1R-426-150

REPORTS

DATE:

1-27-0

Hansen, Edward J., EMNRD

From:	L. Peter Galusky, Jr. [lpg@texerra.com]
Sent:	Monday, July 27, 2009 11:43 AM
To:	Hansen, Edward J., EMNRD
Cc:	Jones, Brad A., EMNRD; Katie Jones; Hack Conder
Subject:	Rice Operating Company Remediation Termination Request. BD P-35-1. NMOCD Case No.
Attachments:	1R426-150 BD P-35-1 ICP Report and Termination Request.pdf

Dear Edward,

Please find attached an updated remediation termination request for the above-referenced project, where we have addressed questions that you and/or Brad Jones raised during our meeting in Santa Fe last month.

We greatly appreciate your consideration of this request.

Sincerly,

Pete G. Cell: 432-634-9257

L. Peter Galusky, Jr. Ph.D. Principal Texerra Energy Square 505 N. Big Spring, Suite 404 Midland, Texas 79701 E-mail: <u>lpg@texerra.com</u> Web: <u>www.texerra.com</u> Office Telephone/Fax: 877-534-9001

This inbound email has been scanned by the MessageLabs Email Security System.

Investigation and Characterization Report and Termination Request Rice Operating Company – BD SWD System BD P-35-1 Jct UL P Sec 35 T 21S R 37E¹ NMOCD Case Number: 1R426-150

July 27th, 2009 (Update from: April 8th, 2009)

Prepared by:

L. Peter Galusky, Jr. Ph.D. Texerra 505 N. Big Spring, Suite 404 Midland, Texas 79701 Web: www.texerra.com E-mail: lpg@texerra.com

 $^{^1}$ Please note that the legal description was previously and incorrectly reported as T 22 R 38 E.

Investigation and Characterization Report and Termination Request

BD P-35-1 Jct UL P Sec 35 T 21S R 37E NMOCD Case Number: 1R426-150

Executive Summary

This report summarizes the findings of investigative work prescribed in the NMOCD approved Investigation and Characterization Plan for this site. Updates contained in this report from the original of 04-08-09 include the following: 1- The soil area affected by the former junction box was better defined and quantified; 2- The residual soil chloride mass contributed by the former junction box was calculated as the difference between the average soil chloride concentration and an estimated natural background chloride concentration of 100 ppm; 3- The mixing zone depth in the groundwater chloride model was reduced from 15 ft to 10 ft; 4 – The porosity of the aquifer used in the model was reduced from 0.33 to 0.30.

Rice Operating Company removed a wooden junction box at this location, replacing it with a new, watertight junction box in May of 2006 as part of its facility maintenance and upgrade program. The original wood junction box was removed and the excavated soils were blended and backfilled into the excavation. The disturbed surface was then seeded with a native vegetation mix. Preliminary site investigation associated with the junction box replacement indicated significant residual soil chloride concentrations and measurable but low petroleum hydrocarbon concentrations.

The field investigation was completed on September 10th, 2008. Three soil borings were advanced at and near the location of the former junction box to depths of 40 to 50 ft bgs, and a monitor well was installed in the near-source borehole. Soil chloride concentrations averaged 618 ppm among the three soil borings and throughout the depth of drilling. Soil petroleum hydrocarbons were found to be below detection by both PID field reading and by laboratory analysis.

A simple soil chloride transport and groundwater dilution model was developed to estimate the potential effect of residual soil chloride leaching into groundwater over an elliptical reference plume having maximum dimensions of 250 ft by 100 ft. The model predicted that maximum anticipated elevation of groundwater chlorides caused by the movement of residual soil chlorides is 168 ppm, indicating that residual soil chlorides should not represent a significant hazard to groundwater quality. An initial sample from an at-source monitor well exhibited a chloride concentration of 352 ppm. However, it is to be expected that chloride concentrations at/near the center of the former junction box would be higher than the model-predicted average value over the volume of the reference plume.

This level of chloride concentration, while somewhat above NMOCD's desired standard of 250 ppm, does not appear to warrant remedial actions (or the development of a Corrective Action Plan). Further, given that the monitor well is located within a high oil-field traffic location it may well be advisable to plug and abandon this well altogether, so as to avoid any potential for truck run-over and subsequent direct contamination of the aquifer through the well pipe.

It is therefore requested that NMOCD grant Rice Operating Company a "remediation termination" or similar closure status for this project and authorize the plugging and abandonment of the monitor well that was installed during this investigation.

BD P-35-1 Jct

Investigation and Characterization Report and Termination Request

BD P-35-1 Jct UL P Sec 35 T 21S R 37E NMOCD Case Number: 1R426-150

Contents

Executive Summary	ii
Table of Contents	iii
Background	1
Objective, Scope and Methodology	1
Results and Discussion	4
Appendix	11
A- NMOCD approval of Investigation and Characterization Plan B- Soil boring logs C- Laboratory data	12 13 16
D- Photograph	22

Figures

Figure 1 - Location map, USGS topo base	2
Figure 2 – Location map, Google aerial view	3
Figure 3a - Soil boring locations and soil chloride concentrations	5
Figure 3b – Average soil chloride and petroleum hydrocarbon concentrations	6
Figure 4 - Estimation of residual soil chloride mass	7
Figure 5 - Schematic diagram of soil chloride – groundwater dilution model	8
Figure 6 - Model equations and parameter values	9
Figure 7 - Model predictions	10

Background

This report summarizes the findings of investigative work prescribed in the Investigation and Characterization Plan (ICP) for this site, which was approved by NMOCD on July 17th, 2008 (a copy of e-mail approval is given in the Appendix). Updates contained in this report from the original of 04-08-09 include the following: 1- The soil area affected by the former junction box was better defined and quantified; 2- The residual soil chloride mass contributed by the former junction box was calculated as the difference between the average soil chloride concentration and an estimated natural background chloride concentration of 100 ppm; 3- The mixing zone depth in the groundwater chloride model was reduced from 15 ft to 10 ft; 4 – The porosity of the aquifer used in the model was reduced from 0.33 to 0.30.

The site is located approximately one mile east/southeast of Eunice, New Mexico (Figure 1). The topography is gently sloping toward the southeast. Soils on the site are described in the Lea County Soil Survey moderately deep to deep sandy material overlying caliche of varying hardness. NM OSE records indicate that groundwater is likely to be encountered at a depth of 50+/- feet in unconsolidated Tertiary alluvium of the Ogallala Formation.

Rice Operating Company removed a wooden junction box at this location, replacing it with a new, water-tight junction box (located approx. 33 ft southwest of the original location) in May of 2006 as part of its facility maintenance and upgrade program. As the original wood junction box was removed soils were sampled using a backhoe, creating a 30 by 25 by 12 ft deep excavation. The excavated soils were blended and then backfilled into the excavation. The disturbed surface was then seeded with a native vegetation mix.

Low concentrations (30 ppm) of petroleum hydrocarbons (TPH) were encountered in the excavated soil. TPH concentrations were below detection (< 10.0 ppm) in the sidewalls and bottom of the excavation. Petroleum hydrocarbons were therefore ruled out as a potential constituent of concern. In contrast, chloride concentrations increased with depth to 2,185 ppm at 12 ft below ground surface. The surface (ecological) impact of this release was relatively small.

Objective, Scope and Methodology

The <u>objective</u> of the ICP is to: **a**- quantify the magnitude and extent of residual soil chlorides and petroleum hydrocarbons; **b**- determine if these pose a threat to groundwater quality under present conditions and **c**- develop a Corrective Action Plan (CAP) to protect groundwater if this is warranted.

The <u>scope</u> of the ICP encompasses the measured effects of past operations of the facility on soil and groundwater in the affected vicinity.

The <u>methodology</u> of the ICP entailed: **a**- drilling to obtain subsurface soil samples; **b**- analyzing these for chlorides using field titration procedures and for petroleum hydrocarbons using a Photo-ionization Detector (PID); **c**- verifying (QA/QC) the field methods against a subset of samples analyzed by a commercial laboratory; **d**- analyzing the data using graphical and statistical methods and **e**- interpreting the data using a simple mass-balance dilution model.

The field investigation was completed on September 10th, 2008. Harrison and Cooper, Inc. provided drilling services and Rice Operating Company personnel performed field chloride titrations and PID analyses. L. Peter Galusky, Jr. of Texerra supervised field activities. Confirmatory laboratory analyses were subsequently performed by Cardinal Laboratories.

Figure 1 – BD P-35-1 location map on USGS topo base.

Results and Discussion

Three soil borings were advanced at and near the location of the former junction box to depths of 40 to 50 ft bgs (Figures 3a, 3b). Depth-averaged Soil chloride concentrations averaged 751 ppm among two soil borings within the affected area. After subtracting the presumed natural background soil chloride concentration of 100 ppm, the net depth averaged soil chloride concentration from the junction box is estimated to be 651 ppm. Soil petroleum hydrocarbons were found to be below detection by both PID field reading and by laboratory analysis (Appendix B2).

The total mass of residual soil chlorides at this location was estimated to be 2,760 lbs (Figure 4). In order to determine if these residual soil chlorides represent a potential hazard to down gradient groundwater quality, a simple soil chloride transport and groundwater dilution model (Figures 5 & 6) was developed to estimate the potential effect of this residual soil chloride leaching into groundwater over time given the following assumptions:

- 1. The center of mass of residual chlorides moves downward at a rate of 2.0 ft/yr.
- 2. It is assumed that these chlorides mix uniformly within an elliptical groundwater plume of dimensions 250 ft maximum length by 100 ft maximum width through a depth of 15 ft of the water table aquifer.
- 3. Natural dilution of the plume occurs at a rate of 10% per year.

The model predicted that maximum anticipated elevation of groundwater chlorides caused by the movement of residual soil chlorides is 168 ppm (Figure 7), indicating that residual soil chlorides should not represent a significant hazard to groundwater quality. An initial sample from an atsource monitor well (MW-1) exhibited a chloride concentration of 352 ppm (Appendix C4). However, it is to be expected that chloride concentrations at/near the center of the former junction box would be higher than the model-predicted average value <u>over the volume of the reference plume</u>.

The observed level of chloride concentration is immediately below the former junction box, and although somewhat above NMOCD's desired standard of 250 ppm it does not appear to warrant remedial actions (or the development of a Corrective Action Plan). Further, given that the monitor well is located within a high oil-field traffic location it may well be advisable to plug and abandon this well altogether, so as to avoid any potential for truck run-over and subsequent direct contamination of the aquifer through the well pipe.

It is therefore requested that NMOCD grant Rice Operating Company a "remediation termination" or similar closure status for this project and authorize the plugging and abandonment of the monitor well that was installed during this investigation.

Rice Operating Company is the service provider (agent) for the BD Salt Water Disposal (SWD) System and has no ownership of any portion of pipeline, well or facility. The BD SWD System is owned by a consortium of oil producers, System Parties, who provide all operating capital on a percentage ownership/usage basis.

Figure 3a – Approximate soil boring locations and field-measured soil chloride concentrations. The depth-averaged soil chloride concentration within the affected area is 751 ppm. We estimate the natural background soil chloride concentration to be 100 ppm. Therefore, the net depth-averaged soil chloride concentration within the affected area is estimated as 751 ppm – 100 ppm = 651 ppm.

Texerra

Soil Bori Rice Ope BD SWD BD P-35-	ing erat Sy	Log ting C stem	omp	bany						
Identifica	atic	on:		Avg o	f SB	-1 & SE	3-2			
Date:				9/10/2	2008					
Driller:				Harris	on &	Coope	r, Ind	c. (Ken Coo	per supervis	sing)
Drill meth	nod	:		Air rot	ary					
Logged b	by:			L. Pete	er Ga	alusky, .	Jr., ⁻	Texerra		
Total dep	oth:				50	ft belov	v gro	ound surfac	e	
Depth (ft	- +	-ield		Lab	1					
below	-	<u>Shiorid</u>	le	Chiorie	<u>de</u>					
<u>ground</u> surface)	(ppm)		(ppm)		test (pr	om)	test (ppm)	test (ppm)	Notes
	-5		624				0.0			
-1	0		685				0.0			
-1	5		110				0.0	< 25.0	< 25.0	organics from
-1	5		682		551		0.0	< 25.0	< 23.0	SD-1 Only
-2	25		874		551		0.0			
-3	30		647				0.0			
-3	35		754				0.0			
										organics from
-4	10	1.	136		831		0.0	< 25.0	< 25.0	SB-1 only
-4	15	1,	143				0.0			,
-5	50		521				0.0			
avg			751				0			

Figure 3b – Average soil chloride and petroleum hydrocarbon concentrations from two soil borings taken within the area affected of the former junction box.

Site:	BD P-35-1	
This estimate prepared by:	L. Peter Galusky, Jr	
Date:	07.23.09	
Inputs in Blue Font		Notes
length of affected area (ft)		45
width of affected area (ft)		22.5
affected area (sq ft)		795
affected depth (ft)		48
depth to water table (ft)		48
avg CI- conc of affected so	il (ppm)	751
est. natural background Cl	- conc (ppm)	100 estimated
unsat zone mass density (bs/cu yd)	3,000
CI- conc attributed to sour	ce (ppm)	651
volume of affected soil (cu	yds)	1,413
total mass of affected soils	5	
(lbs)		4,239,000
mass of residual soil chlor	ide (Ibs)	2,760
Figure 4 - Estimation of re	sidual soil chloride	mass.

7

Texerra

Figure 5- Schematic diagram of soil chloride – groundwater dilution model.

groundwater chloride mass lbs(t) = groundwater chloride mass <math>lbs(t - dt) +(chloride leaching lbs per vr - natural groundwater dilution) * dt INIT groundwater chloride mass lbs = 0**INFLOWS:** chloride leaching lbs per vr =(chloride leaching rate/depth to groundwater)*soil chloride mass lbs **OUTFLOWS:** natural groundwater dilution = groundwater chloride mass lbs*groundwater dilution rate soil_chloride_mass_lbs(t) = soil_chloride_mass_lbs(t - dt) + (chloride leaching lbs per vr) * dt INIT soil chloride mass lbs = 2,760**OUTFLOWS:** chloride leaching lbs per yr =(chloride leaching rate/depth to groundwater)*soil chloride mass lbs aquifer porosity = 0.3baseline groundwater chloride concentration = 0chloride leaching rate = IF(infiltration barrier ?=0) THEN 2.0 ELSE 2.0/20 depth_to_groundwater = 48 eliptical plume length = 250eliptical plume max wisth = eliptical plume length/2.5groundwater chloride_concentration ppm = 119962*(groundwater_chloride_mass_lbs)/(groundwater_plume_volume*7.5)+baseline_gr oundwater chloride concentration groundwater Cl std = 250 groundwater dilution rate = 0.10groundwater plume volume = (3.14*(eliptical_plume_length/2)*(eliptical_plume_max_wisth/2)*groundwater_thickness)* aquifer_porosity groundwater_thickness = 10 infiltration barrier ? = 0

Figure 6 – Model equations and parameter values for soil chloride – groundwater dilution model.

BD P-35-1 Jct

Figure 7 – Estimated change in baseline groundwater chloride concentrations (right axes) over time. The maximum projected elevation in baseline groundwater chloride concentration is 168 ppm.

APPENDICES

• Appendix A - NMOCD approval of Investigation and Characterization Plan

.

- Appendix B Soil Boring Logs
- Appendix C Laboratory data
- Appendix D Photographs

AT&T Yahoo! Mail	- lpg@texerra.com		Page 1 of
Satat Y		ALL BUSINESS	Print - Close Windo
Subject: ICP Approvals	#18427-06; #18427-181; #184	26-117; #1R426-150	
Date: Thu, 17 Jul 20	18 17:01:24 -0680		
From: "Honsen, Edwa	rd I., EMNRO" <edward3.hansen@< td=""><td>)state.rm.us></td><td></td></edward3.hansen@<>)state.rm.us>	
To: "Nack Conder"	<a>bconder@riceswil.com>		
CC: "Proce, Wayne,	EMNRD" <wayne.price@state.nm< td=""><td>uus>, mburrows@valornet.com, lpg@</td><td>texerra.com</td></wayne.price@state.nm<>	uus>, mburrows@valornet.com, lpg@	texerra.com
Dear Mr. Conder:			
The New M Investigation Chara referenced sites. Th Operating Company	exico Oil Conservation E cterization Plans (ICPs), e NMOCD hereby condi sites:	Division (NMOCD) has revie dated May 30, 2008 and Jun itionally approves the follow	ewed the submitted le 3, 2008, for the above ving ICPs for the Rice
1.	EME SWD Jct. O-19	submitted by Texerra on 6/6	v2008 #1R427-06
2.	EME SWD Phillips 'H	<u>B' EOL</u> submitted by Texerr	a on 6/6/2008 #1 R 427-181
3.	BD SWD Oxy Owen	A' submitted by Texerra on	a 6/6/2008 #1R426-117
4.	BD SWD Jct, P-35-1	submitted by Texerra on 6/6	/2008 #1 R 426-150
In the proposed wo 250 mg/Kg.	k elements for all ICPs p	lease include that the deline	ation of chlorides will be to
In the proposed wo <u>Owen 'A'</u> (#1R426 ppm using a PID (o	k elements for <u>EME SW</u> 117) please include that requivalent).	<u>D Phillips 'B' EOL</u> (#1R42 the delineation of petroleum	7-181) and <u>BD SWD Oxy</u> 1 hydrocarbons will be to 100
Also, for <u>BD SWD</u> for petroleum hydro	<u>Oxy Owen 'A'</u> (#1R426- carbons.	-117) please include re-samp	bling of the backfill material
In the proposed wo chemistry" (includi	k elements for all ICPs p ng chloride, TDS, and su	lease include the analyses fo lfate) and BTEX for potentia	or "general al groundwater sampling.
Also, please be adv responsibility shoul environment. In ad compliance with an	sed that NMOCD approv d operations pose a threa dition, NMOCD approva y OCD, federal, state, or	val of these plans does not a t to ground water, surface w l does not relieve the owner, local laws and/or regulation	elieve the owner/operator of ater, human health or the /operator of responsibility for \$.
http://b4.mail.yahoo	com/yn/texerra.com/Sh	owLetter?box=Rice%20Ope	rating%20Co.&M 8/4/20

Appendix A – NMOCD approval of Investigation and Characterization Plan.

Rice Operating CompanyBD SWD SystemBD P-35-1Identification:SB-1Location:Approx.9 If W of Rice Date:9/10/2008Driller:Harrison & Cooper, Inc. (Ken Cooper supervising)Drill method:Air rotaryL. Peter Galusky, Jr., TexerraTotal depth:50Screened Interval:40 - 50 ft bg Pipe diameter:4 inch diaDepthLabLabEdbowChlorideLabBelowChlorideLabBelowChlorideLabFildTestChlorideaufrace)IppmiIppmi(IntFieldGROgroundTestChloride-56680.0-107170.0-107170.0-151801920.0< 25.0< 25.0-205350.0-33418-33418-401,165-35585-401,165-451,143-50521ag665062505052102505052102501025011120121201313014Sanda, common1513101515016120171,00181,143191,150191,150 </th <th>Soil</th> <th>Bor</th> <th>ina L</th> <th>oa</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Soil	Bor	ina L	oa						
Identification:SB-1 Aprox. 9 ft W of Rice Date: $9/10/2008$ Driller:Harrison & Cooper, Inc. (Ken Cooper supervising)Drill method:Air rotaryL. Peter Galusky, Jr., Texerra 50Screened interval:40 - 50 ft bg Pipe diameter:4 inch diaDegth (ft, Field, LabLabLab Eled, GRODRO or oil stained sandy oil stained sandy reddish brown coarse sandy loam sand; common sand; gravels wariegated olive brown and gravelly sandy icom reddish brown coarse sandy oil stained and reddish brown coarse sandy loam sand; common sand; gravelly white fine gravelly sandy icom reddish brown coarse sandy icom sand; common sand; gravelly white fine gravelly sandy icom icom icom sand; gravelly white fine gravelly sandy icom <br< th=""><th>Rice</th><th>Op</th><th>eratin</th><th>na Co</th><th>mpany</th><th>BD SWD</th><th>Svster</th><th>n</th><th>BD P-35-1</th><th></th></br<>	Rice	Op	eratin	na Co	mpany	BD SWD	Svster	n	BD P-35-1	
Location: Approx. 9 ft W of Rice Date: 9/10/2008 Driller: Harrison & Cooper, Inc. (Ken Cooper supervising) Drill method: Air rotary L. Peter Galusky, Jr., Texerra Total depth: 50 Screened interval: 40 - 50 ft bg Pipe diameter: 4 inch dia Depth. (IL Field Debtw Chloride Lab Field Surface) (ppm) Test (ppm) (pp	Iden	tific	ation	:	SB-1		-,			
Driller: Harrison & Cooper, Inc. (Ken Cooper supervising) Drill method: Air rotary L. Peter Galusky, Jr., Texerra Total depth it. Field Detow Chloride Lab Field Lab Field Lab Lab Detow Chloride Lab Field Gamma Count of the constraint of th		tion		•	Approx 9 ft	W of Rice	Date:		9/10/200	8
Drill method: Air rotary L. Peter Galusky, Jr., Texerra Total depth: 50 Screened interval: 40 - 50 ft bg Pipe diameter: 4 inch dia Depth (IL Field Lab Field GRO DRO ground Test Chloride Lab Field GRO DRO ground Test (ppm) (ppm) (ppm) (ppm) Description oil stained sandy -5 666 0.0 Ioam -5 666 0.0 Ioam -5 666 0.0 Ioam -15 180 192 0.0 < 25.0 < 25.0 " oil stained and reddish brown coarse sandy -20 535 0.0 Ioam -20 535 0.0 Ioam -21 1180 III 192 0.0 < 25.0 < 25.0 " III method: III 192 IIII 193 IIII 193 IIII 193 IIII 193 IIIIIII 193 IIIIIII 193 IIIIIIIIII	Drille	-r.	•		Harrison & (Cooner In	c (Ken	Cooper	supervising)	
below Chloride Lab Peth fit Field Lab below Chloride Lab field GRO DRO from d Lest Chloride PID test test surface) (ppm) Test (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) -5 666 0.0 -10 717 0.0 -15 180 192 0.0 < 25.0 < 25.0 " oil stained sandy -20 535 0.0 loam -20 535 0.0 loam -20 535 0.0 loam -20 535 0.0 loam -21 1165 1,310 < 25.0 < 25.0 " oil stained free gravely sandy -30 418 " -40 1,165 1,310 < 25.0 < 25.0 " -50 521 moist arg 665 0 BD P-35-1 SB-1 Soil Chloride Concentrations -60 0 250 500 750 1,000 1,250 1,500 1,500 1,250 1,500 1,500 1,250 1,500 1,500 1,250 1,500 1,500 1,250 1,500 1,500 1,250 1,500 1,500 1,250 1,500 1,500 1,250 1,50	Drill	met	hod.		Air rotary		I Pete	e Galusk	v Ir Teverra	
the begin interval: 40 - 50 th bg Pipe diameter: 4 inch dia Depth (II. Field Lab Field GRO DRO ground Test (Drhoride Lab Field GRO DPO ground Test (Drhoride Depth) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) distained sandy -5 668 0.0 -10 717 0.0 < 25.0 < 25.0 " -15 180 192 0.0 < 25.0 < 25.0 " -16 minute of the stained sandy biased of	Tota	l doi	oth.		50 S		L. 1 010	Galusi	y, or., rezeria	
Consider interval. Not out by the diameter. Finite dat Deptit: (IL Field Lab Field <u>GRO</u> DRO ground Test. Chloride <u>PD test test</u> Cutting <u>Description</u> $\frac{1}{5}$ 668 0.0 ioam solution $\frac{-5}{10}$ 668 0.0 ioam solution $\frac{-5}{10}$ 717 0.0 < 25.0 < 25.0 " $\frac{-10}{10}$ 717 0.0 $\frac{-20}{10}$ $\frac{-10}{10}$ $\frac{-10}{1$	Scro	ana	d into	rval·	40 - 50 ft bo	Pino diar	notor	4 inch d	ia	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Don	b	uintei	vai.	40 - 50 ft bg	r ipe ula	neter.	- mon u	ia	
uL predu pelow Chloride Lab Field GRO DRO ground Test Chloride PID test test test test Cutting Well surface) (ppm) Test (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) or -5 668 0.0 Ioam solution of stained sandy -5 668 0.0 Ioam solution of stained reddish brown coarse sandy light olive loamy sand, common -20 535 0.0 Ioam solution of stained reddish brown and graysh while fine gravelly sandy Ioam graysh while fine gravelly sand, common -50 521 moist SB-1 Soli Chloride Concentrations -50 521 moist SB-1 Soli Chloride Concentrations -60 0 250 500 750 1.000 1.250 1.500 0 field data — average of field data ▲ lab data		<u></u>	Field				Lab	Lob		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Chlor	- da	1 ob	Field				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Delo	<u>w</u>	Teet	lue	Chlorida	<u>Field</u>		<u>UnU</u>	Cutting	14/-11
$\frac{3 \text{ solidate public}}{-5} = \frac{668}{668} = 0.0 \qquad \text{loam} \qquad \text{solid pipe} \qquad \text{is solid pipe} \qquad is solid$	Gurfe		<u>1051</u>	` \	Chionde Tost (ppm)	(nom)	$\frac{1051}{(2200)}$	(ppm)	<u>Culling</u>	<u>Vveii</u> Sebernetie
$\frac{-5}{-10} \begin{array}{c} 668 \\ -10 \\ 717 \\ -15 \\ 180 \\ 192 \\ 0.0 < 25.0 < 25.0 \\ 0 \\ 0 \\ 192 \\ 0.0 < 25.0 < 25.0 \\ 0 \\ 0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	Sund	ice)	<u>(ppm</u>	1	Test (ppm)	(ppm)	<u>(ppm)</u>	(ppin)	<u>Description</u>	Schematic
-3 000		F		660		0.0			oli stained sandy	
$\frac{10}{-15} \frac{17}{180} \frac{192}{192} 0.0 < 25.0 < 25.0 \frac{1}{250} \frac{1}$				717		0.0			ioam "	solid pipe
-15 180 192 $0.0 < 25.0 < 25.0$ oil stained reddish brown coarse sandy loam " " -20 535 0.0 loam " -25 719 -30 418 -35 585 -40 1,165 1,310 < 25.0 < 25.0 -45 1,143 sand -45 1,143 sand -45 1,143 sand -45 521 avg 665 0 BD P-35-1 SB-1 Soil Chloride Concentrations (E) -20 -60 -60 -60 -60 -60 -50 521 -40 -60 -60 -50 525 -40 -50 521 -40 -50 521 -40 -50 521 -40 -50 521 -40 -50 521 -40 -50 521 -40 -60 -60 -60 -60 -60 -50 525 -40 -50 521 -40 -50 521 -50 52 -50		-10		100	100	0.0	05.0	05.0	11	
-20 535 0.0 loam light olive loamy -25 719 small gravels -30 418 " -35 585 -40 1,165 1,310 < 25.0 < 25.0 " -45 1,143 sand -45 1,143 sand -45 1,143 sand -45 521 moist screen reddish brown gravely sand, -45 521 moist screen reddish brown gravely sand, -50 521 moist screen -50 521 sB-1 Soll Chloride Concentrations -60 0 250 500 750 1,000 1,250 1,500 0 field data arerage of field data to lab data		-15		180	192	0.0	< 25.0	< 25.0		
-20 535 0.0 loam -20 535 0.0 loam -25 719 snall gravels -30 418 -35 585 variegated olive brown and gravith white fine gravelly sandy loam -40 1,165 1,310 <25.0 <25.0 " tan fine gravelly sandy loam -45 1,143 sand sand reddish brown gravelly sand, moist avg 665 0 BD P-35-1 SB-1 Soll Chloride Concentrations (t) -20 0 0 0 0 0 0 1,250 1,500 0 0 1,250 1,500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									olistained	
$\begin{array}{c} -20 & 535 \\ -20 & 535 \\ -25 & 719 \\ -30 & 418 \\ -35 & 585 \\ -40 & 1,165 \\ 1,143 \\ -45 & 1,143 \\ -45 \\ -45 \\ -45 \\ -45 \\ -50 \\ 521 \\ avg \\ 665 \\ 0 \end{array}$									readish brown	
-20 5.35 0.0 loam light olive loamy sand, common small gravels " -25 719 small gravels " -30 418 " -30 418 " -40 1,165 1,310 < 25.0 < 25.0 " -40 1,165 1,310 < 25.0 < 25.0 " -45 1,143 sand reddish brown gravelly sand, moist screen reddish brown gravelly sand, moist screen		~~		5 0 F		0.0			coarse sandy	
$= \frac{25}{30} + \frac{719}{418}$ $= \frac{-25}{30} + \frac{719}{418}$ $= \frac{-35}{418}$ $= \frac{-35}{418}$ $= \frac{-35}{418}$ $= \frac{-35}{40} + \frac{1}{1,165} + \frac{1}{310} + \frac{25.0}{25.0} + \frac{25.0}{25.0}$ $= \frac{1}{1,143}$ $= \frac{1}{1,1$		-20		535		0.0			ioam	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									light olive loamy	
$ \frac{-25}{-30} \frac{719}{418} \qquad \qquad \text{small gravels} \qquad \text{avariegated olive brown and gravish white fine gravelly sandy loam} \\ \frac{-35}{-40} \frac{1,165}{1,165} 1,310 \qquad < 25.0 < 25.0 \qquad " \qquad \text{tan fine gravelly sandy} \\ \frac{-45}{-40} \frac{1,165}{1,143} \qquad \qquad \text{tan fine gravelly sand} \qquad \text{moist} \qquad " \qquad " \qquad \text{moist} \qquad \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		~-							sand, common	
-30 418 variegated olive brown and gravelly sandy loam -40 1,165 1,310 < 25.0 < 25.0 " tan fine gravelly sand reddish brown gravelly sand, moist " * avg 665 0 BD P-35-1 SB-1 Soil Chloride Concentrations (E) -20 -60 -60 -60 -60 -60 -60 -60 -6		-25		/19					small gravels	
$\frac{-35}{-40} = 585$ $\frac{-35}{-40} = 1,165$ $1,310 < 25.0 < 25.0$ $\frac{1}{1,165} = 1,310$ $\frac{-45}{-45} = 1,143$ $\frac{-45}{-45} = 1,143$ $\frac{-45}{-45} = 1,143$ $\frac{-50}{-50} = 521$ $\frac{-50}{-521} = 521$ $\frac{-50}{-521} = 521$ $\frac{-50}{-50} = 521$ $\frac{-50}{-50$		-30		418						er an
$\frac{-35}{-40} = \frac{585}{1,165} = 1,310 < 25.0 < 25.0 < 25.0 = 10 \text{ m}^{10} $									variegated olive	
$\frac{1}{35} 585 \\ -40 1,165 1,310 < 25.0 < 25.0 "$ $\frac{1}{1,143} \qquad $									brown and	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1								grayish white him	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		25		595					loom	н
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-33	-	165	1 210		- 25.0	< 25.0	"	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-40		,105	1,510		< 20.0	< 20.0	tan fino gravolly	
avg $^{-50}$ 521 521 50 665 665 665 665 665 665 665 665 665 665 665 665 665 66		-45	1	143					sand	
avg ${}^{-50}$ 521 gravelly sand, moist " avg ${}^{-50}$ 521 ${}^{-50}$ 521 ${}^{-50}$ 565 0 ${}^{-50}$ ${}^{-20}$ 0		-40		1,140					reddieb brown	
avg 50 521 50 521565 $0BD P-35-1SB-1 Soil Chloride Concentrations10^{\circ}$									aravelly sand	
avg 665 0 BD P-35-1 SB-1 Soil Chloride Concentrations (t) 567 0 0 0 0 0 0 0 0 0 0	ļ	-50		521					moist	
$\begin{array}{c c} & & & & & \\ & & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline \\$	avo	00		665		0			molot	
$\begin{array}{c c} \textbf{BD P-35-1} \\ \textbf{SB-1 Soil Chloride Concentrations} \\ \hline \textbf{W} & \textbf{SD} \\ \textbf{W} & \textbf{SD} \\ \textbf{W} & \textbf{SD} \\ \textbf{H} \\ $		·				·				•
SB-1 Soil Chloride Concentrations (t) $sold for the concentrations (t) sold for the concentrat$							BD F	P-35-1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ì				:	SB-1 Soil	Chlorid	le Conc	entrations	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	ſ		· · · · · · · · · · · · · · · · · · ·	0			
$\begin{array}{c c} \mathbf{\hat{t}} & \mathbf{\hat{c}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}}$							ľo			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ŧ	20			0				
$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$		2	⁻²⁰			O	0			
$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$		Ê Î	2			0				
end o o -60 0 250 500 750 1,000 1,250 1,500 0 field data — average of field data ▲ lab data		ŧ	-40						· 0· 🔺	
-60 0 250 500 750 1,000 1,250 1,500 ppm O field data — average of field data ▲ lab data		90	5			~			Ó –	
-60 0 250 500 750 1,000 1,250 1,500 ppm O field data → average of field data ▲ lab data						0	•			
0 250 500 750 1,000 1,250 1,500 ppm O field data → average of field data ▲ lab data			-60	l						
O field data ——average of field data ▲ lab data				0	250	500	75	0 m	1,000 1,250	1,500
				ſ				of field -		
							verage			

Appendix B1 – SB-1 soil boring log.

Texerra

.

Appendix B2 – SB-2 soil boring log.

Texerra

PHONE (575) 093-2325 + 101 E. MARLAND + HCBB0, NM 68240 ABORATORIE ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: JORDAN WOODFIN 122 W. TAYLOR HOBBS, NM 88240 Receiving Date: 09/12/08 Sampling Date: 09/10/08 Reporting Date: 09/16/08 Sample Type: SOIL Sample Condition: COOL & INTACT Project Number: NOT GIVEN Project Name: BD JCT P-35-1 Sample Received By: ML Project Location: BD JCT P-35-1 Analyzed By: AB GRO DRO $(C_6 - C_{10}) = (P C_{10} - C_{20})$ LAB NUMBER SAMPLE D (mg/kg) (mg/kg) 09/* 5/08 ANALYSIS DATE 09/15/08 H15921-1 SB#1 @ 15FT H15921-2 SB#1 @ 40FT <25.0 <25.0 <25.0 <25.0 -------570 527 **Quality Control** True Value QC 500 500 ------105 % Recovery 114 ----Relative Percent Difference 4.8 4.3 METHODS: TPH GRO & DRO, FPA SW-846 8015 M aue H15921 T RICE PLEASE NOTE: Linearity and Danages. Caldina's Edity and Costo accesses correly for any damatising whether based in contrast or tool, any to her her and your. Al dama including base to inceptance and any other cause whatsoever shell be deen on world unless states in the scheme based in contrast or the intervention of the damatis in a separate revore in network what Candina's Edity other cause whatsoever shell be deen on world unless states interventions, so of another her and the separate revore in network what Candina's a transmission of the analysis inflation, what in a damatis is defined by states in the separate revore in network what Candina's intervention of cause and a state system and the data states in the set with a separate revorted in caused what is a state and to the performance of the vertex of candina and the states and only of the datase states restored on the set of the states and the set of the states of the states of the states of the states of the state of the states of the st Appendix C1 – Cardinal Laboratories soil petroleum hydrocarbon data

Texerra

LABORATORIES	FLICHE (576) 099/2326 + 191 E. MARLAND + HOBBS, NM 85240
ANALYTICAL RE RICE OPERATIN ATTN: JORDAN 122 W. TAYLOR HOBBS, NM 862	SULTS FOR IG COMPANY WOODFIN 40
Receiving Date: 09/12/08 Reporting Date: 09/16/08 Project Number: NOT GIVEN Project Name: BD JCT P-35-1 Project Location: BD JCT P-25-1	Sampling Date: 09/10/08 Sample Type: SOIL Sample Condition: COCL & INTACT Sample Received By: ML Analyzed By: HM
LAB NUMBER SAMPLE (D	CI* (mg/kg)
ANALYSIS DATE	09/15/08
H15921-5 SB#1 @ 15FT	192
H15921-2 SB#1 @ 40FT	1,310
H15921-3 SB#2 @ 20F1 H15021-4 SB#2 @ 40ET	1,080
H15921-5 SB#3 @ 20FT	32
H15921-8 SB#3 @ 40FT	32
Quality Control	500
True Value QC	500
% Recovery	100
Relative Percent Difference	2.0
METHODS: CI: Sid Methods 4500-CIB "Analyses performed on 1:4 w:v aqueous e:	dracis. <u>09/16/08</u> Date
H15921 TCL RICE Ender NUTS' Leading and Demogras, Caronia & accern and down s exclusive reports dama in neutring them for magginese and any other caron attendemore shell be decord an 	ŭny SSITE JISENΣ, a festari blande n Sufficie de Net, sin i ta ktisto is tar orezent post be over ite anet transki made in anting orezena erd ny Gardinal a transition (34) tare a sen terrefertari et ny Video Handina, casana unamatora, tas d'oue, et barn iti prite recent by trada et al.

Texerra

Appendix C3 – Cardinal Laboratories soil data chain-of-custody form.

Description Date: 10,00000	HOBBS, NM E FAX TO: (575	CONDER DR STREE 18240 } 397-1471	PANY				
Reporting Date: 10/14/08 Project Number: NOT GIVEN Project Name: BD JUNCTION P-35-1				Sampling Date: 10/08/08 Sample Type: WATER Sample Condition: COOL & INTACT Sample Received By: Mi			
Project Location: T25S-R37E-SEC35 P ~ LE	EA ÇQ., NM			Analyzed B	y: HM/TR		
	Na (modil)	Ca (modity	Mg (mm41)	K	Conductivity (u S/cm)	T-Alkalinity (mnC+CO-4.)	
ANALYSIS DATE:	10/13/08	10/13/08	10/13/08	10/13/08	10/10/08	10/10/08	
HIG082-1 MONITOR WELL #1	242	94.6	68.0	7.4	1,900	288	
				, İ			
Quality Control	NR	48.1	48.6	2.92	1,416	NR	
Hite Value QU % Recovery	NR	90.0	50.0	3.00	1,413	NR	
Relative Percent Difference	NR	<0.1	4.8	3.0	0.2	NR	
METUODA-			FOR ALL CL			- -	
METHODS:	5003	couu-ca-o :	SOUANG E	6049	120.1	310.1	
	CI	SO4	CO3	HCO ₂	рH	TDS	
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	
ANALYSIS DATE:	10/10/08	10/13/08:	10/10/08	10/10/08	10/10/08	10/10/08	
HIDUB2-1 MOINTOR WELL #1	302	20(0	351		1,610	
		1					
		1					
			AND	988	7.09	NR	
Quality Control	490	44.4		4000	7 00		
Quality Control True Velue QC	490 500 98.0	44.4 40.0	NR	1000 cai a	7.00	NR, NP	
Quality Control True Velue QC % Recovory Relative Percent Difference	490 500 98.0 2.0	44.4 40.0 111 1.1	NR NR NR	1000 98.8 <0.1	7.00 101 1.3	NR NR NR	
Quality Control True Value QC % Recovery Relative Percent Difference	490 500 98.0 2.0	44.4 40.0 111 1.1		1000 98.8 <0.1	7.00 101 1.3	NR NR NR	
Quality Control True Value QC % Recovery Relative Percent Difference METHODS:	490 500 98.0 2.0 5 M4 500-C1-B	44.4 40.0 111 1.1 375.4	NR NR NR 310.1	1000 98.8 <0.1 310.1	7.00 101 1.3 150.1	NR NR 160.1	
Duality Control True Velue QC & Recovery Relative Percent Difference AETHODS: 	490 500 98.0 2.0 5M4500-CI-B	44.4 40.0 111 1.1 375.4	NR NR NR 310.1	1000 98.8 <0.1 310.1	7.80 101 1.3 150.1	NR NR NR NR 160.1	

Appendix C4 – Cardinal Laboratories monitor well data – inorganics.

А	NALYTICAL RES	SULTS FOR		
R	CE OPERATING	G COMPANY NDER		
1. H	22 W. TAYLOR OEBS, NM 8824	0		
F Receiving Date: 10/09/08	AX TO: (575) 39	7-1471 Sa	molino Date: 1	0/08/08
Reporting Date: 10/13/08		Sa	mple Type: W	ATER
Project Number: NOT GIVEN Project Name: 3D JUNCTION P-35-	1	5a Sa	mple Condition mple Received	1 By: ML
Project Location: T25S-R37E-SEC3	5 P ~ LEA CO., ł	An An	alyzed By: ZL	
			ETHYL	TOTAL
	BENZENE		BENZENE	XYLENES
CABINOMIDER SAMPLE ID	(inghr.)	(IIIG'L)	(mg/c)	(Ingre)
ANALYSIS DATE HIG082-1 MONITOR WELL #1	<0.001	10/10/08	10/10/08 <0.001	10/10/08
				-
รักษ์ เรียวของ เของาร จะของรับระเมติมมระบบป		!		
/ 				
Quality Control	0.051	0.053	0.050	0,153
True Value QC	0.050	0.050	0.050	0.150
Relative Percent Difference	0.8	0.4	1.6	1.3
METHOD: EPA SW-846 80218				
TEXAS NELAP CERTIFICATION T1 AND TOTAL XYLENES. J	04704398-08-TX	FOR BENZE	NE, TOLUENE	, ETHYL BENZENE,
			<i>k</i> 3	
A.C. A. Moant			10 1/2 H	2
Chemist		Da	(<u>17.27.27.47</u> de	<i>J</i>

Appendix C6 – Cardinal Laboratories monitor well data chain-of-custody form.

Appendix D – Harrison and Cooper completing MW-1.