1R-426-150

REPORTS

DATE:

4-8-0

L. Peter Galusky, Jr. Ph.D., P.G.

Texerra

505 N Big Spring, Suite 404 Midland, Texas 79701 Tel: 432-634-9257 E-mail: <u>lpg@texerra.com</u>

> n N N

Pi

11

 \Box

April 8th, 2009

Mr. Brad Jones

New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RE: Submittal of ICP Reports and Termination Requests for NMOCD Case Nos. 1R426-117 (BD Oxy Owen A), 1R426-150 (BD P-35-1), 1R427-181 (EME Phillips B EOL) and 1R427-06 (EME O-19 Jct)

Sent via E-mail and Certified Mail/Return Receipt No. 7006 0100 0001 2438 3951

Dear Mr. Jones:

Please find enclosed Investigation and Characterization Reports and Termination Requests for the above-referenced projects.

ROC is the service provider (agent) for the EME and BD Salt Water Disposal (SWD) Systems and has no ownership of any portion of pipeline, well or facility. The EME and BD SWD Systems are owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis.

We appreciate your review consideration of these remediation termination requests.

Sincerely,

Cc:

L. Peter Galusky, Jr. Ph.D. Principal

Investigation and Characterization Report and Termination Request Rice Operating Company – BD SWD System BD P-35-1 Jct UL P Sec 35 T 21S R 37E¹ NMOCD Case Number: 1R426-150

April 8th, 2009

Prepared by:

L. Peter Galusky, Jr. Ph.D. Texerra 505 N. Big Spring, Suite 404 Midland, Texas 79701 Web: www.texerra.com E-mail: lpg@texerra.com

¹ Please note that the legal description was previously and incorrectly reported as T 22 R 38 E.

Investigation and Characterization Report and Termination Request

BD P-35-1 Jct UL P Sec 35 T 21S R 37E NMOCD Case Number: 1R426-150

Executive Summary

This report summarizes the findings of investigative work prescribed in the NMOCD approved Investigation and Characterization Plan for this site.

Rice Operating Company removed a wooden junction box at this location, replacing it with a new, water-tight junction box in May of 2006 as part of its facility maintenance and upgrade program. The original wood junction box was removed and the excavated soils were blended and backfilled into the excavation. The disturbed surface was then seeded with a native vegetation mix. Preliminary site investigation associated with the junction box replacement indicated significant residual soil chloride concentrations and measurable but low petroleum hydrocarbon concentrations.

The field investigation was completed on September 10th, 2008. Three soil borings were advanced at and near the location of the former junction box to depths of 40 to 50 ft bgs, and a monitor well was installed in the near-source borehole. Soil chloride concentrations averaged 618 ppm among the three soil borings and throughout the depth of drilling. Soil petroleum hydrocarbons were found to be below detection by both PID field reading and by laboratory analysis.

A simple soil chloride transport and groundwater dilution model was developed to estimate the potential effect of residual soil chloride leaching into groundwater over an elliptical reference plume having maximum dimensions of 250 ft by 100 ft. The model predicted that maximum anticipated elevation of groundwater chlorides caused by the movement of residual soil chlorides is less than 175 ppm, indicating that residual soil chlorides should not represent a significant hazard to groundwater quality. An initial sample from an at-source monitor well exhibited a chloride concentration of 352 ppm. However, it is to be expected that chloride concentrations at/near the center of the release would be higher than the model-predicted average value over the volume of the reference plume.

This level of chloride concentration, while somewhat above NMOCD's desired standard of 250 ppm, does not appear to warrant remedial actions (or the development of a Corrective Action Plan). Further, given that the monitor well is located within a high oil-field traffic location it may well be advisable to plug and abandon this well altogether, so as to avoid any potential for truck run-over and subsequent direct contamination of the aquifer through the well pipe.

It is therefore requested that NMOCD grant Rice Operating Company a "remediation termination" or similar closure status for this project and authorize the plugging and abandonment of the monitor well that was installed during this investigation.

Investigation and Characterization Report and Termination Request

BD P-35-1 Jct UL P Sec 35 T 21S R 37E NMOCD Case Number: 1R426-150

Contents

Executive Summary	ii
Table of Contents	iii
Background	1
Objective, Scope and Methodology	1
Results and Discussion	4
Appendix	11
A- NMOCD approval of Investigation and Characterization Plan	12
B- Soil boring logs	13
C- Laboratory data	16
D- Photograph	22

Figures

Figure 1 - Location map, USGS topo base	2
Figure 2 – Location map, Google aerial view	
Figure 3a - Soil boring locations and soil chloride concentrations	5
Figure 3b – Average soil chloride and petroleum hydrocarbon concentrations	6
Figure 4 - Estimation of residual soil chloride mass	7
Figure 5 - Schematic diagram of soil chloride – groundwater dilution model	8
Figure 6 - Model equations and parameter values	9
Figure 7 - Model predictions	10

Background

This report summarizes the findings of investigative work prescribed in the Investigation and Characterization Plan (ICP) for this site, which was approved by NMOCD on July 17th, 2008 (a copy of e-mail approval is given in the Appendix).

The site is located approximately one mile east/southeast of Eunice, New Mexico (Figure 1). The topography is gently sloping toward the southeast. Soils on the site are described in the Lea County Soil Survey moderately deep to deep sandy material overlying caliche of varying hardness. NM OSE records indicate that groundwater is likely to be encountered at a depth of 50+/- feet in unconsolidated Tertiary alluvium of the Ogallala Formation.

Rice Operating Company removed a wooden junction box at this location, replacing it with a new, water-tight junction box (located approx. 33 ft southwest of the original location) in May of 2006 as part of its facility maintenance and upgrade program. As the original wood junction box was removed soils were sampled using a backhoe, creating a 30 by 25 by 12 ft deep excavation. The excavated soils were blended and then backfilled into the excavation. The disturbed surface was then seeded with a native vegetation mix.

Low concentrations (30 ppm) of petroleum hydrocarbons (TPH) were encountered in the excavated soil. TPH concentrations were below detection (< 10.0 ppm) in the sidewalls and bottom of the excavation. Petroleum hydrocarbons were therefore ruled out as a potential constituent of concern. In contrast, chloride concentrations increased with depth to 2,185 ppm at 12 ft below ground surface. The surface (ecological) impact of this release was relatively small.

Objective, Scope and Methodology

The <u>objective</u> of the ICP is to: **a**- quantify the magnitude and extent of residual soil chlorides and petroleum hydrocarbons; **b**- determine if these pose a threat to groundwater quality under present conditions and **c**- develop a Corrective Action Plan (CAP) to protect groundwater if this is warranted.

The <u>scope</u> of the ICP encompasses the measured effects of past operations of the facility on soil and groundwater in the affected vicinity.

The <u>methodology</u> of the ICP entailed: **a**- drilling to obtain subsurface soil samples; **b**- analyzing these for chlorides using field titration procedures and for petroleum hydrocarbons using a Photo-ionization Detector (PID); **c**- verifying (QA/QC) the field methods against a subset of samples analyzed by a commercial laboratory; **d**- analyzing the data using graphical and statistical methods and **e**- interpreting the data using a simple mass-balance dilution model.

The field investigation was completed on September 10th, 2008. Harrison and Cooper, Inc. provided drilling services and Rice Operating Company personnel performed field chloride titrations and PID analyses. L. Peter Galusky, Jr. of Texerra supervised field activities. Confirmatory laboratory analyses were subsequently performed by Cardinal Laboratories.

Figure 1 – BD P-35-1 location map on USGS topo base.

2

Results and Discussion

Three soil borings were advanced at and near the location of the former junction box to depths of 40 to 50 ft bgs (Figures 3a, 3b). Soil chloride concentrations averaged 618 ppm among the three soil borings and throughout the depth of drilling. Soil petroleum hydrocarbons were found to be below detection by both PID field reading and by laboratory analysis (Appendix B2).

The total mass of residual soil chlorides at this location was estimated to be 5,933 lbs (Figure 4). In order to determine if these residual soil chlorides represent a potential hazard to down gradient groundwater quality, a simple soil chloride transport and groundwater dilution model (Figures 5 & 6) was developed to estimate the potential effect of this residual soil chloride leaching into groundwater over time given the following assumptions:

- 1. The center of mass of residual chlorides moves downward at a rate of 2.0 ft/yr.
- 2. It is assumed that these chlorides mix uniformly within an elliptical groundwater plume of dimensions 250 ft maximum length by 100 ft maximum width through a depth of 15 ft of the water table aquifer.
- 3. Natural dilution of the plume occurs at a rate of 10% per year.

The model predicted that maximum anticipated elevation of groundwater chlorides caused by the movement of residual soil chlorides is less than 175 ppm (Figure 7), indicating that residual soil chlorides should not represent a significant hazard to groundwater quality. An initial sample from an at-source monitor well (MW-1) exhibited a chloride concentration of 352 ppm (Appendix C4). However, it is to be expected that chloride concentrations at/near the center of the release would be higher than the model-predicted average value over the volume of the reference plume.

This level of chloride concentration, while somewhat above NMOCD's desired standard of 250 ppm, does not appear to warrant remedial actions (or the development of a Corrective Action Plan). Further, given that the monitor well is located within a high oil-field traffic location it may well be advisable to plug and abandon this well altogether, so as to avoid any potential for truck run-over and subsequent direct contamination of the aquifer through the well pipe.

It is therefore requested that NMOCD grant Rice Operating Company a "remediation termination" or similar closure status for this project and authorize the plugging and abandonment of the monitor well that was installed during this investigation.

Rice Operating Company is the service provider (agent) for the BD Salt Water Disposal (SWD) System and has no ownership of any portion of pipeline, well or facility. The BD SWD System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis.

BD P-35-1 Jct

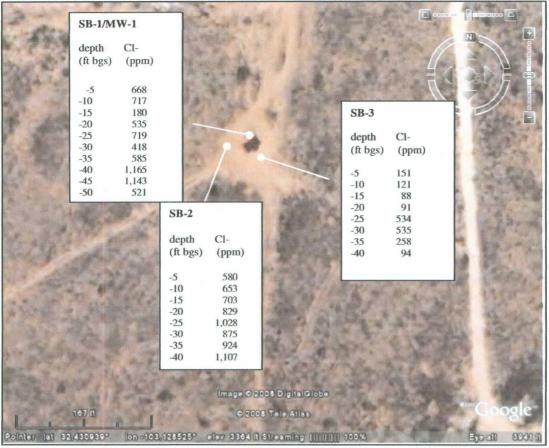
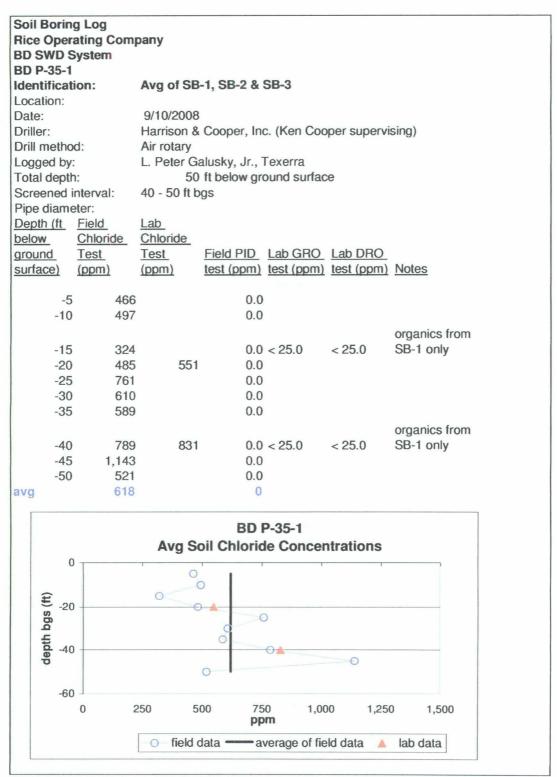
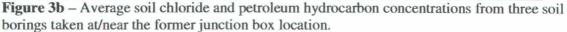




Figure 3a – Approximate soil boring locations and field-measured soil chloride concentrations.

6

Soil Chloride Calculator	
	oride, based upon Soil Chloride Concentration
Rice Operating Company	
Site:	BD P-35-1
This estimate prepared by:	
Date:	4/1/2009
Dale.	4/1/2000
Inputs in Blue Font	
length of affected area (ft)	45
width of affected area (ft)	40
affected area (sq ft)	1,800
affected depth (ft)	48
depth to water table (ft)	48
avg CI- conc of affected so	il (ppm) 618
unsat zone mass density (I	bs/cu yd) 3,000
volume of affected soil (cu	yds) 3,200
total mass of affected soils	• •
(lbs)	9,600,000
mass of residual soil chlori	
	、 <i>, ,</i>

Figure 4 - Estimation of residual soil chloride mass.

.

BD P-35-1 Jct

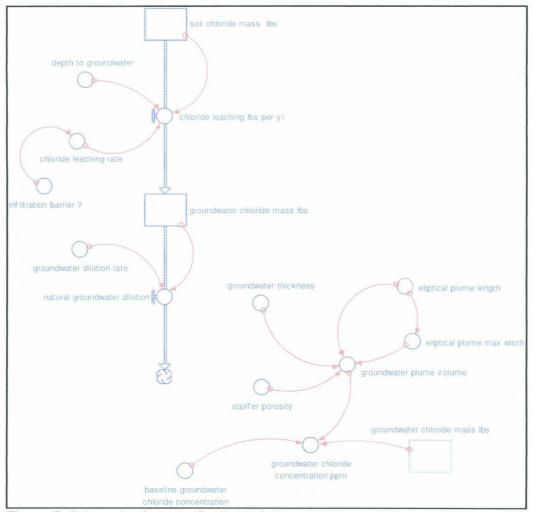


Figure 5- Schematic diagram of soil chloride – groundwater dilution model.

groundwater chloride mass $lbs(t) = groundwater chloride_mass_lbs(t - dt) +$ (chloride_leaching_lbs_per_yr - natural_groundwater_dilution) * dt INIT groundwater chloride mass lbs = 0**INFLOWS:** chloride_leaching_lbs_per_yr = (chloride leaching rate/depth to groundwater)*soil chloride_mass_lbs **OUTFLOWS:** natural_groundwater_dilution = groundwater_chloride_mass_lbs*groundwater_dilution_rate soil chloride mass lbs(t) = soil chloride mass lbs(t - dt) + (chloride leaching lbs_per_yr) * dt INIT soil_chloride_mass__lbs = 5933 **OUTFLOWS:** chloride_leaching_lbs_per_yr = (chloride leaching rate/depth to groundwater)*soil chloride mass lbs aquifer_porosity = 0.33 baseline groundwater chloride concentration = 0chloride leaching rate = IF(infiltration barrier ?=0) THEN 2.0 ELSE 2.0/20 depth to groundwater = 48eliptical_plume_length = 250 eliptical plume max wisth = eliptical plume length/2.5groundwater_chloride_concentration_ppm = 119962*(groundwater chloride mass lbs)/(groundwater plume volume*7.5)+baseline gr oundwater chloride concentration groundwater Cl std = 250 groundwater_dilution_rate = 0.15 groundwater plume volume = (3.14*(eliptical_plume_length/2)*(eliptical_plume_max_wisth/2)*groundwater_thickness)* aquifer porosity groundwater_thickness = 15 infiltration barrier ? = 0

Figure 6 – Model equations and parameter values for soil chloride – groundwater dilution model.

BD P-35-1 Jct

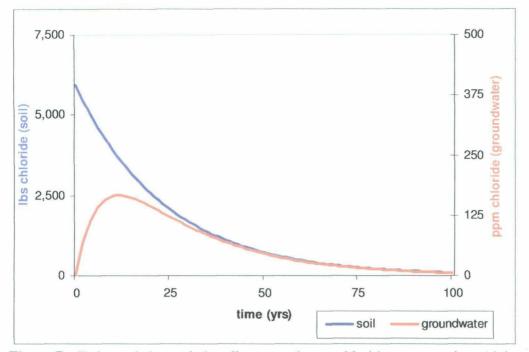
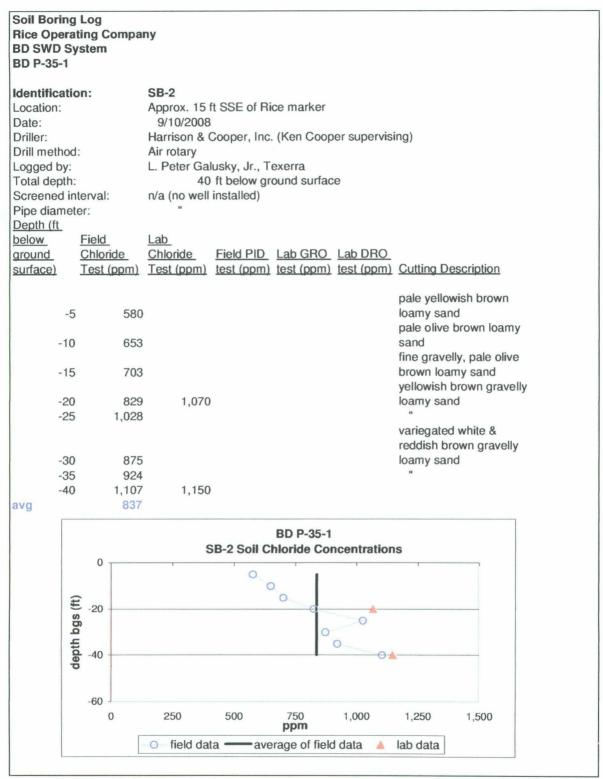


Figure 7 – Estimated change in baseline groundwater chloride concentrations (right axes) over time.


APPENDICES

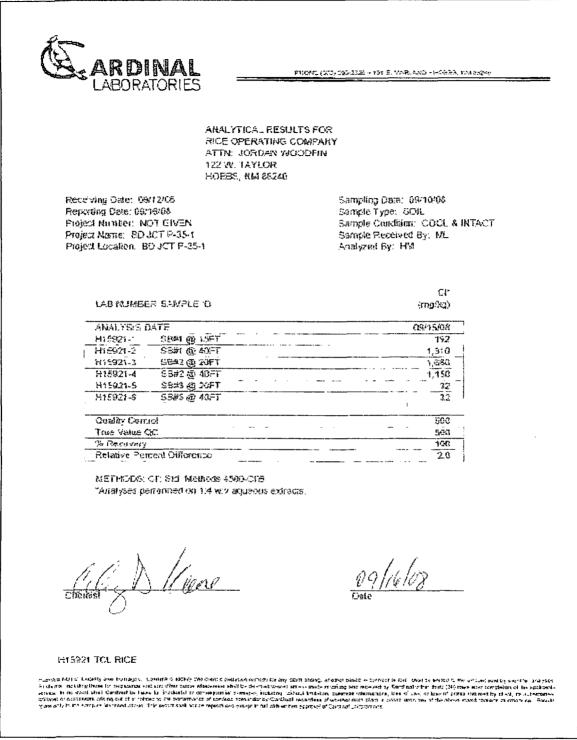
- Appendix A NMOCD approval of Investigation and Characterization Plan
- Appendix B Soil Boring Logs
- Appendix C Laboratory data
- Appendix D Photographs

MAIL Classic Imail Subject: ICP Approvals: #1R427-06; #1R427-181; #1R426-117; #1R426-150 Date: 1na, 17 Jul 2008 17/01:24-0600 Prom: "Hansen, Libourd J., 1PUBO" <celvard; hansen@state.im.ins=""> To: "Hack Conder" Integration of the edward; hansen@state.im.ins> To: "Hack Conder" Integration of the edward; hansen@state.im.ins> To: "Hack Conder" Nonce edward; hansen@state.im.ins> C: "Price, Wayne, EMRRO" <cwayne.pitce@state.am.us>, inburnows@vabrinet.com, hgg@texerita.com Dear Mr. Conder: The New Mexico-Oil Conservation Division (NMOCD) has reviewed the submit Investigation Characterization Plans (ICPs), dated May 30, 2008 and June 3, 2008, for the referenced sites. The NMOCD hereby conditionally approves the following ICPs for the Operating Company sites: 1. EME SWD Jct O-19 submitted by Texerra on 6/6/2008 #1R427-0 2. EME SWD Phillips 'B' EOL submitted by Texerra on 6/6/2008 #1R426-1 3. BD SWD Oxy Owen 'A' submitted by Texerra on 6/6/2008 #1R426-1 In the proposed work elements for all ICPs please include that the delineation of chlorid 250 mg/Kg. In the proposed work elements for EME SWD Phillips 'B' EOL (#1R427-181) and BD : Owen 'A' (#1R426-117) please include that the delineation of petroleum hydrocarbons of ppm using a PID (or equivalent). Also, for BD SWD Oxy Owen 'A' (#1R426-117) please include re-sampling of the back for pe</cwayne.pitce@state.am.us></celvard;>	Page 1 of
Subject: KP Approvals: #18427-06; #18427-181; #18426-117; #18426-150 Date: Thi, 17.30/2008 (7:01:24-0640 From: "Hansen, Libord J., 1988D" <exward; kansen@state.im.is=""> To: "Hack Carder" "Hock Carder" "Hoch Carder" <</exward;>	nt - Close Windo
Date: 1ht, 1/J Jul 2008 17:01:24-0600 Phone: "Hansen, Libord J., 19880" <ceward; fansen@state.nn.us=""> Fo: "Hack Conder" <ficonder@riceswd.com> CC: "Price, Wayne, EMDRO" <creation (nmocd)="" division="" has="" reviewed="" submit<="" td="" the=""> Dear Mr. Conder: The New Mexico-Oil Conservation Division (NMOCD) has reviewed the submit Investigation Characterization Plans (ICPs), dated May 30, 2008 and June 3, 2008, for the referenced sites. The NMOCD hereby conditionally approves the following ICPs for the Operating Company sites: 1. Image: Bit SWD Jet 0-19 submitted by Texerra on 6/6/2008#1R427-0 Image: Bit SWD Date Phillips 'B' EDL submitted by Texerra on 6/6/2008#1R427-0 Image: Bit SWD Date Phillips 'B' EDL submitted by Texerra on 6/6/2008#1R427-0 Image: Bit SWD Date Phillips 'B' EDL submitted by Texerra on 6/6/2008#1R426-1 Image: Bit SWD Date Phillips 'B' EDL submitted by Texerra on 6/6/2008#1R426-1 Image: Bit SWD Date Phillips 'B' EDL (#1R427-181) and BD : 0/0/2008#1R426-1 Image: Bit SWD Date Phillips 'B' EDL (#1R426-117) please include that the delineation of chlorid 250 mg/Kg. Image: Bit SWD Date Phillips 'B' EDL (#1R426-117) please include that the delineation of petroleum hydrocarbons of ppm using a PID (or equivalent). Also, for BD SWD Oxy Owen 'A' (#1R426-117) please include re-sampling of the back for petroleum hydrocarbons.</creation></ficonder@riceswd.com></ceward;>	
 Texe: "Proce Conder" shoonder@riceswd.com? "Proce, Wayne, EMURO" swayne.proce@state.am.us>, mburrows@vabrret.com, by@ieserfa.com Dear Mr. Conder: The New Mexico-Oil Conservation Division (NMOCD) has reviewed the submit Investigation Characterization Plans (ICPs), dated May 30, 2008 and June 3, 2008, for the referenced sites. The NMOCD hereby conditionally approves the following ICPs for the Operating Company sites: <u>EME SWD Jct. O-19</u> submitted by Texerra on 6/6/2008#1R427-0 <u>EME SWD Phillips "B' EOL</u> submitted by Texerra on 6/6/2008#1R427-0 <u>EME SWD Dct. P-35-1</u> submitted by Texerra on 6/6/2008#1R426-1 <u>BD SWD Jct. P-35-1</u> submitted by Texerra on 6/6/2008#1R426-1 In the proposed work elements for all ICPs please include that the delineation of chloride 250 mg/Kg. In the proposed work elements for <u>EME SWD Phillips 'B' EOL</u> (#1R427-181) and <u>BD S</u> <u>Oven 'A'</u> (#1R426-117) please include that the delineation of petroleum hydrocarbons of ppm using a PID (or equivalent). Also, for <u>BD SWD Oxy Oven 'A'</u> (#1R426-117) please include re-sampling of the back for petroleum hydrocarbons. 	
CC: *Price, Wayne, EMURD' swayne, price@state.am.us>, informews@valumet.com, log@textmation Dear Mr. Conder: The New Mexico-Oil Conservation Division (NMOCD) has reviewed the submit Investigation Characterization Plans (ICPs), dated May 30, 2008 and June 3, 2008, for the referenced sites. The NMOCD hereby conditionally approves the following ICPs for the Operating Company sites: 1. EME SWD Jct. O-19 submitted by Texerra on 6/6/2008#1R427-0 2. 2. EME SWD Phillips 'B' EOL submitted by Texerra on 6/6/2008#1R427-0 3. 3. BD SWD Oxy Owen 'A' submitted by Texerra on 6/6/2008#1R426-1 4. 4. BD SWD Oxy Owen 'A' submitted by Texerra on 6/6/2008#1R426-1 50 mg/Kg. In the proposed work elements for all ICPs please include that the delineation of chlorid 250 mg/Kg. In the proposed work elements for EME SWD Phillips 'B' EOL (#1R427-181) and BD s Owen 'A' (#1R426-117) please include that the delineation of petroleum hydrocarbons of ppm using a PID (or equivalent). Also, for <u>BD SWD Oxy Owen 'A'</u> (#1R426-117) please include re-sampling of the back for petroleum hydrocarbons.	
Dear Mr. Conder: The New Mexico-Oil Conservation Division (NMOCD) has reviewed the submit Investigation Characterization Plans (ICPs), dated May 30, 2008 and June 3, 2008, for the referenced sites. The NMOCD hereby conditionally approves the following ICPs for the Operating Company sites: 1. <u>EME SWD Jct. 0-19</u> submitted by Texerra on 6/6/2008#1R427-0 2. <u>EME SWD Phillips 'B' EOL</u> submitted by Texerra on 6/6/2008#1R427-0 3. <u>BD SWD Oxy Owen 'A'</u> submitted by Texerra on 6/6/2008#1R4 4. <u>BD SWD Jct. P-35-1</u> submitted by Texerra on 6/6/2008#1R426-1 In the proposed work elements for all ICPs please include that the delineation of chloride 250 mg/Kg. In the proposed work elements for <u>EME SWD Phillips 'B' EOL</u> (#1R427-181) and <u>BD 3</u> <u>Oven 'A'</u> (#1R426-117) please include that the delineation of petroleum hydrocarbons of ppm using a PID (or equivalent). Also, for <u>BD SWD Oxy Owen 'A'</u> (#1R426-117) please include re-sampling of the back for petroleum hydrocarbons.	
The New Mexico-Oil Conservation Division (NMOCD) has reviewed the submit Investigation Characterization Plans (ICPs), dated May 30, 2008 and June 3, 2008, for the referenced sites. The NMOCD hereby conditionally approves the following ICPs for the Operating Company sites: 1. <u>EME SWD Jct-O-19</u> submitted by Texerra on 6/6/2008#1R427-0 2. <u>EME SWD Phillips 'B' EOL</u> submitted by Texerra on 6/6/2008#1R427-0 3. <u>BD SWD Oxy Owen 'A'</u> submitted by Texerra on 6/6/2008#1R4 4. <u>BD SWD Jct_P-35-1</u> submitted by Texerra on 6/6/2008#1R426-1 In the proposed work elements for all ICPs please include that the delineation of chloride 250 mg/Kg. In the proposed work elements for <u>EME SWD Phillips 'B' EOL</u> (#1R427-181) and <u>BD SWD Oxy Owen 'A'</u> (#1R426-117) please include that the delineation of petroleum hydrocarbons of ppm using a PID (or equivalent). Also, for <u>BD SWD Oxy Owen 'A'</u> (#1R426-117) please include re-sampling of the back for petroleum hydrocarbons.	
 Investigation Characterization Plans (ICPs), dated May 30, 2008 and June 3, 2008, for the referenced sites. The NMOCD hereby conditionally approves the following ICPs for the Operating Company sites: 1. EME SWD Jct O-19 submitted by Texerra on 6/6/2008#1R427-0 2. EME SWD Phillips 'B' EOL submitted by Texerra on 6/6/2008#1R427-0 3. BD SWD Oxy Owen 'A' submitted by Texerra on 6/6/2008#1R44 4. BD SWD Jct P-35-1 submitted by Texerra on 6/6/2008#1R426-1 In the proposed work elements for all ICPs please include that the delineation of chloridd 250 mg/Kg. In the proposed work elements for EME SWD Phillips 'B' EOL (#1R427-181) and BD : Owen 'A' (#1R426-117) please include that the delineation of petroleum hydrocarbons of ppm using a FID (or equivalent). Also, for BD SWD Oxy Owen 'A' (#1R426-117) please include re-sampling of the back for petroleum hydrocarbons. 	
 <u>EME SWD Phillips 'B' EOL</u> submitted by Texerra on 6/6/2008 # <u>BD SWD Oxy Owen 'A'</u> submitted by Texerra on 6/6/2008 #1R4 <u>BD SWD Jct. P-35-1</u> submitted by Texerra on 6/6/2008 #1R426-1 In the proposed work elements for all ICPs please include that the delineation of chloridk 250 mg/Kg. In the proposed work elements for <u>EME SWD Phillips 'B' EOL</u> (#1R427-181) and <u>BD 3</u> <u>Oven 'A'</u> (#1R426-117) please include that the delineation of petroleum hydrocarbons of ppm using a PID (or equivalent). Also, for <u>BD SWD Oxy Owen 'A'</u> (#1R426-117) please include re-sampling of the back for petroleum hydrocarbons. 	ne above
 3. <u>BD SWD Oxy Owen 'A'</u> submitted by Texerra on 6/6/2008#1R4 4. <u>BD SWD Jct. P-35-1</u> submitted by Texerra on 6/6/2008#1R426-1 In the proposed work elements for all ICPs please include that the delineation of chloride 250 mg/Kg. In the proposed work elements for <u>EME SWD Phillips 'B' EOL</u> (#1R427-181) and <u>BD : Owen 'A'</u> (#1R426-117) please include that the delineation of petroleum hydrocarbons of ppm using a PID (or equivalent). Also, for <u>BD SWD Oxy Owen 'A'</u> (#1R426-117) please include re-sampling of the back for petroleum hydrocarbons.)6
4. <u>BD SWD Jct. P-35-1</u> submitted by Texema on 6/6/2008#1R426-1 In the proposed work elements for all ICPs please include that the delineation of chloride 250 mg/Kg. In the proposed work elements for <u>EME SWD Phillips 'B' EOL</u> (#1R427-181) and <u>BD :</u> <u>Owen 'A'</u> (#1R426-117) please include that the delineation of petroleum hydrocarbons of ppm using a PID (or equivalent). Also, for <u>BD SWD Oxy Owen 'A'</u> (#1R426-117) please include re-sampling of the back for petroleum hydrocarbons.	1 R 427-181
In the proposed work elements for all ICPs please include that the delineation of chloride 250 mg/Kg. In the proposed work elements for <u>EME SWD Phillips 'B' EOL</u> (#1R427-181) and <u>BD :</u> <u>Owen 'A'</u> (#1R426-117) please include that the delineation of petroleum hydrocarbons to ppm using a PID (or equivalent). Also, for <u>BD SWD Oxy Owen 'A'</u> (#1R426-117) please include re-sampling of the back for petroleum hydrocarbons.	26-117
250 mg/Kg. In the proposed work elements for <u>EME SWD Phillips 'B' EOL</u> (#1R427-181) and <u>BD :</u> <u>Owen 'A'</u> (#1R426-117) please include that the delineation of petroleum hydrocarbons v ppm using a PID (or equivalent). Also, for <u>BD SWD Oxy Owen 'A'</u> (#1R426-117) please include re-sampling of the back for petroleum hydrocarbons.	.50
	<u>SWD Oxy</u> will be to 100
In the proposed work elements for all ICPs please include the analyses for "general chemistry" (including chloride, TDS, and sulfate) and BTEX for potential groundwater :	sampling.
Also, please be advised that NMOCD approval of these plans does not relieve the owner responsibility should operations pose a threat to ground water, surface water, human hea environment. In addition, NMOCD approval does not relieve the owner/operator of resp compliance with any OCD, federal, state, or local laws and/or regulations.	lith or the

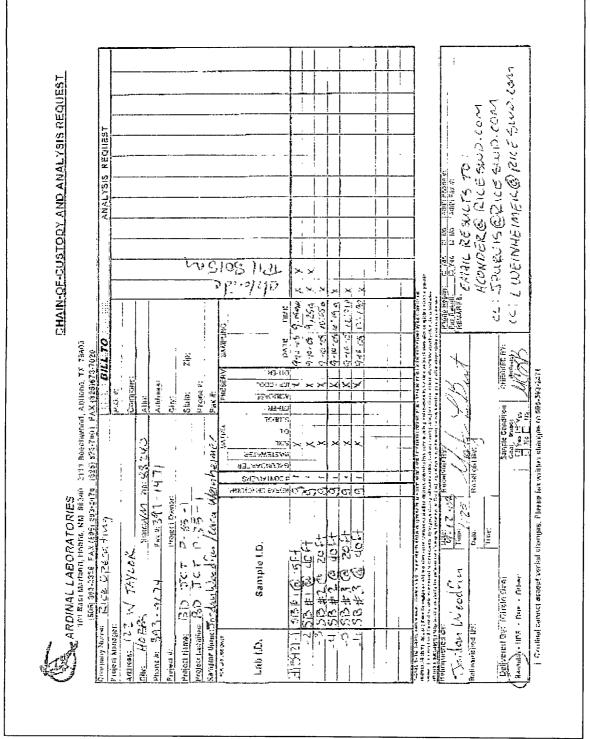
Rice	Op	ing Lo erating ation:	g Co	mpany SB-1		Syster	n	BD P-35-1	
Loca				Approx. 9 ft	W of Rice	Date:		9/10/200	8
Drille							Cooper	supervising)	0
Drill		nod.		Air rotary	sooper, m			ky, Jr., Texerra	
Tota				50		L. 1 CIC	addusi	ty, or., revenu	
			val-	40 - 50 ft bg		notor	4 inch d	lia	
1		u interv	vai.	40 - 50 ft by	i ipe ulai	neter.	4 Inch u	na	
Dept	<u>.n</u>	Field				l ab	Lab		
(ft		Field	do	Lab	Field	Lab GRO	Lab DRO		
belo		Chlori	ue	Lab Chlorida	Field PID test			Cutting	Mall
		Test		Chloride			test (ppm)	Cutting Description	<u>Well</u>
Suna	<u>ace</u>	(ppm)		Test (ppm)	(ppiii)	(ppm)	<u>(ppm)</u>		Schematic
	-		000		0.0			oil stained sandy	
	-5		668		0.0			loam	solid pipe
	-10		717		0.0		05.0		
	-15		180	192	0.0	< 25.0	< 25.0		
								oil stained	
								reddish brown	
	00		505		0.0			coarse sandy loam	
	-20		535		0.0				
								light olive loamy	
	05		710					sand, common	
	-25		719					small gravels	
	-30		418					variegated olive	
								brown and	
								grayish white fin	
								gravelly sandy	
	-35		585					loam	
	-35		165			~ 25.0	< 25.0		The second s
	-40	١,	105	1,310		< 20.0	< 20.0	tan fine gravelly	
	-45	4	143					sand	scroon
	-40	١,	143					reddish brown	screen
								gravelly sand,	
	-50		521					moist	
21/0	-50		521 665		0			moist	
avg			000		0				
						BD 0	P-35-1		
					SB-1 Soil			entrations	
		0 _		1					,
						90			
	(t)			0		0			
	5	-20			0	0			
	pod				0				
	depth bas (ft)	-40 -			C)		0	
	der							0	
					0				
		-60]							
		0		250	500	75 pp	0 m	1,000 1,250	1,500
			[O field da	ita — a		of field d	lata 🔺 lab data	
Contraction of the local division of the loc									

Appendix B1 – SB-1 soil boring log.

Appendix B2 - SB-2 soil boring log.


14

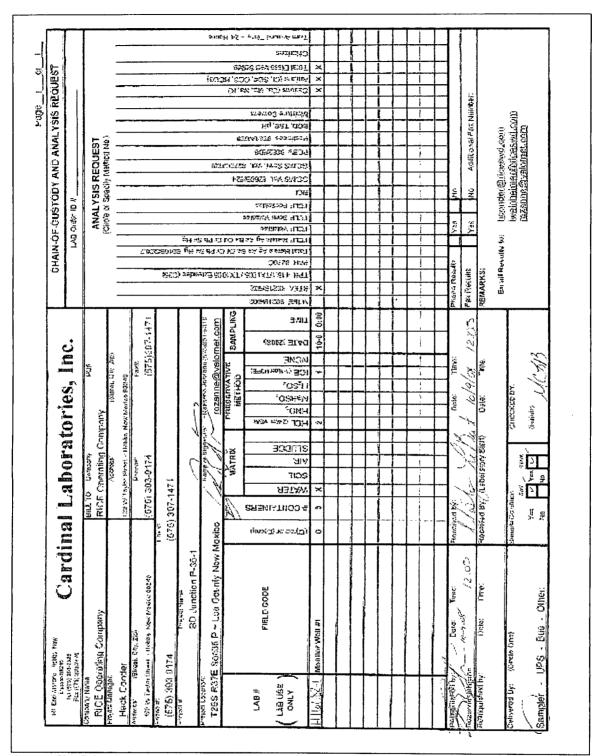
Soil Borir Rice Oper BD SWD S BD P-35-1	ratin Syst	g Compa	ny					
Identifica Location:	tion	:	SB-3 Approx. 31		marker			
Date:			9/10/2008		liver Core			
Driller: Drill metho	od.		Harrison & Air rotary	Jooper, Inc.	. (Ken God	per supe	rvising)	
Logged by			L. Peter Ga	lusky Ir T	everra			
Total dept				ft below gr		ace		
Screened		val:	n/a (no well					
Pipe diam	eter:							
Depth (ft								
below		ield blorido	Lab Chlorido				20	
ground surface)		hloride	Chloride	Field PID				g Description
Sundce	1	est (ppm)	<u>Test (ppm)</u>	test (ppm)	test (ppi)	it iest (p)		y Description
1	-5	151						h brown loamy sand
-1	10	121						rown loamy sand
		00						eddish brown, fine
-]	15	88						lly loamy sand lly reddish brown
-2	20	91	32				loamy	· A DATE OF THE AT ANY
	_0	01	0L					rown, gravelly loamy
-2	25	534					sand	, , ,
-3	30	535						
	35	258					**	
	10	94	-					
avg		234						
				E	3D P-35-1			
	1		SE	-3 Soil Chi		centratio	ons	
		0	-1	T	1	T	1	
		C	8					
	0	0						
	bgs (ft)	-20		0				
	bg			0				
	depth	-40	0					
	de	40						
		-60						
		0	250	500	750 ppm	1,000	1,250	1,500
			G field date			data t	lab data	
			 field data 	avera	ge of field o	data 🔺	lab data	
1								



LABORATORIES	FROME (\$75) \$23:2329 - (\$100 E, \$449EAUD) - HORSS, FUR \$\$240
ANALYTICAL B RICE OPERATI ATTN: JORDA 122 W. TAYAO HOBBS, NM 88	NG GOMFANY N WOODFIN R
Receiving Cent: 89/12/00 Reporting Outer 69/16/06 Project Number: NOT GIVEN Project Name: ED JCT P-35-1 Project Location: 5B JCT P-35-1	Sampling Date: 38/10/08 Sample Type: SOII Sample Condition: COOL & INTACT Sample Received By: ML Analyzed By: A5
145 NUMBER SAMPLE D	CRO BRO (CyrCrg) ≫Cgr⊖Cyr) (mg/kg) (mg/kg)
ANALYSIS DATE H15921-1 S351 @ 15FT H16921-2 39#(@ 40FT	
Cusility Control True Value QC S Recovery Relative Percent Difference	570 527 500 500 114 105 4.8 4.3
METHODS TEN GRO& DBO EPA SAL	
Chemist Skille	09/16/08 0x0
H(592) 1 RICE	

Appendix C1 – Cardinal Laboratories soil petroleum hydrocarbon data

Appendix C2 - Cardinal Laboratories soil chloride data.


Appendix C3 – Cardinal Laboratories soil data chain-of-custody form.

		PHONE (575) 393-235	+101 E MAR	LWD • HORES,	Rid \$3260
	ANALYTICAL FICE OFFER ATTN: PEACH 122 W. TAYL HOBESNM FAX TO: (574	OCONDER OCONDER OR STREE	PANY			
Receiving Onlin 10:09/08 Repairing Onlin: 10:09/08 Project Numbert: NOT GIVEN Project Norme - RD JUNC/FON P-35-1 Project Location: T25S-R37E-SEC35 P ~ L				Sample Typ Sample Co	Gle, 10/08/08 Mater Idition: CC90 Delved By: Mi # HM/TR	L& MIACT
	Na	Ca	Mo		Concuctivity	1-Alkalinity
LAB NUMBE SAMPLE (D ANALYSIS DATE:	(nig/1.)	(#Q/L) 10/12/08	(n.g/l) 10/12/06	(Rgm) 58/23:50	(u.S/c/n) 10/02	(mpCaCO ₃).) 10/10/08
ANALYSIS DATE: HIG052-1 MONITOR WELL #1	242		10-13-05 68.0	7.4	1.903	258
	!					
Quality Control	NR	48.1	45.6	2.92	1,216	NE
Your Vidue OC	NR	58.0	50.0	3.00	1.413	<u>ধি</u> শ
% Renovery	240	96,7	97.7	97.3	100	NF
Relative Percent Difference	NR	< 6 .1	4.8	3.11	0.2	NR
METHODS:	\$M	3500-Ca-D3	2004Mg E	8849	120.1	310.1
	CI	SO,	603	HCO,	p∺.	TOS
ANALYSIS DATE:	(mg/L) 73/10/05	(mgA_) 10/13409.	(mg/L) 10:10:08	(mg/U 10/10/08	<=.43.) 10/1/0/08	(mgA_) 16/10/28
116C82-1 MCNILOR WELL #1	352	257	0 	351	7.04	1.610
Quality Control	490	en.n.	NIK	955	7.69	NR
True Value GC	500	40.0	INR INR	950	7.00	
% Receively	0.89	111	NR	68.8	101	NR
Relative Percent Difference	221	1.1	NR	<0.1	1.3	NR
METHODIS	5M4500-CI-5	375.4	310.1	310.1	150.1	160.1
Hote J. Moina			_	10-15	<u>د ۲</u>	
CJERNSI				litine.		

Appendix C4 – Cardinal Laboratories monitor well data – inorganics.

ARDINAL LABORATORIES		<u>PH 0/45 (525) 393</u>	12196 • 101 E. NAH	and • Hitels, RF 20265
R (AT 12 BC	IALYTICAL RES DE OPERATING TN: HACK CO 2 W. TAYLOR IEBS, NM 8824 X TO: (375) 33	3 GOMPANY NDER Q		
Receiving Date: 10/02/08 Reporting Date: 10/02/08 Project Number: NOT GIVEN Project Name: 3D JUNCTION P-35-1 Project Location: T25S-R37E-8E035		<u>କ</u> କ କ କ	ampling Cate: 1 ample Type: W smple Conditio emple Recolve natyzed By: 2L	ATER n COOL & INTACT 3 By: ML
LAB NUMBER SAMPLE ID	EENZEME (mg/L)	TOLUENE (mg/L)	ETHYL BEMZENE (mg/_)	TOTAL XYLENES (mg/L)
ANALYSIS DATE HIG382-1 MONITOR WELL #1	10/10:58	10/10/08	10/10/08	10/10/08
Quality Convol	0.051	0.053	- 	0.155
True Velue OS % Recovery Relative Percent Difference	0.050 102 2.8	0.050 105 0.4	6.058 100 1.6	0.153 195 1.3
METHOD: EPA SW-846 8021B TEXAS NELAP CERTIFICATION T18 AND TOTAL XYLENES.	4704358-08-TX	FOR BENZE	NE, TOLUENE	, ETHYL BENZENE,
Clientis	_	0	<u>11 13 [c]</u> ste	

Appendix C5 – Cardinal Laboratories monitor well data – petroleum hydrocarbons.

Appendix C6 - Cardinal Laboratories monitor well data chain-of-custody form.

BD P-35-1 Jct

Appendix D – Harrison and Cooper completing MW-1.