<0.50	<0.20	<0.20	\$ 0.20 \$ 0.20	<0.25	<0.50	\$ 0.20 \$	<0.50 <0.20 <0.20	<0.20	<0.40	<0.20	02.02	<0.50	7	2 V 10	56
		σ	!!	' 1	- 1	- 1	- 1	- 1	ĺ	łI	l	- 1	1	1 1	1	- 1	- 1	1		!!	- 1	<0.20				1	<0.20		1			1 1	- 1		1	1		- 1	ı	1		- 1	<0.50		<5.0	02
	AOC 26-2 (1.5-2.0')	4/20/2009	<0.20	<0.20	<0.50	<0.20	00.00	<0.20	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 <0.50 <0.50	<0.20	<0.50	<0.20	<0.20	<0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.50	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.40	<0.20	07.0 <0.20	<0.50	7	<10 <5.0	\$20 \$20
		4			_L		┸		_	Ш						\perp	_	L	L			_L			<0.20	1_	Ш.		LL	_	Т.			L	L.	Ш	$_{L}$				_ [L	Ш		<50) (50
	(1.5-2.0')	4/20/2009	<0.20	<0.20	<0.50 50	<0.20 20.20	20.50	\$0.20 \$0.20	<0.25	<0.20	<0.20	050 V	\$0.50 \$0.50	<0.20	<0.20	\$0.20 \$0.20	V 050	\$0.20 \$0.20	<0.50	<0.20	\$ 0.20 \$	0.20	<0.50	<0.20	<0.20 <0.20 <0.20	<0.20	<0.20	\$0.20 \$0.20	<0.50	<0.20	\$0.50	<0.20	<0.20	40.20 20.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.40	<0.20	07.0>	<0.50	7	\$ \$ 0 \$ 0	-\$20 -\$20
		4	<0.20	<0.20	<0.50	<0.20	0.00	<0.20	<0.25	<0.20	<0.20	<0.20 20.20 20.20	<0.20	<0.20	<0.20	07.70	20.50	<0.20	<0.50	<0.20	Q 50	\$0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20 20.20	<0.50	<0.20	<0.20	\$ 0.20 \$ 0.20	<0.25	<0.50	¢0.20	\$0.30 \$0.20	<0.20	<0.40	\$ 0.20 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 5	02.02	<0.50	5	\$ 10 \$ 50	\$20
		4	<0.20	<0.20	\$0.50 \$	\$ 0.20 \$ 0.50	20.50	<0.20	<0.25	<0.20	<0.20	\$ 50 50 50 50 50 50 50 50 50 50 50 50 50 5	\$0.50 \$0.20	<0.20	<0.20	07.0	07.00	<0.20	<0.50	<0.20	<0.20	\$0.20 \$0.20	<0.50	<0.20	<0.20	<0.20	<0.20	\$0.20 \$0.20	<0.50	0.20	\$0.50 \$0.50	<0.20	<0.20	0.20	<0.25	<0.50	\$ 0.20 5	\$0.30 \$0.20	<0.20	<0.40	40.20 20.20	07.02	<0.50	7	3 5	50 50
	VOC 55-15 (30-35.)	4		- [- 1			<0.20	1	ΙĪ	1	40.20 40.20		ı		0.20	<0.20	40.20 40.20	<0.50	<0.20	<0.20 20 20 20 20 20 20 20 20 20 20 20 20 2	<0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.50	<0.20	<0.20	<0.20 <0.20 <0.20	<0.25	<0.50	<0.20	<0.20	<0.20	<0.40	<0.20	07.02	<0.50	7	×10 ×50	\$50
	AOC 22-15 (1.5-2.0') DUP	4/15/2009	<0.20	<0.20	<0.50	0.20	20.50	40.20 40.20	<0.25	<0.20	<0.20	0.20	<0.20	<0.20	\$ 0.20 9	07.0	×0.20 ×0.50	<0.20	<0.50	<0.20	0.20 9	<0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20 25 25 25 25 25 25 25 25 25 25 25 25 25	<0.50	<0.20	<0.20	<0.20 <0.20 <0.20 <0.20	<0.25	<0.50	<0.20	\$0.50 \$0.20	<0.20	<0.40	<0.20 20.20 20.20	02.00	<0.50	7	\$ 20	\$20
	_ 	4	<0.20	<0.20	Q-20 9	0.20	20.30	40.20 40.20	<0.25	<0.20	<0.20	\$0.20 \$0.20 \$0.20	<0.20	<0.20	<0.20 50.20	07.0	\$0.20	<0.20	<0.50	<0.20	\$ 0.50 \$	<0.20	<0.50	<0.20	<0.20 <0.20	<0.20	<0.20	<0.20	<0.50	\$0.20 25.05 25.05	<0.50	<0.20	<0.20	<0.20	<0.25	<0.50	<0.20 5	\$0.30 \$0.20	<0.20	<0.40	40.20	07.02	<0.50	5	\$ 7 C	· 20
		4/15/2009	√ 1.0	×1.0	57.5	0.12 2.5	3.5	0.15	×1.3	<1.0	0. V	0.12	41.0	<1.0	0.5	V 7	2.5	410	<2.5	<1.0	2.0 2.0	0.0	<2.5	0. V-	0.10	v-1.0	<10	4.0	<2.5	0, c	<2.5	<1.0	V .	0.10	ν Σ. Α.	<2.5	41.0	4.0	<1.0	<2.0	V V	0 0	<2.5	9	250	7
	AOC 22-13 (37-39')	4/8/2009	!	:	:	•	: ;		'	,	-	1 1	:			•	: '			:	:						ı	: :		1			;	: :		:	!	: :	1	'	1	<u>, </u>	1	7800	5500	<1000
	AOC 22-13 (32-34.5')	4/8/2009	<0.20	<0.20	0.50	07.0	0.30	<0.20 <0.20	<0.25	<0.20	<0.20	0.20	<0.20	<0.20	9.50	07.0	0.20	\$0.20	<0.50	<0.20	0.20	\$0.20 \$0.20 \$0.20	<0.50	<0.20 0.20 0.20	<0.20	<0.20	<0.20	\$ 70.50 \$0.50	<0.50	<0.20 25 25 25 25 25 25 25 25 25 25 25 25 25	<0.50	<0.20	<0.20	<0.20 <0.20 <0.20	<0.25	<0.50	1.8	\$0.50 \$0.20	<0.20	<0.40	0.41	02.00	<0.50	1300	250	\$500 \$500
	Units		_1	mg/Kg	mg/Kg	mg/Kg	mg/Kg	1	L	Н	_		 	Ш	_L		ma/Ko	1-	Ш	\perp	_	mg/Kg	\perp	_	mg/Kg ma/Ka	4_	mg/Kg	-	\sqcup	mg/Kg	↓_	mg/Kg		mg/Kg	1	┦	_	mg/Ka	┺	4	+	4	mg/Kg	L	Mg/Kg	
	Non- Residential Screening Levels (>10' bgs)	ſ	1.90E-01 (3)	1	1	+	1 20E-03 (4)	+	1.00E-02 (4)	\vdash	2.05E+01 (1)	3.40F-02 (4)	+-	⊢	3.20E-01 (1)	-	+-	1.09E+01 (1)	Н	-	-	2.56E-03 (1)	+	6.70E+00 (4)	3.26E+01 (1)	3.62E-01 (1)	-	8.36E+01 (1)		1 55E+02 (1)	+		-+	1 93E-01 (1)	+-	1	_	1.10E-04 (4)	1		8.34E+01 (1)		9.70E-03 (3)	_	1120 (6)	Τ
	Non- Residential R Screening S Levels (2-10' bgs) (1.90E-01	1	-	1	1 20E-03	,	1.00E-02		2.05E+01	2	12	_	3.20E-01	_	╁	╁	Н	+	\top	2.33E-05 2.56E-03	+	十	╁	3.62E-01	+	8.36E+01	H	+	十	H	+	╁	╁	Н	┰	┿	1	\dashv	+	┿	╁┤	-	1120	5000
-	Non- Residential F Screening Levels (0-2' bgs) (1.90E-01	1			1 20E-03	201	1.00E-02	H	2.05E+01	\downarrow	3.37E+02	$\left \cdot \right $	4	1.09E-01	+	╀	Ш	4	4	2.56E-03		6.70E+00	+	3.62E-01	\perp	8.36E+01	\sqcup	1 55E+02	┼	\sqcup	4	6.13E-01	╄-	\sqcup	4.19E-03	+	1.29E+00	4	8.34E+01	-	9.70E-03	PA Method 80:	1120	5000
	Analytes	Sample Date	3+4-Methylphenol	3-Nitroaniline	4,6-Dinitro-2-methylphenol	omophenyi phenyi ether	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphinylene	Anthracene	Azobenzene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(a h iberylene	Benzo(k)fluoranthene	Benzoic acid	Benzyi alcohol	Bis(2-chloroethoxy)methane	Bis(2-chloroisoproovl)ether	2-ethylhexyl)phthalate	Butyl benzyl phthalate	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Dimethyl phthalate	Di-n-butyl phthalate	Ur-n-octyl phthalate	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Naphthalene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	enol	Phenantinene		Pyridine	Total Petroleum Hydrocarbons - (EPA Method 8015B) mg/kg Diesel Ranne Organics (DRO) 1120 1120	line Range Organics (GRO)	r Oil Range Organics (MRO)

Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26 Bloomfield Refinery, Bloomfield, New Mexico Table 10

AOC 26-6 (1.5-2.0')	4/20/2009	<1.0
∀OC 5e-e (0-0·2,)	4/20/2009	<1.0
AOC 26-5 (1.5-2.0')	1/20/2009	<1.0
∀OC 56-5 (0-0.5')	/20/2009	<1.0
AOC 26-4 (1.5-2.0')	/20/2009 4	:
∂OC Se¬t (0-0.5')	/20/2009 4	:
AOC 26-3 (1.5-2.0') DUP	20/2009 4	
AOC 26-3 (1.5-2.0')	20/2009 4/	,
AOC 26-3 (0-0.5')	20/2009 4/	
AOC 26-2 (1.5-2.0°)	20/2009 4/	<1.0
∀OC 5e-2 (0.0.5°)	0/2009 4/2	<1.0
AOC 26-1 (1.5-2.0')	0/2009 4/2	<1.0
AOC 26-1 (0-0.5')	4/20/2009 4/2	1.0
AOC 22-15 (34-36')	5/2009 4/2	·
VOC 55-12 (30-35.)	/15/2009 4/1	
AOC 22-15 (1.5-2.0°) DUP	/15/2009 4/15	
AOC 22-15 (1.5-2.0°)	/2009 4/15	-
AOC 22-15 (1.0-1.5')	2009 4/15	-
,	2009 4/15/20	_
	009 4/8/20	
გ ₩OC 25-13 (35-34.5')	4/8/2009	Kg
Source D Sign		/gm
Science (*)		1
Non- Residential Screening Levels (2-10' bgs)		1
Non- Residential Screening Levels (0-2' bgs)		
ử ળ ÷		
Analytes	Date	
	Sample Date	Ethanol

Table 10 Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26 Bloomfield Refinery, Bloomfield, New Mexico

				-										
Analytes	Non- Residential Screening Levels (0-2' bgs)	Non- Residential Screening Levels (2-10' bgs)	Non- Residential Screening Levels (>10' bgs)	Source	Units	AOC 26-7 (0-0.5')	AOC 26-7 (1.5-2.0')	AOC 26-8 (0-1.0')	AUG (0.1.0) 8-85 COA	AOC 26-8 (1.5-2.0')	VOC 56-8 (32-36')	VOC Se-9 (0-0.5')	AOC 26-9 (1.5-2.0')	VOC 56-9 (36-38')
Sample Date						600	600	600	600	600	8	600	60	4/20/2009
Metals (mg/kg)	, 0 1, 0 0			L									1 1	
Antimony	6.61E-01	6.61E-01	-	E (mg/Kg	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	×13	×13	<12	2.5	42.5	4 3	<12	<2.5
Arsenic	1.31E-UZ	1.31E-02	_	_	mg/Kg	\	433	<13	<15 <15	42.5	42.5	43	<12	<2.5
Banum	3.01E+02	3.01E+02	_	4	mg/Kg	220	150	280	240	280	230	120	130	180
Derymuni Codmitte	3.77E+UI	5.77E+U1	-		mg/kg	c/.0>	67.05	\$ 6.75	67.05	0.29	<0.15	<0.75	<0.75	<0.15
Cadmium	1.3/E+00	1.3/E+00	-	_	mg/kg	40.50 00.50	<0.50 2.50	20.50	<0.50 0.50	01.0	<0.10 0.10	<0.50	<0.50	<0.10
Chroman	4.4/E+U3	4.4/E+U5	9.80E+U/	Z 6	mg/kg	200	2.6	4.7	1.7	2.4	2.2	4 .	8.9	3.9
Cyanida	7.44E+00	7.44E±00	-	_L	mg/Kg	4.6	5.4 7.5	200	1.0	2.5	5.7	7.6	3.6	2.3
) and	R OUF+02	R OOF+02	$\overline{}$	┸	S Now	16.5	200	200	800	3.0	2.7	- 70	1.7	C.O.
Mergiry	2.93F-02	2 93F-02		2 5	ma/Ka	<0.032	<0.032	<0.05	<0.033	<0.033	<0.033	40 033	0.0	<0.032
Nickel	4.77E+01	4.77E+01	4.77E+01	1_	ma/Ka	76	6.8	3	2.8	4 8	18	5.8	7 6	1 8
Selenium	9.65E-01	9.65E-01	-	L	mg/Kg	<	<13	<13	<12	<12	<12	<13	<12	<13
Silver	1.57E+00	1.57E+00		_	mg/Kg	<1.3	<1.3	<1.3	<1.2	<0.25	<0.25	<1.3	<1.2	<0.25
Vanadium	1.83E+02	1.83E+02	-	(1)	mg/Kg	19	17	<13	<12	13	10	14	19	11
Zinc	6.82E+02	6.82E+02	-	(1)	mg/Kg	160	30	22	20	24	14	39	32	1
Volatile Organic Compounds - (El	PA Method 82	60B) mg/kg	- 1	L	1				ŀ					
1,1,1,2-1etrachloroethane	1.73E-03	1.73E-03	-+	<u> </u>	mg/Kg	<0.050	<0.050		:	;	;	-	1	<0.50
1,1,1-1 richloroethane	2.98E+00	2.98E+00	_		mg/Kg	+	<0.050	'		:	•	'	•	<0.50
1,1,2,2-1 etrachioroethane	2.25E-04	2.25E-04	-	_	mg/kg	+	<0.050 0.050	'		-	:	•	•	<0.50
1.1.2-11IGHOUGHIGHE 0.74E-04 0.74E-04 1.1-Dichlorosthane 6.00E-03 6.00E-03	6.00E.03	6.74E-04	6.00E-03	= 1 = 1 = 1	┿	+	40.U3U	•		<u>;</u>	<u>:</u>	•	:	40.50 0.50
1, 1-Diction Cettiane	1 10E 04	4 400 04	+	┵	+	+	0.00	•	•	•	:	•		0.10
1. I-Dichloropropage	1.195-01	1.195-01	+	= 1.	mg/kg	+	20.030	+	-	-		•	-	0.50
1.2.3-Trichlorobenzene			,	+	╁	+	010	1				:	;	2 0
1.2.3-Trichloropropane	3.56E-05	3.56E-05	+	Ξ	+	+	\$0.10	,	,		;		+-	0.0
1,2,4-Trichlorobenzene	1.02E-02	1.02E-02	+-	↓	+	╀	<0.050	1	,				1:	<0.50
1,2,4-Trimethylbenzene	2.40E-02	2.40E-02	-	Ц	Н	Н	<0.050				:	1		71
1,2-Dibromo-3-chloropropane	2.97E-06	2.97E-06	-+			-4	<0.10	1	:	:	;		:	<1.0
1,2-Dibromoethane (EDB)	1.58E-05	1.58E-05	1.58E-05	Ξ.	mg/Kg	+	<0.050	-		-	:	:	:	c 0.50
1 2-Dichloroethane (FDC)	3.13E-01	3.13E-01	+		+	+	00.00						:	00.00
12-Dichloropropane	1 11F-03	1 11F-03	+-	\perp	+-	+-	<0.050	1	,				+	20.00
1,3,5-Trimethylbenzene	2.00E-02	2.00E-02	+-	╄	╀	_	<0.050	1	:	1				25
1,3-Dichlorobenzene	-	-	-	_	Н	├-	<0.050	-	,	:		•	!	<0.50
1,3-Dichloropropane	2.70E-01	2.70E-01	2.70E-01	(6)	\dashv	\vdash	<0.050	•	-	-	1	•		<0.50
1,4-Dichlorobenzene	3.57E-03	3.57E-03	_	Ц.	+	+	<0.050	-	:	:	:	-	1	<0.50
1-Metriyirlaprimalerie	1.305-01	1.30E-01	+	₹)	+	-	20.20	1	;	+	<u>'</u>	•	:	X X
2-Butanone (MEK)	127F+00	1 27F+00	-	100	╁	+	<0.50		† ' '				; -	25.0
2-Chlorotoluene	6.24E-01	6.24E-01	6.24E-01	_	╁	+	<0.050	;		:	1			<0.50
2-Hexanone	1	-	Н	Ц	Н	Н	<0.50		:	-	,		1	<5.0
2-Methylnaphthalene	9.00E-01	9.00E-01	9.00E-01	(6)	+	\vdash	<0.20		-	:	1	-	,	16
4-Chlorotoluene	2.80E+00	2.80E+00	\rightarrow	4	\dashv	-	<0.050	:	;	•	:	1	1	<0.50
4-Isopropyltoluene	:	!	1	+	mg/Kg	\dashv	<0.050	•	:	-	-	•	:	1.2
4-Methyl-z-pentarione	3 84E+00	3 84E+00	-	= =	+	+	<0.50		:	•	: :	:	-	\$5.0
Renzene	1 85F-03	1 85E-03	+	\perp	+-	+	<0.050	+			. :	· 	<u> </u>	2
Bromobenzene	1.50E-02	1.50E-02	+-	\bot	+	-	<0.050		;				,	<0.50 >0.50
Bromodichloromethane	2.76E-04	2.76E-04	-	_	╁	╄	<0.050	:		:	'			<0.50
Bromoform	2.30E-02	2.30E-02	\vdash		Н	Н	<0.050					,		<0.50
Bromomethane	1.94E-03	1.94E-03	\rightarrow	E :	+	-	<0.10	-	-	•	:	'		<1.0
Carbon disultide	2.52E-01	2.52E-01		4-	+	4	<0.50	-	'	:		:	-	<5.0
Carbon tetracinoride	7.39E-04 5.38E-02	7.39E-04 5.38E-02	7.39E-04	3 8	mg/Kg	0 050 OS	<0.050	+	<u> </u>	†	+	<u> </u>	: ;	0.10
			_		1	-				-				33.5

Table 10
Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26
Bloomfield Refinery, Bloomfield, New Mexico

			3	:	, ,		produities remery, produities, new mexico	<u>}</u>						
Analytes	Non- Residential Screening Levels (0-2' bgs)	Non- Residential Screening Levels (2-10' bgs)	Non- Residential Screening Levels (>10' bgs)	Source	Units	(.6.0-0) T-82 OOA			4UG ('0.1-0) 8-85 OOA	AOC 26-8 (1.5-2.0')		('6.0-0) e-8s OOA		AOC 26-9 (36-38')
Sample Date					7	/20/2009 4	4/20/2009 4	600	4/16/2009	4/16/2009	4/16/2009	4/20/2009	4/20/2009	1/20/2009
Chloroethane	70 389 V	- 4 685 04	A 68E 04	(1)	Т	40.10 70.050	VO.10	: ;	: ;	'	•	· ·		0.1.0
Chloromethane	4.00E-04	4.06E-04 4.18F-03	4 18F-03	\bot	mo/Ka		<0.050		: :	: :		;	: '	<0.50
cis-1.2-DCE	9.43E-02	9.43E-02	9.43E-02	1	Т	1	<0.050		:	1	ı	'		<0.50
cis-1,3-Dichloropropene	1.35E-03	1.35E-03	1.35E-03	╙	Γ	<0.050	<0.050	:	,	:	:	:		<0.50
Dibromochloromethane	3.38E-04	3.38E-04	3.38E-04	Щ		1	<0.050		:	1	-	;		<0.50
Dibromomethane	9.10E-02	9.10E-02	9.10E-02	_	\dashv	+	<0.10	•	1	:	•	-	;	×1.0
Dichlorodifluoromethane Ethylborzeno	7.23E-01	7.23E-01	7.23E-01		mg/Kg	+	<0.050	: :		' '	<u>.</u>			22
Hexachlorobutadiene	2.20E+02	2.20E+02	1.90E-02	_	+	+-	<0.10 <0.10		1	;	1	1	:	×1.0
Isopropylbenzene	9.86E-01	9.86E-01	9.86E-01	Ш	Н	<0.050	<0.050		;	:	1	;		2.6
Methyl tert-butyl ether (MTBE)	2.29E-02	2.29E-02	2.29E-02	4	+	+	<0.050	1	:	-	:	:	:	<0.50 7. F
Naphthalana	1.07E-02 4 19E-03	1.07E-02 4 19E-03	1.07E-02 4 19E-03			+	0 10	<u>.</u>		: ;	: :	: :	: '	÷
n-Butylbenzene	-	-	-	╄	╀	╀	<0.050					<u>'</u>		2
n-Propylbenzene	1		:	ŭ	mg/Kg	-	<0.050	,		:		-	-	12
sec-Butylbenzene	-	1	1	ш́	\dashv	<0.050	<0.050	:	1	1	:	1	:	2.1
Styrene	1.56E+00	1.56E+00	1.56E+00	(1) m	+	+	<0.050	,	•	;	;	•	:	<0.50
tert-Butylbenzene			-	4	mg/Kg	+	<0.050	:	:	:	:	:	;	0.50
Tetrachloroethene (PCE)	4.49E-04	1 385+00	4.49E-04		+	<0.050	<0.030				:	•		23
trans-1.2-DCE	3.01E-02	3.01E-02	3.01E-02	┺	╁	<0.050	<0.050		:	:	1	;	1	<0.50
trans-1,3-Dichloropropene	1.35E-03	1.35E-03	1.35E-03	(1) mg	Н	<0.050	<0.050		,	-		;	-	<0.50
Trichloroethene (TCE)	5.30E-03	5.30E-03	5.30E-03	\perp	\dashv	<0.050	<0.050		•	•	1	:	:	<0.50
Trichlorofluoromethane	9.01E-01	9.01E-01	9.01E-01	(1) m m	mg/Kg	<0.050	<0.050		; 1			: '	;	0.50
Xvienes Total	1 76F-01	1.76F-01	1 76F-01	┸	+	<0.10	<0.10		<u> </u>	,	· ·	<u> </u>		130
Volatile Organic Compounds - (EPA Method 8260B) ug/Kg-dry	A Method 82	360B) ua/Ka-dn	1.	╛	6									
1,1,1,2-Tetrachloroethane	1.73E+00	1.73E+00		(1) µg/Kg-dry	Ш	<0.919	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	096:0>	:
1,1,1-Trichloroethane	2.98E+03	2.98E+03	2.98E+03	(1) µg/k		<0.919	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	096.0>	
1,1,2,2-Tetrachloroethane	2.25E-01	2.25E-01	2.25E-01	(1) µg/K	_	<0.919	40.984	<0.928	<0.991	5 5	<0.912	00 00 00 00 00 00 00 00	<0.950 <0.950	
1.1-Dichlomethane	6.74E-01	6.09F+00	6.74E-01	_	no/Ka-dry	<0.919	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	1
1.1-Dichloroethene	1.19E+02	1.19E+02	1.19E+02	+		<0.919	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	
1,1-Dichloropropene		-		-	Ш	<0.919	<0.984	<0.928	<0.991	<1.09	<0.912	>0.896	<0.960	1
1,2,3-Trichlorobenzene	-	-	-	\rightarrow		<0.919	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	-
1,2,3-Trichloropropane	3.56E-02	3.56E-02	3.56E-02	(1) (2) (3)	ug/Kg-dry	+	<0.984	<0.928	<0.991	V 1.09	<0.912	<0.896 <0.896	096.0	
1.2.4-Trimethylbenzene	2.40E+01	2.40E+01	2.40E+01		4	╀	<0.984	4.33	1.6	<1.09	3.2	<0.896	096.0>	:
1,2-Dibromo-3-chloropropane	2.97E-03	2.97E-03	2.97E-03	(1) µg/k	1 1	Н	<0.984	<0.928	<0.991	<1.09	<0.912	>0.896	096:0>	:
1,2-Dibromoethane (EDB)	1.58E-02	1.58E-02	1.58E-02	(1) µg/l	_	\dashv	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	-
1,2-Dichlorobenzene	3.13E+02	3.13E+02	3.13E+02	_	_	+	<0.984	<0.928	<0.991	41.09	<0.912	40.896 40.896	0.960	;
1,2-Dichloroethane (EDC)	3.65E-01	3.65E-01	3.65E-01	(1) Jug/K	ug/Kg-dry	<0.919	<0.984 <0.984	<0.928	<0.99 <0.991	V V	<0.912	<0.090 <0.896	096.0>	:
1.3.5-Trimethylbenzene	2.00E+01	2.00E+01	2.00E+01	_		+-	<0.984	<0.928	<0.991	41.09	<0.912	<0.896	<0.960	:
1,3-Dichlorobenzene	_	1			\Box	<0.919	<0.984	<0.928	<0.991	<1.09	<0.912	>0.896	<0.960	:
1,3-Dichloropropane	2.70E+02	2.70E+02	2.70E+02	(3) µg/k	\dashv	-	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	:
1,4-Dichlorobenzene	3.57E+00	3.57E+00	3.57E+00		_	\dashv	<0.984	<0.928	<0.991	41.09	<0.912	<0.896	<0.960	1
2,2-Dichloropropane	1 275±03	4 27E±03	1 275 ±03		-	+	40.984 63.04	<3.71	<3.07	24.38	9 58	<0.030 <3.58	<3.84	: :
2-Chlorotoluene	6.24E+02	6.24E+02	6.24E+02	(3)	ug/Kg-dry	<0.919	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	ı
2-Hexanone		1			1 1	╀╌┤	<3.94	<3.71	<3.97	<4.36	<3.65	<3.58	<3.84	
4-Chlorotoluene	2.80E+03	2.80E+03	2.80E+03	(S) µg/k	\rightarrow	<0.919	<0.984	<0.928	<0.991	41.09	<0.912	<0.896	0.960	1
4-Isopropyltoluene	1	1	:	1/6/1	- 1	-	<0.984	<0.928	<0.991	41.09	<0.912	<0.896	<0.95U	-
4-Methyl-2-pentanone		-	•	l hgv	- 1	-	<.3.84 	53.71	53.87	54.30	<3.00	\$3.30 T	15.04	'

Table 10 Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26 Bloomfield Refinery, Bloomfield, New Mexico

Professional Resolution Professional Security Pr														
3.94E-03 3.94E-03 3.94E-03 0.1946-37 0.1946-	Ansirtos	Non- Residential Screening Levels (0-2' bgs)	Non- Residential Screening Levels (2-10' bgs)	Non- Residential Screening Levels (>10' bgs)		(0-0.5')	(0,5-3,1) 7-85 20 <i>0</i>	/OC 56-8 (0-1.0')	4UG (0-1.0') B-8S 2OV	/OC 5e-8 (1·2-5·0.)	/OC 5e-8 (35-3e.)	/OC 56-9 (0-0.5')	/OC 56-9 (1.5-2.0')	/OC 5e-3 (3e-38.)
1,56E-00 1,56E-00 1,56E-01	Sample Date				SIIID	4/20/2009	3/2009	3/2009	4/16/2009	7		4/20/2	4/20/2009	
186E-00 188E-00 188E-00 188E-00 198E-00 198E	Acetone	3.84E+03	3.84E+03	3.84E+03		78	5.8	3.71	<3.97			7.7	6.71	
150E+01 150E	Benzene	1.85E+00	1.85E+00	\rightarrow	(1) µg/Kg-dı	<0.919	<0.984	<0.928	<0.991	<1.09	0.966	<0.896	<0.960	
2.76E-01	Bromobenzene	1.50E+01	1.50E+01		(3) µg/Кg-dı	<0.919	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	-
1.94E-00	Bromodichloromethane	2.76E-01	2.76E-01	_	(1) µg/Kg-dı		<0.984	<0.928	<0.991	V 1.09	<0.912	<0.896	<0.960	•
1.25E-700 1.25E-702 2.5E-702 1.0	Bromotorm	2.30E+01	2.30E+01	+	(4) µg/Kg-di		<0.984	<0.928	<0.991	V 1.09	<0.912	<0.896	<0.960	:
Content	Bromometnane Corbon distributo	1.94E+00	1.94E+UU	-		-	40.30	<0.928	<0.991	80.12	218.02	\$0.030 \$2.50	00.300 00.3000	
6. 38E-01 6.38E-01 (1) 1987kg-17 (-0.918 - 0.084 - 0.028 - 0.0	Carbon fetrachloride	7 39E-01	7.32E+02	┰		_	20 08A	17.57 80.00	1990	00.10	\$ 60.00	20.30 808 00.00	20 OF	: !
1.05E-07 4.68E-01 4.68E-01 10 jafkg-dry -0.1919 -0.0964 -0.928 4.48E-00 4.16E-00 1.0 jafkg-dry -0.1919 -0.094 -0.928 4.48E-00 4.16E-00 1.0 jafkg-dry -0.1919 -0.094 -0.928 -0.92	Chlorobenzene	5.38F+01	5.38E+01	+-		┸	<0.304	<0.928	<0.991	60.12	<0.912	×0.896	096.0>	١,
4.58E_01 4.58E_01 4.58E_01 1, jagNg_ddy 0.0919 0.0984 0.0928 4.38E_00 4.18E_00 4.18E_00 4.18E_00 1, jagNg_ddy 0.0919 0.0984 0.0928 6.33E_01 3.38E_01 3.38E_01 0, jagNg_ddy 0.0919 0.0984 0.0928 6.33E_01 3.38E_01 3.38E_01 0, jagNg_ddy 0.0919 0.0984 0.0928 6.33E_01 3.38E_01 3.38E_01 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_02 7.23E_02 7.23E_02 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_02 7.23E_02 7.23E_02 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_02 7.23E_02 7.23E_02 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_02 2.20E_03 2.20E_03 1.90E_01 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_02 2.20E_03 2.20E_03 1.90E_01 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 2.20E_03 1.20E_03 1.90E_01 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 2.20E_03 1.30E_03 1.90E_01 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 2.20E_03 1.90E_03 1.90E_03 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 2.20E_03 1.90E_03 1.90E_03 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 2.20E_03 1.90E_03 1.90E_03 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 1.32E_03 1.32E_03 1.90E_03 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 1.32E_03 1.32E_03 1.90E_03 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 1.32E_03 1.32E_03 1.90E_03 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 1.32E_03 1.32E_03 1.90E_03 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 1.32E_03 1.32E_03 1.90E_03 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 2.20E_03 1.32E_03 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 3.57E_03 3.57E_03 0, jagNg_ddy 0.0919 0.0984 0.0928 7.32E_03 3.57E_03 3.57E_03 0, jagNg_ddy 0.0919 0.0984 0.0984 7.32E_03 3.57E_03 1.32E_03 0, jagNg_ddy 0.0998	Chloroethane	-	-	+		╀	<0.984	<0.928	<0.991	00 V	<0.912	<0.896	<0.960	
4.18E+00	Chloroform	4.68E-01	4.68E-01	+	(1) µg/Kg-dr	1	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	
138E-01 348E-01 348E-01 10 µg/kg-dy 0.0919 0.0944 0.0928 0.	Chloromethane	4.18E+00	4.18E+00	-	(1) µg/Kg-dr	1	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	
133E-10 133E	cis-1,2-DCE	9.43E+01	9.43E+01	9.43E+01	(1) µg/Kg-dı	1 1	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	1
138E-01 3.38E-01 3.38E-01 0) µg/kg-dry 0.919 0.994 0.928	cis-1,3-Dichloropropene	1.35E+00	1.35E+00	_	(1) µg/Kg-di	- 1	<0.984	<0.928	<0.991	×1.09	<0.912	<0.896	<0.960	•
A	Dibromochloromethane	3.38E-01	3.38E-01	_		_	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	:
1,23E-02 1,23E-04 1,39E-04 1,19E/Rg-dry 0.919 0.994 0.928 0.92	Dishlorodial incompations	9.10E+01	9.10E+01	_	(3) µg/kg dr	_	40.984 70.084	\$76.02 \$0.020	V0.99	S 2	50.912 70.012	060.0	20.900	:
2.20E+06 2.20E+05 1.90E+01 0 191Kg-dry 0.519 0.0584 0.0288	Ethylbanzana	1.46F±01	1.23E+02	_	(1) pg/kg-dr		<0.904 <0.084	<0.920	<0.33	8 2	<0.012	<0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0	0000	٠ ،
10 10 10 10 10 10 10 10	Hexachlorobutadiene	2.20E+05	2.20E+05	_	(4) ug/Ka-di		<0.984	<0.928	<0.991	41.09	<0.912	<0.896	<0.960	;
(MTBE) 2.29E+01 2.29E+01 (1) LgNG-drý <0.019 <0.984 <0.928 4.19E+00 4.10F+01 1.07E+01 (1) LgNG-drý <0.919 <0.984 <0.928 	Isopropylbenzene	9.86E+02	9.86E+02	+	(1) µg/Kg-dr	1	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	'
107E+01	Methyl tert-butyl ether (MTBE)	2.29E+01	2.29E+01	-	(1) µg/Kg-dı	11	<0.984	<0.928	<0.991	<1.09	<0.912	>0.896	096.0>	•
## 19E+00 # 19E+00 (1) IgNG-dry 0.919 0.0384 1.82	Methylene chloride	1.07E+01	1.07E+01	_		_	6.38	8.24	10.5	9.76	8.38	5.73	6.57	-
Fig. 2016 Fig.	Naphthalene n Birkibenzene	4.19E+00	4.19E+00	_		\bot	<0.984 <0.984	1.82	<0.991	20.03	2.34	<0.890 <0.890 <0.896	096.0	.
1560	n-Propylbenzene	-			ng/Kg-dr	1	<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	,
1560 1560 156E+03 (1) µg/Kg-dry (0.919 0.0984 0.0228	sec-Butylbenzene	:	1		ug/Kg-dr	1 !	<0.984	<0.928	<0.991	<1.09	<0.912	>0.896	<0.960	
E	Styrene	1560	1560	1.56E+03	(1) µg/Kg-dr		<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	•
138E+01 1,43E+01 1,43E+01 1,	tert-Butylbenzene		1 101 04	+		4	<0.984	<0.928	<0.991	4.09	<0.912	968.0	096.0>	:
ene 1.35E+00 1.35E+00 (1) µg/Kg-dry <0.919 <0.984 <0.928 1.35E+00 1.35E+00 (1) µg/Kg-dry <0.919 <0.984 <0.928 2.01E+02 2.01E+02 9.01E+02 (1) µg/Kg-dry <0.919 <0.984 <0.928 9.01E+02 9.01E+02 9.01E+02 (1) µg/Kg-dry <0.919 <0.984 <0.928 1.76E+02 1.76E+02 1.76E+02 (1) µg/Kg-dry <0.919 <0.984 <0.928 2.88E-01 2.88E-01 2.88E-01 (1) µg/Kg-dry <0.919 <0.984 <0.928 2.88E-01 2.88E-01 1.76E+02 1.76E+02 (1) µg/Kg-dry <0.919 <0.984 <0.928 3.13E-01 3.13E-01 3.13E-01 (1) µg/Kg-dry <0.919 <0.020 <0.20 3.13E-01 3.13E-01 3.13E-01 (1) µg/Kg-dry <0.020 <0.20 <0.20 7.13E+00 7.13E+00 7.13E+00 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-01 3.13E-01 3.13E-01 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-01 3.13E-01 3.13E-01 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-02 7.13E-02 7.13E-02 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-01 1.37E-01 1.37E-01 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-01 1.35E-01 1.35E-01 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-01 1.35E-01 1.35E-01 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-02 7.13E-02 7.13E-02 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-01 1.35E-01 1.35E-01 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-01 1.35E-01 1.35E-01 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-02 5.25E-02 5.25E-02 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-01 1.35E-01 1.35E-01 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-01 1.35E-01 1.35E-01 (1) µg/Kg <0.20 <0.20 <0.20 7.30E-02 0 0.00E-00 0 0.00E-00 (0) µg/Kg <0.20 <0.20 <0.20 7.30E-02 0 0.00E-00 0 0.00E-00 (3) µg/Kg <0.20 <0.20 <0.20 7.00E+00 0 0.00E-00 (3) µg/Kg <0.20 <0.20 <0.20 7.00E+00 0 0.00E+00 (3) µg/Kg <0.20 <0.20 <0.20 7.00E-00 0 0.00E+00 (3) µg/Kg <0.20 <0.20 <0.20 7.00E+00 0 0.00E+00 (1) µg/Kg <0.20 <0.20 <0.20 <0.20 7.00E+00	Toluene	1.38E+03	1.38E+03		(1) pg/kg-dr (1) ug/Kg-dr		<0.984 0.984	3.92	3.55	× 1.09	<0.912	<0.896	<0.960	٠
ene 1.35E+00 1.35E+00 (1) µg/Kg-dry <0.919 <0.984 <0.928 5.30E+00 5.30E+00 5.30E+00 (1) µg/Kg-dry <0.919 <0.984 <0.928 2.80E-01 2.80E-01 2.80E-01 (1) µg/Kg-dry <0.919 <0.984 <0.928 2.80E-01 1.70E+02 1.70E+02 (1) µg/Kg-dry <0.919 <0.984 <0.928 3.13E-01 1.70E+02 1.70E+02 (1) µg/Kg-dry <0.919 <0.984 <0.928 3.13E-01 3.13E-01 1.70E+02 (1) µg/Kg-dry <0.919 <0.084 <0.928 2.80E-01 3.13E-01 3.13E-01 (1) µg/Kg-dry <0.919 <0.020 <0.20 3.57E-03 3.57E-03 1.70E-02 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-02 7.13E-02 7.13E-02 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-01 3.57E-03 1.70E-02 (1) µg/Kg <0.20 <0.20 <0.20 3.57E-01 3.57E-01 1.70E-02 (1) µg/Kg <0.20 <0.20 <0.20 5.25E-02 7.13E-01 1.70E-02 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-02 5.25E-02 (1) µg/Kg <0.20 <0.20 <0.20 1.56E-03 1.56E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-02 2.57E-02 (1) µg/Kg <0.20 <0.20 <0.20 1.56E-01 1.56E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.00E+00 2.00E+00 2.00E+00 (3) µg/Kg <0.20 <0.20 <0.20 3.30E-02 3.30E-02 3.30E-02 (1) µg/Kg <0.20 <0.20 <0.20 2.00E+00 2.00E+00 2.00E+00 (3) µg/Kg <0.20 <0.20 <0.20 3.30E-02 3.30E-02 (1) µg/Kg <0.20 <0.20 <0.20 3.30E-02 1.70E-02 (1) µg/Kg <0.20 <0.20 <0.20 3.30E-02 1.70E-02 (1) µg/Kg <0.20 <0.20 <0.20 3.30E-02 3.30E-02 (1) µg/Kg <0.20 <0.20 <0.20 3.30E-02 1.70E-02 (1) µg/K	trans-1,2-DCE	3.01E+01	3.01E+01	-	(1) µg/Kg-dr	\sqcup	<0.984	<0.928	<0.991	<1.09	<0.912	>0.896	<0.960	
85.0E+00 5.30E+00 (1) µg/Kg-dry <0.919 <0.984 <0.928 9.01E+02 9.01E+02 (1) µg/Kg-dry <0.919 <0.918 <0.928 <0.928 1.76E+02 1.76E+02 (1) µg/Kg-dry <0.919 <0.919 <0.928 <0.928 1.02E-02 1.76E+02 (1) µg/Kg-dry <0.919 <0.924 <0.928 1.02E-02 1.02E-02 1.76E+02 (1) µg/Kg-dry <0.919 <0.924 <0.928 1.02E-02 1.02E-02 1.02E-02 (1) µg/Kg-dry <0.210 <0.20 <0.20 1.02E-03 1.31E-01 3.13E-01 (1) µg/Kg-dry <0.20 <0.20 <0.20 2.57E-03 3.57E-03 3.57E-03 (1) µg/Kg <0.20 <0.20 <0.20 7.13E+00 7.13E+00 7.13E+00 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-01 1.37E-01 1.37E-01 (1) µg/Kg <0.20 <0.20 <0.20 7.13E-02 7.13E-02 7.13E-02 (1) µg/Kg <0.20 <0.20 <0.20 9.12E-01 9.12E-01 (1) µg/Kg <0.20 <0.20 <0.20 1.56E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 1.56E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-02 5.25E-02 (1) µg/Kg <0.20 <0.20 <0.20 1.56E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-02 1.55E-02 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-02 1.55E-02 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-03 1.56E-03 1.56E-03 (1) µg/Kg <0.25 <0.25 2.57E-03 1.56E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-02 1.53E-01 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-03 1.56E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-03 1.56E-03 1.56E-03 (1) µg/Kg <0.25 <0.25 <0.25 2.57E-03 1.56E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-03 1.56E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-03 2.57E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-03 2.57E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-03 2.57E-03 1.56E-03 (1) µg/Kg <0.25 <0.25 <0.25 2.57E-03 2.57E-03 1.56E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-03 2.57E-03 1.55E-03 (1) µg/Kg <0.25 <0.25 <0.25 2.57E-03 2.57E-03 1.55E-03 (1) µg/Kg <0.20 <0.20 <0.20 2.57E-03 2.57E-03 1.55E-03 (1) µg/Kg <0.20 <0.20 <0.20 <0.20 2.57E-03 2.57E-03 2.57E-03 (1) µg/Kg <0.20 <0.20 <0.2	trans-1,3-Dichloropropene	1.35E+00	1.35E+00	\rightarrow	(1) µg/Kg-dı		<0.984	<0.928	<0.991	<1.09	<0.912	<0.896	<0.960	1
SS - (EPA Method 8270) mg/kg 1.76E+02	Trichlorethene (TCE)	5.30E+00	5.30E+00		(1) µg/Kg-dr		<0.984	<0.928	<0.991	7.09	<0.912	40.896 0.896	<0.960	:
SS- (EPA Method 8270) mg/kg 1.76E+02 1.76E+03 2.76E-03 2.77E-03 2.76E-03 2.77E-03 2.	Vinyl chloride	2.01E+02	2.88E-01		(1) ua/Ka-dr	- 1	<0.304	<0.928	<0.99	00.10	<0.912	<0.890	096.0>	٠
Se - (EPA Method 8270) mg/kg 5. (EPA Method 8270) mg/kg 1.02E-02 1.02E-03 1.02	Xylenes, Total	1.76E+02	1.76E+02		(1) µg/Kg-dr		<0.984	<0.928	<0.991	<1.09	2.54	<0.896	<0.960	:
1.02E-02	Semi Volatile Organics - (EPA Me	thod 8270) m	g/kg			l l								
3.13E-01 3.13E-01 (1) mg/kg <0.20 <0.20 <0.20 3.57E-03 3.57E-03 (1) mg/kg <0.20 <0.20 <0.20 7.13E+00 7.13E+00 7.13E+00 (1) mg/kg <0.20 <0.20 <0.20 7.13E-02 7.13E-02 7.13E-02 (1) mg/kg <0.20 <0.20 <0.20 7.13E-01 1.37E-01 1.37E-01 (1) mg/kg <0.20 <0.20 <0.20 9.12E-01 9.12E-01 (1) mg/kg <0.40 <0.40 <0.40 9.12E-01 9.12E-01 (1) mg/kg <0.30 <0.30 1.56E-02 5.25E-02 5.25E-02 (1) mg/kg <0.40 <0.40 <0.40 1.56E-03 1.56E-03 1.56E-03 (1) mg/kg <0.50 <0.50 <0.50 2.67E-02 2.67E-02 2.67E-02 (1) mg/kg <0.50 <0.50 <0.50 1.35E+01 1.35E+01 1.35E+01 (1) mg/kg <0.25 <0.25 <0.25 1.35E-01 1.55E-01 (2) mg/kg <0.20 <0.20 <0.20 9.00E-01 9.00E-01 9.00E-01 (3) mg/kg <0.25 <0.25 <0.25 2.00E+00 2.00E+00 2.00E+00 (3) mg/kg <0.20 <0.20 <0.20 3.30E-02 3.30E-02 (3) mg/kg <0.25 <0.25 <0.25	1,2,4-Trichlorobenzene	1.02E-02	1.02E-02	_		\dashv	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
3.57E-03 3.57E-03 (1) mg/Kg <0.20 <0.20 <0.20 7.13E+00 7.13E+00 (1) mg/Kg <0.20 <0.20 <0.20 7.13E+00 7.13E+00 (1) mg/Kg <0.20 <0.20 <0.20 7.13E-02 7.13E-02 7.13E-02 (1) mg/Kg <0.20 <0.20 <0.20 1.37E-01 1.37E-01 1.37E-01 (1) mg/Kg <0.40 <0.40 <0.40 9.12E-01 9.12E-01 9.12E-01 (1) mg/Kg <0.30 <0.30 <0.30 5.25E-02 5.25E-02 5.25E-02 (1) mg/Kg <0.40 <0.40 <0.40 1.56E-03 1.56E-03 1.56E-03 (1) mg/Kg <0.50 <0.50 <0.50 1.35E+01 1.35E+01 (1) mg/Kg <0.50 <0.50 <0.50 1.35E+01 1.35E+01 (1) mg/Kg <0.25 <0.25 <0.25 1.35E-01 1.35E+01 (1) mg/Kg <0.20 <0.50 <0.50 1.35E+01 1.35E+01 (1) mg/Kg <0.25 <0.25 <0.25 1.35E-01 1.53E-01 (1) mg/Kg <0.20 <0.20 <0.20 9.00E-01 9.00E-01 (1) mg/Kg <0.20 <0.20 <0.20 2.00E+00 2.00E+00 (2.00E+00 (3) mg/Kg <0.25 <0.25 <0.25 1.70E-02 1.70E-02 (1) mg/Kg <0.20 <0.20 <0.20 1.70E-02 (1) mg/Kg <0.20 <0.20 <0.20 <0.20 1.70E-03 (1) mg/Kg <0.20 <0.20 <0.20 <0.20 1.70E-03 (1) mg/Kg <0.20 <0.20 <0.20 <0.20 1.70E-03 (1) mg/Kg <0.20 <0.20 <0.20 <0.20 1.70E-02 (1) mg/Kg <0.20 <0.20 <0.20 <0.20 1.70E-02 (1) mg/Kg <0.25 <0.25 <0.25 <0.25	1,2-Dichlorobenzene	3.13E-01	3.13E-01	\neg	丄	+	\$ 0.20 \$ 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	40.20 40.20
7.13E+00	1,3-Dichlorobenzene	3.57F-03	3.57F-03	-	_	+	\$0.20 \$0.20	0.20	\$0.20 \$0.20	0.20	02.02	0.20	\$0.20 \$0.20	\$0.20 \$0.20
7.13E-02 7.13E-02 7.13E-02 7.13E-02 7.13E-02 7.13E-01 1.37E-01	2.4.5-Trichlorophenol	7.13E+00	7.13E+00	+-	1-	╀	<0.20	<0.20	<0.20	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20	<0.20
1.37E-01 1.37E-01 1.37E-01 (1) mg/kg <0.40 <0.40 <0.40 9.12E-01 9.12E-01 9.12E-01 9.12E-01 9.12E-01 (1) mg/kg <0.30	2,4,6-Trichlorophenol	7.13E-02	7.13E-02	+-	L_	├-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
9.12E-01 9.12E-01 9.12E-01 (1) mg/Kg <0.30	2,4-Dichlorophenol	1.37E-01	1.37E-01		Ш	\vdash	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
5.25E-02 5.25E-02 (1) mg/Kg <0.40	2,4-Dimethylphenol	9.12E-01	9.12E-01	\rightarrow	_	+	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
1.56E-03	2,4-Dinitrophenol	5.25E-02	5.25E-02	\rightarrow		+	<0.40	<0.40	<0.40	<0.40	<0.40	\$ 0.40 5.50	<0.40 5.75	0.40 0.40
2.67E-02 2.67E-02 2.67E-02 (1) mg/kg <0.50 <0.50 <0.50 1.35E+01 1.35E+01 (1) mg/kg <0.25	2,4-Unitrotoluene	1.56E-U3	1.56E-U3	-	4	+	CU.30	<0.50 50.50	<0.50	CU.50	V0.30	V0.30	V.30	40.32 50.32
1.53E-01 1.53E-01 1.53E-01 (1) mg/kg	2,6-Unitrotoluerie	1 255+01	4.5/E-02			+	<0.30 <0.35	<0.30 <0.35	<0.30 <0.35	<0.50 <0.50 <0.55	<0.50 <0.50 <0.50	\$0.50 \$0.50	<0.50	<0.50 <0.25
9.00E-01 9.00E-02	2-Chlorophenol	1.53E-01	1.53E-01	+-	_	┼-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 <0.20
2.00E+00	2-Methylnaphthalene	9.00E-01	9.00E-01	+	<u>_</u>	⊬	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	9
3.30E-02 3.30E-02 3.30E-02 (3) mg/Kg <0.20 <0.20 <0.20	2-Methylphenol	2.00E+00	2.00E+00	1	Ш	Н	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1.70E-02 1.70E-02 1.70E-02 (1) mg/Kg <0.25 <0.25 <0.25	2-Nitroaniline	3.30E-02	3.30E-02		_	+	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1.70E-02 1.7	2-Nitrophenol	1 705 00	1 70E 00			+	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20
	שיים שיים שיים שיים שיים שיים שיים שיים	1.705-04	1./0⊏-02	7		\dashv	VU.4.	77.0	V0.2.0	V.2.0	V.4.0	\V.62	70.60	70.4C

Table 10
Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26
Bloomfield Refinery, Bloomfield, New Mexico

	VOC 56-9 (36-38')	4/20/2009	0.20	<0.50	<0.20	<0.50	<0.50	<0.25	<0.20	<0.20	0.00	<0.20	<0.20	0.20	20.20	<0.50	<0.20	<0.50	\$ 0.20 \$ 0.20	<0.20	<0.20	<0.50	0.20	02.02	<0.20	<0.20	02.00	<0.50	<0.20	<0.25	<0.20	<0.20	<0.20	<0.20	<0.50	2.8	<0.50	\$ 0.20 \$	0.40	0.56	\$ 0.20 \$	<0.50		840	\$20
	AOC 26-9 (1.6-2.0')	4/20/2009	_	Т	1 1		\$0.50		Γ		\$0.20	<0.20	<0.20	0.20	0.20	<0.50	<0.20	<0.50	0.20	<0.20	<0.20	<0.50	0.20	\$0.20	<0.20	<0.20	07.00	<0.50	<0.20	<0.25	<0.20	<0.20	<0.20	0.20	<0.50	<0.20	<0.50	<0.20	<0.20 <0.40	<0.20	<0.20	<0.50		×10	2.0 \$50
	VOC 56-9 (0-0.5')	4/20/2009	- 1	1	1 1	- 1	<0.50	1	1	- 1	- 1	1 1	1	- 1	1	1	1 1	- 1	- 1	1	1 1	ì ì	- 1	1	1	1 1	1	1 '	1 1	ì	1	1 1	1 1	- 1		1 1		- 1		1 !		<0.50	1 1	120	160
	VOC 56-8 (32-36')	4/16/2009	\$0.20	<0.50	<0.20	<0.50	\$0.50 \$0.20	<0.25	<0.20	<0.20	\$0.20	<0.20	<0.20	07.0	\$0.20 \$0.20	<0.50	<0.20	<0.50	<0.20	<0.20	<0.20	<0.50	<0.20	\$0.20	<0.20	<0.20	07.00	<0.50	<0.20	<0.25	<0.20	<0.20	<0.20	<0.20 <0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.50		V 410	2.5
	AOC 26-8 (1.5-2.0')	ଦ୍ର	- 1	1	1 1	- 1	<0.50 <0.20 <0.20	1	1 1			1 1	<0.20			1	ll	- 1	- 1	1	1 1	1		- 1	1	<0.20			H	- 1			ł I	- 1	1	1 1			1	1 1		<0.50	1 1	01×	2.0
qı	Ua ('0.1-0) 8-8≤ 2OA 8	4/16/2009	\$0.20	<0.50	<0.20	<0.50	<0.50	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	\$0.20 \$0.20	<0.50	<0.20	<0.50	<0.20	<0.20	<0.20	<0.50	<0.20	\$0.20 \$0.20	<0.20	<0.20	07:0> <0.20	<0.50	<0.20	<0.25	<0.20 <0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.50		×10	2 6
	- I-	4	<0.20	<0.50	<0.20	<0.50	<0.50	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	07.0	\$0.20	<0.50	<0.20	<0.50	V 0.20	<0.20	<0.20	<0.50	\$0.20 \$0.20	\$0.20 \$0.20	<0.20	<0.20	07.00	<0.50	<0.20	<0.25	<0.20	<0.20	<0.20	<0.20 <0.20 <0.25	<0.50	<0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.50		- 5	25.0 45.6
	AOC 26-7 (1.5-2.0')	4/20/2009	<0.20 <0.20 <0.20	<0.50	<0.20	<0.50	0.50 0.50 0.50	<0.25	<0.20	<0.20	\$0.20 \$0.20	<0.20	<0.20	0.20	02.00	<0.50	<0.20	<0.50	0.20 9.30	<0.20 <0.20	<0.20	<0.50	0.20 7	\$0.20	<0.20	<0.20	02.02	<0.50	<0.20	<0.25	<0.20	<0.20	<0.20	<0.20 <0.20 <0.25	<0.50	<0.20	<0.50	<0.20	<0.20 <0.40 <0.40	<0.20	<0.20	<0.50		0 5	2.07
	AOC 26-7 (0-0.5')	4/20/2009	<0.20	<0.50	<0.20	<0.50	\$ 0.50	<0.25	<0.20	<0.20	07.0 <0.20	<0.20	<0.20	40.20 20.20	\$0.20 \$0.20	<0.50	<0.20	<0.50	40.20 20.20	<0.20	<0.20	<0.50	<0.20	\$0.20 \$0.20 \$0.20	<0.20	<0.20	02.05	<0.50	<0.20	<0.25	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.50		× 10	2.0
	Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	ma/Kn	ma/Ka	mg/Kg	mg/Kg	mg/Kg	ma/Ka	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	ma/Ka	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	ma/Ka	mg/Kg	mg/Kg	mg/Kg	JL	mg/Kg	_ [
	Source	- (c)	<u> </u>	L			4	4		9		-	Ð		-	+	1 1	\rightarrow	┯	າ∈	-	╌	₹ •	Ξ	Ξ	 	Ξ ϵ	+	╌╂	€	+	╁			+-	+	Н	-+-	3	-	-	<u>ි</u> ල	1 h	<u></u>	
a S	Non- Residential Screening Levels (>10' bgs)	100	1.90E-U1		1	1 00	1.20E-03	1.00E-02		2.05E+01	3.40F-02	3.37E+02	5.10E-03	3.20E-01	1.09E-01	3 1	1.09E+01	3.30E+01	4.20E+00	2.33E-05	2.56E-03	1.19E+01	6.70E+00	3.26E+01	3.62E-01	- 100	1.05E+01	8.63E+00	:	1.55E+02	2.21E-03	1.90E-02	6.13E-01	3 ZOE+00	1.85E-01	4.19E-03	6.86E-03	1.10E-04	2 94F-02	8.34E+01	6.30E+00	9.70E-03		1120	1120
2	Residential Screening Levels (2-10' bgs)	100	1.90E-01	į t			1.20E-03	1.00E-02	1	2.05E+01	3.40F-02	3.37E+02	5.10E-03	3.20E-01	1 115+00	1.1.1	1.09E+01	3.30E+01	4.20E+00	2.33E-05	2.56E-03	1.19E+01	6.70E+00	3.26F±01	3.62E-01	1	1.06E+01	8.63E+00	,	1.55E+02	2.21E-03	1.90E-02	6.13E-01	1.93E-02	1.85E-01	4.19E-03	6.86E-03	1.10E-04	2 94F-02	8.34E+01	6.30E+00	9.70E-03	1015B) mg/kg	1120	1120
S N	Non- Residential Screening Levels (0-2' bgs)	100 1	1.90E-01	1	:	- 200	1.20E-03	1.00E-02	1	2.05E+01	3 40F-02	3.37E+02	5.10E-03	3.20E-01	1.09E-01	- 1	1.09E+01	3.30E+01	4.20E+00	2.33E-05	2.56E-03	1.19E+01	6.70E+00	3.26E+01	3.62E-01	1 10	1.06E+01	8.63E+00	1	1.55E+02	2.21E-03	1.90E-02	6.13E-01	3 70E+00	1.85E-01	4.19E-03	6.86E-03	1.10E-04	2 94F-02	8.34E+01	6.30E+00	9.70E-03	(EPA Method 8	1120	0711
	Analytes	Sample Date	3-Nitroaniline	4.6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chlorophenyl phenyl ether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphtnyiene Aniline	Anthracene	Azobenzene	Benz(a)anthracene	Benzo(h)fluoranthene	Benzo(q,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol	Bis(2-chloroethyl)ether	Bis(2-chloroisopropyl)ether	Bis(2-ethylhexyl)phthalate	Butyl benzyl phthalate	Carbazole	Dibenz(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Di-n-butyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluoriene Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Isophorone	Naphthalene	Nitrobenizene	N-Nitrosodi-n-propylamine	N-Introsogiphenyiamine Pentachloronbenol	Phenanthrene	Phenol	Pyridine	Total Petroleum Hydrocarbons - (EPA Method 8015B) mg/kg	Diesel Range Organics (DRO)	Motor Oil Page Organics (GRU)

Table 10
Group 3 Soil Analytical Results Summary - AOC 22 (Product Loading Rack) and AOC 26
Bloomfield Refinery, Bloomfield, New Mexico

	600		
∀OC 5e-9 (3e-38.)	4/20/2(1	
(1.5-2.0) (1.5-2.0)	4/16/2009 4/20/2009 4/20/2009 4/20/2009	<1.0	
VOC 5e-9 (0-0⁻£,)	4/20/2009	<1.0	
VOC 5e-8 (35-3e.)	4/16/2009	<1.0	
AOC 26-8 (1.5-2.0')	4/16/2009	<1.0	
AUC 26-8 (0-1.0') DUP	4/16/2009 4/16/2009 4/16/2009	<1.0	
AOC 26-8 (0-1-0')	4/16/2009	<1.0	
('0.S-3.1) T-3S DOA	4/20/2009 4/20/2009		
('ē.0-0) 7-62 ⊃OA	4/20/2009	<1.0	
Units		mg/Kg	
Source			ed sed sed sed sed sed sed sed sed sed s
Non- Residential Screening Levels (>10' bgs)			(22-12 (36-37.75) iii Screening I (>10') pursuant to rstituent is listed SSL dustrial exposure
Non- Residential Screening Levels (2-10' bgs)			anide for AOC ((selopment of Soi divater DAF=1 SL (All depths) nuttiplied by 10 ecause the com 0-6 risk-based ulesel fuel for inwaste oil for indivaste oil
Non- Residential Screening Levels (0-2' bgs)			analyze for Cyanalyze for Cyanalyze for Cyanaly (a) April 2009) 1s) D Soil-to-grour r Risk-based S Is (April 2009) NMED Order b vel based on a g Guidelines - u g Guidelines - u
Analytes	Sample Date	Ethanol	* Laboratory inadvertently did not analyze for Cyanide for AOC (22-12 (36-37.75)) No screening level or analytical result available NMED - Technical Background Document for Development of Soil Screening Levels - Revision 5.0 (August 2009) EPA - Regional Screening Levels (April 2009) (1) NMED DAF=1 (>10) (2) NMED DAF=1 SoilGW (All depths) (3) EPA Protection of Ground Water Risk-based SSL (All depths) (4) EPA - Regional Screening Levels (April 2009) multiplied by 10 pursuant to Provision VII.B. of the July 7, 2007 NMED Order because the constituent is listed as carcinogenic & EPA screening level based on 10-6 risk-based SSL (5) NMED ConsWork Soil (0-10') (6) NMED Oct. 2006 TPH Screening Guidelines - diesel fuel for industrial exposure via direct contact (7) NMED Oct. 2006 TPH Screening Guidelines - waste oil for industrial exposure

Table 11
Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24
Bloomfield Refinery - Bloomfield, New Mexico

						1											
Analytes	Non- Residential Screening Levels 0-2'	Non- Residential Screening Levels 2-10'	Source	(0-0.5') Y-SS DOC	AOC 22-7 (1.5-2.0)		AOC 22-8 (1.5-2.0)	AUG (0.5-2.1) 8-SS DOC 22-8 (1.5-2.0) DOC 22-9 (0-0.5)	AOC 22-9 (0-0.5)	AOC 22-10 (0-0.5')	AOC 22-70 (1.5'-2.0')	AOC 22-11 (0-0.5')	AOC 22-11 (1.5'-2.0')	AOC 22-14 (0-0.5')	(1.5-2.0') A1-SS DOG 22-44 (1.5-2.0')	AOC 22-16 (0-0.5')	Z AOC 22-16 (1.5-2.0')
Sample Date Metals (mg/kg)				13/2003	_	4/13/2009 4/1		Ť	1	1	<u> </u>	4/14/2003	4/14/2003	վ ¦	_	r) }	00750
Antimony	1.24E+02	1.24E+02	(1) mg/Kg	<2.5	<2.5	H	Н	<2.5 <2	\vdash	Н	\vdash	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Arsenic	1.77E+01	-	_	<2.5	<2.5	<2.5	<2.5	+	+	+	+	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Barium	4.35E+03	\rightarrow	_	130	+	+	+	+	+	+	+	130	1/0	160	091	230	35
Beryllium	1.44E+02	1.44E+02 (0.27	0.39	0.34	+	0.3 0.37	37 0.38	< 0.75	0.33	0.28	0.33	0.34	0.35	0.35	0.32
Cadmium	3.09E+02	$\boldsymbol{+}$	(1) mg/Kg	\$0.10 0.10	+	+	41	+	+	+	+	3 6.2	27.0	13.5	13.10	16.10	32.5
Chromium	4.47E+05	-		4.6	+	+	+	+	+	+	+	26	23	= ~	33	32	2 8 C
Cobail	5.00E+02 6.10E+03	6 19F±03	(3) mg/Kg	2.0 0.5	50.5 0.5	\$0.5	3.1	0.5	+	╀	+	<0.5	<0.5 0.5	×0.5	<0.5	-0.5 -0.5	<0.5 <0.5
Uyanud Lead	8 00F+02	+-	1	3.5	4.4	+	-	+	╀	┼	╀	3.4	4	4.5	4.5	4.4	3.6
Merciny	4 99E+01	+-	(2) ma/Ka	<0.033	+	╁	+	<0.033 <0.0	╀	╁	\vdash	<0.033	<0.033	<0.033	<0.033	<0.033	0.042
Nickel	6.19E+03	+	上	4	5.7	5	3.8	╢	+-	-	-	4.1	5.1	4.8	5.1	5.1	5.2
Selenium	1.55E+03	1.55E+03 (╙	<13	╁	+	-	\vdash	-	-	\vdash	<13	<13	<13	<12	<13	<13
Silver	1.55E+03	 	╙	<0.25	├	\vdash	\vdash	-	-	L	<u> </u>	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Vanadium	1.55E+03		Ш	11		12			Н	Н	\dashv	11	13	12	13	14	13
Zinc	_		(1) mg/Kg	21	25	25	23	24 24	{	\dashv	\dashv	33	35	24	27	34	75
unds - (EPA Method 8260B)	Ē	│ ├	Ļ					-	-						-	-	
1,1,1,2-Tetrachioroethane	1.61E+02	2.78E+03 ((2) mg/Kg	:	:	1	:		-	1	<u>.</u> -	-	:	:	:	;	:
1,1,1-Trichloroethane	6.43E+04		4	:	-	- -	:	-	; 	:	;	1	-	•	:	;	:
1,1,2,2- l etrachloroethane	4.33E+01	-+-	\perp	:	:	:	•	<u>'</u>	<u>'</u>	1	-	•	: ;	: :	: ;	• •	1
1,1,2-Inchloroethane	9.43E+01		(2) mg/Kg	:	<u> </u>	!	:	:	!	: :	: : -	: :	: :	: :	: :	+	: :
1, 1-Dichloroethere	3.30E+02	1 835+03	┸		: :	: :	: :	 - 		+		1		1	:		
1.1-Dichloropropene		+-	ma/Ka	;	<u> </u>	:			1	L	:	;	 	:	1	:	1
1.2.3-Trichlorobenzene	:	,	mg/Kg	,	:	 -		-			-	:	:!	-	:	•	ì
1,2,3-Trichloropropane	4.54E+00	3.10E+01 ((2) mg/Kg	-					-		:	:	ı	1	:	•	:
1,2,4-Trichlorobenzene	4.27E+02	H	Ш	1	-	-		•	-		1	:	:	:			:
1,2,4-Trimethylbenzene	2.80E+02	\vdash	(3) mg/Kg	1	1	-	:	:	<u> </u>		-	1	1	;	;	1	;
1,2-Dibromo-3-chloropropane	1.09E+00	_	_	-	1	:	1	-	;		;	;	•	:	:	:	1
1,2-Dibromoethane (EDB)	3.14E+00	-+	(2) mg/Kg	-	:	:	:	-	; ;		:	:	:	:	:	-	:
1,2-Dichlorobenzene	9.71E+03	9.71E+03 (\perp	:	: :	<u> </u>	-		: ' - .	: : -	: -	: :	: .	: ;		: :	· ·
1,2-Dichlorongnane	8 17F+01	+-	(2) mg/Kg	: 1	: ;	1 1	1	'	'		 -		:	:	:		ŀ
1.3.5-Trimethylhenzene	2 00E+02	+-	<u> </u>	:	1	:	-	'	1		;	1	:	;	-	 -	1
1,3-Dichlorobenzene	:		L	:	:						;	-	1	:	:	:	:
1,3-Dichloropropane	2.00E+04	Н	Ш	-	-	-	1	:	; -	_	-	:	:	;	•	1	1
1,4-Dichlorobenzene	1.80E+02	3.78E+03 ((2) mg/Kg	:	:	:	:	1	+		-	:	1	:	:	1	:
1-Methylnaphthalene	9.90E+02	-	_	:	1	-	-	<u> </u>	+	+	<u> </u>	:	+	<u> </u>	:	1	:
2,2-Dichloropropane	1 485405	+		:	:	: :		: - -	: :	! !	;	: :	: :	;		+	: :
z-butanorie 2-Chlorofoluene	6 19F+03	6.19F+03	(1) mg/Kg	: :	: :	: :			'	:	·		:				
2-Hexanone	7	+	_	:	:	;	;		<u>'</u> -				:		1		;
2-Methylnaphthalene	4.10E+03		\perp	ļ:		1			-			:	1	,	:		1
4-Chlorotoluene	7.20E+04		(3) mg/Kg	-	1	:	:				:		:	1		,	
4-IsopropyItoluene	:		<u>L</u>		-		-	1	-	:	-	•	:	;	:	;	1
4-Methyl-2-pentanone	-			-	:	:	•	-	; 		1	-	ı	•	:	1	1
Acetone	2.63E+05		(1) mg/Kg	•	:	-		;	;	:	;	1	:	:	+	;	:
Benzene	8.54E+01	4.71E+02		;	:	:	•	<u> </u>	<u> </u>		:	:	+	:	1	+	;
Bromobenzene	4.10E+02		(3) mg/Kg	:	-	-	+		-	+	-		+	†	+		•
Bromodicnioromethane	Z.9ZE+01	3.50E+03 ((2) mg/Kg	-	:	-	:	-	 				-	-	-	- -	•

Table 11 Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24 Bloomfield Refinery - Bloomfield, New Mexico

				ì		Discussion remark - Bloomieta, wew mexico	Allered, Mc										
	Non- Residential Screening	Non- Residential Screening	ource	(.6.0-0)	(0.5-8.1)	(0.0.5)	(0.2-3.1) 8	9Ua (0.S-2.1) 8	(10.5-2.1)	(.5.0-0) 01	(1.5'-2.0')	1 (0-0.5°)	('0.5-'3.1) 1	(.6-0-5)	(1.5-2.1)	(.5.0-0) 9	(1.5-2.0°)
Analytes	Levels 0-2'	Levels 2-10'	Units	7-SS ⊃OA	7-22 ⊃O∀	VOC 22-8		VOC 55-6		VOC 22-1	VOC 22-1	VOC 22-1	4OC 22-1	VOC 22-1	VOC 22-1	VOC 22-1	VOC 22-1
Sample Date			∐ L	4/13/2009 4/	물	3/2009 4/1	009 4/1	009 4/1	09 4/13/20	09 4/14/2009	4/1	161	4/14/2009 4	4/8/2009	1/8/2009 4/	13/2009 4/	13/2009
Bromoform	2.20E+03	_	(3) mg/Kg	i	1		<u>'</u>	-	:	;	1	i	1	:	1		;
Bromomethane	6.71E+01	71E+01		1	-	-	· 	:	1	1	:	•	:	;	:	-	;
Carbon disulfide	5.89E+03	7	_	-	-	-		-	1	;	-	:	1	-	- 	1	:
Carbon tetrachloride	2.43E+01	寸	_	11	1		!	-	1	!	;	•	:	1	:	,	1
Chlorobenzene	1.58E+03	1.58E+03 ((1) mg/Kg	1	1		-	-	:	1	1	•	•	-	1	1	-
Chloroethane	- !	-+	4	-	-				-	1	-	:	1	:	:	1	:
Chloroform	3.19E+01	6.71E+02 ((2) mg/Kg	1	1	1		1	:	1	-	:	:	1	1	,	;
Chloromethane	1.98E+02	-+	_	:	;	;		1	1	1	1	•	1	1	:		!
cis-1,2-DCE	3.10E+03	-+	\perp	:	- -	1			:	1	1	;	1	;	1	,	1
cis-1,3-Dichloropropene	1.26E+02	5.10E+02 ((2) mg/Kg	1	:	1		1	:	:	'	:	:	1	;	1	;
Dibromochloromethane	6.13E+01	-+	4	:	1	•		+	1	1	-	•	;	1	-	1	1
Dibromomethane	1.00E+04	_	\perp	1	1	1		-	1	!	-	:	:	:	:	1	:
Dichlorodifluoromethane	1.37E+03	1.37E+03 (:	:	-		-	1	;	1	•	:	1	:	1	:
Etnylbenzene	3.83E+02	\top	(Z) mg/Kg	:	:	:)		+	•	:	<u>'</u>	+	1	<u> </u>	:	;	:
Hexachiorobutadiene	2.20E+02	+	_	- - -	;	;	-			1	1	;	:	:	:	+	,
Isopropylibenzene	1.03E+04			 	-	-	+	1	1	:	:	:		:	:	-	-
Metnyl terr-butyl etner (MTBE)	4.69E+03	0.33E+04 (<u> </u>	<u>-</u>	-			1	<u> </u>	:	:	:	1	-	:	:
Wetnylene chloride	1.09E+03	+	(2) mg/Kg	:	:			-	:	:	:	:	:	:	:	:	
Naphthalene	Z.5ZE+0Z	2	┙	-	-	11		1	-	<u> </u>	1	:	:	!	:	:	•
n-Butylbenzene	-	1	mg/Kg	-	:	1	1	-		11	:	;	;	:		-	:
n-Propylbenzene	; -	1	mg/Kg	+	-	-	+	+	1	!	:	:	-	-	:	-	:
Sec-butylberizerie Styrene	3 035+04	30300	mg/Kg	:	: .	1			•	:	:	1	:	:	:	- -	
tert-Butvlbenzene	10.05	†	_	1	1	1			1	1	: :	: :	: :	: :	 		
Tetrachioroethene (PCE)	3.64E+01	1-	1_	 			1										
Toluene	2.11E+04	2.11E+04 ((1) mg/Kg		-	1		-		1	1	:		1		- - 	
trans-1,2-DCE	8.14E+02	 	<u> </u>		:	1	-	-			-	:				1	,
trans-1,3-Dichloropropene	1.26E+02	1	L	:	 				1	1	:	;	:	-			
Trichloroethene (TCE)	2.53E+02	-	(2) mg/Kg	:	:				:	;		:	1	:			1
Trichlorofluoromethane	5.82E+03	_	Ш	-	-	-			-		-			1	:	-	:
Vinyl chloride	2.59E+01	2.48E+02 ((2) mg/Kg	•	1	•			1		1	:	•	:	-		1
	_	\dashv) mg/Kg	-	:	1		-	-	!	1	-	-	-	-	•	•
Volatile Organic Compounds - (EPA Method 8260B)	ᆁ	F		90 47	ŀ	-	H	╁	┝	ŀ	9000	70 77	0.00	┢	000	ŀ	7
1, 1, 1, 2-1 etrachioroethane	6.426+02	2./8E+Ub ((2) µg/kg-dry	V 1.08	41.03 7.03	00.17	V 1.03	20.02 20.03 20.03 20.03	29 <0.957	×0.977	×0.890	5 5	<0.959	+	60.929	- T	47.17
1.1.2.2-Tetrachloroethane	4 33F+04	-	Lig/Kg-dry	8 8	+	+	╁	+	+	╀	0,030	2 2	<0.939	+	<0.939 <0.959 <0.959	+	×1.24
1,1,2-Trichloroethane	9.43E+04	1-	(2) µg/Kg-dry	×1.08	-	+	<1.03 <0.8	<0.875 <0.92	29 <0.957	<0.977	<0.896	<1.01	<0.959	+	<0.959	×101	<1.24
1,1-Dichloroethane	3.50E+05	1	_	<1.08	┞	\vdash	\vdash	-	ļ	<u> </u>	<0.896	<1.01	<0.959	╁	╂_	┝	<1.24
1,1-Dichloroethene	1.83E+06	1.83E+06 (1	1	<1.08	<1.03		<1.03 <0.8	Н	H	<0.977	>0.896	<1.01	<0.959	H	<0.959	-	<1.24
1,1-Dichloropropene	1	Н	-	<1.08			Н		\sqcup		<0.896	<1.01	<0.959	H	_	_	<1.24
1,2,3-Trichlorobenzene	1		_	<1.08	-	\dashv	\dashv	\dashv		\dashv	<0.896	<1.01	<0.959	\dashv	\perp		<1.24
1,2,3-Trichloropropane	4.54E+03	_		<1.08	\dashv	\dashv			\dashv	\dashv	<0.896	<1.01	<0.959	\dashv	\dashv	\dashv	<1.24
1,2,4-Trichlorobenzene	4.27E+05	4.27E+05 (1)	-	<1.08	-	\dashv	+	\dashv	-	-	<0.896	4.01	<0.959	\dashv			<1.24
1,2,4-Trimethylbenzene	2.80E+05	\neg	_	<1.08	<1.03	-	\dashv	\dashv	29 <0.957	<0.977	<0.896	×1.01	<0.959	+	4	+	<1.24
1,2-Dibromo-3-chloropropane	1.09E+03	2.30E+04 (2)	_	<1.08	\dashv	\dashv	\dashv		\dashv	ᆉ	<0.896	<1.01	<0.959	\dashv	-+	-	<1.24
1,2-Uibromoethane (EUB)	3.14E+03	-	_	V 7	<1.03	+	<1.03 <0.8	<0.875 <0.92	29 <0.957	<0.977	<0.896	20.0	<0.959		-	\dashv	<1.24
1,2-Dichloroethane (FDC)	9.71E+06			\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\perp	+	+		+	<0.977	98.0	V V	<0.959 <0.050	╁	4	+	×1.24
1.2-Dichloropropane	8.17E+04	1.17E+05 (2) ug/Kg-dry	0. V	+-	+	+	+	-	<0.977	00.000 00 000 00 000	×1.01	<0.959	+	+	+-	1 24
1,3,5-Trimethylbenzene	2.00E+05	+	(3) µg/Kg-dry	41.08	<1.03	v 00.12	<1.03 <0.8	<0.875 <0.929	29 <0.957	<0.977	×0.896	V 101	<0.959	<1.23	<0.959	4.01	<1.24
			, X X 1,		$\frac{1}{1}$	1	$\left\{ \right.$	ł	1					$\frac{1}{2}$	-	$\frac{1}{1}$	

Table 11 Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24 Bloomfield Refinery - Bloomfield, New Mexico

one.

	- CON	Non	4	2,)	2.0)	2,)		aua (o.s	(9	('0.5	(,9.)	(.o.s6).5')	(.0.2).5.)	(.0.2-).5')	6-2.0')
	Residential Screening Levels 0-2'	Residential Screening Levels 2-10'	Source	OC 22-7 (0-0.	ë.t) T-SS DO/	OC 22-8 (0.0.	OC 22-8 (1.5-	/OC 52-8 (1.5-	OC 55-9 (0-0.	/OC 22-9 (1.5-	/OC 55-10 (0-c	.t) 01-SS 300	0-0) LL-32 (0-0	/OC 52-11 (1.5	/OC 55-14 (0-0	7OC 52-14 (1.5	7OC 55-16 (0-0	4OC 22-16 (1.5
Sample Date		1	5		4/13/2009	4/13/2009	600	/13/2009 4/		6	6	6	600	600	60	1	600	4/13/2009
1.3-Dichlorobenzene	1	-	µg/Kg-dry		<1.03	<1.00		<0.875				_	<1.01			-		<1.24
1,3-Dichloropropane	2.00E+07	-	_	dry <1.08	<1.03	<1.00	<1.03	<0.875		\dashv	\dashv	>0.896		<0.959	<1.23	<0.959		<1.24
1,4-Dichlorobenzene	1.80E+05	3.78E+06 ((2) µg/Kg-dry	_	<1.03	v 1.00		<0.875	- 1	<0.957	<0.977	<0.896		<0.959	<1.23	<0.959		<1.24
2,2-Dichloropropane	}	: !		dry <1.08	<1.03	×1.00		<0.875		+	<0.977	<0.896 5.56 5.76 5.76 5.76 5.76 5.76 5.76 5.7	<1.01	<0.959	<1.23	<0.959	41.01	<1.24
2-Butanone	1.48E+08	1.48E+08	_	_	<4.13	<4.01	+		- 1	<3.83	<3.91 2.91	<3.58	+	<3.84	<4.92	<3.83	<4.03	<4.94 2
2-Chlorotoluene	6.19E+06	6.19E+06	(1) µg/Kg-dry	dry <1.08	<1.03	×1.00	\dashv			+	<0.977	>0.896	\dashv	<0.959	<1.23	<0.959	√ 1.01	<1.24
2-Hexanone	1	-	\rightarrow		<4.13	<4.01	\dashv		<3.71	\dashv	<3.91	<3.58	<4.05	<3.8 4	<4.92	3.83	< 4 .03	<4.94
4-Chlorotoluene	7.20E+07	-	(3) µg/Kg-dry	_	<1.03	41.00	+	ヿ	- 1	\dashv	<0.977	<0.896	+	<0.959	<1.23	<0.959	7.01	<1.24
4-Isopropyltoluene	•	1	µg/Kg-dry	_	<1.03	×1.00	<1.03	<0.875		\dashv	\dashv	968.0>	+	<0.959	<1.23	<0.959	√ 1.01	<1.24
4-Methyl-2-pentanone	:	1	\rightarrow	dry <4.32	<4.13	<4.01	-	\neg	<3.71	<3.83	┪	<3.58	-	<3.84	<4.92	<3.83	<4.03	4.94
Acetone	2.63E+08	2.63E+08	(1) µg/Kg-dry		<4.13	<4.01	\dashv	<3.50	<3.71	-	\dashv	<3.58	_	<3.84	<4.92	<3.83	<4.03	<4.94
Benzene	8.54E+04	4.71E+05	-		<1.03	<1.00	<1.03		- 1	-	<0.977	>0.896	<1.01	<0.959	<1.23	<0.959	<1.01	<1.24
Bromobenzene	4.10E+05	-			<1.03	<1.00	\dashv			\dashv	\dashv	968.0>	-	<0.959	<1.23	<0.959	×1.01	<1.24
Bromodichloromethane	2.92E+04	3.50E+06	(1) µg/Kg-dry	dry <1.08	<1.03	<1.00	\dashv		- 1	\dashv	\dashv	<0.896	\dashv	<0.959	<1.23	<0.959	<1.01	<1.24
Bromoform	2.20E+06	-	(3) µg/Kg-dry		<1.03	<1.00	-	<0.875		<0.957	\perp	<0.896	\dashv	<0.959	<1.23	<0.959	<1.01	<1.24
Bromomethane	6.71E+04	6.71E+04	(1) µg/Kg-dry		<1.03	<1.00				_		<0.896	_	<0.959	<1.23	<0.959	<1.01	<1.24
Carbon disulfide	5.89E+06	5.89E+06	_		<4.13	<4.01	<4.10				_	<3.58	\vdash	<3.84	<4.92	<3.83	<4.03	<4.94
Carbon tetrachloride	2.43E+04	1.99E+05	_	_	<1.03	<1.00		П	ı			<0.896	\vdash	<0.959	<1.23	<0.959	<1.01	<1.24
Chlorobenzene	1.58E+06	1.58E+06	_	Ļ	<1.03	<1.00	\vdash			_	<0.977	968.0>		<0.959	<1.23	<0.959	<1.01	<1.24
Chloroethane	1		_	L	<1.03	<1.00				\dashv	\vdash	>0.896	Н	<0.959	<1.23	<0.959	<1.01	<1.24
Chloroform	3.19E+04	6.71E+05	(2) µg/Kg-dry		<1.03	<1.00	Н	<0.875		<0.957	Н	>0.896		<0.959	<1.23	<0.959	<1.01	<1.24
Chloromethane	1.98E+05	1.13E+06			<1.03	<1.00	\dashv		- 1	\dashv	<0.977	<0.896	<1.01	<0.959	<1.23	<0.959	<1.01	<1.24
cis-1,2-DCE	3.10E+06	3.10E+06			<1.03	<1.00			- 1	\dashv	\dashv	>0.896		<0.959	<1.23	<0.959	<1.01	<1.24
cis-1,3-Dichloropropene	1.26E+05	5.10E+05	(2) µg/Kg-dry		<1.03	<1.00	<1.03	\neg		_	<0.977	<0.896	ᅥ	<0.959	<1.23	<0.959	<1.01	<1.24
Dibromochloromethane	6.13E+04	1.99E+06	(2) µg/Kg-dry	_	<1.03	<1.00	\dashv	\neg	- 1	-		<0.896	_	<0.959	<1.23	<0.959	<1.01	<1.24
Dibromomethane	1.00E+07	-	$\overline{}$	_	<1.03	<1.00	\dashv	<0.875		-		<0.896		<0.959	<1.23	<0.959	4.01	<1.24
Dichlorodifluoromethane	1.37E+06	1.37E+06	\rightarrow		<1.03	<1.00	\dashv			<0.957	<0.977	<0.896	<1.01	<0.959	<1.23	<0.959	4.01	<1.24
Ethylbenzene	3.85E+05	6.63E+06	(2) µg/Kg-dry		<1.03	<1.00	+			+	+	<0.896	+	<0.959	<1.23	<0.959	√ 1.01	<1.24
Hexachlorobutadiene	2.20E+05	1	_	_	<1.03	×1.00	<1.03	<0.875	- 1	\dashv	<0.977	<0.896	+	<0.959	<1.23	<0.959	V-101	<1.24
Isopropylbenzene	1.03E+07	1.03E+07	\rightarrow	4	<1.03	41.00	+			<0.95/	<0.977	<0.896 60.000	10.12	666.0>	<1.23	<0.959	V-1.01	<1.24
Methyl tert-butyl ether (MTBE)	4.69E+06	6.55E+07	_	1	<1.03	×1.00	+			+	//6.0>	<0.830 0.43	\dagger	<0.959	<1.23	626.0>	<1.01	<1.24
Methylene chloride	1.09E+06	1.06E+07	(2) µg/Kg-dry		12.3	3.29	9.01	$\neg \vdash$		+	10.6	9.42	+	11.4	<2.40 2.20 2.20	2.02	8.85	7.26
Naphthalene	7.52E+U3	o	-	dry <1.08	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8.5	+			<0.957	70.07	20.090 20.806	2.5	20.939 20.050	31.5	×0.939	0.07	42.124
II-DulyiDerizerie	 - -	1 !	Jo/Kg-dry	1	, 12 10 10 10 10 10 10 10 10 10 10 10 10 10	00.15	×1.03	<0.875		+	<0.977	>0.896	+	<0.959	<1.23	<0.959	4 01	<1.24
sec-Butylhenzene		 -	ua/Ka-dry	Ļ	<1.03	<1.00	+	7	1	╁	<0.977	<0.896	╁	<0.959	<1.23	<0.959	×101	<1.24
Styrene	3.03E+07	3.03E+07	(1) ua/Ka-dry		<1.03	<1.00	<1.03	<0.875	ı	┝	-	>0.896	\vdash	<0.959	<1.23	<0.959	<1.01	<1.24
tert-Butylbenzene		\vdash	+	L.,	<1.03	<1.00	┢	${}^{-}$		\vdash	-	>0.896		<0.959	<1.23	<0.959	<1.01	<1.24
Tetrachloroethene (PCE)	3.64E+04	3.38E+05 ((2) µg/Kg-dry		<1.03	<1.00	-				-	968:0>	-	<0.959	<1.23	<0.959	<1.01	<1.24
Toluene	2.11E+07	2.11E+07	_	<u></u>	<1.03	<1.00	-		i	_	<0.977	968:0>	<1.01	<0.959	<1.23	<0.959	<1.01	<1.24
trans-1,2-DCE	8.14E+05	8.14E+05		L	<1.03	<1.00	_	<0.875			<0.977	<0.896		<0.959	<1.23	<0.959	<1.01	<1.24
trans-1,3-Dichloropropene	1.26E+05	5.10E+05	(2) µg/Kg-dry	dry <1.08	<1.03	<1.00	-			<0.957	<0.977	<0.896	\exists	<0.959	<1.23	<0.959	<1.01	<1.24
Trichloroethene (TCE)	2.53E+05	4.60E+06			<1.03	<1.00					<0.977	<0.896		<0.959	<1.23	<0.959	<1.01	<1.24
Trichlorofluoromethane	5.82E+06	5.82E+06			<1.03	<1.00	<1.03	<0.875	- 1	<0.957	<0.977	>0.896	-	<0.959	<1.23	<0.959	<1.01	<1.24
Vinyl chloride	2.59E+04	2.48E+05			<1.03	<1.00	<1.03	\neg	- 1	-	<0.977	<0.896	-	<0.959	<1.23	<0.959	<1.01	<1.24
Xylenes, Total	3.13E+06	3.13E+06	(1) µg/Kg-dry	-dry <1.08	<1.03	<1.00	<1.03	<0.875		<0.957	<0.977	<0.896	4.01	<0.959	<1.23	<0.959	<1.01	<1.24
Semi Volatile Organics - (EPA Method 8270) mg/kg	1	00 120	L	-	-	90 9			00.00	00.00	00.00	0,7	0 7	7		7	90,00	ç
1,2,4-I richioropenzene	4.27E+02	4.2/E+02		+	+	20.20	20.20	20.20	02.02	02.0>	02.02	400	V V	4.0	0 0	2 0	02.02	02.0
1,z-Dichlorobenzene	3.7 11.00	9.7 15.705	ma/Ka	0.20 0.20 0.20 0.20	\$0.20 \$0.20	02.02	\$0.20 \$0.20	<0.20	<0.20	<0.20	<0.20	41.0	V 20.15	4.0	0.10	0.1×	<0.20	02.05
יייין ווטוסיטיווטווטיס-לין	-	-	ָה הַ	-	+	74.0	23.7	-	-	-	-	1		1	1	?	2	23:2

Table 11 Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24 Bloomfield Refinery - Bloomfield, New Mexico

	Non- Residential Screening Levels 0-2'	Non-Residential Control Screening Control Cont		OC 22-7 (0-0.5')	(0.S-3.1) T-SS DO	OC 22-8 (0.0.5')	OC 22-8 (1.5-2.0)	OC 22-8 (1.5-2.0) PUT	OC 55-9 (1 2-3 0.)	OC 22-10 (0-0.5')	OC 52-10 (1.5'-2.0')	OC 55-11 (0-0.5')	OC 22-11 (1.5'-2.0')	OC 55-14 (0-0.5')	OC 22-14 (1.5-2.0')	OC 22-16 (0-0.5')	/OC 22-16 (1.5-2.0')
Analytes			Onits	6	600	600	600	009	√ 72009 4/13/	4	4/1/	4/1/	4/17	4/8/2009	60	4/13/2009 4/	/13/2009
Sample Date	1.80E+02	3.78E+03 (2)) ma/Ka		-	—		<u>'L</u>	1.20 <0	.20 <0.20	-	-	_	<1.0	1	<0.20	<0.20
1,4-Didiioloperizerio 2.4.5-Trichlorophenol	2.38E+04	2.38E+04 (1)	1_	<0.20	<0.20	<0.20	-	<0.20 <0		<0.20 <0.2	Н	<1.0	<1.0	<1.0	<1.0	<0.20	<0.20
2.4.6-Trichlorophenol	2.38E+02	2.38E+02 (1)	_	<0.20	<0.20		_	_		\dashv	4	<1.0	<1.0	<1.0	×1.0	<0.20 <0.20	<0.20
2 4-Dichlorophenol	7.15E+02	H	L	<0.40	<0.40		-	\dashv		\dashv	\dashv	<2.0	<2.0	<2.0	<2.0	<0.40 40	<0.40
2,4-Dimethylphenol	4.76E+03	4.76E+03 (1)		<0.30	<0.30		_	\dashv		\dashv	\dashv	×1.5	<1.5	<1.5	21.5	<0.30 5.53 5.53 5.53 5.53 5.53 5.53 5.53	6 .30
2.4-Dinitrophenol	4.76E+02	\vdash		<0.40	<0.40		<0.40	\dashv		\dashv	\dashv	<2.0	<2.0	<2.0	<2.0	<0.40	<0.40 5
2,4-Dinitrotoluene	1.03E+02	П	Ш	<0.50	<0.50	\vdash	\dashv	-		<0.50 <0.5	\dashv	<2.5	<2.5	<2.5	<2.5	0.50	0.50
2,6-Dinitrotoluene	2.39E+02	Н	(1) mg/Kg	<0.50	<0.50	Н	\vdash	<0.50 <0		\dashv	_	<2.5	<2.5	<2.5	4.25	<0.50	<0.50 5
2-Chloronaphthalene	2.48E+04	\vdash	Ц	<0.25	<0.25	+	-	+		+	-	×1.3	× .	<u>^</u>	<u>د</u> ر	<0.25	<0.25
2-Chlorophenol	1.55E+03	\dashv		<0.20	<0.20	+	+	+		-	-	2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	41.0	^1.0 2.5	1.0 7.0 7.0 7.0	<0.20	07.0
2-Methylnaphthalene	4.10E+03	<u> </u>	4	<0.25	<0.25	<0.25	<0.25	CO 25 CO < CO		<0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25	5 6 6	\$ 1.3 2.15	< 1.3 < 0.5	5.5	2.5	<0.23	<0.23
2-Methylphenol	3.10E+04	1	(3) mg/Kg	V0.50	00.00	+	+	╁		+	+	7 0	2.5 2.10	410	0 TV	02.02	\$0.20 \$0.20
2-Nitroaniline	1.80E+03	1	_	<0.20	02.02	+	+	0.20	┸	<0.20	+	0.1V	0.1×	410	41.0	<0.20	<0.20
2-Nitrophenol	- 1 26 L	2 715±02		20.20 20.25	<0.20	+	+	╁	┸	╀	╀	<1.3	<1.3	× 1.3	×1.3	<0.25	<0.25
3,3 - Dichlorobenzidine	3 10E±03	7 15 102	(2) mg/Kg	02.02	02.0> 02.0>	<0.20	+	╁		╁	\vdash	<1.0	<1.0	<1.0	41.0	<0.20	<0.20
3+4-Ineurlylphenol			1_	<0.20	<0.20	╀	╁	╁				<1.0	<1.0	<1.0	<1.0	<0.20	<0.20
2-Niu Odi III III E 4 6-Dinitro-2-methylphenol		-	ma/Ka	<0.50	<0.50	 	\vdash	┝				<2.5	<2.5	<2.5	<2.5	<0.50	<0.50
4-Bromophenyl phenyl ether	!	1	mg/Kg	<0.20	<0.20	-	Н	H		\dashv	\dashv	<1.0	<1.0	<1.0	4.0	<0.20	<0.20
4-Chloro-3-methylphenol	1	,	mg/Kg	<0.50	<0.50	Н	Н	<0.50 <0		\dashv	\dashv	<2.5	<2.5	<2.5	<2.5	<0.50	<0.50
4-Chloroaniline	8.60E+01		(4) mg/Kg	<0.50	<0.50		<0.50	-		\dashv	+	<2.5	<2.5	<2.5	<2.5	<0.50	40.50 50
4-Chlorophenyl phenyl ether	1	1	_	<0.20	<0.20	4	\dashv	+		+	+	×1.0	0.1 2,10	0.12	0.12	<0.20	07.0
4-Nitroaniline	8.60E+02		(4) mg/Kg	<0.25	<0.25	<0.25	+	+		+	\dotplus	V / S	۸ د: ۵	۸ دن د	\$ 5	20.02	20.20
4-Nitrophenol	- 00 7	1 000 1	_ _	07.0	0.20	+	07:0>	×0.20 ×0.20	\perp	<0.20	2 0	2 0	0 >) 	40.0	<0.20	<0.20
Acenaphthene	1.80E+04	\top	(1) mg/kg	\$0.20 \$0.20	<0.20	02.02	+	+		+	+	<1.0	2 V	2.0	4.0	<0.20	<0.20
Acenaphtnylene	3 00F+03	7)	(4) ma/Ka	<0.20	<0.20	+	+	+	L	+	\vdash	v.1.0	<1.0	×1.0	<1.0	<0.20	<0.20
Anthracene	6.68E+04	6.68E+04	1	<0.20	<0.20	+	╀	\vdash		-	H	<1.0	<1.0	<1.0	<1.0	<0.20	<0.20
Azobenzene	2.20E+02	1	_	<0.20	<0.20	Н		Н		\vdash	\dashv	√1.0	<1.0	<1.0	0.10	<0.20	<0.20
Benz(a)anthracene	2.34E+01	2.13E+02	(2) mg/Kg	<0.20	<0.20	\dashv	-	+		+	+	<1.0	<1.0	<1.0	0.5	<0.20	40.20
Benzo(a)pyrene	2.34E+00	2.13E+01	(2) mg/Kg	<0.20	<0.20	+	<0.20 > 0.20 > 0.20	+		+	+)) V V	0.5	0.5	0.20	<0.20 20.20
Benzo(b)fluoranthene	2.34E+01	2.13E+02		<0.20	<0.20 20.50 50.50	07.0	┿	0> 0> 0> 0> 0>		+	0.1.0	2 2 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<0.50	<0.50
Benzo(g,h,i)perylene	234E+02	2 OFE+03	mg/Kg	0000	00.00	+	+	+	_	+-	igapha	4.0	<1.0	×1.0	41.0	<0.20	<0.20
Benzoic acid	2.50E+06	1	 	<0.50	<0.50	<0.50	< 0.50 <	-				<2.5	<2.5	<2.5	<2.5	<0.50	<0.50
Benzyl alcohol	3.10E+05	,	-	<0.20	<0.20	Н	Н	\vdash			-	_	<1.0	<1.0	0.10	<0.20	<0.20
Bis(2-chloroethoxy)methane	1.80E+03	-	\perp	<0.20	<0.20	\dashv	\dashv	<0.20 <0	\perp	<0.20 <0.2	20 × 1.0	0.F 2.0	4.0	4.0	0.12	<0.20	0.20
Bis(2-chloroethyl)ether	1.36E+01	1.47E+02	\perp	<0.20	<0.20	+	+	+	\perp	+	+	+	7 7	7 7	5 6	02.07	02.02
Bis(2-chloroisopropyl)ether	4.54E+02	3.10E+03	\perp	<0.20	<0.20	<0.20	+	+	┸	+-	+	2.5	× 1.0	2.5	0.1.0	<0.20	<0.50
Bis(2-ethylhexyl)phthalate	1.37E+03	4.76E+03		<0.50	0.50	+	+	+	\perp	+	+	-	410	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.70 V-10	<0.20	<0.20
Butyl benzyl phthalate	9.10E+03	-		\$0.20 \$0.20	20.20	+	+	02.02	L	<0.20 <0.20	\dotplus	+	×1.0	×10	40.0	<0.20	<0.20
Carbazole	7 245±02	COEE+04	mg/Kg	\$0.20 \$0.20	<0.20	+	+	+		╁	╀	<1.0	4.0	2 0.1>	×1.0	<0.20	<0.20
Chrysene Dispar(a b)anthroppo	2.34E+03	2 13F+01	(2) mg/Kg	<0.20	<0.20	+	╀	<0.20 <0		╁	\vdash	<1.0	<1.0	<1.0	<1.0	<0.20	<0.20
Dibenz(a,n)antinacene Dibenzatinas	4.04E+00	4.10L101	_	<0.20	<0.20	+	<0.20	╁╌	_	╀		<1.0	<1.0	<1.0	<1.0	<0.20	<0.20
Diethyl nhthalate	1 91F+05	1 91E+05	(1) ma/Ka	<0.20	<0.20	<0.20	╁	<0.20 <0	L	\vdash		<1.0	<1.0	<1.0	<1.0	<0.20	<0.20
Dimethyl phthalate	2.38E+06	2.38E+06	<u> </u>	<0.20	<0.20	Н	Н			\dashv	\dashv	\dashv	<1.0	√ 1.0	√ 0.10	<0.20	<0.20
Di-n-butyi phthalate	2.38E+04	2.38E+04	Ш	<0.50	<0.50	-	_	+		\dashv	\dashv	+	<2.5	<2.5	<2.5	<0.50 50.50	<0.50 5
Di-n-octyl phthalate			_	<0.20	<0.20	+	<0.20	<0.20	\perp	<0.20 <0.20	20 <1.0	V 7	7 7.0	^ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7.0	<0.20	<0.20
Fluoranthene	8.91E+03	8.91E+03 ((1) mg/Kg	<0.25	<0.25	<0.25	\dashv	\dashv	_	\dashv	\downarrow	_	2:	6.1.5	5.1.	\ C2.U^	50.20 J

Table 11
Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24
Bloomfield Refinery - Bloomfield, New Mexico

	Non- Residential Screening Levels 0-2'	Non- Residential Screening Levels 2-10'	Source	(.6.0-0) T-SZ	(0.5-2.1) 7-52	22-8 (0.0.5')	(0.5-2.1) 8-52	qua (0.s-2.1) 8-ss	(3.0-0) 6-SS	('0.S-Z.r) e-SZ	22-10 (0-0.5')	22-10 (1.5'-2.0')	22-11 (0-0.5')	(1.5'-2.0')	(.5.0-0) 41-52	(1.5-2.0')	22-16 (0-0.5°)	22-16 (1.5-2.0')
Analytes			Units	YOC -	DOA	DOA	DOA	DOA	DOA	DOA	DOA	DOA	DOA	DOA	DOA	DOA	DOA	DOA
Sample Date				4/13/2009	4/13	4/13/2009	4/13/2009	600	600	600	600	600	600	4/14/2009	4/8/2009	60	600	4/13/2009
Fluorene	8.91E+03	8.91E+03	(1) mg/Kg	_	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5	<2.5	<2.5	<2.5	<2.5	<0.50	<0.50
Hexachlorobenzene	1.20E+01	1.03E+02 ((2) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	√ 1.0	√ 1.0	<1.0	د. 1.0	<1.0	<0.20	<0.20
Hexachlorobutadiene	2.20E+02)	(4) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	۲٠ م	v. 0.1	<1.0	<1.0	<1.0	<0.20	<0.20
Hexachlorocyclopentadiene	8.11E+02	8.11E+02 ((1) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	v. 1.0	×1.0	<1.0	0.1>	<1.0	<0.20	<0.20
Hexachloroethane	2.38E+02	2.38E+02 ((1) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0	×1.0	<1.0	<1.0	<1.0	<0.20	<0.20
Indeno(1,2,3-cd)pyrene	2.34E+01	2.13E+02 ((2) mg/Kg	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<1.3	× 1.3	<1.3	۸ ۱ .3	<1.3	<0.25	<0.25
Isophorone	2.02E+04	4.75E+04 ((2) mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5	<2.5	<2.5	<2.5	<2.5	<0.50	<0.50
Naphthalene	2.52E+02	7.02E+02 ((2) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<0.20
Nitrobenzene	2.77E+02	5.20E+02 ((2) mg/Kg	<0.50	<0.50	09.0>	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5	<2.5	<2.5	<2.5	<2.5	<0.50	<0.50
N-Nitrosodi-n-propylamine	2.50E+00)	(4) mg/Kg	Ц	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0	<1.0	√ 0.10	× 1.0	<1.0	<0.20	<0.20
N-Nitrosodiphenylamine	3.91E+03	3.40E+04 ((2) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<0.20
Pentachlorophenol	1.00E+02	1.03E+03 ((2) mg/Kg	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<2.0	<2.0	<2.0	<2.0	<2.0	<0.40	<0.40
Phenanthrene	7.15E+03	7.15E+03 (1) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<0.20
Phenol	6.88E+04	6.88E+04 ((1) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0	×1.0	<1.0	<1.0	<1.0	<0.20	<0.20
Pyrene	6.68E+03	6.68E+03 ((1) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20	<0.20
Pyridine	1.00E+03)	(3) mg/Kg	<0.50	<0.50	09:0>	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5	<2.5	<2.5	<2.5	<2.5	<0.50	<0.50
Total Petroleum Hydrocarbons - (EPA Method 8015B)	B) mg/kg													:				
Diesel Range Organics (DRO)	2 1	2000	(5) mg/Kg	<10	<10	120	180	190	46	53	<10	190	34	410	71	029	24	1000
Gasoline Range Organics (GRO)	2000		(5) mg/Kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
(Motor Oil Range Organics (MRO)	2000	2000	(6) mg/Kg	<20	<50	220	510	580	110	120	<50	620	74	1100	350	1800		1200

(5) NMED Oct. 2006 TPH Screening Guidelines - Unknown oil for industrial exposure via vapor migration and inhalation of ground water
(6) NMED Oct. 2006 TPH Screening Guidelines - Waste oil for industrial exposure via vapor migration and inhalation of ground water

Table 11
Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24
Bloomfield Refinery - Bloomfield, New Mexico

Analytes	Non- Residential Screening Levels 0-2'	Non- Residential Screening Levels 2-10'	Source Units	AOC 22-16 (36-38') 1		L]	AOC 24-3 (0-0.5')	AOC 24-3 (1.5-2.0')	AOC 24-4 (1.5-2.0')	AOC 24-4 (1.5-2.0') DUF	AOC 24-5 (0-0.5')	AOC 24-5 (0-0.5') DUP	AOC 24-5 (1.5-2.0')	AOC 24-6 (0.0.5')	AOC 24-6 (1.5-2.0')
Sample Date					4/23/2009 4/	4/23/2009 4/2	4/23/2009 4/23/	4/23/2009 4/23/		/2009 4/23/	41	09 4/23/200	_		4/8/2009	_	4/8/2009
Antimony	1.24E+02		lacksquare	<2.5	<13		<2.5 <2	-	<2.5	<2.5 <2.5	5 <2.5	<13	<13	<2.5	<13	<13	<13
Arsenic	1.77E+01	M	(2) mg/Kg	<2.5	<13	Н	Н	<2.5 <2	Н	\vdash	\vdash	Н	H	<2.5	<2.5	<13	<13
Baríum	4.35E+03			220	-	-	\dashv	\dashv		-	\dashv	-	\dashv	170	140	180	160
Beryllium	1.44E+02	\neg	(1) mg/Kg	<0.15	+		\dashv	0.3 0.	4	\dashv	-	\dashv	\dashv	0.28	<0.75	<0.75	<0.75
Cadmium	3.09E+02	3.09E+02	_	<0.10	-	4	-			-	+	-	\dashv	<0.10	<0.50	\$0.50 .50	<0.50
Chromium	4.47E+05	4.47E+05	(1) mg/Kg	2.7	\dashv	\dashv	+	\dashv	4	+	\dashv	\dashv	\dashv	9.4	6.2	175	53
Cobalt	3.00E+02		4	2	+	+	+	-+	+	+	+	4	-	4.4	4.7	٥	δ.
Cyanide	6.19E+03	6.19E+03	4	<0.5	+	+	+	+	+	+	+	+	+	Q.0.5	CO.2	50.5	\$0.5 6.05
Lead	8.00E+02	- 1000		200	8.4.8	9 000	+	4	-	╁	+	+	+	4.7	5.1	0.7	0000
Mercury	6 10E+01	6.36E+01	(2) mg/kg	<0.033 1.7	+	+	- -	<0.033 <0.0	+	+	+	-	+	V0.033	50.03	7.2	7
Solonium	1 555 +03	1 55E+03	(1) mg/Kg) 5.	0.9	‡ &	5.3 ×13	╀	╀	╀	╁	+	+	<2.5	<13	4.i5 <13	<13
Silver	1.55E+03	1.55E+03	┸	<0.25	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 	+	+	╀	╀	╀	+-	╀╌	<0.25	×1.3	× 1.3	۸ کانکا
Vanadium	1.55E+03	1.55E+03	↓_	12	18	╀	╁	╀	├	╂-	╀╌	╀	╀╴	13	15	18	16
Zinc	9.29E+04	9.29E+04	╄	12	29	33	20 1	18 1	\vdash	Н	Н	H	\vdash	36	28	35	40
tile Organic Compounds - (EPA Method 8260B)	E												ŀ				
		\vdash	(2) mg/Kg		-		1					1	1	1	1	1	:
1,1,1-Trichloroethane	6.43E+04	Н		-	1	-	1					1	1	ŀ	:	:	:
1,1,2,2-Tetrachloroethane	4.33E+01	\neg		1	•	ľ	1		_ _ }	-		:	;	:		:	:
1,1,2-Trichloroethane	9.43E+01	-	(2) mg/Kg	i	1	-	-	-	1	+	!	-	:	,	:	;	:
1,1-Dichloroethane	3.50E+02	-	\perp	!	-	ŀ			1	1	-	:	!	<u> </u>	:	:	:
1,1-Dichloroethene	1.83E+03	-	(1) mg/Kg	-	:	:	1	-		:		•	:	:	•	•	
1, 1-Dichioropropene	: ;	: :	ma/Ka	: :		<u> </u>	+		-	$\frac{1}{1}$	1 1	1	 			+	
1.2.3-Trichloropropane	4.54E+00	+	4	1	:		-			-	-	!	<u> </u>	!	•		
1.2.4-Trichlorobenzene	4.27E+02	4.27E+02 ((1) mg/Kg	1	-				_		_	:		:	1	,	1
1,2,4-Trimethylbenzene	2.80E+02	Н		1	:	1					1		 -	:	1	•	•
1,2-Dibromo-3-chloropropane	1.09E+00	2.30E+01 ((2) mg/Kg	;	-	1	+	<u> </u>	+	-		1	:	; -	:	:	:
1,2-Dibromoethane (EDB)	3.14E+00	\dashv			-	<u> </u>	1	-		+	-	-	: :			:	: ;
1,2-Dichloroethane (FDC)	4 28F+01	7.51F+02	┸		: :		-		-		 	:	 -	;	1	-	i
1.2-Dichloropropane	8.17E+01	+	(2) mg/Kg			1		-		-					1	:	:
1,3,5-Trimethylbenzene	2.00E+02		Ц	-	:	•		' 	-	1	-	:	;		1	-	:
1,3-Dichlorobenzene	1	1		1	-	:	 	+			-	:	•	,	-	:	•
1,3-Dichloropropane	2.00E+04) 07 07 0	(3) mg/Kg	:	:	:	+	-		+		!	:			:	
1,4-Dichlorobenzene	1.80E+02	十	ᆚ	!	:	:	 -	+	-		1	: :		: ;	:	: :	: ;
1-Metnyinaphinalene	8.90E+02		ma/Ka	: :	-			-		-	-		 -	! !	1	†	,
2-Butanone	1.48E+05	1.48E+05	(1) ma/Ka	;			-	'		-	-		:	 -	,	;	:
2-Chlorotoluene	6.19E+03	6.19E+03	ļ.,	:				-		1		:	:				1
2-Hexanone		!	mg/Kg	:	:					-		1		:	,	:	:
2-Methylnaphthalene	4.10E+03)	(3) mg/Kg	-	-	-	1					;	!	!	:	:	1
4-Chlorotoluene	7.20E+04		Ц	1	-	:	1	' 		; } - 	1	1	;	;	•	- : 	•
4-IsopropyItoluene	-	-	mg/Kg	-	1	-	+	-	-	<u> </u>	:	•	:	:	:	:	;
4-Methyl-2-pentanone	- L	- 000		1 6	•	!		+	1	1	-	-	:	!	:	;	:
Acetone	2.63E+05	263000	\perp	<0.75		+	+	<u> </u>			: :	: :	: :	: ;	: ;	;	•
Brownhoazone	8.34E+01	4.7 IE+UZ	(z) mg/kg	:	 	: :	-		 							- ! !	:
Bromodichloromethane	2 92F+01	3 50F+03	(2) mg/Kg		: :	 -	· · • •	-	+	+	 -	:	:			:	
DIVINOUNISHISHIS	1.000	1	_	1					1	7							}

Table 11
Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24
Bloomfield Refinery - Bloomfield, New Mexico

Analytes	Non- Residential Screening Levels 0-2'	Non- Residential Screening of Levels 2-10'	Units	¹ ('86-38') 1	VOC 54-1 (0-0.5')	AOC 24-1 (1.5-2.0°)	AOC 24-2 (0.0.5')	∀OC 54-3 (0-0.5')	AOC 24-3 (1.5-2.0')	∀OC 5 4-4 (0-0.5')	AOC 24-4 (1.5-2.0')	AOC 24-4 (1.5-2.0') DUR	∀OC 54-5 (0-0.5')	AOC 24-5 (0-0.5') DUP	AOC 24-5 (1.5-2.0')	AOC 24-6 (0.0.5')	AOC 24-6 (1.5-2.0')
Sample Date			ì	4/14/2009 4	73/2009 4/2	14	12009 4/23/20	4/2	4	4/23/2009	4/23/2009	4/23/2009	+	+	1	+	1/8/2009
Bromoform	2.20E+03	(3)	mg/Kg		-		-			:	-	,	-	-	'	:	;
Bromomethane	6.71E+01	\vdash			1	-	-	-		-	-	-	-	-	:	-	:
Carbon disulfide	5.89E+03) mg/Kg	:	-	-	-			-	-	-	-	:	:		:
Carbon tetrachloride	2.43E+01	1.99E+02 (2)			-			-			-	,		•	-		ł
Chlorobenzene	1.58E+03	 			-		-				:		:	:	-	-	:
Chloroethane	-	\vdash		-	-					-	:	-	1				:
Chloroform	3.19E+01	6.71E+02 (2	Ш	1	1			:	1	:	:		:	 	:		ı
Chloromethane	1.98E+02	-	Ц	-	-	-	-	:	-	-		1	:	:	:	1	1
cis-1,2-DCE	3.10E+03	\dashv	_	1	;		-	'	-	:	:	;	:	:	:	:	:
cis-1,3-Dichloropropene	1.26E+02	5.10E+02 (2)	_	-	:		:	-	!	•	•	,	:	•	:	:	i
Dibromochloromethane	6.13E+01	1.99E+03 (2	_	;	+	-	1	-	:	-	;	;	-	:		;	1
Ulbromometnane	1.00E+04	+	1	1	:	1	+	<u>:</u> 	:	:	<u>;</u>	1	:	:	<u> </u>	:	-
Dichidonaton	1.37E+U3	6.87E±03 (1)	mg/kg	! :	: 1		: :	: :	:	: :	: :	: ;	: :	: :	: :	: :	: :
LittyDelizerie	2.03L+02	┿	4		-	+	-	: ;	: :		: :	1	: :			+	
Isonomylbenzene	1 03E+04	1 03E+04 (1)	4				: :	: :	: :	: :	1	•		:	· ·		
Methyl tert-butyl ether (MTRE)	4 69F+03	+	1				+		:				:			;	
Methylene chloride	1.09E+03	1 06F+04 (2)	↓_			-		:	:	:				;		-	;
Naphthalene	2.52E+02	+	┺	1				-	:	:	:	,		:		:	
n-Butylbenzene	1	 	Ļ	-			-			,		,		:	 -	;	!
n-Propylbenzene	-		mg/Kg							:	:		-		:	-	:
sec-Butylbenzene	1		mg/Kg			-		-	-	1	-	1	-	1	-	-	
Styrene	3.03E+04	30300 (1)	_	1	:	-	:	;	-	1	:	1	:	:		:	
tert-Butylbenzene	L	+		1	:		-	-		:	:	;	:	<u> </u>	<u> </u>	- -	;
l etrachloroethene (PCE)	3.64E+01	$\boldsymbol{+}$	\rightarrow	1	•	1	+	1	1	•	<u> </u>	•	<u> </u>	•	;	+	!
Toluene	2.11E+04	2.11E+04 (1) 9.14E±02 (1)	_	1				!	:		:	,	;	-	-	1	:
trans-1,2-UCE	4 26E±02	╅	Mg/Kg		-	: ;	-	! !		1	!	1	• •	: :	: ;	: :	•
Trickloroethana (TCE)	2 53E+02	+-	┸	: !			: :	: :	: :	;	1 1	1	•	- 			
Trichloroftuoromethane	5.82E+03	5.82E+03 (1)	┺	1	1		<u> </u>	:	!		:	;	:			;	
Vinyl chloride	2.59E+01	2.48E+02 (2)	_	 -		-		:		-	:	:			:		i
		3.13E+03 (1)) mg/Kg	-	-	-		-	-	-	ŀ	•	1	i		-	•
Volatile Organic Compounds - (EPA Method 8260B)	hg/Kg-dry	0,705,0	-	3000	080 0	0/ 10000/	072 /1 04	770 077	70.051	70 074	20.076	70.081	808.07	2	50	7 63	6000
1,1,1,Z-1etracilloroeurarie	6.43F+07	6.43F+07 (1)) lig/Ka-dry	<0.965	+-	╀	<0.973 <1.01	+	<0.951	<0.941	<0.946	<0.961	<0.898	2 2	21.09	V 103	<0.923
1,1,2,2-Tetrachloroethane	4.33E+04	+-		╀	╀	+-	├-	╁╴	<0.951	<0.941	<0.946	<0.961	<0.898	×1.04	<1.09	<1.03	<0.923
1,1,2-Trichloroethane	9.43E+04	т		Н	Н	<0.987 <0	<0.973 <1.01	H	<0.951	<0.941	<0.946	<0.961	<0.898	<1.04	<1.09	<1.03	<0.923
1,1-Dichloroethane	3.50E+05		_	-	\dashv	\dashv	_	\dashv	<0.951	<0.941	<0.946	<0.961	<0.898	40.	4.09	-	<0.923
1,1-Dichloroethene	1.83E+06	1.83E+06 (1)		+	+	$\frac{1}{2}$	4	+	<0.951	<0.941	<0.946	<0.961	<0.898	40.1	4.09	-	<0.923
1,1-Dichloropropene	!	;	µg/Kg-dry	+	+	+	+	+	<0.951	<0.941	<0.946	<0.961	40.898 600 600 600 600 600 600 600 600 600 60	40.12	41.09	+	<0.923
1,2,3-Inchlorobenzene		+	-	+	+	+	+	+	<0.951	<0.94	\$0.940 \$0.046	<0.90 /	\$0.030 \$0.000	4 5	N 2	+	<0.923
1.2.3-Inchloropane	4.34E+03	3.10E+04 (2)) pg/kg-dry	<0.905	0.800	<0.967	<0.973 <1.01	<0.977	<0.951	<0.94	<0.940	×0.961	<0.05	2 2	00: V	╁	<0.923
1.2.4 Trimathulhanzana	2 ROF +05	+	_	+	╀	+		╁	<0.951	<0.941	<0.946	<0.961	<0.898	×1 04	2 T	+	<0.02 <0.02 <0.02
1.2-Dibromo-3-chloropropane	1.09E+03	2.30E+04 (2)	_	+-	╀	+	<0.973 <1.01	+	<0.951	<0.941	<0.946	<0.961	<0.898	40.1	41.09	<1.03	<0.923
1,2-Dibromoethane (EDB)	3.14E+03	+	_	╀	⊬	-	╄	\vdash	<0.951	<0.941	<0.946	<0.961	<0.898	×1.04	<1.09	<1.03	<0.923
1,2-Dichlorobenzene	9.71E+06	t	-	\vdash	H	Н		H	<0.951	<0.941	<0.946	<0.961	<0.898	<1.04	<1.09	Н	<0.923
1,2-Dichloroethane (EDC)	4.28E+04		() µg/Kg-dry	<0.965	\dashv	\dashv	\dashv	\dashv	<0.951	<0.941	<0.946	<0.961	<0.898	<1.04	<1.09		<0.923
1,2-Dichloropropane	8.17E+04	\neg	(2) µg/Kg-dry	<0.965	> 686.0>	<0.987 <0	<0.973 <1.01	<0.977	<0.951	<0.941	<0.946	\$ 0.961 \$ 0.961	<0.898	40.7	41.09	<1.03	<0.923
1,3,5-Trimethylbenzene	2.00E+U5	- 16) pg/Kg-ary	<0.965	-	-	4	\dashv	-CO:901	<0.941	<0.940	<0.301	<0.030 1	<1.04	<1.09	\dashv	<0.923

Table 11
Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24
Bloomfield Refinery - Bloomfield, New Mexico

Analytes	Non- Residential Screening Levels 0-2'	Non- Residential C Screening O Levels 2-10'	Units	VOC 22-16 (36-38') ¹	AOC 24-1 (0-0.5')	AOC 24-1 (1.5-2.0')	AOC 24-2 (0.0.5')	AOC 24-2 (1.5-2.0')	∀OC 54-3 (0-0.5')	AOC 24-3 (1.5-2.0')	VOC 54-4 (0-0.5')	AOC 24-4 (1.5-2.0')	AOC 24-4 (1.5-2.0') DUF	AOC 24-5 (0-0.5')	∀OC 54-2 (0-0'2.) DNL	AOC 24-5 (1.5-2.0')	∀OC 54-6 (0.0.5')	AOC 24-6 (1.5-2.0')
1					6	600	6	009 4/	ō	6	6	1_	6	60	60	6	60	4/8/2009
1,3-Dichlorobenzene	1	1	-	\dashv	\dashv	4	-	-		-	\dashv	_	4	<0.898	<1.04	<1.09	<1.03	<0.923
1,3-Dichloropropane	2.00E+07	┪	(3) µg/Kg-dry	\dashv	<0.989	\vdash		<1.01 <(\dashv		<0.941		<0.961	<0.898	<1.04	<1.09	<1.03	<0.923
1,4-Dichlorobenzene	1.80E+05	3.78E+06 (2)	_ .	+	+	1	-	\dashv	<0.977 <	+	\dashv	<0.946	\dashv	<0.898	2.04	×1.09	21.03	<0.923
2,2-Dichloropropane	707.7		_	<0.965	+	+	+	+	-}	+	╬	+	+	<0.898 0.898 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	<1.04	41.09	×1.03	<0.923
2-Butanone	1.48E+U8	1.48E+08		43.86	3.50	+	\dotplus	+	+	53.81 50.05	+	- -	╁	62.29	7.47	85.45	1.4.1	43.69 43.69
2-Chlorotoluene	0.19E+U0	+	ug/kg-dry	20.303 88.62	╀	40.98/ A. 05	<0.9/3 <	×1.01	╁	╁	+	+	108.05	\$0.898 7.3.50	40.12	80.17	21.03	52.923
Z-nexatione	7 20E+07	1 1	(3) IIG/Kg-dry	40.965 40.965	+	+	-	+	+	+	<0.70 <0.941 <	+	+	20.53 0 808 0 808	- 10 V	500.1	3	<0.05 <0.923
4-Isopropytoluene			ug/Kg-dry	<0.965	v 686.0>	+	╀	+	> 776.0>	<0.951	╀	┼-	<0.961	<0.898 <0.898	20.12	60.7	4.03	<0.923
4-Methyl-2-pentanone	;		ug/Kg-dry	<3.86	┼	╀	╄	+	╁	╁	<3.76	<3.78	<3.84	<3.59	<4.17	<4.36	c4.11	<3.69
Acetone	2.63E+08	2.63E+08 (1)	-	:	H	Н		H	Н	Н		Н		<3.59	<4.17	<4.36	<4.11	<3.69
Benzene	8.54E+04	4.71E+05		<0.965	<0.989	\vdash		\vdash	> 2.977 <		<0.941	-	<0.961	<0.898	<1.04	<1.09	<1.03	<0.923
Bromobenzene	4.10E+05	- 1	-	<0.965	\dashv	\dashv	-	+	-	+	+	+	\dashv	<0.898	40.12	4.09	×1.03	<0.923
Bromodichloromethane	2.92E+04	3.50E+06	-	<0.965	+	+	\downarrow	+	\dashv	+	<0.941	+	\dashv	<0.898 0.898	41:04	41.09	~1.03 5	<0.923
Bromotorm	2.20E+06	┪	-	<0.965	+	\dashv	-}	+	+	+	+	+	+	40.838 40.838	1.04 20.04	21.09	7.03 2.03	<0.923
Bromomethane	6.71E+04	6.71E+04	_	40.965 2.865	\$ 0.383 8 0.783 8 0.783	<0.987 <0.987 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.973 <	10.12 10.12	<0.977 < CO.977 < CO.	\$ 100 PS 1	0.341 7.278	<0.946	<0.961 /3.84	0.898 7.898 8.098	40.12	21.09	×1.03	<0.923
Carbon totrachlorida	2.095+00			70.00	╁	╁	+	+	╀	╁	+	+	+	808 02	2 5	200	3 5	60.05
Chlorohenzene	1.58E+06	1.33E+03	ing/Kg-dry	<0.902 <0.905 <0.905	┿	+	+	+	╁	╁	+-	+	<0.30 <0.961	40.890 A0.898	2 2	00.10	3 2	<0.923
Chloroethane	-	╈	+-	<0.965	}	╁	1	+	╁	╁	╀	╁	╁	<0.898	×104	V 09	7 03 V	<0.923
Chloroform	3.19E+04	6.71E+05 (2)		<0.965	┝	┝	_	<1.01	}-	├	-	┝	┝	<0.898	40.1	<1.09	<1.03	<0.923
Chloromethane	1.98E+05		-	<0.965	H	Н	\vdash	$\left \cdot \right $	Н	<0.951 <	Н	\vdash	\vdash	<0.898	<1.04	<1.09	<1.03	<0.923
cis-1,2-DCE	3.10E+06	3.10E+06	-+	<0.965	-		4	+	\dashv	\dashv	\dashv	-	<0.961	<0.898	×1.04	<1.09	<1.03	<0.923
cis-1,3-Dichloropropene	1.26E+05	5.10E+05		<0.965	0.989	<0.987	-		╬			╬		868.0>	20.0	109	4.03	<0.923
Dibromomethane	1.00E+07	+	(3) ua/Ka-dry	<0.965	+	╁	<0.973	V V	╁	<0.951	<0.941	- -	╁	×0.898	104	00.7 00.00	7 7	<0.923
Dichlorodifluoromethane	1.37E+06	1.37E+06 (1)	-	<0.965	+	+	╄	╁	╁	+-	╁	╀	╄	<0.898	×1.04	<1.09	<1.03	<0.923
Ethylbenzene	3.85E+05	6.63E+06	(2) µg/Kg-dry	<0.965	_	\vdash	_		-	\vdash	H	H	├	<0.898	<1.04	<1.09	<1.03	<0.923
Hexachlorobutadiene	2.20E+05	-	\vdash	<0.965	\dashv	Н	\dashv	Н	Н		\dashv	\vdash	\vdash	<0.898	<1.04	<1.09	<1.03	<0.923
Isopropylbenzene	1.03E+0/	-		40.965 0.965	686.05	<0.987 <0.987 <0.087	<0.973	7 7 7	<0.977 <	+	+	<0.946	+	808.0	40.5	5 5	7 7 7	<0.923
Methylene chloride	1.09E+06	1.06E+07 (2)) ug/Kg-dry	13.2	╀	+	+	╁	+-	+-	3.48	+	3.85	2.42	<2.09	2.18	<2.05	<1.85
Naphthalene	2.52E+05	7.02E+05	-	<0.965	\vdash	\vdash	-	H	H	H		<0.946		<0.898	<1.04	<1.09	<1.03	<0.923
n-Butylbenzene	-	1	µg/Kg-dry	<0.965	+	\dashv	-		-}	+	+	-	\dashv	<0.898	20.7	41.09	4.03	<0.923
n-Propylbenzene	1	:	ug/kg-ary	C08.05	60.00	<0.987 A	<0.973 <	V 101	+	+	<0.941	\$0.940 \$0.046	0.30	0000	40.7	S S	21.03	<0.923
Sec-bulyiberizerie	3 03F+07	3 03F+07 (1)		<0.965 <0.965	-	+	1	+	> 776.0>	<0.951	+	+-	+	×0.898	2 2	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 5	<0.923
tert-Butylbenzene	-	\top	ug/Kg-dry	<0.965	╀	╀	-	╁	}	╀╴	╀	╀╌	\vdash	<0.898	×1.04	<1.09	<1.03	<0.923
Tetrachloroethene (PCE)	3.64E+04	3.38E+05 (2)		<0.965	Н	$\left\{ \cdot \right\}$	H	H	\vdash	\vdash	Н	Н	Н	<0.898	<1.04	<1.09	<1.03	<0.923
Toluene	2.11E+07	2.11E+07 (1)		<0.965	Н	Н	<0.973 <		> 276.0>	\dashv			Н	<0.898	<1.04	<1.09	<1.03	<0.923
trans-1,2-DCE	8.14E+05	-	_	<0.965	-	-	-	<1.01	\dashv	\dashv	<0.941	\dashv	\rightarrow	<0.898	×1.04	<1.09	<1.03	<0.923
trans-1,3-Dichloropropene	1.26E+05	5.10E+05 (2)	!) µg/Kg-dry	<0.965			8	2	+	-		\dashv	\rightarrow	<0.898	×1.04	<1.09	<1.03	<0.923
Trichloroethene (TCE)	2.53E+05	\rightarrow	_	<0.965	\dashv	+	+	+	<0.977 <	+	<0.941	+	-	<0.898	40.1	<1.09	×1.03	<0.923
Trichlorofluoromethane	5.82E+06	5.82E+06 (1)	_	<0.965	\dashv	+	<u></u>	+	-	\dashv	\dashv	+	+	<0.898	×1.04	V-109	×1.03	<0.923
Vinyl chloride	2.59E+04	\dashv		<0.965	× 686.0×	+	<u></u>	\dashv	+	<0.951 <	<0.941	<0.946	<0.961	×0.898	40.0	<1.09	<1.03	<0.923
Xylenes, Total	3.13E+06	3.13E+06 (1)) µg/Kg-dry	<0.965	\dashv	<0.987	<0.973	<1.01 <	\dashv	\dashv	\dashv	\dashv	\dashv	<0.898	<1.04 	<1.09	<1.03	<0.923
Semi Volatile Organics - (EPA Method 82/0) mg/kg	4 27F+02	4 27F+02 (1)) ma/Ka	<0.20	<0.20	<0.20	-	<0.20	\vdash	_	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<10
1.2-Dichlorobenzene	9.71E+03	+	↓_	<0.20	<0.20	╀	<0.20	+	\vdash	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	V 0.
1,3-Dichlorobenzene		1	mg/Kg	<0.20	\mathbb{H}	<0.20	Н	<0.20 <	<0.20	Н	H	$\vdash \vdash$	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0

Table 11 Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24 Bloomfield Refinery - Bloomfield, New Mexico

	Non-	Non-		, (.8 2 -98	(.9:0	6-2.0')	('5.0	5-2.0')	0.5')	(2-2.0,)	(.5.0-	.5-2.0')	.5-2.0°) DUI	('5.0-	9UQ ('8.0-	('0.S-&.	('8.0.	.5-2.0")
	Screening Levels 0-2')C 22-16 (3	OC 54-1 (0-	OC 54-1 (1.	OC 54-5 (0 ⁻	OC 54-5 (1 ⁻	OC 54-3 (0-	OC 54-3 (1	OC 54-4 (0	OC 54-4 (1	OC 54-4 (1	OC 54-2 (0·	OC 54-2 (0	OC 54-2 (1	OC 54-6 (0	DC 24-6 (1
Analytes			Units	g	g	9	g	₹ 4/23/2009 4/2	₹/2009	600	60	600	600	6	4/8/2009	4/8/2009	60	₹/8/2009
Sample Date	1 80F+02	3 78E+03 (2)	ma/Ka	_	_		-		0.20	_	_		┸	+	<0.20	<0.20	┥	v-1.0
1,4-Uldirologenzene 2,4 5. Trichloronhenol	2.38E+04	+-	上	<0.20	<0.20	<0.20	╁╴	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
2.4.6-Trichlorophenol	2.38E+02	+	<u> </u>	<0.20	<0.20	<0.20		H	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	√ 1.0
2.4-Dichlorophenol	7.15E+02	7.15E+02 (1)	_	<0.40	<0.40	<0.40		-	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<2.0
2.4-Dimethylphenol	4.76E+03	 	上	<0.30	<0.30	<0.30	'	Н	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<1.5
2.4-Dinitrophenol	4.76E+02	4.76E+02 (1)	┖	<0.40	<0.40	<0.40	<0.40	Н	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<2.0
2.4-Dinitrotoluene	1.03E+02	+	L	<0.50	<0.50	<0.50		Н	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5
2.6-Dinitrotoluene	2.39E+02	2.39E+02 (1)	<u> </u>	<0.50	<0.50	<0.50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5
2-Chloronaphthalene	2.48E+04	\vdash	L	<0.25	<0.25	<0.25			<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<u>~</u>
2-Chlorophenol	1.55E+03	1.55E+03 (1)	Ш	<0.20	<0.20	<0.20		\dashv	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	\$0.20 \$	V-1.0
2-Methylnaphthalene	4.10E+03	(3)	Ш	<0.25	<0.25	<0.25	4	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<u>دا</u> ر
2-Methylphenol	3.10E+04	(3)	_	<0.50	<0.50	<0.50	+	\dashv	<0.50 0.50	<0.50	20.50	0.50	20.50	0.50	00.50	20.50 50.50	20.50	27.5
2-Nitroaniline	1.80E+03	(3	_	<0.20	<0.20	<0.20	<0.20	<0.20 0.20 0.20	<0.20	<0.20	40.20 50.20	40.20	<0.20 5.50 5.50 5.50 5.50 5.50 5.50 5.50	40.20 50.20	40.20 20.20	07.0>	07.0	0.0
2-Nitrophenol	1	┪	_	<0.20	<0.20	<0.20	-	+	0.20	\$0.20 \$2.6	07:05	07.0	07.0	07.0	\$0.20 \$0.20	20.20	02.00	0 6
3,3'-Dichlorobenzidine	4.26E+01	3.71E+02 (2)		<0.25	<0.25	<0.25	<0.25	╁	07.0	\$0.25	27.02	27.0	27.0	67.0	27.0	67.02	27.07	<u>۱</u> ن د
3+4-Methylphenol	3.10E+03	1	\perp	<0.20	<0.20 5.20 5.20	\$0.20 \$0.20	+	+	07.0	20.20	07.07	02.00	02.0	22.0	02.02	02.02	02.00	5 2
3-Nitroaniline	1	,	mg/Kg	07.0 0.20	07.0	<0.20 50.20	+	+	07.0	70.20	20.60	0.20	0.50	20.20	20.50	0.50	0 20	20.5
4,6-Dinitro-2-methylphenol	;	-	mg/Kg	00.00 00.00	00.00	V0.50	+	+	200	00.00	3 5	200	00.00	200	05.0	8 6	2 5	(V
4-Bromophenyl phenyl ether	1	-	mg/Kg	<0.20 50.50	07.0	<0.20	+	20.20	20.20	20.20	0.50	0.20	07.0	<0.20	07.0	07.07	05.00	5 6
4-Chloro-3-methylphenol	- 100		4	\$0.30 \$0.50	20.30	2000	20.00	╁	200	<0.50 <0.50 <0.50	200	\$0.50 \$0.50	\$0.50 \$0.50	<0.50 <0.50 <0.50	<0.50	<0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	\$0.50	<2.5
4-Chloroaniline	0.00E+01	(4)	\perp	20.02	00.00	2000	+	+	40.20 40.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	v 10 10
4-Chlorophenyi phenyi ether	R GOE+02	(4)	Works	<0.25	<0.25	<0.25	<0.25	╁	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<1.3
4-Nitrophenol	100.0		1_	<0.20	<0.20	<0.20	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Acenaphthene	1.86E+04	1.86E+04 (1)	<u> </u>	<0.20	<0.20	<0.20	_		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Acenaphthylene	1	t	_	<0.20	<0.20	<0.20	<0.20	Н	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	41.0
Aniline	3.00E+03	(4)		<0.20	<0.20	<0.20	_	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	V.
Anthracene	6.68E+04	6.68E+04 (1)	_	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 20 20 20 20 20 20 20 20 20 20 20 20 2	<0.20 5.50 5.00 5.00 5.00 5.00 5.00 5.00	40.20 50.20	<0.20 5.30	<0.20 \$0.20	40.20	<0.20	<0.20	02.0	0.12
Azobenzene	2.20E+02	-	_	<0.20	<0.20	<0.20	+	+	07.0	02.0	07.0	02.00	02.02	07.02	07.02	20.20	02.00	0. 2
Benz(a)anthracene	2.34E+01	2.13E+02 (2	_	\$0.20 \$0.20	02.00	20.20	+	$^{+}$	02.07	02.07	02.07	02.07	02.02	02.02	20.20	02.02	02.02	5 0
Benzo(a)pyrene	2.34E+00	-	\perp	\$0.20	20.20	20.20	+	╀	02.02	02.02	20.02	40.20 02.05	02.02	02.0>	02.02	02.0>	02.02	0.10
Benzo(a h i)aga laga	4.34E+01	2.13ETU2 (2)	SV/SI	\$0.20 \$0.50	<0.50	<0.50	+	<0.50 <0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5
Benzo(k)flioranthene	2.34E+02	2.06E+03 (2	1	<0.20	<0.20	<0.20	\vdash	H	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Benzoic acid	2.50E+06	(3)	3) mg/Kg	<0.50	<0.50	<0.50		\dashv	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5
Benzył alcohol	3.10E+05		Щ	<0.20	<0.20	<0.20	\dashv	\dashv	<0.20 ≤0.20	<0.20	<0.20	<0.20	<0.20	\$ 0.20 50.20	<0.20	<0.20	<0.20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.0
Bis(2-chloroethoxy)methane	1.80E+03	-	4	<0.20	<0.20	<0.20	<0.20	+	40.20	0.20	02.0	07.0	02.00	02.0	0.20	02.00	07.0	0 7
Bis(2-chloroethyl)ether	1.36E+01	1.47E+02 (2)	ᆚ	\$0.20 \$0.20	×0.20	20.50	+	20.20	02.02	02.02	02.02	<0.20	\$0.20 \$0.20	\$0.20 \$0.20	\$0.20 \$0.20	<0.20	02.02	V V
Bis(2-cnloroisopropyl)etner	1 37E+03	4 76E+03 (2)	Sylva Works	0.20	<0.50	<0.50	+	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5
Bistal benzyl obthalate	9.10E+03	+		<0.20	<0.20	<0.20	}	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Carbazole	;	;	╀-	<0.20	<0.20	<0.20	-		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Chrysene	2.34E+03	2.06E+04 (2)	╙	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Dibenz(a,h)anthracene	2.34E+00	2.13E+01 (2)	Ľ	<0.20	<0.20	<0.20			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	V-1.0
Dibenzofuran	1	╌┼	\sqcup	<0.20	<0.20	<0.20	\dashv	<0.20 20.20	<0.20 20 20 20 20 20 20 20 20 20 20 20 20 2	Q 50 9 50 9 50 9 50 9 50 9 50 9 50 9 50 9	<0.20 50.20	<0.20 5.30	<0.20 \$ 50.20	\$ 0.20 \$ 0.20	<0.20 50.20	<0.20	\$ 0.20 \$	0.0
Diethyl phthalate	1.91E+05	-+	_	<0.20	<0.20	40.20	+	+	07.0	02.00	07.07	07.07	02.02	02.02	02.02	02.07	20.50	0 7
Dimethyl phthalate	2.38E+06	2.38E+06 (1)	_	0.20 20.20	<0.20	0.20	07.0	+	\$0.20 \$0.50	\$2.60 \$0.50	<0.50 <0.50 <0.50	~	<0.50	<0.50	<0.50	\$0.50 \$0.50	~0.£0 <0.50	<2.5
Di-n-butyl phthalate	4.30ETU4	2.38E+04 (T)	mg/Ka	300	\$0.50 \$0.20	\$0.20	+	+	<0.20	<0.20	40.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 <0.20	41.0
UI-n-octyr primalate Flingranthene	8.91E+03	8.91E+03 (1	(1) ma/Ka	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	۸ ۱ .3
IdOlanusis		7	_]				$\frac{1}{1}$											

Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24 Bloomfield Refinery - Bloomfield Refinery - Bloomfield, New Mexico Table 11

	 										-		iu.	}—- 	В			
	Non- Residential	Non- Residential	urce	(36-38،) ۱	('8.0-0)	(1.5-2.0')	(0.0.5')	(1.5-2.0')	(0-0.5')	(1.5-2.0')	(0-0.5')	(1.5-2.0')	(۱.5-۲.۱) ت	('8.0-0)	UG (.2.0-0)	(1.5-2.0')	(0.0.5°)	('0.S-2.1
	Screening Levels 0-2'	Screening Levels 2-10		22-16	Z4-1) L-ÞZ	Z-ÞZ	Z-ÞZ	24-3	24-3	54-4 () b- bZ	Sd-4 (S-42	S- 1 2	5-45	9-42) 9- 1 /2
Analytes			Units	DOA	DOA	AOC	DOA	DOA	DOA	20A	DOA	DOA	OOA	OOA	SOA		SOO Y	30V
Sample Date				4/14/2009	4/23/2009	4/23/2009 4	4/23/2009 4/	4/23/2009 4/	600	4/23/2009 4/	4/23/2009 4	4/23/2009 4/	4/23/2009 4	600	60	4/8/2009	60	4/8/2009
Fluorene	8.91E+03	8.91E+03	(1) mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5
Hexachlorobenzene	1.20E+01	1.03E+02 ((2) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Hexachlorobutadiene	2.20E+02	H	(4) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Hexachlorocyclopentadiene	8.11E+02	8.11E+02 ((1) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Hexachloroethane	2.38E+02	2.38E+02 (1) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Indeno(1,2,3-cd)pyrene	2.34E+01	_	(2) mg/Kg	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<1.3
Isophorone	2.02E+04	4.75E+04 ((2) mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5
Naphthalene	2.52E+02	7.02E+02 ((2) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Nitrobenzene	2.77E+02	5.20E+02 ((2) mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5
N-Nitrosodi-n-propylamine	2.50E+00	-	(4) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
N-Nitrosodiphenylamine	3.91E+03	3.40E+04 ((2) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Pentachlorophenol	1.00E+02	1.03E+03 ((2) mg/Kg	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<2.0
Phenanthrene	7.15E+03	Ť	(1) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Phenol	6.88E+04	6.88E+04 ((1) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<1.0
Pyrene	6.68E+03	6.68E+03	(1) mg/Kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	×1.0
Pyridine	1.00E+03)	(3) mg/Kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5
Total Petroleum Hydrocarbons - (EPA Method 8015B)	15B) mg/kg																	
Diesel Range Organics (DRO)	2000	2000	(5) mg/Kg	18	28	<10	22	<10	<10	<10	130	<10	<10	360	330	12	20	1400
Gasoline Range Organics (GRO)	2000	2000	(5) mg/Kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Motor Oil Range Organics (MRO)	2000	2000	(6) mg/Kg	59	140	<50	<u>7</u> 6	<50	<50	<50	240	<50	<50	029	610	66	72	2200

| Motor Oil Range Organics (MRO) | 5000 | 5000 | 16) | mg/Kg | 50 | 5000 | 16 | 5000 | 16 | 5000 | 16 | 5000 | 500

Table 11 Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24 Bloomfield Refinery - Bloomfield, New Mexico

Z						,
Residential Screening Levels 0-2'	Non- Residential Screening Levels 2-10'	Source	Units	VOC 54-7 (0-0.5')	AOC 24-7 (1.5-2.0')	VOC 54-7 (39-42°)
				4/7/2009	4/7/2009	4/7/2009
1.24E+02	1.24E+02	(1)	ma/Ka	<13	<13	<2.5
1.77E+01	6.54E+01	0	ma/Ka	<13	<13	<2.5
4.35E+03	4.35E+03	E	ma/Ka	210	150	530
1.44E+02	1.44E+02	(E)	mg/Kg	<0.75	<0.75	<0.15
3.09E+02	3.09E+02	Ξ	mg/Kg	<0.50	<0.50	<0.10
4.47E+05	4.47E+05	(1)	mg/Kg	38	54	4
3.00E+02		(3)	mg/Kg	4.9	4.4	2.4
6.19E+03	6.19E+03	(1)	mg/Kg	<0.5	<0.5	<0.5
8.00E+02	;	(3)	mg/Kg	7.2	5.1	0.84
4.99E+01	6.36E+01	(2)	mg/Kg	<0.033	<0.033	<0.032
6.19E+03	6.19E+03	(£)	mg/Kg	6.8	5.8	1.6
1.55E+03	1.55E+03	<u>(i)</u>	mg/Kg	<13 4.3	×13	47.5
1.55E+03	1.55E+03	Ē	mg/kg	51.5	5.1.3	41
0.205±04	1.55=+03		mg/kg	/ 2	<u>0</u>	- 4
9.29ETU4	9.230104		BV/BIII	35	ş	2
1.61E+02	2.78E+03	(2)	ma/Ka			;
6.43E+04	6.43E+04	Ξ	mg/Kg	:		1
4.33E+01	5.99E+02	(2)	mg/Kg	1	;	1
9.43E+01	1.24E+03	(2)	mg/Kg	-	:	1
3.50E+02	6.88E+03	(2)	mg/Kg	:	:	1
1.83E+03	1.83E+03	(1)	mg/Kg	1	:	•
:	1)		mg/Kg	:	:	۱
V EAE+00	3 10E±01	(0)	6V/6III	•	: :	;
4.34L100	4 27F+02	(4)	ma/Ka		•	۱ ۱
2.80E+02	1 1	(3)	mg/Kg	:	:	:
1.09E+00	2.30E+01	(2)	mg/Kg		-	: 1
3.14E+00	4.86E+01	(2)	mg/Kg	:	:	-
9.71E+03	9.71E+03	Ξ	mg/Kg	:	:	:
4.28E+01	7.51E+02	<u>(</u> 2)	mg/Kg	1	:	1
3.1/E+01	1.1/E+02	9	mg/kg	:	: :	:
2.00F.02		2	ma/Ka	· '		:
2.00E+04	:	(3)	mg/Kg	1	:	
1.80E+02	3.78E+03	(2)	mg/Kg	:		1
9.90E+02	-	(4)	mg/Kg	:	1	:
1	1		mg/Kg	:	:	:
1.48E+05	1.48E+05	<u>(£</u>	mg/Kg	:	:	;
6.19E+03	6.19E+03	<u> </u>	mg/Kg	:	:	!
-	1	į	mg/Kg	•	:	
4.10E+03	;	<u>ව</u>	mg/Kg	:	:	:
/.20E+04	· ;	ତ୍ର	mo/Ka		: :	: :
;	1		mg/Kg		:	
2.63E+05	263000	(1)	mg/Kg	1	:	1
8.54E+01	4.71E+02	(2)	mg/Kg	:	:	
4.10E+02	-	<u>ල</u>	mg/Kg	:	:	
2.92E+U1	3.50E+03	(7)	mg/Kg	:	-	1
	1.24E+02 1.77E+01 4.35E+03 1.44E+02 3.09E+02 4.47E+05 3.09E+02 4.99E+01 6.19E+03 1.55E+03 1.55E+03 1.55E+03 1.55E+03 1.55E+03 1.55E+03 1.55E+03 1.55E+03 1.55E+03 1.55E+03 1.55E+03 1.55E+03 1.55E+03 1.61E+02 2.80E+02 1.89E+01 8.17E+01 2.00E+02 1.89E+01 8.17E+01 2.00E+02 1.89E+01 8.17E+01 2.00E+04 1.80E+05 1.89E+01 8.17E+01 2.00E+04 1.80E+05 1.89E+01 8.17E+01 2.00E+04 1.80E+05 1.80E+02 1.89E+01 8.17E+01 2.00E+04 1.80E+05 1.80E+05 1.80E+05 1.80E+02 2.00E+04 1.80E+05 1.8	The state of the	E+02 1.24E+02 E+03 4.35E+03 E+04 4.35E+03 E+05 3.09E+02 E+05 3.09E+02 E+05 4.47E+05 E+03 6.19E+03 E+03 6.19E+03 E+04 6.36E+01 E+03 1.55E+03 E+04 6.36E+01 E+04 1.24E+03 E+02 6.88E+03 E+03 1.55E+03 E+04 6.36E+01 E+04 1.24E+03 E+04 0.30E+01 E+03 1.55E+03 E+04 1.24E+03 E+04 1.24E+03 E+04 1.24E+03 E+04 1.24E+03 E+04 1.35E+03 E+05 1.48E+05 E+06 3.71E+02 E+07 1.77E+02 E+06 3.78E+03 E+06 1.48E+05 E+07 1.78E+03 E+08 1.86E+01 E+09 2.30E+01 E+09 3.71E+02 E+01 1.77E+02 E+04	E+02 1.24E+02 (1) E+03 4.35E+03 (1) E+04 6.54E+01 (2) E+05 3.09E+02 (1) E+06 4.47E+05 (1) E+06 4.47E+05 (1) E+07 3.09E+03 (1) E+03 6.19E+03 (1) E+03 6.19E+03 (1) E+04 6.43E+04 (1) E+04 6.43E+04 (1) E+04 6.43E+04 (1) E+04 6.43E+04 (1) E+04 6.43E+03 (1) E+04 6.43E+04 (1) E+05 2.30E+01 (2) E+06 3.10E+01 (2) E+07 1.55E+03 (1) E+08 6.19E+03 (1) E+09 9.29E+04 (1) E+09 1.55E+03 (1) E+01 1.57E+02 (2) E+01 1.77E+02 (2) E+02 2.30E+01 (2) E+03 9.71E+03 (1) E+04 6.43E+03 (1) E+05 2.30E+01 (2) E+06 3.78E+03 (1) E+07 1.751E+02 (2) E+08 6.19E+03 (1) E+09 -	E+02 1.24E+02 (1) mg/kg E+03 1.24E+02 (1) mg/kg E+01 6.54E+01 (2) mg/kg E+02 1.44E+02 (1) mg/kg E+02 1.44E+02 (1) mg/kg E+02 1.44E+02 (1) mg/kg E+02 3.09E+02 (1) mg/kg E+03 3.09E+02 (1) mg/kg E+03 1.55E+03 (1) mg/kg E+03 1.55E+03 (1) mg/kg E+04 6.19E+03 (1) mg/kg E+04 1.55E+03 (1) mg/kg E+04 6.19E+03 (1) mg/kg E+05 1.55E+03 (1) mg/kg E+04 6.19E+03 (1) mg/kg E+04 6.19E+03 (1) mg/kg E+04 6.29E+04 (1) mg/kg E+04 1.24E+03 (1) mg/kg E+04 6.3	E+02 1.24E+02 (1) mg/kg <13

Table 11
Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24
Bloomfield Refinery - Bloomfield, New Mexico

		\$ 2			(.	(,0:	(,z
	Residential	Residential	nrce		∂.0- 0	S-3.1	₹ ৮ -6€
	Screening Levels 0-2'	Screening Levels 2-10'	os) T- 4 S) T-4S	:)
Analytes				Units	OOA	YOC	DOA
te]		4/7/2009	4/7/2009	4/7/2009
Bromoform	2.20E+03	; ;	ල :	mg/Kg	-	:	1
Bromomethane	6.71E+01	6.71E+01	$\widehat{\Xi}$	mg/Kg	: }	-	1
Carbon distingle	5.89E+03	5.89E+03	\exists	mg/kg		•	:
Carbon tetrachionide	4.43E+01	1.99E+02	ર્ગ દ	mg/kg	•		1
Cilionophane	1.305+03	1.300+03	\exists	mg/kg	:	;	:
Chloroform	3 10F±01	E 71E+02	0	mg/Kg	1 1	: ;	: :
Chloromethane	1 98F+07	1 13F+03	96	ma/Ka	1		
cis-1.2-DCE	3.10E+03	3.10E+03	1 8	ma/Ka	:		ł
cis-1,3-Dichloropropene	1.26E+02	5.10E+02	2	mg/Kg	1	:	1
Dibromochloromethane	6.13E+01	1.99E+03	2	mg/Kg	:	;	1
Dibromomethane	1.00E+04		(3)	mg/Kg	-	-	
Dichlorodifluoromethane	1.37E+03	1.37E+03	(1)	mg/Kg	1	:	1
Ethylbenzene	3.85E+02	6.63E+03	0	mg/Kg	;	:	1
Hexachlorobutadiene	2.20E+02	1 1	୍ର	mg/Kg	•	:	;
Isopropylbenzene	1.03E+04	1.03E+04	Ξ	mg/Kg	11	:	1
Methylogo chlorido	4.69E+03	4 OSE + 04	<u> </u>	mg/kg	:	:	1
Nanthalana	2 52E+03	7.02E+04	યે ઉ	mo/Ka	1 1	: :	
naprigrame n-Birtylhenzene	4.02L+02	1.021.102	/4	mg/Kg		:	: :
n-Propylbenzene			L	ma/Ka			
sec-Butylbenzene	-	}		mg/Kg			
Styrene	3.03E+04	30300	(1)	mg/Kg		-	:
benzene		1		mg/Kg	1	:	
Tetrachloroethene (PCE)	3.64E+01	3.38E+02	(2)	mg/Kg	***	-	:
Toluene	2.11E+04	2.11E+04	$\widehat{\Xi}$	mg/Kg	1	:	:
trans-1,2-DCE	8.14E+02	8.14E+02	9	mg/Kg	-	:	1
trans-1,3-Dichloropropene	1.26E+02	5.10E+02	7 (mg/kg	:	:	:
Trichlorofluoromethane	2.53E+02 5.82E+03	4.60E+03	3 5	mg/Kg mg/Kg	: :	: :	1 1
Vinyl chloride	2.59E+01	2.48E+02	(2	mg/Ka			
Xylenes, Total	3.13E+03	3.13E+03	Ξ	mg/Kg	:	1	1
unds - (EPA Method 8260B)	µg/Kg-dry			i			
1,1,1,2-Tetrachloroethane	1.61E+05	2.78E+06	Q (pg/Kg-dry	41.04	1.01	<1.07
1.1.1-Indicoettiale	4 33F+04	4 33F+04	3	ng/Ka-dry	107	V V	×1.07
1,1,2-Trichloroethane	9.43E+04	9.43E+04	10	na/Kg-dry	×1.04	<1.01	<1.07
1,1-Dichloroethane	3.50E+05	3.50E+05	(2)	pg/Kg-dry	<1.04	<1.01	<1.07
1,1-Dichloroethene	1.83E+06	1.83E+06	(1)	µg/Kg-dry	<1.04	<1.01	<1.07
1,1-Dichloropropene	1	;		ug/Kg-dry	<1.04	<1.01	<1.07
1,2,3-Trichlorobenzene	:	1		µg/Kg-dry	40.1	<1.01	<1.07
1,2,3-Trichloropropane	4.54E+03	3.10E+04		ug/Kg-dry	40.1	×1.01	<1.07
1,2,4-I richlorobenzene	4.27E+U5	4.27E+05	Ξ	ug/Kg-dry	×1.04	41.01	<1.07
1,2,4-1 rimethylbenzene	2.80E+05		୭ ଚ	ug/Kg-dry	40.1	7 21.01	V1.07
1,z-Dibromoethane (FDR)	3.14F+03	4.30E+04 4.86F+04	<u> </u>	ug/kg-dry	7 7	2 2	√1.07 7.07
1,2-Dichlorobenzene	9.71E+06	9.71E+06	įΞ	ug/Kg-dry	×1.04	1.01	<1.07
1,2-Dichloroethane (EDC)	4.28E+04	7.51E+05	(2)	µg/Kg-dry	<1.04	<1.01	<1.07
1,2-Dichloropropane	8.17E+04	1.17E+05	(7)	hg/Kg-dry	<1.04	×1.01	<1.07
1,3,5-Trimethylbenzene	2.00E+U2	1	ව	рg/Kg-dry	×1.04	<1.01	<1.0/

Table 11
Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24
Bloomfield Refinery - Bloomfield, New Mexico

Units A 47/2009 4 47/2009 </th <th></th> <th>Residential Screening Levels 0-2'</th> <th>Residential Screening Levels 2-10'</th> <th>Source</th> <th></th> <th>C 24-7 (0-0.5°</th> <th>C 24-7 (1.5-2.0</th> <th>C 54-7 (39-42'</th>		Residential Screening Levels 0-2'	Residential Screening Levels 2-10'	Source		C 24-7 (0-0.5°	C 24-7 (1.5-2.0	C 54-7 (39 -4 2'
100 100	Sample Date				Units	ΟA	ΟA	OΑ
2.00E-07 (3) µg/Kg-dry <1.04 1.80E+05 3.78E+06 (2) µg/Kg-dry <1.04 1.80E+05 1.78E+06 (1) µg/Kg-dry <1.04 1.48E+08 1.48E+08 (1) µg/Kg-dry <1.04 1.48E+08 1.48E+08 (1) µg/Kg-dry <1.04 1.20E+07 (3) µg/Kg-dry <1.04 1.20E+07 (3) µg/Kg-dry <1.04 1.20E+04 4.71E+05 (2) µg/Kg-dry <1.04 2.20E+04 4.71E+05 (2) µg/Kg-dry <1.04 2.20E+04 3.50E+06 (1) µg/Kg-dry <1.04 2.20E+04 1.30E+07 (1) µg/Kg-dry <1.04 2.20E+06 1.58E+06 (1) µg/Kg-dry <1.04 2.20E+06 1.58E+06 (1) µg/Kg-dry <1.04 1.20E+06 1.30E+06 (2) µg/Kg-dry <1.04 1.20E+06 (2) µg/Kg-dry				_		4/7/2009	4/7/2009	4/7/2009
1.08E+05 3.78E+06 0. j j j j j j j j j j j j j j j j j j	1,3-Dichlorobenzene		;	Ś	ug/Kg-dry	41.04	1.07	/0.1>
1.48E+08	1,3-Dichloropropane	2.00E+0/	3 795 406	୍ ଚ	ug/Kg dry	40.12	10.1	V 1.07
1.48E+08 1.48E+08 (1) 1967g-dry 4.16 1.48E+08 (1) 1967g-dry 4.16 1.48E+08 (1) 1967g-dry 4.10 1.48E+08 4.18E+08 4.18E+08 (1) 1967g-dry 4.10 1.48E+08 4.18E+08 4.18E+08 (1) 1967g-dry 4.10	1,4-Dichloropenzene	C0+=00.1	3.70=+00	3	hg/kg-dry	10.1	2 2	V V
6.19E-06	2. Butanone	1 48F+08	1 48F+08	€	10/Kg-dry	<4.16	<4.06	<4 29
100 100	2-Chlorofolijene	6 19F+06	6.19E+06	Ξ	ua/Ka-dry	× 104	2 10 10	<1.07
7.20E+07 (3) µg/kg-dry <1.04	2-Hexanone	10.10	- 101.0		ua/Ka-dry	4. 16	<4.06	<4.29
100 100	4-Chlorotoluene	7.20E+07		(2)	ug/Kg-dry	×1.04	<1.01	<1.07
10	4-Isopropyltoluene	1			ug/Kg-dry	L	<1.01	<1.07
10 10 10 10 10 10 10 10	4-Methyl-2-pentanone	1	1		ug/Kg-dry		<4.06	<4.29
8.54E+04 4.71E+05 (2) 197kg-dry <1.04 2.92E+04 (3) 197kg-dry <1.04 2.92E+06 (3) 197kg-dry <1.04 2.20E+06 (3) 197kg-dry <1.04 2.20E+06 5.88E+06 (1) 197kg-dry <1.04 2.36E+06 5.88E+06 (1) 197kg-dry <1.04 1.58E+06 1.38E+06 (1) 197kg-dry <1.04 1.58E+06 1.13E+04 (1) 197kg-dry <1.04 1.58E+06 1.13E+06 (2) 197kg-dry <1.04 1.26E+05 3.10E+06 (1) 197kg-dry <1.04 1.26E+05 3.10E+06 (2) 197kg-dry <1.04 1.20E+06 1.38E+06 (1) 197kg-dry <1.04 1.20E+06 1.38E+06 (1) 197kg-dry <1.04 1.20E+06 1.38E+06 (2) 197kg-dry <1.04 1.38E+06 1.38E+06 (2) 197kg-dry <1.04 1.09E+06 1.38E+06 (2) 197kg-dry <1.04 2.20E+05 1.06E+07 (2) 197kg-dry <1.04 2.20E+06 1.06E+07 (2) 197kg-dry <1.04 1.09E+06 1.06E+07 (1) 197kg-dry <1.04 1.20E+05 1.06E+07 (1) 197kg-dry <1.04 1.20E+05 1.06E+07 (1) 197kg-dry <1.04 1.20E+05 1.06E+05 (2) 197kg-dry <1.04 1.2	Acetone	2.63E+08	2.63E+08	(1)	µg/Kg-dry		<4.06	7.8
# 10E+05	Benzene	8.54E+04	4.71E+05	<u>@</u>	ug/Kg-dry	×1.04	-4.01 101	<1.07
2.92E+04 3.50E+06 (1) µg/Kg-dry <1.04 2.20E+06 - (3) µg/Kg-dry <1.04 5.89E+06 5.89E+06 (1) µg/Kg-dry <1.04 2.43E+04 1.99E+05 (2) µg/Kg-dry <1.04 1.58E+06 1.58E+06 (1) µg/Kg-dry <1.04 1.28E+06 1.13E+06 (1) µg/Kg-dry <1.04 1.26E+05 3.10E+06 (2) µg/Kg-dry <1.04 1.20E+05 3.10E+06 (2) µg/Kg-dry <1.04 1.20E+05 (1) µg/Kg-dry <1.04 1.37E+06 1.37E+06 (1) µg/Kg-dry <1.04 1.37E+06 1.37E+07 (2) µg/Kg-dry <1.04 1.37E+06 1.03E+07 (2) µg/Kg-dry <1.04 1.37E+06 3.38E+05 (2) µg/Kg-dry <1.04 1.37E+06 1.06E+07 (2) µg/Kg-dry <1.04 1.37E+06 1.06E+07 (2) µg/Kg-dry <1.04 2.52E+05 7.02E+05 (2) µg/Kg-dry <1.04 2.52E+06 8.56E+07 (1) µg/Kg-dry <1.04 2.52E+06 8.56E+07 (1) µg/Kg-dry <1.04 2.52E+06 8.50E+07 (1) µg/Kg-dry <1.04 2.52E+06 8.14E+05 (1) µg/Kg-dry <1.04 2.52E+06 8.14E+05 (1) µg/Kg-dry <1.04 2.53E+06 8.14E+05 (1) µg/Kg-dry <1.04 2.53E+06 8.14E+05 (2) µg/Kg-dry <1.04 2.55E+06 8.14E+05 (2) µg/Kg-dry <1.04 3.13E+06 (1) µg/Kg-dry <1.04 3.13E+07 (1) µg/	Bromobenzene	4.10E+05	ŀ	ଡ	ug/Kg-dry	102	<1.01	<1.07
1.20E+06	Bromodichloromethane	2.92E+04	3.50E+06	$\overline{\Xi}$	ug/Kg-dry	2.04 2.04	4.01	<1.07
See	Bromoform	2.20E+06	1 1	<u>ම</u>	µg/Kg-dry	4	7.01	<1.07
1.00	Bromomethane	6.71E+04	6.71E+04		ug/kg-ary	1	1015	70.1
1.58E+06	Carbon disuitide	2.89E+06	3.89E+06	3	ug/kg-dry	1	2 4.00	<4.29
1.30E-02 1.30E-05	Carbon tetlachionide	1.43E+04	1.58E+05	ijĘ	My Ka-dry	7 7	2 5	4107
3.19E+04 6.71E+05 (2) µg/Kg-dry <1.04 1.98E+05 1.13E+06 (2) µg/Kg-dry <1.04 1.20E+05 3.10E+06 (1) µg/Kg-dry <1.04 1.20E+05 5.10E+05 (2) µg/Kg-dry <1.04 1.00E+07 (1) µg/Kg-dry <1.04 1.37E+06 (1) µg/Kg-dry <1.04 2.20E+05 (2) µg/Kg-dry <1.04 2.20E+05 (2) µg/Kg-dry <1.04 1.03E+07 (1) µg/Kg-dry <1.04 2.20E+05 (2) µg/Kg-dry <1.04 2.20E+05 (2) µg/Kg-dry <1.04 2.52E+05 (2) µg/Kg-dry <1.04 2.52E+05 (3) µg/Kg-dry <1.04 2.52E+05 (1) µg/Kg-dry <1.04 2.52E+05 (2) µg/Kg-dry <1.04 2.52E+06 (3) µg/Kg-dry <1.04 2.52E+06 (1) µg/Kg-dry <1.04 2.52E+06 (1) µg/Kg-dry <1.04 2.52E+06 (1) µg/Kg-dry <1.04 2.52E+07 (1) µg/Kg-dry <1.04 2.52E+06 (2) µg/Kg-dry <1.04 2.52E+06 (2) µg/Kg-dry <1.04 2.52E+06 (3) µg/Kg-dry <1.04 2.52E+06 (1) µg/Kg-dry <1.04 2.52E+06 (2) µg/Kg-dry <1.04 2.52E+06 (3) µg/Kg-dry <1.04 2.52E+06 (1) µg/Kg-dry <1.04 2.52E+06 (2) µg/Kg-dry <1.04 2.52E+06 (3) µg/Kg-dry <1.04 2.55E+06 (4) µg/Kg-dry <1.04	Chloroethane	-	-		ug/Kg-dry	104	<1.01	<1.07
1.98E+05	Chloroform	3.19E+04	6.71E+05	3	ug/Kg-dry	<1.04 40.1>	<1.01	<1.07
3.10E+06 3.10E+06 (1) µg/Kg-dry <1.04 1.26E+05 5.10E+05 (2) µg/Kg-dry <1.04 1.00E+07 (3) µg/Kg-dry <1.04 1.00E+07 (3) µg/Kg-dry <1.04 1.03E+07 1.37E+06 (1) µg/Kg-dry <1.04 2.20E+05 (3) µg/Kg-dry <1.04 1.03E+07 1.03E+07 (1) µg/Kg-dry <1.04 1.03E+07 1.09E+06 (1) µg/Kg-dry <1.04 1.09E+06 1.06E+07 (2) µg/Kg-dry <1.04 1.09E+06 1.06E+07 (1) µg/Kg-dry <1.04 1.09E+06 1.06E+05 (2) µg/Kg-dry <1.04 1.26E+05 5.10E+05 (1) µg/Kg-dry <1.04 1.26E+05 5.10E+05 (2) µg/Kg-dry <1.04 1.26E+06 5.82E+06 (1) µg/Kg-dry <1.04 1.26E+06 5.10E+05 (2) µg/Kg-dry <1.04 1.26E+06 5.10E+05 (2) µg/Kg-dry <1.04 1.26E+06 5.10E+05 (2) µg/Kg-dry <1.04 1.26E+06 5.26E+06 (1) µg/Kg-dry <1.04 1.26E+06 5.10E+05 (2) µg/Kg-dry <1.04 1.26E+06	Chloromethane	1.98E+05	1.13E+06	(2)	µg/Kg-dry	<1.04	<1.01	<1.07
126E+05 5.10E+05 (2) µg/Kg-dry <1.04	sis-1,2-DCE	3.10E+06	3.10E+06	€	µg/Kg-dry	4	4.01	<1.07
1.00		1.26E+05	5.10E+05	<u></u>	ug/Kg-dry	2 2 2 2 3	4.01	<1.07
1.00E+07	Dibromochloromethane	6.13E+04	1.99=+06	<u> </u>	ug/Kg-dry	V1:04	5 5	V1.07
1.3/E+06 1.3/E+06 (1) pg/kg-dry 1.04 2.20E+05 6.63E+06 (2) pg/kg-dry 1.04 2.20E+05 1.03E+07 (1) pg/kg-dry 1.04 4.69E+06 6.55E+07 (2) pg/kg-dry 1.04 4.69E+06 6.55E+07 (2) pg/kg-dry 1.04 4.69E+06 6.55E+07 (2) pg/kg-dry 1.04 2.52E+05 7.02E+05 (2) pg/kg-dry 1.04		1.00E+07	4 275 106	र्ग	ug/kg-dry	2 2	2 5	V 1.07
Automatical Contents	Jichiofodiliuofometnane	3.85E+05	6.37=+06	3	Hg/Ng-dry	10.1	4 01	<1.07
1.03E+07 1.03E+07 1.04 1.04 1.05E+07 1.09E+06 6.55E+07 (2) µg/kg-dry <1.04 1.09E+06 1.06E+07 (2) µg/kg-dry <1.04 2.52E+05 7.02E+05 (2) µg/kg-dry <1.04 1.09E+06 1.06E+07 (2) µg/kg-dry <1.04 1.09E+06 1.00E+07 (2) µg/kg-dry <1.04 1.09E+06 1.00E+07 (1) µg/kg-dry <1.04 1.09E+06 1.00E+07 (1) µg/kg-dry <1.04 1.09E+06 1.00E+05 (2) µg/kg-dry <1.04 1.00E+05 1.00E+06 (2) µg/kg-dry <1.04 1.00E+05 1.00E+06 (3) µg/kg-dry <1.04 1.00E+06 1.00E+06 (1) µg/kg-dry <1.04 1.00E+06 1.00E+06 (2) µg/kg-dry <1.04 1.00E+06 1.00E+06 (3) µg/kg-dry <1.04 1.00E+06 1.00E+06 (1) µg/kg-dry <1.04 1.00E+06 1.00E+	-triyiborizerie Hexachlorobitadiene	2.20E+05	-	<u>ා</u> ල	ua/Ka-dry	^ 104	<1.01	<1.07
A.69E+06 6.55E+07 (2) µg/Kg-dry <1.04 1.09E+06 1.06E+07 (2) µg/Kg-dry <1.04 2.52E+05 7.02E+05 (2) µg/Kg-dry <1.04	sopropylbenzene	1.03E+07	1.03E+07	E	ug/Kg-dry	×1.04	<1.01	<1.07
1.09E+06 1.06E+07 (2) µg/Kg-dry 2.37 2.52E+05 7.02E+05 (2) µg/Kg-dry <1.04 µg/Kg-dry <1.04 µg/Kg-dry <1.04 3.03E+07 3.03E+07 (1) µg/Kg-dry <1.04 3.64E+04 3.38E+05 (2) µg/Kg-dry <1.04 2.11E+07 2.11E+07 (1) µg/Kg-dry <1.04 8.14E+05 8.14E+05 (2) µg/Kg-dry <1.04 2.53E+05 5.10E+05 (2) µg/Kg-dry <1.04 2.53E+06 5.10E+05 (2) µg/Kg-dry <1.04 2.55E+06 5.82E+06 (1) µg/Kg-dry <1.04 2.55E+06 5.82E+06 (1) µg/Kg-dry <1.04 3.13E+06 3.13E+06 (1) µg/Kg-dry <1.04 3.13E+06 3.13E+06 (1) µg/Kg-dry <1.04 3.13E+06 3.13E+06 (1) µg/Kg-dry <1.04 4.27E+02 4.27E+02 (1) µg/Kg-dry <1.0	her	4.69E+06	6.55E+07		ug/Kg-dry		<1.01	<1.07
2.52E+U5 7.02E+U5 (2) µg/Kg-dry <1.04	Methylene chloride	1.09E+06	1.06E+07		ug/Kg-dry	_1	2.39	2.71
100 100	Naphthalene	2.52E+05	7.02E+05	3	µg/Kg-dry	41.04 20.15	4.01	<1.07
1.04	n-Butylbenzene	!!!	: :		ug/kg-dry	2 2	V V	×1.07
3.03E+07 3.03E+07 (1) µg/Kg-dry <1.04 1.04	r-Tropyiborizerie sec-Birtylbenzene		1		ua/Ka-dry	\ 20 10	<101	<1.07
(1) 3.64E+04 3.38E+05 (2) µg/Kg-dry <1.04 2.11E+07 2.11E+07 (1) µg/Kg-dry <1.04 8.14E+05 8.14E+05 (1) µg/Kg-dry <1.04 8.14E+05 8.14E+05 (1) µg/Kg-dry <1.04 7.26E+05 5.10E+05 (2) µg/Kg-dry <1.04 7.53E+06 5.82E+06 (1) µg/Kg-dry <1.04 7.59E+04 2.48E+05 (2) µg/Kg-dry <1.04 7.59E+04 2.48E+05 (2) µg/Kg-dry <1.04 7.59E+04 3.13E+06 (1) µg/Kg-dry <1.04 7.59E+02 4.27E+02 (1) µg/Kg-dry <1.04 7.59E+03 4.27E+02 (1) µg/Kg-dry <1.07 7.59E+03 4.27E+03 (1) µg/Kg-dry 7.59E+03	Styrene	3.03E+07	3.03E+07	Ξ	ua/Ka-dry	×1.04	<1.01	<1.07
(2) 3.64E+04 3.38E+05 (2) µg/Kg-dry <1.04 2.11E+07 (1) µg/Kg-dry <1.04 1.26E+05 8.14E+05 (1) µg/Kg-dry <1.04 1.26E+05 5.10E+05 (2) µg/Kg-dry <1.04 1.26E+05 5.10E+05 (2) µg/Kg-dry <1.04 2.53E+05 5.82E+06 (1) µg/Kg-dry <1.04 2.59E+04 2.48E+05 (2) µg/Kg-dry <1.04 2.59E+04 2.48E+05 (2) µg/Kg-dry <1.04 3.13E+06 3.13E+06 (1) µg/Kg-dry <1.04 4.27E+02 4.27E+02 (1) µg/Kg-dry <1.0		1	1		ug/Kg-dry	<1.04	<1.01	<1.07
ne 2.11E+07 2.11E+07 (1) µg/Kg-dry <1.04 8.14E+05 8.14E+05 (1) µg/Kg-dry <1.04 1.26E+05 5.10E+05 (2) µg/Kg-dry <1.04 2.53E+05 4.60E+06 (2) µg/Kg-dry <1.04 5.82E+06 5.82E+06 (1) µg/Kg-dry <1.04 2.59E+04 2.48E+05 (2) µg/Kg-dry <1.04 2.59E+04 2.48E+05 (2) µg/Kg-dry <1.04 3.13E+06 3.13E+06 (1) µg/Kg-dry <1.04 4.27E+02 4.27E+02 (1) µg/Kg-dry <1.04 4.27E+02 4.27E+02 (1) µg/Kg-dry <1.04	(PC	3.64E+04	3.38E+05	(2)	ug/Kg-dry	×1.04	<1.01	<1.07
ne 1.26E+05 8.14E+05 (1) µg/Kg-dry <1.04 1.26E+05 5.10E+05 (2) µg/Kg-dry <1.04 2.53E+05 4.60E+06 (2) µg/Kg-dry <1.04 5.82E+06 5.82E+06 (1) µg/Kg-dry <1.04 2.59E+04 2.48E+05 (2) µg/Kg-dry <1.04 3.13E+06 3.13E+06 (1) µg/Kg-dry <1.04 3.13E+06 3.13E+06 (1) µg/Kg-dry <1.04 4.27E+02 4.27E+02 (1) µg/Kg-dry <1.04 4.27E+02 4.27E+03 (1) µg/Kg <1.0	Toluene	2.11E+07	2.11E+07	(i)	ug/Kg-dry		<1.01	<1.07
ne 1.26E+05 5.10E+05 (2) µg/Kg-dry <1.04 2.53E+05 4.60E+06 (2) µg/Kg-dry <1.04 5.82E+06 5.82E+06 (1) µg/Kg-dry <1.04 2.59E+04 2.48E+05 (2) µg/Kg-dry <1.04 3.13E+06 3.13E+06 (1) µg/Kg-dry <1.04 3.13E+06 3.13E+06 (1) µg/Kg-dry <1.04 4.27E+02 4.27E+02 (1) mg/Kg <1.0	rans-1,2-DCE	8.14E+05	8.14E+05	$\overline{\Xi}$	ug/Kg-dry		<1.01	<1.07
3.13E+06	rans-1,3-Dichloropropene	1.26E+05	5.10E+05	0	µg/Кg-dry	40.12	4.01	<1.07
- (EPA Method 8270) mg/kg 4.27E+02	Trichloroethene (TCE)	2.53E+05	4.60E+06	<u> </u>	ug/Kg-dry	41.04	10.12	V1.07
- (EPA Method 8270) mg/kg 4.27E+02 (1) mg/kg <1.0 (2) mg/kg <1.0 (2) mg/kg <1.0 (3) mg/kg <1.0 (4.27E+02 (4.27E+02 (1) mg/kg <1.0 (4.27E+03 (4.27E+03 (1) mg/kg <1.0 (4.27E+03 (I richlorofluoromethane	3.8ZE+00	5.82E+06		pg/kg-dry		7 7	70.7
- (EPA Method 8270) mg/kg	Vinyl chloride	2.59E+04	2.40E+U3 3.13E+U6		Hg/Ng-dry		V V	×1.07
4.27E+02 4.27E+02 (1) mg/Kg <1.0	Semi Volatile Organics - (EPA Method 8270) mg/ko	┪	9.12L		S S L S L			
Q 71E+03 Q 71E+03 <10	1,2,4-Trichlorobenzene	<u> </u>	4.27E+02	(1)	mg/Kg	<1.0	<0.20	<0.20
9.7 IE+03 (1) HB/VB (1.0	I,2-Dichlorobenzene	9.71E+03	9.71E+03	$\widehat{\Xi}$	mg/Kg	<1.0	<0.20	<0.20

Table 11
Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24
Bloomfield Refinery - Bloomfield, New Mexico

	Non- Residential	Non- Residential	ırce		(.9.0-0	('0.S-2.1	(.Z V 68
	Screening Levels 0-2'	Screening Levels 2-10'	108) Y-4S O) T-4S O	:)
Analytes				Units	OΑ	ΟA	ΟA
Sample Date	1 001	2 70 - 03	Ś		4/7/2009	4/7/2009	4/7/2009
1,4-Didilorophizerie	2.38E+04	2.38E+04	ÿ (E	mg/Kg	0.15	<0.20	<0.20 <0.20
2,4,6-Trichlorophenol	2.38E+02	2.38E+02	$\widehat{\Xi}$	mg/Kg	<1.0	<0.20	<0.20
2,4-Dichlorophenol	7.15E+02	7.15E+02	Ξ	mg/Kg	<2.0	<0.40	<0.40
2,4-Dimethylphenol	4.76E+03	4.76E+03	<u>(1</u>	mg/Kg	<1.5	<0.30	<0.30
2,4-Dinitrophenol	4.76E+02	4.76E+02	$\widehat{\Xi}$	mg/Kg	<2.0	<0.40	\$0.40 2.5
2,4-Dinitrotoluene	1.03E+02	4.76E+02	(7)	mg/Kg	<2.5	0.50	0.50
2.0-Dilitioudidette	2.39E+02	2.39L+02	Ξ	ma/Ka	<13	<0.25	<0.25
2-Chlorophenol	1.55E+03	1.55E+03	Ξ	mg/Kg	<1.0	<0.20	<0.20
2-Methylnaphthalene	4.10E+03		(3)	mg/Kg	<1.3	<0.25	<0.25
2-Methylphenol	3.10E+04	1	<u>ල</u>	mg/Kg	<2.5	<0.50	<0.50
2-Nitroaniline	1.80E+03	1	<u></u>	mg/Kg	41.0	<0.20	\$ 0.20 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 5
2-Nitrophenol	10C V	2 74 - 100	Ć	mg/Kg	۸۱.0 د ر	<0.20	07.0
3,3 -Uichlorobenziaine 3+4 Mathylahanol	3 10E+03	3.7 15+02	<u> </u>	mg/Kg	ر د ا د	CZ-0>	<0.20
3-Nitroanline	101.0	1		ma/Ka	<10	<0.20	<0.20
4.6-Dinitro-2-methylphenol	!			mg/Kg	<2.5	<0.50	<0.50
4-Bromophenyl phenyl ether	1	1		mg/Kg	<1.0	<0.20	<0.20
4-Chloro-3-methylphenol	-			mg/Kg	<2.5	<0.50	<0.50
4-Chloroaniline	8.60E+01	-	(4)	mg/Kg	<2.5	<0.50	<0.50
4-Chlorophenyl phenyl ether		1		mg/Kg	<1.0	<0.20	\$ 20
4-Nitroaniline	8.60E+02	1	(4)	mg/kg	51.5	<0.25	<0.25
4-Nitrophenol	1 86E±04	1 86E±04	()	mg/kg	0.15	07.02	02.02
Acenaphthylene	1.00[.104	1.000		ma/Ka	×1.0	<0.20	<0.20
Aniline	3.00E+03	1	(4)	ma/Ka	<1.0	<0.20	<0.20
Anthracene	6.68E+04	6.68E+04	Ξ	mg/Kg	<1.0	<0.20	<0.20
Azobenzene	2.20E+02		(4)	mg/Kg	<1.0	<0.20	<0.20
Benz(a)anthracene	2.34E+01	2.13E+02	(2)	mg/Kg	<1.0	<0.20	<0.20
Benzo(a)pyrene	2.34E+00	2.13E+01	2	mg/Kg	<1.0	07.0>	07.0
Benzo(a) i)nerviene	2.345+01	2.13E+U2	(7)	mg/Ng ma/Ka	0.1.V	<0.20	<0.20 <0.50 <0.50
Berzo(k)fluoranthene	2.34E+02	2.06E+03	(2)	ma/Ka	<1.0	<0.20	<0.20
Benzoic acid	2.50E+06	,	(E)	mg/Kg	<2.5	<0.50	<0.50
Benzyl alcohol	3.10E+05	1	(3)	mg/Kg	<1.0	<0.20	<0.20
Bis(2-chloroethoxy)methane	1.80E+03	1	ଚ	mg/Kg	<1.0	<0.20	<0.20
Bis(2-chloroethyl)ether	1.36E+01	1.4/E+02	<u> </u>	mg/Kg	0.10	07.02	0.20
Bis(2-chiology)physalien Bis(2-chylhexyl)phthalate	1,37E+03	4.76E+03	3 (2	ma/Ka	<2.5	<0.50	<0.50
Butyl benzyl phthalate	9.10E+03	,	(4)	mg/Kg	<1.0	<0.20	<0.20
Carbazole		-		mg/Kg	<1.0	<0.20	<0.20
Chrysene	2.34E+03	2.06E+04	(2)	mg/Kg	<1.0	<0.20	<0.20
Dibenz(a,h)anthracene	2.34E+00	2.13E+01	(2)	mg/Kg	<1.0	<0.20	<0.20
Dibenzofuran		1 1		mg/Kg	<1.0	<0.20	<0.20
Diethyl phthalate	1.91E+05	1.91E+05	$\widehat{\Xi}$	mg/Kg	<1.0	<0.20	<0.20
Dimetryl phthalate	2.38E+Ub	2.38E+U6	Ξ	mg/Kg ma/Ka	<1.U <2.5	<0.20	<0.20
Di-n-octvl phthalate	1001	100.1		mg/Kg	<1.0	<0.20	<0.20
Fluoranthene	8.91E+03	8.91E+03	(1)	mg/Kg	<1.3	<0.25	<0.25

Group 3 Soil Analytical Results Summary - SWMUs No. 4 and 5, AOC 22 (Crude Receiving Rack) and AOC 24 Bloomfield Refinery - Bloomfield, New Mexico Table 11

	Non- Residential Screening Levels 0-2'	Non- Residential Screening Levels 2-10'	Source		(.5.0-0) 7-42	(1.5-2.0')	(3 0- 45.)
Analytes				Units	OOA	>0\	OOA
Sample Date					6002/2/4	4/7/2009	4/7/2009
Fluorene	8.91E+03	8.91E+03	(I)	mg/Kg	<2.5	<0.50	<0.50
Hexachlorobenzene	1.20E+01	1.03E+02	(2)	mg/Kg	<1.0	<0.20	<0.20
Hexachlorobutadiene	2.20E+02		(4)	mg/Kg	<1.0	<0.20	<0.20
Hexachlorocyclopentadiene	8.11E+02	8.11E+02	(1)	mg/Kg	<1.0	<0.20	<0.20
Hexachloroethane	2.38E+02	2.38E+02	(1)	mg/Kg	<1.0	<0.20	<0.20
Indeno(1,2,3-cd)pyrene	2.34E+01	2.13E+02	(2)	mg/Kg	<1.3	<0.25	<0.25
Isophorone	2.02E+04	4.75E+04	(2)	mg/Kg	<2.5	<0.50	<0.50
Naphthalene	2.52E+02	7.02E+02	(2)	mg/Kg	<1.0	<0.20	<0.20
Nitrobenzene	2.77E+02	5.20E+02	(2)	mg/Kg	<2.5	<0.50	<0.50
N-Nitrosodi-n-propylamine	2.50E+00	-	(4)	mg/Kg	<1.0	<0.20	<0.20
N-Nitrosodiphenylamine	3.91E+03	3.40E+04	(2)	mg/Kg	<1.0	<0.20	<0.20
Pentachlorophenol	1.00E+02	1.03E+03	(2)	mg/Kg	<2.0	<0.40	<0.40
Phenanthrene	7.15E+03	7.15E+03	(1)	mg/Kg	<1.0	<0.20	<0.20
Phenoi	6.88E+04	6.88E+04	(1)	mg/Kg	<1.0	<0.20	<0.20
Pyrene	6.68E+03	6.68E+03	(1)	mg/Kg	<1.0	<0.20	<0.20
Pyridine	1.00E+03	-	(3)	mg/Kg	<2.5	<0.50	<0.50
Total Petroleum Hydrocarbons - (EPA Method 8015B)) mg/kg						
Diesel Range Organics (DRO)	2000	2000	(5)	mg/Kg	120	34	<10
Gasoline Range Organics (GRO)	2000	2000	(5)	mg/Kg	<5.0	<5.0	<5.0
Motor Oil Range Organics (MRO)	0009	2000	(9)	mg/Kg	280	140	<50

-- No screening level or analytical result available NMED - Technical Background Document for Development of Soil Screening Levels - Revision 5.0 (August 2009) - Residential Soil

EPA - Regional Screening Levels (April 2009)
(1) NMED - Construction Worker (0-10')
(2) NMED - Industrial (0-2') and Construction Worker (2-10')
(3) EPA - Industrial Soil (0-2')
(4) EPA - Regional Screening Levels (April 2009) Industrial Soil multiplied by 10 pursuant to Provision VII.B. of the July 7, 2007 NMED Order because the constituent is listed as carcinogenic & EPA screening level based on 10-6 risk-based SSL

(5) NMED Oct. 2006 TPH Screening Guidelines - Unknown oil for industrial exposure via vapor

(6) NMED Oct. 2006 TPH Screening Guidelines - Waste oil for industrial exposure via vapor migration and inhalation of ground water migration and inhalation of ground water

TABLE 12
Surface Soil Samples - Vapor Screening Results
Bloomfield Refinery - Bloomfield, New Mexico

Sample Interval Depth	SWMU 5-1	SWMU 5-2	SWMU 5-3	SWMU 5-4	SWMU 5-5
0 – 0.5'	9.8	7.7	12.2	13.7	12.0
1.5 – 2'	9.4	9.3	15.9	14.3	17.8

Sample Interval Depth	SWMU 5-6	AOC 22-1	AOC 22-2	AOC 22-3	AOC 22-4
0 – 0.5'	16.0	4.5	16.1	5.1	3.4
1.5 – 2'	12.5	3.5	2.1	3.7	2429

Sample Interval Depth	AOC 22-5	AOC 22-6	AOC 22-7	AOC 22-8	AOC 22-9
0 – 0.5'	1.6	1.5	1.3	1.4	0.6
1.5 – 2'	1.4	4.1	2.6	1.2	1.1

Sample Interval Depth	AOC 22-10	AOC 22-11	AOC 24-1	AOC 24-2	AOC 24-3
0 – 0.5'	7.9	5.9	3.3	2.7	1.7
1.5 – 2'	3.8	4.3	3.9	4.1	7.7

Sample Interval Depth	AOC 24-4	AOC 25-1	AOC 26-1	AOC 26-2	AOC 26-3
0 – 0.5'	3.9	5.5	5.6	4.6	4.3
1.5 – 2'	6.4	5.5	3.5	3.9	7.2

Sample Interval Depth	AOC 26-4	AOC 26-5	AOC 26-6	AOC 26-7
0 – 0.5'	4.5	9.2	9.3	5.7
1.5 – 2'	4.1	15.2	6.6	6.1

Units - ppm

TABLE 13
Soil Boring Samples - Vapor Screening Results
Bloomfield Refinery - Bloomfield, New Mexico

	AOC 26-9	90	10.5	10.5	9.0	10.0	8.3	8.2	9.6	9.5	8.8	10.9	10.4	10.0	9.5	7.9	5.6	6.3	25.3	3939									
		╁				,											_			•••									
	AOC 26-8	4 8/4 0	2.3	2.0	1.2	1.0	1.9	2.5	2.1	2.1	1.8	1.2	1.1	1.3	2.4	11.0	20.8	58.7	145										
	AOC 25-2	00-001	5 0	:	0.1	0.0	0.0	0.1	0.0	0.2	0.4	0.1	0.3	0.4	0.3	0.2	0.1	3.6	2.5	4.2									
	AOC 24-7	(10104-04)	4.0	0.2	0.3	0.4	0.3	0.4	0.4	0.1	0.5	0.3	0.1	0.1	0.1	0.3	0.2	0.4	0.9	3.4	4.4	1.2	3.1	3.1	3.6				
	AOC 24-6	0 3/5 0	4.8	4.9	2.0	5.3																							
Mexico	AOC 24-5	1 2/6 0	5.4	6.4	7.8	5.9																							
omtield, New I	AOC 23-1	2 4 72 2	14.5	14.4	14.8	12.3	1	7.1	17.6	8.7	2.2	3.9	2.4	1.6	4.0	3.6	5.4	3.2	3.3	4.4	5.3	3.3		3.3	:	2.3	3.8	4.4	
Bloomfield Refinery - Bloomfield, New Mexico	AOC 22-16	4 6/0 0	4.5	5.8	5.8	7.3	3.2	3.8	6.2	5.8	5.7	5.8	8.9	4.9	7.5	7.9	0.9	6.5	10.9	12.2	,								
Bloomfield	AOC 22-15	2 0/20 5	23.4	5.5	13.1	18.1	16.6	11.2	6.5	13.2	13.2	21.5	12.9	16.0	17.1	22.0	165	510											
	AOC 22-14		3 1.	6.3	5.1	4.6	3.8																						
	AOC 22-13	4403	1186	1373	1349	1302	1302	1345	1277	1250	1660	1611	1336	1131	1131	1184	1268	1694	1596	806	1228								
	AOC 22-12	1 000	4.0/2.4	5.6	5.2	4.9	4.2	6.3	6.0	5.2	5.1	4.4	4.3	5.7	5.2	22.7	35.0	25.0	0.89	220									
	SWMU 4-1	(BC-WIM)	2.0	50.8	214	41	9.5	9.7	8.0	8.1	7.3	6.4	6.6	5.5	6.3	4.2	3.9	2.8	3,1	3.8									
	Sample Interval Denth	micival Depui	0 - 2		6 – 8,	8 –10,	10 – 12,	12 – 14'	14 – 16'	16 – 18'	18 – 20'	20 – 22'	22 – 24'	24 – 26'	26 – 28'	28 – 30'	30 – 32'	32 – 34'	34 – 36'	36 – 38'	38 – 40'	40 – 42'	42 – 44'	44 – 46'	46 – 48'	48 – 50'	50 – 52'	52 – 54'	

Units - ppm

TABLE 14
Field Screening Results - Ground Water & Subsurface Vapors
Bloomfield Refinery - Bloomfield, New Mexico

				Ground \	V ater Data		<u> </u>		V	apor D	ata
Well	Date	Well Volume	Temp (degrees F)	Specific Conductivity	Dissolved Oxygen (mg/L)	рН	ORP	TDS (ppm)	O ₂ (%)	CO ₂ (%)	PID (ppm)
		0	61.00	1.644	7.65	7.07	269	1295	19.0	0.5	41.1
l	5/14/2009	1	60.30	1.499	4.31	6.96	260	1151			
	071 172003	2	61.20	1.468	4.52	6.79	261	1205			
MW-59		3	60.90	1.472	4.61	6.80	263	1241			ļ
1		0	63.90	1.822	9.90	6.77	272	1336	18.7	0.3	37.5
ľ	7/16/2009	1	63.50	1.774	4.91	6.76	268	1297			ļ
	771072000	2	63.10	1.748	4.50	6.77	263	1278			
		3	63.20	1.751	4.63	6.77	264	1281			
		0	67.30	1.335	5.91	7.18	227	1031	18.1	0.1	21
1	5/14/2009	1	69.30	1.329	6.15	7.16	211	1027			
MW-60	3/14/2003	2	68.30	1.341	4.91	7.20	215	1053			
		3	67.40	1.379	5.12	7.19	220	1068			
	7/16/2009	DRY	DRY	DRY	DRY	DRY	DRY	DRY	18.4	0.2	18
		0	63.20	1.170	8.76	7.02	258	900.9	0	4.8	1245
	5/13/2009	1	65.50	1.212	4.79	7.02	262	933.5			
1	3/13/2009	2	65.70	1.143	4.91	6.96	255	788.5			
MW-61	•	3	65.30	1.163	4.83	6.98	259	771			
14144-01		0	75.30	0.460	9.61	6.91	122	329	0	3.9	1305
	7/16/2009	1	74.40	1.262	3.61	6.89	152	894			
ł	1/10/2009	2	71.90	1.293	5.22	6.87	156	918			
		3	72.10	1.291	4.05	6.86	157	899			
		0	62.30	6.330	5.51	6.92	269	5671	11.2	0	79.1
1	5/13/2009	1	62.20	6.369	5.62	6.90	237	5709			
İ	3/13/2009	2	62.50	6.392	5.43	6.95	200	5732			
MW-62	<u> </u>	3	62.40	6.385	5.70	6.91	225	5721			
14144-02		0	66.10	6.821	5.80	6.86	231	5644	10.9	0	65
	7/16/2009	11	63.90	6.740	8.07	6.84	227	5584			
l	1/10/2009	2	63.60	6.765	5.80	6.83	223	5596			
		3	63.50	6.769	5.76	6.84	225	5589			
		0	69.10	4.137	21.76	6.99	291	3491	3.6	7	79
	5/13/2009	1	68.90	3.855	13.02	7.08	277	3285			
ŀ	3/13/2009	2	68.30	3.902	12.79	7.06	239	3339			
MW-63		3	67.40	3.911	13.14	7.05	221	3340			
14144-03		0	76.30	4.445	30.55	6.91	255	3506	3.8	6.4	101
}	7/15/2009	1	68.90	4.309	15.05	6.90	215	3493			
	1,10,2009	2	68.10	4.270	11.25	6.88	198	3371			
		3	68.40	4.373	12.73	6.85	201	3357			
		0	68.4	5.539	nm	7.06	228	4858	18.1	0.8	17
	540,000	1	65	5.554	nm	7.03	231	4885			
}	5/13/2009	2	69	5.789	nm	7.02	225	4174			
Base		3	 								
MW-64		0	67.1	5.494	nm 30.42	7.04	227	4861	10	0.5	10
Ì			69.7	5.650	12.65	6.93	220	4733	18	0.5	10
	7/15/2009	2	66.5	5.705	11.83	6.92	213	4770	 		ļ
ł	ì		66.3	5.827		6.90	211	4732	 		1
	L	3	65.1	5.833	11.41	6.89	203	4751			

TABLE 14
Field Screening Results - Ground Water & Subsurface Vapors

Bloomfield Refinery - Bloomfield, New Mexico

				Ground V	Vater Data				V	apor D	ata
Well	Date	Well Volume	Temp (degrees F)	Specific Conductivity	Dissolved Oxygen (mg/L)	рН	ORP	TDS (ppm)	O ₂ (%)	CO ₂ (%)	PID (ppm)
		0	69.9	3.006	7.59	6.84	247	2490	0	4.9	1820
	5/12/2009	1	67.8	2.988	4.15	6.92	201	2459			
	5/12/2009	2	66.1	3.023	3.78	6.85	180	2483			
		3	66.5	3.059	3.65	6.83	195	2465			
MW-65		0	73.9	3.022	10.14	6.94	236	2303	0.1	3.9	1530
		1	70.3	3.150	3.65	6.93	216	2415			
	7/16/2009	2	69.1	3.229	2.50	6.87	193	2490			
		3	69.7	3.308	2.60	6.86	180	2552			
		0	74.4	2.923	11.51	6.97	188	2432	0.4	6.8	1880
	5/12/2009	1	67.7	3.120	9.85	6.95	168	2605			
	3/12/2003	2	66.2	3.205	7.67	6.94	191	2654			
MW-66		3	68.7	3.125	8.15	6.93	187	2605			
14144-00		0	72.0	3.277	37.40	6.97	239	2529	0.3	7.2	2180
	7/15/2009	1	71.9	3.162	22.90	6.95	192	2436			
	7/15/2009	2	70.6	3.479	9.72	6.94	182	2689			
		3	71.9	3.455	7.97	6.98	169	2653			
	4/14/2009	NA	58.9	2.585	1.81	7.77	-102.5	nm	nm	nm	nm
AOC (22		0	69.1	2.561	18.79	6.99	261	nm	5.3	2.19	450
AOC (22-	7/29/2009	1	66.9	2.540	10.12	6.97	258	nm			
12) /TW-1	112312009	2	65.3	2.547	9.51	6.96	233	nm			
		3	65.9	2.550	10.13	6.97	245	nm			

nm - not measured

TABLE 15
Water Level Measurements
Bloomfield Refinery - Bloomfield, New Mexico

Well	Date	Top of Casing (ft- msl)	Depth to Bottom (ft)	Depth to Product (ft)	Depth to Water (ft)	Groundwater Elevation (ft- msl)	Product Thickness (ft)
MW-59	5/14/2009	5545.2	46.95	NPP	43.33	5501.87	0
	7/16/2009	5545.2	46.95	NPP	43.38	5501.82	0
MW-60	5/14/2009	5543.71	43.39	NPP	42.4	5501.31	0
	7/16/2009	5543.71	43.40	NPP	42.84	5500.87	0
MW-61	5/13/2009	5539.41	40.86	36.63	36.85	5502.74	0.22
19199-01	7/16/2009	5539.41	40.58	36.63	37.05	5502.7	0.42
MW-62	5/13/2009	5561.32	61.28	NPP	56.00	5505.32	0
	7/16/2009	5561.32	61.33	NPP	56.24	5505.08	0
MW-63	5/13/2009	5547.26	47.84	NPP	44.88	5502.38	0
10100-03	7/15/2009	5547.26	47.85	NPP	44.93	5502.33	0
MW-64	5/13/2009	5552.29	52.40	NPP	50.12	5502.17	0
19199-0-9	7/15/2009	5552.29	52.43	NPP	50.18	5502.11	0
BANAL CE	5/12/2009	5539.52	44.37	NPP	37.00	5502.52	0
MW-65	7/16/2009	5539.52	44.25	NPP	37.02	5502.5	0
		5544 G2	15 EQ				0.01
MW-66	5/12/2009	5544.63 5544.63	45.58 45.57	41.84	41.85	5502.79 5502.77	0.01
	7/15/2009	5544.63	45.57	41.82	42.02	5502.77	0.2
TW-1	7/29/2009	5543.61	45.56	NPP	40.99	5502.62	0

NPP - no product present

Table 16 Ground Water Analytical Results Summary Bloomfield Refinery - Bloomfield, New Mexico

MW-66	0.004	0.033	0.088	<0.0030	<0.0020	240	250	<0.0060	0.0074	<0.005	2	8.9	0.026	69	89	6.3	6.5	<0.00020	<0.010	4.7	4.4	0.005	550	299	<0.050	<0.020		² 20	200	250	250	950	<50	<50	<100	Ş 20	2800	200	\$ 20	88	<50	810	200	हु। इ	280	×100	×200	<50	<500	200	လ လ	000	1100	3500	Q\$ V\$0	<50	<50	×500 ×500	
MW-66	0.002	0.024	0.13	<0.0030	<0.0020	,	220	<0.0060	0.012	<0.005	3.4	18	0.019	1	64	-	5.1	<0.00020	0.012	,	4.7	<0.050	20.0030	540	<0.050	0.055		V 199	000	4100	2100	×100	<100	<100	<200	√ 100 100	2000	300	2 2 2 3 3 3	120	<100	200	2 S	0015	2400	2000	<1000	<100	<1000	400	200	2007	1300	4600	v 100 100	<100	<100	<100 <1000	
\$9-WW 7/16/2009	<0.005	0.024	0.074	<0.0030	<0.0020	240	260	<0.0060	<0.0060	<0.005	4	5.3	<0.0050	82	84	3.8	3.9	<0.00020	<0.010	3.4	3.9	<0.001 5.0055	20,000	520	<0.050	<0.020		210	2 5	27 0	2 0	2012	<10	<10	² 20	운	300	2 E	×10	270	<10	490	9 9		2 5	800	×100	<10	<100	240	010	2450	110	2400	410	<10	<10	×100 ×100	
5/12/2009	<0.001	0.015	0.13	<0.0030	<0.0020	,	230	<0.0060	<0.0060	<0.005	1.1	3.6	900.0	-	79	2.8	ı	<0.00020	<0.010	1	3.7	<0.050	20.00	480	<0.050	<0.020		250	8 8	r S	250	250	<20	<20	<40	ος 	One C	F &	8	250	<20	510	80	3 8	3 5	64	<200	<20	<200	230	25/5	2000	<200	7100	85	<20	<20	200 200 200	
MW-65 5/12/2009	0.001	0.021	0.15	<0.0030	<0.0020	-	230	<0.0060	<0.0060	<0.005	96.0	3.5	<0.0050	-	79	2.7	1	<0.00020	<0.010	1	3.8	<0.050	nenn-ny	480	<0.050	<0.020		250	077	200	202	8,7	<20	<20	<40	07 V	1400	3 8	\$20	220	<20	200	8	200	3.05	649	<200	<20	<200	220	02/5	200	0000	0089	8	<20	\$20	02 7500 7500	
49-WM-64	<0.001	0.017	0.036	<0.0030	<0.0020	480	200	<0.0060	0.0067	<0.005	0.1	5.3	0.011	73	73	0.53		<0.00020		2	5.7	0.024	20.000	850	<0.050	0.035		0.12	0.00	7 0	V 0	V 1.0	<1.0	<1.0	<2.0	V .	0.0	V V	v 0.1∨	<1.0	<1.0	v10	۲ 0 7	0 0	0.12	<2.0	<10	<1.0	<10	<4.0	0.10	2.0	×10	×1.0	0.15	<1.0	<1.0	0.12 <10	
MW-64 5/13/2009	<0.001	900.0	0.18	<0.0030	<0.0020	,	470	1-	╅─	+-	_	19	М		75	_	_	<0.00020	_	\rightarrow	5.5	<0.25	20.00	820	<0.050	0.085		0.10	0.00	7 0	V V	0.10	o.1>	<1.0	<2.0	v. 10	0.10	7 0	×1.0	<1.0	<1.0	۷.0 ۲.0	0.7	o 7	0.4	<2.0	×10	<1.0	<10	4.0	0.10	0.10	000	210	0.15	<1.0	<1.0	0.15	
(AUa) 89-WM	<0.001	0.004	0.026	<0.0030	<0.0020	410	420	<0.0060	<0.0060	<0.005	0.044	1.3	0.0051	120	120	4.5	4.5	<0.00020	0.012	4.6	4.3	0.023	530	520	<0.050	<0.020		0.17	0.00	2 0	0.10	41.0	<1.0	<1.0	<2.0	0 0	2 5	0 V	410	1.6	<1.0	۲٠0 ۲٠0	0.0	2 0	0.4	<2.0	410	<1.0	<10	0.40	0.0	2 0	0 V	210	<1.0	<1.0	<1.0	0.10	
MW-63	<0.001	0.005		╌	+-																	0.026						V V	0 0	2 0	V V	۷ 0 0	<1.0	<1.0	<2.0	0.10	0.5	7 V	0.10	4.1	<1.0	0.1×	0.10	2 5	0.4	<2.0	<10	<1.0	<10	0.47	0.12	0.10	200	0.10	<1.0 1.0	<1.0	<1.0	0.15 710 710	
MW-63 5/13/2009	\vdash	0.007		╀	<0.0020	+-	t	十	H	╆	Н	21	Н	_	110		9	<0.00020			-+	<0.25	+	╁	+-	0.074		4.0	000	7 0	0.0	0.7	<1.0	<1.0	<2.0	V .	0.10	0 K	0.10	1.9	<1.0	<1.0	0 0	0 7	0.10	<20	410	<1.0	<10	<4.0	0.10	0.10	000	10	0.15	<1.0	<1.0	41.0 10.70	
29-WW-62 //16/2009	<0.005	<0.001		┡	╨	╀-	460	<0.0060	0.0079	0.011	0.51	0.26	<0.0050	39	40	3.0	2.9	<0.00020	<0.010	10	-	<0.001 5.005	4400	1400	<0.050	<0.020		0.1	0.0	V V	0.10	0.10	<1.0	<1.0	<2.0	0.0	0.15	0 0	0 0	<1.0	<1.0	۷ <u>.</u>	0.0) V	0.4	<2.0	410	<1.0	<10	0.45	0.0	2 0	9 0	0.10	0.12	<1.0	<1.0	0.10	
MW-62 5/13/2009	-	0.001		┡	<0.0020	╄	╌	+-	+	╌	⊢	2.9	Н	_	36		-	<0.00020	-	-	-	<0.25	+	╁	╁	<0.020	H	V 10	0.0	0 7	0.0	0.	<1.0	<1.0	<2.0	0.	0.10	0 0	0.15	<1.0	<1.0	0.0	0.0	0.0	0.4	200	49	<1.0	<10	4.0	0.12	2.0	200	0.0	41.0	<1.0	<1.0	0.15	
7/16/2009	<0.005	0.024													45	4.3	4.4	<0.00020	<0.010	1.9	2.1	40.001 5.001	440	110	<0.050	<0.020		05/2		3 6	2 0 0	0 V	×10	<10	<20	ę ₽	2900	3 6	₽ ₽	۷ ۱	<10	220	₽ \$		220	800	×100	<10	<100	260	ę;	2 6	3000	84	95	<10	<10	100 100 100 100	
MW-61 5/13/2009	Г	0.041		_	<0.0020	_	_	$\overline{}$	$\overline{}$		1	1.2			37			<0.00020		:		<0.25	- 1-		1	<0.020	IΓ	200	3 8	F S	200	23	<20	<20	<40	Ç7	2400	9 8	- 	<20	<20	820	8 8	3 5	270	649	<200	<20	<200	450	3 8	77	1100	49	\$20	<20	<20	² 200 ² 200	
MW-60 5/14/2009	<0.001	0.003	0.065	<0.0030	<0.0020	,	87	<0.0060	<0.0060	<0.005	<0.020	4.6	0.0063	-	29	1	0.22	<0.00020	<0.010	1	4.2	<0.25	0000.05	190	<0.050	0.067		0.5	0.0	7 V	0.10	4.0	<1.0	<1.0	<2.0	V .	0.10	0 7	V 0	o:1>	<1.0	×1.0	0.0	2 5	2 4	250	95	<1.0	c10	0.4	0.1.0	0.0	2 0	200	0.1×	<1.0	<1.0	410 10 10	
MW-59	<0.005	0.016	0.1	<0.0030	<0.0020	120	٠.	_	┺	ـــ	١	-	_									<0.001	280	280	<0.050	<0.020		7.0	000	2 0	0.10	V-1.0	<1.0	<1.0	<2.0	0. V	۾ م	7 0	0.5	5.4	<1.0	0.5	0.0	2 5	2 45	<2.0	<10	<1.0	-10 -10	2	0.5	4.6	9 0	140	4.0	<1.0	<1.0	0.15 0.5 0.5	
MW-59 5/14/2009	-	0.014	_	-	-	+-	+-	+	┰	╄	├	3.6	\vdash		31	1	2.6	<0.00020	<0.010	-	2.4	<0.25	-	+	✝	0.025	H	V 7	000	V 1.0	V V	V 10	<1.0	<1.0	<2.0	√ 10 10 10 10 10 10 10 10 10 10 10 10 10	2 5	0 7	0.5	7.2	<1.0	4.4	0.5	0 7	2 2	\$ 0.00	01×	<1.0	<10	4	010	4.7	200,0	210	<1.0	<1.0	<1.0	<1.0 <10	
4/9/2005 22-13 (GW)	F	0.017	_	┡-	<0.0020	⊢	180	0.013	0.024	<0.005	24	61	0.038	1	81		3.9	0.00045	- 1	- 1	- 1	<0.050	00000	360	<0.050	0.051		7100	2000	4100	V 100	200	<100	<100	<200	001	008		8 2	220	<100	1300	00 S	200	200	2002	×1000	<100	<1000	710	V 100	200	41000	13000	×100	<100	<100	41000 41000	
129/2009 POC 22-12/TW-01	<0.005	0.031			_	١	150	<0.0060	0.0084	<0.005	5.9	17	0.018	78	70	5.4	3.7	<0.00020	0.013	3.6	5.1	<0.005	410	400	<0.050	0.054		×100	000	×100	4100	×100	<100	<100	<200	V 100	1300	7 00	× 100	<100	<100	2 100 100	8 5	3 5	00/4	200v	<1000	<100	<1000	400	200	200	000	8200	<100	<100	<100	41000 41000	
4/14/2009 7	\vdash	0.013	_	⊢	<0.0020	-	-	-	╄	ـــ	▙	10	-	_				<0.00020			\rightarrow	<0.050	+	┿	╁	0.027	H	05 5	8 8	250	\$ 65 5	\$50	<50	<50	<100	\$ 20	000	3 6	\$50	61	<50	240	05) 5	8 4		200	×500	<50	<500	×200	00 S	200	2500	8600	√ 50	<50	<50	- 200 200 200 200	
Units	ma/L	mg/L	-		1		T	T	t	T									T	I	1	mg/L	\dagger	1/ou	ma/L	mg/L		hg/L	1/61	10/1	7/01	J/Bri	rg/L	hg/L	hg/L	hg/L	ng/r	1/61	1/9	rig/L	hg/L	ng/L	ng/L	1/6/1	1/6/1	1/01	J/Brl	ng/L	μg/L	7/6rl	ng/L	7/G/1	1/8/1	1/0/	la Ng/L	ng/L	ng/L	Hg/L	
Source	(2)	(2)			(2)							(3)						(9)				<u>ල</u>						1				ı	İ		Ш		1		1		П	-		1		1		H		Ξ								E)E	
Screening	0.006	0.01	ļ_	0.004	0.005			0.05	0.05	0.2	-		0.015	-		0.2	-	0.002	0.2			0.05	0.00		0.26	10	10d 8260W)	0.52	3 5	2 4	25			-	9600.0	2	2 5	200	009	2	5	12	, ,	/30	23	ì	7100	730		150	2600		22000	5	20	0.12	8.5	1000	
Analytes Sample Date	Wetais	enic	Barium	Beryllium	Cadmium	Calcium *	Calcium Dissolved		Cobalt	nide, Total	, Dissolved	Iron, Total	ead	nesium	gnesium, Dissolved	nganese	nganese, Dissolved	Mercury	(el	assium *	assium, Dissolved	enium	Onlyel Codium *	lium Dissolved	adium		atile Organic Compounds - (EPA Mett	1,2-Tetrachloroethane	2 2-Tetrachloroethane	2-Trichloroethane	Dichloroethane	Dichloroethene	Dichloropropene	3-Trichlorobenzene	1,2,3-Trichloropropane 0.0096 (1)	4-Trichlorobenzene	4-I rimethylbenzene	Dibromoethane (FDR)	Dichlorobenzene	Dichloroethane (EDC)	Dichloropropane	5-Trimethylbenzene	Dichlorobenzene	Dichloropropane	othylnaphthalene	Dichloropropane	ıtanone	2-Chlorotoluene	exanone	2-Methylnaphthalene	niorotoluene	opropylotuene	Acetone	Benzene	nobenzene	nodichloromethane	noform	Bromomethane Carbon disulfide	

Table 16 Ground Water Analydical Results Summary Bloomfield Refinery - Bloomfield, New Mexico

99-WM\ [©]	550	×100	<50	×50	<50	<50	<50	<50	<50	1500	² 50	82	×150	880	51	310	<50	<50	25	2500	<50	<50	<50	\$20 \$20	2900		<50	<50	<50	200	\$20 \$20	2100	<50	<100	×50	05/05/05/05	×50	19000	\$0 \$0 \$1	050	×50	<50	×50	0017	050	<50	<50	<50	250	<50	<50	×50	<50 50	S 6	87 65	05°
99-WM	200	0000	×100	×100	2100 V	×100	<100	<100	<100	1600	001	140	300	260	<100	290	<100	V 100		2000	2 100 100	<100	<100	2 3	200		<10	<10	<10	9	000	87,00	59	<20 20	9	010	95	150	32	5 5	202	16	95	0,00	200	<10	<10	9	2 5	95	410	<10	95	010	× 40	<10
aa-wm ≙	5 5	5 5	240	200	95	410	×10	<10	<10	1400	۲ ۹	4700	308	450	85	260	14	\$	2 5	150	410	<10	<10	9	×10 6400		<50	<50	<50	GÇ (နှင့်	305	\$50	<100	င် လို	00°5°	9,05	130	0\$ E	<u>ک</u> کو	999	<50	\$50	2007	3 9	<50	<50	S, 1	3 8	3 5	×50	<50	ες (25 55	25.05	<50
(4Ua) ≥a-ww &	3 8	Q V	<20	8,0	025	<20 <20	<20	<20	<20	2000	² 20	4800	990	520	20	240	<20	² 20	2,5	2800	<20	<20	<20	² 20	07.2		<10	<10	<10	95	2 5	02.5	22	<20	ę ;	9 5	9	150	9	2 5	5 6	<10	9	80 5	€ 6	<10	<10	200	2 5	÷ 6	410	<10	900	2 5	V 10	<10
\$9-WM €	3 5	349	200	200	0% V	022	07 V30	<20	<20	1800	8	420	366	480	49	230	² 20	250	3 5	2500	² 20	<20	<20	8	020		<10	<10	<10	2/9	2 5	2000	24	<20	95	2 0	200	160	\$ 3	2 5	× 10	<10	ę ₹	2 5	2012	<10	<10	2,5	2 5	200	200	<10	8		2 2	×10
\$9-WM €	2 0	200	V V	×1.0	۷. در	√ 1.0	<.10	<1.0	<1.0	<1.0	0.10	0.12	2 V	220	<1.0	<1.0	×1.0	V .	2 5	V V	<1.0	<1.0	<1.0	0,10	0. 2		<10	<10	<10	2,0	2 0	250 V30	<10	<20	Ç (₽ ₽	<10	200	2 0	200	×10	9	2 2	205	<10	<10	\$ 5	2 5	200	×10	<10	×10	2 0	200	<10
79-WW €	2 0	000	410	210	0.15	41.0	<1.0	<1.0	<1.0	<1.0	0.10	0.10	230	<2.0	<1.0	<1.0	0.10	41.0	0.0	0.0	د. 1.0	<1.0	<1.0	0.6	0.15		¢10	<10	<10	200		020	<10	<20	9	2 5	9	<10	Ç.	0 0	95	<10	9	R 5	9	<10	<10	9	2 5	<u></u> €	ot>	<10	V 40	010	200	<10
(4Ua) £8-WM	2 0	000	0 V	0.10	۷. د	0.10	41.0	<1.0	<1.0	×1.0	0.0	0.0	300	<2.0	<1.0	۸1.0 دا.0	4.0	0.0	2 5	V V	41.0	۷.10 د	<1.0	0.0	0.12		<10	<10	<10	₽ ₹		2 8	<10	\$20	₽ ₽	2 5	₽ ₽	<10	₽ 5	010	95	<10	₽ 8	5 5	v 10	<10	<10	\$ 40	2 5	2 V V	49	<10	₽ \$	0 0	05	<10
£9-WM [△]	2 5	000	0 10	0.10	0.1>	0.1≥	<1.0	<1.0	<1.0	<1.0	0. V	0.12	3085	<2.0	<1.0	4.0	4.0 1.0	4.0	5 7	0.0	0.12	<1.0	<1.0	0.5	0.15		<10	<10	<10	012	0 5	07, 02	<10	<20	9 9	0 5	6	<10	9	010	6	<10	€ (2 5 5	₽ ₽	<10	<10	9	2 5	9	95	<10	문	010	410	<10
£8-WM €3	2 5	000	V 1.0	0.10	0.15	o.f.o	۷.10 د	<1.0	۲٠0 د	<1.0	0.0	0.15	300	<2.0	۲ <u>.</u> 0	۲٠0 د۱.0	۷ <u>.</u> 0	0.	2 5	0.10	0.15	<1.0	<1.0	0 0) V		<10	<10	<10	95	2 6	22	<10	<20	5 5	0 0	9	<10	2,5	010	9	<10	위 당	0.5 V	9	<10	<10	25	2 5	9	49	<10	900	010	01.0	<10
29-WM €2	2 5	000	V 10	V 7	0.1×	41.0	o.f.	<1.0	<1.0	41.0	0.) V V	300	25.0 25.0	<1.0	<1.0	<1.0	0. 0. 0.	0.0	0 V V	v.1.0	×1.0	<1.0	V .	0. 2		<10	<10	<10	<u>و</u> د	2 5	2007	×10	\$20 \$	9	5 5	9	<10	\$		₽ ₽	<10	9	200	100	<10	<10	20,	210	₹ €	×10	<10	2,00	010	Q V	×10
29-WM ℃	2 0	000	V 0	0.15	V 10	0.10	41.0	<1.0	<1.0	<1.0	0. V	0 7	7 8	250	<1.0	<1.0	<1.0	0.0	0.0	0.0	V-1.0	<1.0	<1.0	410 V	0.15	2	<10	<10	c10	000	2 5	020	×10	<20	95	000	000	<10	9	200	49	<10	운	02/5	2 6	<10	<10	우	200	9 8	₽ ₽	<10	29	5 5	0.00	<10
ra-wm €	2 5	2,00	05	운	× 10	210	×10	<10	<10	1500	원	2 5	2 E	200	97	240	15	₽;	2 5	; -	×10	<10	×10	9	010		<50	<50	<50	000	8 4	00 V	130	×100	05) (5)	\$ 50	\$ 65	1200	\$ 20	35 55	\$ 65	<50	×20	200	2050	<50	<50	×20	050	3 65	965	<50	\$50	05 6	250	<50
19-WM €		240	000	800	800	8,7	0 7 7 8	420 420	<20	1400	²⁰	100	200	069	110	310	<20	82	3 8	3 8	250	\$ \$	<20	25	230		<50	<50	<50	05 S	05 6	800	×50	× 100	\$ £	\$ \$	260	17000	^{<20}	3 5	2000	<50	\$ 50	5 6	3 8	<50	<50	\$50	200	3 8	\$ 50	<50	S\$	\$ 6	3 65	² 50
09-WM	2 0	5 0	12	10.5	410	0.F∧	√ 0.1>	<1.0	<1.0	×1.0	0.10	V 7	2 6	20.5	<1.0	<1.0	<1.0	V .	2 5	200	0.F≥	410	۲ <u>۱.</u> 0	<u>5</u>	0 5		<10	<10	<10	₽ V	2 5	200	95	²⁰	Ş ç	5 5	790	<10	₽,	2 5	9	<10	₽	2 5	V 20	<10	<10	<10	2 5	2 0	e V	<10	9	5 5	210	×10
63-WM	2 0	000	×10	21.0	×1.0	0.10	<1.0	<1.0	<1.0	410	0.10	8 5	2 8	188	11	43	9.9	0. V		2 8	v 10 10	<1.0	۲ <u>۰</u>	۷. ا	0.10		<50	<20	<50	င္မ	20 20	4100	950	×100	200	Ç 20	3,05	<50	9	2 E	3,05	<50	\$	8 3	3 S	×50	<50	<50	S (3 6	3 GŞ	<50	\$50	80 6	265	<50 <50
63-WM	2 0	000	V 10	۸ 0 0	۷ <u>۲</u> 0	v 10 10	×1.0	<1.0	<1.0	380	۷ <u>۲</u> 0	8 4	2 6	240	10	48	7.4	0.	- V V	2.7	0.15	۸.10 م	√ 1.0	0.	0.12		<10	<10	95	و د د	2 5	200	ر د اد	<20	운 :	2 5	000	√10	9	015	은 우	<10	√ 10	8 5	? 0	410	<10	<10	200	Q (\$	9	<10	×10	2 49	2101	×10
AOC 22-13 (GW)	3 6	0000	×100	400	×100	00. √	×100	<100	<100	4300	V 100	240	300	8	420	700	110	¥ 100	300	16000	2 100 100	× 100	×100	200	23000		<10	<10	×10	ç ;	2 5	2 8	ot>	^{<20}	₽;	9 5	200	100	×10	2 5	0 0 0 0 0	10	د او	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9 6	×10	<10	<10	200	410	£ \$	<10	410	2 5	2 5	×10
10-WT/S1-SS 200 &	2 5	300	×100	90.00	00 V	×100	×100	<100	<100	2200	× 100	190	3000	88	<100	180	<100	×100	30.5	380	×100	×100	×100	¥ 100	200 V V	2000	<50	<50	<50	Q\$\{\cdot\}	8	3 5	×50	<100	\$ 50	95 65	3 8	71	×20	25 6	3 8	<50	\$50	200	8 9	\$	<50	<50	S (5 5	\$ 650	<50	×20	05 6	200	\$20
% AOC 22-12 (GW)	3,5	300	×50	\$ \$ \$	55	\$20	×50	<50	<50	2100	\$50	69	40000 4150	380	<50	200	<50	SS	3 4	870	<50 <50	\$50	<50	ξŞ	200	3	<10	<10	~ 1 0	<u>و</u>	0 5	2 8	8	<20	9	9 5	2 €	81	× 10	2 5	95	16	410	200	2 0 0	<10	<10	<10	×10	2 5	400	410	×10	700	200	×10 ×10
Units	7/64	1/61	1/01	1/01	1/01	1/611	1/61	hg/L	ng/L	μg/L	1/grl	1/6rl	7/6/-	1/91	μg/L	ng/L	ng/L	hg/L	7/6/	101	na/L	1/61	µg/L	hg/L	7/6r	1,22	µg/L	hg/L	ng/L	1/6/1	1/6i	1/01	1/61	hg/L	Hg/L	1/0I	1/6/1	µg/L	hg/L	1/6i	no/L	µg/L	ug/L	7/6 <u>1</u>	1/0/	rg/L	µg/L	ng/L	hg/L	1,67	ng/L	J/Brl	7/6r	1/6/L	H9/L	1761
Source] [<u> </u>	E) () ()	<u> </u>		Ξ	Ξ	(1)	(2)	<u>E</u>	= = = =) ()				(2)	É	$\neg \Gamma$	1	Т	ГП	П	<u></u>	7	(2)		П	$\neg \top$	Т	7	П	Ξ	Т	Т	Т	T	Т	Т	Т	77		+		Ξ		(1)	1	1	\top	(I)	E)		77	
Screening Levels	000	2	100	8 6	70		0.15	370	390	700	0.86	680	7 4	0.14				100		750	100	0.43	5	1300	1	1270W)	70	909		75	3700	110	730	73	0.22	37	180	150	1800	110	0.15	180	,		. .	0.34		3.4	- 0000	7700	12	11000	0.12	0.029	0.00	
Analytes	Carbon Tetracilionoe	Phonothern	Plonoform	Chloromethane	is-1 2-DCF	vis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	=thylbenzene	Hexachlorobutadiene	sopropylbenzene (Cumene)	Astrona Chlorida	Naohthalene	n-Butylbenzene	-Propylbenzene	sec-Butylbenzene	Styrene	lert-Butylbenzene	Tetrachioroethene (PCE)	rans-1 2-DCE	rans-1.3-Dichloropropene	Trichloroethene (TCE)	Trichlorofluoromethane	Vinyl chloride	Semi Volatile Organics - (EPA Method 8	,2,4-Trichlorobenzene	1,2-Dichlorobenzene	I,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	7.4.5- Inchlorophenol	4-Dimethylphenol	2,4-Dinitrophenol 73	2,4-Dinitrotoluene	2,6-Dinitrotoluene	-Chlorophenol	-Methylnaphthalene	-Methylphenol	2-Nitroaniline	3-Dichlorbenzidine	++4-Methyiphenol	-Nitroaniline	4,6-Dinitro-2-methylphenol	-Chloro-3-methylphenol	Chloroaniline	-Chlorophenyl phenyl ether	Nitroaniline	-Nitrophenol	cenaphthylene	viline	Anthracene	Azobenzene	Senz(a)anthracene	senzo(a)pyrene	Benzo(g,h,i)perylene

Table 16 Ground Water Analytical Results Summary Bloomfield Refinery - Bloomfield, New Mexico

Analytes	Screening Levels	Source Cource Source	AOC 22-12 (GW)	AOC 22-12/TW-01	AOC 22-13 (GW)	69-MW	69-MW	09-MW	19-WW	19-WM	Z9-WW	89-WW	69-WM	(4Ua) £8-WM	#9-MW	₱9-MW	99-MM	(AUG) 29-WM	WW-65	99-WW	99-WM
Benzo(k)fluoranthene	Г		\vdash	<50	<10	√10	<50 <50		╀	-	H	\vdash	H	√ 10 10	- V	49	×10	₽ 9	<50	<10	<50
Benzoic acid			-	<100	<20	<20	<100	4	Н	\dashv	\dashv	-	-	<20	<20	<20	. <20	<20	<100	² 20	×100
Benzyl alcohol	18000	(1) µg/L	-	<20 20	<10	<10	<50	+	4	+	+	+	+	<10	×10	×10	×10	430	×20	×10	220
3is(2-chloroethoxy)methane	7	ĺ	+	05 V	<10	<10	<50	+	+	+	+	+	+	<10	c10	<10	c10	210	\$20 20	012	200
3is(2-chloroethyl)ether	7	(1) µg/L	+	000	×10	210	<50 70	+	+	+	+	+	+	<10	×10	√10 √10	×10	2 3	220	015	000
Bis(2-chloroisopropyl)ether			+	Q 44	2 5	010	25 6	+	+	+	+	+	+	2 5	2 5	2 5	015	2 5	25 25	01.5	<50 <50
Sutyl benzyl phthalate	T	(1) ug/L		3 8	000	0,00	3050	+	+	+	+	+	+	9 5	€ €	000	Q 25	100	9,99	95	205×
Carbazole	Γ		-	×20	<10	410	<50	+	╀	╀	\vdash	╀	╀	<10	<10	410	×10	ę ₽	\$50	10 10 10 10 10 10 10 10 10 10 10 10 10	<50
Chrysene	2.9	(1) µg/L	_	<50	<10	√10 √10	\$20	\vdash	╀	╀	\vdash	\vdash	-	410	\$	×10	95	o₽ 9	\$50	<10	<50
Dibenz(a,h)anthracene	6			<50	<10	<10	<50	Н	Н	Н	Н	Н	Н	<10	×10	<10	<10	<10	<50	<10	<50
Dibenzofuran	\top		+	<50	40	<10	<50	+	\dashv	\dashv	+	+	+	ک ک	9	ot >	× 10	\$	8	운	, 20 1
Diethyl phthalate	29000	(1) 100/L	+	000	V 410	210	S (+	+	+	+	+	+	2 5	2007	100	7 710	2 5	25 6		200
ornernyi primalate		hg/L		750	7 7 0	270	000	+	+	+	+	+	1	7 7	170	2 5	7 0	7 5	267		250
i-n-octyl phthalate	, ,	200	-	99	2 0	20,00	200	+	+	+	+	+	+	7 0	2 5	V 10	210	2 5	250	2 5	\$ 650
luoranthene	T		ł	250	710	000	3 6	+	+	+	+	+	+	100	9	2 O	012	21.0 V-10.1	\$20	95	909
Fluorene	1500	(1) µg/L	-	<50	<10	405	0 \$ >	╀	╀	╀	╀	\vdash	-	ot>	410	~10	<10	×10	\$20	<10	250
exachlorobenzene				<50	<10	<10	<50	Н	H				Н	<10	×10	<10	<10	<10	<50	<10	<50
exachlorobutadiene				<50	<10	<10	<50	\dashv	-			\dashv	\dashv	<10	<10	<10	<10	<10	<50	c10	² 20
exachlorocyclopentadiene				<50	~10	<10	<50	\dashv	\dashv	\dashv	+	\dashv		<10	<10	\$	<10	₽	<50	₽ F	\$20
Hexachloroethane	4.8	(1) µg/L	1	\$ 50	799	700	\$ 20	+	+	+	+	+	+	9 5	7 40	7 49	79	9 5	200	5 5	8 6
sopporone	T			\$ G	2 0	2 0	250	+	+	+	+	ł	+	, v	2 0	40	Q V	9 6	050	9 0 0	99
Naphthalene		(1) ug/L	1	220	110	100	120	+	╀	╀	╀	+	\vdash	9	- 10 - 10	×10	370	350	290	330	9700
Nitrobenzene			-	<50	<10	<10	<50	┝	-	├	H	\vdash	┞	<10	<10	<10	<10	<10	<50	<10	<50 <
N-Nitrosodimethylamine	0.00042	(1) µg/L		<50	~ 10	<10	<50	Н	Н	\mathbb{H}	H	H	Н	<10	<10	<10	<10	<10	<50	<10	<50
-Nitrosodi-n-propylamine				<50	<10	<10	<50				+	\dashv	4	<10	<10	<10	<10	د 10	<50	95	\$50
-Nitrosodiphenylamine			_	<50	×10	×10	<50	+	4	+	+	-	+	ę	9	o 100	×10	₽	<50	₽ ₽	\$20
Pentachiorophenol			+	×100	² 20	420	×100	\dashv	+	+	+	+	+	² 50	8	200	8	8	×100	8	V 100
Phenanthrene		ng/L	_	05 05	9	700	\$ 50	40	+	+	+	+	+	7 49	2 5	×10	<10 49	012 49	\$ 50	01.2 7.	1600
Pyrene		(1) ua/L	$\frac{1}{1}$	² 20	×10	95	\$ \frac{1}{2}	+	╀	+	+	ł	+	49	8	49	₹ 0	\$ €	\$ 65	운 당	62
Pyridine	37 (Ш		<50	<10	<10	<50	Н	Н	Н	Н	Н	H	<10	<10 <10	<10	<10	<10	<50	<10	<50
Alkalinity, Total (As CaCO3)	-	ma/L Ca(1200	1200	850	820	-	-	-	\vdash	640	630	640	300	300	1000	1000	066	1000	1100
1 1		mg/L CaCO3	CO3 1100	1200	1200	850	820	420	590 5	520 640	0 620	640	630	640	300	300	1000	1000	066	1000	1100
Bromide	1	mg/L						\dashv	\dashv	+	_	_	+	-				,	-		
Carbonate	, ,	mg/L Ca	CO3 <5.0	<5.0	<5.0	25.0	<2.0	+	<2.0	+	+	+	\$ 55°	42.0	<2.0 4.50	450 440	<2.0	<2.0	<2.0	25.0	0.25
Chioride	T	(3) mg/L	1	0/1	710	35	0.34	+	+	+	+	+	+	+	200	9 0	0.21	029	0 24	98	0.10
Vitrate (As N)+Nitrite (As N)	T	mg/L		10.20	1	<2.0	41.0	15	+	<1.0	7.0	72	╀	+	44	3 1	- V-	41.0	×1.0	3.1	2 1
Nitrogen, Nitrate (As N)				0.19	0.15	1		_	L	-	L	\vdash	Н	75	ا، ا	48	:	-		١	0.7
Nitrogen, Nitrite (As N)	1 ((2) mg/L		<2.0	<1.0	-		Н	Н	Н	Н	_	\dashv	Н		<2.0	-	-	1	1	<2.0
Sulfate				36	110	92	\dashv	+	\dashv	+	+	4	+	+	+	1700	790	750	920	1100	1100
Phosphorus, Orthophosphate (As P) Total Dissolved Solids	1000	(3) mg/L	<u> </u>	<0.50 1720	1700	<0.50 1100	<0.50 1070	> 05.0>	<0.50 <0 820 8	<0.50 <0.50 872 6000	0 <0.50	3500	3710	3700	4500	4580	2300	2400	2420	2600	2820
Plase Range Organics (DRO)		IL	-	5.7	f.	1.4	-	╟	╟	$\ \cdot\ $	╟	∤ ⊢	\parallel	╟	╟	╟	-	14	+	12	34
Basoline Range Organics (GRO)	1.34	(4) mg/L		25	36	2.6	3.1	╀	+	╁	+	+	+	╀	+	\vdash	-	4	43	34	46
Motor Oil Range Organics (MRO)		I/6m	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50 <	<5.0 <5.0	Н	\vdash	Н	Н	<5.0	<5.0	\vdash	<5.0	<5.0	<5.0	<5.0
thanol		mg/L	\dashv	1	-	•	1	\dashv	\dashv	-	\dashv	\dashv	\dashv	-	-	\dashv	4	×1.0	<1.0	<1.0 	<1.0

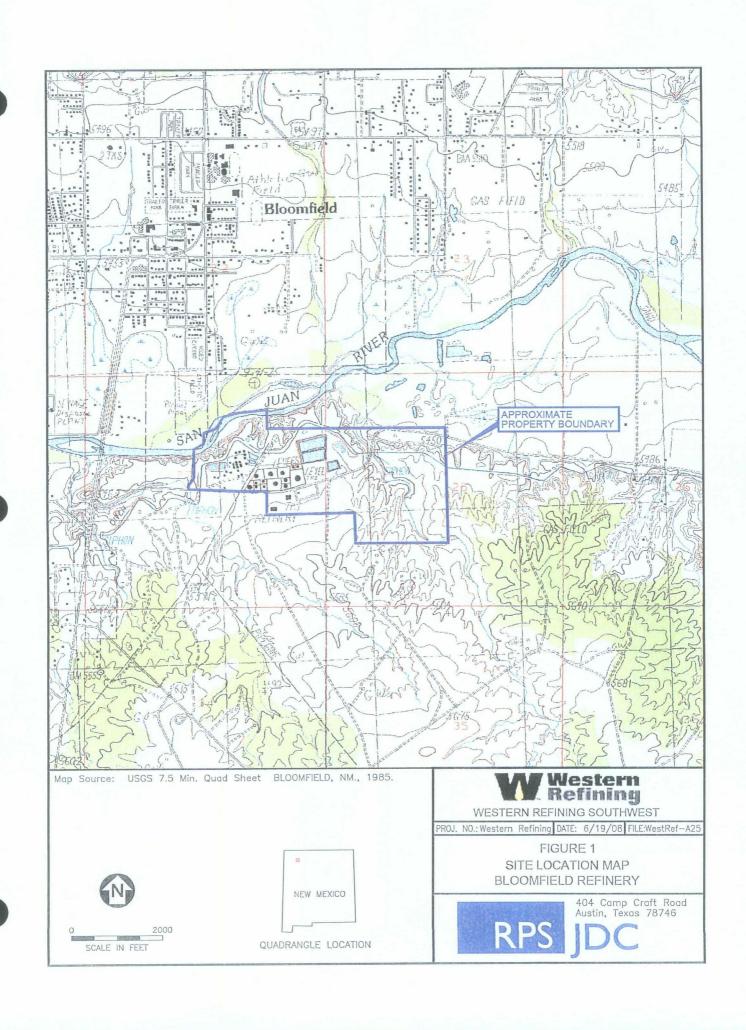
- No screening level or analytical result available

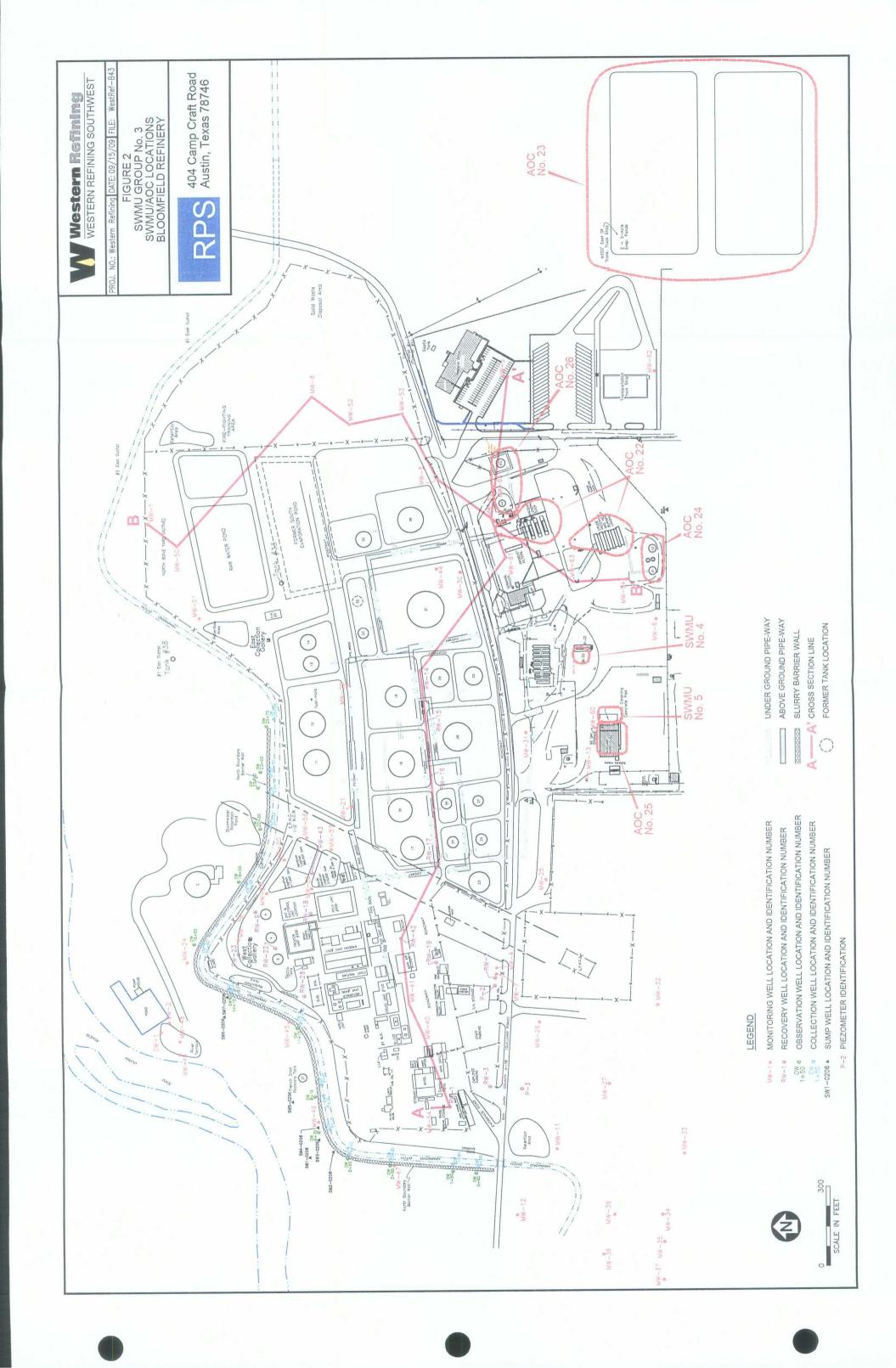
450 - bolded value exceeds screening level

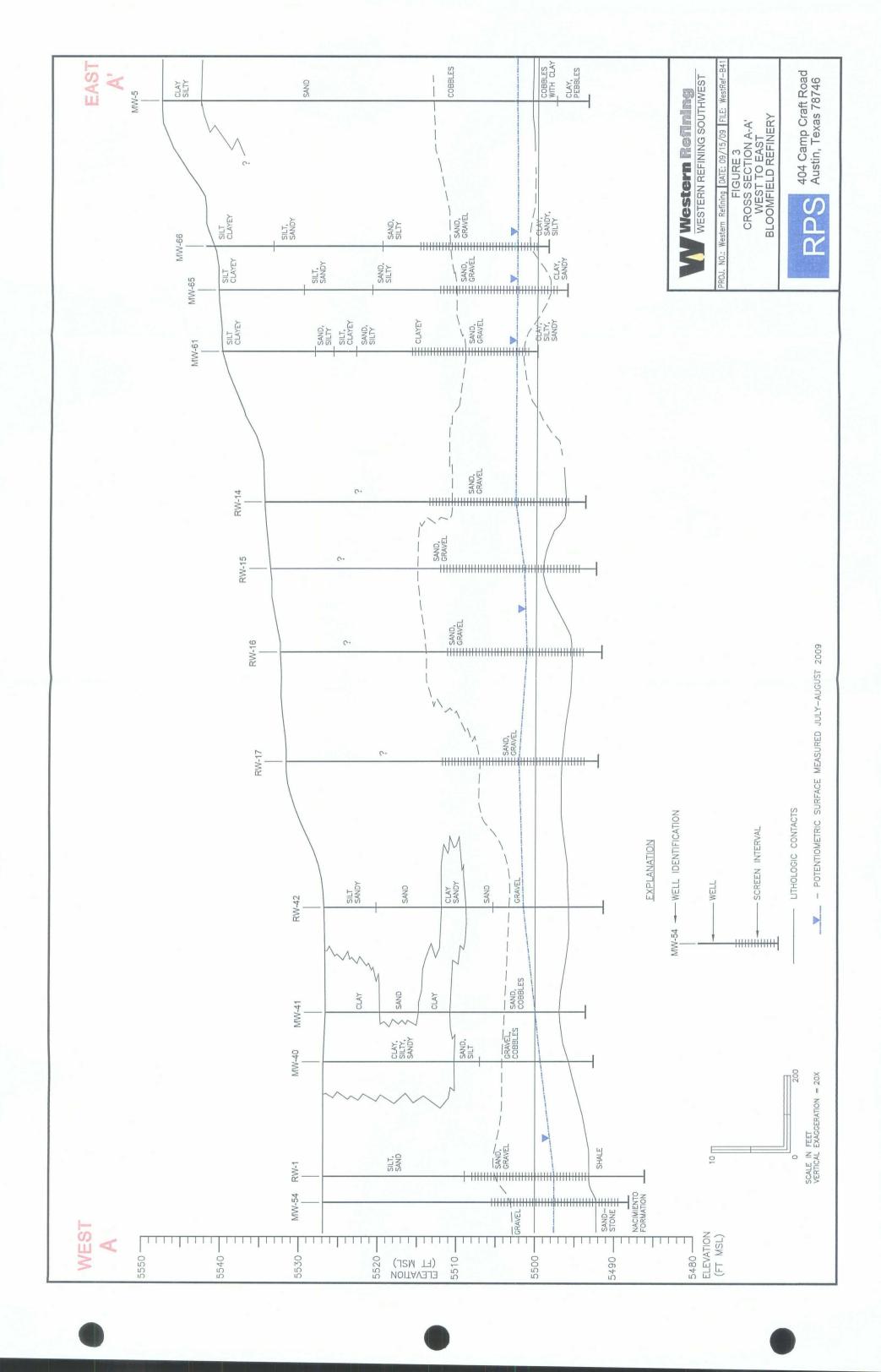
(1) EPA - Regional Screening Levels (April 2009) - EPA Screening

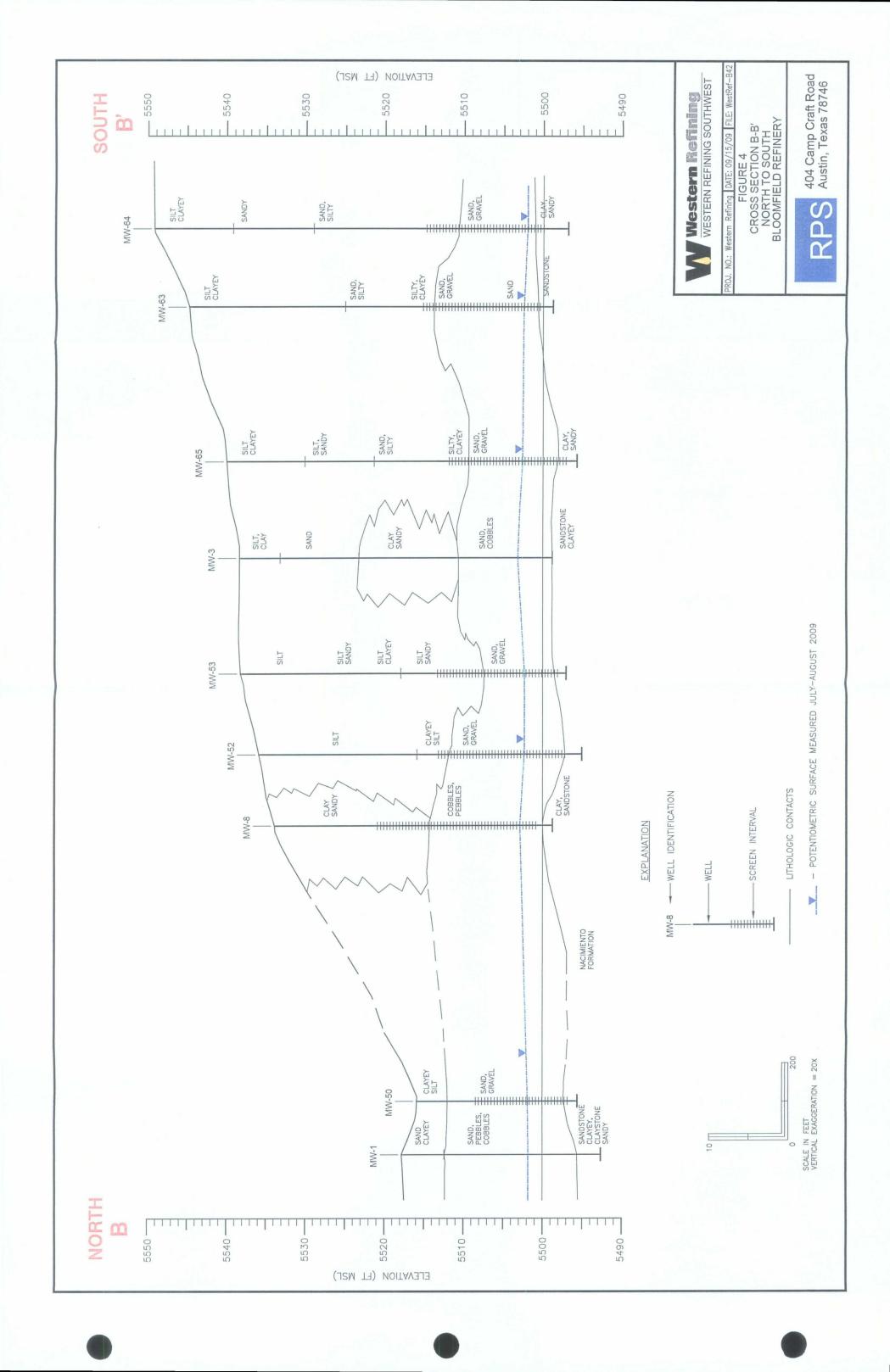
Levels. Tap Water

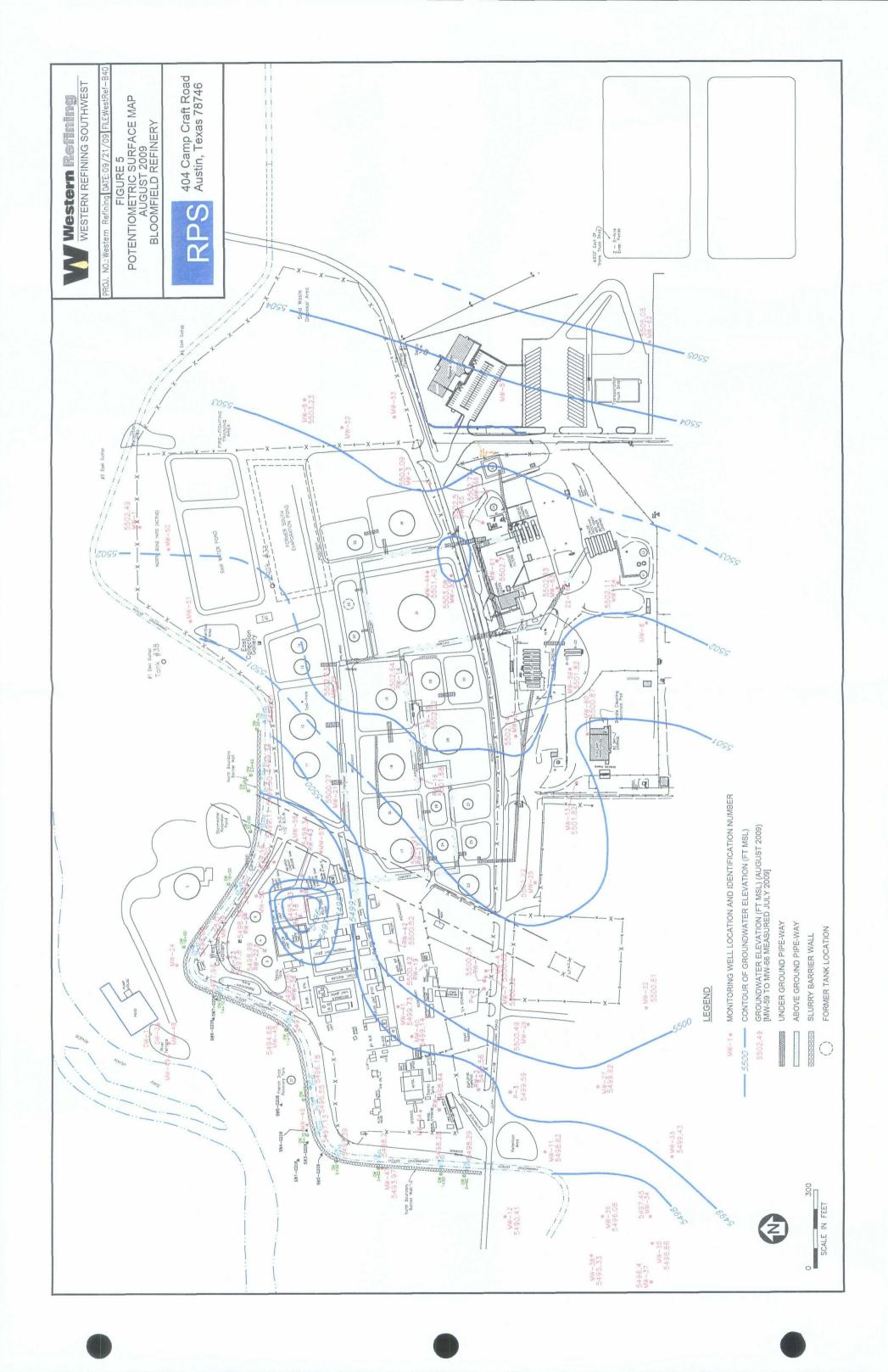
(2) EPA - Regional Screening Levels (April 2009) - MCL

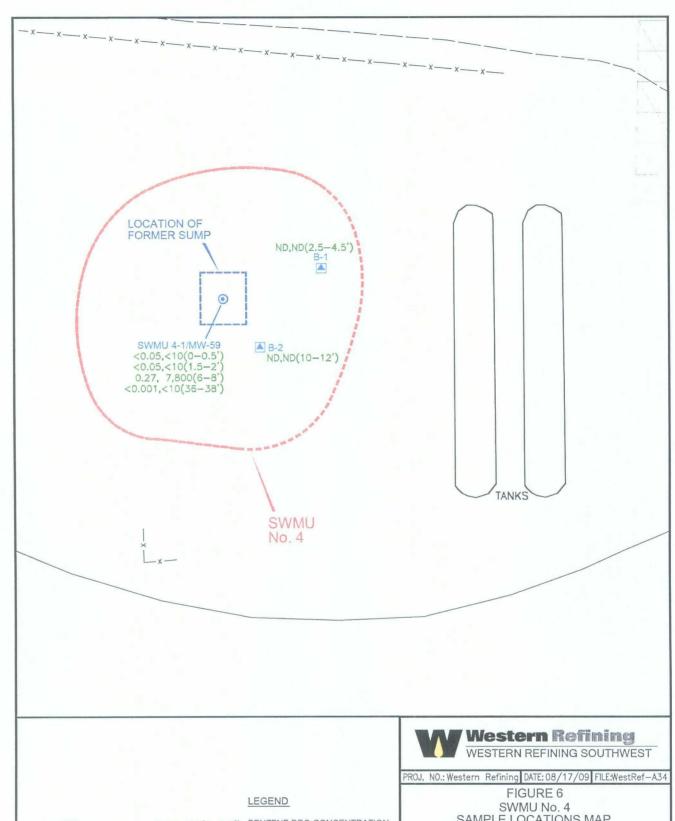

(3) NMED WQCC standards - Title 20 Chapter 6, Part 2, - 20.6.2.3101


Standards for Ground Water of 10,000 mg/l TDS Concentration or less


(4) NMED TPH Screening Guidelines Oct. 2006 - #3 and #6 fuel oil


= General Chemistry analytes not required by Work Plan.

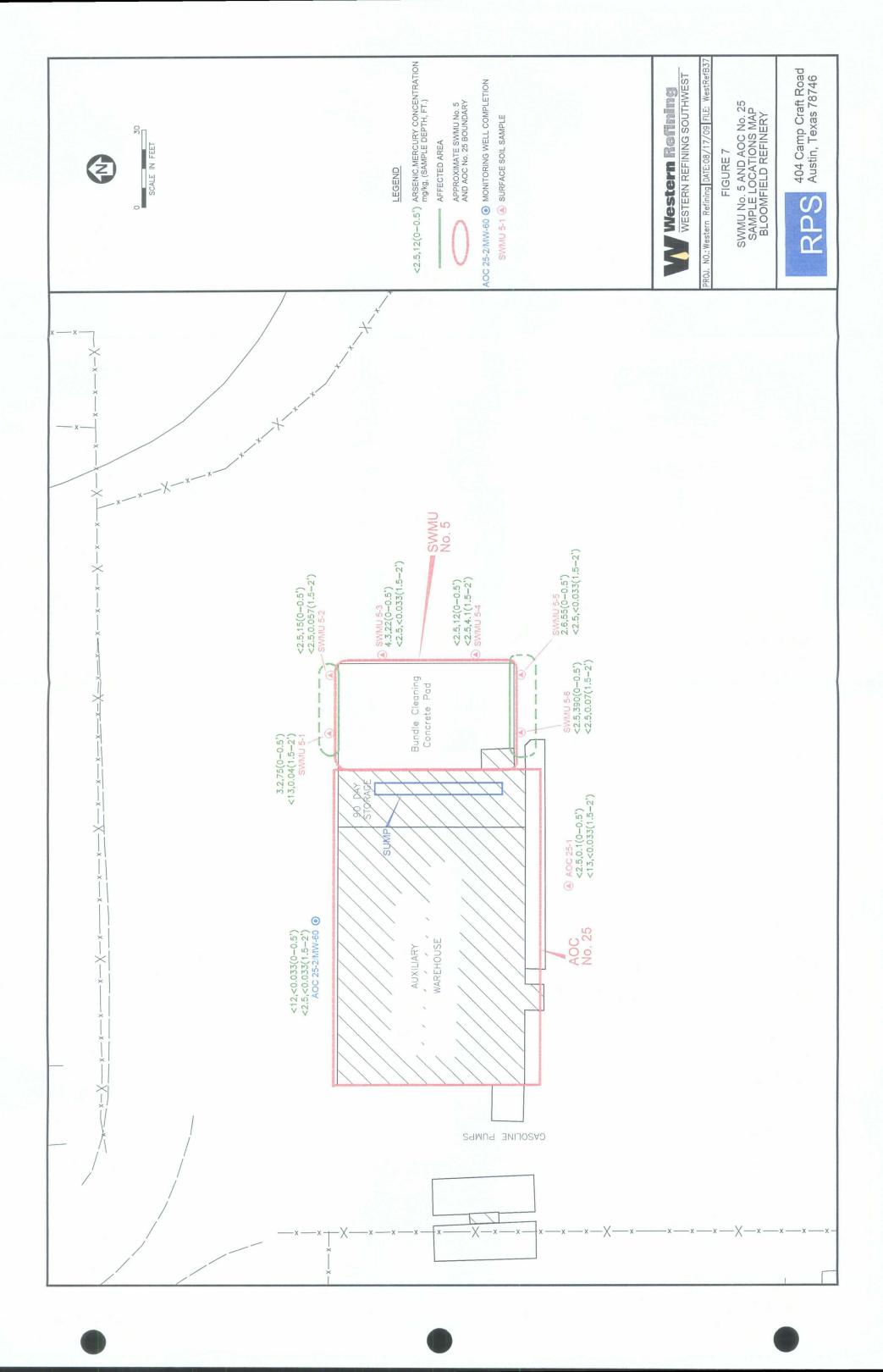

Figures

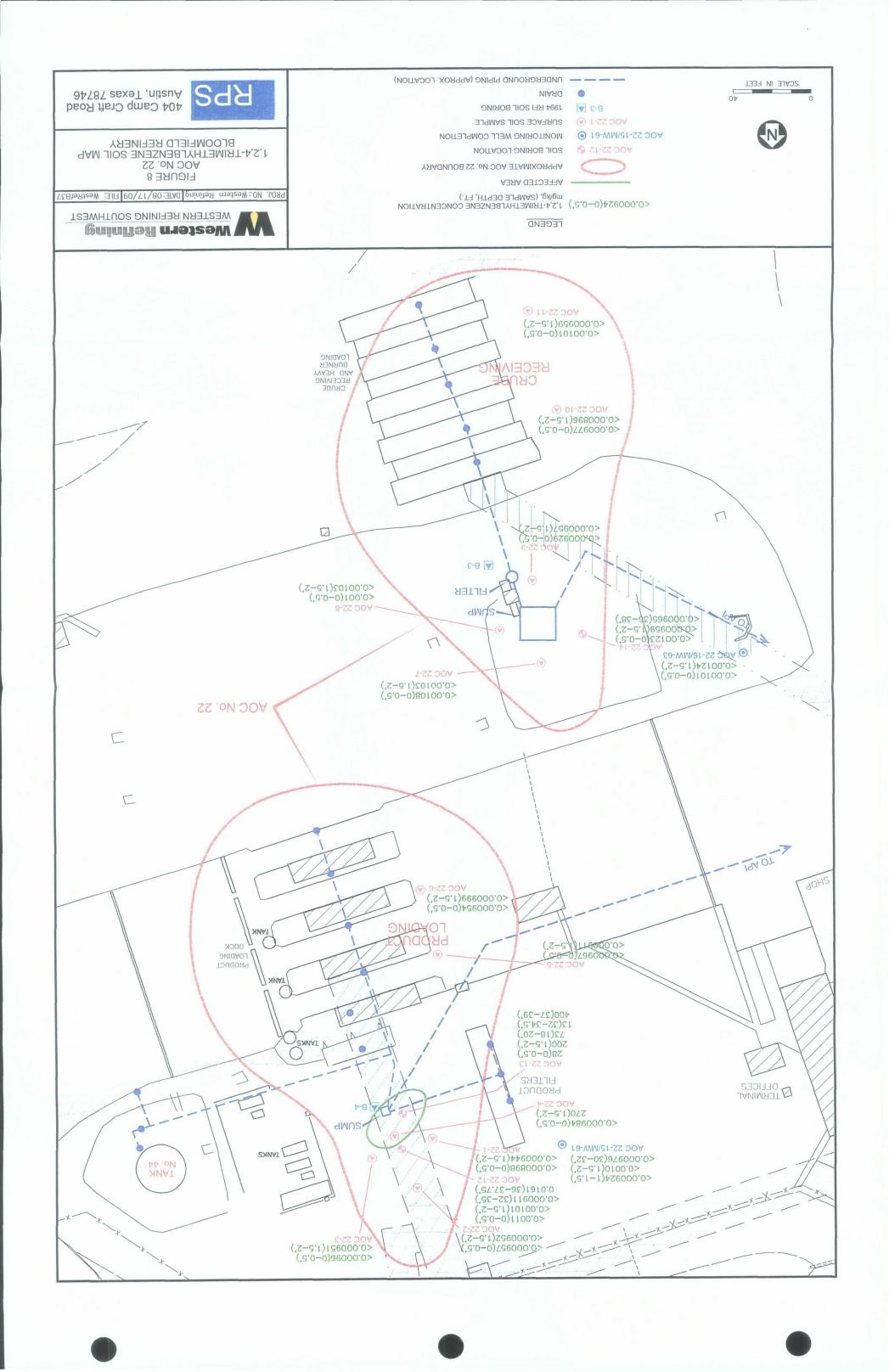


<0.05,<10(0-0.5') BENZENE,DRO CONCENTRATION mg/kg, (SAMPLE DEPTH, FT.)

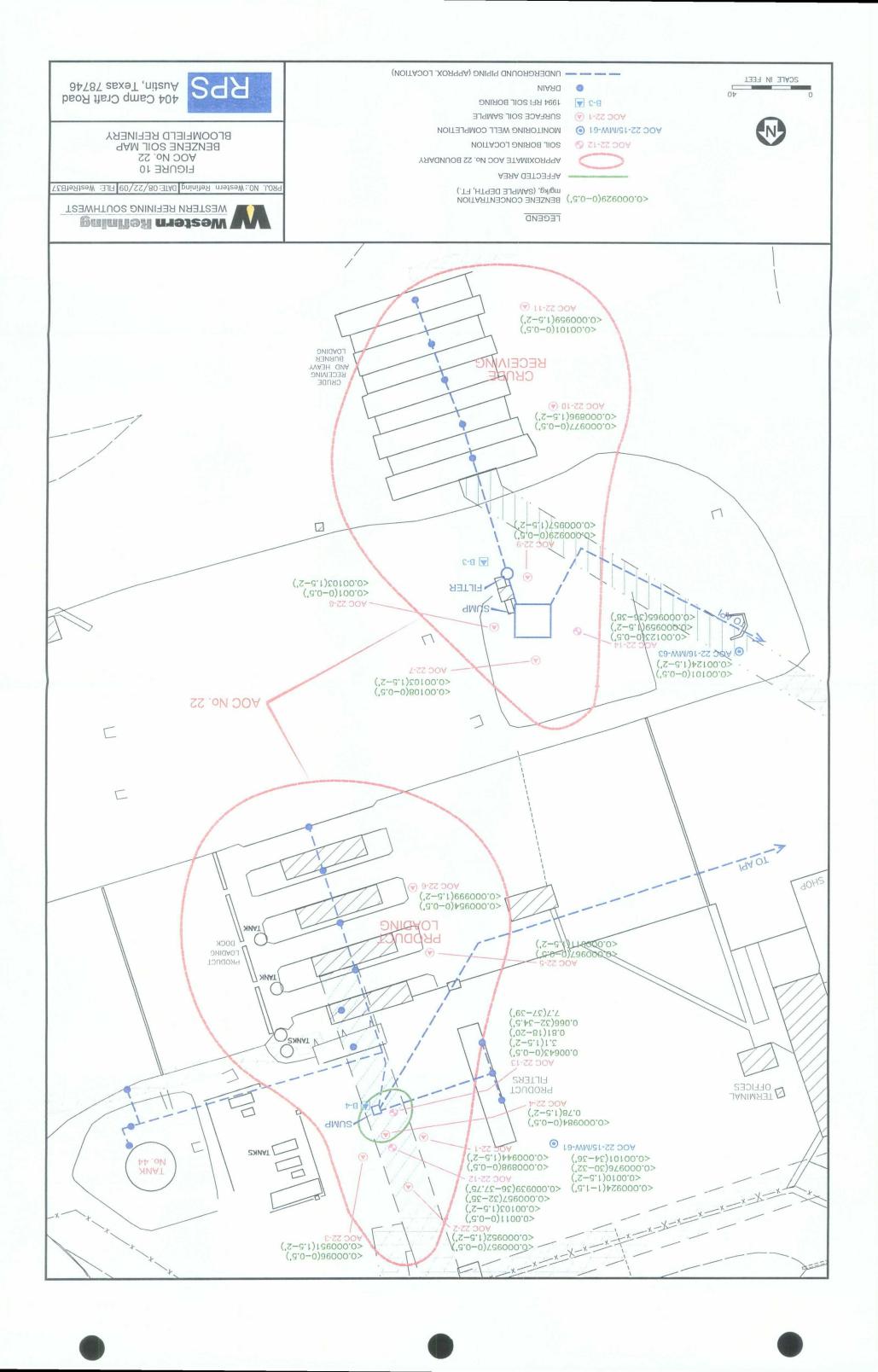
APPROXIMATE SWMU No. 4 BOUNDARY

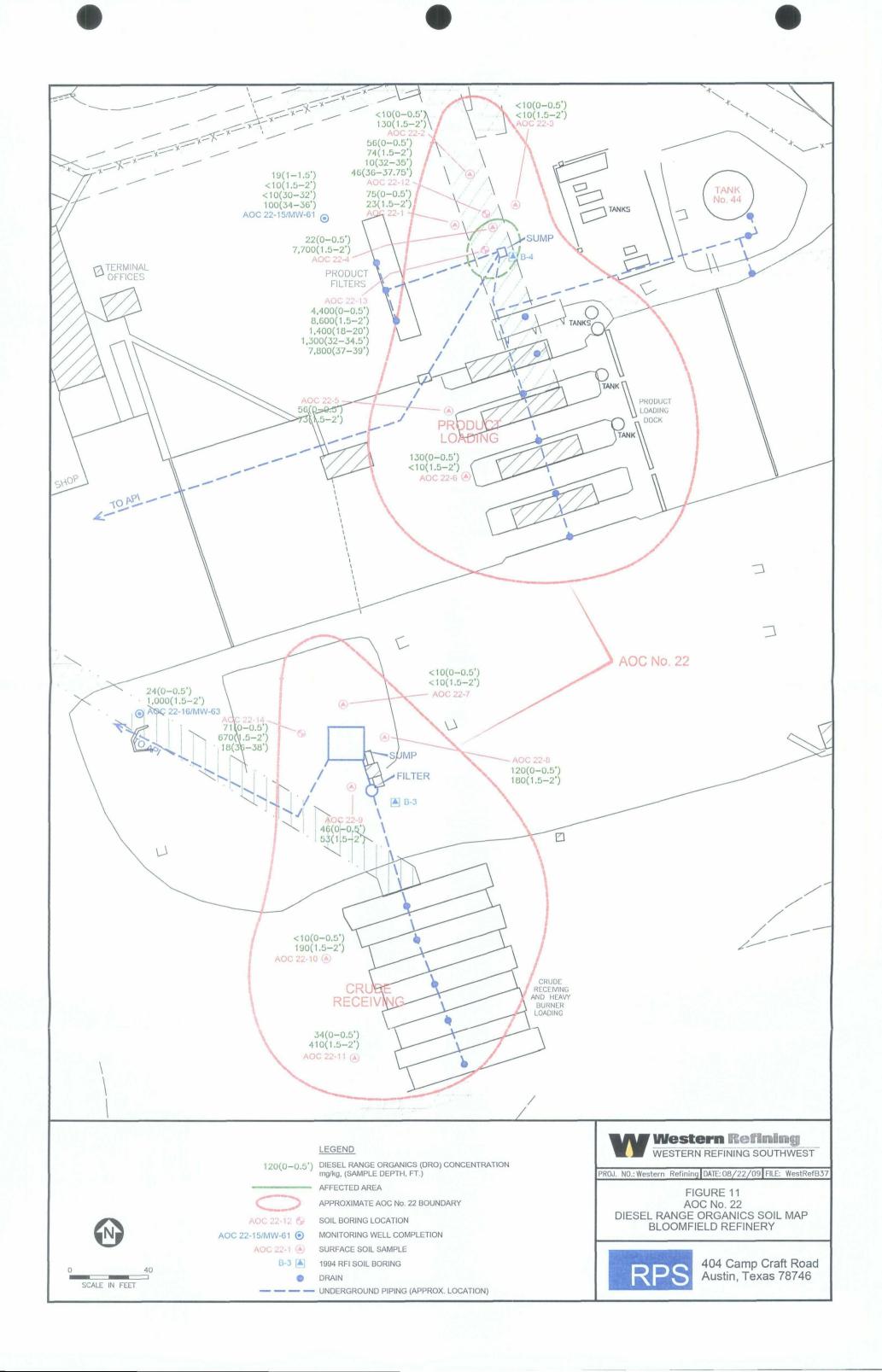
SWMU 4-1/MW-59 MONITORING WELL COMPLETION

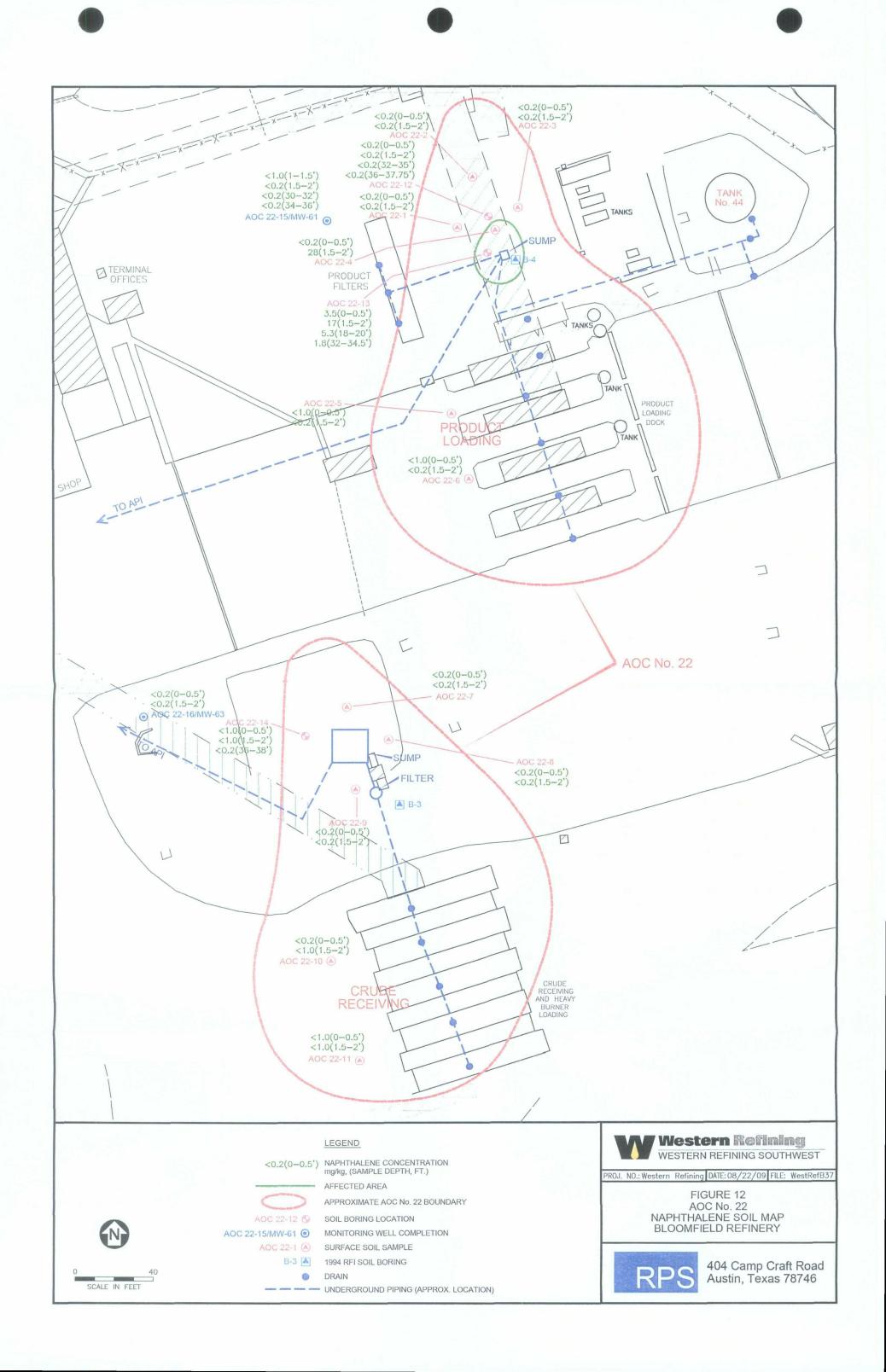

B-1 A 1994 RFI SOIL BORING

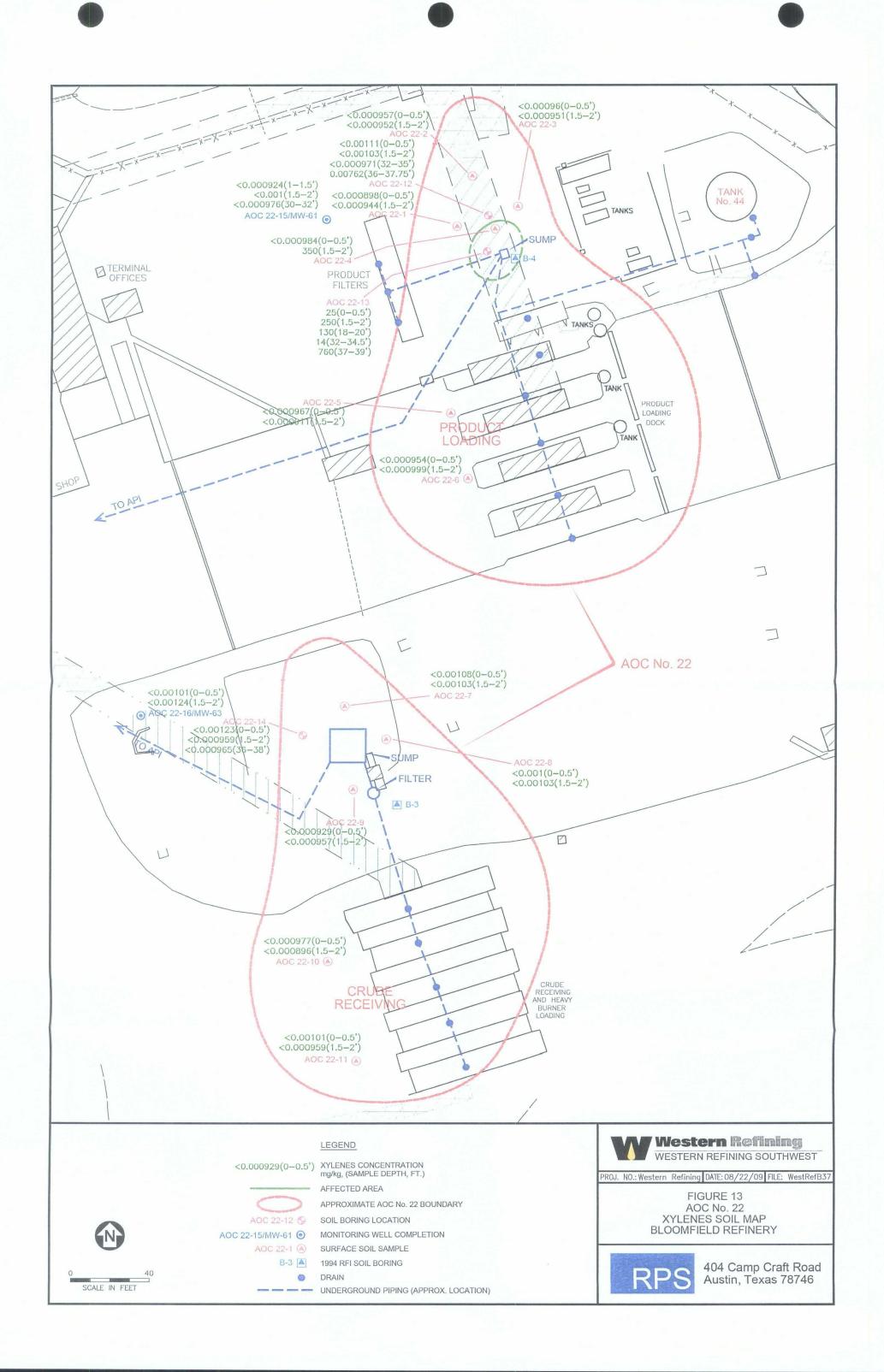

SAMPLE LOCATIONS MAP BLOOMFIELD REFINERY

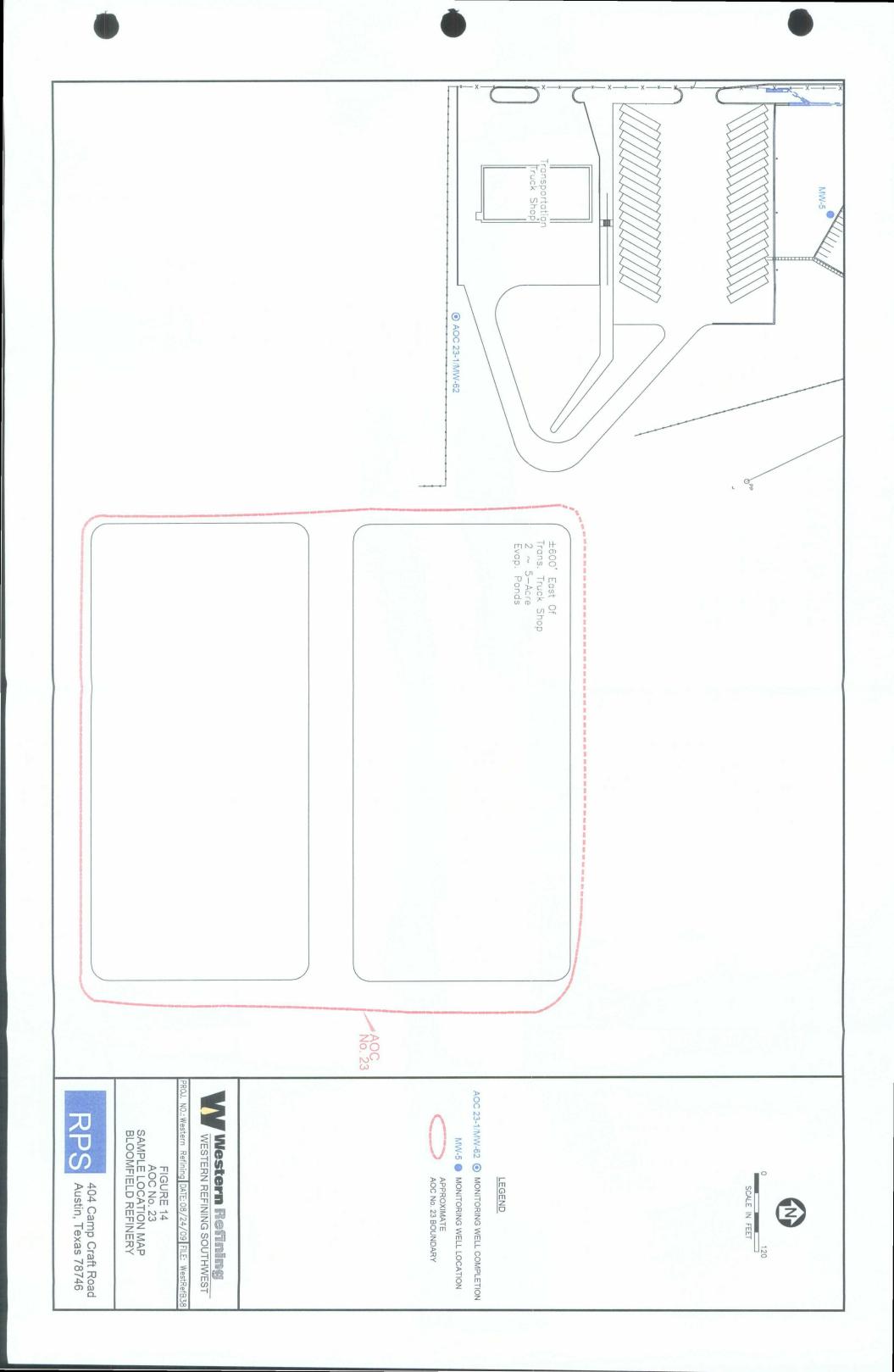


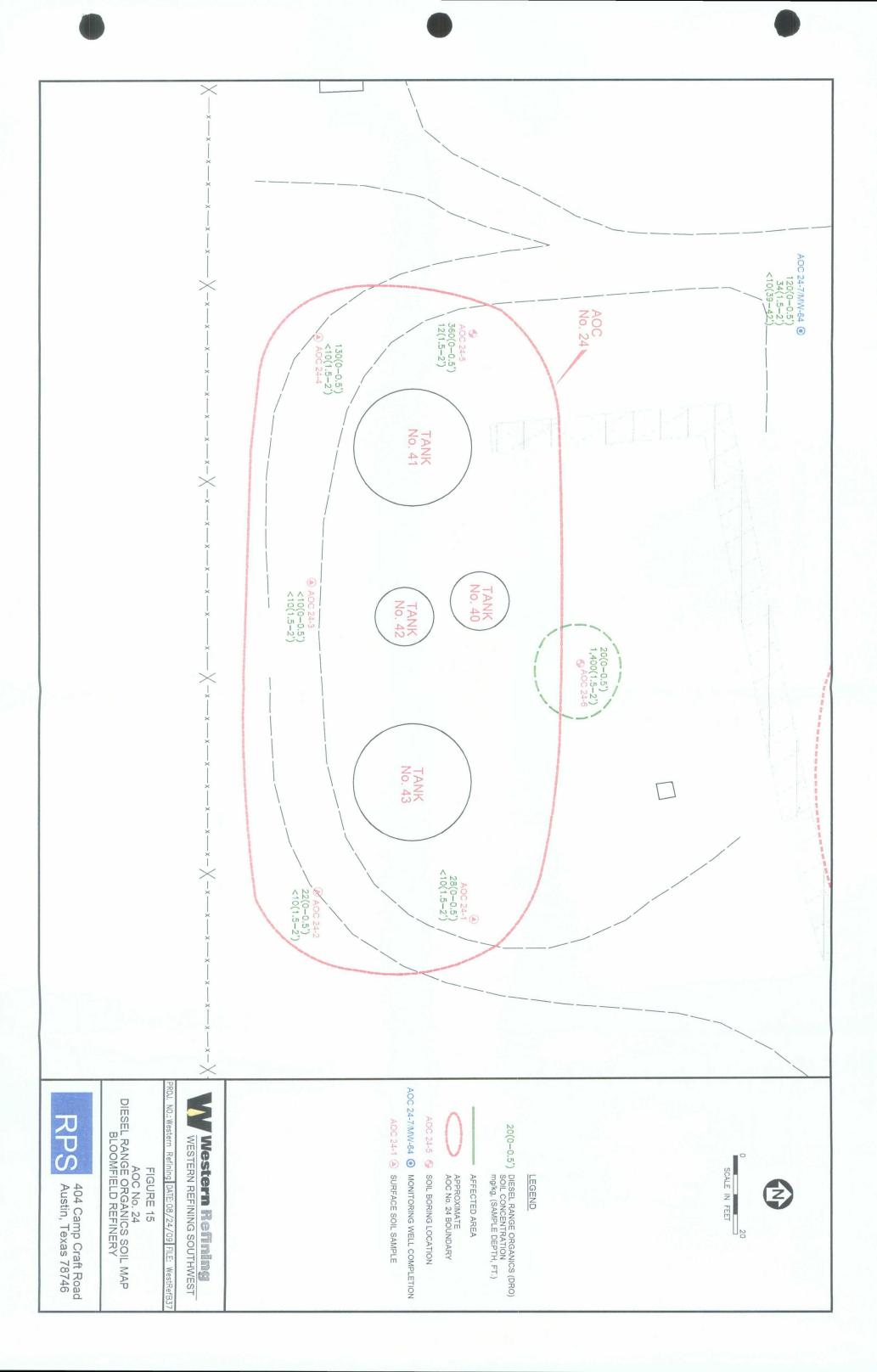

404 Camp Craft Road Austin, Texas 78746

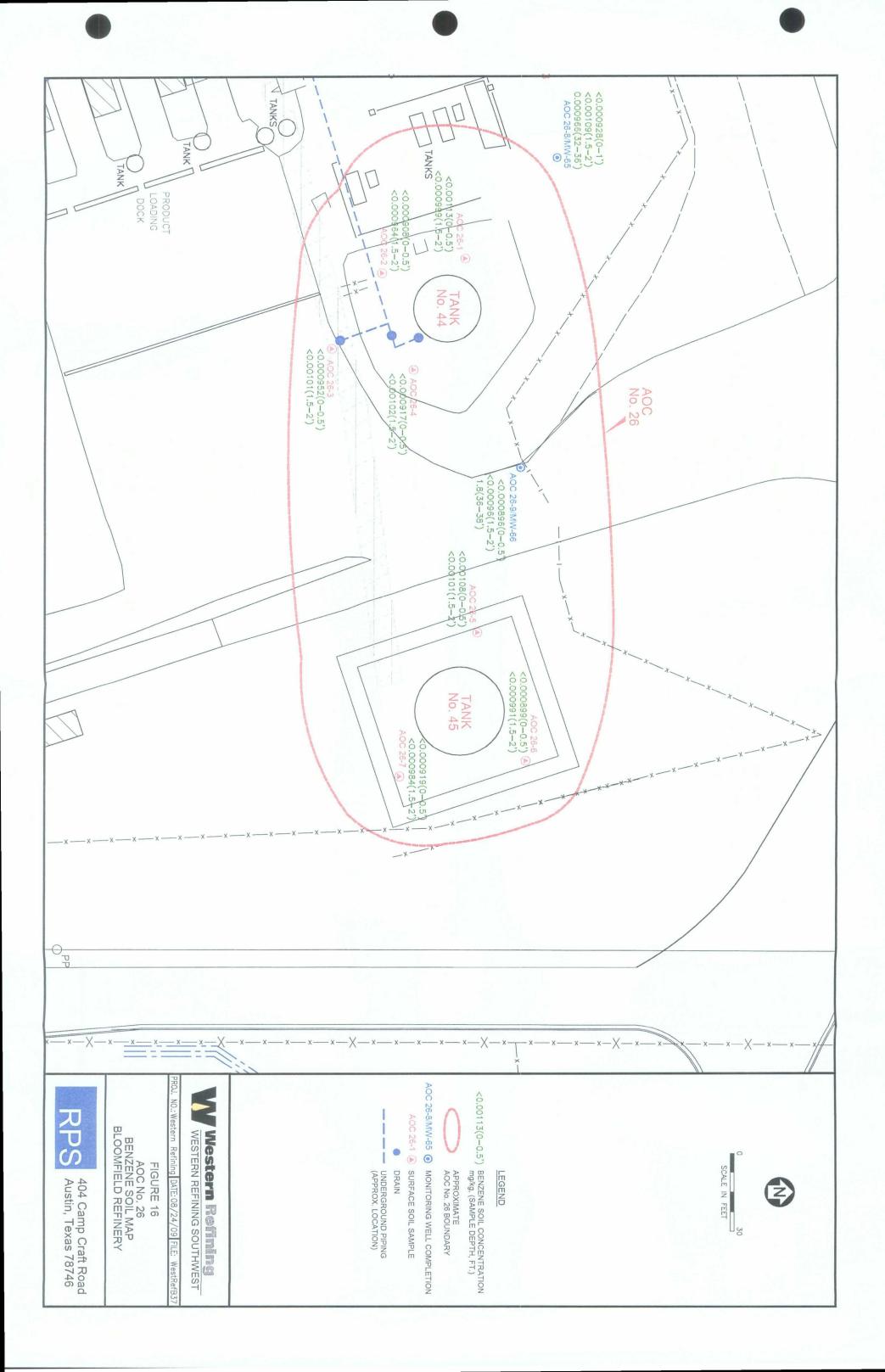


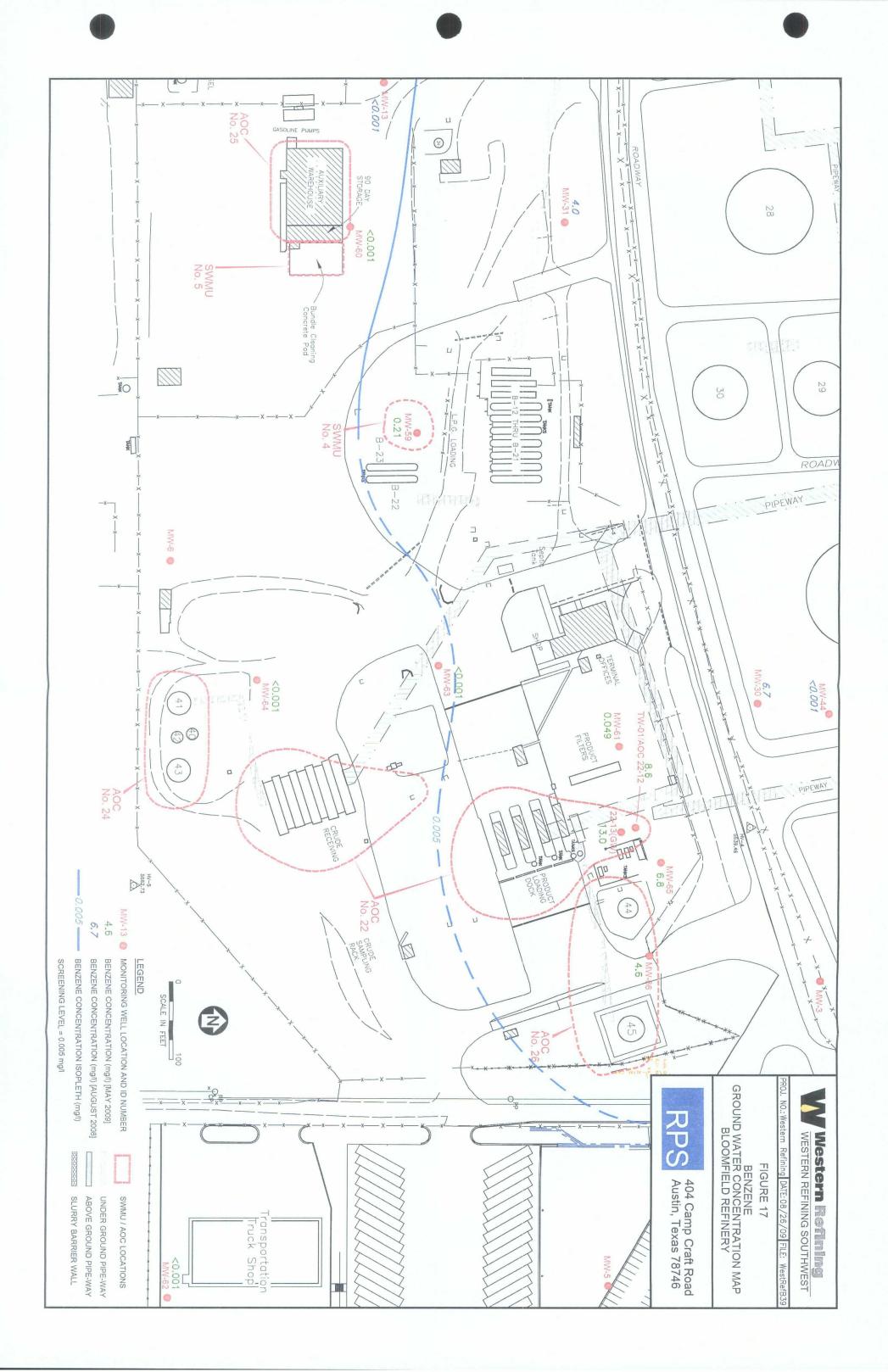


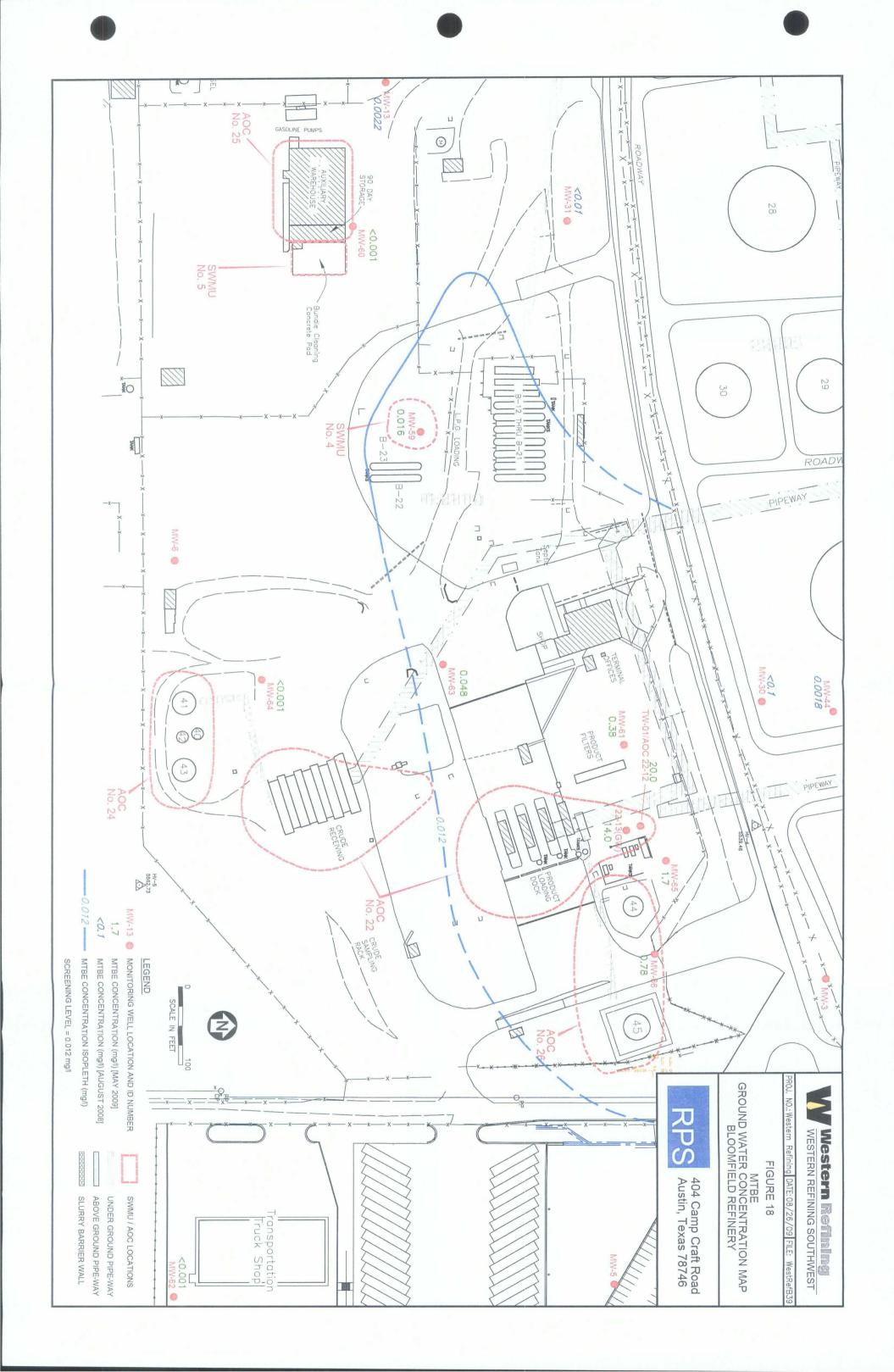


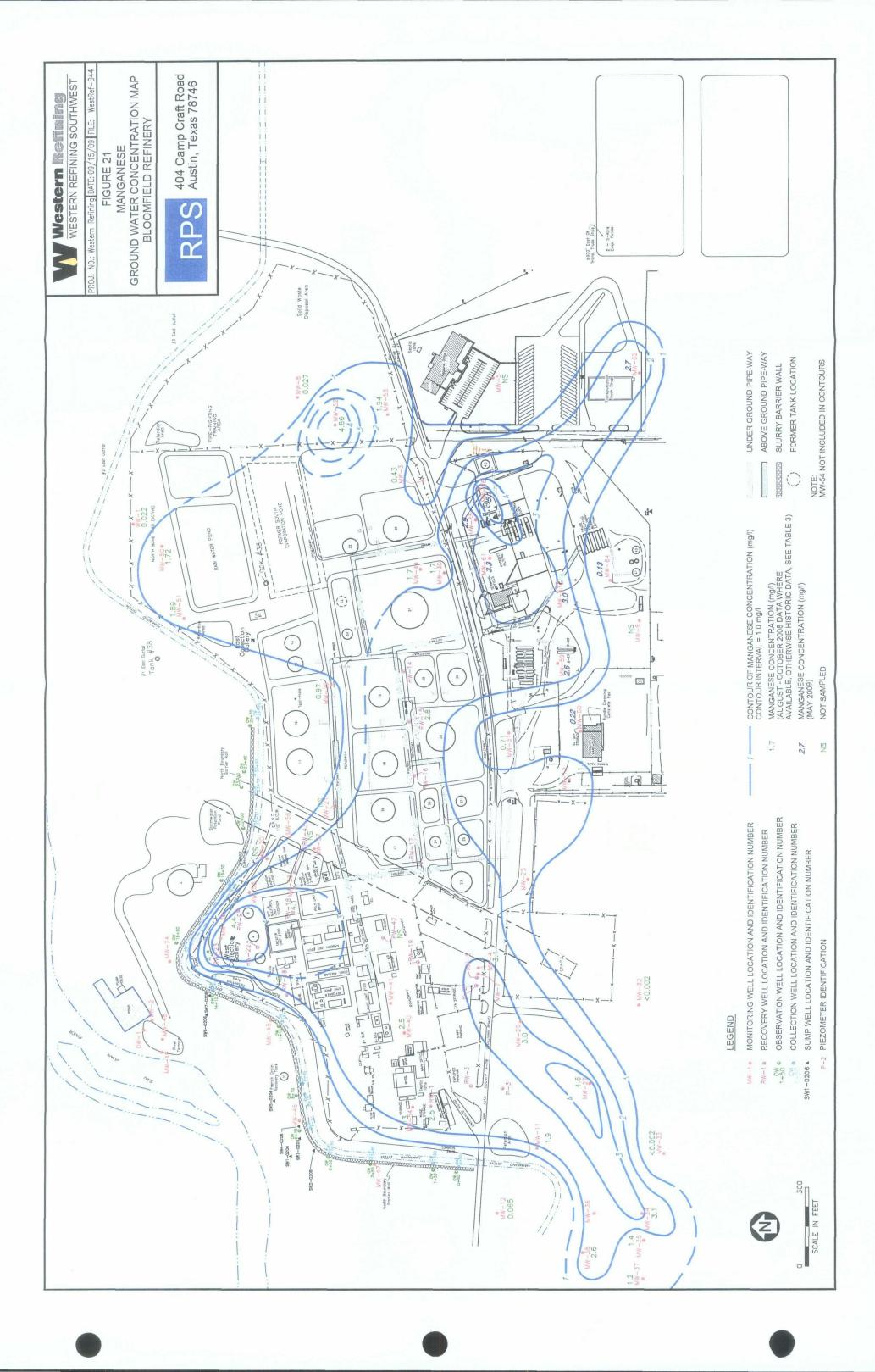








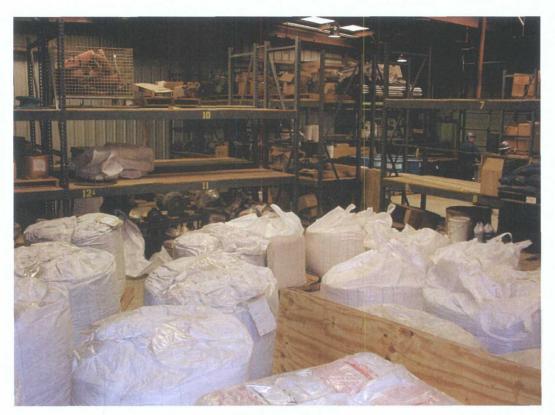




Appendix A

Photographs

Photograph 1
Solid Waste Management Unit #4, looking east across location of former sump.


Photograph 2
Solid Waste Management Unit #5, facing west and looking across bundle cleaning pad at east end of warehouse building/90-storage area (AOC No. 25).


Photograph 3
Solid Waste Management Unit #5, looking northwest across bundle cleaing pad.

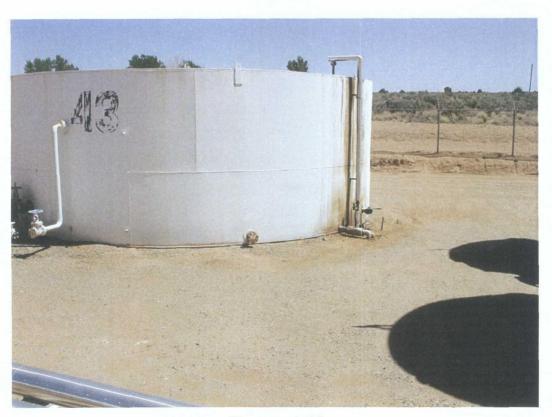
Photograph 4
Area of Concern 25. Picture taken inside warehouse buliding, looking at dry materials (e.g., catalyst) stored inside.

Photograph 5
Area of Concern 25. Picture of materials stored inside warehouse.

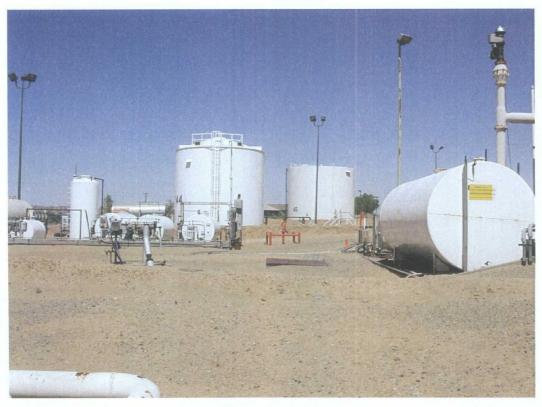
Photograph 6
Area of Concern 25. Picture of employee exercise area in west end of warehouse building.

Photograph 7
Area of Concern 25 Looking southwest from northeast corner of warehouse building/90-day storage area. The 90-day storage area is located inside open door way.

Photograph 8
Area of Concern 22 Looking east from west end of crude receiving rack facilities sump, location of new MW-63.


Photograph 9
Area of Concern 22 Looking south from northern portion of crude receiving rack.

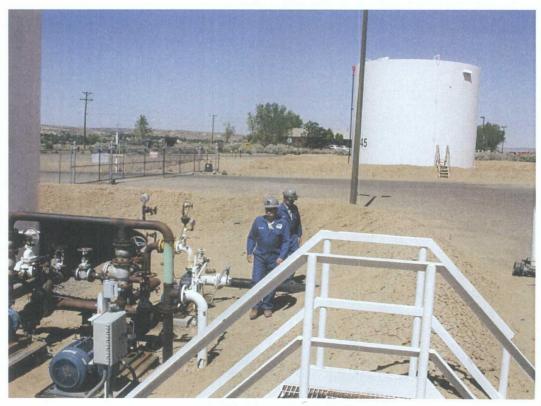
Photograph 10
Area of Concern 22 Looking southeast from western portion of crude receiving rack facilities area.


Photograph 11
Area of Concern 24 Looking southeast toward Tanks 40 and 42, Tank 43 in background.

Photograph 12
Area of Concern 24 Looking southeast at Tank 43 from northern edge of containment area.



Photograph 13
Area of Concern 22 Looking east at product loading racks.



Photograph 14

Area of Concern 22 From northwest corner of product loading rack, looking east at Tanks 44 and 45 in background, center.

Photograph 15
Area of Concern 22 From northwest corner of product loading rack, looking northwest at product filters. Tanks in background are located on north side of County Rd 4990.

Photograph 16
Area of Concern 26 From south side of Tank 44, looking east at Tank 45.

Photograph 17
Area of Concern 26 From northwest corner of Tank 45, looking southeast.

Photograph 18
Area of Concern 27 From northwest corner of holding pond, looking east-southeast.

Photograph 19
Area of Concern 25 Drums stored inside 90-day storage area, concrete sump in center with metal cover.

Appendix B

Correspondence

BILL RICHARDSON Governor

DIANE DENISH Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030

www.nmenv.state.nm.us

RON CURRY Secretary

JON GOLDSTEIN Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

October 27, 2009

Mr. Randy Schmaltz
Environmental Manager
Western Refining, Bloomfield Refinery
P.O. Box 159
Bloomfield, New Mexico 87413

RE: EXTENSION REQUEST APPROVAL

FOR THE SUBMITTAL OF THE GROUP 3 INVESTIGATION REPORT WESTERN REFINING SOUTHWEST INC., BLOOMFIELD REFINERY

EPA ID# NMD089416416 HWB-GRCB-08-004

Dear Mr. Schmaltz:

The New Mexico Environment Department (NMED) received Western Refining Southwest Inc., Bloomfield Refinery's (Western) *Group 3 Investigation Report Extension Request* letter, dated October 15, 2009. Western is requesting a sixty day extension from the October 19, 2009 due date for the submittal of the Group 3 Investigation Report. Western has made this request because of delays in receipt of sample analytical data from the contract laboratory. NMED hereby approves this 60 day extension; the Group 3 Investigation Report is due to NMED on or before December 21, 2009.

Mr. Schmaltz October 27, 2009 Page 2 of 2

If you have any questions regarding this letter, please contact Hope Monzeglio of my staff at (505) 476-6045.

Sincerely,

John E. Kieling

Program Manager

Permits Management Program

Hazardous Waste Bureau

cc: D. Cobrain, NMED HWB

H. Monzeglio, NMED HWB

File: GRCB 2009 and Reading

HWB-GRCB-08-004

Fed Ex Priority Overnight #8709 9688 0454

October 15, 2009

Ms. Hope Monzeglio State of New Mexico Environmental Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303

Re: Giant Refining Company, Bloomfield Refinery (currently known as Western Refining Southwest, Inc. – Bloomfield Refinery) Order No. HWB 07-34 (CO) Group 3 Investigation Report Submittal Extension Request

Dear Ms. Monzeglio:

During review Western Refining Southwest, Inc. – Bloomfield Refining discovered that we had not received all the analytical data from the contract laboratory for sampling that had taken place during the Group 3 Investigation. Western has been working with the lab and the missing reporting is forth coming. As of Wednesday October 14, 2009 there is still some outstanding data which Western is anticipating by weeks end.

Given this information and the need to process this information, Western requests a sixty day extension of the October 19, 2009 deadline for submittal of the Group 3 Investigation Report.

Your consideration in this matter is greatly appreciated!

Sincerely,

Vames R. Schmaltz

Environmental Manager

Scott Crouch

From: Monzeglio, Hope, NMENV [hope.monzeglio@state.nm.us]

Sent: Friday, March 27, 2009 12:26 PM

To: Robinson, Kelly

Cc: Schmaltz, Randy; Scott Crouch; Cobrain, Dave, NMENV

Subject: RE: RCRA Investigation Group 3- Proposed Revised Boring Locations

Kelly

The proposed locations are fine.

Hope

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Friday, March 27, 2009 10:34 AM

To: Monzeglio, Hope, NMENV **Cc:** Schmaltz, Randy; Scott Crouch

Subject: RCRA Investigation Group 3- Proposed Revised Boring Locations

Good Morning Hope,

Thank you for talking with Randy and I yesterday afternoon. As we had briefly mentioned to you during our phone discussion yesterday, we would like to propose slightly adjusted locations for two monitoring wells and one soil boring that pertain to the Group 3 Investigation activities at the Bloomfield Refinery.

Over the past few days, we have conducted extensive efforts to identify underground utility and process piping within all proposed drilling locations for Group 3. As a result of those efforts, we have identified three areas in particular where we would like to modify the location of the respective borings to avoid damaging underground piping and provide safer clearance from exiting underground utilities.

The attached map is a mark-up of the original Figure 8 included in the approved Group 3 Work Plan. The originally approved boring locations shaded in yellow are areas where underground utility and process piping has been identified. The adjacent yellow circles represent Western's proposed "alternative" drilling location for each area.

We would like NMED's approval of the proposed modified locations. If you have any questions or need any additional information, please don't hesitate to contact either Randy or myself at your convenience.

Thank you for your time!

Sincerely,

Kelly R. Robinson

Environmental Engineer

Western Refining Southwest, Inc. - Bloomfield Refinery

P.O. Box 159 50 Road 4990 Bloomfield, NM87413

office: (505) 632-4166 cell: (602) 908-6617 fax: (505) 632-3911

Appendix C

Analytical Data Reports

Air Bubbles (Y or N) ewild **ANALYSIS LABORATORY** HALL ENVIRONMENTAL # See affactual analyte as 4901 Hawkins NE - Albuquerque, NM 87109 serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytic Fax 505-345-4107 (AOV-Ime2) 07S8 www.hallenvironmental.com Analysis Request (AOV) 809S8 COC 182 8081 Pesticides / 8082 PCB's Anions (F,CI,NO₃,NO₂,PO₄,SO₄) SisteM & ASSE Tel. 505-345-3975 (HA9 10 AN9) 01E8 EDB (Method 504.1) कुछ छुप एक छुप × TPH Method 8015B (Gas/Diesel) Remarks: BTEX + MTBE + TPH (Gas only) (1208) s'8MT **HIBE+** 7 RCRA hurshydran-Gays \mathcal{M} Ņ 3 l Time Parine Date Kelly Lobinson y, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories 🗆 Rush Preservative Nove Now HO'Z といれ Nove 当以 #X6 None び出 Sampler: I raun Tum-Around Time texter of email or Fax#: Kelly, Robinston www.comproject Manager. (2) Eren Project Name: Client: Western Petiming Softway IN 10/ Standard 2) Encor Type and # Aol. 25-2 (0-0.5')-bup (3)/aus (Z)VOQ) (2) Vials Container 1(3) Jan (12) Vals (Z) Vials (I) Poly (IRILY 3 VORS (1) VOA Received by: Project #: DOC 25-2 (0-0.5") Level 4 (Full Validation) Sample Request ID Bloomfield, NM 87413 Chain-of-Custody Record EBS-040509 1 Patriens MCOH Blank Spin アワイ Trip Blank 50 Read 4990 ちゃく よっち Bloomfield Fxce Matrix 3 **2** 3 R Soi Sos Mailing Address: N QA/QC Package: 15.FS S 区 005 SYEDD (Type) Time 17 □ Standard lime: lf ne Phone #: □ Other 6/S/h Date 4/5/9 4/5/9

7,60,000	TAINING CONNECTION		ente	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	O ₄)	o sso) ealOles or conc	10085 10085	11+ 1210 1210 1210 1210 1210 1210 1210 1	BEE de 80	BTEX + MT BTEX + MT BTEX + MT TPH (Methorer TPH (Methorer BDB (Methorer BDB (Methorer BOB10 (PNA BOB10 (F,C BOB10 (Semi	×		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		X	×	· · · · · · · · · · · · · · · · · · ·	×	×	X .		* See afterlud analyte list,	>	ves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical
	Turn-Around Time:		Project Name:	KLEA Investigation - Group 5	Project #:		Overoject Manager:	Lell Lobinson	Sampler: Traun Paum	Conficer Control of the Control of t	Sample Family extruction of the same of th	Container Preservative Type Type) (3) law Nove -10	(2) Encos None - 6		1.5-2.0) (3) (2.5-2.1)	2	 WPoly Nach -8	WPOLY HNOS - 8	\dashv	Vaa	\dashv	2 NOU	Received by: Date Time '	Racefred by: A Hold Time	
	Chain-of-Custody Record	Client: Western Petrum Southward, In	Seld O	וכו	Eleanfield NM 87413	41160	email or Fax#: Kelly , Robinson Winr, Con Project Mans	OA/QC Package: 1		REDD (Type) Excel		Date Time Matrix Sample Request ID	4/5/9 1755 Soil Acc 25-2 (36-381)		7	4/5/9/1700 Soil NOC 25-2(1.5-2.0		4/5/9/1500 (SEO) FB-040509			}	→	3	4 1500	Date: Time: Relinquished by	If necertal amples submitted to Hall Environmental may be subcontracted to other accredited laboratories.

	HALL FINALDONMENTAL			4901 Hawki		Ahalysis	Coth sel)	o ssə) es es es es es es es es es es es es es	1) 1) 1) 1) 1) 1) 1) 1) 1) 1)	2108 2108 2108 204 4 21 1,50V 10,50V 3 \ 25	od 1 oo la la la la la la la la la la la la la	BTEX + M BTEX + M TPH Meth TPH (Meth B310 (PN B3	\times_\t	×	**	×	X	X	X	\times_\t	X	\times \t		Remarks: * See astacled for aucht, ast,	0	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytic out.
Tim-Argund Time		Standard 🗆 Rush	ame:	RCRA Investigation - Grap 3	Project #:		Project Manager:	Lukobusar	Sampler:			Container Preservative Type and # Type	(S) vor Hci -6		<u> </u>		(i)paly NaOH - 0	F)VORS HCI	CIVOR Nove -7	\$	Cistaly HND2	1) Poly Nath -7		y: Date	Received by: Day of Time 00	her accredited laboratories.
	Citalit-oi-custody Record	Clienti Western Petring Stoffment Inc.	L\	וא	Bloomfield, NM 87413	24/10/0	obinson Currien	QA/QC Package: Ostandard	DEDD (Type) Exce)		Date Time Matrix Sample Request ID	4/6/9 1200 Ay FB-040609				7 7 7	46/ 1215 By EBS-040609				→ → →		Time: ISDO	Dáte: Time: Relinquished by: I	if necessary, samples submitted to Hall Environmental may be subcontracted to of	

	ANALYSIS LABORATORY	com	NM 87109	5-4107	ol		tn	204	2 2 10	100 00 00 00 00 00 00 00 00 00 00 00 00		8250 (Sen 8270 (Sen Coch Co		X	XX		X	×		\\	X X				Carl		on the analytica
ALC: TENT		www.hallenvironmental.com	- Albuquerque, NM 87109	ax 505-345	sis Reque					/ səp	oloi	(न) enoinA tee9 1808	χ			X			•			<u> </u>		-	maly		clearly notated
Ũ		hallen.	E - Alb	75 F	⊵ Anal)							(NG) 0168 <u>AR AROR</u>			X			X			X				- P7		data will be
ď		www	ins N	45-39		ادط ک	Not.	m	(17	70 <u>5</u> (טסכ	EDE (Met													ತ್ಯ		irracted
		l 	1901 Hawkins NE	505-345-3975								#₽M) H9T			X			X			\geq				athach		sub-con
100 to 10			1901	Tel. 5								M + X3T8 rth Meth													1	1	y. Any
			7	·								BTEX + M													Remarks:		ossibilit
		1	5 graps >				ζ		775				-	7	1-	-2	2-	2-	-3	. N.	~	5-	5) 4/7/69 (0C0)	ies.
Turn-Around Time:	Standard C Rush	Project Name:	KCKA Invotational Gray	Project #:		Project Manager:	Kell Kobinso		Sampler: I racy Pa	On location of the second		Container Preservative Type and # Type	0-0.5) (2) Encores	(2) VIALS	(3) Jans	(Z)	(2)VIA(2)	(g) Jan	(2) Evac	(A) VIALS	(2) Jan	MEOH	(Z)VOA3		Received by: Fig. 1.	Recorded by:	ontracted to other accredited laboratori
C), n-of-Custody Record	7	heu	So Rose	Bloomfeld um 87413	વવા	0	_	Level 4 (Full Validation)		TXCE)		Matrix Sample Request ID) 1-4 mms 1-1		→ →	Soil Swm 4-1 (1.5-2.01)		->	Spil Swmu 4-1 (6-8")			Ag MeoH Blank	Tris Blank		Relinduisped on Charles of Charle	Rélinquished by:	If necessity is amples submitted to Hall Environmental may be subcontracted to of
31,510.	1/2st	12 PO	Mailing Address:	A		email or Fax#:	QA/QC Package;	ndard	ler	☑ EDD (Type)_		Time	845		-	930		→	<u>=</u>		>)	<i>J</i>		Time: (500	Time:	If nece
	Client:		Mailinc		Phone #:	email (QA/QC	□ Standard		ĭZ/ED!		Date	2/6/2	-	->	4/0/2		 	6/01/4		→				4/0/9	Date:	

METALS ANALYSES

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

GENERAL CHEMISTRY ANALYSES

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium`	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

Most M

E 1, 9	CONMENIAL ABORATORY	com NM 87109	505-345-4107				(N	(AOV)	8250 (Semi- 8270 (Semi- MO ₂ / N Cycus Ethau	X			X	×	6	X					×	analyte Dist.		on the analytice (
	HALL ENVIKO ANALYSIS LAI	allenvironments - Albuquerque	10	T TANANSISTEM	(†OS	s, ₄ 09,	NO ^s	-1ΑΥ 1 ₀ -4κ sls: 1,εΟΝ, 3 \ səb	6710 (PNA O 1885) 1885) O PNA O 1895 1895) O PO 1895 1895) O Pestici	X	<u> </u>	X	X			×	\frac{1}{\sqrt{2}}					\$,	of this possibility. Any sub-contracted data will be clearly notated on the analytical
* **		www.h	Tel. 505-345-		only)	(Gas	на. В (С	9E + 1	BTEX + MTE BTEX + MTE POH Methoo DAMPH DAM	X			×			×				×		* Refer to attached		ossibility. Any sub-contract
		INVESTIGATION - GOOD 3				Jos	ine				1	1	2	2	2	5	Υ	γ	t	Н	'n		Date Time	s. The ves as notice of this p
Turn-Around Time:	dard 🗆 Rush	! =	1 1			Mytobinso	Tracy lay		ner Preservative	1 Nove	De Nove	13 Medy		se None	1 MeDH	Nove	J	Is MeDH	PHC!	4 Nove		" K	1 1/2 N	ther accredited laboratorie
Turn-Aro	(De Standard	Project Name:	Project #:		ا Project Manage المرين	*			Container Type and #	(S) (a)		(e) Vials	cup(E)	(2) Euco	(E) Vials	二	(2) Euco	(2) Vod	S) VORS	() YOY	(I) HIMBER	Received by: Fed \mathcal{E}_{χ}	Received by:	ocontracted to o
Chain-of-Custody Record	wing Southwest Inc	Bloomfield Orefriend Mailing Address: 50 Road 4990	J NM 87413		4. Robinson Cum.c	Prevel 4 (Full Validation)			Sample Request ID	Swmu 4-1(36-381)		→	ADC 24-7 (0-0.5"			ADC 24-7(1.5-2.0)		>	FB-040709		->	Il de la son	d byt∤	If nece
ain-of-Cu	stan Refin	Mon field	برائح		Kell	kage: d	3	ype) Exce	Time Matrix	1700 Soil	٠ <u>ـــ</u>		1130 Soil		1	1145 20:1		→	1200 Ag	-		0	le: Relinquished by:	amples subm
Š	Client: Use	Bloom Mailing Address:		Phone #:	email or Fax#:	QA/QC Package: □ Standard	□ Other □	©∕EDD (Type)	Date	1 6/9/4			11 6/4/4	~		4/4/9/11		→ 	21 6H/h		~	4/7/9 [SD]	Date: Time:	If nece

Air Bubbles (Y or N) **ANALYSIS LABORATORY** * Ret to attached for another list. HALL ENVIRONMENTAL If necessary, samples submitted to Hall Environmental may be subcontracted to office appredited laborationes. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. 4901 Hawkins NE - Albuquerque, NM 87109 Chewist CDC 292 Fax 505-345-4107 $\overline{\mathbf{X}}$ www.hallenvironmental.com · Analysis Request X (AOV) 809S8 X Anions (F,CI,NO3,NO2,PO4,SO4) Tel. 505-345-3975 (HA9 to AN9) 01:E8 Remarks: (Vino ese) HTT + 38TM (1508) s'BMT + 38TM 3 Time Time -se Q RCRA Investigation - Group 8 Lelle Kobinson i Date Date F Sampler: Tracin Payor □ Rush Preservative 362 2 362 MEDH 48 HOOZ H097 Type HNOS HNOZ ゴビ T T Turn-Around Time: Project Manager Project Name: **Electandard** (1) Aleska HC) I'I'D Fed Ex Type and # G)VOAD (1) Poly (1) POLY Container 2) VOAS (1) Poly (1.) Poly C) YOA Received by: Project #: Received by: email or Fax#: Kelly, Robinson@wn.com Level 4 (Full Validation) Client: Western Refining Sasthurst Inc Sample Request ID Chain-of-Custody Record Bloomfield NAM BAYIB Bloomfield Of finery MeDH Blank Trip Blawil EBS-040309 FB-040769 Mailing Address: So Road 4990 Phone #: (Soc.) 633-4166 Relinquished by Relinguished by Exce! ぞみ Matrix F \$ A A 1500 17,00 Time QA/QC Package: CEDD (Type) 1215 Time: □ Standard Time: □ Other □ Date 14/14 6/±/

METALS ANALYSES

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

GENERAL CHEMISTRY ANALYSES

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis/Request	TEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas/Diesel) TPH Method 8015B (Gas/Diesel) TPH Method 504.1) TOBA Pesticides / 8082 PCB's Minons (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Most Pesticides / 8082 PCB's Most Post Most Post Most Post Most Post Most Post Post Post Post Post Post Post P		< X	X	X X X X			ate Time Remarks: A Petyrto attactud aualyth serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytic port.
Turn-Around Time: Turn-Around Time: Project Name: RCRA Investration - Group Project #:	A Project Manager: A Project Manager: Sampler: Tracy Ruy Continer: Tracy Ruy Container Preservative Container Preservative Container Preservative Container Preservative Container Preservative Container Preservative Container Preservative Container Contai	42/)(3) Jaus / - 1	(2) VIRLS - 1	s') (3) tu) -2	(2) Via l	20 (3) Jan		D A G Schedited laboratdric is
Chain-of-Custody Record Client: Western Refining Soothwet Bloomfield Refinent Mailing Address: So Read 4990 Bloomfield NM 87413 Phone #: (505) (632-4166	ckage: Type) Ex	4/3/9 1815 Soil AOC 24-7(37-42")(3) Jaus	\rightarrow \right	4/8/9 1100 Spil AOC 24-5 Co-0.	4/8/1 1/80 Soil 1/8CZ4-5(0-0,5'	4/8/9 1260 ADC 24-5 (65-	7	Date: Time: Relinquished by: 1500 H.

		www.hallenvironmental.com	2 4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107		O4)	o ssə)) SəlOləsi المرور المراج	1000 1000 1000 1000 1000 1000 1000 100	8015 418 1504 1604 1604 1604 1604 1604 1604 1604 16	TTE AO A A A A A A A A A A A A A A A A A A	BTEX + A BTE	X	, X	X	7	γ	X			Remarks:	Ó	- Orex	this possibility. Any sub-contracted data will be clearly notated on the analytic
Chain-of-Custody Record Tum-Around Time:	Client: Western Refinite Southwat he Waterdard Rush	Refluen Project Name:		Sloanfield NM Project #: 0	o's	email or Fax#: Kelly, robin Sone was groject Manager	OA/OC Package: Defevel 4 (Full Validation) (KullyCobinso)		GVEDD (Type) EXc. Ontice Tyou Exc. Search		Date Time Matrix Sample Request ID Container Preservative Trype and # Type	4/8/9 - Ag MEDH Blank (E)VIal) MEDH -5	1 AOC 24-6 (0-6.5")	(2) Every	 1 1315 501/ ADC 24-6/1.5-2.0) (2) EMOR NOVE	1 1 1 1 (2) VIAU MUDH - 7	1 2 2 V (3) Jan None -7			46/9 IDD Hull O(USD) Fed Co	Date: Time: Relinquished bi: Received by Date Time	1 4 9 100 VOIS	If necessary samples submitted to Hall Environmental may be subcontracted toothay accredited laberatories (

		HALL ENVIRONMENTAL ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	([†] C		() () () () ()		or it of the property of the p	HQT (Methoday) HQT (Methoday) GE8 Methoday (P.Q.) Anoina (P.Q.) Georgian (Senical Methoday) GEORGIAN (Senical Meth	X	×	×	XXX	X	X	×	×	×	X	X	×	atteched anolyter West	Time: Received by: Date Time
					Tel. 5	College of the Colleg	(ΛĮυ	988 01) Hc	<u>I</u> +	38.	BTEX + MT			٥	-2	2 -	-2	13	ر \ ال	7	n	3	h-	Time Remarks:	Time
	round Time:	ndard 🗆 Rush		, investigation	>		Manager:	all Lebizar	12			iner Preservative	us Nove		Lac Nove	None L		ALS Medy		A Nove	=	st Natif	be Now	With Me OH	14:40 H	by: Date
	tody Record Tum-Around	Killin Softwarth Bestandard	Strinery	4996	NM 87413 Project #:	しまスート いかい	Robinson Chur. Los Project Mana	D	Sampler Sampler		SHUE	Sample Request ID Type and #	Aoc 22-14 (15-2.01)(3) Jas		\$\(\(\(\) \)	Ax 22-14 (0-0,5") (3) Jan	(Z) Eucos	(2) VARLS	FB 040809 (S) VOA,	(i) Von	CA BLY	(E) (B)	J (1) Ausber	Jedit Blank (2)	Poblusor	y: Received by:
Salar Salar	Chain-of-Custody Record	Client: Western Ret	Bloomfield	Manifild Address: SO Road	Blomfield N	Phone #: (505) 632	=	:eßi		(Type)		Date Time Matrix (H/99 PHZD Soil 1		→ →	4/8/9 MID Soil A		7	4/8/9 /840 Ag F				→ → →	T	H 9/9 (Zab + Wellindvished by	Dafe: Time: Relinquished by.

Air Bubbles (Y or M) ANALYSIS LABORATORY HALL ENVIRONMENTAL If ner many mples submitted to Hall Environmental may be subcontracted to other accredited laboratories as notice of this possibility. Any sub-contracted data will be clearly notated on the analytic 4901 Hawkins NE - Albuquerque, NM 87109 see prevan Kemanle, Fax 505-345-4107 (AOV-imac) 07S8 × www.hallenvironmental.com 8560B (VOA) × 8081 Pesticides / 8082 PCB's Anions (F,CI,NO₃,NO₂,PO₄,SO₄) Tel. 505-345-3975 (HA9 % AN9) 01:58 EDB (Method 504.1) × X [PH Method 8015B (Gas/Diesel) Remarks: (Vino sso) H9T + B8TM + X3T8 (1208) s'AMT BLEX + WLBE + RCRA Investigation-Gap 3 5 Time Jakziae, Sampler. I toly faying □ Rush Preservative Nowe HON HNO. Nove T T Turn-Around Time: Lelly, Robinson Curricol Project Manage Project Name: Client: Western Leting Sorthwat la restandard Type and # Container CHON (3) HCN (1) (I) Amalada (3) Poly (1) Poly Project #: Received by " THINGS Level 4 (Full Validation) Sample Request ID Chain-of-Custody Record とのではなり E63-040809 ineu Mailing Address: Sto Boad U4990 Bloomfield MM B7413 Phone #: (505) (523-4)160 Relinquished by: Bloomfield FEDD (Type) Excel Matrix \$ email or Fax#: 1200 Time 63 QA/QC Package: Time: Time: □ Standard □ Other 4/8/9 Date

METALS ANALYSES

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

GENERAL CHEMISTRY ANALYSES

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

Air Bubbles (Y or M) ANALYSIS LABORATORY CDC 1 & 3 HALL ENVIRONMENTAL 4909 # See Alached Much to List If necessary samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. 4901 Hawkins NE - Albuquerque, NM 87109 Menishy Fax 505-345-4107 (AOV-ime2) 07S8 www.hallenvironmental.com (ACM) 809S8 8081 Pesticides / 8082 PCB's + Work Plan. Anions (F,CI,NO₂,NO₂,PO₄,SO₄) Tel. 505-345-3975 (Gas/Diesel) Remarks: MTBE + TPH (Gas only) BTEX + MTBE + TMB's (8021) ROCA Lunationhar-Goods .7 4 3 4 M \mathcal{I} ļ) 14:50 C Date Sampler: Tray fayor Rush 🗆 Preservative Tum-Around Time: ... Robins on EunchBroject Manage Project Name: (TyStandard Ce) Encor (ने एंटम्) (2) Exces (Z) EMCAY (3) V (1) 22-13 (32-34,51) (3) bus Type and # (3) Jans (2) VIBU 22-13 (15-2,01) (3) Jans Container Acc 22-12 (37-37) (2) VIALS (Z) Vorg (!) Jal Received by NM 87413 Project #: Received by Ly Phurattu Lotinery (Full Validation Lobrado Sample Request ID ADC 22-13 (18-20) Chain-of-Custody Record MeOH Blaule 066F 3914-259(20 Aoc. Poc Bloomfield Client: 1/ Esteu Refinius Bloomfield Mailing Address: So Read Relinquished by TRCC Matrix 7.3 Ŕ 50. ۔ کم RVEDD (Type)__ 1200 18CC QA/QC Package: 14/8/4/1040 email or Fax#: Time: □ Standard Phone #: □ Other h/8/4 Date 4/8/9 149/9

LAIL ENVIDONMENTAL	YSIS LAB	www.hallenvironmėntal.com	4901 Hawkins NE - Albuquerque, NM 87109	505-345-3975 Fax 505-345-4107	Analysis Request	(*O:	2000 2000 2000 2000 2000 2000	2808 2808 2808 2808 2808 2808 2808 2808	149 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ethooethoo Material F,CI,TF,	######################################	X	X		X	×	×	×	×	×	×	×		. Attached andy to list	gor Metals.	sub-contracted data will be clearly notated on the analytic " - bort.
Tum-Around Time:	© Standard □ Rush	VIESTIGATION - Cana	200	Project #:		1)) 28ව	Hd	1 + 3	T M M M M M M M M M M M M M M M M M M M	Container Preservative HERMES + + + Type and # Type Type			(1) NOW NOWE -6									HC -8	14.50	Received by: Date Time	If ner respr., samples submitted to Hall Environmental may be subcontracted to other accredited laboratories This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytic " root."
 Chain-of-Custody Record	Client (1) estern Petining Sathwest Inc.	reld Refinery	49970 '	Bloomfield, NM 87413	Phone #: (505) (23-4166	email or Fax#: Kelly, Radivesor Curvican	QA/QC Package: 1 Colored 4 (Full Validation)		CLEDD (Type) Excel		Date Time Matrix Sample Request ID	4/9/9 6810 Ag Agc ZZ-逼(Gw)								4/8/9 1540 Soil Acc 22-13(0-0,5)		7 - 7 - 7	Rg Tro Blank	Menson	Date: Time: Relinquished by:	If nerrasary, samples submitted to Hall Environmental may be subco

Air Bubbles (Y or N) ANALYSIS LABORATORY COC 3 35 HALL ENVIRONMENTAL If necessary amples submitted to Hall Environmental may be subcontracted to other accredited laboratories. 4901 Hawkins NE - Albuquerque, NM 87109 Fax 505-345-4107 www.hallenvironmental.com 8Seob (VOV) 8081 Pesticides / 8082 PCB's Anions (F,CI,NO₃,NO₂,PO₄,SO₄) slatsM & ASTOF Tel. 505-345-3975 (HA9 10 AN9) 01E8 EDB (Method 504.1) X (GasəiO\ssÐ) 82108 bodtəM H91 Remarks: (Klno ese) H9T + 38TM + X3T8 (1208) a'8MT + 38TM + X3T8 RCRA Imestration-Grays 6 4 G Q \mathcal{Q} Time ١ 2 2 Sampler: Though Haying <u>U</u>h:h| Preservative □ Rush Norn Nov Nach 362 H,554 HNOZ Poly HNO HC Turn-Around Time email or Fax#: Kelly, Kobindon C. Whr. Con Project Manage Project Name: Client: Western Lefiliary Southwest har Extandend Type and # Container E) VOAS Oftween (5) Safe C) Palu O) Poly 1) Poly 202 Received by Project #: © Level 4 (Full Validation) Sample Request ID 10 Refine Bloomfield NM 87413 Chain-of-Custody Record FB-040909 Mailing Address: 50 Real 4940 Phone #: (SDS*) 633 ~ イレレ であった Bloomthel Relinquished by: □ Other Relinquished Matrix 7 128 Time QA/QC Package: EEDD (Type) Time: Time: Accreditation □ Standard O NELAP Date 49/9

Air Bubbles (Y or N) **ANALYSIS LABORATORY** HALL ENVIRONMENTAL if necessary, samples submitted to Hall Environmental may be subcontracted to difter aboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report Work Plan for anodyt 4901 Hawkins NE - Albuquerque, NM 87109 ころしての子母に Fax 505-345-4107 (AOV-imac) 0YS8 www.hallenvironmental.com Analysis Request 8560B (404) 8081 Pesticides / 8082 PCB's Anions (F,CI, NO3, NO2, PO4, SO4) - دا ادالها Tel. 505-345-3975 (HA9 to AN9) 01:E8 EDB (Method 504.1) PH Method 8015B (Gas/Diesel) Remarks: (Gas only) (1208) s'BMT + 38TM + X3T8 Project Name: INVESTIGATION 50 Ī į iğ. Time DAKN KELLY ROBINSON Date Date GROUP 3 □ Rush Preservative TRACY MeDH MeOH MEGH Nave 2012 Neck T None 2 Nave Tum-Around Time DUMPHE email or Fax#: KELLY . ROBINSON@ WNR.COMProject Manager: (3) Jay (Z) V (A) 3 Erre Standard Container 83 Jas (2) Eucorg Type and # C) VARY BY VIALS (B) Vlas (2) Encor (3) Jan 2) Eucol (3) Jay Received by: Sampler: Project #: ADC 22 - 12 (0-0.5') app WESTERN REFINING SOUTHWEST IN ADC 22-12 (37-35) Level 4 (Full Validation) AOC 22-12 (1,5-2,0) Acc 22-12 10-0.5' Sample Request ID Chan f-Custody Record BLOOMETELD, NM 87413 BLOOM FIED REFINERY Phone # 505.632.4166 **3efinquished by:** Mailing Address: 4990 N. S. C. Matrix Soll 1300 S Time MEDD (Type) QA/QC Package: 4) 13/9/0915 8 6911× 2 38 ☐ Standard 6 □ Other Date 13

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Anallysis Request	1,404,504,504,504,504,504,504,504,504,504	EDB (Methor ANG) 01:88 B310 (PNB BARDS D,RIOINA	×	×.	X	X	×.	X		× ×			Time Constant of the Constant
Tum-Around Time: W Standard	GROUP 3 4901 Project #: Tel.	Kelly Kobinson Sampler: TRAY PAYNE Sampler: TRAY P	Preservative Type BTE	-1) (ZVIP) MEDIA -5	(2) Eucon None -5	War Nove -5	CENIALS MEDH - 6	(3) VOM.) Hel -7	HC)	Nove	(2) Pals HND2/Nant		18 Allaba	Date
Symmest Inc.	BLOOMFIELD, NM B7413 Phone #: 505-632-4166	ax#:Kellx.Robinson@WINR.loH :kage: rd	Date Time Matrix Sample Request ID	4/13/9 1210 Soil Acc 22-12 (36-37,75)			- 1- By Medy Blank (A Trio Blank	041309			T\$-54130-7	Burne	Date: Time: Relinquished by: Received by 1 1

COC 4 4 6 80	ANAL ENVIRONMENTAL	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	O ₄)	o esd o esd	10 ^{2,} F (G ₂ ,F (G ₂	+ TI 1004:1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	4 86 50 10 10 10 10 10 10 10 10 10 10 10 10 10	TM + X=TB TM + X=TB TM + Methor TPH (Methor BOB (Methor BOB (A) BOB (A) BOB (B) BOB (A) BOB (B) BOB (A) BOB (B)	×	X	X			×	×	×××	×	×		Remarks:		is serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analyti	
Turn-Around Time:	☑ Standard □ Rush	H	,	Project #:		roject Manager:	Key Darmery	Sample: TRACY PAYNE		sample heigher aftires as a second of the second	Container Preservative Type Type	(S) vogs HCJ	(1) VOA Nove - 1	O Poly Nach -1	(1) Poly HND2 -	White Nove - 1	(3) Jaw Nova - 2	(3) Eucer Nove - 2	(2) VIALS MEDH - 2	(3) Jan Novie - 3	(2) Eucor 1 -3	MedH) HC	Received by: UNIV (C) Date Time	Received by: Date Time	
Chair f-Custody Record	Clent: WESTERN REFINING SAITHMEST IN			M 87413	Phone #: 505.632.4166	email or Fax#: KELLY, ROBINSON@WNR.COMProject Manager:	QA/QC Package:		EDD (Type) EXCEL		Date Time Matrix Sample Request ID	4/13/9 1250 Ag FB-041309				→ → →	4/13/9 1325-Soil AOC 22-10 (0-0.5")		→	4/13/9 1335 Sqil Noc 22-16 (15-20)	=	→ → →	1 Ag, Trip Bland	Medicasi	Date: Time: Rélinquished by:	If nr sary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories

HALL ENVIRONMENTAL HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107	Metals (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) seticides / 8082 PCB's (VOA) emi-VOA)	Anions 8081 Pc 808 6 8081 Pc 8		Ottached analyte let
Tum-Around Time: Standard Rush Project Name: RCRA INVESTIGATION GROUP 3 Tel. 505-345-3975	KELLY ROBINSON Sampler: TRACY PAYNE MTBE + TPH (Gas only) MTBE + TPH (Gas only) ethod 418.1) ethod 418.1) ethod 418.1)	+ X3T8 5M H9T M) H9T		Date Time Remarks: O O Date Time
Chair, of-Custody Record Client: MESTERN REFINITION SOUTHWEST INC. BLOOMFIELD REFINERY Mailing Address: BLOOMFIELD, NM 87415 Phone #: 505.620.470.4166	ax#:KELLY. ROBINSON @ WNR. COM kage: If Level 4 (Full Validation) ype) EXCEL	Date Time Matrix Sample Request ID Med History		4/5/191500 Relinquished by: Date: Time: Refinquished by: Received by: Received by: Received by:

COC TOP OF CANADONIMENTAL	IS LABOR	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis	(VIr	Gas of	2885 02,1	HT + HE HE HE HE HE HE HE HE HE HE HE HE HE	BE out by a solution of the so	TEX + MT TEX	H H H H H H H H H H H H H H H H H H H	×	×	X	X	X	X	X	X		- X	X	Remarks:		iccredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytic-' ~port.
Turn-Around Time:	☑ Standard □ Rush	Project Name: RCRA INVESTIGATION	GROUP 3	Project #:				Provide Contraction		Sample Memberature // or from the contract of	Container Preservative Container Type and # Type	(5) VOAC HC -1	(1) VOA NOWE	Withhel Nave	(1) Poly Na 04 -1		A Poly MNO3 - ((UPOL, HND2 -1	The Me	3) VOR, HC/ -2	281/3) Jan -3	(2) Euroc 73	73	Posts Time	Received by: O Date Tinhe	itracted to other accredited laboratories. This serves as notice of this pos
Chain_f-Custody Record	Client: WESTERN REFINING SOUTHWEST INC	BLOOMETED REFINERY		R COMETED NA 97413		l col	QA/QC Package:		Type) EXCEL		Date Time Matrix Sample Request ID	4/14/9 8.35 -Ag Acc 22-12 (6W)								The Trap Blank	1 AC 22-14 (36-	,	÷	1500 Kelly Clussel	Date: Relinquished by:	if ner-sary, samples submitted to Hall Environmental may be subcontracted to other a

HALL ENVIRONMENTAL HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107	TPH (Method 418.1) EDB (Method 504.1) 8310 (PNA or PAH) Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8081 Pesticides / 8082 PCB's 8260B (VOA) 8270 (Semi-VOA)	3 X 3 X 3 3 X 3 3 3 3 3 3 3 3 3 3 3 3 3			gerves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytice that the sub-contracted data will be clearly notated on the analytice that it is not the sub-contracted data will be clearly notated on the analytic that it is not the sub-contracted data will be clearly notated on the analytic that it is not the sub-contracted data will be clearly notated on the analytic that it is not the sub-contracted data will be clearly notated on the analytic that it is not the sub-contracted data will be clearly notated on the sub-contracted data will be clearly notated on the sub-contracted data will be clearly notated on the sub-contracted data.
Turn-Around Time: Standard	Project Manager. KELLY COBTNSON Sampler: TRACY RANE Office Sample Tripe and # Type and # Type TPH Method 8015B (Gas/Diesel)				
Ch., A. J-Custody Record Client: WESTERN REFINING SOUTHWEST INC. BLOOMFIELD REFINERY Mailing Address SO ROAD 4990 BLOOMFIELD NM 87413 Phone # 505-632-4166	ax#: Kelly, Roemson @ WNR.com kage: Intervet 4 (Full Validation) ype) IEXCEL Time Matrix Sample Request ID	- Le Mecri Blank (2) VIA		Date: A Time: Relinquished by: All LSb0 All LSb0 Date: Time: Relinquished by	If necession is samples submitted to Hall Environmental may be subcontracted to other accredited laboratories,

A		TORY	; 			State of the State	The state of the s			(N	(Y or	Air Bubbles													eport.
	DE DE	ENVIKONMENTAL YSIS LABORATOR	-	Albuquerque, NM 87109	Fax 505-345-4107	/sis/Reguest	(†C)S'*C)d' ^z (308 "MO	ides /	O,7) anoinA 1808 1808 (VO) 1806 (Semi-		X	X	X	X	X	X	X	X	X		rched	clearly notated on the analytical r
,-]. []	ANALYSIS	www.hallen	4901 Hawkins NE - Alk	Tel. 505-345-3975	Anai	Ko (les	:- 0 0 8 0	Gea Sq.	58 (H)	4 801 4 448 4 50 AG 10	oorlieM H9T e rlieM) H9T orlieM) B03 o AN9) 0168 eM-8-A7167				$X \mid X \mid X \mid X$			X				7	* See Athao	Any sub-contracted data will be
Br. V			CATTON			The state of the s		802) s,8			10 10 10 10 10 10 10 10 10 10 10 10 10 1	-	ļ	1 -	-2	-2	2-	3	13	-3	7	Date Ime Remarks:	_ a	accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
	Turn-Around Time:	© Standard □ Rush	Project Name: RCRA INVESTIGATION	GROUP 3	Project #:		ect Manager:	_	MELLY KOBINSON	pler: RACY FAY	Sample Temperatures	Container Preservative Type and # Type	IARS None	2) Encore 1	(2) VIALS MEDH	3)JARS NONE	2)ENCORE 1	WINTH MEOH	3) JARS NONE	NCORE \	のはある MeOH	IALS MEOH	Received by:	Received by:	
	Jf-Custody Record	WESTERN REFININGSOUTHWEST INC INS		Q		12-4166	email or Fax#: KELLY. ROBINSON@WINR.COM Project Man		Tevel 4 (Full Validation)	Sampler		Sample Request ID Type	ACC 22-8(1.5-20)(3) JARS	(Z) El	V (2)	ACC 22-8(15-2.0) DUP (3) 3	(Z)	♦	ADCZZ-9(0-0.5) (3) 1	8(3)	₹ Ø	MEDH BLANK BYIALS	My HOUDU		I If necessary, samples submitted to Hall Environmental may be subcontracted to other
	Charl J-Cus	Client: WESTERN REFIN	BLOOMFIELD REFINERY	Mailing Address: 50 R	BLOOMFIELD. NM 87413	Phone #: 505 - 632 - 4166	email or Fax#: KELLY. R	QA/QC Package:	ard		d EUO (Type)	Date Time Matrix	4/3/69 1630 5011 1		→ →	4/13/64 1630 GILL	,	> >	1/13/01 [655 SOIL]		→	1	Pate: Time: Relinguished	Date: Time: Relinquished by	If necessary, samples submit

- CO- B- OF -	HALL ENVIRONMENTAL	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Last.	(*(&	Selo Selo	1/262 1/262 5/71 5/71	Hd (1) (1) (2) (1) (2) (2) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	T +	BE BE	TM etho etho etho MA Me (F,C)	TEX + TEX +	1 1 8 8 8 8	×	×	X X X X	X	X		×	×	X	×		Remarks:	de Hitched Ust	lies as antitio of this possibility. Any suft-contracted data will be clearly notated on the anothic	possioniny. Any succonfidence data will be deany inclaid on the arkayling
Tum-Around Time:		E Standar	RCRA INVESTIGATION	GROUP 3		Last.	Project Manager:	0021	MELLY KOBINSON	PACY PAYNE MB P		38.	TM	Container Preservative + + + Type and # Type	日日の一大		CAVIALS MOOH -5 -		ha	\sim		E)ENCORE 1 -1 -3	MeOH	-0.5') (3) JARS NONE -8 -4	h4	MeON -8-9	Received by Time Time	Received by: Date ' Time	according laboratories	acciented taboratorio
	Clart Clart	WESTERN KETATAG SOTHWEST, LAC.	BLOOMFIELD REFINERY	Mailing Address: 50 ROAD 4990	BONETELD NM 87413	Phone # 101.040 - 4100) š	OA/OC Package:	☐ Standard ☐ ☐ Standard ☐ ☐ Standard ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	□ Other	MEDD (Type) EXCEL			Date Time Matrix Sample Request ID	4/19/9/1705 Soul Dr. 27-9 (15-20)(2) lave		> >	4/13/01 1535 GOTL ACC 22-7 (1.5-2.0)(3) JARS		→	4/13/69 1525 Gozy Acc 22-7 (0-0		<i>→</i>	4/13/01615 BOIL BOC 22-8(0-0.			Time:	Date: Time: Refinquished by:	if no females enhanted to Hall Environmental may be enhanted to when	I II THE TRANSPORTER OF THE PROPERTY OF THE PR

The state of the s	1	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis	(les	Pies And DS.4	\ss5\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(). (). (). ().	2108 814 1504 1 208 1 20	borbod borbod Stall Stal	### Bubble ###################################		×	×	X	\times \t	X	スメ	X	×	XX		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X Co attraction Analyte last	40	's carvae as mytro of this meethlith. Any enth-order of the calculation and an about a short of the carbon of the
	Turn-Around Time:	de Standard □ Rush	Project Name: RCRA INVESTIGATION	GROUP	Project #:		()	1208		RACY PAYNE		MTB	Container Preservative + Type and # Type	(3) Jan Nove -1	(2) VIALS MEDIF -1	(2) Encor Nau		(2) VIALS MEDH - 2	@ None -2		(2) VMS MEOH -3	(2) Euge Nove -3	(3) ben Nowe4	COVIND MEDH -4	Nove	Date Time R	Received by Date Time	(
	Chail Jf-Custody Record	Client: Western Refining Southwest Inc	ERY	Mailing Address: 50 ROAD 4990	74 13		email or Fax#: Keny. ROBINSON@WINR.COM Project Mana	QAVQC Package:	☐ Standard (Full Validation)		(a EDD (Type) + XCH		Date Time Matrix Sample Request ID .	4/4/9 1410 Soil Acczz-1060-0,51)			4/4/9 1425 Soil ACC 22-10 (1.5-2.0)			4/14/ 1440 Soil Acc 22-11 (0-0,5')		7	1/4/4 1445 Sout Act 22-11 (1.5-2.0') C	_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	U/15/9 150 Kellingwished by: R	Date: Time: Relinquished by:	If n 17 samples submitted to Hall Environmental may be subcontracted to other accredited laboratories

- 1	- is	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	O ₄)	0 ssə)) المرفود المرفود المرفود المرفود	B (C 1)	T + ≡ 13108 1814 1408 1408 1408 1408 1609 160	bo bo od objective	BTEX + MT BTEX + MT BTEX + MT TPH Methory TPH (Methory B310 (PNA Anions (F, C) R081 Pestic R081 Pestic R081 Pestic R081 Pestic	X	X		X	×		, X	***	×	**	×	×	Remarks: * See Attached ROST For	Mak 0,	Moun march 18.	If necessary samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. Received this possibility. Any sub-contracted data will be clearly notated on the analytical contracted data will be clearly notated on the analytical contracted data will be clearly notated on the analytical contracted data will be clearly notated on the analytical contracted data will be clearly notated on the analytical contracted data will be clearly notated on the analytical contracted data will be clearly notated on the analytical contracted data will be clearly notated on the analytical contracted data will be clearly notated on the analytical contracted data will be clearly notated by the contracted data will be clearly notated by the contracted data will be clearly notated by the contracted data will be clearly notated by the contracted data will be clearly notated by the contracted data will be clearly notated by the contracted data will be contracted by the contracted by
Turn-Around Time:	M Standard □ Rush ·	Project Name: RCRA INVESTIGATION	GROUP 3	Project #:		roject Manager:	KELY ROSINSON			Sample reminerative (see 5 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	Container Preservative The Type Transfer Type	(S) VO(4) HCJ -5	CIVOR None -5	4	3	C) Poly NooH -5	651 vors HCl -6	(1) VOIA Nove -6	(1) Awba Nove -6	(1) Poly HNO3 -6	4	GIVER HC/ -7	H	1 4/10/09 9	Received/by Date Time		racted to other accredited laboratories. Karin ves as notice of thi
C. A. ACustody Record	13	B. DOMFTELD REFINERY	Q	5	Phone #: 505.632.4166	email or Fax#: KELY, ROBINSON @ WNR.COM Project Manager:	QA/QC Package: ☐ Standard	Other S	Type) EXCEL		Date Time Matrix Sample Request ID	4/4/4/335 Ag FR-041409 (B					4/14/9 Neus Na EBS-841409				7	PLP BLANK	- Ag Medy Blawk	1 ISTO Helly Lolling	Date: Time: \Relinquished by:		If neces samples submitted to Hall Environmental may be subcon

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

GENERAL CHEMISTRY ANALYSES

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020 .
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

DISSITUTED Fe per AF 4/16/09

ANALYSIS LABORATORY Www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas\Diesel) TPH (Method 504.1) EDB (Method 504.1) 8310 (PNA or PAH) ROB1 Pesticides \ 8082 PCB's 8081 Pesticides \ 8082 PCB's 8260B (¥OA) 8260B (¥OA) CLUMAL	X X	X	X		X	X	XX	X	X	X	Remarks: * See Attached Prudyte Art		coredited laboratorir
Chain J-Custody Record WESTERN REFINITING SOUTHWEST INC Fraiget Name: RECOMPTED REFINERY Mailing Address: 50 ROAD 4990 BLOONFIELD, NM 87413 Project #: 505.632.4166	email or Fax#:Keux. Rosnascal@ WNR.00M Project Manager: OA/QC Package: Standard Other Calculation Standard Coher Date Time Matrix Sample Request ID Type and # Type	19 1135 Soil Acc 22-15 (1.0-1.51) (3) Jan		- (E) VIALS	4/15/9 1155 Soil (AOC 22-15(1.5-2.0) [3) Jan	2- (2) Eucore	2 - (2) VIALS2	1155 Soul AOC 22-15(1.5-20) Dup (3) Jau	(2) Eucor	1 V (2) VIAL)	- As MeOH Blank (DVING)	Date: Time: Relinquished by Received by Received by 1/10/09938	Time: Relinquished by:	If remains submitted to Hall Environmental may be subcontracted to other accredited laboratorir

		AALL ENVIRONMENIAL ANALYSIS LABORATORY	www.hallenvironmental.com	: - Albuquerque, NM 87109		Analysis				√ (\psi \ \psi \psi	slate Sebi (A \OV-	AN9) 01:88 BABDA (A.C.) Anions (A.C.) BOS1 Pestlo S260B (VO) S260B (VO) TO (C) Cycul Cycul Anir Bubbles	XX	×	/ X			X	X	××	×	×	X	×	ed for Metals	te Dist,	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
7	727	AA	AAAAA	4901 Hawkins NE	Tel. 505-345-3975		sel) uly)	388 01	, 30 30) H	9T - 831 (1.84	98 P	BTEX + MT BTEX + MT TPH Method TPH-(Worth TPH-(Method	X				×				*	X			Remarks: Spe Attached	_	possibility. Any sub-contracted
	6	□ Rush	INVESTIGATION	GROUP 3					NOSINSON	ACY FANE	0.00	Preservative Type	Nowe -5	Nave -5	Medy -5	HC) -6	None 6	Jone	HNO,	Na OH -6	HC/ -1	Nove ~ (8	Meot 8		1) (1) (2) (3)	Date Time	caredited laboratories. This serves as notice of this
	Turn-Around Time:	CIN Standard	مهرن		Project #:		Project Manager:	77	1	Sampler: IX	Sample Temper	Container Pre Type and #		×	(2) Vinguz	(S) MBS	() VOV ()	(1) Awber N	(i) Poly H	Poly	(3) VOAs	3) Jan N	2) VICAD M	(2) Euros N		Received by:	
	of-Custody Record	Client: VESTATING SOUTHWEST INCOMMENDED	BLOWEIELD REFINERY	O ROAD 4990		r. 4	ELLY. KORTINSON @ WINR. COM Project Manager.	Town A (Eull Volldeffor)	E LOVEI 4 (Full Validation)	EXCE		Matrix Sample Request ID	x1 HEC 22-15 (30-321) (31) ans		7	FB-641509					Ho Trip Blank	10c 22-15(34-36))	Clush	Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted to other a
	Chall	Ollent: VESTERN RE	Boweres	Mailing Address: 50	BLOOMFTELD	Phone #: 505-	email or Fax#: KEL	QA/QC Package:		EDD (Type)	1-15-X	Date Time Ma	1/15/9 1245 Soil	()	7	F/15/9 1315 Ra				\ \)	1/15/9 1340 Soil		>	Time: 9 (δδο	Date: Time: Relind	If necessary, sample

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis/Request	1 504.1) 10 504.1) 10 5, NO ₂ , PO ₄ , SO ₄) 10 6 8082 PCB's 10 6 7 10 6 7 10 7 10 8082 PCB's 10 7 10 8082 PCB's		×	×	×	X			Remarks: Attached anothy L list	or recorded.	b-contracted data will be clearly notated on the analytir
Tum-Around Time: The Standard Rush Project Name: RCRA LINVESTICATION CROUP 5 Project #:	Kelly Robinson Sampler: TRACY PAYNE Sampler: TRACY PAYNE Sampler: TRACY PAYNE Sampler: TRACY PAYNE Sampler: TRACY PAYNE Sampler: TRACY PAYNE Sample Helpersture Preservative Type Type Type Type Type Type Type Typ	(5) Vorte HCl -9	HNO	(1) Bey Nator -9	(1) Almber (Nove			7. \ 4/10/28 33		If ner samples submitted to Hall Environmental may be subcontracted to other accredited laboratories (
Chair of-Custody Record Client: Nestern Refining Southwest Inc. BLOOMETELD REFINERY Mailing Address: 50 ROND 4990 BLOOMETELD NM 87413 Phone #: 505.632-4160	ax#: Kelly. Rockyson @ WINR. Com kage: Td	Date Time Matrix Sample Request ID	4/15/9/1355 Ag EBS-041589			7 7 7			Mulg 1500 Kill Clubs	Date: Time: (Relinquished by:	If new samples submitted to Hall Environmental may be subco

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

Analyte ·	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium `	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

	es (Y or N)	Air Bubble												
HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com kins NE - Albuquerque, NM 87109 45-3975 Fax 505-345-4107	Jenno	£ 2+60	×			×			X				- L	
ENVIRONME YSIS LABOR environmental.com Albuquerque, NM 87109 Fax 505-345-4107	يزطف	100,000	\preceq			呇				_	_			analytic
IALL ENVIRONN INALYSIS LABO www.hallenvironmental.com ns NE - Albuquerque, NM 87: 5-3975 Fax 505-345-4107		V) 80928 98270 (Set	×	$\overline{\times}$	$\overline{\mathbf{x}}$	7		X	7	$\langle 1 \rangle$	/ ×		Attached for Metals	d on the
IRO IENTAL Inental.c rque, N 305-345	ticides / 8082 PCB's						$\widehat{}$			7				notate
SIS SIS vironme buquerc Fax 50	(*OS'*DO4'ZON'EON'IO'	∃) snoinA												clearly
Alb	Wetals 3-c. Altachad	и е ∨чэ н)	×			X	,		X					will be
w.ha	(HA9 10 A												-0	ed data
##LI ##LI ##LI ###LI ##################	(1.403 bod)		_			_			1	\perp	-	-	- 3	ontracte
Haw (505-	(Gas/Diesel) Dre, M/Rv.		\preceq			~	_		X	-	- -		- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	sub-a
4901	VTBE + TPH (Gas only)		\dashv		\dashv					-	+	-	arks:	\$ \$
	(1208) s'BMT + 38TN								_		+		Remarks:	iligisso
- Rush - INVESTIEATION GROYP 3	ZOBINSON CY PAYNE	e Harring	1	1	7	-2	7-	2-	\(\int \)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	η	Date Time	ories. Comment of this possibility. Any sub-contracted data will be clearly notated on the analytic
Rush CROYP		Preservative Type	Nove	ز	MeoH	Nove		Me OH	None	<u>=</u> عرب	1 /		7	redited laborate
Turn-Around Time: Troject Name: RCRA Project #:	Project Manager.	<u>.</u> #		0,1	(2) VIACS	(4) Jan	(z) Ence	_		S.	2) (I. g.)		Received by: Received by:	ontracted to other acci
Chair Jf-Custody Record Client: Western Reference Southwest Inc. BLOOMETELD REFENERS Mailing Address: 50 ROAD 4990 BLOOMETELD, NM 87413 Phone #: 505-632-4166	@WINR.COM		AOC 26-8(0-1.0')		->	Ac 76-8(0-10) DUP		>	ACC 26-5 (1.5-2.0)		M.OH Biggs		ll Element	samples submitted to Hall Erwironmental may be subcontracted to other accredited laboratories.
A REINER SEON SEON SEON SEON SEON SEON SEON SEON	GLA.ROB. EXCEL	Matrix	Ŗ		7	Soil		\rightarrow	$-i\hat{g}$			2	Relinquished by Relinquished by	samples subr
Chain f-C Client: NESTERN REP BLOOMETELD Mailing Address: 50 BLOOMETELD, Phone #: 505-67	email or Fax#: K QA/QC Package: □ Standard □ Other □ CEDD (Type)_	Time	900		7	1 6900	, <u>.</u>	`	2752		>		Time:	If neo
Client: Or Mailing Ac Mailing Ac Phone #:	email or F QA/QC Pa C Standa C Other C EDD (Date	6/31/	-	->	4/16/9		>			*		Date:	

HALL ENVIDONMENTAL	S	lenvironmenta	4901 Hawkins NE - Albuquerque, NM 87109	505-345-3975 Fax 505-345-4107	Analysis Request	(*0		ਰ 28 ਰ 28	(HA ** ON,e(or P.	HTPH (Methors 1908) ANG (PNA 8310 (PNA 8-Methors (F.C. 8081 Pestic (NO) 8260B (VO) (Semi Character) Character (Semi Character) And No Character (Semi Character) (Semi Character) (Semi Character) And No Character (Semi Character) (Semi Character	X	X		×	×	×	X	X			W. J. J. J. D.	outyt or metal	is serves as notice of this cossibility. Any sub-contracted data will be clearly notated on the analysis your
Turn-Around Time:	® Standard □ Rush	Project Name: RCRA INVESTIGATION	GROUP 3	Tel.		(Aju	(802°	TY (AOBINSON S (G	RACY (-AYNE P P		Container Preservative Type and # Type APPH APPH APPH APPH APPH APPH APPH APP	(S)VOAs Hq -6	Brons Nau -6			(5) MON HCI -7	(3) VOAS Nove -7	2	구 .	Z -	Deuco Nono		Date Time	
Chail J-Custody Record	Client: WESTERN REFINING SOUTHWEST, INC.	-	Mailing Address: 50 ROAD 4990		Phone #: 505.632.4166	email or Fax#: KELLY. ROBENSON @ WINR.COM Project Manager:	æge:	ard (Full Validation)	THOUSE TYPE		Date Time Matrix Sample Request ID	4/14/90945 By FB-041609				1245 Ag EBS-041609				Ulliela Incar alas Incar	1130 mi HULLO CION 32-36')		Time: Relinquished by	in the second second is the Hall Environmental may be as broaded to other according laboratorial laboratorial

(4) (4)

HALL EN ANALYS www.hallenvi 01 Hawkins NE - Albu	TEX + MTBE + TPH (Gas only PH Method 8015B (Gas/Diese PH Method 418.1) DB (Method 418.1) DR (Method 418.1) ORA 8 Metals Tions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) SR 8 Metals Tions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) SR 8 Metals TO (Semi-VOA)	іт ід ід (8) Я (8) (2) (3) (3) (3)					marks:	culy)	ty. Any sub-contracted data will be clearly notated on the analytica
Time: Rush TNVESTIGATION GROUP 3	Card Package: Card					Pate: Time: Relinquished by Received by: Date Time Remarks: 1/2/9 1500 Act.	Date: Time: Relinquished by: Received by:	If necessity and it is possibility. Any sub-contracted to the analytical properties of this possibility. Any sub-contracted data will be dearly notated on the analytical sub-contracted data will be dearly notated on the analytical sub-contracted data will be dearly notated on the analytical sub-contracted data will be dearly notated on the analytical sub-contracted data will be dearly notated on the analytical sub-contracted data will be dearly notated on the analytical sub-contracted data will be dearly notated on the analytical sub-contracted data will be dearly notated on the analytical sub-contracted data will be dearly notated on the analytical sub-contracted data will be dearly notated on the analytical sub-contracted data will be dearly notated on the analytical sub-contracted data will be dearly notated on the sub-contracted data will be dearly notated on the sub-contracted data will be dearly notated on the sub-contracted data will be dearly notated on the sub-contracted data will be dearly notated on the sub-contracted data will be dearly notated on the sub-contracted data will be dearly notated on the sub-contracted data will be dearly notated on the sub-contracted data will be dearly notated on the sub-contracted data will be dearly notated on the sub-contracted data will be dearly notated on the sub-contracted data will be dearly notated on the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data will be dearly not the sub-contracted data w	

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

rd Turn-Around Time: LINC W Standard C Rush Project Name: RARAL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Redulest Analysis Redulest	COSTNSON TEXT PAYNE THE + THB's (8021) TO FAH) TO FORM TO FOR	Container Preservative Type and # Type BTEX + MT BTEX + MT BTEX + MT BTEX + M BTEX +	(2) Eucae J - X X X	(2) VIAGO ME OH -1 X X X X X X X X X X X X X X X X X X	(2) Euca J -2 (2) VIAG MeDH -2	100	(2) Jans (2) (2) (2) VIPUS	Received by U1159	nay be subcontracted to other accredited laboratorie res as notice of this possibility. Any sub-contracted data will be clearly notated on the analyti
Turn-Around Time Standard Project Name: RCRA Project #:	Sobra Acy P	Container Type and #	(2) Eucoc		 	2 2	(2) Saus (2) Euror (2) ViPus (1)		ubcontracted to other accredited laboratorie
Chain of-Custody Record Client: Alestern Refinition Suthwest Inc. BLOMETELD REFINERY Mailing Address: 50 ROAD 4990 BLOMETELD, NM 87413 Phone #: 505-632-4166	email or Fax#: Kelly.Rosmison@WINR.@M QA/QC Package: Sampler: Relly.Rosmison@WINR.@M Sampler: Relly.Relly	San	1C ACC 22-1 (1.5-2.0')	1 Acc 22-1(0-0,51)		1 Acc 22-2 (0-0.5-1)(3) Jans (2) Emon	1 Acc 22-2 (1.5-2.0)	Relinquished by Chu W	amples submitted to Hall Environmental may be subcontracted to other ac
Chain of-Custody Folient: Client: Cli	email or Fax#: KELL : QA/QC Package: Standard Otther E EDD (Type)	Time	715/9 16/5 501	4/15/9 1600 Sail	→ →	1630 50,1	1640 Soil	Date: 7 Time: Relinqu Date: Time: Relinqu	If ne.

Air Bubbles (Y or N) **ANALYSIS LABORATORY** HALL ENVIRONMENTAL If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. 4901 Hawkins NE - Albuquerque, NM 87109 Methanol Blank - 9 + 8200/640 * See Attached Analyte List 200 K OF 2 www.hallenvironmental.com Analysis Request Pesticides / 8082 PCB's Anions (F,CI,NO₃,NO₂,PO₄,SO₄) Tel. 505-345-3975 (HA9 10 AN9) 01:E8 EDB (Method 504.1) PH Method 8015B (Gas/Diesel) Remarks: (Gas only) (1208) s'BMT INVESTIGATION QUIS 5 , Time RACY PAYNE KELLY ROBINSON Date GROUP 3 8 Preservative O Rush NONE 22-4 (0-05)(3) TARS | NONE HOPH (2) VIALS MEDIT Res. Acc 22-3(1.5'-2,d)(3) Jan Nove (2) I ME OH Me OH Turn-Around Time: email or Fax#: KELLY. ROBINSON @ WNR, CON Project Manager: Project Name:
RCRA 6 VIALS 2/EUC0-7 (2) ENCORE Ty Standard (DEWORK Type and # (2) Ences हि एषा इ 6) TARS Container MeOH Daw (Asyring Ing (3) Jan Project #: Sampler: Client: Western Refining Southwest, Inc. Dr. Level 4 (Full Validation) Sample Request ID Acc 22-3(0-0,5' Chain_f-Custody Record ADC 22-4 Mailing Address: 50 ROAD 4990 BOCMETELD, NM 87413 ō 505.632-4166 BLOOM FIELD REFINERY 3 Relinquished by: 5021 562L Matrix 页 -ig ب کی nes! QA/QC Package: CEDD (Type) Time 4/15/9 1710 1700 1700 ime: □ Standard Phone #: 16/01 4/15/A Date Q 4/IS/

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium`	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

. •	. *												,							— т	 r			· ·		
			ı						(M 10	<u>(Y)</u>	Pir Bubbles	<u> </u>				-				_					25
		1 2	 			4								<u>`</u>						\dashv						colect list
	E	<u> </u>				da _l				-	দ্	mh	-			\bigvee			اخز							7
				<u>ق</u>							1		长			X		[7		[3
_	12		! !	8710	07					<u> </u>		ime2) 0728				$\frac{1}{2}$			7				_			3
1	43	5 0	COM	Σ	541	st						(OV) 80928	- \			X	メ			Z	<u>.</u>	\Box		9	٢	0
	ENVIDORMENT	HALL ENVINCHEN AL ANALYSIS LABORATORY	www.hallenvironmental.com	Albuquerque, NM 87109	505-345-4107	. Analysis Request			700	0/5		SOS1 Pestic	 ,	X	~		^		_	$\stackrel{\sim}{\rightarrow}$			×		to Work-Plan	0
	05	2	ume	Inerc	× 50	IS Re						O,∃) anoinA 					\dashv		\dashv		-				4	2
	2	S	nviro	\lpuc	Fax	alysi		5 0				M & AAAA Q ay sqoiq ($\overline{}$			X	\dashv	_	_			٦	Je love
-	7	בַּוּ	ralle	1	5	Ang				<u> </u>		AN9) 0158	+			X			싀		_	<u> </u>				3
•		1 S	ww.	S NE	-397							EDB (Metho	1		•		\dashv		-	_		\dashv	\dashv		 ^	7-
~		Ì	. ≯	vkin	-345	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07	ZMZ				TPH (Methe							X	\dashv		귌	_		¥	3
`		- r	T.	4901 Hawkins NE -	Tel. 505-345-3975							rPH Methor					\dashv			\dashv	_		\dashv	\dashv	۵,	mag
				4901	Tel.	712 4 31						TM + X3TE	 					\dashv		1		\dashv	_	\dashv	ii j	<i>व</i>
	1.	J Ļ										TM + X3TE										_			Remarks	
		ı				SEE ST.			Ţ-										\dashv		7			\dashv	<u>ц</u>	
	·		Z										_	_	_	2	7	7	M	ω	0	7	7	7	Time Time	. jije
			NVESTIGATION										1	,	'	1.	1	,	1	1	1	1	Į.	4	<u> </u>	
			FA					•	يا إ	y M															ogte C	ate
)	ĺ	-B	7				í	NOCHTOO NOCHTOO										ļ	ł			ļ		ב י	
	1	Rush	15	N				į	30	-		Ze Ze	1		-	ر ،		<u> </u>			~				12	-].
		<u>~</u>	Z	Ž				İ	3 5		9	servat Type	2		, 0	2 Dave		0	207	۷	le04	3000	اد	る	7	
	Time:	_	1 1-4	GROUP		`	er:	С,	图台	do l		Preservative Type	2		Med	2	٠. ا	Medi	2		Š	2		MeDH	·	
		ard	E .	ď			ınag		7		jour.			2			ہو			8	2		0	-		
	Aron	anda	N. N.		# #		x Me	;			CO.	Container Fype and #	इ	3	2	3	3	_₹	Jan	3	25	3	5	¥ 2	à p	g p
	Ę,	☑ Standard	Project Name: RCRA		Project #:		Project Manager:	\geq	Sampler	001100	Sample lem	Container Type and #	(g) Jans	(2) Eucoe	G) VVALS	1/6	(2) Eucoe	(Z) Vuncs	3	(2) Eucore	(Z) VIMCS	حسارك	(2) ELLEONS	(2) VIALS	Received by:	Received by
	<u> </u>	J	<u>-</u>	\dashv	<u>-</u>		<u> </u>) (<u>@)</u>	igO.	•	1		<u>ල</u>	AOC 26-3 (1.5.2.0) (4) Jan	(2)	לא	AOCZ6-3(1.5-2.0) Dup (4) Jan	쒸					<u>«</u>	<u>«</u>
	ָ ס	H			13		MO;	A Control of Control of Control		1 1		Sample Request ID	ACC 26-3(0-0.5)			7.7.			(e.		ł	DOC Z6-4 (0-0.5'				.
	Ö	.21		Δ			IR.C	/- I: 4.	g Z			sent	0			15		l	.S-2	ł	-	Ó			3	
	Ş	ME		8	7	n	NMa		<u> </u>			Rec	-3(->	36			3(1)	.		7		\Rightarrow	Seem	
	V	15	H	7	()	99	SAG	7	‡ -			ple	126			ج ا		_	Ġ		7	٤			ol Ol	
	po	တို	Ä		NM 874	117	NS		ນ ວັ			òam	کر			ညွ			77			ڒ		9	$-\chi$	
	ıst	N.	出	Ş	Z	2	083	Ž	<u>-</u> E	日日		0,		-		4			100							ed by
	<u>ت</u>		M	50 ROAD 4990	A	0	K			1 10 21		Matrix	1.08 1.08		7	اتِ ا			_		اح	Sac		7	Relinquish	Relinquished by:
	4		9		<u>u</u>) : (ELL			X 山		. Ma	1			jā.						X		0	Relin	자 를
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Chail, of-Custody Record & Tum-Around	LY.	H	ress.		Õ	#: K	age:) (e)		Тіте	1250			138					\supset	325		5	2	Time: Relinquished by: 1 Received by W. Pate Time Sumuy te box Queolly
	ha	ER	为	Add	I	ੌτ)	Fax	Jack.	ב ב	Ę		<u> </u>	1			12						13,		0	Time:	iji e:
	٥	Clent: Western Refining Southwest Inc.	BLOOMETELD REFINERY	Mailing Address:	q	Phone #: 505.632.4166	email or Fax#: Keux. Robinson @WNR. LOM	QA/QC Package:	Standard	TEDD (Type)		Date	9/9		->	9/4						99		7	7/25/g	
		2	M:	Σ	团	띺	em	o [7		۵	4/10/9		, }	2/2					7	3				Date
													-									7				

Air Bubbles (Y or N) ANALYSIS LABORATORY HALL ENVIRONMENTAL If no examples submitted to Hall Environmental may be subcontracted to other accredited laboratorier examples as notice of this possibility. Any sub-contracted data will be clearly notated on the analytic examples 4901 Hawkins NE - Albuquerque, NM 87109 W × Refa to Work Pren Sw tables for audit Fax 505-345-4107 (AOV-imac) 07S8 www.hallenvironmental.com 2 30 Z 707 (AOV) 809S8 8081 Pesticides / 8082 PCB's Anions (F,CI,NO₃,NO₂,PO₄,SO₄) Tel. 505-345-3975 (HA9 to AN9) 01E8 EDB (Method 504.1) PH Method 8015B 81EX + MTBE + TPH (Gas only) (1508) s'8MT + 38TM \mathcal{D} 1 Time Time Project Name:
RCRA INVESTIGATION 8 Date Date RACY PAYNE KELLY ROBINSON GROVE 3 Preservative □ Rush 3 エのゴン NON M CH NOOH NOOH びエ Turn-Around Time: email or Fax#: KELLY, ROSINSON@ WINR. LOM Project Manager: Client: NESTERN REFINING SOUTHWEST IN PStandard Container C) Cuca (1) Amber Type and # A (J) ADC 26-4(4.5-2.0)(4) Jay 2) Volts 2MALJ EsV rab (1) Poly 3)/04 Sampler: () Poly Project #: Ercevel 4 (Full Validation) Sample Request ID MOH Blauk BLOOMFIELD, NM 87413 Chain_f-Custody Record EBS-04200 SLOOMFIELD KEFINERY Mailing Address: 50 ROAD 4990 Blank Phone #: 505-632-4166 Jrip - Adoles Relinquished by: Matrix Soil 1335 82 Time QA/QC Package: EDD (Type) <u>T</u> □ Standard □ Other 12/9 1299 Date

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium_	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium .	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

Air Bubbles (Y or N) ANALYSIS LABORATORY ... HALL ENVIRONMENTAL samples submitted to Hall Environmental may be subcontracted to other accredited laboratorier reseas notice of this possibility. Any sub-contracted data will be clearly notated on the analytic 4901 Hawkins NE - Albuquerque, NM 87109 Fax 505-345-4107 See Work Plew Grune www.hallenvironmental.com XX DEO Pesticides / 8082 PCB's Anions (F,Cl,NO3,NO2,PO4,SO4) Jable 1 Tel. 505-345-3975 (HA9 to AN9) 01E8 EDB (Method 504.1) X Remarks: (Vlno ese) HTT + 38TM + X3T8 * (1208) s'BMT + 38TM Project Name:
RCRA INVESTIGATION かー 3 3 N 000 Time Date KELLY ROBINSON Sampler: TRACY FAYNE GROVE 3 □ Rush Preservative 11011 MeDH 362 2 MOH MUSH Done TYU() FOX Tum-Around Time: email or Fax#: | SEL x. ROBINSON@ WNR.LDM Project Manager: (2) Eucord (2) UNAU M Standard 2)Eucre Type and # (4) Jans (2) (mare 3 VM/LS 1(4) ALLIEN (E)VIALS Container Acc 26-9 (1.5-20) (4) bu (2) VAGLS 4 /m Project #: WESTERN REFINENCE SUTHWEST INC (45-26) TrLevel 4 (Full Validation) Sample Request ID (2-0.5) (0-0) Chak of-Custody Record sale of the BLONGTELD, NM 87413 Mailing Address: 50 ROAD 4990 505.632.4166 SLOOM FIELD KEFINERY Acc 26-9 -d/ MOC 26-1 Pot elinguished by EDD (Type) EXCE Relinquehed So: 1 Matrix S. B Ŕ 8 **B2**2 955 1217 QA/QC Package: Time 8 Time: Time: □ Standard Phone #: □ Other Mode 4/20/9 Date 4/25/9 海流

4		KONMENIAL LABORATORY	: 							(N		səldduB ir	4												·	4	
T		ENVIKONMEN I ISIS LABORATO		60							100	Mary d	1		×			X			<i>X</i>			}		3	۱۲
ſ			E	Albuquerque, NM 87109	4107		_			((AOV	-imə2) 072	8 🔀					X			文				_	201	}
		2 2	www.hallenvironmental.com	ue, N	505-345-4107	Request						₹OV) 8092		X					X	×		X	X	$\langle \rangle$	•	-3 3	$\left\{ \left[\right] \right.$
	P		nme	dnerd		is Re	_					O,7) anoin										_		\mathbb{H}	خ	م م	,
i	1		enviro	Albuc	Fax	nalys					.	ek e Ano			-	X		X	_		X			+		آ- کی	\hat{T}
	\ .	HALL	w.hall	빚	975	Ψ.						ANG) 018				_									ı	Worl Pla	3
	K	V Z L V	**	/kins	345-3			07				DB (Metho	,					4 /	_		5.7			\perp			<u>}</u>
1	J.	7 _	d'	4901 Hawkins NE -	Tel. 505-345-3975	a a						PH Methoo			X			X			X			+		20	
	3			490	H T							TM + X3T													Remarks	/0	
				_			(1	805) s'8	IMT	. + 38 Walker	TEX + MT	8												Ren		_
Canada.			LINVESTIGATION	7	-				NOSNI	AYNE		0.4743	5	5	5-	5	5-	7-	9-	9 -	7-7	1	7	90	Date Time	Date Time	
	Time:	I 🗆 Rush	e: Invest	GROUP 3			ager:	C	XOB.	RACY F		Preservative Type	Bork	77	None	HNOS		Neve	→	MedH	Nove	→	MEDIT	TWEST	4/1/12		
	Turn-Around	12 Standard	Project Name:		Project #:		Project Mana		KELLY	Sampler:	Sample Feat	Container Type and #	(1) Ausber	(E) NOARS	(3) VOAS	CAPOLY	albery	مسمار بال	(2) Encore	(2) VARUS		(2) Euch	Celvine	2 VAI. 5	Received by:	Received by:	3
	Chail f-Custody Record	Client: Western Refining Southwest Inc				Phone #: 505.652.4166	email or Fax#: KELLY. KOBINSON @ WNR. COM Project Manager:	ige:	ard IV Level 4 (Full Validation)		(Jedd (Lybe) ボメCドー	Date Time Matrix Sample Request ID	4/20/9 MS Ag FB -042009				* * * *	149 1230 Soil BOCZU-210-0.51			4/12/9 1240 Sor NOC 20-2(15-2.0)			MeoH Blank	àce	Date: Time: Refinquished by:	and before the contract of the

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

Analyte	Analytical Method							
Total Dissolved Solids	SM-2540C							
Bicarbonate	SW-846 method 310.1							
Chloride	EPA method 300.0							
Sulfate	EPA method 300.0							
Calcium	SW-846 method 7140							
Magnesium	SW-846 method 7450							
Sodium	SW-846 method 7770							
Potassium`_	SW-846 method 7610							
Manganese	SW-846 method 6010/6020							
Nitrate/nitrite	EPA method 300.0							
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+							

(N no Y) selddu8 niA Table **ANALYSIS LABORATORY** HALL ENVIRONMENTAL Refer to Work Plan Summi or matal analyte first 4901 Hawkins NE - Albuquerque, NM 87109 X Fax 505-345-4107 X (AOV-ima2) 9270 www.hallenvironmental.com Coc 1 K X × 8081 Pesticides / 8082 PCB's Anions (F,CI,NO3,NO2,PO4,SO4) * slats Metals * X Tel. 505-345-3975 (HAY 10 ANY) 01E8 (1.408 bodieM) X ≻ + 38TM 4/4/01,035 RCRA humotraphon-broup 3 1 d 7 3 ú 7 ١ ١ j □ Rush Preservative Narch Sake 302 2 2002 Me OH tracer MeDH MeDH Medy Turn-Around Time: . Rebinson C. Wing com Project Manager. Project Name: Blomfield Refinery 1000 B College Container Type and # いめろくら Co Encore (Z) VIALS 2) Euros (2) Encos (3) Joseph Received by: (E) 2) VIBUS EVIALS. 3) Jans (3) Jan Sampler: Project #: AOC 24-1 (1.5-2.0) ACC 24-2(1,5-2,0) Litevel 4 (Full Validation) AOC 24-1 (0-0,5" 8748 Sample Request ID AOC 24-2 (0-0,5' Chain-of-Custody Record Mailing Address: So Road 4990 2011P-ユ ス Cllent Mestern Re Girily 2elfnquished by. (032 Bloomfield Excel Relinquished □ Other Matrix Soil T. Seil Ŝ QA/QC Package: 00s1 Time 930 email or Fax#: (Type 949 ğ Accreditation Time: Time: ☐ Standard O NELAP Phone #: Date 123/9 9/64/6 C 4.123/ 153

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com kins NE - Albuquerque, NM 87109 45-3975 Fax 505-345-4107	Air Bubbles (Y or N)							mm
NMENT SORAT om M 87109 4107	Cyanide		X		X	120		
M 87	(AOV-ime2) 07S8		X		X	X	T X	1 3 E
TRONNS TRONNS ELABO mental.com erque, NM 87 505-345-4107	(AOV) 8260B	XX		XX	次	XX	18	Refer Smith
S L	8081 Pesticides / 8082 PCB's							1 Row 8
ENVIRONME YSIS LABOR environmental.com Albuquerque, NM 87109 Fax 505-345-4107	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)							
	★ slasteM 8 ASIO	· 	ベ		X		X	Des des miles
HALL ENVIROR ANALYSIS LABG www.hallenvironmental.com Hawkins NE - Albuquerque, NM 8 505-345-3975 Fax 505-345-41	EDB (Method 504.1) 8310 (PNA or PAH)		-			+		2 3 1
HAL ANL www. wkins NE -345-39'	COW (1:01+ DOLLDIN) 1111						1	T T Town
	(Gas/Diesel) HPT Method 8015B (Gas/Diesel)			\dashv			 X	
490.	BTEX + MTBE + TPH (Gas only)						 	arks:
	BTEX + MTBE + TMB's (8021)							Remarks:
Grap 3	1	かか	2	9-1-	1-1		000	7 1035 Kemarks: 7 1035 Kemarks
6	Permis							Date Date
ne:	2 Se P	MeD#	7	Nove Nove	Medik	None	Marie	Mos. L
und Ti	der der der P		\vdash			9 7 5	3 9 0	
Turn-Around Ti To Standard Project Name: RCRA- WY Project #:	Project Mana Sampler:	(Z) (MC)	wa ((2) Encor	3) Jaw (2) VIALS	(3) Jan	(2) Luck	Received by: Received by:
			9	$\overline{}$	63			Abcontra
Chain-of-Custody Record Western Refinity Sections Inc. Bloow Hold Refinery 18 Address: 50 Road 4990 Bloomfield NM 87415 ## (505) 1032-41166	Kelly, RobinsonCwnr. cor Project Manager DLevel 4 (Full Validation) Sampler: Troc Excel Matrix Sample Request ID Container Pre	74-5(0-0,5'		(1.5-2.0	Aoc 24-4 (0-0,5'	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Received by: Refinquished by: Received by: Received by: Received by: Received by: Received by:
dy R Refuglier	MSON (FL (FL mple F			Acc 24-3	1-42	D 04 700		20 C
Hain-of-Custody Lesten Refinity Ser Bloow/Hold R Address: 50 Road Bloomfield NM # (505) [032-41]	Sar	₹		J QC		1 3		ääääääääääääääääääääääääääääääääääääää
Sign de la la la la la la la la la la la la la	Colly, R	 	╁┈╢	$\overline{}$				Relinquished by: Refinquished by: lamples submitted
5 3 5 G	Matrix Matrix	- R		3) Kg	7	17	Selinqu Selinqu Imples
hain-of Esten Reserved Bloom		- -		2	1030	75		2
# (2) B (2) B	Hation Tir	1600		99	(8)			Time:
Chain-of-Cus Client Westen Pekiliu Blood Hisk Mailing Address: 50 R	email or-Fax#: QA/QC Package: Compared Accreditation Compared NELAP Government Time Date Time	6/62/4		2/9	36	200		9
O ∑ ā	5 G Q Q Q	**	1 1	67/h	Who was	4/3	[-	V C3

Air Bubbles (Y or N) **ANALYSIS LABORATORY** HALL ENVIRONMENTAL If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as potice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. Tables for Metado 1 is COC 3 2 * Refurb Wark PlanSum 4901 Hawkins NE - Albuquerque, NM 87109 × Fax 505-345-4107 www.hallenvironmental.com Analysis Request X 8081 Pesticides / 8082 PCB's Anions (F,CI,NO₃,NO₂,PO₄,SO₄) Tel. 505-345-3975 (1.403 bod9eM) 8G∃ (GaseiQ\zso) 83108 bodteM H91 Remarks BTEX + MT8E + TPH (Gas only) + TMB's (8021) RCRG Investigation - Goys 9 Time Haulog 1038 Chinator □ Rush Preservative MedH A CAMP OF THE PROPERTY OF THE PARTY OF THE P (2) Ewal None イところ AC 24-4 (1.5-2.0) DUP (ENVIRU) MEDY -{3-i-Turn-Around Time: 20 bins on Charid Project Manager Project Name: 山**Standard** (2) Vices Container Type and # (3) Jan Project #: Sampler Sextampt / 10 MeDH Blank Level 4 (Full Validation) NM 87413 Sample Request ID Chain-of-Custody Record 41166 Client: Western Keffun Bloowfiel d EXCE □ Other Matrix Bloomfor Mailing Address: 585 QA/QC Package: Time ₹0 ₹0 (Type) email or Fax# Accreditation ☐ Standard O NELAP Phone #: मिट्यीन Date 4/2/4

Analyte	Analytical Method
والمتحدد المتحدد المتحدد والمتحدد والمتحدد والمتحدد والمتحدد والمتحدد والمتحدد والمتحدد والمتحدد والمتحدد	
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium`	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

. :		AL XX							(N	V Or	Air Bubbles															
		AALL ENVIRONMENTAL ANALYSIS LABORATOR		60		The second second				طو	Cham					×								Lmr	0.87°	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
r	N	Ĵ Ō	· E	1871	1107						-imə2) 0728	-		×			-				\dashv	\dashv	┪	્રક્	ø	he ans
•	"] [LABOR	<u>8</u>	ΣŽ	345-4	lest				(4OV) 80928	~		-									1	3	13	ed on t
	Ó	<u>ال</u> كا ح الم	www.hallenvironmental.com	Albuquerque, NM 87109	505-345-4107	Request	,	PCB:	3808	/ səp	8081 Pestici	ļ,												et to Work Plan Sum	- Giraleyse	y notat
`			iron	mbno	Fax	lysis	(†O	S,509,	SON,	εOΝ'	IO,7) anoinA												<u> </u>	7	\ <	clear
	L	<u>י</u> ג	llenv	- AB		\nal					RCRAS Me				X										35	will be
	K	į	w.ha		3975						AN9) 0188											\perp	4	کـ 0	toble to	ed data
7	ij	A S		kins	345-3			האצט			EDB (Metho	<u> </u>							_			_ _	4	十	عم ر	intracte
	"			4901 Hawkins NE	505-345-3975			_			TPH (M otho	ļ	×						\dashv			_	\dashv	4	4	sup-cc
	£.			1901	Tel.						BTEX + MTE									_	{	-	<u> </u>	<u> </u>		/. Any
	**************************************			•				·			BTEX + MTE					_				\dashv		╌┼				ssibilit
		1					.,,		13									_		\dashv	\dashv		19	<u>2</u>		this po
			2					İ	A STATE OF THE STA			1	1-	_	-	_	7	7	7	7	1		Time	528	ine ine	ofice of
			H						1						'	1	١,	ı		-/	1		ļĒ		=	S as no
	1.		¥					-7	삘		是是												de C	124/169	Date	serve
) ')		H	3				Ő	AYN															3		
		C Rush	NVESTIGATION	GROUP				ROBINSON			ative		Ö	4	,	7)	1	,	E		4			accredited laboratories.
	ai	0	Ä	8				0	K		Preservative Type	HC	Nove	Nove	4NC	101	HC HC	200	KINT	HNO	S.		1	- 7		# B
	Ë		ار ا	J			ager:	P	N X							2	工	Z	_	工			\downarrow	2		conedit
	Turn-Around Time:	@ Standard	Řď. ✓		#		Mane	7			Container Type and #	A	4	(1) Amber	77	 لاء	<u>-£</u>	7	49	3	<u>-</u> 3	- [\	٤		jë	
	n-Ār	Star	Project Nam RCRA		Project #:		Project Man	Keny	Sampler		ontai pe aı	S)VOYS	Vov	Z I	May (1)	WPOL	द्भावा(३)	CO VOD	(1) Amber	(1) Poly	C) ABLY		Received by:		seerved by:	ted to c
				•	Pro		F.	<u>×</u>	Sar	5 8		(S)	(1)	0	\odot	\odot	رط	9	9	থ	2		Rec	7	80 Y	contrac
		13	.	i			HO,	(noi			₽													۲۱		odvs ec
	ord	1					JR.C	alidat			lest						6							5		il may t
	Ö	ME		9	3		M	Tercel 4 (Full Validation)	İ		Sample Request ID	FB-042109				\rightarrow	692240				_			3	* 1	nmenta
	X	Ę	K	49	87413	3	ON O	4 (F		Ì	e F	岁				Í	70				T		\downarrow	9		Enviror
	od)	S	Ä	A	60	41	NSO	evel /		V	ami	3 ~ (İ		1 1				- }		1	-	-	o Hall
	Ist	Ä	山	Ŕ	NN	2	8	Z	Ī	ป	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	江					FB.						<u>.</u>		Sa pa	nitted t
	J-Custody Record	Í	X	0	~	6	\ <u>\\\</u>			EACE EACE	Matrix	he,				\rightarrow		_			لح		Relinguishe	3	zeinduisned by:	ndus s
	1 1	8	日	Ñ	7	Ϋ́	J				8						\$						Rei	J.		sample
	Chain	3	BLOOMFIELD REFINERY	dress	H	505-632-4166	x#: k	kage: d		ype).	Time	isto				<u>ج</u>	0451		_	\dashv	>		60	38	ōj.	if necessary, samples submitted to Hall Environmental may be subcontracted to other
	5	35	Ó	g Ad	Š	#	or Fa	Pad Indar	ı eğ	$\tilde{\Xi}$		19 is					51 6		_	_	\dashv		Time	5	ë 	¥ nece
	_	Client: MESTERN REFINING SOUTHWEST INC	囚	Mailing Address: 50 ROAD 4990	BLOOMFIELD.	Phone #:	email or Fax#: KELLY ROBINSON@ WNR. COM	QA/QC Package: □ Standard	Other	zieru (Type) _	Date	/h/h	_			->	12,69	-	_	-	>		Date:	13/21	are:	
		إحس		_	-	14	(a)	ں ں	∟ (ej	ŀ	7			 		1	. !	1	ı	I	I	۵	- I	-	

Air Bubbles (Y or N) ANALYSIS LABORATORY HALL ENVIRONMENTAL 4901 Hawkins NE - Albuquerque, NM 87109 rves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytic Fax 505-345-4107 (AOV-ima2) 07S8 www.hallenvironmental.com COC 1 0 2 2 (AOV) 809S8 Presso Cal 8081 Pesticides / 8082 PCB's Anions (F,CI,NO₃,NO₂,PO₄,SO₄) 🏃 Anal Tel. 505-345-3975 (HA9 10 AN9) 01:E8 (1.402 bodfeM) BOE g Remarks: MTBE + TPH (Gas only) * BTEX + MTBE + TMB's (8021) 035 M \mathbb{N} 3 Time 7 Project Name:
RCRA INVESTIGATION 4/24/69 TRACY PAYNE Date KELLY ROBINSON GROUP 3 If remaining the submitted to Hall Environmental may be subcontracted to other accredited laboratoric Conference Conferen C Rush Preservative TO CAT TO N FINA ZEST 302 Now Zare コープ グラエ ロエ つば フ エ Turn-Around Time: email or Fax#: Keux. Roguson@ NNR.Cox Project Manager. Make Received by: Container Type and # Standard 25 (s) VOR3 (i) Awber (C) PAMBES Gy Vons E 10 10 12 رة المام (را s fron (13 Sampler: (1) Poly Project #: **D S** Level 4 (Full Validation) Sample Request ID Client: WESTERN REFINING SOJIHWEST INC. Chain_f-Custody Record FBS-042209 MeOH Black EBS-04409 Tris Blank BLOOMFIELD, NM 87413 Phone #: 505.632.4166 BLOOM FIELD KEFINERY OVEDD (Type) EXCE Mailing Address 4990 Matrix St. 49 AB 1520 1520 QA/QC Package: Time <u>8</u> □ Standard □ Other 124/pg 6/67/ Date

(N no Y) selddug riA **ANALYSIS LABORATORY** 102 2 OF 3 HALL ENVIRONMENTAL This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. 4901 Hawkins NE - Albuquerque, NM 87109 Fax 505-345-4107 (AOV-ime2) QTS8 www.hallenvironmental.com (AOV) 808S8 8081 Pesticides / 8082 PCB's Anions (F,CI,NO₃,NO₂,PO₄,SO₄) Tel. 505-345-3975 (HA9 10 AN9) 01:68 EDB (Method 504.1) (PH Method 8015B (Gas/Diesel) Remarks: (Gas only) STEX + MTBE + TMB's (8021) Project Name: RCRA INVESTIGATION 33 Time AYNE KELY ROBINSON Date SROUP 3 Preservative 2 if necessary, samples submitted to Hall Environmental may be subcontracted to other acceptited aboratories. □ Rush RACY Tum-Around Time: email or Fax#: KELY. ROBINSON@WINR. OM Project Manager. WESTERN REFINENCE SOUTHWEST INC E Standard Acc 23-1(52-53) (2) Eucore Type and # Container 3 Vial 3) Jans Sampler: Received by Project #: E Level 4 (Full Validation) Sample Request ID Chair of-Custody Record Mailing Address: 50 ROAD 4990 BOOMETED REFINERY Phone #: 505.632.4166 BLOOMETELD, NM 87413 四次日 Relinquished by Matrix Soi EFEDD (Type)__ QA/QC Package: Time 15/0 1/22/9/150 Time: □ Standard □ Other 0 Date

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas/Diesel) TPH Method 504.1) B310 (PNA or PAH) 8310 (PNA or PAH) Anlons (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Anlons (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8260B (VOA) 8270 (Semi-VOA) 6270 (Semi-VOA) 7 (AOA) 64 (Yor N)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14/69 * Remarks: 14/69 * Refer to Work Mac Summy Time town for Watall With.
Client: Western Refining Southwest Mailing Address: So Road 4990 Bloomfield NM 87413 Phone #: (SOS) (030-4116)	d d on []	9 1750 Ag EBS-042307 (1) VoAs (1) Auber (2) Poly (3) Poly (4) Poly (5) Poly	Nowe HAD HACL	shed by. Received by: Received by: Received by: Date Da

Air Bubbles (Y or N) Goola #1 Golf 42 **ANALYSIS LABORATORY** HALL ENVIRONMENTAL 텇 y, samples submitted to Hall Environmental may be subcontracted to other accredited laboratoric serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytic 4901 Hawkins NE - Albuquerque, NM 87109 Fax 505-345-4107 (AOV-ima2) 07S8 Analysis Request www.hallenvironmental.com (AOV) 809S8 8081 Pesticides / 8082 PCB's Anions (F,CI,NO3,NO2,PO4,SO4) Tel. 505-345-3975 (HA9 10 AN9) 01 E8 EDB (Method 504.1) (1208) s'8MT + 38TM + X3TE -(Seep 3) 9 5 7 E E पीयप्राध्य Payne O Lobrer RCRA INVESTIGATION □ Rush Preservative MEDH Nore **インド**2 する。そ Sampler: Jrace Turn-Around Time: Project Name: asten Be finis Southwat la FStandard Container
Type and # B) Encor (2) Energe co Viah (2) Mal AOC 25-1(0-0.51)(3)Jaws (1.5-2.01) (3) Law Project #: Excevel 4 (Full Validation) Sample Request ID Bloomfille Refinery Chain-of-Custody Record 50 Road 4990 632-4166 Abs 25-1 Bloomfield NM Relinquished by: □ Other Exec Matrix Ž 1.800 (Sec.) email or Fax#: 大り Mailing Address: Phone #: (\$05) 0/0/ Time Date: Time: QA/QC Package: RAEDD (Type) Accreditation Time: □ Standard O NELAP <u> 4</u>22/4 Date Date:

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
'Vanadium	SW-846 method 6010/6020
Zinc .	SW-846 method 6010/6020

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium`	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

	(2) (3) (3) (4)	HALL	www.hallenvironmental.com	4901 Hawki	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	O [†])	o sac eid\se	10 ^{2,} F	+ T + HA:	BEE 480 od 5 od 5 od 5 od 5 od 5 od 5 od 5 od	TM + X∃TB TM + X∃TB TM + HqT T	X X IX X	X	X		X	×	XX X	× ×	× ×	XXX	X		* Remarks:	73	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
The same of the sa	Turn-Around Time:	PStandard □ Rush	Project Name:	RURA INVESTIGATION-GRP 3	Project #:		oject Manager:	X X X X X X X X X X X X X X X X X X X			Samiestende and Same and Same and Same and Same and Same and Same and Same and Same and Same and Same and Same	Container Preservative Type and # Type	(3) Jas Nove -1	(2) Eucol 1 - 1	2) Viak Me OH	3) we None -2	2) Eucol 4 - 2	MedH	Blau None -3	→	Wal MeoH 3	B) by Nove -4	Derest J	MeOH	Scelved II. Date Time	Received by: Dâte ' Time	accredited laboratories.
	Chain-of-Custody Record	Client: Western REFENTING SOURWEST IN Standard	BLOOKETED, NM	%	BLOOMFIELD, NM G7413	Phone #: (505) 632-4166	email or Fax#: KEUN, ROBINSON@WNK, COMProject Man	OA/QC Package:	(10000000000000000000000000000000000000		CLÉDD (Type) EXCEL	Time Matrix Sample Request ID	1/23/9 1410 Soil Sway 5-1 (0-0,51)			1420 Soil Sumus-16.5-20) (3	2)	7	1430 Soil Sumus-2(0-0,5')			1435 Soil SumuS-2 (15-20)		→ →	Time: Rehydusheapy:	Date: Time: Relinquished by: Re	If necessary, samples submitted to Hall Environmental may be subcontracted to other

Air Bubbles (Y or N) ANALYSIS LABORATORY HALL ENVIRONMÉNTAL Coc 2 & 3 4901 Hawkins NE - Albuquerque, NM 87109 I and this possibility. Any sub-contracted data will be clearly notated on the analy Fax 505-345-4107 (AOV-ime2) 07S8 www.hallenvironmental.com w to previous (AOV) 808S8 8081 Pesticides / 8082 PCB's Anions (F,CI,NO3,NO2,PO4,SO4) Tel. 505-345-3975 (HA9 10 AN9) 01E8 EDB (Method 504.1) Code #2 X Remarks (1508) s'8MT + 38TM + X3T8 Project Name:
RCRA INVESTIGATION 424 LEAST RANG KELLY ROBINSON JACOUP 3 Preservative amples submitted to Hall Environmental may be subcontracted to other accredited laborator MeOH Nave 2000 3002 (2) Unaly MeDH MCDH TO Y 2007 Chain-of-Custody Record Tum-Around Time: Project Manager: Client: WESTERN REFINERS SOUTHWESTIVE B Standard (2) Ecoe 2) Euco Type and # Suran 5-3(1.5-2.0) (3) Jan 5-4/i.5.2.0) p-2 (<u>z</u>) as Eucoc Container 2) Vials (2) Vials (2) Vials مطري Sampler: (0-0-5)(13) Jan Project #: (Full Validation) email or Fax#: Key 4. Rostuson @WNR.com Sample Request ID Sumu 5-3 (0-02) N Sec BLOOMFIELD, NM 87413 Shunds Shunds Mailing Address; 50 Road 4990 Sum Phone #: 505・632・4166 SKEW ロメの配し BLOOMFIELD, NM Refinguished by □ Other Matrix 20,5 Š Ñ N. 959 Hyp 145 1200 Time QA/QC Package: CLEDD (Type) Accreditation Time: ☐ Standard O NELAP Date

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Ariallysis Request	TPH (Wethod 504.1) EDB (Method 504.1) 8310 (PMA or PAH) Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8250 (Semi-VOA) 8270 (Semi-VOA) CLyswid Air Bubbles (Y or N)		< ×	X		te to Work Ray Soury ables for Westall accountage Rist.
ime: Rush VESTICATION—GRP3	Preservative Type Type Type Type Type Type Type Typ	Nove - 9	MeDH	CZ) VIALS MEDH10		L:20 U 2 U 3 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chain-of-Custody Record Client: WESTERN REFENTING FOOTHWESTENE Standard BOOMFIELD, NM BLOOMFIELD, NM 87413 Project #: Phone #: 505 - 632 - 4166	ax#: Kali Y. Robinson@Wink.co rd Level 4 (Full Validation) ion Cither ype) EXCE C	123/9 1500 Soi) Sumus-5 (0-0.51)	J. 1. 11 11 101 J	- Wiell MeoH Blank		Date: Time: Refinquished bf: Date: Time: Relinquished bf: Received by: Received by: Received by:

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335,3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickei	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

	Υ	rAL opv						(N)	o Y)	səlddu8 niA												3	٠	ا
`	1 700 Ceres 1	HALL ENVIRONMENTAL	4901 Hawl	ا م	Analysis Request	ADiesel) پرفهی پرفهی پرفهی	888 50) 500 500 500 500 500 500 500 500 500	H9T 4 (1.81) (1.40) (HA % SON,e(BE - 38 180 190 190 190 190 190 190 190 19	TM + X=T8 TM + X=T8 TM + Methor TH (Methor HqT AM9) 01E8 AM9 01E8 AM9 01E8 CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,	× × × × × × × × × × × × × × × × × × ×	X	×		X.	×	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	*/>	X		X	Remarks: * Refer to Work Plan Summa	Tables for Metal analyte last	is serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analy port.
	Turn-Around Time:	⊠-Standard □ Rush	Project Name: RCRA INVESTIGATION - GREWP 3	Project #:		lager:	The sales and	Sampler I row Payne	Sample From Contract	Container Preservative Table Type and # Type (Type)	B) law Now	(2) ELLONG J 41/41 - 21	WINALS MEDH	3 Jan Nove -2	(2) Eurol 1 - 2	WARS MCOH -2	(3) Say Nove -3	->	(2) VIACO IMEOH -5	1 .	Меон	Received by: Date Time	Received by: U Date Time	accredited laborator
	Chain-of-Custody Record	١٧	Mild Repuers o Road Org 90	انها	~ 1	OA/QC Package:	☐ Standard (Full Validation)	Accreditation	CLÉDD (Type) Excel	Date Time Matrix Sample Request ID	4/23/9 17-20 Soil Acc 22-5(0-0.5)		^ · · · ·	1730 Soil Act 22-5 (1.5.2.0)		\rightarrow	1650 Soil Ac 22-6 (0-0.5")		1655 C:1 Acc 22-b (15:20)	į –	~	Time: Relinquished by 1200 Luly Clear	Date: Time: (Belinquished by: /	if reary, samples submitted to Hall Environmental may be subcontracted to other

2,

Air Bubbles (Y or U) ANALYSIS LABORATORY HALL ENVIRONMENTAL If necess and pies submitted to Hall Environmental may be subcontracted to other accredited laboratories. The second finis possibility. Any sub-contracted data will be clearly notated on the analytical representations. 4901 Hawkins NE - Albuquerque, NM 87109 Coc 2 g & Fax 505-345-4107 (AOV-ima2) 07S8 www.hallenvironmental.com (AOV) 809S8 War Black #9 8081 Pesticides / 8082 PCB's Anions (F,Cl, MO_3,MO_2,PO_4,SO_4) See Previous X Tel, 505-345-3975 Remarks: 年297000 RCRA I ENGITCATION -GOLD 5 N. 5 īme T Date Koleway ariza 16:20 □ Rush Preservative 2 Nove MEDH 202 MEDI 3 子の子 HOW HOW Medi Turn-Around Time: . Robinson@ Winscon Project Manager Project Name: Container Type and # Standard (2) Eucoe Bluce (Z) Jan 2 Eurons 2) Eucore Received puch (2) VIALS (Z) VIALS とうどうけいく ひ بسارق 2) VIALS Project #: Blan Sampler: (S) Swin 5-5 (15-2.01) Bup (Full Validation) MCOK Blan Softwest luc Sample Request ID Swm 5-5 (1,5-2.0) Swmu S-6 (0-6.51) Scorn 5-6 (1.5-2.0' Chain-of-Custody Record Rexinery apply 632-4116b Client: Western Rekining Bloomfield Refinduished by: 気への □ Other Bloarchetz Mailing Address: < Matrix 1.00 <u>~</u> 1.98 Ŕ 202 1210 1215 QA/QC Package: Time 1505 NEDD (Type) Sast email or Fax#: 32 Accreditation □ Standard O NELAP Phone #: Date | 5/ KZ/₁ 6/82/ 423/9 5/82/ 2

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
'Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

(M to Y) selddug tiA ANALYSIS LABORATORY HALL ENVIRONMENTAL COC Lof W Refer to allocated another tra 4901 Hawkins NE - Albuquerque, NM 87109 × Fax 505-345-4107 www.hallenvironmental.com X Dist for Metals and Pesiloides / 8082 PCB's CI'NO3'NO5'bO4'2O4) Tel. 505-345-3975 (HA9 to AN9) 01:68 MTBE + TMB's (8021) RCRA INVESTIGATION - GROWS SE 108 ١ 7 j } Date Sample The Robinson 10:00 Adly. Robinson C Rush Preservative 362 None H,SOL HND かると ESS 3 FOS T Zone Nove Tum-Around Time: Robinson Cront. Con Project Manager. (20) We and # Project Name: Er Standard (1) 13 Makes Container (5) VOA5 2) Poly (3) Poly (1) Poly C) Poly S VOR Project #; **全** (5) 794(2) () Poly (J) 10th The Level 4 (Full Validation) Louthwest, luc Sample Request ID MW-102 Chain-of-Custody Record EBW-051209 87413 Bloomfield Refluency Ø 632-466 SO Road Bloomfield NM Client Weston Refining □ Other EXCE email or Fax#: 1/2 ll. Matrix \$ Phone #: (\$105 Mailing Address: QA/QC Package: Time 074 13/9 ESTO EZ/EDD (Type) 130 Accreditation Time: ☐ Standard. ime. O NELAP Date 5/2/2 yels

ity. Any sub-contracted data will be dearly notated on the analytical report.

Report 4 0905014

) ₍		ITAL	ANALYSIS LABORATORY							. (i	M 10	ر الار	Mos / No							X			·					_
	X	ENVIRONMENT	Z		. 60					Ch	ato.	M	DNOSEIC			メ			<u> </u>								·>	
	Î.	\Z	Ö	Ě	Albuquerque, NM 87109	505-345-4107					(A		lme2) 07.28			·		X									Q	
(100 PD	2	A	www.hallenvironmental.com	ž ģ	345	equest						OV) 80858				X				×				_		8	
	γ, γ		S	ueul	Jergi	505	Rec						8081 Pestic		-							\dashv		<u> </u>		-	;	
	Ŏ,	Z	31	viro	bnqr	T. Xe	ilysii	(*0	S"Oc	("O			eM 8 ∧чэя O,∃) enoinA									-		-	-	{	3	<i>!</i> :
Ì	\cup			haffer			Ans		_	(AN9) 0168		-	X								_	 		5	
		HALL	Z	WW.	N SE	5-3975		phen	May S				प्राच्या ।		X										\vdash	١.	D6534	
		1	•		4901 Hawkins NE	505-345	3		10 GH		8	t D	мом) нчт	×													,)
	•	A		ø.	9 H	Tel. 50							orteM HqT									_				SS	i X	1
		Ĵ			46	F							TM + X3T8											_	_	Remarks	V '	,
	Г							- (,	CORI	8'8%	 T	10	TM + X3T8									\dashv				Œ.	-	_
	-			•	Groups				Ź	-				13	4)	8,1	3	1	i	5-	7-					Time	Time	_
			ا	÷	المُخَالِ	,			Spinson	Robinso			0		,		.:									Date	Date	
		ime:	. C Rush		westra	b		Jer.	X				Preservative Type	None	· Nove	HNO3	カ	Nove	HOON	H, Sou	HC	1			1			
		Tum-Around Time:	E Standard	Project Name:	RCRA Involugation - GroupS	Project #:		Project Manager:	JE JE	Samoler			Container Type and #	(1) VOPA	(1) Poly	179H (य	(S) volts	(!) Amber		17194 (D)	3) YOA'S					Received by:	Received by	_
		1	Client Western Refining Southwest Inc	-	9	3		ار	Tolidation (First Velidation)	4			Sample Request ID	ام					<u> </u>		X-PA-CK					4	a will	
		Chain-of-Custody Record	tille Sou	Red lies	and ugan	1)	1 0	email or Fax#: Kelly. Rabins on @ war. con	in the last	1 1 1 2 2 2 3		إد	1	7-MW							TRIP BLANK		-			O V O	する。	
•		of Cu	N Constitution	A K	B	Bloomfuld NM	//	Jally. R.	-		Other.	ERCEI	Matrix	Ma						\rightarrow	4					Relinquished by:	Relinquished by:	
		hain	Weste	Blownfold	Mailing Address:	Bloom	Phone #: (505	r Fax#: K	OA/QC Package:	itation	ΑP	KY EDD (Type)	Time	c1b						7)				ij	Time:	Z jä	
		ပ	Client		Mailing	-	Phone #	email o	OA/OCI	Accreditation	D NELAP	K EDD	Date	Help						>	1					Oate:	1.05 Page	

Air Bubbles (Y or N) Refer to albached anothylical Dat for metals and appeared cheesely analysis Laboratory COC 323 HALL ENVIRONMENTAL * if necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be dearly rigidated on the analytical report. 4901 Hawkins NE - Albuquerque, NM 87109 Fax 505-345-4107 www.hallenvironmental.com (AOV) **40928** 9081 Pesticides / 8082 PCB's Aniona (F,CI,NO₃,NO₂,PO₄,SO₄) Tel. 505-345-3975 (HA9 to AN9) Otes \succ (leseiO\ssO) 83108 borleM H91 (Vino aso) H9T + 38TM + X3T8 3TEX + MTBE + TMB's (8021) 50 Jae RCRA Investogition - Group 3 Slul obiuses Date Sampler Helle Kolewoon 8:0 Preservative C Rush Nove 2 E202 Zow. 1884 するえ Type HC Turn-Around Time: Kobinsten Chart. Con Project Manager. Project Name (1) Author Client Western Retiving Southwest le Wasandard Type and # Container U.BL. (C) Poly E) 884, (S) 1843. (i) VOR () Paly Received by: Excomfield, Refines, NM 89413 Project # ALEvel 4 (Full Validation) Sample Request ID Las Chain-of-Custody Record FB-05/209 Phineur Mailing Address: SO Rund 4970 ă Phone #: (505) 632-4166 Bloomfield FXCEL Matrix email or Fax#: Kelle 12/9/1700/20 ing. ZÉDD (Type)_ Тіте QA/QC Package: □ Standard □ Other 5/3/9 Date

Report # 0905247

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
. Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/5020
Zinc .	SW-846 method 6010/6020

GENERAL CHEMISTRY ANALYSES

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	BPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

Totaly Diss Fe

5/6/09

www.hallenvironmental.com analysis laboratory Coc 183 HALL ENVIRONMENTAL metals and gen chierwith Erst Aves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical 4901 Hawkins NE - Albuquerque, NM 87109 0:00 5/14/69 * Refer to attached analyse list (AOV-ima2) 07S8 (AOV) 809S8 8081 Pesticides / 8082 PCB's Anions (F,CI,NO3,NO2,PO4,SO4) Tel. 505-345-3975 Method 8015B (Gas/Diesel) (1208) e'BMT + 38TM + X3T8 RCRA INVESTIGNATION - (SEOUP 3) 1 1 ١ Sampler Kelle Kobiudo posses. If ner The Amples submitted to Hall Environmental may be subcontracted to other accredited laboratories C Rush Preservative NONE 202 200 अंग्रि Name NaOH HNO3 ゴエ Turn-Around Time: email or Fax#: Kelly, Robinson@wnc. Com Project Manager Project Name: **Ey** Standard Type and # 1) Amber Container (1) Poly (1) Poly [3) (Pa A) (2) Poly (UPoly Project #: (1) NOB (1) VOA 40)(S) Received by Client Western Refining Southwest, Inc. Bloomfield Refinery Level 4 (Full Validation) Sample Request ID Chain-of-Custody Record JRIP BANK MW-60 Malling Address: 50 Road 4990 Bloomfield NM 87413 Phone #: (505) 632-4166 Exect □ Other Matrix ₹ Z \$ <u>Σ</u> QA/QC Package: Time B CY EDD (Type) Accreditation Time: lime: □ Standard O NELAP 6/21 Date 6/21/5

	_	ANALYSIS LABORATORY	www.hallenvironmental.com	- Albuquerque, NM 871		Analysis	(†C	CB.2 O [†] '20 W ^o f'	d 2	(1) NO ₂ 808:	40 (A) (A)	00 - 00 - 00 - 00 - 00 - 00 - 00 - 00	AME AREA AME AREA AME AREA CHOWN CHOWN CHOWN CHOWN CHOWN CHOWN CHOWN CHOWN Selb CHOWN Selb CHOWN Selb CHOWN Selb CHOWN Selb CHOWN Selb CHOWN Selb CHOWN Selb CHOWN Selb CHOWN Selb CHOWN Selb CHOWN Selb	8 8 8 8	>	×	X	*	X	X	**			toched analyte list too	معد	
				$-(500\rho^2)$ 4901 Hawkins NE	Tel. 505-345-3975		sel)	as oi s/Die	(G) 8 Hd.	T +	38 8 F	TEX + MT TEX + MT PH Method	8 T	181	12	-3	3	-3	131	7			Time Bemarks:		1 1 2 2
a de la calación de l	Turn-Around Time:	© Standard □ Rush	Project Name:	RCRA-INVESTIGATION-GOUPS	Project #:		ect Manager:	Kell Kopingon	-	Sampler Kelly Robinson	的W回数数数分析/加速数据的识别。	Sample Heaper Americans	Container Preservative Type and # Type	(1) You	-	T 111		(1) Poly No OH			(1) Amble Nove		9	Received by: Date	Received by: Date	to the other possible ball to be about 11.1.
	hn-of-Custody Record	vest Inc	_	0	2	Phone #: (355) 632 - 4166	email or Fax#: Kelly, Rebinson Bunc. com Project Manage	QA/QC Package:	☐ Standard ☐ ☐ Cevel 4 (Full Validation)	uo	□ NELAP □ Other	でをDD (Type) 上次とと	Date Time Matrix Sample Request ID Co	9/12/9/1630 As HAS MW-65 (1)		8	(3)			3	当 → → →			Date: Time: Relinquishedby All Recei	Relinquished by: /	If accounts considered to Mail Environmental proxition and the authors accounting a partial section of the sect

www.hallenvironmental.com Ceder Air Bubbles (Y or N) **ANALYSIS LABORATORY** CC3 &3 Refer to attend anoutente Dot If ner The Amples submitted to Hall Environmental may be subcontracted to other accredited laboratories (this possibility. Any sub-contracted data will be clearly notated on the analytic 4901 Hawkins NE - Albuquerque, NM 87109 Fax 505-345-4107 Iysts Request Metals and General C (AOV) 809S8 X 8081 Pesticides / 8082 PCB's Anions (F,Cl,NO₃,NO₂,PO₄,SO₄) Tel. 505-345-3975 (HA9 10 AN9) 01E8 (Klno ase) H9T + 38TM (1208) s'AMT + 38TM + X3T8 三元 PURA INVESTIGATION - GROUP 3 7 7 7 20:01 24 Kering □ Rush Preservative 2002 Samplement Nove Dave H, 504 HNO3 2000 Type TOOK Turn-Around Time: email or Fax#: 4 c. My. Kobi usson @wor, coultroject Manage N/Standard Project Name: Container Type and # (1) Amber S vop (C) Por A) NOT. (2) Par Sampler B Poly Project #: W Poly A01 (1) Client: Western Pefining Southwest, Mc. (Full Validation) Sample Request ID MW-65 (DUP) Chain-of-Custody Record Bloomfield NM 87413 Mailing Address: SO Road 4940 Bloomfiell Rethrem Excel □ Other Matrix \$ Phone #:(305) Time: /500 QA/QC Package: Time 5/12/9/1630 EDD (Type) Accreditation ☐ Standard O NELAP Date 13/9

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
'Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

GENERAL CHEMISTRY ANALYSES

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

Tot & Diss TR

5/6/09

Air Bubbles (Y or N) ANALYSIS LABORATORY HALL ENVIRONMENTAL Refer to attacked another first samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. \$ 4901 Hawkins NE - Albuquerque, NM 87109 or Gen Chown + metallo. Fax 505-345-4107 X www.hallenvironmental.com (AOV) 808S8 8081 Pesticides / 8082 PCB's Anions (F,CI,NO3,NO2,PO4,SO4) Tel. 505-345-3975 EDB (Method 504.1) PH Method 8015B (Gas/Diesel) Remarks: MTBE + TPH (Gas only) BTEX + MTBE + TMB's (8021) 3 $\dot{\omega}$ 3 3 0 ω RCRA INVESTIGATION - (SCORE Time RCA LIMESTRANFION GROOP 3 delly Robinson Sample: Aclo Lobinson Sample Temperatues Preservative 🖁 H SOL NONE HINDS □ Rush Sacoa Sacoa 2007 202 Nave HNOZ TON 33 Turn-Around Time: Project Manager. Project Name: (J) Amiles CS) Very L Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard Type and # Container US Poly LAN(E) 1) Poly (3) VON 407 CI a) Poly Project #: Client: Western Refinity Southway In Level 4 (Full Validation) Sample Request ID email or Fax#: Kelly. Robinson Curnion Chain-of-Custody Record TRIP BLANK FB-051409 Bloomfold NM 87413 Mailing Address: So Road, 4990 MM-60 Phone #: (505) 632-41 66 EXCEL Matrix 4 16.20 α√ EDD (Type) QA/QC Package: Time 1215 <u>8</u>8 Time: □ Standard □ Other 5/14/9 16/11/18 Date 5/14/19

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

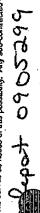
GENERAL CHEMISTRY ANALYSES

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
-Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

Diss & Total Few Ar

5/15/19

1


* * * * * * * * * * * * * * * * * * *		HALL ENVIRONMENTAL AMAI VETS I ARODATODY W	environmental.com	4901 Hawkins NE - Albuquerque, NM 87109.	10	Analysis Reduest	(°0)	Sind Sind	270 270	(H; (H; (H; (H; (H; (H; (H; (H; (H; (H;	1 SO SE SE SE SE SE SE SE SE SE SE SE SE SE	i bo	orthell House Hou	4 8 8 8 8 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8	×	X	X	X	X	X	X	×	X	WX X	X	X		Refix afficient and the let	- Wetay Out Outled (1,0,1)	7.4	This serves as notice of this possibility. Any sub-confracted data will be clearly hodged on the analytical report.
	1			49	Te								EX + MT												+		Remarks	4	7	E 14	s possibility.
				Investigation-Gay 3				Ž		NSQV (1	<u> </u>	-	-	7	1	<u>_</u>	-2	-2	72	2-		Date Time	<u>ئ</u>	Date Time		
	Time:	(C Rush	j	<i>westagat</i>			aget)	Cobinso,		さる、大名言な			Preservative Type	716	None	None.	HND3	HC	Nowe	~	H,SON	Morre	None	HN03	U Z	13%	1	7 10:00			roorgited laboratories
	Turn-Around Time:	_	Project Nar	RCRA-	Project #:		Project Manager	大学		Samplet			Container Type and #		\$ (S)	(1) Poly	(2) toly,	(S) NOA!	(J) Amber	W. Poly	(J. Pal	(1) YOR	Bhy	C. Ris	1947 (S)	6	Received by		Received by:		contracted to other a
	Chain of Custody Bocord	S. Huet, luc	o Give	So lead 4P90	NN 87413	Jally -			© Level 4 (Full Validation)	rediction of		EXCEL	Matrix Sample Request ID		Ha MW-LAY						→	An 78-051309					Refinqpished by:	U Lower	Relinquished by		If necessary, samples submitted to Hall Environmental may be subcontracted to other according to the contract of the contract
	Chain	Client L'Actual P. A.	A P	Mailing Address:	Bloomfield	Phone #: (Sos	email or Fax#: Kelly	QA/QC Package:	D Standard	Accreditation	יין ואבוראנ	th/EDD (Type)	Date Time		5/BM 15/5						→	ज्या भंडा/८					Dafe: Time:	2-	Date: Time:		If necessary, a

Lab Kupot 104052999

Lab Report Of ON 299

Chain-of-Custody Record Client Western Reimy Suffund Lic Bloomfield Refinent	Turn-Around Time: Definition of Rush Project Name: RCRA- Investigation - Grayo 3	HALL ENVIRONMENTAL ANALYSIS LABORATOR www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109	ENTAL EATORY
Bloomfeld, NM 87413 Phone #(505) 632-4166	Project#: V	Tel. 505-345-3975 Fax 505-345-4107	
email or Fax#. Kelly, Pobinson C. umr. Coux. ONIC Package: Ostandard	Project Manager	(kOS, soci	
D Other	Sampler X. U. Chindo	30) 8310 30 (1.812 (1.803 (1.444) (1.403, 1.003	
(Time Matrix Sample Request ID	Container Preservative Type	BTEX + MTBE BTEX + MTBE TPH (Mathod 8 B310 (PMA-BF) RSHO (PMA-BF) RSHO (PMA-BF) RSHO (PMA-BF) RSHO (PMA-BF) B250 (VOA)	bambeck 501/2011 701/3011
5/18/9 1640 Ag HALLS DE MW-63 ()	5 (1) VOG NOWE -3		
	Wholy Nove -3	X	
	(2) Poly HNO2	X	×
	(5) WAS 4CT -3	X	
7) Amber None	Χ	
	(1) Poly 14, 504 -3		 X +
*	(1) Poly heart -3		.)
M3/29 4730 An EBW-051309			1: -
	2) Poly HNO4		
*	'		
o Kulkdim	Received by: 0 Sate Time	Remarks:	技
Date: Time: Peelinquished by:	Received by: Date Time	for metals and openial Chein	wish
if necessary, samples submitted to Hall Environmental may be subm	nonfracted to other accredited laboratories. This serves as notice of the	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be dearly notated on the snahfical report	dical report.

		¥.	\$.						(Илс) (Y	80	ddu8 1	A	1	1	Ţ	7								F			1
Cic sr2	HALL ENVIRONMENTAL ANALYSIS LABORATORY		3											+	╀	╁	+	+			_	-	 	-	├-	╫			
										7	5,7	عد	10 m	\top	>		+	\dagger			\vdash	-	\vdash	-	\vdash	\vdash			t tooday
_		1	ე დ							01	V/	7~	ON	\forall	+	T	†	†								T		٠ ٢	alytical
1	20	Ë	₩87	4107				<u> </u>		(A	OΛ	-lui	9S) 047	8		Τ									-			3	₽
20	2 4	<u>1</u> 2	₹. v	505-345-4107	Request	:				-	(\	AOV	/) 809Z	8		X] ,	J.	동 왕 ·
NO		men	erdn	505	Res								94 r80															~	ly socta
Ų.	Zis	www.hallenvironmental.com	1901 Hawkins NE - Albuquerque, NM 87109	F.	ysis	(*()S'*	Od.	(³ OI				l) anoin	-+-	<u> </u>	_	_	4								_		a Henow	e cjesa
Ű		allen	₹		Anal				,				8 ARO		_	ļ.	_	\downarrow	_				_		_	_		3	S WILL
		ww.h	Ψ	3975									M) 80 14) 018		-	-	+	+				_	_		-	-	(J.	ted dat
	I	\$	vkins	345									PH (Me		╀	+	+	+	-		,	-	-		-	├		3	contract
		\$41	T g	Tel. 505-345-3975		(198	 Dies	/SB!					PH Me		╁	╁	╁	+		******		-				├-	1	10	y sub
			4901	<u>Tel</u>									+ X∃T		+	╀	+	+	\dashv				_	_	-	-	rks:		15. An
P P	ЦЦ												+ X3T			T	+-	\dagger	-				┢		\vdash		Remarks		ags (
	1	.^			a garan				Γ				17.7		1	ic		†		M					n				a f
		M	_				γ		1				(e) (e)		12	10	<u>'</u>]	1	\neg								<u>2</u> 2	e	ogice -
-		ğ	1				ج		3						'														88
	1	Ð		1			かんざか	•	Sico o				i i i ly		ľ												affect C	O O O O O O O O O O O O O O O O O O O	This serv
1		ğ				_	\$	1	چ							ļ		1	_					1			ہے.		SS
	Rush	1					λ		7				Preservative Type	5	17	-	5		ı	Ì							h; 00		oratori
<u>0</u>		1	\mathcal{I}				•	5-! [3				serva Type		704	177											~	1	ted ba
Turn-Around Time:		me: Investigation - Gray		1		ager	\leq	ج کی	\mathbb{Z}			_	-		1	-	+	+	_					_	4		73	.	Becored
Į į	to Standard	Nam Ch		, l		× E	Z	1		孋			Container Type and #		بريا	4	?		I					-			'Ya	Ě	office
₩.	3	Project Nati	Drolove #.	<u> </u>		gé	, 1	0	Tale to the second				Sont:	N.B.	3	_											Receive	Seive	cted to
旦			1	<u> </u>		@ war.tou Project Manager				0		-	<u> </u>	15	2	7		+						-	-		2	8	boord
75	7	3				3		Excevel 4 (Full Validation)					ئة 0	_		ر ا											3		96 50
Ö	ashur	iner.	d'	2	1	3		/alida					ant	92		1			Ì								3		tal may
Ş	3	4		844				7					Red	16					į			·							onther.
LE .	4	2		0	اور	P.		4 (6	ļ				<u>ple</u>	1 3		4	41		1								73		t Enviro
od	3	7	8	72	37	Zab jnasoy	,	Š				ŀ	Sample Request ID	ERW-CS130		Tris Blo lc	11										3	ų.	野鱼
ust	d'in	শ্ৰে	00 :		632-4160	ď		B		Excel			······ · · · · · · · · · · · · · · · ·			L	\coprod	1	_									ह्य क	milted
Ç	13		I۰	쾽	-0	کنید	-			K			Matrix	15		} 4	#		1		\setminus						Relinquig	nguisi	as sel
Ş	3	Block Re	1	5	200	X			i			_		17	<u> </u>	<u> </u>	#_	+	-			\preceq	_		-		Se /	<u>8</u>	, same
Chain-of-Custody Record	lestem	Mailing Address:	T.	Spowfield		email or Fax#: Kelly	OA/OC Package:	lard		CYEDD (Type)			Тяте	17.20 Ba	1	71									1		Time:	Time:	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Ü	Client:	ling /) °		Phone #:	ail or	SCP	□ Standard	Officer	600			Date	5/13/0	7	\int_{I}	T	T										äl	ž
	ð	Z		.	Ĕ	æ	ð		Ō	8			Ω	120	4	/		}	İ		ļ						影	Dad	

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barlum	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

GENERAL CHEMISTRY ANALYSES

Analyte .	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium`	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

Total + DIES Fe

Cac 122	INTERNACIONAL IN	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	3975 Fax 505-345-4107	t. Analysis Request			282 ×	(H) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	or P. tals tals the control of th	ANY) (Method) (Method) (F,C) (Seminol) (Seminol) (Mov)	01168 00inA 06188 0628 0728 0728 0728		X	X	X	X	X	X	×			to affected analyk list	Tall with questilly	rves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical research
	Turn-Around Time:	W Standard □ Rush	me:	KCRA lunestration - Group 3 4901 Hawk	Project #: U Tel. 505-345-3975		lager:	ටුන්දු 01	H (G	9T +		P.	3T8 H9T	(i) JOH None / X	ESVOY HC/	_		(1) Amba Nove /	() Poly NaOH /	(1) Poly H, Soy /	3) vow HC 2			late Midog W	Date Time	accredited laboratories.
-	indik of-Custody Record	wasty lee	12 Refiner	Dad 4990	87413	717		QA/QC Package:		ECDD (Type)		Date Time Matrix Sample Request ID C		1/5/4/1130 Ag NW-64		\mathcal{O}	(A)		3	→ → →	1 - Ay TICH BLANK 3		<	Relinquished by.	Date: Time: Relinquished by:	If necessary is amples submitted to Hall Environmental may be subcontracted to other

		ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	(†C)	as/Die	3 (G:5)	100 100 100 100 100 100 100 100 100 100	S bo	BTEX + M TPH Methor TPH Methor TPH Methor B310 (PNA R310 (PNA R310 (PNA R310 (PNA R310 (Sem R260B (VO R310 (Sem R260B (VO	X×	X	X	×		X	X			Remarks:	* Rets to And the List.	This serves as notice of this possibility. Any sub-contracted data will be dearly notated on the analy*
ap.de.	Turn-Around Time:	Standard - Rush	Project Name:	RCRA Musshypton - Grap3	Project #: ()			Cum	Sample: X Shinson			Container Preservative + + Type and # Type	E DWGN STONES	PH	None	_	None		H, 30, L	-		Date Time	Receive 66: 7 100 P 1020 Receive 66: 7 100 P Date Time	
	Chair_Jf-Custody Record	Client: Western Petining Sastings, Inc.			Bloomfield NM 87413		email or Fax#: Kelly . Robinson and Con Project Manager	QA/QC Package: ☐ Standard		S EDD (Type)		Date Time Matrix Sample Request ID	11579 10915 Ap MUJ-660	1		7)						Date: Time: Relinquished by:	15/9 (800 Kelly Oly Date: Time: Relinquished by:	If remeany, samples submitted to Hall Environmental may be subcontracted to other accredited laboratoring

Cool #2

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

	
Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

Alr Bubbles Remarks: Le Aborched analyt Ot ANALYSIS LABORATORY HALL ENVIRONMENTAL If necessary, samples submitted to Hall Environmental may be subcomfacted to other accepting laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. COC 1 - 1 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Call w question (AOV-ima8) 0728 www.hallenvironmental.com X (AQV) 808S8 8081 Pesticides / 8082 PCB's CI'NO3'NO5'LO4'2O4) (1.403 bortleM) 805 Time (2000) RURG Investigation-Googs くらしなからん 80/04 $M | \omega$ M 3 3 M Preservative □ Rush 707 Zore 302 B, SO 1037 100x HC) Sampler: Xcll Turn-Around Time: email or Fax# Kelly . Robinson Cumr. Con Project Manager Sachucot- Inc. & Standard Type and # STOWERS. (1) Poly Container (3) Fambol 18 (A) (Z) Hod (S. Pall Project #. Received by (Full Validation) Sample Request 相 MW-SK (Pare) S (24 1) Chail-of-Custody Record Bloomfeld, NM 87413 Mailing Address: SO Read Myago Bloomfield Refinery 1633-4166 Client Wester Refinity Matrix 1300 Ag Phone #: (SDS) B QA/QC Package: Time E EDD (Type) □ Standard Offier Offier Date 4

Part 0907286

Ceo(ec#1

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquenque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Tel. 505-345-3975 Fax 505-345-4107	TEX + MTBE + TMB's (8021) TEX + MTBE + TPH (Gas only) TPH (Mathod 8015B (Gas/Diesel) TPH (Mathod 504.1) TORA OF PAH) Anions (F.CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Sofor Peaticides \ 8082 PCB's Anions (F.CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Sofor (VOA) Sofor (VOA) Sofor (VOA) Sofor (VOA) Sofor (VOA) Sofor (VOA) Sofor (VOA) Sofor (VOA) Sofor (VOA) Anions (F.CI,NO ₃ ,NO ₂ ,PO ₄)) 33 33 7 11 12 14 14 15 16 17	X	×	X	X	Time 100 Remarks:	this possibility. Any sub-contracted data will be clearly inclated on the analytical report.
Chain Af-Custody Record Turn-Around Time: Client: Ule stean Rectivine Scotlanest, Inc. 10/Standard Rush Blocometical Refine Project Name: Mailing Address: Sto Read 4990 RCRA Investhochton - Gayo 3 Phone #: (505) 638-41106	ckage: Time Ma		1 Charles Till	Mrs Poly 4NO2	4 #	MOA	Time: Relinguished by. Received by: Receiv	sary, samples submitted to Hall Environmental may be subcomfaded to other accredited laboratories. This serves as

25. This bennes as motice of this possibility. Any sub-contracted data will be clearly included on the area Carllel & Report 0967286

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsėnic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
. Chloride	BPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium`	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

Air Bubbles (Y or M) analysis laboratory HALL ENVIRONMENTAL *Refer to attached another Dist. W/ questible Inves as notice of this possibility. Any sub-contracted data will be clearly notated on the analyr 4901 Hawkins NE - Albuquerque, NM 87109 7,007 Fax 505-345-4107 www.hallenvironmental.com (AOV) 808S8 Tel. 505-345-3975 (HA9 10 AN9) 01:E8 RCRA Investigation- Graup 3 Time 1000 2 Sampler Kelle Kolouns Date If r samples submitted to Hall Environmental may be subcontracted to other accredited laboratour □ Rush Preservative 92 Nove TOOL Jaros プラ2 HN03 J H Turn-Around Time: email or Fax#: **Kelly. Kobinson @wnr.com** |Project Manager: Project Name: X Standard (S) COP Container Type and # (1) Amber (1) Poly 407(J) CENTRA Poly 10 Poly mod (1) Project #: するろう Client: Western Reflying Southoast, luc Level 4 (Full Validation) Sample Request ID BLANKS Chair_Jf-Custody Record 87413 4994 Bloomfield Rathuen MW-6 23-4166 Rip Sto Read 2 Excel Matrix Bloomfield Mailing Address: 1/16/91300 EDD (Type). QA/QC Package: Time B ☐ Standard Phone #: □ Other 110/01/ Date

	HAIL ENVIDONMENTAL	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	5 Fax 505-345-4107	Analysis Request)d 2	111: 100 100 100 100 100 100 100 100 100	s (AC)	etal Olyon Oldee Oldee Oldee Olyon O	Anions (F, 6) Anions (F, 6) 8081 Pesti 8081 Pesti 8270 (Sem Total		X	X	X	X	X	X				for to Analyte Lat.	_
		ANA	5.6.	Gravo 3	-		sel)	10 SE	() s () s () s () s	Hd.	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	8 bo	BTEX + M BTEX + M TPH Metho TPH (Metho TPH (Metho	XX	[E.J	مي	٩	5	3	3				Date Time Remarks: DO D95	
	Turn-Around Time:			RCRA (mestration.	Project #:		Project Manager.			Sample Le Koloin	$\mathcal{N}_{\mathcal{N}}$		Container Preservative Type and # Type	3) VOM Nave	(5) VOPS HC		(2) Pay HNO2		While Nath					Received by:)
la de la constante de la const	C. A. J-Custody Record	Client: Western Refining Softhart Inc	Bloomfield Retinen	Mailing Address: So Road 449	Boomfield NM 87413	\ <u>X</u>	email or Fax#: Kelly, Robius on Blow. Con	.age:	☐ Standard ☑ Level 4 (Full Validation)	D Other	IN EDD (Type) EXCEL		Date Time Matrix Sample Request ID	7/16/9/1145/14 MW-65						→			\prod	Date: Time: Relinquished by: Mag LSDD Acl Collection Date: Time: Relinquished by:	

Air Bubbles (Y or N) analysis Laboratory HALL ENVIRONMENTAL erves as notice of this possibility. Any sub-contracted data will be clearly notated on the analy. * Refer to attached anought list. 4901 Hawkins NE - Albuquerque, NM 87109 Coc 1 Fax 505-345-4107 lysis Reguest www.hallenvironmental.com (AOV) 809S8 Call with goeston 8081 Pesticides / 8082 PCB's Anions (F,CI,NO3,NO2,PO4,SO4) Tel. 505-345-3975 EDB (Method 504.1) (leseiQ\ssD) 83f08 MTBE + TPH (Gas only) (1208) s'BMT WTBE + RCEA LINVESTIGATION - (SECOP X ť 7 If samples submitted to Hall Environmental may be subconfracted to other accredited laborator? Preservative Nove 1,50° HNO3 古る する 9202 2 ブエ Turn-Around Time: Sample email or Fax#: Kelly. robinson @ Jonn Com Project Manage Project Name: **©∕Standard** 1) Amber Type and # (i) Poly Container (2) Poly (5) VOAS 1) Poly (1) Poly 40x (1) Project #: Client: Western Refining Southwest, Inc. ☑Level 4 (Full Validation) d Sample Request ID Chain_/f-Custody Record Plonnfield, NM 87413 Bloomfield Refinent Sto Read 4990 PR-BM Phone #: (505) 632 -4166 Relinquished by: Matrix 4 Mailing Address: 2000 **15**(20 Time QA/QC Package: X/EDD (Type) □ Standard □ Other Dafe 9

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

Analyte	Analytical Method
Total Dissolved Solids	SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium`	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Requires:	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH (Method 8015B (Gas/Diesel) BTEX + MTBE + TPH (Gas only) EDB (Method 504.1) BA10 (PNA or PAH) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) BS60B (VOA) BS60B (VOA) B270 (Semi-VOA) Ali Bubbles (YOTN)		×	X	X	×	×		X	×	X	×	Remarks:		serves as notice of this possibility. Any sub-contracted data will be clearly notated on the enalytical report.
Chair of-Custody Record Turn-Around Time: Client: Western Refining Softward Juc OrStandard Or Rush Bloomfield Refinem Project Name: Mailing Address: SD Flood 4990 RCRA Investration - Group? Phome #: (SOS) 1632-41 Lob	Fax# Kelly, Robinson Chons.com ackage: (Type) Time Matrix Sample Request ID	7/16/9 1030 As 4410-135 MW-62 (1) WAS NONE		士	CH) CFPOL HND3 1		2	W W (C)Poly H, SQ1	1-071509 (1) voy	(S)Vpres HCl 2			1 1STO KULL SIEW NOW JA JULION W	Date: Time: Hedlinquished by: Received by: Date Tene	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this

Tum-Around Time:	7 10	Project Name:	1 40	67415 Project #:	Analysis/Raquest	Unic Carproject Manager:	1208 802 100 100 100 100 100 100 100 100 100 1	25 Sec. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Kelly frances MR H (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		MTB BTM o All o Al	Request ID Committee Treservative State of Type and # Type Type Type Type Type Type Type Type	·	(A Pale	SON SON (S)	(S) WORD HCL	 (4) Buy HND2 3	4 Nort	Waln NaDH 3	H,504	カイ		A LO CO CO CO CO CO CO CO CO CO CO CO CO CO	Date
-	J, lu so-Standard		P	•	0	Unr. Corproject Manager:	10/1		*ely			Type and #	Ohuber	(A Pale	\$100 (E)	(S) VORD	 		_		(3) YON		_	
Photo of Cuckey Box	Client Westurn Sections	3 Loan Field / Ref	Mailing Address: SD PEDLY 49	December 2 No. 8	Phone # (505) (532-416)	Kelly.	iĝe:	O Standard (Full Validation)	-	WEDD (Type) EXC. PL		Date Time Matrix Sample Request ID	FOT AS EBUTO	ラ	19 HZD A FB-071509					> >	TRIP IL	Time: Deliverable of the /	<u>Q</u>	Time: Refinquished by:

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium .	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

Analyte	Analytical Method
Total Dissolved Solids	. SM-2540C
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium'	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	BPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020 & SM 3500F e2+

THE PROPERTY OF THE PARTY OF TH	ANALYSIS LABORATORY		4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	O [†])	o asé eiO\a S.4O	100 100 100 100 100 100 100 100 100 100	+ TT + - 81 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	d 86 d 80 d 80 d 80 d 80 d 80 d 80 d 80	ecthodal to the control of the contr	BTEX BTEX BTEX TPH (A TPH (A B310 (I B8210 (I B8250 (I B8250 (I B081 P B250 (I B081 P B250 (I B081 P B250 (I B081 P	X	×	× ×		× × ×	X	×				ks:	- r se otherwood thanky see	
Turn-Around Time:	☑ Standard □ Rush	ne:	KCRA Involycotron- Cours	Project #:		oject Manager:	xel Course	Sampler X - W Colour & V		appetemberable with the second	Container Preservative		() VORT NOW ((S) VOMS HCI & 1) POLY HNO2 TS,3 ,	Na04 1/1	(1) Poly 1 H, Say 5 1	34 -{	(1) poly Now 7	1000			Received by: Date Time	ate	2 mm 2 mm 2 mm 2 mm 2 mm 2 mm 2 mm 2 m
Sustody Record	us Southwestly	Aeld DRAMOLA	ad Vygg	21748 1	2011-x	email or Fax#: Kelly, Robinson Quantalproject Ma	QA/QC Package:	Level + (rui validation)	Type)			Date Time Matrix Sample Request ID T	19 FBW-P71609										The SRO Xelinquished by.	Time: Relinquished by:	2

Air Bubbles (Y or M) ANALYSIS LABORATORY HALL ENVIRONMENTAL If necessary samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. affectued aerolyk 4901 Hawkins NE - Albuquerque, NM 87109 Fax 505-345-4107 (AOV-imac) 07S8 www.hallenvironmental.com (AOV) 809S8 X 8081 Pesticides / 8082 PCB's Anions (F,CI,NO₃,NO₂,PO₄,SO₄) Tel. 505-345-3975 (HA9 10 AN9) 01E8 EDB (Method 504.1) (leseiO\zs0) 83108 borteM H9 Remarks: BTEX + MTBE + TPH (Gas only) MTBE + TMB's (8021) RC. CA luncotrophon-Grays ĭime Time Cobinson JA8 60 N Ŋ 0 4 0 N 2 Date akolawa □ Rush Preservative Nake Jak Nat まる H, SOL るとフ HNO. THE STATE OF THE S Turn-Around Time: Sampler人と email or Fax#: Kelln. Kobiud On @ Whi. Calpject Manager Project Name: affuncity le to Standard Type and # Container 4) Was 11 Bhy 1) Vob このににいにいいい</l> NM 87413 Project #. Received by: Received by PLevel 4 (Full Validation) Sample Request ID THE PARTY Charlof-Custody Record 山るるい -07ho09 Phone #: (505) (032 4166 Mailing Address: 50 Road 8 Bloomfeld Relinguished by: Relinquished by: 3 Loom till Matrix 005 Time agge Tagge QA/QC Package: ≥ EDD (Type) Time; Time: ☐ Standard □ Other □ Client: / 4 179 Date

			(Y or N)	Air Bubbles													
 ≿												丁					}
₹ö		0.75	1610x1	९म ५५	2	X	$\overline{\chi}$								一 .	4	
O ZI		اير ن	12 PS	BTEK -	X	X	又									<u>န</u> ်	1.
	Ц	2/11/21/4	Misono)	Reachinity	X	X	X									4	:
	410		(AOV	-imə2) 07 <u>2</u> 8											\Box	2	[]
	345- iles		()	4OV) 80928												٧.	
ment ment	505-345-4107 _c . Request	PCB's	2808 \ z əb	8081 Pestici												7	
HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com	Fax 505-34 Iysisi Reque	([†] 05' [†] 0d	,400,60N,	lO,∃) anoinA												Sepano	
	leu.	5		RCRA 8 Me		_><	X									ಶ್ವ	
M.ha	975	Å		AN9) 01:8								\perp				Z,	
	45-3			EDB (Metho								_	<u> </u>				
- Iawi	05-3			orteM) H9T					\Box			_ _			_	ਰ ਹ	ļ.
HALL ENVIRONME ANALYSIS LABOR www.hallenvironmental.com	Tel. 505-345-3975			TPH Methoc					_	_	_		ļ		;;	epot as	
4		S		TM + X3T8		-				_	_	\perp	-		Remarks:	्व	i.
		(1208) s	SE + TMB's	TW + X3T8					_	_	_		-		- 18°C	 _	
1 3	-				_	7											ŧ
1 2 S		ノ		9 11	74		8								Time	Time	The contract of this accordition, Amont a contracted data will be in
2		\$			3			1		j	1				وا	سيه ا	60
10 章		13			\$					\wedge					Date	Da	<u>a</u>
		Obins To	obindo	<u>o</u>		_			/	_	\dashv	+	+	╀┼	_		
Rush		Q'	力關	servativ Type	3	3	3	74			\		\parallel		رر	\aleph	
N				Preservative Type	None	Nove	2002	H	\parallel		11				-	3	9:30
nd Time: rd VRush 5 day me: INVESTIGATION - (Vap. 2	'	å ≓.	公 豐	<u>.</u>				$-\!\!\!\!/\!\!\!\!/$	++		++		-	+	$\dashv \epsilon$	۲	
roun Nar		Mar		ainer and	3	3	7	R			\mathcal{M}				d by:	0	79
Tum-Around Tum-Around To Standard Project Name:	Project #:	$\int \frac{\vec{g}}{ \vec{g} }$	Sampler:	Container Type and #	(f) Jan	4) bw	4) pm	STUBE			\setminus				Received by:	1.2	3
Secord Tum-Around Sundard Project Name Project Name Project Name	<u> </u>	Cobinson Conf. Com Project Manager. Level 4 (Full Validation)		<u> </u>	(3)		Ŧ	3	H	-	\		+	$+\!$	- 8	Rece	— <u>}</u>
7 3		Obj NSON C LONF. CO.		₽ Q		3	3	\mathcal{A}	$\ \cdot \ $		\					7] }
2 3 40	2	alida alida		Sample Request ID	Acc 22-10W	ACC 24-IDW	ADC 26-IDW				1	$\setminus \mid \cdot \mid$			-	Collect	Ē
S P P P	团。			Req	-		و	TRAP BEATOR				\setminus	Λ			3	1 6
	60 3	A 4		ble	22	7	B	乳		ļ		Ĭ			+	2	1
0 30 4	53	evel S		am	၁	Y	7	制	\parallel				$ \cdot $		4	4	<u> </u>
of-Custody Reco	16 NM 87			, ,	Ŧ	Æ		1					\prod			3 3	i i
उं कि व	2 2	<u>}</u>	Exce	Matrix			إرب	$ \cdot $	∥		I		11		Relinquished	Effinquished by:	
ham-of-Western Address:	13	استنا	(II)	Σ	Š	Ó	Ŕ						V		Relin -	り	
	Jac.	· · · · · · · · · · · · · · · · · · ·	be)	Time	1000	13iS	-	\mathcal{I}			T			T	1	2	Ì
Chain-of-Custody Record Chain-of-Custody Record Chain-of-Custody Record Chain-of-Custody Record Chain-of-Custody Record Chain-of-Custody Record Chain-of-Custody Record Chain-of-Custody Record Chain-of-Custody Record Chain-of-Custody Record	Bloomfeld NM 87413	Pack Idaro	e (T _V	F	D	$\overline{\omega}$	00F	1								ISOS Time:	F nonescan complex critical to Hall Environmental may be enhanted to other socialized laboratries
Client: Western Refinity Eafly Mailing Address: Cr. P. C. L. Cathived	Phone #:	email or Fax#: Ac QA/QC Package:	□ Other © EDD (Type)_	Date	6/52/	19	57)							ا الله	120/9 Date:	
ō <u>\$</u>	के	ा है। हैं।			2/2		2/2		1		ļ				Date	町と	1
						۸-									7	• -	

ANALYSIS LABORATORY HALL ENVIRONMENTAL es as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical received * Se attacked anothy list 4901 Hawkins NE - Albuquerque, NM 87109 for specific and tes, Fax 505-345-4107 www.hallenvironmental.com (AOV) 809S8 8081 Pesticides / 8082 PCB's Anions (F,CI,NO₃,NO₂,PO₄,SO₄) Tel. 505-345-3975 (HA9 to AN9) 01:E8 Remarks: (ylno ese) H9T + 38TM + X3T8 PLAA Inahighan-Group 3 138/89 Time Ø Sampler Kellitole in If necess and moles submitted to Hall Environmental may be subcontracted to other accredited laboratories. The □ Rush Preservative ング公 H NO3 182 2 Naor 202 7 2007 JI Turn-Around Time Received by: email or Fax#. Kelly . Robinson@wnr.com Project Manager Project Name: (D) Standard (1) Amber Type and # Container (3) Poly (S) VOA) B) VOA 1) Poly Project #: N) WOR (Full Validation Loleupy Sample Request ID Client Western Refining Southwest, INC Cha of-Custody Record TRIP BLANK Bloomfeld Refinen Mailing Address: 50 Road 4990 JW-0 Bloowhell, NM 87413 Phone #: (505) (632-4166 Relinquished by: Relinquished by: 19 (Type) EXCE Time A Matrix 4 00201 6/621 129/9/2007 QA/QC Package: Time: □ Standard Other_ Date

Appendix D

Survey Data

Fixed width point lat/long/elevation listing

Project: WESTERN REFINERY

User name

hwilleto

Date & Time

9:55:07 AM 9/3/2009

Coordinate System

Projection from data collector

Zone

Zone from data collector

Project Datum

(WGS 84)

Geoid Model

GEOID03

Vertical Datum Coordinate Units Distance Units Height Units

US survey feet US survey feet US survey feet

Point listing					
Nam	e Latitude	Longitude	Elevation	Feature Code	
6		107°58'14.66801"W	5540.445	TANK 44 SOUTH	
6	5 36°41'48.66772"N	107°58'12.78343"W	5540.632	TANK 45 SOUTH	
€	6 36°41'48.01176"N	107°58'15.61914"W	5543.595	LOADING BAY #1 COR	
6	7 36°41'47.89084"N	107°58'15.56867"W	5543.567	LOADING BAY #1 COR	
6	8 36°41'47.66694"N	107°58'16.45442"W	5543.569	LOADING BAY #1 COR	
6	9 36°41'47.78111"N	107°58'16.50315"W	5543.774	LOADING BAY #1 COR	
7	0 36°41'47.53262"N	107°58'16.40604"W	5543.655	LOADING BAY #2 COR	
7	1 36°41'47.41675"N	107°58'16.35878"W	5543.508	LOADING BAY #2 COR	
7	2 36°41'47.64134"N	107°58'15.47457"W	5543.646	LOADING BAY #2 COR	
7	3 36°41'47.76306"N	107°58'15.52374"W	5543.700	LOADING BAY #2 COR	
7	4 36°41'47.51769"N	107°58'15.42746"W	5543.616	LOADING BAY #3 COR	
7	5 36°41'47.39555"N	107°58'15.37969"W	5543.508	LOADING BAY #3 COR	
7	6 36°41'47.27035"N	107°58'15.33252"W	5543.492	LOADING BAY #4 COR	
7	7 36°41'47.14612"N	107°58'15.28193"W	5543.540	LOADING BAY #4 COR	
7	8 36°41'46.92246"N	107°58'16.16575"W	5543.596	LOADING BAY #4 COR	
7	9 36°41'47.04449"N	107°58'16.21421"W	5543.500	LOADING BAY #4 COR	
8	0 36°41'47.16837"N	107°58'16.26543"W	5543.533	LOADING BAY #3 COR	
8		107°58'16.31362"W	5543.499	LOADING BAY #3 COR	
		107°58'17.22097"W	5549.393	AOC 22-10	
8	· = '	107°58'17.06316"W	5549.485	AOC 22-11	
8		107°58'24.54356"W	5545.382	CONCRETE PAD	
8		107°58'25.13052"W	5545.386	CONCRETE PAD	
		107°58'25.13172"W	5545.316	CONCRETE PAD	
		107°58'25.24909"W	5545.179	CONCRETE PAD	
		107°58'25.25039"W	5544.396	BLD COR	
		107°58'24.54189"W	5545.317	CONCRETE PAD	
		107°58'25.15767"W		ONCRETE PAD 8FT O/S	
		107°58'25.24860"W	5544.607	BLD COR	
		107°58'26.73399"W	5544.265	BLD COR	
850		107°58'26.73611"W	5544.396	BLD COR	
904		107°58'17.16476"W		OC 22-15/MW-61 PVMT	
905 905		107°58'17.16031"W 107°58'17.15514"W		AOC 22-15/MW-61 PAD	CACTNO
905		107°58'17.13514"W		OC 22-15/MW-61 TOP OF AOC 26-8/MW-65 PVMT	CASING
905		107°58'15.39658"W		AOC 26-8/MW-65 PAD	
905		107°58'15.39107"W		OC 26-8/MW-65 TOP OF C	T CT NIC
905		107°58'13.11816"W	5540.206	AOC 26-5	HOING
905		107°58'12.57862"W	5540.025	AOC 26-6	
903		107°58'12.67447"W	5540.360	AOC 26-7	
903		107°58'14.06416"W		OC 26-9/MW-66 GRADE	
905		107°58'14.06109"W		AOC 26-9/MW-66 PAD	
900		107°58'14.05858"W		OC 26-9/MW-66 TOP OF C	DSTNC
906		107°58'14.85771"W	5540.054	AOC 26-2	USTIAG
906		107°58'14.97772"W	5540.088	AOC 26-1	
906		107°58'14.43626"W	5540.587	AOC 26-1 AOC 26-4	
901	10 20 4T 40 10 202 N	701 20 T4.42050 M	3340.307	AUC 20-4	

```
36°41'48.41610"N 107°58'14.64503"W
                                            5543.638
                                                                AOC 26-3
     36°41'48.63697"N 107°58'15.77033"W
                                            5540.853
                                                                AOC 22-3
9066
     36°41'48.83611"N 107°58'16.03057"W
                                            5540.449AOC 22-12/TW-1 GRADE
      36°41'48.82723"N 107°58'16.02711"W
                                            5540.336 AOC 22-12/TW-1 PAD
     36°41'48.82442"N 107°58'16.02512"W
                                            5543.607AOC 22-12/TW-1 TOP OF CASING
9068
     36°41'48.95123"N 107°58'16.04153"W
                                            5540.379
                                                                AOC 22-2
9070 36°41'48.50044"N 107°58'16.34853"W
                                            5540.103
                                                                AOC 22-1
9071
     36°41'48.53647"N 107°58'16.20569"W
                                            5540.324
                                                               AOC 22-13
9072
     36°41'48.38276"N 107°58'15.95304"W
                                            5541.189
                                                               AOC 22-4
9073
      36°41'47.56329"N 107°58'16.74392"W
                                            5543.605
                                                                AOC 22-5
                                                               AOC 22-6
     36°41'47.04554"N 107°58'16.49572"W
9074
                                            5543.874
9075
     36°41'46.18239"N 107°58'17.09575"W
                                            5543.745
                                                               AOC 22-7
     36°41'45.80509"N 107°58'17.08569"W
                                            5546.880
                                                               AOC 22-9
     36°41'46.01420"N 107°58'17.35087"W
9077
                                            5545.296
                                                             AOC 22-14
                                            5545.715
9078
     36°41'45.99895"N 107°58'16.85610"W
                                                               AOC 22-8
      36°41'43.67391"N 107°58'17.17320"W
                                                                AOC 24-6
9079
                                            5552.073
     36°41'43.33506"N 107°58'16.48842"W
                                                               AOC 24-1
9080
                                            5551.597
     36°41'42.89208"N 107°58'18.26308"W
                                                               AOC 24-4
9081
                                            5550.914
                                            5550.986
     36°41'42.89601"N 107°58'17.40801"W
                                                                AOC 24-3
     36°41'43.44358"N 107°58'18.28355"W
9083
                                            5550.721
                                                                AOC 24-5
9084
     36°41'44.02484"N 107°58'18.38288"W
                                            5549.111AOC 24-7/MW-64 GRADE
9085
      36°41'44.02633"N 107°58'18.36885"W
                                            5549.043 AOC 24-7/MW-64 PAD
9086
     36°41'44.02863"N 107°58'18.35629"W
                                            5552.285AOC 24-7/MW-64 TOP OF CASING
     36°41'46.18596"N 107°58'18.25178"W
                                            5544.488AOC 22-16/MW-63 GRADE
9087
     36°41'46.17832"N 107°58'18.24028"W
                                            5544.482 AOC 22-16/MW-63 PAD
9088
9089
     36°41'46.17547"N 107°58'18.22906"W
                                            5547.255AOC 22-16/MW-63 TOP OF CASING
                                            5542.373SWMU 4-1/MW-59 GRADE
9090
     36°41'45.92894"N 107°58'22.23505"W
9091
     36°41'45.92727"N 107°58'22.21723"W
                                            5542.365 SWMU 4-1/MW-59 PAD
     36°41'45.92938"N 107°58'22.20599"W
                                            5545.196SWMU 4-1/MW-59 TOP OF CASING
9092
     36°41'45.19215"N 107°58'24.95955"W
                                            5544.569
                                                                SWMU 5-1
9093
     36°41'45.20846"N 107°58'24.73350"W
9094
                                            5544.407
                                                                SWMU 5-2
9095
     36°41'44.99208"N 107°58'24.49009"W
                                            5544.918
                                                                SWMU 5-3
     36°41'44.82380"N 107°58'24.50076"W
                                            5544.925
                                                                SWMU 5-4
9096
9097
                                                                SWMU 5-5
      36°41'44.61681"N 107°58'24.73909"W
                                            5544.880
     36°41'44.61062"N 107°58'25.05289"W
9098
                                            5544.571
                                                                SWMU 5-6
     36°41'44.32802"N 107°58'25.68687"W
                                                                AOC 25-1
9099
                                            5544.772
9100
     36°41'45.38988"N 107°58'25.99162"W
                                            5544.007AOC 25-2/MW-60 GRADE
     36°41'45.37937"N 107°58'25.98861"W
                                            5544.003 AOC 25-2/MW-60 PAD
9101
9102
     36°41'45.37028"N 107°58'25.98617"W
                                            5543.711AOC 25-2/MW-60 TOP OF CASING
9103
      36°41'42.90086"N 107°58'16.48495"W
                                            5551.416
                                                                AOC 24-2
      36°41'43.03985"N 107°58'07.46838"W
9104
                                            5558.555AOC 23-1/MW-62 GRADE
     36°41'43.02840"N 107°58'07.46780"W
9105
                                            5558.703 AOC 23-1/MW-62 PAD
9106 36°41'43.02125"N 107°58'07.46590"W
                                            5561.322 AOC 23-1/MW-62 PAD
```

Back to top

Appendix E

Boring Logs

Well No.: MW-59 (SWMU 4-1)

512/347-8243 fax

Client: Western Refining Southwest, Inc.
Site: SWMI Group #3. Bloomfield Refinery

Site: SWMU Group #3, Bloomfield Refinery Ground Water: Se

Start Date: 4/6/2009 **Finish Date:** 4/6/2009

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

404 Camp Craft Road

Austin, Texas 78746

Drilling Method: Hollow-Stem Auger/ODEX

Sampling Method: Split Spoon

Comments: N36º41.767' W107º58.370'

Total Depth: 44.25' bgl Ground Water: Saturated @ 40' bgl

Elev., TOC (ft. msl): 5545.196 Elev., PAD (ft. msl): 5542.365 Elev., GL (ft. msl): 5542.373

Site Coordinates:

N 36º41'45.92938"

W 107º58'22.20599"

Sampling							
Sample Depth Time Sample Type/Container/No Saturation Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Comple	etion Results	
-2-			Ground Surface	Aluminum Protective Cover Pad - 4'x4'x6"	The second second		
0- 		100	Clayey Silt (ML) Low plasticity, firm, damp, brown	uminum Prot id - 4'x4'x6"	7	4	rehole 1
2 38°F 2 0930 G/2V/2E/3J 2.9 37°F		80	Clayey Silt (ML) Similar to above	Aluminum Pro		↑ Joints	8" Diameter Borehole
50.8 37°F 6-1 6-8' 1130 G/2V/ 2E/3J 214 37°F		80	Clayey Silt (ML) Similar to above, mixed with soft black sticky sludge, odor	Reinforced		Sch. 40 PVC w/Threaded Joints	έœ
6-8' 1130 G/2V/ 2E/3J 214 37°F		80	Clayey Silt/Sludge (ML) Gray silt mixed with sludge	Stee		4" Sch. 40 P	
9.7 49°F		90	Clayey Silt (ML) Low plasticity, soft, damp, brown to light gray, 8.5-9' faint odor		onite Grout		
41 49°F		80	Clayey Silt (ML) Similar to above, light gray/brown		Cement/Bentonite Grout		
9.5 49°F		60	Silty Sand (SM) Very fine grain, compact, damp, brown		O		
17 -			Silty Sand (SM) Similar to above				

Well No.: MW-59 (SWMU 4-1)

512/347-8243 fax

Start Date: 4/6/2009 Finish Date: 4/6/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. **Drilling Rig: CME 75**

Austin, Texas 78746

Drilling Method: Hollow-Stem Auger/ODEX

Sampling Method: Split Spoon

Comments: N36º41.767' W107º58.370'

Total Depth: 44.25' bgl Ground Water: Saturated @ 40' bgl

Elev., TOC (ft. msl): 5545.196 Elev., PAD (ft. msl): 5542.365 Elev., GL (ft. msl): 5542.373

Site Coordinates:

N 36º41'45.92938" W 107º58'22.20599"

-		5	Sam	plir	ıg							
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Comp	letion Re	esults
1					8.0 50ºF		50					
16					8.1 50ºF		60	Silty Sand (SM) Similar to above		nints 7	→	nite Grout
18					7.3 50ºF		80	Silty Sand (SM) Similar to above, gypsum crystals		4" Sch. 40 PVC w/Threaded Joints eaded Joints		Cement/Bentonite Grout
22		<u> </u> 			6.4 50ºF		80	Silty Sand (SM) Very fine to fine grain, loose to compact, light brown to tan		h. 40 PVC w d Joints		
7					6.6 50ºF		80	Silty Sand (SM) Similar to above	24'	4" Sc n w/Threade		Bentonite Pellets
24					5.5 50°F		80	Silty Sand (SM) Similar to above	26'	4" Sch. 40 PVC Slotted 0.01" Screen w/Threaded Joints		Bent
28 -					6.3 50ºF		90	Silty Sand (SM) Similar to above	28'	PVC Slottec		Pack
30 1					4.2 50ºF		90	Silty Sand (SM) Similar to above		74" Sch. 40		10/20 Sieve Sand Filter Pack
32-					3.9 50ºF		80	Clayey Silt (ML) Low plasticity, soft to firm, damp, brown				10/20 Sieve
RPS 404	Camp			L				Sheet: 2 of 3			512/347	<u>⊞</u> ′-7588 ′-8243 fax

Well No.: MW-59 (SWMU 4-1)

Start Date: 4/6/2009 Finish Date: 4/6/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

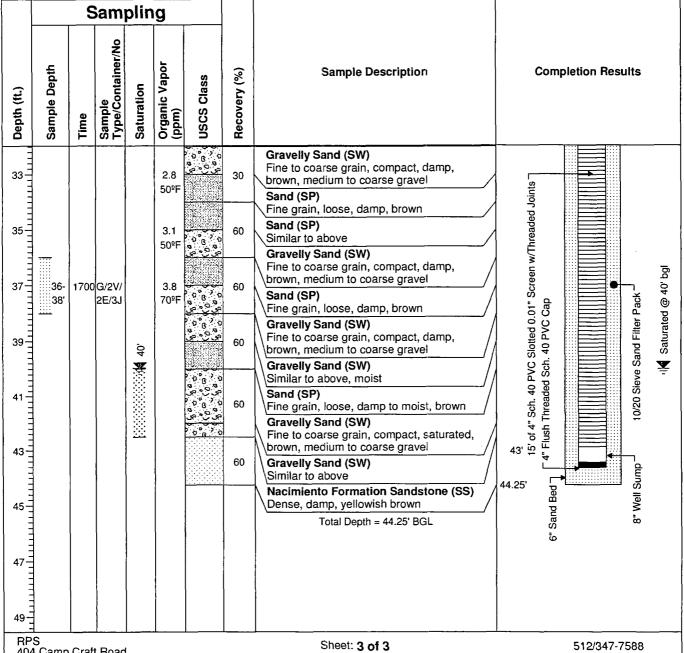
Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. **Drilling Rig: CME 75**

Drilling Method: Hollow-Stem Auger/ODEX

Sampling Method: Split Spoon

Comments: N36º41.767' W107º58.370'

Ground Water: Saturated @ 40' bgl Elev., TOC (ft. msl): 5545.196


Elev., PAD (ft. msl): 5542.365 Elev., GL (ft. msl): 5542.373

Site Coordinates:

Total Depth: 44.25' bgl

N 36º41'45.92938"

W 107º58'22.20599"

404 Camp Craft Road Austin, Texas 78746

512/347-8243 fax

Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A

404 Camp Craft Road Austin, Texas 78746

Drilling Method: Hand Auger **Sampling Method:** Auger Bucket **Comments:** N36º41.754' W107º58.417' **LOG OF BORING**

512/347-7588

512/347-8243 fax

Boring No.: SWMU 5-1

Start Date: 4/23/2009 Finish Date: 4/23/2009

Ground Water: Not Encountered Fin

Elev., TOC (ft. msl): -Elev., PAD (ft. msl): --

Total Depth: 2' bgl

Elev., GL (ft. msl): 5544.569

Site Coordinates: N 36º41'45.19215"

W 107º58'24.95955"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	 0-					40.000000		Ground Surface	-0
	0.5'	1410	G/2V/ 2E/3J		9.8 78ºF		100	Gravelly Silty Sand (SM) Fine grain, compact, dry to damp, brown	
=	1.5-	1420	G/2V/		9.4				<u> </u>
2-	2'	1120	2E/3J		78ºF			Total Depth = 2' BGL	_ ^ I
]								·	=
-		}							-
4-									-4
									E
6 8 8									
-									-
									E
									El
									E
8-									-8 -
									Ē
									<u> </u>
10-					l				10
-									-
									-
12-					}				- - - - - - 12
=									<u> </u>
							ı		
BE	96	<u></u>	l		l	l			

Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A

404 Camp Craft Road

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.754' W107º58.414'

LOG OF BORING

512/347-7588

512/347-8243 fax

Boring No.: SWMU 5-2 **Start Date:** 4/23/2009 Finish Date: 4/23/2009

Ground Water: Not Encountered

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5544.407

Total Depth: 2' bgl

Site Coordinates: N 36º41'45.20846"

W 107º58'24.73350"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	······ 0-							Ground Surface	-0
-	0- 0.5' 1.5- 2'		G/2V/ 2E/3J G/2V/]: -	7.7 78ºF 9.3		100	Gravelly Silty Sand (SM) Fine grain, compact, dry to damp, brown	
2-	2'	' '	2E/3J		78ºF			Total Depth = 2' BGL	_2
6 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1			2E/3J		76-г				6 10 12
12-									- - - 12 - - - - -

Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Austin, Texas 78746

Driller: N/A

Drilling Rig: N/A

Drilling Method: Hand Auger Sampling Method: Auger Bucket

Comments: N36º41.750' W107º58.409'

LOG OF BORING

512/347-8243 fax

Boring No.: SWMU 5-3 Start Date: 4/23/2009

Finish Date: 4/23/2009

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --

Total Depth: 2' bgl

Elev., GL (ft. msl): 5544.918

Ground Water: Not Encountered

Site Coordinates: N 36º41'44.99208"

W 107º58'24.49009"

		Sa	amp	lin	g					
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Depth (ft.)
								Ground Surface		-0
0-	0-		G/2V/ 2E/3J G/2V/		12.2 80ºF 15.9		100	Gravelly Silty Sand (SM) Fine grain, compact, damp, brown	-	
6			2E/3J		80°F			Total Depth = 2' BGL		-4 -6 -10
RI	PS 14 Camp C	raft F	Road					Sheet: 1 of 1	512/347-7588	- }

Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.747' W107º58.409' LOG OF BORING

Boring No.: SWMU 5-4

Start Date: 4/23/2009 Finish Date: 4/23/2009

Ground Water: Not Encountered

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --

Total Depth: 2' bgl

Elev., GL (ft. msl): 5544.925

Site Coordinates: N 36º41'44.82380"

W 107º58'24.50076"

		Sa	amp	lin	g					
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Depth (ft.)
0-	—— n-							Ground Surface		-0
	0-		G/2V/ 2E/3J G/2V/		13.7 78ºF 14.3		100	Gravelly Silty Sand (SM) Fine grain, compact, damp, brown		- - - - - - -
2~	 2'		2E/3J	ı	78ºF	4000044		Total Depth = 2' BGL		2 [
4										6
12-										12
40	PS)4 Camp C ustin, Texa	raft F s 787	Road 746					Sheet: 1 of 1	512/347-7588 512/347-8243 f	fax

Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: N/A Drilling Rig: N/A

404 Camp Craft Road

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.744' W107º58.414' LOG OF BORING

512/347-7588

512/347-8243 fax

Boring No.: SWMU 5-5

Start Date: 4/23/2009 Finish Date: 4/23/2009

Ground Water: Not Encountered

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5544.880

Total Depth: 2' bgl

Site Coordinates: N 36º41'44.61681"

W 107º58'24.73909"

		Sa	amp	lin	g	,			
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	O-							Ground Surface	-0
	0.5' & Dup	1500	G/2V/ 2E/3J		12.0 80ºF		100	Gravelly Silty Sand (SM) Fine grain, compact, dry to damp, brown	
] =	1.5- 2'	1505	G/2V/		17.8				<u> </u>
2-	2'		2E/3J		80ºF			Total Depth = 2' BGL	-2
] =									-4
4-									=4
=									- - - - 6
6-									1- 1
=									=
8-									=
8-		 							-8
									E
=			j						
10-									- - 10
=									=
				i					<u> </u>
12-									- -12
=									E
=									E
BI	1	L		L .	<u> </u>	<u> </u>	<u> </u>		

Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.744' W107º58.419'

LOG OF BORING

512/347-8243 fax

Boring No.: SWMU 5-6

Start Date: 4/23/2009 Finish Date: 4/23/2009

Ground Water: Not Encountered

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --

Total Depth: 2' bg!

Elev., GL (ft. msl): 5544.571

Site Coordinates: N 36º41'44".61062"

W 107º58'25.05289"

		Sa	amp	lin	g					
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Depth (ft.)
0-								Ground Surface		-0
-	0-	1510	G/2V/ 2E/3J		16.0 80ºF		100	Gravelly Silty Sand (SM) Fine grain, compact, dry to damp, brown	_	
_	1.5-	1515	G/2V/		12.5				-	-
2-	 2'	1515	2E/3J		80ºF			Total Depth = 2' BGL		-2
=			20/33		00-F			Total Deptit = 2 Bdt.	-	-
		l							-	-
=									<u> </u>	-
4									-	-4 -
-										-
									_	-
6			ļ							-
6_									-	-6 -
=	i								E	-
=										-
=		1			1		 			-
8-		Ì						_	-	-8 -
Ξ										-
=									=	<u>-</u>
=				ļ					E	-
10-									-	-10
Ξ										-
_		-							-	-
=										-
12-					1		1		<u> -</u>	- 12
_									-	-
_									-	-
		<u></u>		<u> </u>	L		l			
RF 40	4 Camp C	raft F	Road					Sheet: 1 of 1	512/347-7588 512/347-8243 fa	

Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A

404 Camp Craft Road

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36°41.811' W107°58.272' **LOG OF BORING**

Boring No.: AOC 22-1

Start Date: 4/15/2009 **Finish Date:** 4/15/2009

512/347-7588

512/347-8243 fax

Total Depth: 2' bgl
Ground Water: Not Encountered

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5540.103

Site Coordinates:

N 36º41'48.50044" W 107º58'16.34853"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	O-					111111111111111111111111111111111111111		Ground Surface	-0
	0-	1600	G/2V/ 2E/3J	1	4.5 70ºF		100	Silt (ML) Very fine grain, loose, dry, brown	
1 1 1	1.5-	1615	G/2V/		3.5			Clayey Silt (ML) Low plasticity, soft, damp, brown	-2
2-			2E/3J		70ºF			Total Depth = 2' BGL	E
-									-
4-									- - - - -4
-									F 1
=									
6-									-6
-					!				E
8-									<u>-</u> 8
=									- - -
				:					E
10-									10
									- - - - - - 12
12-]								E 12
'- =									'-
			.11	Ь——			-		

Boring No.: AOC 22-2

Start Date: 4/15/2009

Finish Date: 4/15/2009

512/347-8243 fax

Total Depth: 2' bgl

Ground Water: Not Encountered

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5540.379

Site Coordinates:

N 36º41'48.95123" **W** 107º58'16.04153"

Site: SWMU Group #3, Bloomfield Refinery Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Austin, Texas 78746

Driller: N/A Drilling Rig: N/A

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.818' W107º58.266'

Client: Western Refining Southwest, Inc.

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	····· 0-							Ground Surface	0
	0- 0.5' 1.5- 2'	ĺ	G/2V/ 2E/3J G/2V/		16.1 70ºF 2.1		100	Silt (ML) Very fine grain, loose, dry, brown	
2-	2'	i	2E/3J		70ºF			Total Depth = 2' BGL	2
4— 6— 8—									6 110
RF	PS 14 Camp C	raft B	had					Sheet: 1 of 1	38

Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

3833 S. Staples, Suite N-229

Corpus Christi, TX 78411

Driller: N/A

Drilling Rig: N/A

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.813' W107º58.261'

LOG OF BORING

361/855-7410 fax

Boring No.: AOC 22-3 Start Date: 4/15/2009

Finish Date: 4/15/2009

Elev., TOC (ft. msl): -Elev., PAD (ft. msl): --

Total Depth: 2' bgl

Elev., GL (ft. msl): 5540.853

Ground Water: Not Encountered

Site Coordinates: N 36º41'48.63697"

W 107º58'15.77033"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	 0-							Ground Surface	
11111	0.5'	1650	G/2V/ 2E/3J		5.1 70ºF		100	Silt (ML) Very fine grain, loose to compact, dry to damp, brown	-
3	1.5-	1700	G/2V/		3.7				
2	··· 2'	,,,,,	2E/3J		70ºF			Total Depth = 2' BGL	2
6 10 12									-4 4
RF	PS 33 S. Stap	les s	Suito N	J-220				Sheet: 1 of 1	55-7335

Boring No.: AOC 22-4

LOG OF BORING

Start Date: 4/15/2009

Finish Date: 4/15/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Driller: N/A Drilling Rig: N/A

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.808' W107º58.265' Total Depth: 2' bgl

Ground Water: Not Encountered

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5541.189

Site Coordinates:

N 36º41'48.38276" W 107º58'15.95304"

		Sa	amp	lin	g					
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Depth (ft.)
								Ground Surface		-0
0-	0-		G/2V/ 2E/3J G/2V/		3.4 70ºF 2429		100	Sandy Silt (ML) Very fine grain, loose to compact, dry to damp, brown, odd	or	- - - - -
2-	2'		2E/3J		70ºF			Total Depth = 2' BGL		-2 - - - - - - - - - - - - - - - - - -
6-1111										6 8
8-										-8 -10
10									1.	10
12-										-12 -12 -
RF 40 Au	S 4 Camp C stin, Texas	raft R s 787	oad 46						512/347-7588 512/347-8243 fa	ax

Boring No.: AOC 22-5
Total Depth: 2' bgl
Ground Water: Not Encountered
Finish Date: 4/15/2009

Ground Water: Not Encountered Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5543.605

Site Coordinates:

N 36º41'47.56329" W 107º58'16.74392"

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: N/A
Drilling Rig: N/A

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.793' W107º58.280'

			·					
	Sa	amp	lin	g				
Depth (ft.) Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0- :::::: 0-							Ground Surface	-0
0-	1720	G/2V/ 2E/3J		1.6 80ºF			Sandy Silt (ML) Fine grain, loose, dry, gray	- - -
1.5- \	i		-			100	Clayey Silt (ML) Fine grain, compact, moist, brown	====
2 2'	1730	G/2V/		1.4				
]		2E/3J		80ºF			Total Depth = 2' BGL	
]								E
.]								F.
4								-4
] [- - - - - - - - - - - - - - - - - - -
=								- -
6								-6
								- - -
8-								- 8
1							•	- ¹
								<u> -</u>
=								- - - 10
10-								- 10
1								<u> -</u>
1								-
12 -								12
1								<u> -</u>
= 1								E
RPS								47.7500

RPS 404 Camp Craft Road Austin, Texas 78746

Sheet: 1 of 1

Boring No.: AOC 22-6

Finish Date: 4/23/2009

512/347-8243 fax

Start Date: 4/23/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: N/A Drilling Rig: N/A

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.783' W107º58.278' Total Depth: 2' bgl

Ground Water: Not Encountered

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5543.874

Site Coordinates:

N 36º41'47.04554" **W** 107º58'16.49572"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Don'th (#)
0-	······ 0-							Ground Surface	
=	0- 0.5'	1650	G/2V/ 2E/3J		1.5 80ºF			Sandy Silt (ML) Fine grain, loose, dry, gray	F
=		:	20,00		001		100	Clayey Silt (ML)	
2	1.5-	1655	G/2V/		4.1			Fine grain, compact, moist, brown	
=			2E/3J		80ºF			Total Depth = 2' BGL	=
=									E
╡									
4-									
=									- - -
=									E
6-									<u> </u>
Ξ									E
=									- - -
8-									-8
=							:		E
=									=
o-[<u>-</u> -1
=									Ė
=									Ē
2-									<u>-</u> -1
=									E
-									E
RP	'S 4 Camp C	raft R	oad					Sheet: 1 of 1	512/347-7588

Boring No.: AOC 22-7 **Start Date:** 4/13/2009

Finish Date: 4/13/2009

512/347-7588

512/347-8243 fax

Client: Western Refining Southwest, Inc.
Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: N/A
Drilling Rig: N/A

404 Camp Craft Road

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.770' W107º58.284' Total Depth: 2' bgi

Ground Water: Not Encountered

Elev., TOC (ft. msl): -Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5543.745

Site Coordinates:

N 36º41'46.18239" W 107º58'17.09575"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	O-							Ground Surface	-0
0-	1.5-		G/2V/ 2E/3J G/2V/		1.3 68ºF 2.6		100	Silt (ML) Very fine grain, loose to compact, damp, brown	- - - - - - -
2-	2'		2E/3J		68ºF	#111HJJ 11 H		Total Depth = 2' BGL	-2
4—————————————————————————————————————								Total Bopar 2 Bac	

Boring No.: AOC 22-8

Start Date: 4/13/2009

Finish Date: 4/13/2009

512/347-7588

512/347-8243 fax

Client: Western Refining Southwest, Inc.
Site: SWMU Group #3, Bloomfield Refinery

Site: SWMU Group #3, Bloomfield Refin **Job No.:** 354 - Bloomfield, NM

Geologist: Tracy Payne

404 Camp Craft Road

Austin, Texas 78746

Driller: N/A
Drilling Rig: N/A

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36°41.767' W107°58.281' Total Depth: 2' bgl

Ground Water: Not Encountered

Elev., TOC (ft. msl): -Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5545.715

Site Coordinates:

N 36º41'45.99895 W 107º58'16.85610"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	:::::: 0-							Ground Surface	-0
	0.5'		G/2V/ 2E/3J G/2V/		1.4 68ºF 1.2		100	Silt (ML) Very fine grain, loose to compact, dry to damp, brown	-
2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	&Dup		2E/3J		68ºF			Total Depth = 2' BGL	-2 -4 4 6 8 10

Boring No.: AOC 22-9 Start Date: 4/13/2009

Finish Date: 4/13/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.764' W107º58.286' Total Depth: 2' bgl

Ground Water: Not Encountered

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5546.880

Site Coordinates:

N 36º41'45.80509" **W** 107º58'17.08569"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Don'th (#)
0-	0_							Ground Surface	
-	0-	1655	G/2V/ 2E/3J		0.6 68ºF		100	Silt (ML) Very fine grain, loose to compact, dry to damp, brown	
_ =	1.5-	1705	G/2V/		1.1				=
2	2'		2E/3J		68ºF			Total Depth = 2' BGL	
4-				i					- - - - - - -
6-1									- - - - - - - - - - - - - - - - - - -
8-									- - - - - - - - - - - - - - - - - - -
10 -									
12									E E E 1
	PS 4 Camp C							Sheet: 1 of 1	512/347-7588 512/347-8243 fax

Boring No.: AOC 22-10

Start Date: 4/14/2009

Finish Date: 4/14/2009

512/347-7588

512/347-8243 fax

Client: Western Refining Southwest, Inc.
Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A

404 Camp Craft Road

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36°41.749' W107°58.283' Total Depth: 2' bgl

Ground Water: Not Encountered

Elev., TOC (ft. msl): -Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5549.393

Site Coordinates:

N 36º41'44.96497" **W** 107º58'17.22097"

<u> </u>	Γ	_							1
		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	n-							Ground Surface	-0
0-	0-	1410	G/2V/ 2E/3J	!	7.9 72ºF			Silt/Gravel Base (ML) Very fine grain, compact, dry, brown	
	1.5-	1425	G/2V/		3.8		100	Clayey Silt (ML) Low plasticity, very fine grain, compact, damp, brown	
2-	2'		2E/3J		72ºF	<u> </u>		Total Depth = 2' BGL.	2
4-						Í			-4
									E
6-									- - -6
						1			E
-									
8-									- - - 8
-									
10-									-10
12-						1			12
									E
DI						L			F_

Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: N/A Drilling Rig: N/A

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.743' W107º58.281'

LOG OF BORING

Boring No.: AOC 22-11

Start Date: 4/14/2009 Finish Date: 4/14/2009

512/347-8243 fax

Ground Water: Not Encountered

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5549.485

Site Coordinates:

Total Depth: 2' bgl

N 36º41'44.55341" W 107º58'17.06316"

Sample Depth	Sample Type/ Containe/No.	apor				
ı Sa ∑ı	Sample	Saturation Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0- 1440					Ground Surface	
0.5'	0 G/2V/ 2E/3J	5.9 73ºF		100	Clayey Silt (ML) Low plasticity, compact, very fine grain, damp, brown, gravelly	
1.5-	5 G/2V/	4.3				-
2'	2E/3J	73ºF			Total Depth = 2' BGL	
]						F
]						-
 						<u>-</u> '
=						E
						E
5-						<u> </u>
=						<u>-</u> -
]						Ē
3-]					·	- 8 -
		:				Ē
						<u>-</u>
)-]						<u>-</u> 1
						Ė
=						Ē
2]						
1						
RPS						<u>F</u>

Well No.: AOC 22-12 / TW-01

Total Depth: 42' bgl

Start Date: 4/13/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Ground Water: Saturated @ 37.75' bgl Finish Date: 4/13/2009

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc.

Elev., TOC (ft. msl): 5543.607 Elev., PAD (ft. msl): 5540.336 Elev., GL (ft. msl): 5540.449

Drilling Rig: CME 75

Site Coordinates: N 36º41'48.82442"

W 107º58'16.02512"

Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon

Comments: N36º41.816' W107º58.256'

		S	am	plin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Completion Results
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			CANA					Ground Surface	
	0.5'	0915 &Dup 0930	G/4V/ 4E/6J G/2V/ 2E/3J		0.9 53ºF 3.4		100	Silt (ML) Very fine grain, compact, damp, brown	4'x4'x6".
1	— 2		2E/3J		53ºF 4.9 60ºF		80	Clayey Silt (ML) Similar to above	Steel Reinforced Concrete Pad - 4'x4'x6" Grout Concrete Pad - 4'x4'x6" Grout Concrete Pad - 4'x4'x6" Grout Richard State Pack State St
4 1111111111111111111111111111111111111					5.6 60ºF		80	Clayey Silt (ML) Similar to above	Steel Reinforced Concrete Pad - Grout Sch. 40 PVC w/Threaded Joints 8" Diameter Bore
o di					5.2 60ºF		90	Clayey Silt (ML) Similar to above	PVC w/T
10				:	4.9 60ºF		100	Clayey Silt (ML) Similar to above, trace fine grain sand	Steel Re Grout -
12-					4.2 60ºF		100	Sandy Silt (ML) Very fine grain, loose to compact, damp, light brown	Steel F Cement/Bentonite Grout
14-5					6.3 60ºF		90	Sandy Silt (ML) Similar to above	Cement/
16-2					6.0 60ºF		60	Clayey Silt (ML) Low plasticity, soft, very fine grain, compact, damp, brown	
18-					5.2 60ºF		100	Clayey Silt (ML) Similar to above	
20-					5.1 60ºF		100	Sandy Silt (ML) Very fine grain, loose to compact, damp, light brown	
10 112 114 116 118 120 111 12 120 111 12 120 111 111 111 1					4.4 60ºF		90	Silty Sand (SM) Very fine to fine grain, loose, damp, light brown	
RP	S S	I					FL	Sheet: 1 of 2	512/247 7599

404 Camp Craft Road Austin, Texas 78746

Sheet: 1 of 2

Well No.: AOC 22-12 / TW-01

Total Depth: 42' bgl

Start Date: 4/13/2009

Ground Water: Saturated @ 37.75' bgl Finish Date: 4/13/2009

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. **Drilling Rig:** CME 75

Elev., TOC (ft. msl): 5543.607 Elev., PAD (ft. msl): 5540.336 Elev., GL (ft. msl): 5540.449

Site Coordinates:

N 36º41'48.82442"

W 107º58'16.02512"

Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon Comments: N36º41.816' W107º58.256'

Client: Western Refining Southwest, Inc.

Site: SWMU Group #3, Bloomfield Refinery

Sample Description Completion Completion Completion Completion Sample Description Completion Sample Description Completion Sample Description Completion Sample Description Sample Description Completion Completion Completion Sample Description Sample Description Completion Sample Description Completion Sample Description Completion Sample Description Sample Description Completion Sample Description	—
24- 26- 26- 28- 30- 30- 30- 30- 30- 30- 30- 30- 30- 30	♣ Properties Grout
36-36-37.75 1210 2E/3J 38-30 10 Gravelly Sand (SW) Similar to above No Recovery - similar to above Gravelly Sand (SW) Similar to above, saturated at 37.37' bgl Sand (SW) Fine to coarse grain, loose, saturated, arou edor.	☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐
Sand (SW) Similar to above, saturated, gray, odor Nacimiento Formation Clayey Sand/Weathered Sandstone (SC/SS) Dense, damp, yellowish brown Total Depth = 42' BGL	2/347-7588

Start Date: 4/8/2009

Finish Date: 4/8/2009

Boring No.: AOC 22-13

Client: Western Refining Southwest, Inc.

Site: SWMU Group #3, Bloomfield Refinery **Job No.:** 354 - Bloomfield, NM

Geologist: Tracy Payne
Driller: Enviro-Drill, Inc.
Drilling Rig: CME 75

Drilling Method: Hollow Stem Augers

Sampling Method: Split Spoon

Comments: N36º41.811' W107º58.269'

Total Depth: 42.5' bgl

Ground Water: Saturated @ 39' bgl

Elev., TOC (ft. msl): -Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5540.324

Site Coordinates:

N 36º41'48.53647" W 107º58'16.20569"

N 30 41 40.55047	VV 107 30 10.20303
*	

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	O-							Ground Surface	-0
0 10 12 12 12 12 12 12 1	0- 0.5' 1.5- 2'		G/2V/ 2E/3J G/2V/		1427 76ºF	- Annual - A	100	Silt (ML) Very fine grain, compact, dry, brown, odor	2
4	_		2E/3J		1186 76ºF		60	Clayey Silt (ML) Very fine grain, low plasticity, compact to loose, damp, brown, odor	
6					1373 76ºF		70	Clayey Silt (ML) Similar to above, odor	4
111111111					1349 76ºF		70	Clayey Silt (ML) Similar to above, odor	8
10					1302 76ºF		70	Clayey Silt (ML) Similar to above, odor	10
12-					1302 76ºF		60	Clayey Silt (ML) Similar to above, odor	12
					1345 75ºF		90	Clayey Silt (ML) Similar to above, odor	14
14-	•				1277 75ºF		90	Clayey Silt (ML) Similar to above, odor	16
					1250 75°F		90	Clayey Silt (ML) Similar to above, odor	шш
18 -	18- 20'	1800	G/2V/ 2E/3J		1660 74ºF		60	Silty Sand (SM) Very fine grain, loose, damp, light brown to tan, faint staining apparent, odor	18
22-					1611 74ºF		70	Silty Sand (SM) Similar to above, odor	20
DE					1336 74ºF		90	Silty Sand (SM) Similar to above, odor	- 24

RPS 404 Camp Craft Road Austin, Texas 78746

Sheet: 1 of 2

Start Date: 4/8/2009

Finish Date: 4/8/2009

Boring No.: AOC 22-13

Client: Western Refining Southwest, Inc.

Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Drilling Method: Hollow Stem Augers

Sampling Method: Split Spoon

Comments: N36º41.811' W107º58.269'

Total Depth: 42.5' bgl

Ground Water: Saturated @ 39' bgl

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5540.324

Site Coordinates:

N 36º41'48.53647" W 107º58'16.20569"

	Sampling								
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	
									E
25					1131 74ºF		100	Silty Sand (SM) Very fine grain, loose, damp, light brown to tan, faint staining apparent, odor	25
27					1131 73ºF		80	Silty Sand (SM) Similar to above, odor	27
29					1184 73ºF		80	Silty Sand (SM) Similar to above, sand lenses at base of interval, odor	E 29
31					1268 73ºF		60	Sand (SP) Fine grain, loose, damp, tan, stained, odor, gravelly sand at base	31
33	32-	1810	G/2V/		1694 73ºF		50 0	Sand (SP) Similar to above, stained, odor, very damp, trace gravel	33
	34.5'		2E/3J		1596 73ºF	° 0° 0° 0°		No Recovery - similar to above	1
35	<u>::::::</u>				908	مى 0°8°0°	10	Gravelly Sand (SW) Medium grain, loose, stained, odor, damp to very damp, coarse gravel	35
27					72ºF	0,000	10	Gravelly Sand (SW)	E 37
37	37- 39'	1820	G/2V/ 2E/3J	39,	1228 72ºF	0°6°0	10	Similar to above, odor Gravelly Sand (SW) Similar to above, dark brown, odor, stained/oily appearance	
39-	ننبندن			*		0°8'0	20	Gravelly Sand (SW) Similar to above, less gravel, saturated, dark gray, odor	-[39
41						77777	70 90	Nacimiento Formation Sand/Sandstone (SS) Fine to medium grain, dense, damp, yellowish brown clay lense at base	
43								Clay (CH) High plasticity, very stiff, damp, yellowish brown	
								Sandstone (SS) Medium grained, dense	Ē ,,
45-								Total Depth = 42.5' BGL	E 45
			<u> </u>				<u> </u>		E_

RPS 404 Camp Craft Road Austin, Texas 78746

Sheet: 2 of 2

Start Date: 4/8/2009

Finish Date: 4/8/2009

Boring No.: AOC 22-14

Total Depth: 10' bgl

Ground Water: Not Encountered

Elev., TOC (ft. msl): -Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5545.296

Site Coordinates:

N 36º41'46.01420" **W** 107º58'17.35087"

Site: SWMU Group #3, Bloomfield Refinery **Job No.:** 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Drilling Method: Hollow Stem Augers **Sampling Method:** Split Spoon

Client: Western Refining Southwest, Inc.

Comments: N36º41.768' W107º58.290'

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	O-							Ground Surface	-0
			G/2V/ 2E/3J G/2V/		2.1/ 3.1 71ºF		100	Silt (ML) Very fine grain, compact, dry, brown	
2-			2E/3J		6.3 71ºF		90	Clayey Silt (ML) Very fine grain, low plasticity, loose, damp, brown	2
4-					5.1 71ºF		90	Clayey Silt (ML) Similar to above	4
6-			;		4.6 71ºF		90	Clayey Silt (ML) Similar to above	
6 8 10 -					3.8 71ºF		90	Clayey Silt (ML) Similar to above	8
10-								Total Depth = 10' BGL	<u> </u>
12 14 16	77777								112

RPS 404 Camp Craft Road Austin, Texas 78746

Sheet: 1 of 1

Well No.: MW-61 (AOC 22 -15)

Total Depth: 40.25' bgl Ground Water: Saturated @ 36' bgl Start Date: 4/15/2009

Site: SWMU Group #3, Bloomfield Refinery Job No.: 354 - Bloomfield, NM

Client: Western Refining Southwest, Inc.

Elev., TOC (ft. msl): 5539.411 Elev., PAD (ft. msl): 5539.613 Finish Date: 4/15/2009

Geologist: Tracy Payne Driller: Enviro-Drill, Inc.

Elev., GL (ft. msl): 5539.588

Drilling Rig: CME 75

Site Coordinates: N 36º41'48.82131"

W 107º58'17.15514"

Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon

Comments: N36º41.813' W107º58.287'

		S	Sam	plin	ıg							
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Completio	n Results	
-2- 0- 2- 4- 10-	1- ::::1.5- 2' &Dup	1155			2.8 63°F 29.5 63°F 23.4 68°F 5.5 68°F		100 60 50 0	Ground Surface Asphalt/Base Clayey Silt (ML) Low plasticity, stiff, damp, brown Clayey Silt (ML) Similar to above, soft Clayey Silt (ML) Similar to above Clayey Silt (ML) Similar to above - no recovery Clayey Silt (ML) Similar to above Clayey Silt (ML) Similar to above Similar to above, trace very fine grain sand Silty Sand (SM) Very fine grain, loose, damp, brown Silty Sand (SM) Similar to above	Flush Mount Cover	Steel Reinforced Concrete Pad - 4'x4'x6" Cement/Bentonite Grout	4" Sch. 40 PVC w/Threaded Joints	8" Diameter Borehole

404 Camp Craft Road Austin, Texas 78746

Sheet: 1 of 3

Well No.: MW-61 (AOC 22 -15)

Start Date: 4/15/2009 Finish Date: 4/15/2009

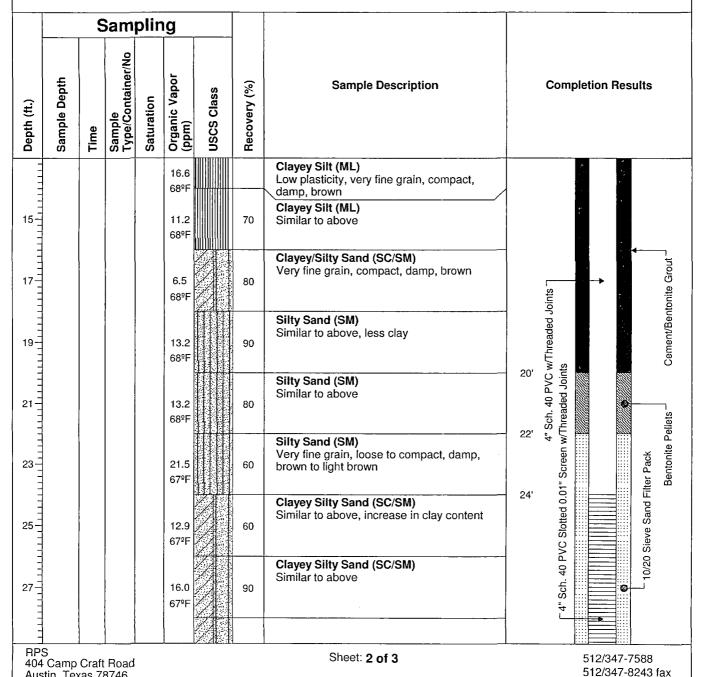
Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Austin, Texas 78746

Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon

Comments: N36º41.813' W107º58.287'


Total Depth: 40.25' bgl

Ground Water: Saturated @ 36' bgl

Elev., TOC (ft. msl): 5539.411 Elev., PAD (ft. msl): 5539.613 Elev., GL (ft. msl): 5539.588

Site Coordinates:

N 36º41'48.82131" W 107º58'17.15514"

Well No.: MW-61 (AOC 22 -15)

Start Date: 4/15/2009

Finish Date: 4/15/2009

Client: Western Refining Southwest, Inc.

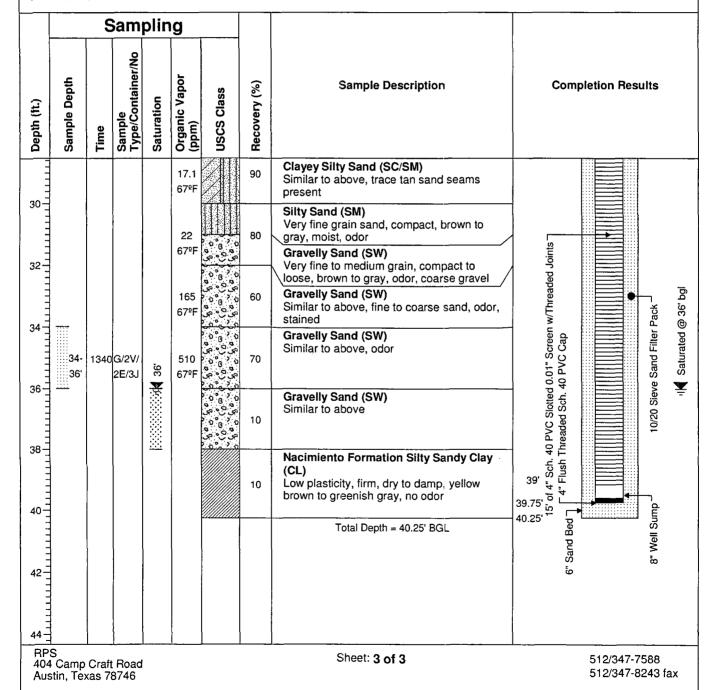
Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. **Drilling Rig: CME 75**

Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon

Comments: N36º41.813' W107º58.287'

Total Depth: 40.25' bgl


Ground Water: Saturated @ 36' bgl

Elev., TOC (ft. msl): 5539.411 Elev., PAD (ft. msl): 5539.613 Elev., GL (ft. msl): 5539.588

Site Coordinates:

N 36º41'48.82131"

W 107º58'17.15514"

Well No.: MW-63 (AOC 22 -16)

Start Date: 4/13/2009 Finish Date: 4/14/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon

Comments: N36º41.771' W107º58.305'

Total Depth: 46' bgl

Ground Water: Saturated @ 39' bgl

Elev., TOC (ft. msl): 5547.255 Elev., PAD (ft. msl): 5544.482 Elev., GL (ft. msl): 5544.488

Site Coordinates:

N 36º41'46.17547"

W 107º58'18.22906"

		S	am	plir	ng								
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Completion Results				
-2-			0.00					Ground Surface	re Cover				
0	[1325	G/2V/ 2E/3J G/2V/		0.9		100	Silt (ML) Very fine grain, compact, damp, brown					
2	2'	1000	G/2V/ 2E/3J		4.5 68ºF		50	Clayey Silt (ML) Similar to above	Aluminum Pro ad Concrete Pad - 4'xe				
4711111111					5.8 68ºF		60	Clayey Silt (ML) Similar to above	Steel Reinforced Concrete Pad - 4'x4'x6" 4" Sch. 40 PVC w/Threaded Joints				
9 1					5.8 68ºF		70	Clayey Silt (ML) Similar to above	Steel				
8					7.3 68ºF		80	Clayey Silt (ML) Similar to above					
10					3.2 68ºF		10	Clayey Silt (ML) Similar to above	Cement/Bentonite Grout				
					3.8 68ºF		90	Clayey Silt (ML) Similar to above, trace sand	3				
14-	_	L						Clayey Silt (ML) Similar to above					

404 Camp Craft Road Austin, Texas 78746

Sheet: 1 of 3

Well No.: MW-63 (AOC 22 -16)

512/347-7588

512/347-8243 fax

Start Date: 4/13/2009 Finish Date: 4/14/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: Enviro-Drill, Inc. **Drilling Rig:** CME 75

404 Camp Craft Road

Austin, Texas 78746

Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon

Comments: N36º41.771' W107º58.305'

Total Depth: 46' bgl

Ground Water: Saturated @ 39' bgl

Elev., TOC (ft. msl): 5547.255 Elev., PAD (ft. msl): 5544.482 Elev., GL (ft. msl): 5544.488

Site Coordinates:

N 36º41'46.17547"

W 107º58'18.22906"

		S	Sam	plir	ng									
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Com	pletion	Res	ults	
					6.2 68ºF		90			_		1		
16-111111					5.8 68ºF		80	Clayey Silt (ML) Similar to above		ints	· · · · · ·		-	nite Grout
18-					5.7 68ºF		90	Clayey Silt/Silt (ML) Similar to above, trace light brown to tan sand in partings		Threaded Jo				Cement/Bentonite Grout
20					5.8 68ºF		90	Silty Sand (SM) Very fine grain, loose, damp, light brown to tan		4" Sch. 40 PVC w/Threaded Joints Teaded Joints Teaded Joints			· ·	Ö
22					6.8 68ºF		90	Silty Sand (SM) Similar to above, tan		4" Sch. 40 PVC Slotted 0.01" Screen w/Threaded Joints			ellets	
26					4.9 68ºF		90	Silty Sand (SM) Very fine grain, loose, damp, tan	25'	l 0.01" Scree			Bentonite Pellets	d Filter Pack
28					7.5 68ºF		90	Silty Sand (SM) Similar to above	27'	PVC Slotted				10/20 Sieve Sand Filter Pack
30					7.9 68ºF		90	Silty Sand (SM) Similar to above	29.75'	-4" Sch. 40		6		L 10/2
30-1					6.0 68ºF		90	Silty Sand (SM) Similar to above						

Well No.: MW-63 (AOC 22 -16)

512/347-8243 fax

Start Date: 4/13/2009

Finish Date: 4/14/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. **Drilling Rig:** CME 75

Austin, Texas 78746

Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon

Comments: N36º41.771' W107º58.305'

Total Depth: 46' bgl Ground Water: Saturated @ 39' bgl

Elev., TOC (ft. msl): 5547.255 Elev., PAD (ft. msl): 5544.482 Elev., GL (ft. msl): 5544.488

Site Coordinates:

N 36º41'46.17547" W 107º58'18.22906"

		S	Sam	plin	ıg					
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Com	pletion Results
33					6.5 68ºF	500,000,000,000,000,000,000,000,000,000	50	Gravelly Sand (SW) Medium to coarse grain, loose, damp, brown, coarse gravel	oints T	
35					10.9 70ºF	\200, \200,	60	Gravelly Sand (SW) Similar to above	Threaded Jo	Pack Pall
37	36- 38'	1230	G/2V/ 2E/3J		12.2 70ºF	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	70	Gravelly Sand (SW) Similar to above	11" Screen w	10/20 Sieve Sand Filter Pack
39				.65 ¥#€050505		6,00,00,00,00,00,00,00,00,00,00,00,00,00	0 40	No recovery - similar to above Sand (SW) Medium to coarse grain, loose, saturated, brown, trace gravel	5' of 4" Sch. 40 PVC Slotted 0.01" Screen w/Threaded Joints aded Sch. 40 PVC Cap	10/20 Sieve
41						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	40	Sand (SW) Similar to above	74. 15' of 4" Sch. 40 PVC Sl 4" Flush Threaded Sch. 40 PVC Cap	
45 47 47 49						<u>ໄດ້ຊີ່ໄດ້</u> ໄດ້ຊີ່ໄດ້		Sand (SW) Similar to above No recovery - similar to above Nacimiento Formation Weathered Sandstone/Sandstone (SS) Dense to fine grain, dry, greenish gray Total Depth = 46' BGL	94 4. Flush Thre	8" Well Sump
RP	L	Craft	Road					Sheet: 3 of 3		512/347-7588

Well No.: MW-62 (AOC 23 -1)

512/347-8243 fax

Start Date: 4/21/2009

Finish Date: 4/21/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. **Drilling Rig:** CME 75

Austin, Texas 78746

Drilling Method: Hollow-Stem Auger/ODEX

Sampling Method: Split Spoon

Comments: N36º41.717' W107º58.123'

Total Depth: 58.25' bgl

Ground Water: Saturated @ 55' bgl

Elev., TOC (ft. msl): 5561.322 Elev., PAD (ft. msl): 5558.703 Elev., GL (ft. msl): 5558.555

Site Coordinates:

N 36º41'43.02125"

W 107º58'07.46590"

		S	Sam	plir	ıg						
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Comp	oletion Results
-2-	0		0.00		0.1			Ground Surface	ve Cover	-	
0 11111111111111111111111111111111111	0- 0.5' &Dup 1.5- 2'	1115 1130	G/2V/ 2E/3J G/2V/ 2E/3J		3.1 71ºF 3.3		100	Silt (ML) Very fine grain, loose, dry, brown	Aluminum Protective Cover	d - 4'x4'x6"	1 1 1 1 1 1 1 1 1 1
2	2'		2E/3J		71ºF 14.5 74ºF		40	Silt (ML) Similar to above, damp	Alumin	Concrete Pa	Paded Joints J
4-1111111111111111111111111111111111111					14.4 74ºF		90	Silt (ML) Similar to above Sand (SP) Fine grain, loose, damp, dark brown		Steel Reinforced Concrete Pad - 4'x4'x6"	Sch. 40 PVC w/Threaded Joints
6					14.8 74ºF		100	Sand (SP) Similar to above, brown to light brown		Steel	4" Sch. 40 P
10-					12.3 74ºF	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	60	Gravelly Sand (SW) Fine to coarse grain, loose, dry, brown, coarse gravel		nite Grout	
11111111						00,000 00,000	0	Gravelly Sand (SW) Similar to above, no recovery		Cement/Bentonite Grout	
12					7.1 77ºF		100	Silty Sand (SM) Fine grain, loose to compact, damp, light grayish tan		Ö	
14-					17.6 77ºF		90	Silty Sand (SM) Similar to above, compact			5
RP: 404	S Camp	Craft	Road					Sheet: 1 of 4			512/347-7588

Well No.: MW-62 (AOC 23 -1)

Start Date: 4/21/2009 Finish Date: 4/21/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. **Drilling Rig: CME 75**

Drilling Method: Hollow-Stem Auger/ODEX

Sampling Method: Split Spoon

Comments: N36º41.717' W107º58.123'

Ground Water: Saturated @ 55' bgl

Total Depth: 58.25' bgl

Elev., TOC (ft. msl): 5561.322 Elev., PAD (ft. msl): 5558.703 Elev., GL (ft. msl): 5558.555

Site Coordinates:

N 36º41'43.02125" W 107º58'07.46590"

		S	Sam	plir	ng				
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Completion Results
							0	Silty Sand (SM) Similar to above, sandstone present,	
16					8.7		60	\vellowish brown / Silty Sand (SM)	↓ Lout
					78ºF	44		Similar to above, no recovery Clayey Silty Sand (SC/SM)	w/Threaded Joints ☐ ◆ ◆ Cement/Bentonite Grout
18							0	Fine grain, very dense, damp, tan	4 Joir
=					2.2		100	Clayey Silty Sand (SC/SM) Similar to above, no recovery	adec
<u> </u>					78ºF			Clayey Silty Sand (SC/SM)	Thre
20-								Similar to above, grayish tan, organics at 18.5' bgl, pinkish tan 18.25 to 18.75' bgl	N N N N N N N N N N N N N N N N N N N
			!		3.9 78ºF		100	Clayey Silty Sand (SC/SM)	4" Sch. 40 PVC w/Threaded Joints
22					/8*F			Fine grain, very dense, damp, grayish tan	ch.
					2.4		100	Clayey Silty Sand (SC/SM) Similar to above, compact	20 1
=					78ºF		100		
24					1.6		90	Clayey Silty Sand (SC/SM)	
=					78ºF		0	Similar to above Clayey Silty Sand (SC/SM)	,
26							U	Similar to above, no recovery	
					4.0 77ºF		90	Silty Sand (SM) Fine grain, compact, damp, light brown	
=							0	Silty Sand (SM)	
28					3.6			Similar to above, no recovery Silty Sand (SM)	
3					77ºF		90	Similar to above, clay/silt lenses present	
30-								Silty Sand (SM) Similar to above, no recovery	
]					5.4			Silty Sand (SM)	
Ξ					77ºF		90	Similar to above, increase in silt content	
32									
RPS	S . Camp	Croff	- Dood					Sheet: 2 of 4	512/347-7588

404 Camp Craft Road Austin, Texas 78746

Well No.: MW-62 (AOC 23 -1)

512/347-82 # fax

ieve Sand

Start Date: 4/21/2009 Finish Date: 4/21/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Austin, Texas 78746

Drilling Method: Hollow-Stem Auger/ODEX

Sampling Method: Split Spoon

Comments: N36º41.717' W107º58.123'

Total Depth: 58.25' bgl

Ground Water: Saturated @ 55' bgl

Elev., TOC (ft. msl): 5561.322 Elev., PAD (ft. msl): 5558.703 Elev., GL (ft. msl): 5558.555

Site Coordinates:

N 36º41'43.02125" W 107º58'07.46590"

	_	S	Sam	plir	ng					
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Completion Results
33					3.2 58ºF		50	Sandy Silt (ML) Very fine grain, compact, dry, greenish gray, no plasticity		rout _
35					3.3 58ºF		50	Sandy Silt (ML) Similar to above, dense, fine grain sand lenses present, rusty brown and tan		ed Joints Pellets Cement/Bentonite Grout
37-					4.4 62ºF		50	Silty Sand (SM) Fine grain, compact, damp, light greenish gray	001	4" Sch. 40 PVC Slotted 0.01" Screen w/Threaded Joints By Sch. 40 PVC Slotted 0.01" Screen w/Threaded Joints By Sch. 40 PVC Slotted Joints Cement/S
39					5.3 63ºF		90	Silty Sand (SM) Similar to above, slightly cemented, black organics present, gray sand	38'	Screen w/Th
41					3.3 71ºF		90	Silty Sand (SM) Similar to above, trace clay	42'	. 40 PVC Slotted 0.01" Scree
43							0	Silty Sand (SM) Similar to above	42	sch. 40 PVC §
45					3.3 73ºF		20	Silty Sand (SM) Similar to above		.4
47							0	Silty Sand (SM) Similar to above		
49					2.3 84ºF		50	Silty Sand (SM) Fine grain, poorly cemented, damp, light greenish gray		
RP: 404	S Camp	Craft	Road					Sheet: 3 of 4		512/347-75 th

Well No.: MW-62 (AOC 23 -1)

Total Depth: 58.25' bgl

Start Date: 4/21/2009

Client: Western Refining Southwest, Inc.
Site: SWMU Group #3, Bloomfield Refinery

Ground Water: Saturated @ 55' bgl Elev., TOC (ft. msl): 5561.322 Elev., PAD (ft. msl): 5558.703 Elev., GL (ft. msl): 5558.555 Finish Date: 4/21/2009

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: Enviro-Drill, Inc. Elev., C Drilling Rig: CME 75 Site Co

Site Coordinates: N 36º41'43.02125"

W 107º58'07.46590"

Drilling Method: Hollow-Stem Auger/ODEX **Sampling Method:** Split Spoon

Comments: N36º41.717' W107º58.123'

		S	Sam	plir	ng					·
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Completion Results	
111										
51					3.8 82ºF		90	Silty Sand (SM) Similar to above, trace clay, poorly cemented, standstone present	ded Joints -	bgl
- - - -	52- 53'		G/2V/		4.4		90	Silty Sand (SM) Similar to above	VC C	@ 55 _'
53 - -	53		2E/3J		83ºF		10	Silty Sand (SM) Similar to above	n. 40 F	Saturated @ 55' bgl
55				 }4 		, ° (90	Silty Sand/Sand (SM/SW) Medium to coarse grain, loose, moist to saturated at 55' bgl	0.01" Scr	il Sat
; 7				_			90	Silty Sand (SM) Similar to above, saturated, brown to yellowish brown Nacimiento Formation Silt/Shale (ML) Very dense, dry, black, no odor	40 PVC Slotted 0.01" Screen w/Threaded Joints 40 PVC Slotted 0.01" Screen w/Threaded Joints 4" Flush Threaded Sch. 40 PVC Cap	
91111								Total Depth = 58.25' BGL	15' of 4" Sch. 40 6" Sand Bed 7 25.22 8" Well Sump	
1111111									o -	
31111										
5 1 1 1 1 1										
3P3 104 103	S Camp tin, Tex	Craft	Road					Sheet: 4 of 4	512/347-7588 512/347-8243 f	ax

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Driller: N/A Drilling Rig: N/A

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.723' W107º58.276'

LOG OF BORING

512/347-8243 fax

Boring No.: AOC 24-1 Start Date: 4/23/2009 Finish Date: 4/23/2009

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5551.597

Total Depth: 2' bgl

Site Coordinates: N 36º41'43.33506"

Ground Water: Not Encountered

W 107º58'16.48842"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
								Ground Surface	0
0 1 1 1 1 1 1 1 1 1	0.5'		G/2V/ 2E/3J		3.3 60ºF		100	Silt (ML) Very fine grain, loose, damp, brown	
2-	1.5-		G/2V/ 2E/3J		3.9 60ºF			Total Depth = 2' BGL	
4 1 1 1 1 1 1 1 1 1							:	Total Sopiul - 2 Soci	-4
6				:					6
8 1 1 1 1 1 1 1 1 1								·	-8 8
10-									
-									E
RF 40	PS 4 Camp C	raft F	load		l .	J	<u></u>	Sheet: 1 of 1 512/347-8	

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

404 Camp Craft Road Austin, Texas 78746

Driller: N/A
Drilling Rig: N/A

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36°41.716' W107°58.278'

LOG OF BORING

512/347-7588

512/347-8243 fax

Boring No.: AOC 24-2 Start Date: 4/23/2009 Finish Date: 4/23/2009

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5551.416

Ground Water: Not Encountered

Total Depth: 2' bgl

Site Coordinates: N 36º41'42.90086"

W 107º58'16.48495"

		Sa	amp	ling	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	 0-							Ground Surface	-0
0-	0-	0930	G/2V/ 2E/3J		2.7 62ºF		100	Clayey Silt (ML) Very fine grain, compact, damp, brown	
	1.5- 2'	0940	G/2V/		4.1		İ		-
2	 2'		2E/3J		62ºF				2 I
									- -
									-
4-									-4
									_ _ _
6-									-6
									-
-									-
8-									- -8
									E
									E
10-									- -10
	1								-
12-									- - -
'-									['4
									E
RF		<u> </u>				<u> </u>		F10/017 7500	

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A **Drilling Method:** Hand Auger

Sampling Method: Auger Bucket Comments: N36º41.722' W107º58.288'

LOG OF BORING

Boring No.: AOC 24-3 Start Date: 4/23/2009

Ground Water: Not Encountered Finish Date: 4/23/2009 Elev., TOC (ft. msl): --

Elev., GL (ft. msl): 5550.986

Total Depth: 2' bgl

Elev., PAD (ft. msl): --

Site Coordinates: N 36º41'42.89601"

W 107º58'17.40801"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	O-					The Transference of		Ground Surface	-0
	0-	1000	G/2V/ 2E/3J		1.7 65ºF		100	Gravelly Silty Sand (SM/SP) Fine grain, compact, damp, brown	- -
-	1.5-	1010	G/2V/		7.7				- - - -
2-	 2'		2E/3J		65ºF			Total Depth = 2' BGL	2
4									4
6-									-6 -
8-			:						
10-									
12-									- - 12 - - - - - -
RF 40 Au	S 4 Camp C Istin, Texa	raft F s 787	load '46					Sheet: 1 of 1	512/347-7588 512/347-8243 fax

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.717' W107º58.303'

LOG OF BORING

Boring No.: AOC 24-4 Start Date: 4/23/2009 Finish Date: 4/23/2009

Ground Water: Not Encountered Elev., TOC (ft. msl): --

Total Depth: 2' bgl

Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5550.914

Site Coordinates: N 36º41'42.89208"

W 107º58'18.26308"

		Sa	amp	lin	g					
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Donth (#)	Deptin (11.)
0-	······ 0-					-1-1-1-1-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-		Ground Surface		
1111	0-	1030	G/2V/ 2E/3J		3.9 70ºF		100	Gravelly Silty Sand (SM/SP) Fine grain, loose to compact, damp, brown	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
] =	1.5-	1040	G/2V/	ı	6.4				-	ļ
2-	2' &Dup		2E/3J		70ºF	4040101000000	1	Total Depth = 2' BGL		2
4-1									- - - - - - - - - - - - - - - - - - -	4
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										ŝ
8-									- - - - - - - - - -	3
10-										10
12-									1 1 1 1 1 1 1 1 1 1 1 1 1	12
RF 40 Au	PS 4 Camp C stin, Texa	raft R s 787	Road '46		1	I	1	Sheet: 1 of 1	512/347-7588 512/347-8243 fax	

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. **Drilling Rig: CME 75**

Austin, Texas 78746

Drilling Method: Hollow Stem Augers Sampling Method: Split Spoon

Comments: N36º41.724' W107º58.304'

LOG OF BORING

512/347-8243 fax

Boring No.: AOC 24-5 Start Date: 4/8/2009 Finish Date: 4/8/2009

Ground Water: Not Encountered Elev., TOC (ft. msl): --

Total Depth: 10' bgl

Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5550.721

Site Coordinates: N 36º41'43.44358"

W 107º58'18.28355"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	(#)
0-	O-							Ground Surface	
-	0- 0.5' &Dup	1100	G/2V/ 2E/3J		1.2 69ºF		100	Silt (ML) Very fine grain, compact, dry, brown, gravelly	- - - - -
	1.5-	1200	G/2V/		6.0				
2-			2E/3J		69ºF			Clayey Silt (ML) Low plasticity, very fine grain, compact, damp, brown	
-	11				5.4		100	200 placeton, 100, 1110 g. a.i., 2011.paci, 2211.p, 21011.	-
4-					69ºF				
-					6.4 69ºF		100	Clayey Silt (ML) Similar to above	- - - - - - - - - - - - - - - - - - -
6-					7.8 69ºF		50	Clayey Silt (ML) Similar to above	
8					5.9 69ºF		100	Clayey Silt (ML) Similar to above, trace of very fine grain sand	
10-								Total Depth = 10' BGL	
12-									
RF 40	S 4 Camp C	raft F	Road					Sheet: 1 of 1	512/347-7588 512/347-8243 fax

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. **Drilling Rig: CME 75**

Austin, Texas 78746

Drilling Method: Hollow Stem Augers Sampling Method: Split Spoon

Comments: N36º41.728' W107º58.287'

LOG OF BORING

512/347-8243 fax

Boring No.: AOC 24-6 Start Date: 4/8/2009 Finish Date: 4/8/2009

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5552.073

Total Depth: 10' bgl

Site Coordinates: N 36º41'43.67391"

Ground Water: Not Encountered

W 107º58'17.17320"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	O-							Ground Surface	-0
	0-	1255	G/2V/ 2E/3J		0.3 74ºF		100	Silt (ML) Low plasticity, very fine grain, loose to compact, dry, brown, black nodule of asphaltic material, no staining of the soil was observed	
2	1.5- 2'	1315	G/2V/		5.0				
	_		2E/3J		74ºF			Clayey Silt (ML) Similar to above, clayey	Ė.
					4.8		80	, ,	E
					74ºF				E
4-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					4.9 74ºF		80	Clayey Silt (ML) Similar to above	4
6					2.0 74ºF		80	Clayey Silt (ML) Similar to above	6
8-1111111					5.3 74ºF		100	Clayey Silt (ML) Similar to above, trace of very fine grain sand	-8
10								Total Depth = 10' BGL	
12-									
	PS 4 Camp C							Sheet: 1 of 1 512/347-758	

Well No.: MW-64 (AOC 24 -7)

512/347-8243 fax

Start Date: 4/7/2009 Finish Date: 4/7/2009

Client: Western Refining Southwest, Inc.

Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Austin, Texas 78746

Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon

Comments: N36º41.736' W107º58.304'

Total Depth: 50.25' bgl **Ground Water:** Not Encountered

Elev., TOC (ft. msl): 5552.285 Elev., PAD (ft. msl): 5549.043 Elev., GL (ft. msl): 5549.111

Site Coordinates:

N 36º41'44.02863"

W 107º58'18.35629"

		5	Sam	plin	ıg						
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Comp	eletion Results
-2-			C/0V/					Ground Surface	tive Cover		
-	0- 0.5' 		G/2V/ 2E/3J G/2V/		0.4 57ºF		100	Clayey Silt (ML) Low plasticity, stiff, damp, brown	Aluminum Protective Cover	Pad - 4'x4'x6"	3orehole
2-	2'		2E/3J		0.4 57ºF		60	Clayey Silt (ML) Similar to above	Alc	Steel Reinforced Concrete Pad - 4'x4'x6"	aded Joints J
4-					0.2 57ºF		90	Sandy Silt (ML) Low plasticity, fine grain sand, compact, damp, brown		Steel Reinfor	4" Sch. 40 PVC w/Threaded Joints
6-					0.3 57ºF		60	Sandy Silt (ML) Similar to above			4" Sch. c
8-					0.4 57ºF		70	Sandy Silt (ML) Similar to above		Cement/Bentonite Grout	
10-		:			0.3 57ºF		90	Clayey Silt (ML) Low plasticity, firm, damp, brown		Cement/Ben	
RP	l S I Camp	Craft	Road	<u> </u>				Sheet: 1 of 4	1		512/347-7588

Well No.: MW-64 (AOC 24 -7)

Start Date: 4/7/2009

Finish Date: 4/7/2009

Client: Western Refining Southwest, Inc.
Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Drilling Method: Hollow-Stem Auger **Sampling Method:** Split Spoon

Comments: N36º41.736' W107º58.304'

Elev., TOC (ft. msl): 5552.285

Total Depth: 50.25' bgl

Elev., PAD (ft. msl): 5549.043 Elev., GL (ft. msl): 5549.111

Ground Water: Not Encountered

Site Coordinates:

N 36º41'44.02863"

W 107º58'18.35629"

		S	Sam	plir	ng				
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Completion Results
					0.4 57ºF		80	Sandy Silt (ML) Low plasticity, fine grain sand, compact, damp, brown, trace gravel	
14-					0.4 57ºF		20	Sandy Silt (ML) Similar to above	
16					0.1 57ºF		100	Sandy Silt (ML) Similar to above	/Threaded Joints T
18-					0.5 57ºF		100	Sandy Silt (ML) Similar to above, loose, more sand	4" Sch. 40 PVC w/Threaded Joints
20 -					0.3 57ºF		100	Silty Sand (SM) Very fine grain, loose, damp, brown	4" Sch. 40 PVC
24					0.1 57ºF		100	Silty Sand (SM) Similar to above, light brown/tan	
					0.1 57ºF		100	Silty Sand (SM) Similar to above	
26								Silty Sand (SM) Similar to above	

RPS 404 Camp Craft Road Austin, Texas 78746

Sheet: 2 of 4

512/347-7588 512/347-8243 fax

Well No.: MW-64 (AOC 24 -7)

Start Date: 4/7/2009

Finish Date: 4/7/2009

Client: Western Refining Southwest, Inc. Total Depth: 50.25' bgl Site: SWMU Group #3, Bloomfield Refinery **Ground Water:** Not Encountered

> Elev., TOC (ft. msl): 5552.285 Elev., PAD (ft. msl): 5549.043 Elev., GL (ft. msl): 5549.111

> > Site Coordinates:

N 36º41'44.02863" W 107º58'18.35629"

Drilling Rig: CME 75 Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Driller: Enviro-Drill, Inc.

Comments: N36º41.736' W107º58.304'

		S	am	plin	g					
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Completion Results
28		i			0.1 57ºF		100			
			٠		0.3 57ºF		100	Silty Sand (SM) Very fine grain, loose, damp, tan	28.5'	
30-					0.2 57ºF		100	Silty Sand (SM) Similar to above, decrease in silt	31.75'	ded Joints
32					0.4 57ºF		100	Silty Sand (SM) Similar to above		@ [:::i :::i
34-					0.9 57ºF		100	Silty Sand (SM) Similar to above	34'	ed 0.01" Scree
36-					3.4 57ºF		100	Silty Sand (SM) Fine grain, compact, damp, brown, trace gravelly sand at base		Sch. 40 PVC Slotted 0.01" Screen w/Thre
-						2 ° ° ° °	0	Gravelly Sand (SW)		‡ }···⊨≕··· o
- 40 -					4.4 68ºF		50	Gravelly Sand (SW) Medium to coarse grain, loose, damp, brown, coarse gravel		
=	39- 42'		G/2V/ 2E/3J		1.2 68ºF		50	Gravelly Sand (SW) Similar to above		

404 Camp Craft Road Austin, Texas 78746

Sheet: 3 of 4

512/347-7588 512/347-8243 fax

Well No.: MW-64 (AOC 24 -7)

Start Date: 4/7/2009 Finish Date: 4/7/2009

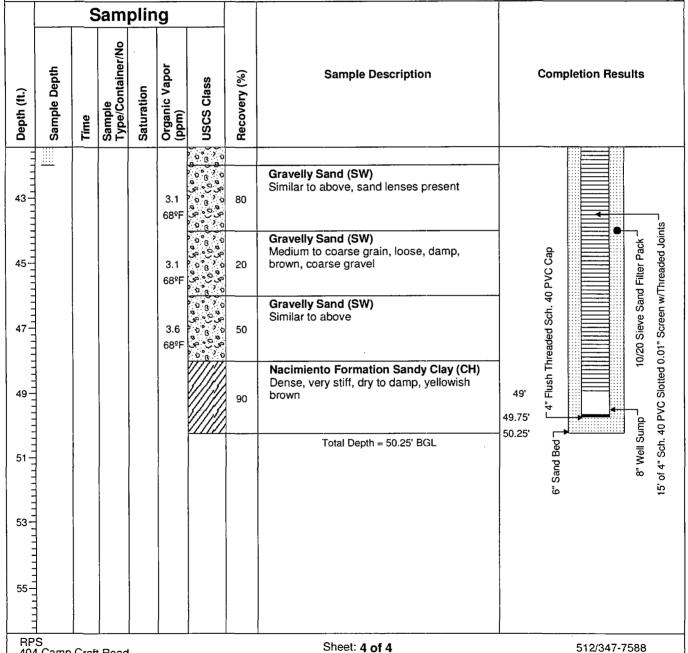
Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Drilling Method: Hollow-Stem Auger

Sampling Method: Split Spoon

Comments: N36º41.736' W107º58.304'


Total Depth: 50.25' bgl Ground Water: Not Encountered

Elev., TOC (ft. msl): 5552.285 Elev., PAD (ft. msl): 5549.043 Elev., GL (ft. msl): 5549.111

Site Coordinates:

N 36º41'44.02863"

W 107º58'18.35629"

404 Camp Craft Road Austin, Texas 78746

Sheet: 4 of 4

512/347-8243 fax

LOG OF BORING

512/347-8243 fax

Boring No.: AOC 25-1 Start Date: 4/23/2009 Total Depth: 2' bgl

Ground Water: Not Encountered Finish Date: 4/23/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: N/A Drilling Rig: N/A

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.741' W107º58.429' Elev., TOC (ft. msl): --

Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5544.772

Site Coordinates:

N 36º41'44.32802" **W** 107º58'25.68687"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Douth (#)
					 			Ground Surface	-0
0-	0-	1600	G/2V/ 2E/3J		5.5 82ºF		100	Gravelly Silty Sand (SM) Fine grain, compact, dry to damp, brown	
-	1.5-	1610	G/2V/		5.5				=
2-	2'	1010	2E/3J	ł .	82ºF			Total Depth = 2' BGL	 2
=								· • • • • • • • • • • • • • • • • • • •	Ē.
=									-
4-									
									Ė.
=									E
=									E
6-									-6
-									
=									E
8-									-8
=								•	
-									=
									Ē,
10 -		'							[-1 -
-									-
-									<u></u>
12-									1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-									-
-									E
RI	PS 4 Camp C	J		I	I		l		512/347-7588
40	4 Camp C	ratt H	load					Sheet: 1 of 1	512/347-8243 fax

Well No.: MW-60 (AOC 25 -2)

512/347-7588

512/347-8243 fax

Start Date: 4/5/2009 Finish Date: 4/5/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. **Drilling Rig: CME 75**

404 Camp Craft Road

Austin, Texas 78746

Sampling Method: Split Spoon

Drilling Method: Hollow-Stem Auger/ODEX

Comments: Hydroexcavated to 8' bgl. N36º41.754' W107º58.434'

Elev., PAD (ft. msl): 5544.003 Elev., GL (ft. msl): 5544.007 Site Coordinates:

Total Depth: 45.5' bgl

Ground Water: Not Encountered

Elev., TOC (ft. msl): 5543.711

N 36º41'45.37028"

W 107º58'25.98617"

		S	Sam	plir	ng				
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Completion Results
-2-			CANA					Ground Surface	ve Cover
0	—0.5 &Dup	1645 1700	4E/6J G/2V/		0.1 53ºF		100	Clayey Silt (ML) Low plasticity, very soft, damp, brown	Aluminum Protective Cover rete Pad - 4'x4'x6" The state Pad - 4'x4'x6" The state Pad - 4'x4'x6" The state Pare Porehole
2	2'		2E/3J		0.1 53ºF		100	Clayey Silt (ML) Similar to above	Aluminum Protecti Steel Reinforced Concrete Pad - 4'x4'x6" 40 PVC w/Threaded Joints 8" Diameter Borehole
4-							0	Clayey Silt (ML) Similar to above, no recovery	Alumi Steel Reinforced Concrete P 4" Sch. 40 PVC w/Threaded Joints 7
6-					0.1 53ºF		100	Clayey Silt (ML) Similar to above	Stee.
8-		İ			0.0 43ºF		90	Clayey Silt (ML) Low plasticity, very soft, damp, brown	onite Grout
10-					0.0 43ºF		80	Clayey Silt (ML) Similar to above	Cement/Bentonite Grout
12-					0.1 43ºF		100	Silty Sand (SM) Very fine grain, loose to compact, damp, brown	
14- BP									

Well No.: MW-60 (AOC 25 -2)

Start Date: 4/5/2009 Finish Date: 4/5/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Sampling Method: Split Spoon

Drilling Method: Hollow-Stem Auger/ODEX

Comments: Hydroexcavated to 8' bgl. N36º41.754' W107º58.434'

Ground Water: Not Encountered

Elev., TOC (ft. msl): 5543.711 Elev., PAD (ft. msl): 5544.003 Elev., GL (ft. msl): 5544.007

Site Coordinates:

Total Depth: 45.5' bgl

N 36º41'45.37028"

W 107º58'25.98617"

		5	Sam	plir	ng								
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Com	pletion Re	sults	
101					0.0 43ºF		90	Silty Sand (SM) Very fine grain, loose to compact, damp, brown					
16-					0.2 43ºF		90	Silty Sand (SM) Similar to above		oints	-		onite Grout ^J
18-					0.4 43ºF		100	Silty Sand (SM) Similar to above		Sch. 40 PVC w/Threaded Joints ed Joints			Cement/Bentonite Grout [–]
20-					0.1 43ºF		100	Silty Sand (SM) Similar to above		ch. 40 PVC w Joints			J
22-					0.3 44ºF		100	Silty Sand (SM) Similar to above		4" Sch. 40 AC Slotted 0.01" Screen w/Threaded Joints		Bentonite Pellets	
24-	:				0.4 44ºF		100	Silty Sand (SM) Similar to above	24.5'	0.01" Screen		Bentonit	Filter Pack
26-					0.3 44ºF		100	Silty Sand (SM) Similar to above	26.5'	PVC Slotted			10/20 Sieve Sand Filter Pack
28-					0.2 44ºF		100	Silty Sand (SM) Similar to above	28.75'	-4" Sch. 40 l			L 10/20
30-					0.1 44ºF		100	Silty Sand (SM) Similar to above					

RPS 404 Camp Craft Road Austin, Texas 78746

Sheet: 2 of 3

512/347-7588 512/347-8243 fax

Start Date: 4/5/2009

Well No.: MW-60 (AOC 25 -2)

Client: Western Refining Southwest, Inc.

Total Depth: 45.5' bgl

Site: SWMU Group #3, Bloomfield Refinery

Ground Water: Not Er

Ground Water: Not Encountered Finish Date: 4/5/2009 Elev., TOC (ft. msl): 5543.711 Elev., PAD (ft. msl): 5544.003

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Site Coordinates:

Elev., GL (ft. msi): 5544.007

N 36º41'45.37028" W 107º58'25.98617"

Sampling Method: Split Spoon

Drilling Method: Hollow-Stem Auger/ODEX

Comments: Hydroexcavated to 8' bgl. N36º41.754' W107º58.434'

	· · ·	5	Sam	plir	ıg					
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Comp	pletion Results
33-			,		3.6 44ºF		100	Silty Sand (SM) Very fine grain, loose to compact, damp, brown	oints	-
								Sand (SP) Fine to medium grain, loose, damp, brown	ided Jo	
35					2.5 44ºF	ه دی می ده دی	100	Gravelly Sand (SW) Medium to coarse grain, compact, damp,	/Threa) ack
37	36- 38'	1715	G/2V/ 2E/3J		4.2 44ºF	0°6'0 0'6'0 0'6'0 0'6'0	80	brown, coarse to fine gravel Gravelly Sand (SW) Similar to above	5' of 4" Sch. 40 PVC Slotted 0.01" Screen w/Threaded Joints eaded Sch. 40 PVC Cap	
						08,00	10	Gravelly Sand (SW) Similar to above	tted 0.0	Sieve
39						0°6'0	0	Gravelly Sand (SW) Similar to above, no recovery	/C Slol	10/20
41						۵°،۵° می ۲۰۰۵ ۵°،۵°،۵°	50	Gravelly Sand (SW) Similar to above	ich. 40 P\	
43							0	Gravelly Sand (SW) Similar to above, no recovery	54. 54. 54. 15° of 4" Sch. 40 PVC Slo Flush Threaded Sch. 40 PVC Cap	
45							100	Nacimiento Formation Weathered Sandstone/Sandstone (SS) Fine grain, dense, damp, light yellowish brown	45' +	dwn
47								Total Depth = 45.5' BGL	45.5'	8" Well Sump
RP 404 Aus	S I Camp stin, Te	Craf xas 7	Road 8746	<u> </u>				Sheet: 3 of 3		512/347-7588 512/347-8243 fax

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A

Austin, Texas 78746

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.815' W107º58.249'

LOG OF BORING

512/347-8243 fax

Boring No.: AOC 26-1 Start Date: 4/20/2009

Finish Date: 4/20/2009

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --

Total Depth: 2' bgl

Elev., GL (ft. msl): 5540.088

Ground Water: Not Encountered

Site Coordinates: N 36º41'48.90866"

W 107º58'14.97772"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	O-							Ground Surface	-0
	0-		G/2V/ 2E/4J G/2V/		5.6 72ºF 3.5		100	Clayey Silt (ML) Very fine grain, compact, damp, brown	- - - - - - - - -
2			2E/4J		72ºF			Total Depth = 2' BGL	-2
6-									- - - - - - - - - - - - - - - - - - -
8-									- - - 8 - - - -
10-									
12-									- - - - - - - - - - - - - - - - -
RF 40	S 4 Camp C	raft F	Road			•		Sheet: 1 of 1	12/347-7588

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.811' W107º58.247'

LOG OF BORING

Boring No.: AOC 26-2 Start Date: 4/20/2009 Finish Date: 4/20/2009

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --

Total Depth: 2' bgl

Elev., GL (ft. msl): 5540.054

Ground Water: Not Encountered

Site Coordinates: N 36º41'48.62399"

W 107º58'14.85771"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	n_							Ground Surface	
	0.5'		G/2V/ 2E/4J G/2V/		4.6 72ºF 3.9		100	Clayey Silt (ML) Very fine grain, compact, damp, brown	- - - - -
2	2'		2E/4J		72ºF			Total Depth = 2' BGL	-2
4-	į ,								- - -4 : - - - -
6									- - - - - - - - - - - - - - - - - - -
8-1									- - - - - - - - - - - - - - - - - - -
10-									- 10 - - - - -
12									- 12
RF 40 Au	PS 4 Camp C Istin, Texa	raft R s 787	load 46		•			Sheet: 1 of 1	512/347-7588 512/347-8243 fax

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

404 Camp Craft Road

Austin, Texas 78746

Driller: N/A
Drilling Rig: N/A

Drilling Method: Hand Auger

Sampling Method: Auger Bucket Comments: N36°41.809' W107°58.244'

LOG OF BORING

512/347-7588

512/347-8243 fax

Boring No.: AOC 26-3 Start Date: 4/20/2009

Finish Date: 4/20/2009

Total Depth: 2' bgl Ground Water: Not Encountered

Elev., TOC (ft. msl): -Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5543.638

Site Coordinates: N 36º41'48.41610"

W 107º58'14.64503"

Sample Depth Time Sample Type/ Containe/No. Saturation Organic Vapor (ppm) USCS Class USCS Class uoitdiacsed elder	Depth (ft.)
Samp Samp Contain Cont	De
0 - Ground Surface	-0
0.5' 1250 G/2V/ 4.3 4.3 Very fine grain, compact, damp to moist, brown	2
2- 1.5- 1300 G/2V/ 7.2 Total Double 3' PCI	-
2 - 2'	2
	E
	E
	-4
	<u> </u>
	<u> </u>
	- -6
	=
	E
8-	- 8
	-
	-
	F 40
	F 10
	- 4 - 4 - 6 - 6 - 10 - 12
	- -
	[-12] -
	<u> </u>
ppe	F

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A

404 Camp Craft Road Austin, Texas 78746

Drilling Method: Hand Auger **Sampling Method:** Auger Bucket **Comments:** N36°41.811' W107°58.243'

LOG OF BORING

512/347-7588

512/347-8243 fax

Boring No.: AOC 26-4 Start Date: 4/20/2009 Finish Date: 4/20/2009

Elev., TOC (ft. msl): -Elev., PAD (ft. msl): --

Total Depth: 2' bgl

Elev., GL (ft. msl): 5540.587

Ground Water: Not Encountered

Site Coordinates: N 36º41'48.70583" W 107º58'14.43626"

	_	Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	O-							Ground Surface	-0
	0-		G/2V/ 2E/4J		4.5 74ºF		100	Clayey Silt (ML) Very fine grain, loose to compact, damp, brown	
2-	2'	1335	G/2V/		4.1				-2
6-1			2E/4J		74ºF			Total Depth = 2' BGL	-6
12-									-10 - - - - - - - 12

Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne

Driller: N/A

Drilling Rig: N/A

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.816' W107º58.220'

LOG OF BORING

Boring No.: AOC 26-5 Start Date: 4/20/2009 Finish Date: 4/20/2009

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5540.206

Ground Water: Not Encountered

Total Depth: 2' bgl

Site Coordinates: N 36º41'48.96076"

W 107º58'13.11816"

		Sa	amp	lin	g					
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Depth (ft.)
0-	0-							Ground Surface	-	-0
	0.5'	1530	G/2V/ 2E/4J		9.2 77ºF		100	Clayey Silt (ML) Very fine grain, loose to compact, dry to moist, brown	-	-
	1.5-	1545	G/2V/		15.2				Ī	_
2-	2'	}	2E/4J		77ºF			Total Depth = 2' BGL		_2 -
4-										- - - - - - - 4
6-										-4
8-										
10-										 10
12-										-8
Rf 40 Au	S A Camp Custin, Texa	raft F s 787	load '46			1	<u> </u>		2/347-7588 2/347-8243 fa	ax

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Austin, Texas 78746

Driller: N/A **Drilling Rig:** N/A

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.818' W107º58.210'

LOG OF BORING

512/347-8243 fax

Boring No.: AOC 26-6 Start Date: 4/20/2009 Finish Date: 4/20/2009

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --

Total Depth: 2' bgl

Elev., GL (ft. msi): 5540.025

Ground Water: Not Encountered

Site Coordinates: N 36º41'49.08555"

W 107º58'12.57862"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-	O-							Ground Surface	-0
-	0-		G/2V/ 2E/4J G/2V/		9.3 77ºF 6.6		100	Clayey Silt (ML) Very fine grain, loose to compact, dry to moist, brown	- - - - - - -
2		.505	2E/4J		77ºF			Total Depth = 2' BGL	2 2
6									- - - - - - - - - - - - - - - - - - -
8-									
10-									
12-	S 04 Camp C							Sheet: 1 of 1	-

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Austin, Texas 78746

Driller: N/A

Drilling Rig: N/A

Drilling Method: Hand Auger Sampling Method: Auger Bucket Comments: N36º41.809' W107º58.211'

LOG OF BORING

512/347-8243 fax

Boring No.: AOC 26-7 Start Date: 4/20/2009

Finish Date: 4/20/2009

Ground Water: Not Encountered Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --

Total Depth: 2' bgl

Elev., GL (ft. msl): 5540.360

Site Coordinates: N 36º41'48.54564"

W 107º58'12.67447"

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-								Ground Surface	-0
-	0.5'		G/2V/ 2E/4J G/2V/		5.5 77ºF 6.1		100	Clayey Silt (ML) Very fine grain, loose to compact, dry to moist, brown	-
2	2'		2E/4J		77ºF			Total Depth = 2' BGL	-4
6									- - - - - - - - - - - - - - - - - - -
8-						:		·	-8
10									- - - 10 - - - -
12-									- - - 12
RI 40	S 4 Camp C	raft F	Road	•				Sheet: 1 of 1	347-7588

Well No.: MW-65 (AOC 26-8)

Start Date: 4/16/2009

Finish Date: 4/16/2009

Client: Western Refining Southwest, Inc.

Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne
Driller: Enviro-Drill, Inc.
Drilling Rig: CME 75

Drilling Method: Hollow-Stem Auger/ODEX

Sampling Method: Split Spoon

Comments: N36º41.826' W107º58.244'

Total Depth: 44.25' bgl

Ground Water: Saturated @ 36' bgl

Elev., TOC (ft. msl): 5539.517 Elev., PAD (ft. msl): 5539.941 Elev., GL (ft. msl): 5539.902

Site Coordinates:

N 36º41'49.18120"

W 107º58'15.39107"

Sample Description Completion Re	sults
Sample Depth Time Sample Depth Sample Type/Container/No Saturation Organic Vapor (ppm) USCS Class Recovery (%) Recovery (%)	
10 10 10 10 10 10 10 10	4" Sch. 40 PVC w/Threaded Joints

404 Camp Craft Road Austin, Texas 78746 Sheet: 1 of 3

512/347-7588 512/347-8243 fax

Well No.: MW-65 (AOC 26-8)

Start Date: 4/16/2009 Finish Date: 4/16/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. **Drilling Rig: CME 75**

Drilling Method: Hollow-Stem Auger/ODEX

Sampling Method: Split Spoon

Comments: N36º41.826' W107º58.244'

Total Depth: 44.25' bgl Ground Water: Saturated @ 36' bgl

Elev., TOC (ft. msl): 5539.517 Elev., PAD (ft. msl): 5539.941

Elev., GL (ft. msl): 5539.902

Site Coordinates:

N 36º41'49.18120"

W 107º58'15.39107"

		S	Sam	plir	ng				
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Completion Results
15-					2.1 46ºF		70	Sandy Silt (ML) Very fine grain, compact to loose, damp, brown, trace clay	
17					2.1 46ºF		80	Sandy Silt (ML) Similar to above	oints T
9,					1.8 45ºF		90	Silty Sand (SM) Very fine grain, loose, damp, light brown	4" Sch. 40 PVC w/Threaded Joints ad Joints Cement/Bentonite Grout
11 =					1.2 44ºF		80	Silty Sand (SM) Similar to above, tan sand in seams, calcareous	ich. 40 PVC v
3-					1.1 44ºF		80	Silty Sand (SM) Similar to above	53.2; 4" S "Hrreaded J WThreaded J Bentonite Pellets
5-					1.3 44ºF		80	Silty Sand (SM) Similar to above	0.01" Screen
7-					2.4 45ºF		80	Clayey Silty Sand (SC/SM) Very fine grain, compact, damp, brown, calcareous	Slotted
9-					11 46ºF		80	Clayey Silty Sand (SC/SM) Similar to above, faint odor Sand (SW) Fine to medium grain, loose, darnp, brown, faint odor	4" Sch. 40 PVC
RP	S				46ºF	0 0 0		Fine to medium grain, loose, darnp, brown,	512/347-75 8

404 Camp Craft Road Austin, Texas 78746

Well No.: MW-65 (AOC 26-8)

Total Depth: 44.25' bgl

Elev., PAD (ft. msl): 5539.941

Elev., GL (ft. msl): 5539.902

Start Date: 4/16/2009

Site: SWMU Group #3, Bloomfield Refinery **Job No.:** 354 - Bloomfield, NM

Client: Western Refining Southwest, Inc.

Geologist: Tracy Payne
Driller: Enviro-Drill, Inc.
Drilling Rig: CME 75

Ground Water: Saturated @ 36' bgl Elev., TOC (ft. msl): 5539.517 Finish Date: 4/16/2009

Drilling Method: Hollow-Stem Auger/ODEX

Site Coordinates: N 36º41'49.18120"

W 107º58'15.39107"

Sampling Method: Split Spoon

Comments: N36º41.826' W107º58.244'

	Sampling			plin	ıg								
Depth (ft.)	Sample Depth	Sample Depth Time Sample Type/Container/No Saturation Organic Vapor (ppm) USCS Class		Recovery (%)	Sample Description	,	Com	pletion Resu	ılts				
-					20.8 44ºF	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80	Gravelly Sand (SW) Fine to coarse grain, gravelly at base, damp to moist, odor, gray					
32					58.7 48ºF	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60	Gravelly Sand (SW) Fine to coarse grain, damp, gravelly, gray, strong odor, trace dark to black clay	oints				@ 36' bgl
34	32- 36'	1430	G/2V/ 2E/4J	.96	145 47ºF	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80	Gravelly Sand (SW) Similar to above, odor	/Threaded Jo				Saturated @ 36' bgl
36-	::			V ERT (1997)		500,000,000,000,000,000,000,000,000,000	10	Gravelly Sand (SW) Similar to above, moist to saturated, strong hydrocarbon odor	01" Screen w		•-	ack _	Ī
38-							10	Gravelly Sand (SW) Similar to above, saturated, black	15' of 4" Sch. 40 PVC Slotted 0.01" Screen w/Threaded Joints	Flush Threaded Sch. 40 PVC Cap		0/20 Sieve Sand Filter Pack	
40-							70	Sand (SW) Fine to coarse grain, compact, saturated, dark gray, odor	4" Sch. 40 P	hreaded Sch.		10/20 Sieve	
44-								Sandy Clay/Clayey Sand (CL/SC) Fine grain, very stiff, damp, yellowish brown Nacimiento Formation Sandy Clay/Clayey Sand (CL/SC) Similar to above, becomes very dense, greenish gray Total Depth = 44.25' BGL	43° 44.25°	6" Sand Bed	•	8" Well Sump	

404 Camp Craft Road Austin, Texas 78746 Sheet: 3 of 3

512/347-7588 512/347-8243 fax

Well No.: MW-66 (AOC 26-9)

Start Date: 4/16/2009 Finish Date: 4/20/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Drilling Method: Hollow-Stem Auger/ODEX

Sampling Method: Split Spoon

Comments: N36º41.818' W107º58.234'

Total Depth: 43.25' bgl

Ground Water: Saturated @ 38' bgl

Elev., TOC (ft. msl): 5544.625 Elev., PAD (ft. msl): 5542.030 Elev., GL (ft. msl): 5541.979

Site Coordinates:

N 36º41'48.97462"

W 107º58'14.05858"

	Sampling		Sampling						
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Completion Results
-2- -0-	;;;; 0-	0055	G/2V/ 2E/4J					Ground Surface	ad - 4'x4'x6" \(\frac{1}{2} \) and - 4'x4'x6" \(\frac{1}{2} \) a
2	0- 0.5' 1.5- 2'		2E/4J G/2V/ 2E/4J	i	8.6 66ºF		100	Clayey Silt (ML) Low plasticity, firm, damp, brown	
-	2		2E/4J		10.5 66ºF		100	Clayey Silt (ML) Similar to above	Aluminu Aluminu ed Concrete Pad - 4'x aded Joints 3" Diameter Borehole
4-					10.5 66ºF		60	Clayey Silt (ML) Similar to above	Aluminum Pr Steel Reinforced Concrete Pad - 4'x4'x6" 4" Sch. 40 PVC w/Threaded Joints
6-				:	9.0 66ºF		70	Clayey Silt (ML) Similar to above	St 40
8					10.0 66ºF		90	Sandy Silt (ML) Very fine grain, compact to loose, damp, brown	onite Grout
10-					8.3 66ºF		10	Sandy Silt (ML) Similar to above	Cement/Bentonite Grout
12-					8.2 66ºF		70	Sandy Silt (ML) Similar to above	

404 Camp Craft Road Austin, Texas 78746

Sheet: 1 of 3

512/347-7588 512/347-8243 fax

Well No.: MW-66 (AOC 26-9)

Total Depth: 43.25' bgl

Ground Water: Saturated @ 38' bgl

Start Date: 4/16/2009

Client: Western Refining Southwest, Inc.
Site: SWMU Group #3, Bloomfield Refinery

Finish Date: 4/20/2009

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Driller: Enviro-Drill, Inc.

Elev., PAD (ft. msl): 5542.030 Elev., GL (ft. msl): 5541.979

Elev., TOC (ft. msl): 5544.625 Elev., PAD (ft. msl): 5542.030

Drilling Rig: CME 75

404 Camp Craft Road Austin, Texas 78746 Site Coordinates:

.

512/347-8243 fax

Drilling Method: Hollow-Stem Auger/ODEX

N 36º41'48.97462"

W 107º58'14.05858"

Sampling Method: Split Spoon Comments: N36º41.818' W107º58.234'

Sampling	Sampling		
Sample Depth Time Sample Type/Container/No Saturation Organic Vapor (ppm)	USCS Class Recovery (%)	Sample Description	Completion Results
9.6 66°F	80	Sandy Silt (ML) Very fine grain, compact to loose, damp, brown	
9.5 66°F	90	Sandy Silt (ML) Similar to above	oints 7
19 — 8.8 66°F	90	Sandy Silt (ML) Similar to above, tan and brown	readed Joints readed Joints Cement/Bentonite Grout
21 - 10.9 66°F	80	Sandy Silt (ML) Similar to above, increase in sand Silty Sand (SM) Very fine grain, compact to loose, damp,	w/Threaded Joints
23 - 10.4 68ºF	90	light brown Silty Sand (SM) Similar to above	creen w/Thres
25 — 10.0 68ºF	100	Silty Sand (SM) Similar to above	C Slotted 0.01" Screen w/Th
27— - - - - - - - - - - - - - - - - - - -	80	Silty Sand (SM) Similar to above	4" Sch. 40 PVC Slotted 0.01" Screen w/Threaded Joints
29 7.9 68°F	70	Silty Sand (SM) Fine to medium grained, compact, damp, brown, trace gravel, clayey	4" Sc

Well No.: MW-66 (AOC 26-9)

512/347-8243 fax

Start Date: 4/16/2009

Finish Date: 4/20/2009

Client: Western Refining Southwest, Inc. Site: SWMU Group #3, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne Driller: Enviro-Drill, Inc. **Drilling Rig: CME 75**

Austin, Texas 78746

Drilling Method: Hollow-Stem Auger/ODEX

Sampling Method: Split Spoon

Comments: N36º41.818' W107º58.234'

Total Depth: 43.25' bgl

Ground Water: Saturated @ 38' bgl

Elev., TOC (ft. msl): 5544.625 Elev., PAD (ft. msl): 5542.030 Elev., GL (ft. msl): 5541.979

Site Coordinates:

N 36º41'48.97462"

W 107º58'14.05858"

		5	Sam	plir	ng								
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	(Com	pletion Res	uits	
31					5.6 68ºF	ره وي (روي المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع الم	90	Silty Clayey Sand (SM/SC) Fine to medium grain, compact, damp, brown, trace gravel, clayey Gravelly Sand (SW)					
33					6.3 68ºF),	100	Fine to medium grain, loose, damp, brown, coarse gravel Gravelly Sand (SW) Similar to above	Joints		A		
35					25.3 68ºF		30	Gravelly Sand (SW) Similar to above Gravelly Sand (SW)	n w/Threaded				Saturated @ 38' bgl
37-	36- 38'	1520	G/2V/ 2E/4J	38.	3939 75°F		70	Medium to coarse grain, loose, damp to moist, brown and gray, coarse gravel, odor	0.01" Scree	/C Cap	•	Pack	Saturate
39		*		M 6333333333			50	Gravelly Sand (SW) Similar to above, saturated, odor	PVC Slotted	d Sch. 40 P\		e Sand Filter Pack	-
41-				\$555555			100	Sand (SP) Medium grain, loose, saturated, gray, odor Nacimiento Formation Sandy Silty Clay (CL) Low to moderate plasticity, stiff to very stiff, dry, grayish green	15 of 4" Sch. 40 PVC Slotted 0.01" Screen w/Threaded Joints	☐ 4" Flush Threaded Sch. 40 PVC Cap		mp 10/20 Sieve	
45-								Total Depth = 43.25' BGL	43.25'	6" Sand Bed		8" Well Sump	
	RPS 404 Camp Craft Road Sheet: 3 of 3 512/347-7588												

Appendix F

Field Methods

Field Methods

Pursuant to Section IV of the Order, an investigation of soils and ground water was conducted to determine and evaluate the presence, nature, extent, fate, and transport of contaminants. To accomplish this objective, soil borings and monitoring wells were installed at the SWMU No. 4 Transportation Terminal Sump, SWMU No. 5 Heat Exchanger Bundle Cleaning Area, AOC No. 22 Product Loading Rack and Crude Receiving Loading Racks, AOC No. 23 Southeast Holding Ponds, AOC No. 24 Tank Areas 41 and 43, AOC No. 25 Auxiliary Warehouse and 90-Day Storage Area, and AOC No. 26 Tank Areas 44 and 45.

The soil borings were drilled using hollow-stem auguring (HSA) method or air rotary-ODEX method. The drilling equipment was decontaminated between each borehole using a high pressure potable water wash. All soil borings were drilled to a minimum depth of 10 feet with at least one boring at each of the individual SWMUs/AOCs drilled to the top of saturation, with the exception of SWMU No. 5 where surface soil (i.e., 0-0.5' and 1.5-2') samples were collect. Soil samples were collected continuously and logged by a qualified geologist in accordance with USCS nomenclature. As shown on the boring logs the data recorded included the lithologic interval, symbol, percent recovery and a sample description of the cuttings and core samples, and field screening results. Samples obtained from the borings were screened in the field on 2 foot intervals for evidence of contaminants. Field screening results were used to aid in the selection of soil samples for laboratory analysis. The primary screening methods include: (1) visual examination, (2) olfactory examination, and (3) headspace vapor screening for volatile organic compounds. The headspace vapor screening was conducted using a MiniRae 2000 portable VOC monitor PGM-7600. The instrument was calibrated at the beginning of each work day to a concentration of 100 ppm isobutylene.

Soil samples were collected using split-spoon samplers. The split-spoon samplers were decontaminated between each use using a potable water rinse, an Alconox wash and then a distilled water rinse. In the event that more than one SWMU/AOC was investigated during the day a new batch of wash water and rinse water was prepared prior to decontamination. The decontamination water was collected in buckets and placed in open top 55-gallon drums, which were sealed at the end of each work day. Each drum was labeled. Soil cuttings were also placed in open top 55-gallon drums and were sealed when not in use.

Soil borings completed as permanent monitoring wells were drilled to the top of bedrock (Nacimiento Formation). The depth to separate phase hydrocarbon, if present, and ground water

was measured prior to purging the wells of potentially stagnant ground water. Monitoring wells were purged of a minimum of three well volumes prior to sample collection. Field measurements of ground water stabilization parameters included pH, specific conductance, dissolved oxygen concentrations, oxidation-reduction potential, and temperature. Ground water samples were collected with disposable bailers and immediately poured directly into clean laboratory supplied sample containers.

The instrument used to measure ground water stabilization parameters was an Ultrameter 6P manufactured by Myron L Company. The calibration solutions used at the beginning of each day are as follows:

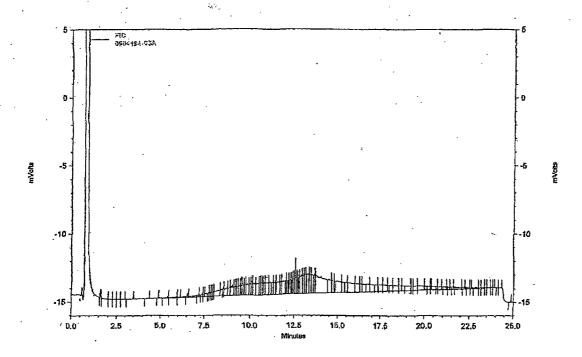
- 4.0 pH solution;
- 7.0 pH solution;
- 10.0 pH solution; and
- 1.413 mS/cm conductivity solution.

There were no field conditions encountered during the sampling event that affected procedural or sample testing results.

Appendix G

Laboratory Chromatograms

(SO)


Instument GC-17A FID#2 (Offline) Sample IQ: 0904194-03A Vial #: 51

.

User: System

Data Descritpion: 20x Dilution

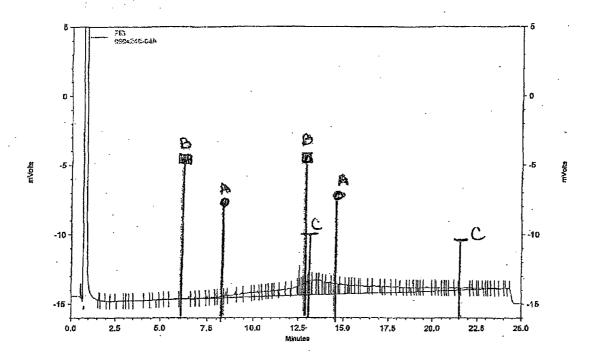
Method: H:\EZsemi\8015dro\Data 2008\Methods\FID #2\DRO FID #2 090319.met File: H:\EZsemi\8015dro\Data 2008\Data\090417F\0904194-03A 04-18-09 8-15-07 AM.dat Aguired: 04/18/09 8:25:01 AM

FID Results Name	Retention Time	Area	ug/mi
DRO		165556	53.102
MRO DNOP		238876 8372	35,997 2,2 63
· · ·		Dv.	vol-Recovered to Diluter
AnalystReviewed By		Single Point 200ppm Mo	From tor Oil
		nro -> 5	2. c

MRO -> (2.12

Sauple: Aoc 22-16 (1.5-2.01) - DRO

(54)


Instument GC-17A FID#2 (Offline) Sample ID: 0904240-04A

User: System

Data Descritpion: 20x Dilution

Method: H:\EZsemi\8015dro\Data 2008\Methods\FID #2\DRO FID #2 090319.met File: H:\EZsemi\8015dro\Data 2008\Data\0904240-04A 04-19-09 4-43-56 AM.dat

Aquired: 04/19/09 4:53:51 AM

FID Results Name	Retention Time	Area	ug/ml
DRO ·		66985	23,783
MRO DNOP	Suple: A = >50%.	204658 5118	30.620 1.418, ONE PET RECORDED
Analyst	B = 40% C = 750%		Due to Douted

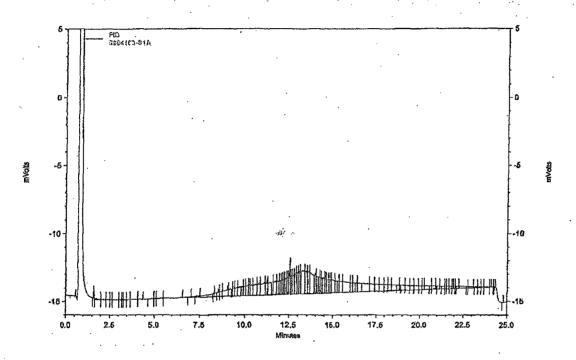
Single Point From 200ppm Motor Oil DRO -> 20.43

MRO -> 53.22

(ab Report: 0904240-04 Sample 10: AOC 22-11 (1.5-2.

Instument: GC-17A FID#2 (Offline)

Vial #: 75

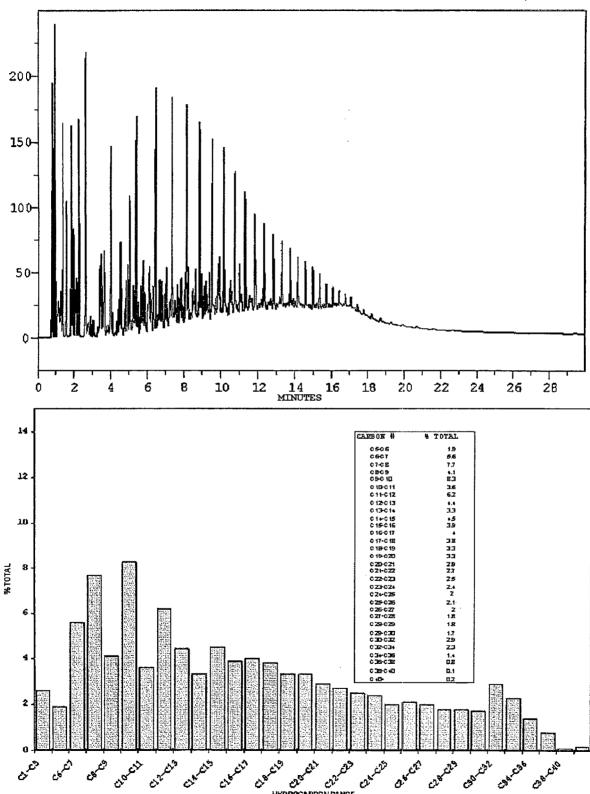

Data Descritpion: 20x Dilution

User: System

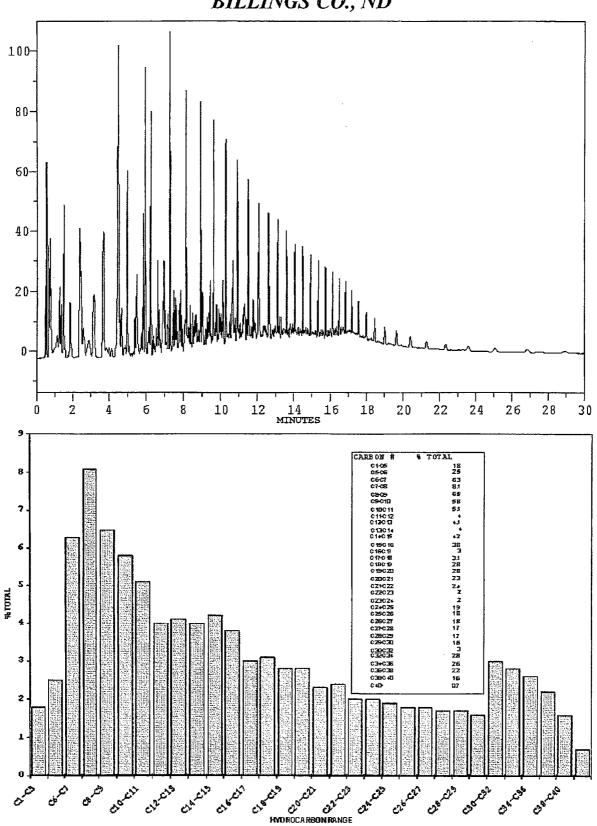
Sample ID: 0904153-01A

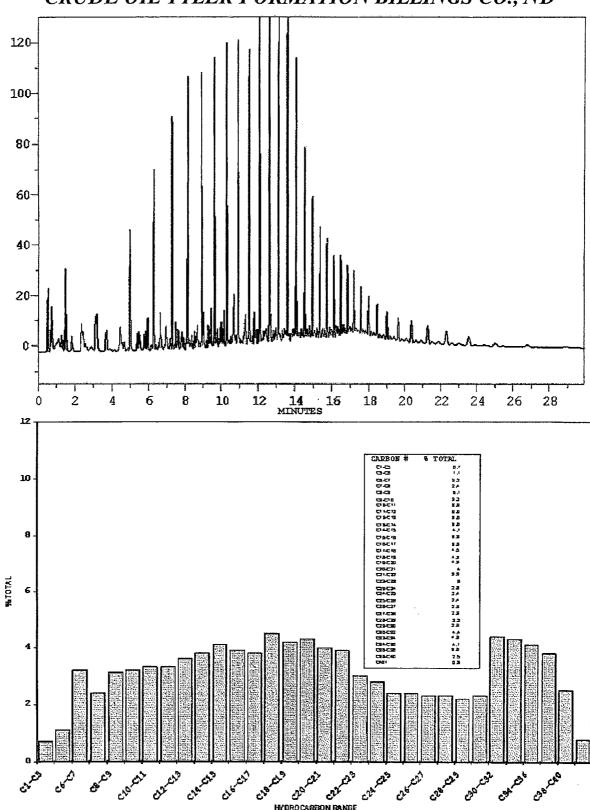
Method: H:\EZseml8015dro\Data 2008\Methods\FID #2\DRO FID #2 090319.met File: H:\EZsemi\8015dro\Data 2008\Data\0904153-01A 04-12-09 10-03-52 AM.dat

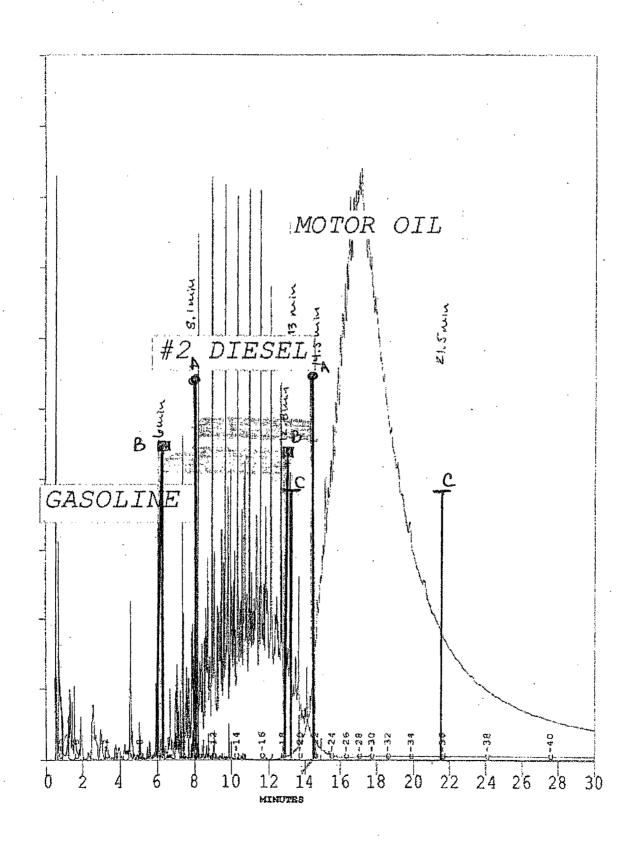
Aquired: 04/12/09 10:13:47 AM


FID Results Name	Retention Time	Area	ug/mi
DRO		121867	40.132
MRO DNOP		291208 8324	43.651
Analyst		Single Point 200ppm Mot DRO → 3	or Oil
	·	MRO → 8	8.55

Scenple: AOC 22-14(1.5-2.0')


(Report: 0904153)


CRUDE OIL SUSSEX FORMATION CAMPBELL CO., WY



CRUDE OIL MISSION CANYON FORMATION BILLINGS CO., ND

CRUDE OIL TYLER FORMATION BILLINGS CO., ND

Appendix H

Quality Assurance/Quality Control Review

1.0 Data Validation Introduction

This summary presents data verification results for soil and ground water samples collected from soil boring and monitoring wells installed at the Bloomfield Refinery in accordance with the approved Investigation Work Plan - Group 3. The data review was performed in accordance with the procedures specified in the Order issued by NMED (NMED, 2007), USEPA Functional Guidelines for Organic and Inorganic Data Review, and quality assurance and control parameters set by the project laboratory Hall Environmental Analysis Laboratory, Inc.

A total of 109 soil samples and 18 ground water samples were collected between April 2009 and July 2009 in accordance with the Group 3 Investigation Work Plan. Soil and ground water samples were submitted to Hall Environmental Analysis Laboratory for the following parameters in accordance with the approved Work Plan:

- Volatile organic compounds (VOCs) by USEPA Method 8260B;
- Semi-volatile organic compounds (SVOCs) by USEPA Method 8270;
- Gasoline, diesel, and motor oil range organics by SW-846 Method 8015B;
- Ethanol by SW-846 Method 8015B (AOC 26 samples only);
- Total recoverable metals (Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, nickel, selenium, silver, vanadium, and zinc) by SW846 Method 6010/6020;
- Cyanide by SW-846 method 9012; and
- Mercury by EPA Method 7470.

In addition as stated in the approved Work Plan, ground water samples submitted to Hall Environmental Analysis Laboratory were analyzed for the following additional analytes:

- Anions (chloride, Nitrate/Nitrite, and sulfate) by USEPA Method 300.0;
- Alkalinity (total alkalinity, carbonate, and bicarbonate) by USEPA Method 310.1;
- Dissolved metals (iron, calcium, magnesium, potassium, and sodium) by USEPA Method 6010B; and
- Total dissolved solids by SM-2540C

Additional analytes reported by the lab, including the analysis of ethanol for designated soil samples, were not required by the Work Plan, and therefore are not listed in their

entirely in the summary above. The soil and ground water sample analyses were completed as required by the approved Group 3 Site Investigation Work Plan, with the following exceptions:

Soil Sample Exceptions:

- AOC 22-12 (36-37.75') was inadvertently not analyzed for cyanide due to laboratory miscommunication;
- AOC 22-13 (37-39') was not analyzed for total metals due to limited sample recovery.
- AOC 22-13 (37-39') was not analyzed for SVOCs due to limited sample recovery.

Ground Water Sample Exceptions:

- NO₂+NO₃ was reported for sample MW-59, MW-60, MW-61, MW-62, MW-63, MW-64, MW-65, and MW-66 for at least one sample event in order to report results within the accepted holding time.
- Dissolved manganese was not reported for sample MW-61, MW-62, and MW-65; however total manganese was reported for each of the above mentioned samples.

Additionally, 80 quality assurance samples consisting of trip blanks, field blanks, equipment rinsate blanks, and field duplicates were collected and analyzed as part of the investigation activities. Table A-1 presents a summary of the sample identifications, laboratory sample identifications, and requested analytical parameters.

2.0 Quality Control Parameters Reviewed

Sample results were subject to a Level II data review that includes an evaluation of the following quality control (QC) parameters:

- Chain-of-Custody;
- Sample Preservation and Temperature Upon Laboratory Receipt;
- Holding Times;
- Blank Contamination (method blanks, trip blanks, field blanks, and equipment rinsate blanks);
- Surrogate Recovery (for organic parameters);
- Laboratory Control Sample (LCS) Recovery and Relative Percent Difference (RPD);
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recovery and RPD;
- Duplicates (field duplicate, laboratory duplicate); and
- Other Applicable QC Parameters.

The data qualifiers used to qualify the analytical results associated with QC parameters outside of the established data quality objectives are defined below:

- J+ The analyte was positively identified; however, the result should be considered an estimated value with a potential high bias.
- J- The analyte was positively identified; however, the result should be considered an estimated value with a potential low bias.
- UJ The reporting limit is considered an estimated value.
- R Quality control indicates that the data is not usable.

Results qualified as "J+", "J-", or "UJ" are of acceptable data quality and may be used quantitatively to fulfill the objectives of the analytical program, per EPA guidelines.

Results for the performance monitoring events that required qualification based on the data verification are summarized in Table A-2.

2.1 Chain-Of-Custody

The chain-of-custody documentation associated with project samples was found to be complete. Chain-of-custodies included sample identifications, date and time of collection, requested parameters, and relinquished/received signatures.

2.2 Sample Preservation and Temperature Upon Laboratory Receipt

Samples collected were received preserved and intact by Hall Environmental Laboratories, Inc. Samples were received by the laboratory at a temperature of 6.0 degrees Celsius or lower. Data qualification on lower temperature samples was not required.

2.3 Holding Times

All samples were extracted and analyzed within method-specified holding time limits with the exception of the following:

 Orthophosphate was analyzed past its holding time by over 10 days for numerous ground water samples collected from the new monitoring wells. Associated field sample results were rejected, and qualified "R." Orthophosphate was not a required analyte per the approved Work Plan.

2.4 Blank Contamination

2.4.1 Method Blank

Method blanks were analyzed at the appropriate frequency. Target compounds were not detected in the method blanks, with the exception of the following:

- Methylene chloride was detected in numerous analytical method blanks. Associated field sample detections of methylene chloride were most likely the result of laboratory contamination. The analytical laboratory noted issues with their new air ventilation system during the same time frame the samples for Group 3 were being analyzed. This issue was further confirmed by the methylene chloride detections in numerous field method blanks. Refer to Section 2.4.4 Common Laboratory Contaminants for additional data qualification information.
- Acetone was detected in numerous analytical method blanks. Associated field sample
 detections of acetone were most likely the result of laboratory contamination. The
 analytical laboratory noted issues with their new air ventilation system during the same
 time frame the samples for Group 3 were being analyzed. This issue was further
 confirmed by the acetone detections in numerous field method blanks. Refer to Section
 2.4.4 Common Laboratory Contaminants for additional data qualification information.

2.4.2 Trip Blank

Trip blanks were analyzed at the appropriate frequency as specified in the Order. Target compounds were not detected in the trip blanks.

2.4.3 Field Blanks/Equipment Rinsate Blank

Field and equipment rinsate blanks were collected at the appropriate frequency as specified in the Group 3 Investigation Work Plan. Target compounds were not detected in the field blanks and equipment rinsate blank, with the exception of the following:

- Bromodichloromethane was detected in several field and equipment rinsate blanks.
 Data qualification was not required because associated samples were non-detect for this analyte.
- Bromoform was detected in the following field and equipment blanks:

```
    EBS-041509 at 1.3 ug/L
    FB-042009 at 1.1 ug/L
    FB-042309 at 1.0 ug/L
    FB-041509 at 1.5 ug/L
    FB-051409 at 1.0 ug/L
```

Data qualification was not required because associated field samples were non-detect for this analyte.

- Chloroform was detected in several field and equipment rinsate blanks. Associated field samples with detected concentrations of chloroform less than 10 time the blank concentration were qualified "J+" to account for a potential high bias.
- Dibromochloromethane was detected in several field and equipment blanks. Data qualification was not required because associated field samples were non-detect for this analyte.
- Chloride was detected in the following field and equipment blanks:

```
    EBW-051209 at 2.2 mg/L
    EBW-051309 at 2.5 mg/L
    EBW-051409 at 2.2 mg/L
    EBW-071509 at 1.8 mg/L
    EBW-071609 at 0.62 mg/L
```

- Data qualification was not required because detected concentrations in associated field samples were more than 10 times the blank detected concentration for this analyte.
- Sulfate was detected in the following field and equipment blanks:

- EBW-051309 at 1.0 mg/L - FB-051209 at 0.52 mg/L - EBW-051409 at 1.1 mg/L - FB-051309 at 0.99

mg/L

- EBW-071509 at 1.0 mg/L FB-051409 at 1.0 mg/L
- EBW-071609 at 1.0 mg/L FB-071509 at 1.0 mg/L

Data qualification was not required because associated sample results were at concentrations greater than 10 times the blank detected concentration for this analyte.

- Manganese was detected in field blank FB-071509 (0.0034 mg/L). Data qualification
 was not required because associated samples results were of concentrations greater
 than 10 times the field blank concentration for this analyte.
- Zinc was detected in field blank FB-051309 (0.021 mg/L). The associated field sample results for MW-63 and MW-64 were qualified "J+" to account for a potential high bias.

2.4.4 Common Laboratory Contaminants

Per USEPA guidelines, common laboratory contaminants for VOC analysis are acetone, 2-butanone (MEK), cyclohexane, and methylene chloride. Common laboratory contaminants for SVOC analysis include phthalates. Analytical results were qualified if the detected sample concentration is less than 10 times the method reporting limit.

- Methylene chloride was detected in several soil samples at concentrations less than 10 times the method reporting limit; therefore the associated field data results were qualified "J+" due to potential laboratory contamination.
- Acetone was detected in several soil samples at concentrations less than 10 times the method reporting limit; therefore the associated data results were qualified "J+" due to potential laboratory contamination.

2.5 Surrogate Recovery

Surrogate recoveries for the organic and inorganic analyses were performed at the required frequency and were within laboratory acceptance limits, with the following exceptions:

 Surrogate recovery for DNOP (0%) was below the lower acceptance limit of 61.7% for the following field samples:

```
- AOC 22-14 (1.5-2.0')
- SWMU 4-1 (6-8')
- AOC 24-6 (1.5-2.0') - AOC 22-13 (37-39')
- AOC 22-13 (0-0.5') - AOC 22-16 (1.5-2.0')
- AOC 22-11 (1.5-2.0') - AOC 22-4 (1.5-2.0')
- SWMU 5-1 (0-0.5') - SWMU 5-3 (0-0.5')
```

Low surrogate recovery was due to required sample dilution for analytical analysis; therefore data qualification was not required.

- Surrogate recovery for BFB (218%) was above the upper acceptance limit of 123% for sample AOC 22-4 (1.5-2.0'). Associated data was qualified "J+" to account for the potential high bias.
- Surrogate recovery for BFB (206%) was above the upper acceptance limit of 123% for sample AOC 22-13 (0-0.5'). Associated data was qualified "J+" to account for a potential high bias.
- Surrogate recovery for BFB (364%) was above the upper acceptance limit of 123% for sample AOC 22-13 (18-20'). Associated field data result was qualified "J+" to account for a potential high bias.
- Surrogate recovery for BFB (279%) was above the upper acceptance limit of 123% for sample AOC 22-13 (37-39'). Associated data was qualified "J+" to account for a potential high bias.
- Surrogate recovery for BFB (304%) was above the upper acceptance limit of 123% for sample AOC 22-15 (34-36'). Associated data was qualified "J+" to account for the potential high bias.
- Surrogate recovery for BFB (311%) was above the upper acceptance limit of 122% for sample MW-60. Associated field data was qualified "J+" to account for the potential high bias.
- Surrogate recovery for 2,4,6-Tribromophenol (24.7%) was below the lower acceptance limits of 35.5% for soil sample SWMU 4-1 (6-8). Data qualification was not required because all other acid and base/neutral fractions were within acceptance limits.
- Surrogate recover for 2,4,6-tribromophenol (30.4%) was below the lower acceptance limit of 35.5% for sample AOC 22-4 (1.5-2.0'). Data qualification was not required and all other surrogates were within acceptance limits.
- Surrogate recovery for 2,4,6-Tribromophenol (32.4%) was below the lower acceptance limit of 35.5% for soil sample AOC 22-13 (1.5-2.0'). Data qualification was not required because all other acid and base/neutral fractions were within acceptance limits.
- Surrogate recovery for 2,4,6-Tribromophenol (32.4%) was below the lower acceptance limits of 35.5% for soil sample AOC 22-13 (1.5-2.0). Data qualification was not required because all other acid and base/neutral fractions were within acceptance limits.
- Surrogate recovery for 2,4,6-Tribromophenol (0%), 2-Fluorophenol (0%), and Nitrobenzene-d5 (0%) were below the lower acceptance limits of 16.6%, 9.5%, and 14.6%, respectively. The low recovery was due to the required dilution for sample analysis; therefore data qualification was not required.
- Surrogate recovery for 2,4,6-Tribromophenol (5.44%) and 2-Fluorophenol (0%) were below the lower acceptance limit of 16.6% and 9.54%, respectively, for ground water sample MW-66. Data qualification was not required because all other acid and base/neutral fractions were within acceptance limits.

- Surrogate recovery for 2,4,6-Tribromophenol (8.94%) was below the lower acceptance limit of 16.6% for ground water sample MW-66. Data qualification was not required because all other acid and base/neutral fractions were within acceptance limits.
- Surrogate recovery for 2-Fluorophenol (0%) was below the lower acceptance limit of 9.54% for ground water sample MW-65 and MW-65 (DUP). Data qualification was not required because all other acid and base/neutral fractions were within acceptance limits.
- Surrogate recovery for 4-Bromofluorobenzene (116%) was above the upper acceptance limit of 111% for sample AOC 22-13 (32-34.5'). Data qualification was not required because remaining acid and base/neutral fractions were within acceptance limits.
- Surrogate recoveries for 4-Bromofluorobenzene (125%) and dibromofluoromethane (114%) were above the upper acceptance limits of 111% and 105%, respectively for field sample AOC 22-13 (18-20'). Data qualification was not required because the other two surrogates were within acceptance limits.
- Surrogate recoveries for 4-Bromofluorobenzene (145%) was above the upper acceptance limits of 130% for field sample AOC 22-13 (0-0.5'). Data qualification was not required because other three surrogates were within acceptance limits.
- Surrogate recoveries for 4-Bromofluorobenzene (67.9%) and Toluene-d8 (68.4%) were below the lower acceptance limits of 70% for sample AOC 22-16 (36-38'). Data qualification was not required because other surrogates were within acceptance limits.
- Surrogate recovery for 4-Bromofluorobenzene (48.1%) was below the lower acceptance limit of 70% for sample AOC 22-15 (34-36'). Data qualification was not required because the other three surrogates were within acceptance limits.
- Surrogate recovery for 4-Bromofluorobenzene (114%) was above the upper acceptance limit of 111% for sample AOC 22-4 (1.5-2.0'). Data qualification was not required because the other three surrogates were within acceptance limits.
- Surrogate recoveries for 4-Bromofluorobenzene (136%) and Toluene-d8 (132%) were above the upper acceptance limits of 130% for analytical bath 18990. Data qualification was not required because other surrogates were within acceptance limits.
- Surrogate recovery for 4-Terphenyl-d14 was below the lower acceptance limit of 22% for sample MW-60. The surrogate recovery was caused by emulsion of the sample during extraction. Data qualification was not required because all other surrogates were within acceptance limits.
- Surrogate recovery for Phenol-d5 (36.3%) is below the lower acceptance limit of 37.6% for sample AOC 22-9 (0-0.5'). Data qualification was not required because the other surrogates were within acceptance limits.
- Surrogate recovery for Toluene-d8 was below the lower acceptance limit of 70% for samples AOC 22-12 (0-0.5') DUP, AOC 22-12 (36-37.75'), and AOC 22-12 (32-35').
 Data qualification was not required because the other three surrogates were within acceptance limits.

- Surrogate recovery for toluene-d8 (67.8%) is below the lower acceptance limit of 70% for sample AOC 22-8 (0-0.5'). Data qualification was not required because the other surrogates were within acceptance limits.
- Surrogate recovery for toluene-d8 (69.4%) was below the lower acceptance limit of 70% for sample AOC 22-11 (0-0.5'). Data qualification was not required because the other surrogates were within acceptance limits.

2.6 LCS Recovery and Relative Percent Difference

LCS/LCS duplicates were performed at the required frequency and were evaluated based on the following criteria:

- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate, but the analyte was not detected in the associated batch, then data qualification was not required.
- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate and the analyte was detected in the associated batch, then the analyte results were qualified "J+" to account for a potential high bias.
- If the analyte recovery was below acceptance limits for LCS or LCS duplicate then the analyte results in the associated analytical batch were qualified ("UJ" for non-detects and "J-" for detected results) to account for a potential low bias.

LCS/LCSD percent recoveries and relative percent differences (RPDs) were within acceptance limits except for the following:

- The LCS recovery for 1,1-Dichloroethene (93.9%) and trichloroethene (88.1%) was below the lower acceptance limit of 97.9% and 90.5%, respectively, for analytical batch 33138. The associated field data was non-detect, and therefore qualified "UJ" to account for potential low bias.
- The LCS percent recovery for 1,1-Dichloroethene (95.6%) was below the lower limit of 97.9% for analytical batch 33198. The associated field data was non-detect, and therefore was qualified "UJ" to account for a potential low bias.
- The LCS recovery for 1,1-Dichloroethene (132%) was above the upper acceptance limit of 130% for analytical batch 18946. Data qualification was not required because all associated field samples were non-detect.
- The LCS recovery for 1,1-Dichloroethene (86.1%) was below the lower acceptance limit of 97.9% for analytical batch R33263. The associated field data was non-detect, and therefore qualified "UJ" to account for a potential low bias.
- The LCS recovery for 4-Bromofluorobenzene (136%) and toluene-d8 (132%) were above the upper acceptance limit of 130% for analytical batch 18990. Data

qualification was not required because other two surrogates were within acceptance limits.

- The LCS percent recovery for 4-bromofluorobenzene (137%) and dibromofluoromethane (131%) was above the upper acceptance limit of 130% for analytical batch 19000. Data qualification was not required because the other two surrogates were within limits.
- The LCS percent recovery for chlorobenzene (80.2%) was below the lower acceptance limit of 80.7% for analytical batch R34645. Associated field sample results were qualified "UJ" to account for a potential low bias.
- The LCS percent recovery for trichloroethene (142%) was above the upper acceptance limit of 130% for batch 18838. Data qualification was not required because all associated field samples were non-detect.
- The LCS percent recovery for trichloroethene (140%) was above the upper acceptance limit of 130% for batch 19000. Data qualification was not required because all associated field samples were non-detect.
- The LCS recovery for Antimony (121%) was above the upper acceptance limit of 115% for analytical batch ICPMS4-c_090414A. Data qualification was not required because all associated samples were non-detect.
- The LCS recovery for Antimony (116%) was above the upper acceptance limit of 115% for batch ICPMS4-C_090415A. Data qualification was not required because all associated samples were non-detect.
- The LCS percent recovery for chloride (112%) was above the upper acceptance limit of 110% for analytical batch 33842. Associated field sample results were qualified "J+" to account for a potential high bias.
- The LCS percent recovery for fluoride (112% and 120%) was above the upper acceptance limit of 110% for analytical batch R33842 and R33861, respectively. Associated field sample results were qualified "J+" to account for a potential high bias.

2.7 MS/MSD Recovery and Relative Percent Difference

MS/MSD samples were performed at the required frequency and were evaluated by the following criteria:

- If the MS or MSD recovery for an analyte was above acceptance limits but the analyte was not detected in the associated analytical batch, then data qualification was not required.
- If the MS or MSD recovery for an analyte was above acceptance limits and the analyte was detected in the associated analytical batch, then analyte results were qualified "J+" to account for a potential low bias.

- Low MS/MSD recoveries for inorganic parameters result in sample qualification of the associated analytical batch.
- Results were not qualified based on non-project specific MS/MSD (i.e., batch QC) recoveries.

MS/MSD percent recoveries and RPDs were within acceptance limits except for the following:

- MS/MSD recoveries for Antimony (14.1% / 14.5%) were below the lower The acceptance limit of 75% for analytical batch 18855. Associated field sample results for Antimony were non-detect. Data qualification "UJ" was required to indicate a potential bias for the associated samples.
- The MS/MS duplicate percent recoveries for Antimony (19.9%/32.7%) were below the lower acceptance limit of 75% for analytical batch 18890. The associated field data was qualified "UJ" to account for potential low bias.
- The MS duplicate recovery for selenium (71.3%) and antimony (12.3%) were below the respective low acceptance limit of 75%. Data qualification was not required because the MS recovery and relative percent difference were within acceptance limits.
- The MS/MS duplicate percent recoveries for Antimony (20.3% / 0%) and Selenium (50.6% / 57.6%) were below the lower acceptance limit of 75% for analytical batch 18924. The associated field data was qualified "UJ" to account for potential low bias.
- The MS/MS duplicate recovery for antimony (16.3%/14.6%) were below the lower acceptance limit of 75% for analytical batch 18967. Associated field data results was non-detect; therefore the results were qualified "UJ" for potential low bias.
- The MS/MS duplicate recoveries for antimony (14.6% / 16.3%) were below the lower acceptance limit of 75% for analytical batch 18967. Associated field data was qualified "UJ" for potential low bias.
- The MS/MSD recovery for antimony (25.9%/22.8%) and selenium (57.5%/51.0%) were below the lower acceptance limit of 75% for analytical batch 19089. Associated field samples were non-detect and where therefore qualified "UJ" to account for potential low bias.
- The MS/MSD recovery for antimony (72%/73%) was below the lower acceptance limit of 75% for analytical batch B09071596. Ground water field data was qualified "UJ" for nondetects (MW-64) and "J-" for detected concentrations (MW-66) to account for a potential low bias.
- The MS duplicate recovery for cyanide (111%) was above the upper acceptance limit of 110% for analytical batch B09041656-005MSD. Data qualification was not required because the MS percent recovery was within acceptance limits.
- The MS duplicate percent recovery for cyanide (112%) was above the upper acceptance limit of 110% for analytical batch B09041381-001. Data qualification was not required because the MS percent recovery was within limits.

- The MS duplicate recovery for cyanide (113%) was above the upper acceptance limit of 110% for analytical batch B09042019-006. Data qualification was not required by the MS percent recovery was within acceptance limits.
- The MS recovery for cyanide (89%) was below the lower acceptance limit of 90% for analytical batch 09051460-001. Data qualification was not required because the MSD recovery was within limits.
- The MSD recovery for cyanide (114% and 113%) was above the upper acceptance limit of 110% for analytical batch B09051459 and B09051454. Data qualification was not required because MS recoveries were within acceptance limits.
- The MS/MSD recovery for cyanide (111%/112%) was above the upper acceptance limit of 110% for analytical batch B09051662. Data qualification was not required because the associated field samples were non-detect.
- The MS/MSD recovery for cyanide (81%/82%) was below the lower acceptance limit of 90% for analytical batch AUTOAN201-B_090720A. Associated field data was qualified "UJ" for associated ground water samples to account for a potential low bias.
- The MS/MSD recoveries for cyanide (114%/114%) were above the upper acceptance limit of 110% for analytical batch B09051662-002. Data qualification was not required because all associated field data was non-detect.
- The MS/MSD recoveries for cyanide (117%/117%) were above the upper acceptance limit of 110% for analytical batch B09051671-001. Data qualification was not required because all associated field data was non-detect.
- The MS recovery for selenium (67.9%) was below the lower acceptance limit of 75% for analytical batch 18967. Data qualification was not required because the MS duplicate recovery was within limits.
- The MS recovery for selenium (67.9%) was below the lower acceptance limit of 75% for analytical batch 18967. Data qualification was not required because the MSD recoveries were within acceptance limits.
- The MS/MS duplicate recovery for mercury (152%/133%) was above the upper acceptance limit of 125% for analytical batch 18995. Data qualification was not required because associated sample results were non-detect.
- The MSD recovery for trichloroethene (85.8%) was below the lower acceptance limit of 87.1% for analytical batch R33223. Data qualification was not required because the associated MS recovery was within the acceptance limits.
- The MS duplicate recovery for Gasoline Range Organics (121%) was above the upper acceptance limit of 120% for analytical batch R33224. Data qualification was not required since the MS and relative percent difference were within acceptance limits.
- The MS/MSD percent recoveries for 2,4-Dinitrotoluene (0%), N-Nitrosodi-n-prypylamine (0%), and 1,2,4-Trichlorobenzene (0%) were below the lower acceptance limits of 28%, 28%, and 17.9% respectively, for analytical batch 18828. The relative percent

- differences were within limits. The associated field sample data was qualified "UJ" to account for potential low bias.
- The MS/MSD surrogate recoveries for 2,4,6-tribromophenol (31.3%/26.0%) and phenold5 (34.0%/34.1%) were below the lower acceptance limit of 35.5% and 37.6%, respectively for analytical batch 18828. Data qualification was not required because the remaining surrogates were within acceptance limits.
- The MS/MSD recoveries for benzene (79.6%/80%) and 1,1-Dichloroethene (83.1%/84.4%) were below the lower acceptance limit of 84.9% and 88%, respectively for analytical batch R34645. The associated field data was qualified UJ to account for the potential low bias.
- The MS/MS duplicate relative percent difference for analytical batch R33310 (17.8%)
 was above the acceptance limit of 15%. Data qualification was not required because the
 MS/MSD percent recoveries were within acceptance limits.
- The MSD recoveries for toluene (78.1%) and trichloroethene (86.0%) were below the lower acceptance limits of 80.3% and 87.1%, respectively. Data qualification was not required because MS recoveries were within acceptance limits.
- The MS recovery for trichloroethene (115%) was above the upper acceptance limit of 114% for analytical batch 33452. Data qualification was not required because the associated sample results were non-detect.
- The MS recovery for trichloroethene (115%) was above the upper acceptance limit of 114% for analytical batch 33452. Data qualification was not required because the associated field sample results were non-detect.
- The MS duplicate recovery for BFB (118%) was above the upper acceptance limit of 116% for analytical batch R33510. Data qualification was not required because the MS recovery was within acceptance limits.
- The MS/MSD recovery for gasoline range organics (124%/124%) was above the upper acceptance limit of 120% for analytical batch 33529. Data qualification was not required because the associated field samples were non-detect.
- The MS/MS duplicate recovery for gasoline range organics (138%/143%) was above the upper acceptance limit of 115% for analytical batch 33820. Associated field data for MW-59 and MW-60 was qualified J+ due to potential high bias.

2.8 Duplicates

2.8.1 Field Duplicates

Field duplicates were collected at a rate of 10 percent and submitted for analysis. The RPDs between the field duplicate and its associated sample were calculated and are presented in Table A-3. The field duplicates were evaluated by the following criteria:

- If an analyte was detected at a concentration greater than five times the method reporting limit, the RPD should be less than 35 percent for soil and 25 percent for ground water samples.
- If an analyte was detected at a concentration that is less than five times the method reporting limit, then the difference between the sample and the field duplicate should not exceed the method reporting limit.
- Duplicate RPDs are calculated by dividing the difference of the concentrations by the average of the concentrations.

Field duplicate RPDs were within acceptance limits except for the following:

- Chromium for field sample AOC 25-2 (0-0.5');
- Lead for field sample AOC 22-8 (1.5-2.0');
- TPH-MRO, 1,2,4-trimethylbenzene, and barium for field sample AOC 26-8 (0-1.0');
- Chromium and lead for field sample AOC 26-3 (1.5-2.0');
- Acetone for field sample AOC 23-1 (0-0.5');
- Chromium, cobalt, and zinc for field sample AOC 24-4 (1.5-2.0');
- Arsenic for field sample MW-65; and
- Iron for field sample MW-63.

2.9 Other Applicable qc parameters

2.9.1 Calibration

- The 5 ppb continuing standard had a high recovery for acetone at 142.7%. Data qualification was not required because the percent different between the initial and continuing RRFs was less than 25%.
- Bis(2-ethylbexyl)phthalate failed high on the opening standard at 142%. The laboratory acceptance range is 60-140% of the expected value. Data qualification was not required because all other calibration standard recoveries were within acceptance limits.

3.0 Completeness Summary

Two types of completeness were calculated for this project: contract and technical. The following equations were used to calculate the two types of completeness:

% Contract Completeness =
$$\left(\frac{\text{Number of contract compliant results}}{\text{Number of reported results}}\right) \times 100$$

% Technical Completeness =
$$\left(\frac{\text{Number of usable results}}{\text{Number of reported results}}\right) \times 100$$

The overall contract completeness, which includes the evaluation of protocol and contract deviations, which includes the evaluation of the QC parameters listed in Section 2.0, was approximately 94 percent for soil analysis and 96 percent for ground water analysis. The technical completeness attained for Group 3 RCRA Investigation activities was 100 percent. The completeness results are provided in Table A-4. The analytical results for the required analytes per the approved Group 3 Work Plan were considered usable for the intended purposes and the project DQOs have been met.

TABLE A-1 Sampling and Analysis Schedule

Table A-1
Sampling and Analysis Schedule
Group 3 Investigation Report
Western Refining Southwest, Inc. - Bloomfield Refinery

Sample ID	Lab ID	Date Collected	Sample Type
EBS-040509	0907095-01	4/5/2009	EB-Soil
AOC 25-2 (0-0.5')	0904095-02	4/5/2009	N
AOC 25-2 (0-0.5')-DUP	0904095-03	4/5/2009	N
Methanol Blank	0904095-04	na	MB
Trip Blank	0904095-05	na	TB
AOC 25-2 (36-38')	0904095-06	4/5/2009	N
AOC 25-2 (1.5-2.0')	0904095-07	4/5/2009	N
FB-040509	0904095-08	4/5/2009	FB
SWMU 4-1 (0-0.5')	0904098-01	4/6/2009	N ·
SWMU 4-1 (1.5-2.0')	0904098-02	4/6/2009	N
SWMU 4-1 (6-8')	0904098-03	4/6/2009	N
Methanol Blank	0904098-04	na	MB
Trip Blank	0904098-05	na	TB
FB-040609	0904098-06	4/6/2009	FB
EBS-040609	0904098-07	4/6/2009	EB-Soil
SWMU 4-1 (36-38')	0904107-01	4/6/2009	N
AOC 24-7 (0-0.5')	0904107-02	4/7/2009	N
AOC 24-7 (1.5-2.0')	09047107-03	4/7/2009	N
FB-040709	0904107-04	4/7/2009	FB
EBS-040709	0904107-05	4/7/2009	EB-Soil
Methanol Blank	0904107-06	na	MB
Trip Blank	0904107-07	na	TB
AOC 24-7 (39-42')	0904143-01	4/7/2009	1B N
AOC 24-7 (39-42)	0904143-01	4/8/2009	N
AOC 24-5 (0-0.5') DUP	0904143-03	4/8/2009	N
AOC 24-5 (1.5-2.0')	0904143-04	4/8/2009	N
Methanol Blank	0904143-05	na	MB
AOC 24-6 (0-0.5')	0904143-06	4/8/2009	N
AOC 24-6 (0-0.5)	0904143-07	4/8/2009	N
AOC 24-0 (1.5-2.0')	0904153-01	4/8/2009	N
AOC 22-14 (1.3-2.0) AOC 22-14 (0-0.5')	0904153-01	4/8/2009	N
FB 040809	0904153-02	4/8/2009	FB
	0904153-04		
Methanol Blank EBS-040809	0904153-04	na 4/8/2009	MB EB-Soil
Trip Blank	0904153-06		
	0904155-01	na 4/8/2009	TB
AOC 22-13 (1.5-2.0')			N
AOC 22-13 (32-34.5')	0904155-02	4/8/2009	N
AOC 22-13 (18-20')	0904155-03	4/8/2009	N
AOC 22-13 (37-39')	0904155-04	4/8/2009	N N
Methanol Blank	0904155-05	na	MB
AOC 22-13 (GW)	0904155-06	4/9/2009	N
AOC 22-13 (0-0.5')	0904155-07	4/8/2009	N
Trip Blank	0904155-08	na	TB
FB-040909	0904155-08	4/9/2009	FB
AOC 22-12 (0-0.5')	0904193-01	4/13/2009	N
AOC 22-12 (0-0.5)-DUP	0904193-02	4/13/2009	N
AOC 22-12 (1.5-2.0')	0904193-03	4/13/2009	N
AOC 22-12 (32-35')	0904193-04	4/13/2009	. N
AOC 22-12 (36-37.75')	0904193-05	4/13/2009	N
Methanol Blank	0904193-06	<u> na </u>	MB
Trip Blank	0904193-07	na	TB
EBS-041309	0904193-08	4/13/2009	EB-Soil
FB-041309	0904194-01	4/13/2009	FB
AOC 22-16 (0-0.5')	0904194-02	4/13/2009	N
AOC 22-16 (1.5-2.0')	0904194-03	4/13/2009	N
Trip Blank	0904194-04	na	TB
Methanol Blank	0904194-05	na	MB
AOC 22-12 (GW)	0904212-01	4/14/2009	N
Trip Blank	0904212-02	na	TB
AOC 22-16 (36-38')	0904212-03	4/14/2009	N
Methanol Blank	0904212-04	na	MB
AOC 22-8 (1.5-2.0')	0904214-01	4/13/2009	N
AOC 22-8 (1.5-2.0') DUP	0904214-01	4/13/2009	N
AOC 22-8 (1.3-2.0) DOF	0904214-02	4/13/2009	N
·	0904214-03		
Methanol Blank	0904214-04	na	MB

Table A-1 Sampling and Analysis Schedule Group 3 Investigation Report Western Refining Southwest, Inc. - Bloomfield Refinery

Sample ID	Lab ID	Date Collected	Sample Type
AOC 22-9 (1.5-2.0')	0904214-05	4/13/2009	N N
AOC 22-7 (1.5-2.0')	09042014-06	4/13/2009	N
AOC 22-7 (0-0.5')	0904214-07	4/13/2009	N
AOC 22-8 (0-0.5')	0904214-08	4/13/2009	N
AOC 22-10 (0-0.5')	0904240-01	4/14/2009	N
AOC 22-10 (1.5-2.0')	0904240-02	4/14/2009	N
AOC 22-11 (0-0.5')	0904240-03	4/14/2009	N
AOC 22-11 (1.5-2.0')	0904240-04	4/14/2009	N
FB-041409	0904240-05	4/14/2009	FB
EBS-041409	0904240-06	4/14/2009	EB-Soil
Trip Blank	0904240-07	na	TB
Methanol Blank	0904240-08	na	MB
AOC 22-15 (1.0-0.5')	0904241-01	4/15/2009	N
AOC 22-15 (1.5-2.0')	0904241-02	4/15/2009	N
AOC 22-15 (1.5-2.0') DUP	0904241-03	4/15/2009	N_
Methanol Blank	0904241-04	na	MB
AOC 22-15 (30-32')	0904241-05	4/15/2009	N
FB-041509	0904241-06	4/15/2009	FB
Trip Blank	0904241-07	na	TB
AOC 22-15 (34-36')	0904241-08	4/15/2009	N
EBS-041509	0904241-09	4/15/2009	EB-Soil
AOC 26-8 (0-1.0')	0904265-01	4/16/2009	N
AOC 26-8 (0-1.0') DUP	0904265-02	4/16/2009	N
AOC 26-8 (1.5-2.0')	0904265-03	4/16/2009	N
Methanol Blank	0904265-04	na	MB
Trip Blank	0904265-05	na 4/16/2000	TB
FB-041609	0904265-06	4/16/2009	FB
EBS-041609	0904265-07	4/16/2009	EB-Soil
AOC 26-8 (32-36') AOC 22-1 (1.5-2.0')	0904265-08 0904266-01	4/16/2009 4/15/2009	N
			N N
AOC 22-1 (0-0.5')	0904266-02	4/15/2009	N N
AOC 22-2 (0-0.5') AOC 22-2 (1.5-2.0')	0904266-04	4/15/2009 4/15/2009	N N
AOC 22-3 (0-0.5')	0904266-05	4/15/2009	N
AOC 22-3 (0-0.5)	0904266-06	4/15/2009	N
AOC 22-4 (0-0.5')	0904266-07	4/15/2009	N
AOC 22-4 (0.53)	0904266-08	4/15/2009	N
Methanol Blank	0904266-09	na	MB
AOC 26-3 (0-0.5')	0904311-01	4/20/2009	N
AOC 26-3 (1.5-2.0')	0904311-02	4/20/2009	N
AOC 26-3 (1.5-2.0') DUP	0904311-03	4/20/2009	N
AOC 26-4 (0-0.5')	0904311-04	4/20/2009	N
AOC 26-4 (1.5-2.0')	0904311-05	4/20/2009	N
Methanol Blank	0904311-06	na	MB
EBS-042009	0904311-07	4/20/2009	EB-Soil
Trip Blank	0904311-08	na	TB
AOC 26-9 (0-0.5')	0904315-01	4/20/2009	N
AOC 26-9 (1.5-2.0')	0904315-02	4/20/2009	N
AOC 26-1 (0-0.5')	0904315-03	4/20/2009	N
AOC 26-1 (1.5-2.0')	0904315-04	4/20/2009	N
FB-042009	0904315-05	4/20/2009	FB
AOC 26-2 (0-0.5')	0904315-06	4/20/2009	N
AOC 26-2 (1.5-2.0')	0904315-07	4/20/2009	N
Trip Blank	0904315-08	na	TB
Methanol Blank	0904315-09	na 4/20/2000	MB
AOC 26-5 (0-0.5')	0904356-01	4/20/2009	N
AOC 26-5 (1.5-2.0')	0904356-02	4/20/2009	N
AOC 26-6 (0-0.5')	0904356-03	4/20/2009	N
AOC 26-6 (1.5-2.0')	0904356-04	4/20/2009	N
AOC 26-7 (0-0.5')	0904356-05	4/20/2009	N
AOC 26-7 (1.5-2.0')	0904356-06	4/20/2009	N
AOC 26-9 (36-38')	0904356-08	4/20/2009	N
AOC 23-1 (0-0.5')	0904359-01	4/21/2009	N
AOC 23-1 (0-0.5') DUP	0904359-02	4/21/2009	N
AOC 23-1 (1.5-2.0')	0904359-03	4/21/2009	N
AOC 24-1 (0-0.5')	0904397-01	4/23/2009	N

Table A-1
Sampling and Analysis Schedule
Group 3 Investigation Report
Western Refining Southwest, Inc. - Bloomfield Refinery

Sample ID	Lab ID	Date Collected	Sample Type
AOC 24-1 (1.5-2.0')	0904397-02	4/23/2009	N N
AOC 24-1 (1.3-2.0) AOC 24-2 (0-0.5')	0904397-02	4/23/2009	N
AOC 24-2 (0-0.3)	0904397-03	4/23/2009	N N
AOC 24-2 (1.5-2.0)	0904397-05	4/23/2009	N
AOC 24-3 (0-0.3)	0904397-06	4/23/2009	N
AOC 24-3 (1.3-2.0)	0904397-07	4/23/2009	N
AOC 24-4 (0-0.5)	0904397-08	4/23/2009	N
AOC 24-4 (1.5-2.0) DUP	0904397-09	4/23/2009	N
Methanol Blank	0904397-09	na	MB
FB-042109	0904397-10	4/21/2009	FB
FB-042209	0904399-01	4/22/2009	FB
EBS-042209	0904399-02	4/22/2009	EB-Soil
	0904099-03	4/21/2009	EB-Soil
EBS-042109	0904399-04		TB
Trip Blank		na	
Methanol Blank	0904399-06	na 4/22/2009	MB N
AOC 23-1 (52-53')	0904399-07		
EBS-042309	0904414-01	4/23/2009	EB-Soil
FB-042309	0904414-02	4/23/2009	FB
Trip Blank	0904414-03	na	TB
Methanol Blank	0904414-04	na	MB
AOC 25-1 (0-0.5')	0904414-05	4/23/2009	N_
AOC 25-1 (1.5-2.0')	0904414-06	4/23/2009	N
SWMU 5-1 (0-0.5')	0904415-01	4/23/2009	N
SWMU 5-1 (1.5-2.0')	0904415-02	4/23/2009	N
SWMU 5-2 (0-0.5')	0904415-03	4/23/2009	N
SWMU 5-2 (1.5-2.0')	0904415-04	4/23/2009	N
SWMU 5-3 (0-0.5')	0904415-05	4/23/2009	N
SWMU 5-3 (1.5-2.0')	0904415-06	4/23/2009	N
SWMU 5-4 (0-0.5')	0904415-07	4/23/2009	N
SWMU 5-4 (1.5-2.0')	0904415-08	4/23/2009	N
SWMU 5-5 (0-0.5')	0904415-09	4/23/2009	N
Methanol Blank	0904415-10	na	MB_
AOC 22-5 (0-0.5')	0904416-01	4/23/2009	N
AOC 22-5 (1.5-2.0')	0904416-02	4/23/2009	N
AOC 22-6 (0-0.5')	0904416-03	4/23/2009	N
AOC 22-6 (1.5-2.0')	0904416-04	4/23/2009	N
SWMU 5-5 (1.5-2.0')	0904416-05	4/23/2009	N
SWMU 5-5 (1.5-2.0') DUP	0904416-06	4/23/2009	N
SWMU 5-6 (0-0.5')	0904416-07	4/23/2009	N
SWMU 5-6 (1.5-2.0')	0904416-08	4/23/2009	N
Methanol Blank	0904416-09	na	MB
MW-62	0905247-01	5/13/2009	N
EBW-051209	0905247-02	5/12/2009	EB-Water
MW-61	0905247-03	5/13/2009	N
Trip Blank	0905247-04	na	TB
FB-051209	0905247-05	5/12/2009	FB
MW-59	0905297-01	5/14/2009	N
EBW-051409	0905297-02	5/14/2009	EB-Water
MW-60	0905297-03	5/14/2009	N
FB-051409	0905297-04	5/14/2009	FB
Trip Blank	0905297-05	na	TB
MW-66	0905258-01	5/12/2009	
			N
Trip Blank	0905258-02	na	TB
MW-65	0905258-03	5/12/2009	N
MW-65 (DUP)	0905258-04	5/12/2009	N
MW-64	0905299-01	5/13/2009	N
FB-051309	0905299-02	5/13/2009	FB
MW-63	0905299-03	5/13/2009	N
EBW-051309	0905299-04	5/13/2009	EB-Water
Trip Blank	0905299-05	na	TB
MW-64	0907285-01	7/15/2009	N
Trip Blank	0907285-02	na	TB
MW-66	0907285-03	7/15/2009	N
MW-63	0907286-01	7/15/2009	N
TAT AL -02	1 0201200-01	111312009	L 1N

Table A-1 Sampling and Analysis Schedule **Group 3 Investigation Report** Western Refining Southwest, Inc. - Bloomfield Refinery

Sample ID	Lab ID	Date Collected	Sample Type
Trip Blank	0907286-02	na	TB
MW-63 (DUP)	0907286-03	7/15/2009	N
MW-61_	0907314-01	7/16/2009	N
Trip Blank	0907314-02	na	TB
MW-65	0907314-03	7/16/2009	N
MW-59	0907314-04	7/16/2009	N
MW-62	0907315-01	7/16/2009	N
EBW-071509	0907315-02	7/15/2009	EB-Water
FB-071509	0907315-03	7/15/2009	FB
Trip Blank	0907315-04	na	TB
EBW-071609	0907318-01	7/16/2009	EB-Water
FB-071609	0907318-02	7/16/2009	FB
TW-01	0907559-01	7/29/2009	N
Trip Blank	0907559-02	na	TB

Notes:

VOCs = Volatile Organic Compounds

N = Normal field sample

FD = Field duplicate

na = not applicable

TB = Trip Blank EB = Equipment Blank

MB = Methanol Blank

TABLE A-2 Qualified Data

Sample 1D	Date Collected	Analyte	Result	Units	Matri	Matrix Qualifier	Comments
AOC 22-13 (0-0.51)	4/8/2009	1,1-Dichloroethene	< 1.10	μg/Kg-dry	Soil	m	Qualified due to low LCS recovery
AOC 22-13 (1.5-2.0')	4/8/2009	1,1-Dichloroethene	< 1.0	mg/Kg	Soil	m	Qualified due to low LCS recovery
AOC 22-13 (18-20')	4/8/2009	1,1-Dichloroethene	< 0.50	mg/Kg	Soil	m	Qualified due to low LCS recovery
AOC 22-13 (32-34.5')	4/8/2009	1,1-Dichloroethene	< 0.050	mg/Kg	Soil	m	Qualified due to low LCS recovery
AOC 22-13 (37-39')	4/8/2009	1,1-Dichloroethene	< 5.0	mg/Kg	Soil	UI	Qualified due to low LCS recovery
AOC 22-16 (36-38')	4/14/2009	1,1-Dichloroethene	< 0.965	μg/Kg-dry	Soil		Qualified due to low LCS recovery
MW-62	7/16/2009	1,1-Dichloroethene	< 1.0	µg/L	ĞW	UJ	Qualified due to low MS/MSD recovery
SWMU 4-1 (0-0.5')	4/6/2009	1,1-Dichloroethene	< 0.050	mg/Kg	Soil	m	Qualified due to low LCS recovery
SWMU 4-1 (0-0.5')	4/6/2009	1,1-Dichloroethene	< 0.933	=	Soil	m	Qualified due to low LCS recovery
SWMU 4-1 (1.5-2.0')	4/6/2009	1,1-Dichloroethene	< 0.050		Soil	U	Qualified due to low LCS recovery
SWMU 4-1 (1.5-2.0')	4/6/2009	1,1-Dichloroethene	< 0.991	=	Soil	m	Qualified due to low LCS recovery
SWMU 4-1 (36-38')	4/6/2008	1,1-Dichloroethene	< 1.02	ug/kg-dry	Soil	m	Qualified due to low LCS recovery
SWMU 4-1 (6-8')	4/6/2009	1,1-Dichloroethene	< 0.10	mg/Kg	Soil	m	Qualified due to low LCS recovery
AOC 22-13 (0-0.5')	4/8/2009	1,2,4-Trichlorobenzene	< 1.10	μg/Kg-dry	Soil	u	Qualified due to low MS/MSD recovery
AOC 22-13 (1.5-2.0')	4/8/2009	1,2,4-Trichlorobenzene	< 1.0	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery
AOC 22-13 (18-20')	4/8/2009	1,2,4-Trichlorobenzene	< 0.50	mg/Kg	Soil	_ m	Qualified due to low MS/MSD recovery
AOC 22-13 (32-34.5')	4/8/2009	1,2,4-Trichlorobenzene	< 0.050	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery
AOC 22-13 (0-0.5')	4/8/2009	2,4-Dinitrotoluene	< 2.5	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery
AOC 22-13 (1.5-2.0')	4/8/2009	2,4-Dinitrotoluene	< 5.0	mg/Kg	Soil	UJ	Qualified due to low MS/MSD recovery
AOC 22-13 (18-20')	4/8/2009	2,4-Dinitrotoluene	< 0.50	mg/Kg	Soil	U	Qualified due to low MS/MSD recovery
AOC 22-13 (32-34.5')	4/8/2009	2,4-Dinitrotoluene	< 0.50	mg/Kg	Soil	n	Qualified due to low MS/MSD recovery
AOC 22-12 (32-35')	4/13/2009	Acetone	30.1	µg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 22-12 (36-37.75')	4/13/2009	Acetone	21.0	µg/Kg-dry	Soil	ĵ+	Qualified due to potential laboratory contamination.
AOC 23-1 (0-0.5')	4/21/2009	Acetone	13.6	ug/Kg-dry	Soil)+	Qualified due to potential laboratory contamination.
AOC 23-1 (0-0.5') DUP	4/21/2009	Acetone	25.4	μg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 23-1 (1.5-2.0')	4/21/2009	Acetone	26.2	µg/Kg-dry	Soil	T+	Qualified due to potential laboratory contamination.
AOC 23-1 (52-53')	4/22/2009	Acetone	16.2	μg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 24-7 (39-42')	4/7/2009	Acetone	7.80	µg/Kg-dry	Soil	÷ſ	Qualified due to potential laboratory contamination.
AOC 25-1 (0-0.5')	4/23/2009	Acetone	176	µg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 25-1 (1.5-2.0')	4/23/2009	Acetone	33.9	µg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 25-2 (36-38')	4/5/2009	Acetone	4.21	µg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 26-1 (0-0.5')	4/20/2009	Acetone	15.9	µg/Kg-dry	Soil	+ſ	Qualified due to potential laboratory contamination.
AOC 26-1 (1.5-2.0')	4/20/2009	Acetone	9.75	µg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 26-2 (0.0.5')	4/20/2009	Acetone	15.3	μg/Kg-dry	Soil	ţ,	Qualified due to potential laboratory contamination.
AOC 26-2 (1.5-2.0')	4/20/2009	Acetone	9.01	ug/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 26-4 (1.5-2.0')	4/20/2009	Acetone	5.06	µg/Kg-dry	Soil	÷	Qualified due to potential laboratory contamination.
AOC 26-5 (0-0.5')	4/20/2009	Acetone	44.8	µg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 26-5 (1.5-2.0')	4/20/2009	Acetone	7.14	µg/Kg-dry	Soil)+	Qualified due to potential laboratory contamination.
AOC 26-6 (0-0.5')	4/20/2009	Acetone	49.8	µg/Kg-dry	Soil	-f	Qualified due to potential laboratory contamination.
AOC 26-6 (1.5-2.0)	4/20/2009	Acetone	6.34	ug/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 26-7 (0-0.5')	4/20/2009	Acetone	78.0	µg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 26-7 (1.5-2.0°)	4/20/2009	Acetone	25.8	µg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 26-9 (0-0.5')	4/20/2009	Acetone	7.73	μg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 26-9 (1.5-2.0)	4/20/2009	Acetone	6.71	ug/Kg-dry	Soil	ţ	Qualified due to potential laboratory contamination.
SWMU 5-1 (0-0.5')	4/23/2009	Acetone	8.35	μg/Kg-dry	_	±,	Qualified due to potential laboratory contamination.
SWMU 5-1 (1.5-2.0)	4/23/2009	Acetone	5.74	µg/Kg-dry	Soil	±	Qualified due to potential laboratory contamination.

SWMU 5-2 (0-0.5')	4/23/2009	Acetone	7.89	ug/Kg-dry	Soil	±	Oualified due to potential Jaboratory contamination.
SWMU 5-2 (1.5-2.0')	4/23/2009	Acetone	6.05	µg/Kg-dry	Soil	±	Qualified due to potential laboratory contamination.
SWMU 5-3 (0-0.5')	4/23/2009	Acetone	8.43	µg/Kg-dry	Soil	÷,	Qualified due to potential laboratory contamination.
SWMU 5-3 (1.5-2.0')	4/23/2009	Acetone	7.89	µg/Kg-dry	Soil)+	Qualified due to potential laboratory contamination.
SWMU 5-4 (0-0.5')	4/23/2009	Acetone	11.1	μg/Kg-dry	Soil	+f	Qualified due to potential laboratory contamination.
SWMU 5-4 (1.5-2.0')	4/23/2009	Acetone	19.6	μg/Kg-dry	Soil	±,	Qualified due to potential laboratory contamination.
SWMU 5-5 (0-0.5')	4/23/2009	Acetone	20.7	μg/Kg-dry	Soil	+	Qualified due to potential laboratory contamination.
AOC 22-7 (0-0.5')	4/13/2009	Antimony	< 2.5	mg/Kg	Soil	Ω	Qualified due to low MS/MSD recovery.
AOC 22-7 (1.5-2.0)	4/13/2009	Antimony	< 2.5	_	Soil	m_	Qualified due to low MS/MSD recovery.
AOC 22-8 (1.5-2.0)	4/13/2009	Antimony	< 2.5	Ц	Soil	m	Qualified due to low MS/MSD recovery.
AOC 22-8 (1.5-2.0) DUP	4/13/2009	Antimony	< 2.5	mg/Kg	Soil	în_	Qualified due to low MS/MSD recovery.
AOC 22-9 (0-0.5)	4/13/2009	Antimony	< 2.5	mg/Kg	Soil	ın _	Qualified due to low MS/MSD recovery.
AOC 22-9 (1.5-2.0')	4/13/2009	Antimony	< 2.5	H	Soil	m	Qualified due to low MS/MSD recovery.
AOC 23-1 (0-0.5')	4/21/2009	Antimony	< 2.5		Soil	m_	Qualified due to low MS/MSD recovery.
AOC 23-1 (0-0.5') DUP	4/21/2009	Antimony	< 2.5	Щ	Soil	m	Qualified due to low MS/MSD recovery.
AOC 23-1 (1.5-2.0')	4/21/2009	Antimony	< 2.5		Soil	m	Qualified due to low MS/MSD recovery.
AOC 23-1 (52-53')	4/22/2009	Antimony	42.5	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery.
AOC 25-2 (0-0.5')	4/5/2009	Antimony	< 12	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery.
AOC 25-2 (0-0.5')-DUP	4/5/2009	Antimony	< 2.5	<u> </u>	Soil	m	Qualified due to low MS/MSD recovery.
AOC 25-2 (1.5-2.0)	4/5/2009	Antimony	< 2.5	L	Soil	m	Qualified due to low MS/MSD recovery.
AOC 25-2 (36-38')	4/5/2009	Antimony	< 2.5	_	Soil	n	Qualified due to low MS/MSD recovery.
AOC 26-3 (0-0.5')	4/20/2009	Antimony	< 12	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery.
AOC 26-3 (1.5-2.0')	4/20/2009	Antimony	< 12	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery.
AOC 26-3 (1.5-2.0) DUP	4/20/2009	Antimony	< 13	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery.
AOC 26-4 (0-0.5')	4/20/2009	Antimony	< 12	mg/Kg	Soil	m_	Qualified due to low MS/MSD recovery.
AOC 26-4 (1.5-2.0')	4/20/2009	Antimony	< 13	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery.
MW-63	7/15/2009	Antimony	<0.001	mg/L	ΜĐ	m	Qualified due to low MS/MSD recovery.
MW-63 (DUP)	7/15/2009	Antimony	<0.001	mg/L	GW	m	Qualified due to low MS/MSD recovery.
MW-64	7/15/2009	Antimony	<0.001	mg/L	GW	Ωì	Qualified due to low MS/MSD recovery.
MW-66	7/15/2009	Antimony	0.004	mg/L	GW	-f	Qualified due to low MS/MSD recovery.
SWMU 5-6 (1.5-2.0')	4/23/2009	Antimony	< 2.5	mg/Kg	Soil	ΩĨ	Qualified due to low MS/MSD recovery.
MW-62	7/16/2009	Benzene	< 1.0	µg/L	ΒW	M	Qualified due to low MS/MSD recovery.
MW-61	5/13/2009	Chloride	- 67	mg/L	GW	+f	Qualified due to high LCS recovery.
MW-62	5/13/2009	Chloride	15	mg/L	ΒM	+,	Qualified due to high LCS recovery.
MW-62	5/13/2009	Chlorobenzene	< 1.0	µg/L	ΒM	Ω	Qualified due to low LCS recovery.
MW-60	5/14/2009	Chloroform	1.2	ng/L	ΜS	1 +	Qualified due to equipment blank detection.
MW-63	7/15/2009	Cyanide	<0.005	mg/L	GW	Ωì	Qualified due to low MS/MSD recovery.
MW-63 (DUP)	7/15/2009	Cyanide	<0.005	mg/L	ΒW	ΩĨ	Qualified due to low MS/MSD recovery.
MW-64	7/15/2009	Cyanide	<0.005	mg/L	ΜS	UJ	Qualified due to low MS/MSD recovery.
MW-66	7/15/2009	Cyanide	<0.005		MS	ſſ	Qualified due to low MS/MSD recovery.
MW-65	5/12/2009	Fluoride	0.21	mg/L	MS	+ſ	Qualified due to high LCS recovery
MW-65 (DUP)	5/12/2009	Fluoride	0.22	mg/L	GW	1+	Qualified due to high LCS recovery
MW-66	5/12/2009	Fluoride	0.22	mg/L	GW	+ſ	Qualified due to high LCS recovery
AOC 22-13 (0-0.5')	4/8/2009	Gasoline Range Organics (GRO)	180	mg/Kg	Soil	J+	Qualified due to high surrogate recovery
AOC 22-13 (18-20')	4/8/2009	Gasoline Range Organics (GRO)	1300	mg/Kg	Soil	J+	Qualified due to high surrogate recovery
AOC 22-13 (37-39')	4/8/2009	Gasoline Range Organics (GRO)	2500	mg/Kg	Soil	±,	Qualified due to high surrogate recovery
AOC 22-15 (34-36)	4/15/2009	Gasoline Range Organics (GRO)	15	mg/Kg	Soil	J+	Qualified due to high surrogate recovery

MW-59 MW-60 AOC 22-1 (0.0.5) AOC 22-10 (1.5-2.0) AOC 22-10 (1.5-2.0) AOC 22-10 (1.5-2.0) AOC 22-11 (10-0.5)	5/14/2009	Gasoline Range Organics (GRO)	2.6	Wo.	AND.	J+	Qualified due to high MS/MSD recovery
MW-60 AOC 22-1 (0.0.5) AOC 22-1 (1.5-2.0) AOC 22-10 (1.5-2.0) AOC 22-10 (1.5-2.0) AOC 22-11 (10-6.5)	\$/14/2009	1		11/Z/11	5		
AOC 22-1 (0.0.5) AOC 22-1 (1.5-2.0) AOC 22-10 (0-0.5) AOC 22-10 (1.5-2.0) AOC 22-11 (0-0.5)	10021110	Gasoline Range Organics (GRO)	0.15	mg/L	ΒW	Ţ+	Qualified due to high surrogate recovery, and high MS/MSD recovery
AOC 22-1 (1.5-2.0) AOC 22-10 (0-0.5) AOC 22-10 (1.5-2.0) AOC 22-11 (0-0.5)	4/15/2009	Methylene chloride	8.24	ug/kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 22-10 (0-0.5') AOC 22-10 (1.5'-2.0') AOC 22-11 (0-0.5')	4/15/2009	Methylene chloride	10.3	ug/kg-dry	Soil	÷.	Qualified due to potential laboratory contamination.
AOC 22-10 (1.5-2.0')	4/14/2009	Methylene chloride	10.6	μg/Kg-dry	Soil	<u>]</u> +	Qualified due to potential laboratory contamination.
AOC 22-11 (0-0 5)	4/14/2009	Methylene chloride	9.42	μg/Kg-dry	Soil	<u>+</u>	Qualified due to potential laboratory contamination.
(C.O. O. T. T. O. O. T. T.	4/14/2009	Methylene chloride	9.64	μg/Kg-dry	Soil	Ŧ,	Qualified due to potential laboratory contamination.
AOC 22-11 (1.5'-2.0')	4/14/2009	Methylene chloride	11.4	μg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 22-12 (0-0.5')	4/13/2009	Methylene Chloride	92.9	μg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 22-12 (0-0.5') DUP	4/13/2009	Methylene Chloride	5.77	μg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 22-12 (1.5-2.0)	4/13/2009	Methylene Chloride	7.36	μg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
(AOC 22-12 (32-35')	4/13/2009	Methylene Chloride	7.43	μg/Kg-dry	Soil	+ſ	Qualified due to potential laboratory contamination.
AOC 22-12 (36-37.75')	4/13/2009	Methylene Chloride	8.30	μg/Kg-dry	Soil	+f	Qualified due to potential laboratory contamination.
AOC 22-13 (0-0.5')	4/8/2009	Methylene Chloride	14	ug/kg-dry	Soil)+	Qualified due to potential laboratory contamination.
AOC 22-14 (1.5-2.0')	4/8/2009	Methylene Chloride	2.02	ug/kg-dry	Soil	+f	Qualified due to potential laboratory contamination.
AOC 22-15 (1.0-1.5')	4/15/2009	Methylene chloride	16.3	μg/Kg-dry	Soil	+f	Qualified due to potential laboratory contamination.
AOC 22-15 (1.5-2.0')	4/15/2009	Methylene chloride	11.0	µg/Kg-dry	Soil	+ſ	Qualified due to potential laboratory contamination.
AOC 22-15 (1.5-2.0') DUP	4/15/2009	Methylene chloride	60'6	µg/Kg-dry	Soil	_ +ſ	Qualified due to potential laboratory contamination.
AOC 22-15 (30-32')	4/15/2009	Methylene chloride	12.1	µg/Kg-dry	Soil	+ſ	Qualified due to potential laboratory contamination.
AOC 22-15 (34-36')	4/15/2009	Methylene chloride	15.6	ug/Kg-dry	Soil	±,	Qualified due to potential laboratory contamination,
AOC 22-16 (0-0.5')	4/13/2009	Methylene Chloride	8.85	ug/Kg-dry	Soil	±	Qualified due to potential laboratory contamination.
AOC 22-16 (1.5-2.0')	4/13/2009	Methylene Chloride	7.26	ug/Kg-dry	ᆫ	±,	Oualified due to potential laboratory contamination.
AOC 22-16 (36-38')	4/14/2009	Methylene Chloride	13.2	μg/Kg-dry	_	±,	Qualified due to potential laboratory contamination.
AOC 22-2 (0-0.5')	4/15/2009	Methylene chloride	7.26	ug/kg-drv	┞	±	Oualified due to notential laboratory contamination
AOC 22-2 (1.5-2.0')	4/15/2009	Methylene chloride	9.35	ug/kg-dry	Soil	+ſ	Oualified due to potential Jaboratory contamination.
AOC 22-3 (0-0.5')	4/15/2009	Methylene chloride	8.30	ug/kg-dry	Soil)+f	Qualified due to potential laboratory contamination.
AOC 22-3 (1.5'-2.0')	4/15/2009	Methylene chloride	11.0	ug/kg-dry	Soil	+ſ	Qualified due to potential laboratory contamination.
AOC 22-4 (0-0.5')	4/15/2009	Methylene chloride	8.26	ug/kg-dry	Soil	+1	Qualified due to potential laboratory contamination.
AOC 22-5 (0-0.5')	4/23/2009	Methylene chloride	2.02	ug/kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 22-5 1.5-2.0')	4/23/2009	Methylene chloride	2.22	ug/kg-dry	Soil]+	Qualified due to potential laboratory contamination.
AOC 22-6 (1.5-2.0')	4/23/2009	Methylene chloride	7.05	ug/kg-dry	Soil)+	Qualified due to potential laboratory contamination
AOC 22-7 (0-0.5')	4/13/2009	Methylene chloride	9.29	μg/Kg-dry	Soil	J+	Qualified due to potential laboratory contamination.
AOC 22-7 (1.5-2.0)	4/13/2009	Methylene chloride	12.3	µg/Kg-dry	Soil)+ (Qualified due to potential laboratory contamination.
AOC 22-8 (0-0.5')	4/13/2009	Methylene chloride	3.29	μg/Kg-dry	Soil)+	Qualified due to potential laboratory contamination.
AOC 22-8 (1.5-2.0)	4/13/2009	Methylene chloride	9.01	μg/Kg-dry	Soil	+ſ	Qualified due to potential laboratory contamination.
AOC 22-8 (1.5-2.0) DUP	4/13/2009	Methylene chloride	8.71	μg/Kg-dry	Soil)+	Qualified due to potential laboratory contamination.
AOC 22-9 (0-0.5)	4/13/2009	Methylene chloride	8.83	μg/Kg-dry	Soil	+ſ	Qualified due to potential laboratory contamination.
AOC 22-9 (1.5-2.0')	4/13/2009	Methylene chloride	11.1	μg/Kg-dry	Soil]+	Qualified due to potential laboratory contamination.
AOC 23-1 (0-0.5)	4/21/2009	Methylene chloride	8.75	μg/Kg-dry	Soil	±,	Qualified due to potential laboratory contamination.
AOC 23-1 (0-0.5') DUP	4/21/2009	Methylene chloride	8.12	μg/Kg-dry	Soil	1+	Qualified due to potential laboratory contamination.
AOC 23-1 (1.5-2.0')	4/21/2009	Methylene chloride	8.91	μg/Kg-dry	Soil	+	Qualified due to potential laboratory contamination.
AOC 23-1 (52-53')	4/22/2009	Methylene Chloride	113	μg/Kg-dry	Soil)+	Qualified due to potential laboratory contamination.
AOC 24-1 (0-0.5')	4/23/2009	Methylene chloride	2.59	ug/kg-dry	Soil	÷,	Qualified due to potential laboratory contamination.
AOC 24-1 (1.5-2.0')	4/23/2009	Methylene chloride	2.77	ug/kg-dry	Soil	±,	Qualified due to potential laboratory contamination.
AOC 24-2 (0-0.5')	4/23/2009	Methylene chloride	3.11	ug/kg-dry	Soil	Ť,	Qualified due to potential laboratory contamination.
AOC 24-2 (1.5-2.0')	4/23/2009	Methylene chloride	4.46	ug/kg-dry	Soil	+	Qualified due to potential laboratory contamination.

Group 3 Investigation Report Western Refining Southwest, Inc. - Bloomfield Refinery Qualified Data

4652009 Motor Oil Range Organiss (MRO) 4000 mg/Kg Soil J. 4822009 N-Nitrosodi-r-propylamine < 2.0 mg/Kg Soil UJ 4822009 N-Nitrosodi-r-propylamine < 2.0 mg/Kg Soil UJ 5/1422099 N-Nitrosodi-r-propylamine < 0.20 mg/Kg Soil UJ 5/1422099 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 5/1422099 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 5/1422099 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/1622099 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/1622099 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/1622099 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/1622099 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/1622099 Phosphorus, Ort	SWMU 5-6 (1.5-2.0°)	4/23/2009	Methylene chloride	2.52	ug/kg-dry	Soil	+f	Qualified due to potential laboratory contamination.
1,13 (10.0.5)	SWMU 4-1 (6-8')	4/6/2009	Motor Oil Range Organics (MRO)	4000	mg/Kg	Soil	J- 1	Qualified due to low surrogate recovery
1,13 (1,5.2.0)	AOC 22-13 (0-0.5')	4/8/2009	N-Nitrosodi-n-propylamine	< 1.0	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery
1,13 (18-20)	AOC 22-13 (1.5-2.0')	4/8/2009	N-Nitrosodi-n-propylamine	< 2.0	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery
\$\sigma_{1}(32.34.5)	AOC 22-13 (18-20')	4/8/2009	N-Nitrosodi-n-propylamine	< 0.20	mg/Kg	Soil	U	Qualified due to low MS/MSD recovery
Si142009 Phosphorus, Orthophosphate (As P) C 0.50 mg/L GW R	AOC 22-13 (32-34.5')	4/8/2009	N-Nitrosodi-n-propylamine	< 0.20	mg/Kg	Soil	UJ	Qualified due to low MS/MSD recovery
7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 5/13/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 8/10/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 8/10/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 9/10/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 9/10/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 9/10/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW UJ 9/10/2009 Selenium < 1.1 mg/kg Soil UJ 9/10/2009 Trichlorochene (TCE) < 0.50 mg/kg Soil UJ 9/10/2009 Trichlorochene (TCE) < 0.50 mg/kg Soil UJ 9/10/2009 Trichlorochene (TCE) < 0.50 mg/kg Soil UJ 9/10/2009 Trichlorochene (TCE) < 0.50 mg/kg Soil UJ 9/10/2009 Trichlorochene (TCE) < 0.50 mg/kg Soil UJ 9/10/2009 Trichlorochene (TCE) < 0.50 mg/kg Soil UJ 9/10/2009 Trichlorochene (TCE) < 0.50 mg/kg Soil UJ 9/10/2009 Trichlorochene (TCE) < 0.50 mg/kg Soil UJ 9/10/2009 Trichlorochene (TCE) < 0.50 mg/kg Soil UJ 9/10/2009 Trichlorochene (TCE) < 0.50 mg/L GW J + 9/10/2009 Trichlorochene (TCE) < 0.50 mg/L GW J	MW-59	5/14/2009	Phosphorus, Orthophosphate (As P)	< 0.50	mg/L	GW	R	Rejected due to analyzed past holding time
S/14/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/13/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/13/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/13/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/13/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/13/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/13/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/13/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/13/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/13/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/13/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/13/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/15/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/15/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/15/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW R S/15/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW I S/15/2009 Phosphorus, Orthophosphate (As P) <0.50 mg/L GW I S/15/2009 Selenium <13 mg/Kg Soil UJ S/15/2009 Trichloroethene (TCE) <0.050 mg/Kg Soil UJ S/15/2009 Trichloroethene (TCE) <0.050 mg/Kg Soil UJ S/15/2009 Trichloroethene (TCE) <0.051 mg/Kg Soil UJ S/13/2009 Trichloroethene (TCE) <0.051 mg/Kg Soil UJ S/13/2009 Trichloroethene (TCE) <0.051 mg/Kg Soil UJ S/13/2009 Trichloroethene (TCE) <0.051 mg/Kg Soil UJ S/13/2009 Trichloroethene (TCE) <0.051 mg/Kg Soil UJ S/13/2009 Trichloroethene (TCE) <0.051 mg/Kg Soil UJ S/13/2009 Trichloroethene (TCE) <0.051 mg/Kg Soil UJ S/13/2009 Trichloroethene (TCE) <0.051 mg/Kg Soil UJ S/13/2009 Trichloroethene (TCE) <0.051 mg/Kg Soil UJ	MW-59	7/16/2009	_	< 0.50	mg/L	GW	R	Rejected due to analyzed past holding time
5/13/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW IV 7/16/2009 Selentium < 1.2 mg/Kg Soil UJ 7/16/2009 Selentium < 1.3 mg/Kg Soil UJ 7/16/2009 Trichloroethene (TCE) < 0.931 mg/Kg Soil UJ 7/16/2009 Trichloroethene (TCE) < 0.931 mg/Kg Soil UJ 7/16/2009 Trichloroethene (TCE) < 0.931 mg/Kg Soil UJ 7/16/2009 Trichloroethene (TCE) < 0.931 mg/Kg Soil UJ 7/16/2009 Trichloroethene (TCE) < 0.931 mg/Kg Soil UJ 7/16/2009 Trichloroethene (TCE) < 0.931 mg/Kg Soil UJ 7/16/2009 Trichloroethene (TCE) < 0.931 mg/Kg Soil UJ 7/16/2009 Trichloroethene (TCE) < 0.931 mg/Kg Soil UJ 7/16/2009 Trichloroethene (TCE) < 0.931 mg/Kg Soil UJ 7/16/2009 Trichloroethene (TCE) < 0.931 mg/Kg Soil UJ 7/16/2009 Trichloroethene (TCE) < 0.931 mg/Kg Soil UJ 7/16/2009 Trichloroethene (TCE) < 0.931 mg/Kg Soil U	MW-60	5/14/2009	ı	< 0.50	mg/L	GW	R	Rejected due to analyzed past holding time
7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50	MW-61	5/13/2009	ı~	< 0.50	mg/L	ΜS	R	Rejected due to analyzed past holding time
5/13/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 5/13/2009 Phosphorus, Orthophosphate (As P) < 0.50	MW-61	7/16/2009	\sim	< 0.50	mg/L	МÐ	R	Rejected due to analyzed past holding time
7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 5/13/2009 Phosphorus, Orthophosphate (As P) < 0.50	MW-62	5/13/2009	. –	< 0.50	mg/L	МĐ	R	Rejected due to analyzed past holding time
5/13/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 5/12/2009 Phosphorus, Orthophosphate (As P) < 0.50	MW-63	7/16/2009		< 0.50	mg/L	МÐ	R	Rejected due to analyzed past holding time
5/12/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50	MW-64	5/13/2009	. –	< 0.50	mg/L	ΜĐ	×	Rejected due to analyzed past holding time
7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50	MW-65	5/12/2009	1 –	< 0.50	mg/L	ΩM	2	Rejected due to analyzed past holding time
7/16/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 9 4/20/2009 Phosphorus, Orthophosphate (As P) < 0.50	MW-65	7/16/2009	١-	< 0.50	mg/L	MD	R	Rejected due to analyzed past holding time
5/12/2009 Phosphorus, Orthophosphate (As P) < 0.50 mg/L GW R 0) 4/20/2009 Selenium < 12	MW-65 (DUP)	7/16/2009	_	< 0.50	mg/L	МĐ	R	Rejected due to analyzed past holding time
(a) 4/20/2009 Selenium <12 mg/Kg Soil UJ (a) 4/20/2009 Selenium <12	MW-66 ·	5/12/2009	ı	< 0.50	mg/L	ΜS	×	Rejected due to analyzed past holding time
(9) 4/20/2009 Selenium <12 mg/Kg Soil UJ (1) 4/20/2009 Selenium <13	AOC 26-3 (0-0.5')	4/20/2009	ı	< 12	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery
Of DUP 4/20/2009 Selenium <13 mg/Kg Soil UJ O 4/20/2009 Selenium <12	AOC 26-3 (1.5-2.0')	4/20/2009	Selenium	< 12	mg/Kg	Soil	UI	Qualified due to low MS/MSD recovery
(1) 4/20/2009 Selenium < 12 mg/Kg Soil UJ (2) 4/20/2009 Selenium < 13	AOC 26-3 (1.5-2.0') DUP	4/20/2009	Selenium	< 13	mg/Kg	Soil	U	Qualified due to low MS/MSD recovery
(a) 4/20/2009 Selenium < 13 mg/Kg Soil UJ 2.0) 4/23/2009 Selenium < 13	AOC 26-4 (0.0.5')	4/20/2009	Selenium	< 12	mg/Kg	Soil	UJ	Qualified due to low MS/MSD recovery
2.0) 4/23/2009 Selenium <13 mg/Kg Soil UJ 2.0) 4/23/2009 Trichloroethene (TCE) <13	AOC 26-4 (1.5-2.0')	4/20/2009	Selenium	< 13	mg/Kg	Soil	ſ'n	Qualified due to low MS/MSD recovery
2.0) 4/23/2009 Selenium < 13 mg/Kg Soil UJ 5) 4/6/2009 Trichloroethene (TCE) < 0.050	SWMU 5-5 (1.5-2.0')	4/23/2009	Selenium	< 13	mg/Kg	Soil	Ω	Qualified due to low MS/MSD recovery
5) 4/6/2009 Trichloroethene (TCE) < 0.050 mg/Kg Soil UJ 5) 4/6/2009 Trichloroethene (TCE) < 0.933	SWMU 5-6 (1.5-2.0')	4/23/2009	Selenium	< 13	mg/Kg	Soil	ÚJ	Qualified due to low MS/MSD recovery
5) 4/6/2009 Trichloroethene (TCE) < 0.933 µg/Kg-dry Soil UJ 2.0) 4/6/2009 Trichloroethene (TCE) < 0.050	SWMU 4-1 (0-0.5')	4/6/2009	Trichloroethene (TCE)	< 0.050	mg/Kg	Soil	UI	Qualified due to low LCS recovery
2.0) 4/6/2009 Trichloroethene (TCE) < 0.050 mg/Kg Soil UJ 2.0) 4/6/2009 Trichloroethene (TCE) < 0.051	SWMU 4-1 (0-0.5')	4/6/2009	Trichloroethene (TCE)	< 0.933	ug/Kg-dry	Soil	Ω	Qualified due to low LCS recovery
2.0) 4/6/2009 Trichloroethene (TCE) < 0.991 µg/Kg-dry Soil UJ 187) 4/6/2008 Trichloroethene (TCE) < 1.02	SWMU 4-1 (1.5-2.0')	4/6/2009	Trichloroethene (TCE)	< 0.050	mg/Kg	Soil	Ω	Qualified due to low LCS recovery
88) 4/6/2008 Trichloroethene (TCE) < 1.02 µg/Kg-dry Soil UJ 9) 4/6/2009 Trichloroethene (TCE) < 0.10	SWMU 4-1 (1.5-2.0')	4/6/2009	Trichloroethene (TCE)	< 0.991	μg/Kg-dry	Soil	ÚJ	Qualified due to low LCS recovery
th 4/6/2009 Trichlorocthene (TCE) < 0.10 mg/Kg Soil UJ 5/13/2009 Trichlorocthene (TCE) 0.074 mg/L GW J+ 6/1 5/13/2009 Zinc 0.085 mg/L GW J+ 6/1 4/23/2009 Chromium 4.1 mg/kg Soil J- 6/1 4/23/2009 Lead 3.3 mg/kg Soil J- 6/1 4/23/2009 Iron lron 0.028 mg/L GW J- 5/12/2009 Arsenic 0.021 mg/L GW J-	SWMU 4-1 (36-38')	4/6/2008	Trichloroethene (TCE)	< 1.02	μg/Kg-dry	Soil	ÚĴ	Qualified due to low LCS recovery
5/13/2009 Zinc 0.074 mg/L GW J+ 5/13/2009 Zinc 0.085 mg/L GW J+ 1-4 (1.5-2.0) 4/23/2009 Chromium 4.1 mg/kg Soil J- 1-4 (1.5-2.0) 4/23/2009 Lead 3.3 mg/kg Soil J- 1-4 (1.5-2.0) 4/23/2009 Zinc Iron 0.028 mg/L GW J- 5/12/2009 Arsenic 0.021 mg/L GW J- Iron	SWMU 4-1 (6-8')	4/6/2009	Trichloroethene (TCE)	< 0.10	mg/Kg	Soil	U	Qualified due to low LCS recovery
5/13/2009 Zinc 0.085 mg/L GW J+ 1-4 (1.5-2.0) 4/23/2009 Chromium 4.1 mg/kg Soil J- 1-4 (1.5-2.0) 4/23/2009 Lead 3.3 mg/kg Soil J- 1-4 (1.5-2.0) 4/23/2009 Zinc 18 mg/kg Soil J- 7/15/2009 Iron 0.028 mg/L GW J- 5/12/2009 Arsenic 0.021 mg/L GW J-	MW-63	5/13/2009	Zinc	0.074	mg/L	GW]+ f	Qualified due to detection in associated field blank
+4 (1.5-2.0) 4/23/2009 Chromium 4.1 mg/kg Soil J- +4 (1.5-2.0) 4/23/2009 Lead 3.3 mg/kg Soil J- +4 (1.5-2.0) 4/23/2009 Zinc 18 mg/kg Soil J- -4 (1.5-2.0) 7/15/2009 Iron 0.028 mg/L GW J- 5/12/2009 Arsenic 0.021 mg/L GW J-	MW-64	5/13/2009	Zinc	0.085	mg/L	MΩ)+	Qualified due to detection in associated field blank
1-4 (1.5-2.0) 4/23/2009 Lead 3.3 mg/kg Soil J- 1-4 (1.5-2.0) 4/23/2009 Zinc 18 mg/kg Soil J- 7/15/2009 Iron 0.028 mg/L GW J- 5/12/2009 Arsenic 0.021 mg/L GW J-	AOC 24-4 (1.5-2.0')	4/23/2009	Chromium	4.1	mg/kg	Soil	J-	Qualified due to field duplicate outlier.
1-4 (1.5-2.0') 4/23/2009 Zinc 18 mg/kg Soil J- 7/15/2009 Iron 0.028 mg/L GW J- 5/12/2009 Arsenic 0.021 mg/L GW J-	AOC 24-4 (1.5-2.0')	4/23/2009	Lead	3.3	mg/kg	Soil		Qualified due to field duplicate outlier.
7/15/2009 Iron 0.028 mg/L GW J- 6/12/2009 Arsenic 0.021 mg/L GW J- 6/12/2009	AOC 24-4 (1.5-2.0')	4/23/2009	Zinc	18	mg/kg	Soil	<u>۲</u>	Qualified due to field duplicate outlier.
5/12/2009 Arsenic 0.021 mg/L GW J-	MW-63	7/15/2009	Iron	0.028	mg/L	ΒW	<u>۲</u>	Qualified due to field duplicate outlier.
	MW-65	5/12/2009	Arsenic	0.021	mg/L	GW	J-	Qualified due to field duplicate outlier.

Notes:
mg/L - miligrams per liter
ug/L - microgram per liter
UJ - Estimated reporting limit
J - porential bias

RPD - Relative Percent Difference MS/MSD - Matrix spike/matrix spike duplicate

TABLE A-3 Field Duplicate Summary

Table A-3 Field Duplicate Summary Group 3 Investigation Report Western Refining Southwest, Inc. - Bloomfield Refinery

	Parameter	MW-65 Sample Result	MW-65 (DUP) Sample Result	RPD (%)
TPH (mg/L):	Ethanol	<1.0	<1.0	NC
	Diesel Range Organics (DRO)	14	14	0.0
	Motor Oil Range Organics (MRO)	< 5.0	< 5.0	NC
	Gasoline Range Organics (GRO)	42	44	4.6
VOCs (ug/L):	1,1,1,2-Tetrachloroethane	< 20	< 20	NC NC
	1,1,1-Trichloroethane	< 20 < 40	< 20	NC NG
	1,1,2,2-Tetrachloroethane	< 20	< 40	NC NG
	1,1,2-Trichloroethane	< 20	< 20 < 20	NC NC
	1,1-Dichloroethane 1,1-Dichloroethene	< 20	< 20	NC NC
	1,1-Dichloropropene	< 20	< 20	NC NC
	1,2,3-Trichlorobenzene	< 20	< 20	NC
	1,2,3-Trichloropropane	< 40	< 40	NC .
	1,2,4-Trichlorobenzene	< 20	< 20	NC
	1,2,4-Trimethylbenzene	1400	1500	6.9
	1,2-Dibromo-3-chloropropane	< 40	< 40	NC
	1,2-Dibromoethane (EDB)	< 20	< 20	NC
	1,2-Dichlorobenzene	< 20	< 20	NC
	1,2-Dichloroethane (EDC)	220	250	12.8
	1,2-Dichloropropane	< 20	< 20	NC
	1,3,5-Trimethylbenzene	500	510	1.9
	1,3-Dichlorobenzene	< 20	< 20	NC
	1,3-Dichloropropane	< 20	< 20	NC
	1,4-Dichlorobenzene	< 20	< 20	NC
	1-Methylnaphthalene	150	170	12.5
	2,2-Dichloropropane	< 40	< 40	NC
	2-Butanone	< 200	< 200	NC
	2-Chlorotoluene	< 20	< 20	NC NC
	2-Hexanone	< 200	< 200	NC
	2-Methylnaphthalene	220	230	4.4
	4-Chlorotoluene	< 20 < 20	< 20	NC NC
	4-Isopropyltoluene	< 200	< 20	NC NC
	4-Methyl-2-pentanone	< 200	< 200 < 200	NC NC
	Acetone Benzene	6800	7100	4.3
	Bromobenzene	< 20	< 20	NC
	Bromodichloromethane	< 20	< 20	NC NC
	Bromoform	< 20	< 20	NC
	Bromomethane	< 20	< 20	NC
	Carbon disulfide	< 200	< 200	NC
	Carbon Tetrachloride	< 20	< 20	NC
	Chlorobenzene	< 20	< 20	NC
	Chloroethane	< 40	< 40	NC
	Chloroform	< 20	< 20	NC
	Chloromethane	< 20	< 20	NC
	cis-1,2-DCE	< 20	< 20	NC
	cis-1,3-Dichloropropene	< 20	< 20	NC
	Dibromochloromethane	< 20	< 20	NC NC
	Dibromomethane	< 20	< 20	NC NC
	Dichlorodifluoromethane	< 20 1800	< 20 2000	NC 10.5
	Ethylbenzene Hexachlorobutadiene	< 20	< 20	NC
	Isopropylbenzene	84	92	9.1
	Methyl tert-butyl ether (MTBE)	1700	1800	5.7
	Methylene Chloride	< 60	< 60	NC
	Naphthalene	480	520	8.0
	n-Butylbenzene	49	50	2.0
	n-Propylbenzene	230	240	4.3
	sec-Butylbenzene	< 20	< 20	NC
	Styrene	< 20	< 20	NC
	tert-Butylbenzene	< 20	< 20	NC
	Tetrachloroethene (PCE)	< 20	< 20	NC
	Toluene	2500	2800	11.3
	trans-1,2-DCE	< 20	< 20	NC
	trans-1,3-Dichloropropene	< 20	< 20	NC
	Trichloroethene (TCE)	< 20	< 20	NC
	Trichlorofluoromethane	< 20	< 20	NC
	Vinyl chloride	< 20	< 20	NC
L	Xylenes, Total	8500	9200	7.9

Table A-3
Field Duplicate Summary
Group 3 Investigation Report
Western Refining Southwest, Inc. - Bloomfield Refinery

		MW-65	MW-65 (DUP)	RPD
	Parameter	Sample Result	Sample Result	_(%)
SVOCs (ug/L):	1,2,4-Trichlorobenzene	< 10	< 10	NC
	1,2-Dichlorobenzene	< 10	< 10	NC
	1,3-Dichlorobenzene	< 10	< 10	NC
	1,4-Dichlorobenzene	< 10	< 10	NC
	2,4,5-Trichlorophenol	< 10	< 10	NCNC
	2,4,6-Trichlorophenol	< 10	< 10	NC_
	2,4-Dichlorophenol	< 20	< 20	NC
	2,4-Dimethylphenol	24	22	8.7
	2,4-Dinitrophenol	< 20	< 20	NC
	2,4-Dinitrotoluene	< 10	< 10	NC
	2,6-Dinitrotoluene	< 10	< 10	NC
	2-Chloronaphthalene	< 10	< 10	NCNC_
	2-Chlorophenol	< 10	< 10	NC
	2-Methylnaphthalene	160_	150	6.5
	2-Methylphenol	< 10	< 10	NC
	2-Nitroaniline	< 10	< 10	NC_
	2-Nitrophenol	< 10	< 10	NC
	3,3'-Dichlorobenzidine	< 10	< 10	NC
	3+4-Methylphenol	< 10	< 10	NC NC
	3-Nitroaniline	< 10 < 20	< 10	NC NC
	4,6-Dinitro-2-methylphenol	< 20	< 20 < 10	NC NC
	4-Bromophenyl phenyl ether	< 10		NC NC
	4-Chloro-3-methylphenol	< 10	< 10 < 10	
	4-Chlorophenyl phenyl ether	<10	< 10	NC NC
		<10	< 10	NC NC
	4-Nitroaniline	< 10	< 10	
	4-Nitrophenol	< 10	< 10	NC NC
	Acenaphthene	< 10	< 10	NC NC
	Acenaphthylene	< 10	< 10	NC NC
	Aniline	< 10	< 10	
	Anthracene	< 10	< 10	NC NC
	Azobenzene	< 10	< 10	NC NC
	Benz(a)anthracene	< 10	< 10	NC NC
	Benzo(a)pyrene	< 10	< 10	NC NC
	Benzo(b)fluoranthene	< 10	< 10	NC NC
	Benzo(g,h,i)perylene Benzo(k)fluoranthene	< 10	< 10	NC NC
	Benzoic acid	< 20	< 20	NC NC
	Benzyl alcohol	< 10	< 10	NC NC
	Bis(2-chloroethoxy)methane	< 10	< 10	NC NC
	Bis(2-chloroethyl)ether	< 10	< 10	NC NC
	Bis(2-chloroisopropyl)ether	< 10	< 10	NC NC
	Bis(2-ethylhexyl)phthalate	< 10	< 10	NC NC
	Butyl benzyl phthalate	< 10	< 10	NC NC
	Carbazole	<10	< 10	NC NC
		< 10	< 10	NC NC
	Chrysene	< 10	< 10	NC NC
	Dibenz(a,h)anthracene Dibenzofuran	< 10	< 10	NC NC
	Diethyl phthalate	< 10	< 10	NC NC
	Dimethyl phthalate	< 10	< 10	NC NC
	Di-n-butyl phthalate	< 10	< 10	NC
	Di-n-octyl phthalate	< 10	< 10	NC NC
	Fluoranthene	< 10	< 10	NC NC
	Fluorene	< 10	< 10	NC
	Hexachlorobenzene	< 10	< 10	NC NC
	Hexachlorobutadiene	< 10	< 10	NC
	Hexachlorocyclopentadiene	< 10	< 10	NC
	Hexachloroethane	< 10	< 10	NC
	Indeno(1,2,3-cd)pyrene	< 10	< 10	NC NC
	Isophorone	< 10	< 10	NC
	Naphthalene	370	350	5.6
	Nitrobenzene	< 10	< 10	NC NC
	N-Nitrosodimethylamine	< 10	< 10	NC NC
	N-Nitrosodi-n-propylamine	< 10	< 10	NC NC
	N-Nitrosodiphenylamine	< 10	< 10	NC NC
	Pentachlorophenol	< 20	< 20	NC NC
	Phenanthrene	< 10	< 10	NC NC
	Phenol	49	49	0.0
	Pyrene	< 10	< 10	NC
	Pyridine	< 10	< 10	NC NC

Table A-3 Field Duplicate Summary **Group 3 Investigation Report** Western Refining Southwest, Inc. - Bloomfield Refinery

		MW-65	MW-65 (DUP)	RPD
	Parameter	Sample Result	Sample Result	(%)
Metals (mg/L):	Antimony	0.001	< 0.001	NC
	Arsenic	0.021	0.015	33.3 *
	Barium	0.15	0.13	14.3
	Beryllium	< 0.0030	< 0.0030	NC
	Cadmium	< 0.0020	< 0.0020	NC
	Chromium	< 0.0060	< 0.0060	NC
	Cobalt	< 0.0060	< 0.0060	NC
	Cyanide	< 0.005	< 0.005	NC
	Iron	3.5	3.6	2.8
	Lead	< 0.0050	0.0060	NC
	Mercury	< 0.00020	< 0.00020	NC
	Nickel	< 0.010	< 0.010	NC
	Selenium	< 0.050	< 0.050	NC
	Silver	< 0.0050	< 0.0050	NC
	Vanadium	< 0.050	< 0.050	NC
	Zinc	< 0.020	< 0.020	NC
General Chemistry (mg/L):	Calcium	230	230	0.0
, ,	Iron	0.98	1.1	11.5
	Magnesium	79	79	0.0
	Potassium	3.8	3.7	2.7
	Sodium	480	480	0.0
	Specific Conductance	2900	2800	3.5
	Total Dissolved Solids	2300	2400	4.2
	Chloride	140	130	7.4
	Fluoride	0.21	0.22	4.6
	Nitrate (As N)+Nitrite (As N)	< 1.0	< 1.0	NC
	Phosphorus, Orthophosphate (As P)	< 0.50	< 0.50	NC
	Sulfate	790	750	5.2
	Alkalinity, Total (As CaCO3)	1000	1000	0.0
	Bicarbonate	1000	1000	0.0
	Carbonate	< 2.0	< 2.0	NC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/L = micrograms per liter
mg/L = milligrams per liter
* = Field Duplicate RPD Outlier

Table A-3 Field Duplicate Summary Group 3 Investigation Report Western Refining Southwest, Inc. - Bloomfield Refinery

		MW-65	MW-65 (DUP)	RPD
	Parameter	Sample Result	Sample Result	(%)
IPH (mg/L):	Ethanol	<1.0	<1.0	NC
	Diesel Range Organics (DRO)	14	14	0.0
	Motor Oil Range Organics (MRO)	< 5.0	< 5.0	NC
	Gasoline Range Organics (GRO)	42	44	4.6
OCs (ug/L):	1,1,1,2-Tetrachloroethane	< 20	< 20	NC
	1,1,1-Trichloroethane	< 20	< 20	NC
	1,1,2,2-Tetrachloroethane	< 40	< 40	NC
	1,1,2-Trichloroethane	< 20	< 20	NC
	1,1-Dichloroethane	< 20	< 20	NC
	1,1-Dichloroethene	< 20	< 20	NC
	1,1-Dichloropropene	< 20	< 20	NC
	1,2,3-Trichlorobenzene	< 20	< 20	NC
	1,2,3-Trichloropropane	< 40	< 40	NC
	1,2,4-Trichlorobenzene	< 20	< 20	NC
	1,2,4-Trimethylbenzene	1400	1500	6.9
	1,2-Dibromo-3-chloropropane	< 40	< 40	NC
	1,2-Dibromoethane (EDB)	< 20	< 20	NC NC
		< 20	< 20	NC NC
	1,2-Dichlorobenzene			
	1,2-Dichloroethane (EDC)	220	250	12.8
	1,2-Dichloropropane	< 20	< 20	NC NC
	1,3,5-Trimethylbenzene	500	510	1.9
	1,3-Dichlorobenzene	< 20	< 20	NC
	1,3-Dichloropropane	< 20	< 20	NC
	1,4-Dichlorobenzene	< 20	< 20	NC
	1-Methylnaphthalene	150	170	12.5
	2,2-Dichloropropane	< 40	< 40	NC
	2-Butanone	< 200	< 200	NC
	2-Chlorotoluene	< 20	< 20	NC
	2-Hexanone	< 200	< 200	NC
	2-Methylnaphthalene	220	230	4.4
	4-Chlorotoluene	< 20	< 20	NC
	4-Isopropyltoluene	< 20	< 20	NC
	4-Methyl-2-pentanone	< 200	< 200	NC NC
		< 200	< 200	NC NC
	Acetone	6800		
	Benzene	< 20	7100	4.3
	Bromobenzene		< 20	NCNC
	Bromodichloromethane	< 20	< 20	NC
	Bromoform	< 20	< 20	NC
	Bromomethane	< 20	< 20	NC
•	Carbon disulfide	< 200	< 200	NC
	Carbon Tetrachloride	< 20	< 20	NC
	Chlorobenzene	< 20	< 20	NC
	Chloroethane	< 40	< 40	NC
	Chloroform	< 20	< 20	NC
	Chloromethane	< 20	< 20	NC
	cis-1,2-DCE	< 20	< 20	NC
	cis-1,3-Dichloropropene	< 20	< 20	NC
	Dibromochloromethane	< 20	< 20	NC
	Dibromomethane	< 20	< 20	NC
	Dichlorodifluoromethane	< 20	< 20	NC
	Ethylbenzene	1800	2000	10.5
	Hexachlorobutadiene	< 20	< 20	NC NC
	Isopropylbenzene	84	92	9.1
	Methyl tert-butyl ether (MTBE)	1700	1800	5.7
	Methylene Chloride	< 60	< 60	NC NC
	Naphthalene	480	520	8.0
	n-Butylbenzene	49	50	2.0
		230	240	4.3
	n-Propylbenzene	< 20	< 20	4.3 NC
	sec-Butylbenzene		 	
	Styrene	< 20	< 20	NC NC
	tert-Butylbenzene	< 20	< 20	NC
	Tetrachloroethene (PCE)	< 20	< 20	NC
	Toluene	2500	2800	11.3
	trans-1,2-DCE	< 20	< 20	NC
	trans-1,3-Dichloropropene	< 20	< 20	NC
	Trichloroethene (TCE)	< 20	< 20	NC
	Trichlorofluoromethane	< 20	< 20	NC
	Vinyl chloride	< 20	< 20	NC NC
	Xylenes, Total	8500	9200	7.9

Table A-3
Field Duplicate Summary
Group 3 Investigation Report
Western Refining Southwest, Inc. - Bloomfield Refinery

	Parameter	MW-65 Sample Result	MW-65 (DUP) Sample Result	RPD (%)
VOCs (ug/L):	1,2,4-Trichlorobenzene	< 10	< 10	NC
	1,2-Dichlorobenzene	< 10	< 10	NC
	1,3-Dichlorobenzene	< 10	< 10	NC
	1,4-Dichlorobenzene	< 10	< 10	NC
	2,4,5-Trichlorophenol	< 10	< 10	NCNC
	2,4,6-Trichlorophenol	< 10	< 10	NC NC
	2,4-Dichlorophenol	< 20 24	< 20 22	NC 8.7
	2,4-Dimethylphenol 2,4-Dinitrophenol	< 20	< 20	NC
	2,4-Dinitrotoluene	< 10	< 10	NC NC
	2,6-Dinitrotoluene	< 10	< 10	NC NC
	2-Chloronaphthalene	< 10	< 10	NC
	2-Chlorophenol	< 10	< 10	NC
	2-Methylnaphthalene	160	150	6.5
	2-Methylphenol	< 10	< 10	NC
	2-Nitroaniline	< 10	< 10	NC
	2-Nitrophenol	< 10	< 10	NC
	3,3'-Dichlorobenzidine	< 10	< 10	NC
	3+4-Methylphenol	< 10	< 10	NC
	3-Nitroaniline	< 10	< 10	NC
	4,6-Dinitro-2-methylphenol	< 20	< 20	NC
	4-Bromophenyl phenyl ether	< 10	< 10	NC
	4-Chloro-3-methylphenol	< 10	< 10	NC
	4-Chloroaniline	< 10	< 10	NCNC
	4-Chlorophenyl phenyl ether	< 10	< 10	NC NC
	4-Nitroaniline	< 10	< 10	NC NC
	4-Nitrophenol	< 10 < 10	< 10 < 10	NC NC
	Acenaphthene Acenaphthylene	< 10	< 10	NC NC
	Aniline	< 10	< 10	NC NC
	Anthracene	< 10	< 10	NC
	Azobenzene	< 10	< 10	NC
	Benz(a)anthracene	< 10	< 10	NC
	Benzo(a)pyrene	< 10	< 10	NC
	Benzo(b)fluoranthene	< 10	< 10	NC
	Benzo(g,h,i)perylene	< 10	< 10	NC
	Benzo(k)fluoranthene	< 10	< 10	NC
	Benzoic acid	< 20	< 20	NC
	Benzyl alcohol	< 10	< 10	NC
	Bis(2-chloroethoxy)methane	< 10	< 10	NC
	Bis(2-chloroethyl)ether	< 10	< 10	NC
	Bis(2-chloroisopropyl)ether	< 10 .	< 10	NC
	Bis(2-ethylhexyl)phthalate	< 10	< 10	NC
	Butyl benzyl phthalate	< 10	< 10	NC
	Carbazole	< 10	< 10	NC
	Chrysene	< 10	< 10	NC NC
	Dibenz(a,h)anthracene	< 10 < 10	< 10 < 10	NC NC
	Dibenzofuran Diethyl phthalate	< 10	< 10	NC NC
	Dimethyl phthalate	< 10	< 10	NC NC
	Di-n-butyl phthalate	< 10	< 10	NC NC
	Di-n-octyl phthalate	< 10	< 10	NC NC
	Fluoranthene	< 10	< 10	NC
	Fluorene	< 10	< 10	NC
	Hexachlorobenzene	< 10	< 10	NC
	Hexachlorobutadiene	< 10	< 10	NC
	Hexachlorocyclopentadiene	< 10	< 10	NC
	Hexachloroethane	< 10	< 10	NC NC
	Indeno(1,2,3-cd)pyrene	< 10	< 10	NC
	Isophorone	< 10	< 10	NC NC
	Naphthalene	370	350	5.6
	Nitrobenzene	< 10	< 10	NC
	N-Nitrosodimethylamine	< 10	< 10	NC NC
	N-Nitrosodi-n-propylamine	< 10	< 10	NC NC
	N-Nitrosodiphenylamine	< 10 < 20	< 10	NC NC
	Pentachlorophenol Phenanthrene	< 20	< 20	NC NC
	Phenanthrene Phenol	49	< 10 49	NC NC
	Pyrene	< 10	< 10	
	Pyridine	< 10	< 10	NC NC

Table A-3 Field Duplicate Summary **Group 3 Investigation Report**

Western Refining Southwest, Inc. - Bloomfield Refinery

		MW-65	MW-65 (DUP)	RPD
	Parameter	Sample Result	Sample Result	(%)
Metals (mg/L):	Antimony	0.001	<0.001	NC
	Arsenic	0.021	0.015	33.3 *
	Barium	0.15	0.13	14.3
	Beryllium	< 0.0030	< 0.0030	NC
	Cadmium	< 0.0020	< 0.0020	NC
	Chromium	< 0.0060	< 0.0060	NC
	Cobalt	< 0.0060	< 0.0060	NC
	Cyanide	<0.005	< 0.005	NC
	Iron	3.5	3.6	2.8
	Lead	< 0.0050	0.0060	NC
	Mercury	< 0.00020	< 0.00020	NC
	Nickel	< 0.010	< 0.010	NC
	Selenium	< 0.050	< 0.050	NC
	Silver	< 0.0050	< 0.0050	NC
	Vanadium	< 0.050	< 0.050	NC
	Zinc	< 0.020	< 0.020	NC
General Chemistry (mg/L):	Calcium	230	230	0.0
	Iron	0.98	1.1	11.5
	Magnesium	79	79	0.0
	Potassium	3.8	3.7	2.7
	Sodium	480	480	0.0
	Specific Conductance	2900	2800	3.5
	Total Dissolved Solids	2300	2400	4.2
	Chloride	140	130	7.4
	Fluoride	0.21	0.22	4.6
	Nitrate (As N)+Nitrite (As N)	< 1.0	< 1.0	NC
	Phosphorus, Orthophosphate (As P)	< 0.50	< 0.50	NC
	Sulfate	790	750	5,2
	Alkalinity, Total (As CaCO3)	1000	1000	0,0
	Bicarbonate	1000	1000	0,0
	Carbonate	< 2.0	< 2.0	NC

|Carbonate | Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects ug/L = micrograms per liter

mg/L = milligrams per liter

* = Field Duplicate RPD Outlier

TABLE A-4 Completeness Summaries

Completeness Summary - Soil Group 3 Investigation Report

Western Refining Southwest, Inc. - Bloomfield Refinery

	Parameter	Total Number of Results	Number of Contractual Compliance	Percent Contractural Compliance	Number of Usable Results	Percent Technical Compliance
TPH (mg/kg-dry):	Ethanol	. 15	15	100	15	100
	Diesel Range Organics (DRO)	109	111	100	, 109	100
	Motor Oil Range Organics (MRO)	109	110 a	99.1	109	100
	Gasoline Range Organics (GRO)	109	106 ^b	95.5	109	100
VOCs (ug/kg-dry)	1,1 Dichloroethene	109	98 ^{c,e}	88.3	109	100
	1,2,4-Trichlorobenzene	109	107 °	96.4	109	100
	Acetone	109	79 ^f	71.2	109	100
	Methylene chloride	109	19 ^f	17.1	109	100
	Trichloroethene (TCE)	109	105 °	94.6	109	100
	All remaining VOC analytes	109	109	100.0	109	100
SVOCs (mg/kg-dry):	2,4-Dinitrotoluene	108	106 °	96.4	108	100
	N-Nitrosodi-n-propylamine	108	106 ^e	96.4	108	100
	All remaining SVOC analytes	108	108	100.0	108	100
Metals (mg/kg-dry):	Mercury	108	108	100.0	108	100
	Antimony	108	90 °	81.8	108	100
	Arsenic	108	108	100.0	108	100
	Barium	108	108	100.0	108	100
	Beryllium	108	108	100.0	108	100
	Cadmium	108	108	100.0	108	100
	Chromium	108	109 ^d	99.1	108	100
	Cobalt	108	108	100.0	108	100
	Cyanide	108	106 °	96.4	108	100
	Lead	108	109 ^d	99.1	108	100
	Nickel	108	108	100.0	108	100
	Selenium	108	103 °	93.6	108	100
	Silver	108	108	100.0	108	100
	Vanadium	108	108	100.0	108	100
	Zinc	108	109 ^d	99.1	108	100

Notes:

Number of samples used in completeness calculations includes field duplicates but does not include equipment rinsate, field, or trip blanks.

Percent Contractural Compliance = (number of contract compliant results / Number of reported results)*100

Percent Technial Compliance = (Number of usable results / Number of reported results) * 100

- a = Qualified due to low surrogate recoveries
- b = Qualified due to high surrogate recoveries
- c = Qualified due to low LCS recovery
- d = Qualified due to high field duplicate relative percent difference.
- e = Qualified due to low MS/MSD recovery
- f = Qualified due to potential laboratory contamination.