Basin Environmental Consulting, LLC

2800 Plains Highway
P. O. Box 381
Lovington, New Mexico 88260
cjbryant@basin-consulting.com

Office: (575) 396-2378

Fax: (575) 396-1429

REMEDIATION SUMMARY AND PROPOSED SITE CLOSURE STRATEGY

CrownQuest Operating, LLC
New Mexico State 20 #5
Lea County, New Mexico
UNIT LTR "H" (SE ¼ /NE ¼), Section 6, Township 14 South, Range 33 East
Latitude 33° 08' 07" North, Longitude 103° 38' 45" West
NMOCD Reference # 1RP-2252

Prepared For:

CrownQuest Operating, LLC P.O. Box 53310 Midland, Texas 79710

Prepared By:
Basin Environmental Consulting, LLC
2800 Plains Highway
Lovington, New Mexico 88260

October 2009

amille \(\mathbb{B}\) Bryant

Project Manager

uppreved by
Theoffray Lehins
Environmental Engineer
NMOCD - Holls
11/03/09

RECEIVED

HOBRACED NOA 0 3 5008

TABLE OF CONTENTS

INTRODUCTION AND BACKGROUND INFORMATION1
NMOCD SITE CLASSIFICATION
SUMMARY OF SOIL REMEDIATION ACTIVITIES1
SUMMARY OF GROUNDWATER INVESTIGATION ACTIVITIES2
PROPOSED SITE CLOSURE ACTIVITIES
REPORTING3
LIMITATIONS
DISTRIBUTION5
FIGURES
Figure 1 – Site Location Map Figure 2 – Site and Monitor Well Location Map
TABLES
Table 1 – Concentrations of BTEX, TPH and Chlorides in Soil Table 2 – Concentrations of Chlorides and Total Dissolved Solids in Groundwater
APPENDICES
Appendix A – Soil Boring and Monitor Well Logs Appendix B – Analytical Reports Appendix C - Photographs Appendix D – Release Notification and Corrective Action (Form C-141)

INTRODUCTION AND BACKGROUND INFORMATION

Basin Environmental Consulting, LLC (Basin), on behalf of CrownQuest Operating, LLC (CrownQuest), has prepared this Remediation Summary and Proposed Site Closure Strategy for the release site known as New Mexico State 20 #5. The legal description of the release site is Unit Letter "H" (SE ¼ NE ¼), Section 6, Township 14 South, Range 33 East, in Lea County, New Mexico. The property affected by the release is owned by Mr. Norman Hahn. The release site GPS coordinates are 33° 08' 07" North and 103° 38' 45" West. Please reference Figure 1 for a Site Location Map and Figure 2 for a Site and Monitor Well Location Map. The Release Notification and Corrective Action (Form C-141) is provided as Appendix D.

On July 21, 2009, CrownQuest discovered a release from a two-inch poly flow line. The flow line failed at the seam, resulting in a release of crude oil/produced water. The release was reported to the New Mexico Oil Conservation Division (NMOCD) on July 21, 2009. CrownQuest conducted a line repair at the time of the release. Approximately fifty (50) barrels of crude oil and produced water was released from the flow line, with approximately twenty-five (25) barrels recovered. General photographs of the site are provided as Appendix C.

NMOCD SITE CLASSIFICATION

According to data obtained from the New Mexico Office of the State Engineer (NMOSE), groundwater should be encountered at approximately one hundred thirty-three (133) feet below ground surface (bgs). The depth to groundwater in this area results in a score of zero (0) being assigned to the site based on the NMOCD depth to groundwater criteria.

The water well database, maintained by the NMOSE, indicated there are no water wells less than 1,000 feet from the release, resulting in zero (0) points being assigned to this site as a result of this criteria.

There are no surface water bodies located within 1,000 feet of the site. Based on the NMOCD ranking system zero (0) points will be assigned to the site as a result of the criteria.

The NMOCD guidelines indicate the New Mexico State 20 #5 release site has a ranking score of zero (0). Based on this score, the soil remediation levels for a site with a ranking score of zero (0) points are as follows:

- Benzene 10 mg/Kg (ppm)
- BTEX 50 mg/Kg (ppm)
- TPH -5,000 mg/Kg (ppm)

The NMOCD chlorides clean up level concentrations are site specific.

SUMMARY OF SOIL REMEDIATION ACTIVITIES

On July 28, 2009, following initial response activities, excavation of the impacted soil began at the site. Excavated soil was stockpiled on-site on a plastic liner to mitigate the leaching of contaminants into the vadose zone.

On October 24, 2009, one (1) soil boring (SB-1) was advanced at the release site to vertically investigate the extent of soil impact. Soil boring logs are provided as Appendix A. Soil samples were collected at five (5) foot drilling intervals and field screened using a Photo-Ionization Detector (PID). Selected soil samples were submitted to the laboratory for determination of concentrations of benzene, toluene, ethyl-benzene and xylene (BTEX), total petroleum hydrocarbon (TPH) and chlorides using EPA SW-846 8021b, SW-846 8015M and E 300.0, respectively.

Soil boring SB-1 was located in the northeast portion of the excavation and was advanced to a total depth of approximately forty (40) feet bgs. Soil samples were collected at five (5) foot drilling intervals. Soil samples collected at five (5) and fifteen (15) feet bgs were submitted to the laboratory for BTEX and TPH analysis. The laboratory analytical results indicated benzene concentrations were less than the appropriate laboratory method detection limit (MDL) in the soil sample collected at five (5) and fifteen (15) feet bgs. BTEX concentrations ranged from 0.075 mg/Kg in the soil sample collected at fifteen (15) feet bgs to 0.2765 mg Kg in the soil sample collected at five (5) feet bgs. TPH concentrations ranged from 6.23 mg/Kg in the soil sample collected at fifteen (15) feet bgs to 12.6 mg/Kg in the soil sample collected at five (5), fifteen (15), twenty-five (25) and thirty (30) feet bgs were submitted to the laboratory for chloride analysis. Chloride concentrations ranged from 79.0 mg/Kg in the soil sample collected at five (5) feet bgs. Table 1 summarizes the Concentrations of BTEX, TPH and Chlorides in Soil. Analytical reports are provided as Appendix B.

On October 29, 2009, one (1) soil boring (SB-2) was advanced at the site and was subsequently converted to a groundwater monitor well (MW-1). The monitor well (MW-1) was installed in the center of the excavated area to evaluate the status of the groundwater at the site. The monitor well was installed to a total depth of approximately one hundred forty-seven (147) feet bgs. Soil samples were collected at five (5) foot drilling intervals. Soil samples collected at five (5) and fifteen (15) foot drilling intervals were analyzed for benzene, BTEX and TPH concentrations. The laboratory analytical results indicated benzene concentrations were less than the laboratory MDL in the soil samples collected at five (5) and fifteen (15) feet bgs. BTEX concentrations ranged from less than the laboratory MDL in the soil sample collected at fifteen (15) feet bgs to 0.0374 mg/Kg in the soil sample collected at five (5) feet bgs. TPH concentrations ranged from 1.60 mg/Kg in the soil sample collected at fifteen (15) feet bgs to 4.05 mg/Kg in the soil sample collected at five (5) feet bgs. The soil samples collected at five (5), fifteen (15), twenty-five (25), thirty-five (35), forty-five (45), fifty-five (55), sixty-five (65), seventy-five (75), eighty-five (85), ninety-five (95), one hundred five (105), one hundred fifteen (115), one hundred twenty (120) and one hundred twenty-five (125) foot drilling intervals were submitted to the laboratory for chloride analysis. Chloride concentrations ranged from 46.6 mg/Kg in the soil sample collected at one hundred fifteen (115) feet bgs to 5,320 mg/Kg in the soil sample collected at thirty-five (35) feet bgs.

SUMMARY OF GROUNDWATER INVESTIGATION ACTIVITIES

On October 5, 2009, the monitor well (MW-1) was gauged and purged of a minimum of three (3) well volumes of water or until the well was dry using a PVC bailer or electrical Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon

bailers. Water samples were stored in clean, containers provided by the laboratory and placed on ice in the field. Purge water was collected in a trailer mounted polystyrene tank and disposed of at an NMOCD approved disposal in Monument, New Mexico.

Groundwater samples collected from monitor well (MW-1) were delivered to TraceAnalysis, Inc, Midland, Texas for determination of chloride concentrations by EPA Method SM 4500-CL B or E 300 and Total Dissolved Solids (TDS) concentrations by EPA Method SM 2540. A summary of the analytical results are included in Table 2, Concentrations of Chlorides and TDS in Groundwater.

The laboratory analytical results of the October 5, 2009 groundwater sampling event indicated a TDS concentration of 756 mg/L and a chloride concentration of 109 mg/L. The laboratory analytical results indicated the chloride concentration was less than NMOCD regulatory standard for monitor well MW-1. Location of the groundwater monitor well is depicted on Figure 2 Site and Monitor Well Location Map.

PROPOSED SITE CLOSURE STRATEGY

CrownQuest proposes the following remediation activities designed to progress the New Mexico State 20 #5 release site toward an NMOCD approved closure:

- CrownQuest requests NMOCD approval to plug and abandon monitor well MW-1. The
 monitor well will be plugged using the New Mexico Office of the State Engineer
 (NMOSE) guidelines. The plugging and abandonment activities will be conducted by a
 State of New Mexico certified water well drilling company and CrownQuest will provide
 the NMOCD with plugging reports documenting the plugging procedure.
- CrownQuest proposes to excavate the impacted soil to a depth of approximately five (5) feet bgs and stockpile the impacted soil on-site, pending transportation to an NMOCD permitted disposal facility. The sidewalls of the excavation will be sampled at seventy-five (75) feet linear intervals and submitted to the laboratory and analyzed for concentrations of benzene, BTEX, TPH and chlorides. When confirmation analytical results indicate the excavation sidewalls exhibit concentrations less than the NMOCD regulatory standards the excavation activities will cease.
- CrownQuest proposes to install a twenty (20) mil polyurethane liner in the floor of the excavation. The liner will be cushioned by a six (6) inch layer of sand above and below the liner to protect the liner from damage during excavation backfilling activities. The excavation will be backfilled with non-impacted soil purchased from an off-site source. Following backfill activities, the surface will be contoured to fit the surrounding topography. Reseeding of the site with vegetation acceptable to the landowner, will take place at the conclusion of the proposed remediation activities.

REPORTING

On completion of the proposed closure strategy activities, CrownQuest will submit a Remediation Summary and Site Closure Request for NMOCD approval.

LIMITATIONS

Basin Environmental Consulting, LLC has prepared this Remediation Summary and Site Closure Strategy to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin Environmental Consulting, LLC has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin Environmental Consulting, LLC has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin Environmental Consulting, LLC has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin Environmental Consulting, LLC also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of CrownQuest Operating, LLC. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Consulting, LLC and/or CrownQuest Operating, LLC

DISTRIBUTION:

Copy 1: Geoffrey Leking

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division (District 1)

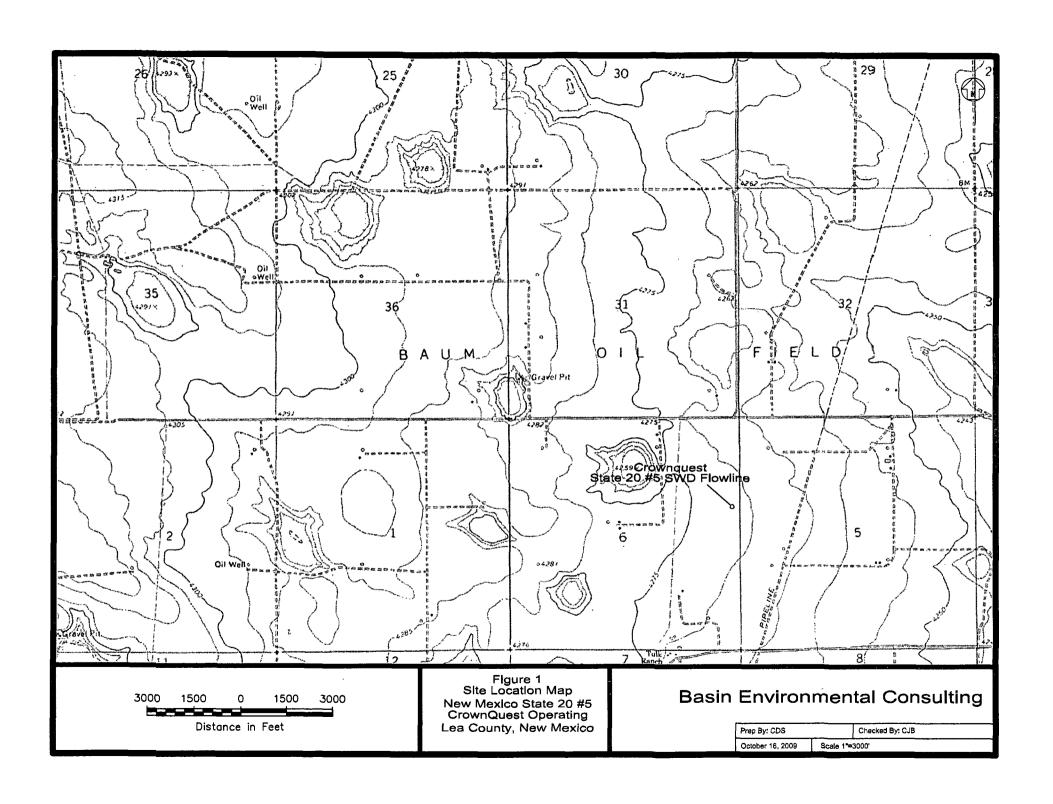
1625 French Drive

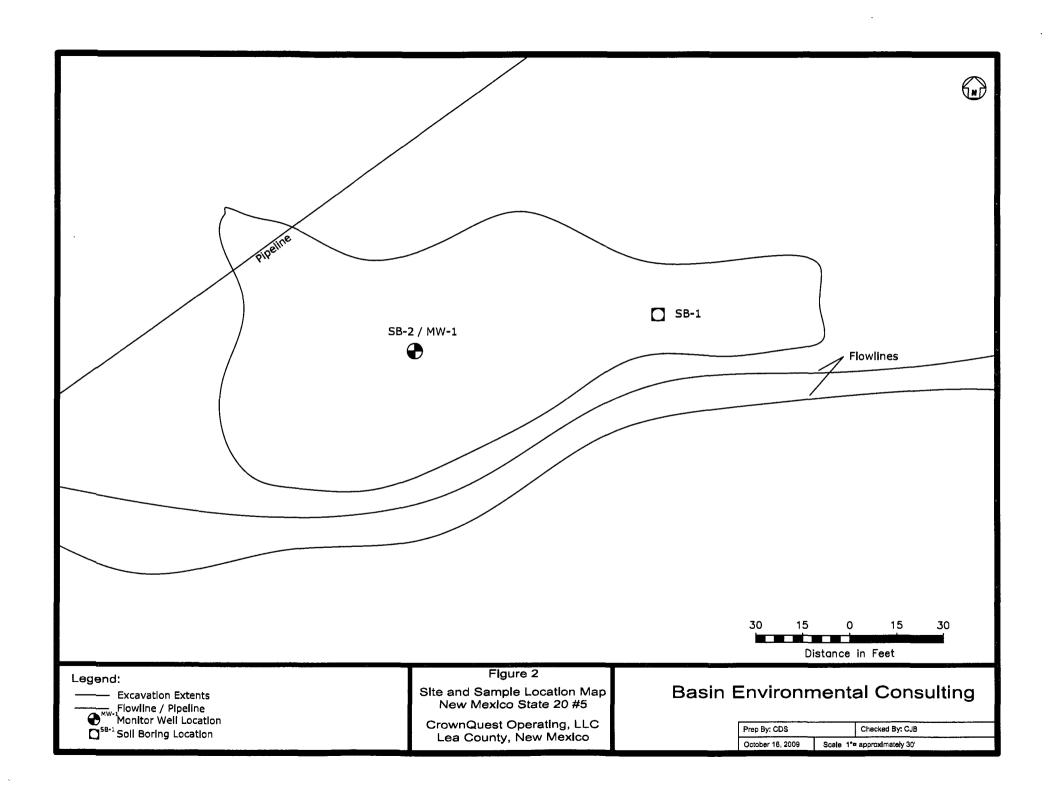
Hobbs, New Mexico 88240

Copy 2: Don Rogers

CrownQuest Operating, LLC

P.O. Box 53310


Midland, Texas 79710


Copy 3: Basin Environmental Consulting, LLC

P.O. Box 381

Lovington, New Mexico 88260 cjbryant@basin-consulting.com

Figures

Tables

Table 1

CONCENTRATIONS OF BTEX,TPH AND CHLORIDE IN SOIL CROWNQUEST OPERATING, LLC NEW MEXICO STATE 20 #5 LEA COUNTY, NEW MEXICO NMOCD REF #1RP- 2252

				ME	METHOD: EPA SW 846-8021B, 5030				E	PA SW 846-80	15	EPA 4500 / E 300
SAMPLE DATE	SAMPLE LOCATION	SAMPLE DEPTH	SOIL STATUS	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	XYLENE (mg/Kg)	BTEX (mg/Kg)	GRO (mg/Kg)	DRO (mg/Kg)	TOTAL TPH (mg/Kg)	Chloride (mg/Kg)
09/24/09	SB-1 @ 5'	5 Feet	In-Situ_	<0.0100	0.0199	0.0556	0.201	0.2765	12.6	<50.0	12.6	11,000
09/24/09	SB-1 @ 15'	15 Feet	In-Situ	<0.0100	<0.0100	<0.0100	0.075	0.075	6 23	<50.0	6.23	2,760
09/24/09	SB-1 @ 25'	25 Feet	In-Situ	-	-	_	-	-	-	-	-	79
09/24/09	SB-1 @ 30'	30 Feet	In-Situ	-	-	-	-	-	-	-	-	87.9
09/29/09	MW-1 @ 5'	5 Feet	In-Situ	<0.0100	< 0 0100	<0.0100	0.0374	0.0374	4.05	<50.0	4.05	4,660
09/29/09	MW-1 @ 15'	15 Feet	In-Situ	<0 0100	<0.0100	<0.0100	<0.0100	<0 0100	1.6	<50 0	1.6	3,600
09/29/09	MW-1 @ 25'	25 Feet	In-Situ	_	-	-	-	-	-	-	-	4,740
09/29/09	MW-1 @ 35'	35 Feet	In-Situ	-	-	_	-	-	-	-	_	5,320
09/29/09	MW-1 @ 45'	45 Feet	In-Situ		_	-	-	-	-	-	-	4,610
09/29/09	MW-1 @ 55'	55 Feet	In-Situ		-	-	-	-	-	-		4,250
09/29/09	MW-1 @ 65'	65 Feet	In-Situ	-	-	-	-	-	-	-	-	4,670
09/29/09	MW-1 @ 75'	75 Feet	In-Situ	-	-	-	-	-	-	-	-	5,100
09/29/09	MW-1 @ 85'	85 Feet	In-Situ	-	-	-	-	-	_	-	-	667
09/29/09	MW-1 @ 95'	95 Feet	In-Situ	-	-	-	_	-	-	-	-	422
09/29/09	MW-1 @ 105'	105 Feet	In-Situ	-	-		-	-		-	- "	200
09/29/09	MW-1 @ 115'	115 Feet	In-Situ	-	-	-	-	-	-	-	-	46.6
09/29/09	MW-1 @ 120'	120 Feet	In-Situ	-	-	-	-	-	-	-	-	255
09/29/09	MW-1 @ 125'	125 Feet	In-Situ	-	-	_	_	-	-	-	-	287
門部計畫	MANAL SERVE	The Hall of		· 和提供源[]	*** * ********************************	100mm 表现基础	WILLIE	PET SANS		16 12 12 12		問為行行為
NMOCD CL	EAN-UP LEVEL			10				50			5,000	250

BOLD indicates concentration exceeding NMOCD regulatory standards

TABLE 2

CONCENTRATIONS OF CHLORIDES AND TDS IN GROUNDWATER CROWNQUEST OPERATING, LLC NEW MEXICO STATE 20 #5 LEA COUNTY, NEW MEXICO NMOCD REF # 1PR-2252

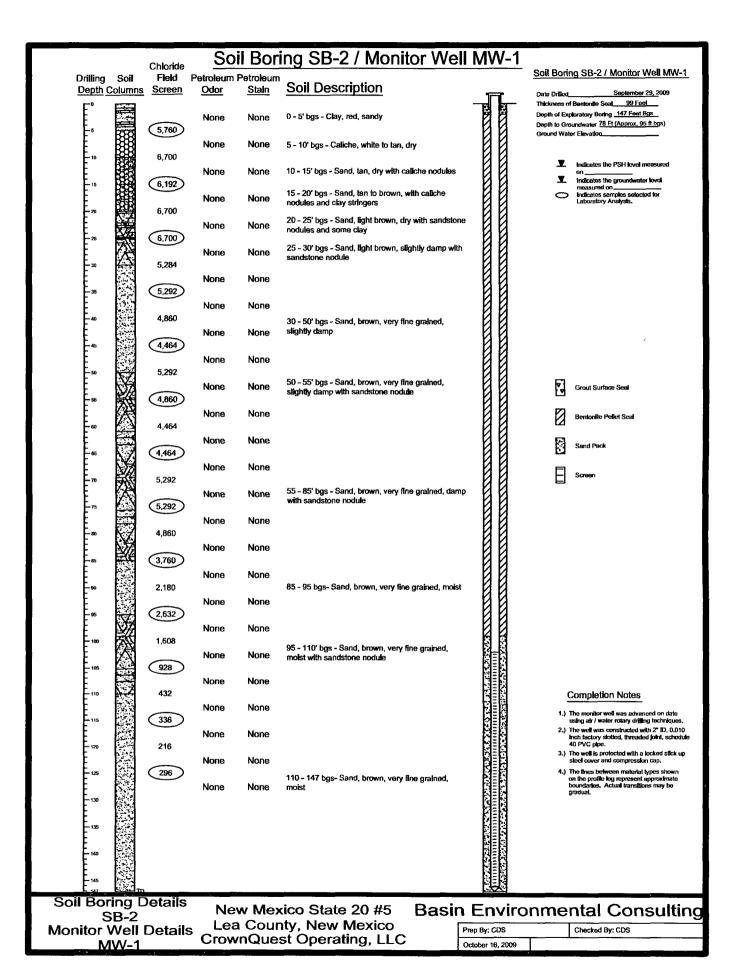
All concentrations recorded in mg/L

		METHOD: 4500	SM 2540C	
SAMPLE	SAMPLE DATE		TOTAL DISSOLVED	
LOCATION	OAMI LE DATE	CHLORIDE		
			SOILDS	
MW-1	10/05/09	109	756	
的。但是是这个		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
NMOCD CRITER	IA	250	10,000	

Appendices

Appendix A
Soil Boring and Monitor Well Logs

	Soil Boring SB-1										
Drilling	Soil	Field	Field	Petroleum I	Petroleum			Soil Boring Details			
	olumns			<u>Odor</u>	<u>Stain</u>	Soil Description	Date	DrilledSeptember 24, 2009			
- - - - - - - 5		3.5	6,272	None	None	0 - 5' - Clay, red, sandy, dry	Depti Depti	1			
E				None	None		0.00				
- 10		3.2	1,276			5 - 15' - Caliche, tan, dry		Indicates the PSH level measured			
- - - 15		3.5	(2,400)	None	None		_	on Indicates the groundwater level			
- 20		3.1	2,552	None	None	15 - 20' - Sand, tan to brown, very fine grained	PID	measured on			
- - - - - - - - -			2,332	None	None		with a photo-ionization detector.				
- 30		(2.9)	124	None	None	25 - 35' - Sand, tan to brown, very fine grained					
				None	None	with sandstone nodules, dry					
- 35 - - -		3.1	<120	None	None	35 - 40' - Sand, brown, very fine grained					
L ₄₀	ESSI _{TO}	3.2	<120			3. 44104					


Notes

- The soil boring was advanced on date using air rotary drilling techniques.
- The tines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.

Boring Log Details Soil Boring SB-1 New Mexico State 20 #5 Lea County, New Mexico CrownQuest Operating, LLC

Basin Environmental Services

Prep By: CDS	Checked By: CJB	
October 16, 2009		

Appendix B Analytical Reports

6701 Aberueen Avenue, Suite 9 200 East Sunset Road, Suite E.

5002 Basin Street Suite A1 -

6015 Haros Parkway, Suite 110 Ft. Worth, Texas 76132

Lubbock, Texas 79424

El Paso, Texas 79922 Midland, Texas 73703

888 • 588 • 3443

432 • 689 • 6301

800 • 378 • 1296

915 • 585 • 3443

FAX 432 • 689 • 6313

FAX 806 • 794 • 1298

FAX 915 • 585 • 4944

817 • 201 • 5260

806 • 794 • 1296

E-Mail, lan@traceanalysis.com

Certifications

WBENC: 237019 HUB:

1752439743100-86536

DBE:

VN 20657

NCTRCA WFWB38444Y0909

NELAP Certifications

Lubbock: T104704219-08-TX

LELAP-02003

Kansas E-10317

El Paso: T104704221-08-TX

LELAP-02002

Midland:

T104704392-08-TX

Analytical and Quality Control Report

Camille Bryant Basin Environmental Consulting

2800 Plains Hwy. P. O. Box 381

Lovington, NM, 88260

Report Date: October 9, 2009

Work Order:

9100503

Project Location: Lea County, NM

Project Name: Crownquest/New Mexico State 20 #5 Project Number: Crownquest/New Mexico State 20 #5

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
211512	SB-1 @ 5'	soil	2009-09-24	08:30	2009-10-03
211513	SB-1 @ 15'	soil	2009-09-24	10:00	2009-10-03
211514	SB-1 @ 25'	soil	2009-09-24	11:10	2009-10-03
211515	SB-1 @ 30'	soil	2009-09-24	12:05	2009-10-03
211516	MW-1 @ 5'	soil	2009-09-29	09:00	2009-10-03
211517	MW-1 @ 15'	soil	2009-09-29	09:20	2009-10-03
211518	MW-1 @ 25'	soil	2009-09-29	09:45	2009-10-03
211519	MW-1 @ 35'	soil	2009-09-29	10:05	2009-10-03
211520	MW-1 @ 45'	soil	2009-09-29	10:30	2009-10-03

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
211521	MW-1 @ 55'	soil	2009-09-29	11:00	2009-10-03
211522	MW-1 @ 65'	soil	2009-09-29	11:20	2009-10-03
211523	MW-1 @ 75'	soil	2009-09-29	11:40	2009-10-03
211524	MW-1 @ 85'	soil	2009-09-29	12:00	2009-10-03
211525	MW-1 @ 95'	soil	2009-09-29	12:30	2009-10-03
211526	MW-1 @ 105'	soil	2009-09-29	12:50	2009-10-03
211527	MW-1 @ 115'	soil	2009-09-29	13:30	2009-10-03
211528	MW-1 @ 120'	soil	2009-09-29	13:55	2009-10-03
211529	MW-1 @ 125'	soil	2009-09-29	14:20	2009-10-03

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 22 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Standard Flags

 ${\bf B}$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project Crownquest/New Mexico State 20 #5 were received by TraceAnalysis, Inc. on 2009-10-03 and assigned to work order 9100503. Samples for work order 9100503 were received intact at a temperature of 2.1 deg. C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	54819	2009-10-05 at 16:00	64189	2009-10-05 at 17:01
Chloride (IC)	E 300.0	54809	2009-10-06 at 09:02	64216	2009-10-06 at 17:40
Chloride (IC)	$\to 300.0$	54810	2009-10-06 at 09:02	64218	2009-10-06 at 22:41
Chloride (IC)	E 300.0	54811	2009-10-06 at 09:03	64219	2009-10-07 at 01:43
TPH DRO	Mod. 8015B	54798	2009-10-05 at 09:48	64164	2009-10-05 at 09:48
TPH GRO	S 8015B	54819	2009-10-05 at 16:00	6419 0	2009-10-05 at 17:29

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9100503 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: October 9, 2009

Crownquest/New Mexico State 20 #5

Work Order: 9100503 Crownquest/New Mexico State 20 #5 Page Number: 4 of 22 Lea County, NM

Analytical Report

Sample: 211512 - SB-1 @ 5'

Laboratory:

Midland

Analysis: **BTEX** QC Batch: 64189 Prep Batch: 54819

Analytical Method: S 8021B Date Analyzed: 2009-10-05 Sample Preparation: 2009-10-05

Prep Method: S 5035 Analyzed By: \mathbf{AG} Prepared By: AG

RΤ

		T\L)			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		0.0199	mg/Kg	1	0.0100
Ethylbenzene		0.0556	m mg/Kg	1	0.0100
Xylene		0.201	mg/Kg	1	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.86	mg/Kg	1	2.00	93	64.4 - 111.2
4-Bromofluorobenzene (4-BFB)		2.01	$_{ m mg/Kg}$	1	2.00	100	43.1 - 128.4

Sample: 211512 - SB-1 @ 5'

Laboratory:

Midland

Analysis: Chloride (IC) QC Batch: 64216 Prep Batch: 54809

E 300.0 Analytical Method: Date Analyzed: 2009-10-06 Sample Preparation: 2009-10-06

Prep Method: N/A Analyzed By: ARPrepared By: AR

RLResult Parameter Flag Chloride 11000

Units Dilution RLmg/Kg 500 1.00

Sample: 211512 - SB-1 @ 5'

Laboratory: Analysis: QC Batch:

Midland TPH DRO 64164 Prep Batch: 54798

Analytical Method: Date Analyzed:

Sample Preparation:

Mod. 8015B 2009-10-05 2009-10-05

Prep Method: N/A Analyzed By: kg Prepared By:

RL

Parameter	Flag	Result	Units	Dilution	RL
DRO		< 50.0	mg/Kg	1	50.0

Work Order: 9100503 Crownquest/New Mexico State 20 #5 Page Number: 5 of 22 Lea County, NM

					Spike	Percent	Recovery
Surrogate	Flag	Result	$_{ m Units}$	Dilution	Amount	Recovery	Limits
n-Triacontane		98.4	mg/Kg	1	100	98	13.2 - 219.3

Sample: 211512 - SB-1 @ 5'

Laboratory:

Midland

Analysis: TPH GRO QC Batch: 64190 Prep Batch: 54819

Analytical Method: S 8015B Date Analyzed: 2009-10-05

Sample Preparation: 2009-10-05

Prep Method: S 5035 Analyzed By: \mathbf{AG} Prepared By: AG

RL

Parameter	Flag	Result	Units	Dilution	RL
GRO		12.6	mg/Kg	1	1.00

G .	TO I	D 1/	TT **	Dil et	Spike	Percent	Recovery
Surrogate	Flag	Result	${ m Units}$	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		2.07	mg/Kg	1	2.00	104	65.3 - 109.9
4-Bromofluorobenzene (4-BFB)	1	2.67	${ m mg/Kg}$	1	2.00	134	61.7 - 119.9

Sample: 211513 - SB-1 @ 15'

Laboratory:

Midland

BTEX Analysis: QC Batch: 64189 Prep Batch: 54819

Analytical Method: S 8021B Date Analyzed: 2009-10-05 Sample Preparation: 2009-10-05 Prep Method: S 5035 Analyzed By: AGPrepared By: AG

AR

AR

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	m mg/Kg	1	0.0100
Xylene		0.0750	mg/Kg	1	0.0100

					\mathbf{Spike}	Percent	Recovery
Surrogate	Flag	Result	${f Units}$	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.83	mg/Kg	1	2.00	92	64.4 - 111.2
4-Bromofluorobenzene (4-BFB)		2.02	${ m mg/Kg}$	1	2.00	101	43.1 - 128.4

Sample: 211513 - SB-1 @ 15'

Laboratory: Midland

Analysis: Chloride (IC) Analytical Method: E 300.0 Prep Method: N/A QC Batch: 64216 Date Analyzed: 2009-10-06 Analyzed By: Prep Batch: 54809 Sample Preparation: 2009-10-06 Prepared By:

¹ High surrogate recovery due to peak interference.

Work Order: 9100503 Crownquest/New Mexico State 20 #5 Page Number: 6 of 22 Lea County, NM

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		2760	mg/Kg	100	1.00

Sample: 211513 - SB-1 @ 15'

Laboratory: Midland

Analysis: TPH DRO QC Batch: 64164 Prep Batch: 54798

Analytical Method: Mod. 8015B 2009-10-05 Date Analyzed: Sample Preparation: 2009-10-05

Prep Method: N/A Analyzed By: kg Prepared By: kg

Parameter	Fla	ıg	RL Result	Uı	nits	Dilution	\cdot RL
DRO			< 50.0	mg/	'Kg	1	50.0
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane		95.9	mg/Kg	1	100	96	13.2 - 219.3

Sample: 211513 - SB-1 @ 15'

Midland Laboratory:

TPH GRO Analysis: QC Batch: 64190 Prep Batch: 54819

Analytical Method: Date Analyzed:

S 8015B 2009-10-05 Sample Preparation: 2009-10-05 Prep Method: S 5035 Analyzed By: \mathbf{AG} Prepared By: \mathbf{AG}

Parameter	Flag	$rac{ ext{RL}}{ ext{Result}}$	Units		Dilution	RL
GRO		6.23	m mg/Kg		1	1.00
_			 	Spike	Percent	Recovery

Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		2.02	mg/Kg	1	2.00	101	65.3 - 109.9
4-Bromofluorobenzene (4-BFB)		2.36	mg/Kg	1	2.00	118	61.7 - 119.9

Sample: 211514 - SB-1 @ 25'

Laboratory: Midland

Analysis: Chloride (IC) QC Batch: 64216 Prep Batch: 54809

Analytical Method: E 300.0 Date Analyzed: 2009-10-06 Sample Preparation: 2009-10-06 Prep Method: N/A Analyzed By: AR Prepared By: AR

Work Order: 9100503 Crownquest/New Mexico State 20 #5 Page Number: 7 of 22 Lea County, NM

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		79.0	mg/Kg	5	1.00
Sample: 21	1515 - SB-1 @ 30'				
Laboratory:	Midland				
Analysis:	Chloride (IC)	Analytical Method:	E 300.0	Prep Method:	N/A
QC Batch:	64216	Date Analyzed:	2009-10-06	Analyzed By:	\overline{AR}
Prep Batch:	54809	Sample Preparation:	2009-10-06	Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		87.9	mg/Kg	5	1.00

Sample: 2	11516 -	MW-1	@ 5'
-----------	---------	------	------

Laboratory:	Midland
Analysis:	BTEX

Analytical Method: S 8021B Prep Method: S 5035 QC Batch: Date Analyzed: Analyzed By: 64189 2009-10-05 \mathbf{AG} Prep Batch: 54819 Sample Preparation: 2009-10-05 Prepared By: AG

		RL			
Parameter	Flag	Result	${f Units}$	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	mg/Kg	1	0.0100
Xylene		0.0374	mg/Kg	1	0.0100

Surrogate	Flag	Result	Units	Dilution	$egin{array}{c} \mathbf{Spike} \ \mathbf{Amount} \end{array}$	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		1.84	mg/Kg	1	2.00	92	64.4 - 111.2
4-Bromofluorobenzene (4-BFB)		1.99	mg/Kg	1	2.00	100	43.1 - 128.4

Sample: 211516 - MW-1 @ 5'

La	boratory:	Midland
Ľа	ooratory.	windiano

Analysis: Chloride (IC) Analytical Method: E 300.0 Prep Method: N/A QC Batch: 64216 Date Analyzed: 2009-10-06 Analyzed By: ARPrep Batch: 54809 Sample Preparation: 2009-10-06 Prepared By: AR

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		4660	mg/Kg	100	1.00

Work Order: 9100503 Crownquest/New Mexico State 20 #5

Page Number: 8 of 22 Lea County, NM

Sample:	211516 -	MW-1	@ 5'
---------	----------	------	-------------

Laboratory:	Midland
-------------	---------

Analysis: TPH DRO QC Batch: 64164 Prep Batch: 54798 Analytical Method: Mod. 8015B Date Analyzed: 2009-10-05 Sample Preparation: 2009-10-05 Prep Method: N/A
Analyzed By: kg
Prepared By: kg

RL

Parameter	Flag	Result	Units	Dilution	RL
DRO		< 50.0	mg/Kg	1	50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	${ m Units}$	Dilution	Amount	Recovery	Limits
n-Triacontane		94.5	mg/Kg	1	100	94	13.2 - 219.3

Sample: 211516 - MW-1 @ 5'

Laboratory: Midland

Analysis: TPH GRO QC Batch: 64190 Prep Batch: 54819 Analytical Method: S 8015B Date Analyzed: 2009-10-05 Sample Preparation: 2009-10-05

Prep Method: S 5035 Analyzed By: AG Prepared By: AG

RL

Parameter	Flag	Result	Units	Dilution	RL
GRO		4.05	mg/Kg	1	1.00

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
Trifluorotoluene (TFT)		2.05	mg/Kg	1	2.00	102	65.3 - 109.9
4-Bromofluorobenzene (4-BFB)	2	2.42	mg/Kg	1	2.00	121	61.7 - 119.9

Sample: 211517 - MW-1 @ 15'

Laboratory: Midland

Analysis:BTEXAnalytical Method:S 8021BQC Batch:64189Date Analyzed:2009-10-05Prep Batch:54819Sample Preparation:2009-10-05

Prep Method: S 5035 Analyzed By: AG Prepared By: AG

Paramete <u>r</u>	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	mg/Kg	1	0.0100
Xylene		< 0.0100	mg/Kg	1	0.0100

RL

²High surrogate recovery due to peak interference.

Report Date: October 9, 2009

Crownquest/New Mexico State 20 #5

Work Order: 9100503 Crownquest/New Mexico State 20 #5 Page Number: 9 of 22

Lea County, NM

Surrogate	Flag	Result	Units	Dilution	$\begin{array}{c} {\rm Spike} \\ {\rm Amount} \end{array}$	Percent Recovery	$\begin{array}{c} {\rm Recovery} \\ {\rm Limits} \end{array}$
Trifluorotoluene (TFT)		1.86	mg/Kg	1	2.00	93	64.4 - 111.2
4-Bromofluorobenzene (4-BFB)		1.96	mg/Kg	1	2.00	98	43.1 - 128.4

Sample: 211517 - MW-1 @ 15'

Laboratory:

Midland

Analysis: QC Batch: Chloride (IC) 64216

Analytical Method:

E 300.0

Prep Method: N/A

Prep Batch: 54809

Date Analyzed: Sample Preparation:

2009-10-06 2009-10-06 Analyzed By: Prepared By:

AR AR

RL

Parameter	Flag	Result	Units	Dilution	RL
Chloride		3600	mg/Kg	500	1.00

Sample: 211517 - MW-1 @ 15'

Laboratory:

Midland

Analysis: QC Batch: TPH DRO 64164

Analytical Method:

Mod. 8015B 2009-10-05

Prep Method: N/A Analyzed By:

kg

Prep Batch:

54798

Date Analyzed: Sample Preparation:

2009-10-05

Prepared By: kg

RL

Parameter	Flag	Result	Units	Dilution	RL
DRO		< 50.0	${ m mg/Kg}$	1	50.0

		10.		,	Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		85.8	mg/Kg	1	100	86	13.2 - 219.3

Sample: 211517 - MW-1 @ 15'

Laboratory:

Midland TPH GRO

Analysis: QC Batch: Prep Batch:

64190 54819

Analytical Method: Date Analyzed:

S 8015B

2009-10-05 Sample Preparation: 2009-10-05 Prep Method: S 5035

Analyzed By: \mathbf{AG} Prepared By: AG

RL

Parameter	Flag	Result	Units	Dilution	RL
GRO		1.60	mg/Kg	1	1.00

Work Order: 9100503 Crownquest/New Mexico State 20 #5

Page Number: 10 of 22 Lea County, NM

Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent 1 Recovery	Recovery Limits
Trifluorotolue	ene (TFT)	1 165	2.06	mg/Kg	1	2.00		5.3 - 109.9
	obenzene (4-BFB)		2.17	mg/Kg	1	2.00		1.7 - 119.9
	10 (1212)							
Sample: 21	1518 - MW-1 @ 25	,						
Laboratory:	Midland							
Analysis:	Chloride (IC)		Analyt	ical Method:	E 300.0		Prep Meth	od: N/A
QC Batch:	64216		Date A	nalyzed:	2009-10-06		Analyzed I	By: AR
Prep Batch:	54809		Sample	Preparation:	2009-10-06		Prepared F	By: AR
			RL					
Parameter	Flag		Result		Units		Dilution	RL
Chloride	8		4740		mg/Kg		500	1.00
Laboratory: Analysis: QC Batch: Prep Batch:	1519 - MW-1 @ 35 Midland Chloride (IC) 64216 54809		Date A	ical Method: nalyzed: Preparation:	E 300.0 2009-10-06 2009-10-06		Prep Meth Analyzed I Prepared I	By: AR
Parameter	Flag		Result		Units		Dilution	RL
Chloride			5320		mg/Kg		100	1.00
Sample: 21	1520 - MW-1 @ 45	,						
Laboratory:	Midland							
Analysis:	Chloride (IC)			ical Method:	E 300.0		Prep Meth	,
QC Batch:	64216			.nalyzed:	2009-10-06		Analyzed 1	
Prep Batch:	54809		Sample	Preparation:	2009-10-06		Prepared I	By: AR
			RL					
Parameter	Flag		Result		Units		Dilution	RL
Chloride			4610		mg/Kg		100	1.00

Report Date: October 9, 2009 Work Order: 9100503 Page Number: 11 of 22 Crownquest/New Mexico State 20 #5 Lea County, NM Crownquest/New Mexico State 20 #5 Sample: 211521 - MW-1 @ 55' Midland Laboratory: Prep Method: N/A Chloride (IC) Analytical Method: E 300.0 Analysis: Analyzed By: QC Batch: 64216 Date Analyzed: 2009-10-06 ARPrep Batch: 54809 Sample Preparation: 2009-10-06 Prepared By: ARRLRLParameter Flag Result Units Dilution 4250 500 1.00 Chloride mg/Kg Sample: 211522 - MW-1 @ 65' Midland Laboratory: N/A Analysis: Chloride (IC) Analytical Method: E 300.0 Prep Method: QC Batch: 64218 Date Analyzed: 2009-10-06 Analyzed By: ARSample Preparation: 2009-10-06 Prepared By: ARPrep Batch: 54810 RLParameter Flag Result Units Dilution RL4670 1.00 Chloride mg/Kg 500 Sample: 211523 - MW-1 @ 75' Laboratory: Midland Analysis: Chloride (IC) Analytical Method: E 300.0 Prep Method: N/A QC Batch: 64218 Date Analyzed: 2009-10-06 Analyzed By: AR Prepared By: ARPrep Batch: 54810 Sample Preparation: 2009-10-06 RLParameter Result Dilution RLFlag Units 5100 100 1.00 Chloride mg/Kg Sample: 211524 - MW-1 @ 85' Laboratory: Midland Chloride (IC) Analysis: Analytical Method: E 300.0 Prep Method: N/A QC Batch: 64218 Date Analyzed: 2009-10-06 Analyzed By: ARPrep Batch: 54810 Sample Preparation: 2009-10-06 Prepared By: AR

RL

667

Units

mg/Kg

Dilution

10

RL

1.00

Result

Parameter

Chloride

Flag

Report Date: October 9, 2009 Page Number: 12 of 22 Work Order: 9100503 Crownquest/New Mexico State 20 #5 Lea County, NM Crownquest/New Mexico State 20 #5 Sample: 211525 - MW-1 @ 95' Laboratory: Midland Prep Method: N/A Analysis: Chloride (IC) Analytical Method: E 300.0 Date Analyzed: 2009-10-06 Analyzed By: ARQC Batch: 64218 Prep Batch: 54810 Sample Preparation: 2009-10-06 Prepared By: ARRLFlag RLParameter Result Units Dilution 422 1.00 Chloride mg/Kg Sample: 211526 - MW-1 @ 105' Laboratory: Midland Analysis: Chloride (IC) Analytical Method: E 300.0 Prep Method: N/A Date Analyzed: 2009-10-06 Analyzed By: ARQC Batch: 64218 Prep Batch: 54810 Sample Preparation: 2009-10-06 Prepared By: AR RLDilution RLParameter Flag Result Units 200 1.00 Chloride mg/Kg Sample: 211527 - MW-1 @ 115' Laboratory: Midland Chloride (IC) Analytical Method: E 300.0 Prep Method: N/AAnalysis: QC Batch: 64218 Date Analyzed: 2009-10-06 Analyzed By: ARPrep Batch: 54810 Sample Preparation: 2009-10-06 Prepared By: ARRLResult Parameter Flag Units Dilution RLChloride $\overline{46.6}$ mg/Kg $\overline{5}$ 1.00 Sample: 211528 - MW-1 @ 120' Laboratory: Midland Analysis: Chloride (IC) Analytical Method: E 300.0 Prep Method: N/A QC Batch: 64218 Date Analyzed: 2009-10-06 Analyzed By: AR Prep Batch: 54810 Sample Preparation: 2009-10-06 Prepared By: ARRL

Parameter

Chloride

Flag

Result

255

Dilution

5

Units

mg/Kg

RL

1.00

Work Order: 9100503 Crownquest/New Mexico State 20 #5

Page Number: 13 of 22 Lea County, NM

Sample:	211529 -	MW-1	@ 125'
---------	----------	------	--------

Laboratory: Midland

Analysis: Chloride (IC) QC Batch: 64219 Prep Batch: 54811 Analytical Method: E 300.0 Date Analyzed: 2009-10-07 Sample Preparation: 2009-10-06

Prep Method: N/A Analyzed By: AR Prepared By: AR

DI D

RL

Method Blank (1)

QC Batch: 64164

QC Batch: 64164 Prep Batch: 54798 Date Analyzed: 2009-10-05 QC Preparation: 2009-10-05 Analyzed By: kg Prepared By: kg

MDL

					$\mathbf{S}\mathbf{pike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		64.1	mg/Kg	1	100	64	13 - 178.5

Method Blank (1)

QC Batch: 64189

QC Batch: 64189 Prep Batch: 54819 Date Analyzed: 2009-10-05 QC Preparation: 2009-10-05 Analyzed By: AG Prepared By: AG

MDL Parameter Flag Result

Result Units RLBenzene < 0.00410 mg/Kg 0.01 Toluene < 0.00310 mg/Kg 0.01 Ethylbenzene < 0.00240 mg/Kg 0.01 Xylene < 0.00650 mg/Kg 0.01

					$\mathbf{S}\mathbf{pike}$	Percent	Recovery
Surrogate	\mathbf{Flag}	Result	${ m Units}$	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.80	mg/Kg	1	2.00	90	64.9 - 122.7
4-Bromofluorobenzene (4-BFB)		1.57	mg/Kg	1	2.00	78	43.9 - 121.9

Page Number: 14 of 22 Report Date: October 9, 2009 Work Order: 9100503 Crownquest/New Mexico State 20 #5 Crownquest/New Mexico State 20 #5 Lea County, NM Method Blank (1) QC Batch: 64190 QC Batch: 64190 Date Analyzed: 2009-10-05 Analyzed By: AG Prep Batch: 54819 QC Preparation: 2009-10-05 Prepared By: AG MDL Parameter Flag Result Units RLGRO < 0.396mg/Kg 1 Spike Percent Recovery Flag Result Units Dilution Amount Recovery Limits Surrogate Trifluorotoluene (TFT) 2.04 2.00 102 66.2 - 125 mg/Kg 1 2.00 83 62 - 120.54-Bromofluorobenzene (4-BFB) 1.66 mg/Kg 1 QC Batch: 64216 Method Blank (1) QC Batch: 64216 Date Analyzed: 2009-10-06 Analyzed By: AR Prep Batch: 54809 QC Preparation: 2009-10-06 Prepared By: ARMDL Flag Parameter Result Units RL0.905 Chloride mg/Kg Method Blank (1) QC Batch: 64218 QC Batch: Date Analyzed: 2009-10-06 Analyzed By: AR 64218 Prep Batch: 54810 QC Preparation: 2009-10-06 Prepared By: MDL Parameter Flag Result Units RLChloride < 0.0430 mg/Kg $\overline{1}$ Method Blank (1) QC Batch: 64219 QC Batch: 64219 Date Analyzed: 2009-10-07 Analyzed By: ARPrep Batch: 54811 QC Preparation: 2009-10-06 Prepared By: ARMDLParameter Flag Result Units RL

0.890

mg/Kg

1

Chloride

Work Order: 9100503 Crownquest/New Mexico State 20 #5 Page Number: 15 of 22 Lea County, NM

Laboratory Control Spike (LCS-1)

QC Batch: 64164 Prep Batch: 54798 Date Analyzed: 2009-10-05 QC Preparation: 2009-10-05 Analyzed By: kg Prepared By: kg

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	172	mg/Kg	1	250	< 5.86	69	57.4 - 133.4

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	180	mg/Kg	1	250	< 5.86	72	57.4 - 133.4	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	63.6	85.9	mg/Kg	1	100	64	86	48.5 - 146.7

Laboratory Control Spike (LCS-1)

QC Batch: 64189 Prep Batch: 54819 Date Analyzed: 2009-10-05 QC Preparation: 2009-10-05 Analyzed By: AG Prepared By: AG

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
Benzene	1.85	mg/Kg	1	2.00	< 0.00410	92	75.4 - 115.7
Toluene	1.82	m mg/Kg	1	2.00	< 0.00310	91	78.4 - 113.6
Ethylbenzene	1.74	mg/Kg	1	2.00	< 0.00240	87	76 - 114.2
Xylene	5.24	mg/Kg	1	6.00	< 0.00650	87	76.9 - 113.6

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Param	LCSD Result	Units	Dil.	$egin{array}{c} \mathbf{Spike} \\ \mathbf{Amount} \end{array}$	Matrix Result	Rec.	Rec. Limit	RPD	$\begin{array}{c} \text{RPD} \\ \text{Limit} \end{array}$
Benzene	1.87	mg/Kg	1	2.00	< 0.00410	94	75.4 - 115.7	1	20
Toluene	1.83	mg/Kg	1	2.00	< 0.00310	92	78.4 - 113.6	0	20
Ethylbenzene	1.75	mg/Kg	1	2.00	< 0.00240	88	76 - 114.2	1	20
Xylene	5.33	mg/Kg	1	6.00	< 0.00650	89	76.9 - 113.6	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	$_{ m LCSD}$			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.78	1.80	mg/Kg	1	2.00	89	90	65 - 122.9
4-Bromofluorobenzene (4-BFB)	1.80	1.80	mg/Kg	1	2.00	90	90	43.8 - 124.9

Work Order: 9100503 Crownquest/New Mexico State 20 #5 Page Number: 16 of 22 Lea County, NM

Laboratory Control Spike (LCS-1)

QC Batch: 64190 Prep Batch: 54819 Date Analyzed: 2009-10-05 QC Preparation: 2009-10-05

Analyzed By: AG

Prepared By: AG

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$
GRO	17.1	mg/Kg	1	20.0	< 0.396	86	52.5 - 114.3

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			\mathbf{Spike}	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	17.6	mg/Kg	1	20.0	< 0.396	88	52.5 - 114.3	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	\mathbf{Limit}
Trifluorotoluene (TFT)	2.02	2.03	mg/Kg	1	2.00	101	102	66.2 - 128.7
4-Bromofluorobenzene (4-BFB)	1.83	1.81	mg/Kg	1	2.00	92	90	64.1 - 127.4

Laboratory Control Spike (LCS-1)

QC Batch: 64216 Prep Batch: 54809

Date Analyzed: 2009-10-06 QC Preparation: 2009-10-06

Analyzed By: AR Prepared By: AR

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$
Chloride	25.3	mg/Kg	1	25.0	< 0.0430	101	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	$_{ m LCSD}$			$\mathbf{S}_{\mathbf{P}i\mathbf{k}\mathbf{e}}$	\mathbf{Matrix}		${ m Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$	RPD	Limit
Chloride	25.4	mg/Kg	1	25.0	< 0.0430	102	90 - 110	0	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 54810

Date Analyzed: 2009-10-06 QC Preparation: 2009-10-06 Analyzed By: AR Prepared By: AR

	LCS			\mathbf{Spike}	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}
Chloride	25.5	mg/Kg	1	25.0	< 0.0430	102	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: October 9, 2009

Crownquest/New Mexico State 20 #5

Work Order: 9100503

Page Number: 17 of 22 Lea County, NM Crownquest/New Mexico State 20 #5

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	25.4	mg/Kg	1	25.0	< 0.0430	102	90 - 110	0	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:

64219

Date Analyzed:

2009-10-07

Analyzed By: AR

Prep Batch: 54811

QC Preparation: 2009-10-06

Prepared By: AR

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$
Chloride	23.2	mg/Kg	1	25.0	< 0.0430	93	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	${ m Units}$	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Chloride	23.2	mg/Kg	1	25.0	< 0.0430	93	90 - 110	0	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 211516

QC Batch:

Prep Batch: 54798

64164

Date Analyzed:

2009-10-05

Analyzed By: kg

Prepared By: kg

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	195	mg/Kg	1	250	< 5.86	78	35.2 - 167.1

QC Preparation: 2009-10-05

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$	RPD	Limit
DRO	201	mg/Kg	1	250	< 5.86	80	35.2 - 167.1	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	${ m Units}$	Dil.	Amount	Rec.	Rec.	\mathbf{Limit}
n-Triacontane	89.2	89.8	mg/Kg	1	100	89	90	34.5 - 178.4

Matrix Spike (MS-1) Spiked Sample: 211517

QC Batch:

64189

Date Analyzed:

2009-10-05

Analyzed By: AG

Prep Batch: 54819

QC Preparation: 2009-10-05

Prepared By: AG

Param

Benzene

Toluene Ethylbenzene

Xylene

Work Order: 9100503 Crownquest/New Mexico State 20 #5

MS			Spike	Matrix		Rec.
Result	${ m Units}$	Dil.	${f Amount}$	Result	Rec.	${f Limit}$
1.90	mg/Kg	1	2.00	< 0.00410	95	57.7 - 140.7
1.87	$_{ m mg/Kg}$	1	2.00	< 0.00310	94	53.4 - 146.6
1.84	mg/Kg	1	2.00	< 0.00240	92	62.1 - 141.6

6.00

< 0.00650

94

Page Number: 18 of 22 Lea County, NM

61.2 - 142.7

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

mg/Kg

5.64

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	${ m Units}$	Dil.	Amount	Result	Rec.	\mathbf{Limit}	RPD	Limit
Benzene	2.01	mg/Kg	1	2.00	< 0.00410	100	57.7 - 140.7	6	20
Toluene	1.99	mg/Kg	1	2.00	< 0.00310	100	53.4 - 146.6	6	20
Ethylbenzene	1.97	mg/Kg	1	2.00	< 0.00240	98	62.1 - 141.6	7	20
Xylene	5.99	mg/Kg	1	6.00	< 0.00650	100	61.2 - 142.7	6	20

1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	\mathbf{Limit}
Trifluorotoluene (TFT)	1.80	1.83	mg/Kg	1	2	90	92	62.7 - 119.6
4-Bromofluorobenzene (4-BFB)	1.96	1.96	m mg/Kg	1	2	98	98	49.6 - 136.7

Matrix Spike (MS-1) Spiked Sample: 211517

QC Batch: 64190 Date Analyzed: 2009-10-05 Analyzed By: AG
Prep Batch: 54819 QC Preparation: 2009-10-05 Prepared By: AG

	MS			\mathbf{Spike}	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$
GRO	17.6	mg/Kg	1	20.0	1.6	80	10 - 198.3

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	${f Units}$	Dil.	Amount	Result	Rec.	${f Limit}$	RPD	Limit
GRO	18.2	mg/Kg	1	20.0	1.6	83	10 - 198.3	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			\mathbf{Spike}	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	2.01	2.05	mg/Kg	1	2	100	102	65.5 - 123
4-Bromofluorobenzene (4-BFB)	2.17	2.22	mg/Kg	1	2	108	111	58.6 - 140

Matrix Spike (MS-1) Spiked Sample: 211521

QC Batch: 64216 Date Analyzed: 2009-10-06 Analyzed By: AR
Prep Batch: 54809 QC Preparation: 2009-10-06 Prepared By: AR

Work Order: 9100503 Crownquest/New Mexico State 20 #5

Page Number: 19 of 22 Lea County, NM

•		MS			Spike	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	3	6650	mg/Kg	50	1380	4250	174	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	4	6650	mg/Kg	50	1380	4250	174	90 - 110	0	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 211528

QC Batch: 64218 Prep Batch: 54810 Date Analyzed: 2009-10-06 QC Preparation: 2009-10-06

Analyzed By: AR Prepared By: AR

		MS			Spike	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit _
Chloride	5	424	mg/Kg	5	27.5	255	614	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	6	425	mg/Kg	5	27.5	255	618	90 - 110	0	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 211529

QC Batch: 64219 Prep Batch: 54811 Date Analyzed: 20 QC Preparation: 20

2009-10-07 2009-10-06 Analyzed By: AR Prepared By: AR

		MS			Spike	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$
Chloride	7	398	mg/Kg	5	138	287	81	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	${f Limit}$	RPD	Limit
Chloride	8	398	mg/Kg	5	138	287	81	90 - 110	0	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

³Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

⁴MSD analyte out of range. MS/MSD has a RPD within limits. Therfore, MS shows extraction occured properly.

⁵Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

⁶MSD analyte out of range. MS/MSD has a RPD within limits. Therfore, MS shows extraction occured properly.

⁷Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

⁸MSD analyte out of range. MS/MSD has a RPD within limits. Therfore, MS shows extraction occured properly.

Work Order: 9100503 Crownquest/New Mexico State 20 #5

Page Number: 20 of 22 Lea County, NM

Standard (CCV-2)

QC Batch: 64164

Date Analyzed: 2009-10-05

Analyzed By: kg

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	214	86	80 - 120	2009-10-05

Standard (CCV-3)

QC Batch: 64164

Date Analyzed: 2009-10-05

Analyzed By: kg

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	224	90	80 - 120	2009-10-05

Standard (CCV-1)

QC Batch: 64189

Date Analyzed: 2009-10-05

Analyzed By: AG

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		mg/Kg	0.100	0.0938	94	80 - 120	2009-10-05
Toluene		mg/Kg	0.100	0.0926	93	80 - 120	2009-10-05
Ethylbenzene		mg/Kg	0.100	0.0896	90	80 - 120	2009-10-05
Xylene		mg/Kg	0.300	0.273	91	80 - 120	2009-10-05

Standard (CCV-2)

QC Batch: 64189

Date Analyzed: 2009-10-05

Analyzed By: AG

			CCVs	CCVs	CCVs	Percent	
			${f True}$	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0892	89	80 - 120	2009-10-05
Toluene		$_{ m mg/Kg}$	0.100	0.0863	86	80 - 120	2009-10-05
Ethylbenzene		$_{ m mg/Kg}$	0.100	0.0820	82	80 - 120	2009-10-05
Xylene		mg/Kg	0.300	0.248	83	80 - 120	2009-10-05

Standard (CCV-1)

QC Batch: 64190

Date Analyzed: 2009-10-05

Analyzed By: AG

Work Order: 9100503 Crownquest/New Mexico State 20 #5

Page Number: 21 of 22 Lea County, NM

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	1.10	110	80 - 120	2009-10-05
Standard	(CCV-2)						
			.				. 5 . 4 . 6
QC Batch:	64190		Date Ana	lyzed: 2009-10	0-05	Anal	yzed By: AG
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	1.02	102	80 - 120	2009-10-05
Standard	(ICV-1)						
QC Batch:	64216		Date Ana	lyzed: 2009-1	0-06	Anal	yzed By: AR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	25.0	24.0	96	90 - 110	2009-10-06
Standard	(CCV-1)						
QC Batch:	64216		Date Ana	lyzed: 2009-10	0-06	Anal	yzed By: AR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	25.0	24.7	99	90 - 110	2009-10-06
Standard ((ICV-1)						
QC Batch:	64218		Date Ana	lyzed: 2009-10)-06	Anal	yzed By: AR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		${ m mg/Kg}$	25.0	24.7	99	90 - 110	2009-10-06

Standard (CCV-1)

QC Batch: 64218 Date Analyzed: 2009-10-06 Analyzed By: AR

Work Order: 9100503 Crownquest/New Mexico State 20 #5

Page Number: 22 of 22 Lea County, NM

			$rac{ ext{CCVs}}{ ext{True}}$	${ m CCVs} \ { m Found}$	${ m CCVs} \ { m Percent}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	$\operatorname{Limits}^{"}$	Analyzed
Chloride		mg/Kg	25.0	23.4	94	90 - 110	2009-10-06

Standard (ICV-1)

QC Batch: 64219

Date Analyzed: 2009-10-07

Analyzed By: AR

			ICVs True	ICVs Found	$egin{array}{l} ext{ICVs} \ ext{Percent} \end{array}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	25.0	23.4	94	90 - 110	2009-10-07

Standard (CCV-1)

QC Batch: 64219

Date Analyzed: 2009-10-07

Analyzed By: AR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	25.0	23.3	93	90 - 110	2009-10-07

LAB Order ID#	9100503	

TraceAnalysis, Inc.

email: lab@traceanalysis.com

6701 Aberdeen Avenue, Suite 9 **Lubbock, Texas 79424** Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296

5002 Basin Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313

200 East Sunset Rd., Suite E
EI Paso, Texas 79922
Tel (915) 585-3443
Fax (915) 585-4944
1 (888) 588-3443

8808 Camp Bowie Blvd. West, Suite 180
Ft. Worth, Texas 76116
Tel (817) 201-5260
Fax (817) 560-4336

Company Name: CONTONMENTE	CONS	بيا	lin	<u> </u>	g h	one #:	5	39	lo-	\overline{a}	37	8							~			VAL							B.I.				
Address: Patreet, City, Zip)	LOVIN	don	n	MY	383	(#:	10	74	5)	39	1	- 10	42	9	ŀ	1 1	ı	(۱۳ ا	CIE	• O	r 5	pe	CI	y r	Иe	tne	od	NC).) 	1 I	ı	
Conflact Person Brown			hvi		/ E-n	nail:	: iO	100	iAe I					_				7 000														lard	
Invoice to:		نے ہم	bru)	Λ	MO	î.	- <u>(1)</u>			10	<u> </u>	7			(C35		010%	Se Hg									i				stand	
(If different from above)	15	Ope	Tufi	MA		riect N]]		05) a	te a	<u>-0</u> -	抓	<u>, C</u>	4	M		1	Po													LO L	
	<u></u>			$\frac{\circ}{-}$		7		_							/ 624	16	Ĭ	100	Cd Cr Pb					625				A				ent f	
Project Location (including state):		·-	·····		Sa	apler	\widetilde{n}	lle	21	<u> </u>	N	K	1	NG NG	8260 /	TPH 418.1 / TX1005 / TX1005 Ext(C35)	TPH 8015 GRO / DRO / TVHC	PAH 8270 / 625 Tabai Metals At As Be Cd Ct Ph Se Ho 6010/200	Bac		S		624	8270 / 625	8	3		i,				Turn Around Time if different from standard	
	RS	ount	n	WATR	1X	<u> </u>		ESER'		VE 	1	SAN	IPLII	NG S	602	X100	2/02	625 6 As Bs	Ag As	ړي	TCLP Semi Volatiles		GC/MS Vol. 8260 / 624	힣	PCB's 8082 / 608 Destrides 8081 / 608		terit	b				Lime	
LAB# FIELD CODE	# CONTAINERS	/ Amount			ш										802	7	15 GF	9/0/	TCLP Metals	TCLP Volatiles	e N	RCI	Vol.	Semi.	082 /	BOD, TSS, pH	Moisture Content	S. S.				punc	
LAB USE\	E	Volume	WATER	ا ہا ا	SLUDGE		اي	H ₂ SO ₄		NONE		E E		w l	MIBE BTEX 8	141	8	PAH 8270 /	7 2	P.	٥١٥	7 ⁻ 7	/MS	GC/MS	PCB's 8082 Pecticides 8	7 7	isture	O				n Arc	_
ONLY	#	\$	WATE	¥ S	ଅ	모	ENO.	Ŧ z	JOE	ž		DAT		HIME	® E	JĒ	팹	<u> </u>	2	일	일	킬	ဗ	ဗ		2 8	8	₹ E				Ţ	Hold
211512 58-1 051		407					\bot		X	_	9	2	CIC	2830	<u> </u>		X	\perp		Ц						\perp		X	\downarrow			<u> </u>	
513 5B- C 15'												<u>\</u>	10	000	<u> </u> <u> </u>	oxed	X	_					L					Ш		$oldsymbol{\perp}$	ļ <u>.</u>		
514 SB C 25													Ш	10																			
515 53- @ 30		<u> </u>										\downarrow	12	205												\perp							Ш
76 MW-1051											9	29	lac	090)	<u> </u>		X																
57 MW-1.0 151		<u> </u>											* l	920	χ		X																
518 MW-1 @ 25'													0	945																			
515 MW- @ 35													lo	205																			
520 MW-1 @ 45'														030														П					
52 MW-10 65														100												T							\Box
522 MW-10 105'												V		120												T			/				
Relinquished by: Company; Dat	e: T	lme:	Rece	eived	by:	Co	mp	any:	0	ate:		Tim		INST_ OBS		-,]		٩B		E	Ι.	REM					<u></u>						
Comple Execut of ASIN 10	12/09 4	1:00	2	لر				1	1/2	.In	94	1.1	10	COR		_ ີ ເ	, 'n,	ON	·		M	II	4	ণ্ড	3-	()	V(dl	ω,	W			
Relinquished by: () Company: Dat	e: T	īme:	Rece	elved	by:	Co	mp	any:	, –	ate:	,	Tim	e:	INST_ OBS 2	2.1		Intac	W	N.														
10/3/0	9 11:	25	<u> </u>	<u>L</u>) N	Δ	77(Mce		10/3	109	11!:7	υ <u></u>	COR				space		<u>V ŅĀ</u>		D V			ala Ci								
Relinquished by: Company: Dat	e: T	īme:	Rece	elved	by:	<i>()</i> co	mp	any:	E	ate:	'	Tim	e:	INST_ OBS		_چ_			2 112 11 10 10 25 10 18			Dry V TRRF	Re	port	Requi	ired							
														COR		_, c	Logil	n-Rev	ew	, " (), 3, " (Ľ	Chec Limits	k If S s Are	Speci Nee	al Re ded	porti	ng —						
Submittal of samples constitutes agreement	ubmittal of samples constitutes agreement to Terms and Conditions listed on reverse side of C. O. C. ORIGINAL COPY Carrier #																																
		•	ノガリゼ	RINA	LVし	ir Y								_					J														

LAB Order ID#	9100503

TraceAnalysis, Inc.

6701 Aberdeen Avenue, Suite 9 **Lubbock, Texas 79424** Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296

5002 Basin Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313

200 East Sunset Rd , Suite E
EI Paso, Texas 79922
Tel (915) 585-3443
Fax (915) 585-4944
1 (888) 588-3443

email: lab@traceanaly	sis.com	1 (800) 378-1296	Fax (432) 68	9-6313 Fax (915) 585-4944 1 (888) 588-3443	Fax (817) 560-4336					
Company Name: Consulta Consu	1411x 15=	15 396-2378		ANALYSIS REQ						
Address: A (Street, City, Zib) 2000 4 GINS HWU LOVI N att	n7M 882/2	575 396-14	29	(Circle or Specify I	vietnoa No.)					
Confact Person Privat	Æ-	-mail 1.	ng.com	05 Ext(C35) HC Se Hg 6010B/200.7 Sr Pb Se Hg Sr Pb Se Hg	dard					
Invoice to:	Opro Livez	CAMON-CORLA	J	Se H(C35	stance					
(If different from above) TOTOL 41 UST C	PULL THE THE	rolect Name:	70/1/2	005 Ext(C35) //HC Se Hg 6010Bl Cr Pb Se Hg 625	 					
Project Location (including state):		ampler Signature()	B021B / 602 / 8260B / 624	[2]	BOD, TSS, pH Moisture Content C) 1 Oricle 30. I Turn Around Time if different from standard					
		Mulle Kilyud	502 / 1	TPH 418 1 / TX1005 / TX10 TPH 8015 GRO / DRO / TV PAH 8270C / 625 Total Metals Ag As Ba Cd Cr Pb TCLP Wetals Ag As Ba Cd (Cr Pb TCLP Volatiles TCLP Semi Volatiles TCLP Pesticides RCI GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C / 6 PCE's 8082 / 608						
RS	MATRIX	METHOD	SAMPLING 18 / 602	TPH 418 1 / TX1005 TPH 8015 GRO / DF PAH 8270C / 625 Total Metals Ag As Ba C TCLP Volatiles TCLP Volatiles TCLP Pesticides RCI GC/MS Vol. 8260B / GC/MS Semi. Vol. 85 PCE's 8082 / 608 Poetirides 8082 / 608	BOD, TSS, pH Moisture Content Ch loricle Turn Around Time if Hold					
LABW FIELD CODE	? / Arr		8021B	181/T) 0015 GRC 16220C / 6 erals Ag A Metals A Metals A Semi Vo Pesticide Pesticide S S S S S S S S S S S S S S S S S S S	SS. pH					
EAB # FIELD CODE VILLE ONLY	Volume / Amount WATER SOIL AIR SLUDGE	HCI HASO ₄ NaOH ICE	DATE TIME MTBE BTEX	TPH 418 1 / TX10 TPH 8015 GRO / TPH 8015 GRO / TOTAI Metals Ag As B TCLP Volatiles TCLP Volatiles TCLP Pesticides RCI GC/MS Vol. 8260 GC/MS Semi. Vol PCE's 8082 / 608 Poetficides R081A	BOD, TSS, pH Moisture Content Ch loricle Turn Around Time					
***************************************			 	17PH 17PH 17CL 17CL 17CL 17CL 17CL 17CL 17CL 17CL						
21520 TYIW-1 (0.951) 1	447 X		zala 1140							
11 W-1 C 85; 1			1 1200							
2051 1			1250							
10-10 115'			1330							
120' 120'			1355							
500 MIN- 0 1251			1420							
				Harder dear training the destruction of the destruc						
Relinquished by: Company: Date:	Time: Received by:	Company: Date:	Time: Temp°c:	LABUSE REMARKS:	-Midlaud					
Relinquished by: Company: Date:	Time: Received by:	Company: Date:	子。の Time: Temp°c:		1 000000					
Th 7 10/3/09 1	11.35 and on			Hodenado Ministra	Basis Required					
Relinquished by: Company: Date:	Time: Received by:		Time: Temp°c:	I IRRP Repo	ort Required eclal Reporting					
				Single F-Review Limits Are N						
Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of C. O. C. Carner #										
	ORIGINAL COPY	Υ	<u></u>	U .						

6701 Abergeen Avenue, Suite 9 200 East Sunset Road Suite E

Lubbock: Texas 79424 El Paso, Texas 79922 800 • 378 • 1296 888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

5002 Basin Street, Suite A1

Midland Texas 79703

432 • 689 • 6301

FAX 432 • 689 • 6313

3015 Harris Parkway, Suite 110 Ft. Worth, Texas 76132

817 • 201 • 5260

E-Mail: lab@traceanalysis.com

Certifications

WBENC: 237019 HUB:

1752439743100-86536

DBE: VN 20657

NCTRCA WFWB38444Y0909

NELAP Certifications

Lubbock:

T104704219-08-TX

LELAP-02003

Kansas E-10317

El Paso: T104704221-08-TX

LELAP-02002

Midland: T104704392-08-TX

Analytical and Quality Control Report

Curt Stanley Basin Environmental Consulting 2800 Plains Hwy. P. O. Box 381 Lovington, NM, 88260

Report Date: October 12, 2009

Work Order:

9100610

Project Location: Lea County, NM

Project Name: Crownquest/New Mexico State 20 #5 Project Number: Crownquest/New Mexico State 20 #5

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	1 ime	Date
Sample	Description	Matrix	Taken	Taken	Received
211645	MW-1	water	2009-10-05	09:00	2009-10-06

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 6 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael april

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Standard Flags

 $\boldsymbol{B}\,$ - $\,$ The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project Crownquest/New Mexico State 20 #5 were received by TraceAnalysis, Inc. on 2009-10-06 and assigned to work order 9100610. Samples for work order 9100610 were received intact at a temperature of 5.6 deg. C.

Samples were analyzed for the following tests using their respective methods.

		\mathbf{Prep}	Prep	$_{ m QC}$	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (IC)	E 300.0	54904	2009-10-08 at 12:42	64320	2009-10-09 at 13:54
TDS	SM 2540C	54822	2009-10-06 at 12:03	64293	2009-10-08 at 14:33

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9100610 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Work Order: 9100610 Crownquest/New Mexico State 20 #5 Page Number: 4 of 6 Lea County, NM

Analytical Report

Sample: 211645 - MW-1

Laboratory: Mi

Midland

Analysis: Chloride (IC) QC Batch: 64320 Prep Batch: 54904 Analytical Method:
Date Analyzed:
Sample Preparation:

E 300.0 2009-10-09 2009-10-08 Prep Method: N/A Analyzed By: AR Prepared By: AR

RL

Sample: 211645 - MW-1

Laboratory: Midland

Analysis: TDS QC Batch: 64293 Prep Batch: 54822 Analytical Method: SM 2540C Date Analyzed: 2009-10-08 Sample Preparation: 2009-10-06 Prep Method: N/A
Analyzed By: AR
Prepared By: AR

RL

Method Blank (1) QC Batch: 64293

QC Batch: 64293 Prep Batch: 54822 Date Analyzed: 2009-10-08 QC Preparation: 2009-10-06

Analyzed By: AR. Prepared By: AR.

MDL

ParameterFlagResultUnitsRLTotal Dissolved Solids<9.75</td>mg/L10

Method Blank (1) QC Batch: 64320

QC Batch: 64320 Prep Batch: 54904 Date Analyzed: 2009-10-09 QC Preparation: 2009-10-08 Analyzed By: AR. Prepared By: AR.

MDL

Work Order: 9100610 Crownquest/New Mexico State 20 #5

Page Number: 5 of 6 Lea County, NM

Duplicates (1) Duplicated Sample: 211592

QC Batch: 64293 Prep Batch: 54822 Date Analyzed: 2009-10-08 QC Preparation: 2009-10-06 Analyzed By: AR Prepared By: AR

	Duplicate	\mathbf{Sample}				RPD
Param	Result	Result	\mathbf{Units}	Dilution	RPD	Limit
Total Dissolved Solids	2280	2140	mg/L	5	6	10

Laboratory Control Spike (LCS-1)

QC Batch: 64293 Prep Batch: 54822 Date Analyzed: 2009-10-08 QC Preparation: 2009-10-06 Analyzed By: AR Prepared By: AR

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Total Dissolved Solids	986	mg/L	1	1000	< 9.75	99	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	R.PD	Limit
Total Dissolved Solids	1000	mg/L	1	1000	< 9.75	100	90 - 110	1	10

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 64320 Prep Batch: 54904 Date Analyzed: 2009-10-09 QC Preparation: 2009-10-08 Analyzed By: AR Prepared By: AR

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	24.7	mg/L	1	25.0	< 0.475	99	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}	RPD	Limit
Chloride	24.8	mg/L	1	25.0	< 0.475	99	90 - 110	0	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 211911

QC Batch: 64320 Prep Batch: 54904 Date Analyzed: 2009-10-09 QC Preparation: 2009-10-08

Analyzed By: AR Prepared By: AR

Work Order: 9100610 Crownquest/New Mexico State 20 #5

Page Number: 6 of 6 Lea County, NM

	MS			Spike	Matrix		Rec.
Param	Result	Units	$\mathbf{Dil}.$	Amount	Result	Rec.	Limit
Chloride	857	mg/L	5	138	653	148	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	2	860	mg/L	5	138	653	150	90 - 110	0	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (ICV-1)

QC Batch: 64320

Date Analyzed: 2009-10-09

Analyzed By: AR.

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	25.0	22.7	91	90 - 110	2009-10-09

Standard (CCV-1)

QC Batch: 64320

Date Analyzed: 2009-10-09

Analyzed By: AR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	25.0	22.5	90	90 - 110	2009-10-09

¹Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

²MSD analyte out of range. MS/MSD has a RPD within limits. Therfore, MS shows extraction occurred properly.

LAB Order	ID#	91001	Olg

	/		1	
Page_		of	 _	

TraceAnalysis, Inc.	Tra	ıceA	naly	vsis.	Inc.
---------------------	-----	------	------	-------	------

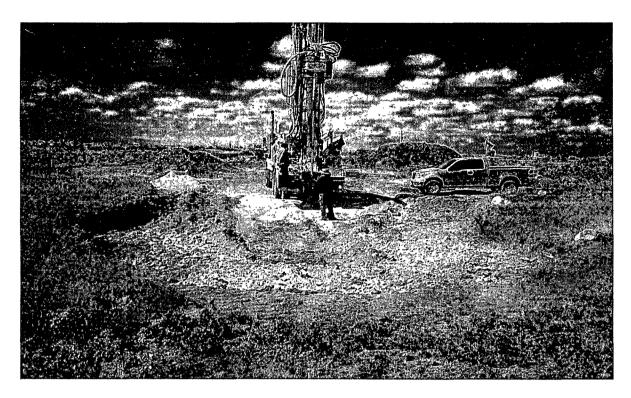
6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296

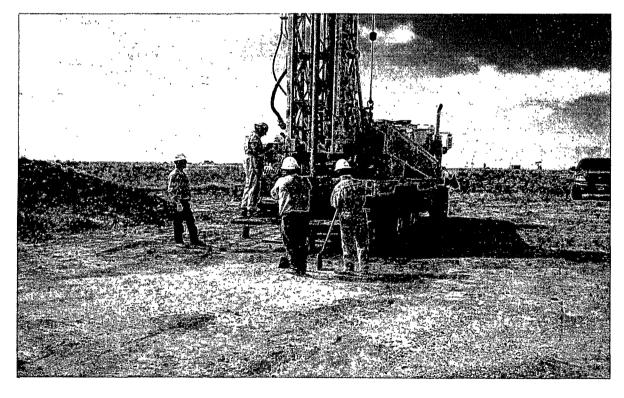
5002 Basin Street, Sulte A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313

200 East Sunset Rd., Suite E EI Paso, Texas 79922
Tel (915) 585-3443
Fax (915) 585-4944
1 (888) 588-3443

Example Solution Blvd. West, Suite 180
Ft. Worth, Texas 76116
Tel (817) 201-5260
Fax (817) 560-4336

- · · · · · · · · · · · · · · · · · · ·		en	nail: lal	b@tracear	nalysi	s.con	1						1 (80) (90)	78-12	296		Fax	(432) 689-	3313			1	(888)	5) 58:) 588	-3443	14 3				rax (117) 5	60-4336		
Company Na	ama:	NVIE	201	MENTA	7	A)N	Σī	XT	ne	Pho	ne #:	,	5	75	<u>-</u>	4	41-2	224i	1							VAL										
Address:	(St	eet, City,	Zip)	e His	111	Lo	± 1.	A 275	-	ax	Vu	1/1		-			<u> </u>		ו		,		(Ci	Cle	• •	r S	pe	Cif	y I	yle:	tho	od P	Vo.))	,	, 1
Contact Per	son:		11/4	<u>~</u>	7		~ 1	100	<u>,C)</u>	E-ma	ali:		···										290.7								1				lard	
Invoice to:	<u> </u>	-ST 7	100		m	1			6	\ <u>\</u>)								-	Fxf(C35)	3		Se Ha									9			stand	
(If different i	from ab	ove)	N	DUL	14L	JE:	Z		ب	Proje		amo	4 17	N	5		·		72	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			를 유 8									X			, Eo	
()Ke	DU	NQ	15	21					JE	نابلا	<u> </u>		ac	5	Σ <u>τ</u>	ΑĪ	$= 2\ell$	0#5	8260 / 624	560 / 624 TX 1005	/TX		Cr Pb Se Hg 6010/200.7 a Cd Cr Pb Se Ha					625	Ì			<u> </u>			ent fi	
Project Loca	ation (in	ncluding st	ate):	NM				•	Ì (Salym	pler	Sigi	natura	jÇ	1	.4	or C.C	-63	828	260			Ba G				24	8270 / (3			Iffer	
		<u> </u>	1, 1	-	δĵ	Ĕ	Ī	MAT	rix	-		PR	ESER METH	VAT	ŊΕ		SAME	LING	602	/ 602 / TX1005	TPH 8015 GRO / DRO				TCLP Semi Volatiles	20			PCB's 8082 / 608 Posticides 8081 / 608	3	뒽	Q			Furn Around Time if different from standard	
					CONTAINERS	/ Amount			T		Т		Ī				2009		٦-	7 / 6	GR	/ 625	Ag A	tiles	<u> </u>	1000	1.82	ايور	2/6	됩	Content	ğ			ĮĮ.	
LAB#		FIELD	CODE		NTA	/ 91	<u>۳</u>		SG GE				~ T		ш		0		1 1	8021	3015	3270	Met		Sen	2 2 2	S Vc	SS	808	TSS	e la	g y	1		- From	
(LAB USE) ONLY					00 #	Volume	WATER	SOIL	SLUDGE		오	SNE SNE	H ₂ SO ₄	빙	NONE		DATE	TIME	MTBE	BTEX 8021	E E	PAH 8270	Total Metals Ag As Ba TCLP Metals Ag As	TCLP Volatiles	TCLP Semi Volat	칠	SC/M	GC/MS	PCB's 8082	BOD, TSS, pH	Moisture]		E	Hold
211648		Mu	-1		Ţ.	250			+		\vdash	+		X				0900	+		+	1		-		+			+	+	1	N N	/ 	+	+	+-
A-10 19		11100				1 2410		-	+	-		\dashv			Н		10/2	DIO			+		_	++	+	+	H	+	+	+-		3/4	$\dagger \dagger$	-	_	+
The second secon							 		+			+		╁╴				<u> </u>	\vdash		+-	H		\mathbb{H}	十	-	\mathbb{H}	+	+	╁╌	\vdash	-	\vdash	\dashv	+	+-1
							┢	\vdash	-	-		\dashv		+-					╁┈╢	-	╀	++	+	H	+		+	\dashv		-	\vdash	+	++	+	+	+
						<u> </u>	\vdash	\vdash				\dashv		╁╌	 						+			+	+	+			+	+		+-	++	-+		+
							\vdash	-	-			-		┢					-		+	\vdash	+		+	+		\dashv	+	+-	++	+	+		+	+
						-	╁	\vdash	-			十		╁╴					+	\vdash	╁	\vdash	-	\Box	\dashv	+	\vdash	\dashv	+	╁	++	+	\forall		+	++
							-	-	+	\vdash	\vdash	\dashv		╂					\blacksquare		╁	H	- -		+	+	-	\dashv	+	+	\vdash	+	++	-	_	+
2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -							╁─╴		+	-	\vdash	+	-	 	-				+		-		-	+	+	+	+	\vdash	+	1	\vdash	十	++	+	+	+
							H	1	+	-	H			-					+		\dagger	\prod	-	+	+	+			\dashv	╁┈	H	+	$\dagger \dagger$	_	-	+
						 	 - -	\vdash	+	 -				†					\vdash		+	\sqcap	-		\dashv				-	+	\forall	+	††	_	+	
Relinquish	ed by:	Comp		Date:	Ti	ime:	Re	ceive	d by		Co	mpa	any:		Date		Time:	: INS	T		L	AB	US	SE.		REM	ARK	S:								
1 Al-	AL	180	212	10/5/09	09	GG S		In	L		ا	1	Λα C	e e	10/1	%9	9:00	OBS COI		و ما) 		VLY		A	ί,	160	42-	۱)،	lid	علا	we	Å			
Relinquish	ed py	Com		Date:		ime:	6	ceive	d by	-	Co		any:		Date		Time	INS	T		inta	()	LN													
																		OBS COI		(c He	dspac	a Y <i>L</i>	N Z					.1. ~	1.						
Relinquish	ed by:	Com	oany:	Date:	Ti	ime:	Re	ecelve	d by	:	Co	mp	any:	Í	Date	:	Time									Dry V TRRF	Rep	ort F	Requi	red						
																	•••	COL			Log	ı kı Ré	view_	11 . al		Chec Limits	k If S Are	pecia Nee	al Re ded	portir	ıg 					
Submittal of	fsampl	es constitu	tes agre	ement to Te	rms ar							side	e of C	О.	C.				Ç	arrier i	<u> C</u>	ore	<u>4-i</u>	٧												
						(OP.	IGIN	AI C	COE	γ								بب	G1110()		v	ᅪ	<u> </u>				_		==	_	==				


Appendix C Photographs


New Mexico State 20 #5 release site during initial activities

New Mexico State 20 #5 release site initial excavation

New Mexico State 20 #5 release site drilling soil boring SB-1

New Mexico State 20 #5 release site drilling monitor well MW-1

Appendix D Release Notification and Corrective Action (Form C-141)

<u>District I</u>
1625 N. French Dr., Hobbs, NM 88240
<u>District II</u>
1301 W Grand Avenue, Artesia, NM 88210
<u>District III</u>
1000 Rio Brazos Road, Aztec, NM 87410

7 S St. Francis Dr., Santa Fe, NM 87505

Pistrict IV

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

						OPE	RATOR			Initial Report	Final Report
Name of Co		CrownQues					Kent Crabtree				
		310 Midland		79710			No. 432-556-07				
Facility Na	me New	Mexico Stat	e 20 #5			Facility Typ	oe Poly Flow li	ne			
Surface Ow	ner No	rman Hahn		Mineral C	wner				Lease	No.	
				LOCA	TIO	N OF RE	LEASE				
Unit Letter H										County Lea	
			5" Wes								
				NAT	URE	OF REL	EASE				
Type of Rele	ase Produ	ced Water/Cru	ide Oil			Volume of 50 Barrels			Volum 25 Bar	e Recovered	
Source of Re	elease Poly	Flow line					Hour of Occurrenc	е	Date a	d Hour of Discove @ 0915	ry
Was Immedi	ate Notice (Yes 🗌	No Not Requir	ed	If YES, To	Whom?		,,,,,,,	6,000	
By Whom?	Fh Taylor					Date and H	Hour 7/21/09 @ 1	126	<u> </u>	<u> </u>	
Was a Water		ched?					olume Impacting t		ercourse		
			Yes	⊠ No							į
If a Waterco	urse was Im	pacted, Descr	ibe Fully.	*							
Describe Car	use of Probl	em and Reme	dial Actio	n Taken: Poly flo	w line s	eparated at th	e scam, resulting i	in a rele	ase of cr	ude oil, Flow line v	was repaired.
		l and Cleanup CD guidelines		Taken. Release	mpacte	d an area mo	asuring approxim	nately	00 feet	by 60 feet. Impac	ted soil will be
I hereby cert	tify that the	information g	given abo							at pursuant to NM	
regulations a	ill operators	are required	to report	and/or file certain	n releas	e notification	s and perform co	rrective	actions	for releases, which	n may endanger
public health	or the env	ironment. Th	e accepta	nce of a C-141 re	port by	the NMOCL) marked as "Fina	il Repo	t" does	not relieve the ope vater, surface water	rator of hability
or the enviro	operations in	addition, NM	iOCD acc	ceptance of a C-1	41 repo	ort does not re	elieve the operator	or of re	sponsibil	ity for compliance	with any other
		ws and/or regu			1					,	
		.1. 0	/				OIL CONS	SERV	ATIO	N DIVISION	
Signature:	Kans	ld Gan	erik				embal Ciae iil	_			
Printed Name				5now 5	R.	Approved by	ENV ENGINE District Supervise	ж ө г : Ууч	affr	4 Lobins	vit.
Title: Forem	ian					Approval Da	te: 08/05/0	9	Expiration	on Date: 10 05	09
E-mail Addro	ess: kcrabtr	ee@crownquo	est.com			Conditions of	f Approval: און	16ALE	to coo	10	
Date: 7/	30/09	•	Phone:	432-556-0770		41. SUBN	nit FINAL	C-1	AI BY	186-08.8.	2252

RECEIVED

HOBBSUCL