1R - 2 66

WORKPLANS

Date:
3-9-10

2010 MAR 22 PM 1 23

March 9, 2010

Mr. Edward Hansen New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE:

Plains Pipeline, L.P. DCP Plant to Lea Station 6-inch Sec. 31

NMOCD Reference # 1R-2166

Unit Letter K of Section 31, Township 20 South, Range 37 East

Lea County, New Mexico

Dear Mr. Hansen:

Plains Pipeline, L.P. is pleased to submit the attached Groundwater Remediation Plan, dated March 2010, for the DCP Plant to Lea Station 6-inch Sec. 31 site. This site is located in Section 31 of Township 20 South, and Range 37 East of Lea County, New Mexico. This document details the site groundwater remediation activities performed to date and provides a proposed strategy for conducting future groundwater remediation activities.

Should you have any questions or comments, please contact me at (575) 441-1099.

Sincerely,

Remediation Coordinator

Plains Pipeline, L.P.

CC:

Larry Johnson, NMOCD, Hobbs Office

Brian Henington, NMSLO, Santa Fe Office

RECEIVED

MAR **1 9** 2010

SOLID WASTE BUREAU

Enclosure

Basin Environmental Consulting, LLC

2800 Plains Highway P. O. Box 381 Lovington, New Mexico 88260

Phone: 575-396-2378 Fax: 575-396-1429

March 3, 2010

Mr. Edward Hansen New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Plains Pipeline, L.P. – DCP Plant to Lea Station 6-Inch Section 31

Groundwater Remediation Plan NMOCD Reference # 1RP-2166

Plains SRS #2009-084

ULT "K" (NE/SW), Section 31, Township 20 South, Range 37 East

Latitude 32.52733° N, Longitude 103.2906° W

Lea County, New Mexico

Landowner: State of New Mexico

RECEIVED

MAR 1 9 2010

SOLID WASTE BUREAU

Dear Mr. Hansen,

Basin Environmental Consulting, LLC (Basin), on behalf of Plains Pipeline, LP (Plains), is pleased to submit the following Groundwater Remediation Plan for the release site known as DCP Plant to Lea Station 6-Inch Section 31.

Groundwater Remediation Activities

On April 15, 2009, soil boring SB-1 was advanced, approximately ten (10) feet west of the release point, to evaluate the vertical extent of soil impact. Temporary casing was installed in the soil boring to obtain a preliminary groundwater sample. On April 16, 2009, a groundwater sample (SB-1) was collected from the temporary casing and submitted to the laboratory for analysis. Following the collection of the groundwater sample, the temporary casing was removed from the soil boring and the soil boring was plugged with cement and bentonite, as required by the New Mexico Office of the State Engineer (NMOSE). Laboratory analytical results indicated a benzene concentration of 1.915 mg/L, a BTEX concentration of 4.7711 mg/L, a chloride concentration of 54.6 mg/L and a total dissolved solid (TDS) concentration of 788 mg/L. Based on the analytical results of the submitted groundwater sample, Plains notified New Mexico Oil Conservation Division (NMOCD) representatives at the Hobbs District Office and the Santa Fe Office of the laboratory confirmed impact to groundwater at the release site. A site location and site map are provided as Figure 1 and Figure 2, respectively.

On September 21 through September 23, 2009, Plains installed and developed four (4) monitor wells (MW-1 through MW-4) at the release site, as approved by the NMOCD. Monitor well boring logs for monitor wells MW-1, MW-2, MW-3, and MW-4 are provided as Figure 3 through Figure 6, respectively. On September 29, 2009, during groundwater sampling activities phase-

separated hydrocarbon (PSH) was observed in monitor well MW-1. Currently, PSH is recovered on a weekly schedule from monitor well MW-1. As of December 28, 2009, approximately 51 gallons (1.21 barrels) of PSH has been recovered from monitor well MW-1. Currently, all recovered fluids are being disposed of at a NMOCD approved disposal. Groundwater elevation data reflects a general groundwater gradient to the southeast. A Summary of Cumulative PSH Recovery Data is provided as Table 1 and Groundwater Elevation Data is provided as Table 2.

On September 29, 2009, groundwater samples were collected and analyzed for concentrations of RCRA metals (Arsenic, Barium, Cadmium, Chromium, Lead, Selenium, Mercury, and Silver), NMWQCC metals (Copper, Iron, Manganese, Zinc, Aluminum, Boron, Cobalt, Molybdenum and Nickel) using EPA Method SW 6020A. In addition to the requested metals analysis, the NMOCD requested the analysis of Volatile Organic Compounds (VOC) and Semi-Volatile Organic Compounds (SVOC) by EPA Methods 8260 and 8270, respectively. The NMOCD further required the analysis of Anions and Cations (Calcium, Magnesium, Potassium, Sodium, Chloride, Sulfate, Bicarbonate, Carbonate, Nitrate, Phosphate and Fluoride) using EPA methods SM2320B and EPA 300.

Third Quarter 2009 Sampling Event

Monitor well MW-1 was not sampled during the third quarter 2009 sampling event, due to the presence of PSH in the monitor well.

The analytical results of the September 29, 2009 sampling event indicated RCRA metal concentrations were less than the NMWQCC drinking water standards in all three (3) sampled monitor wells, with the exception of the aluminum concentration in monitor well MW-3 and iron concentrations in monitor wells MW-2, MW-3 and MW-4. The aluminum concentration in monitor well MW-3 was 6.51 mg/L, the iron concentrations in monitor wells MW-2, MW-3 and MW-4 were 2.1 mg/L, 5.9 mg/L and 1.860 mg/L, respectively. The aluminum concentrations in monitor well MW-3 and the iron concentrations in monitor wells MW-2, MW-3 and MW-4 exceed the NMWQCC standards of 5.0 mg/L and 1.0 mg/L, respectively. Table 4 summarizes the concentrations of RCRA and NMWQCC Metals in Groundwater. Laboratory analytical reports are provided with this report.

The analytical results indicated concentrations of volatile organic compounds and semi-volatile compounds were less than the NMWQCC standard for each constituent in all three (3) sampled monitor wells. Table 5 summarizes the Concentrations of Volatile Organic Compounds in Groundwater. Table 6 summarizes the Concentrations of Semi-Volatile Organic Compounds in Groundwater.

The results further indicated concentrations of anion and cations were less than the NMWQCC drinking water standards in all three (3) sampled monitor wells, with the exception of chloride and fluoride concentrations. The chloride concentrations were 268 mg/L and 307 mg/L in monitor wells MW-3 and MW-4, respectively. The fluoride concentrations were 6.1 mg/L, 6.01 mg/L and 7.52 mg/L in monitor wells MW-2, MW-3 and MW-4, respectively. Table 7 summarizes the Concentrations of Anions and Cations in Groundwater.

Fourth Quarter 2009 Sampling Event

The on-site monitor wells (MW-1 through MW-4) were gauged and sampled on December 10, 2009. During the sampling event, the monitor wells were purged of a minimum of three (3) well volumes of water or until the wells were dry using a PVC bailer or an electric Grunfos Pimp. Groundwater was allowed to recharge and samples were obtained using disposable Teflon samplers. Purged water was disposed of at a NMOCD permitted disposal. Groundwater samples were collected from monitor wells MW-1, MW-2, MW-3 and MW-4 and analyzed for concentrations of benzene, toluene, ethyl-benzene and xylene (BTEX) using EPA Method SW 846 8260b. Pursuant to NMOCD request, monitor wells impacted with PSH are analyzed for concentrations of total petroleum hydrocarbons (TPH) using EPA method SW 846 8015 Modified. In addition, a groundwater sample was collected from monitor well MW-1 and analyzed for concentrations of PAH using EPA method SW 846 8270C. Concentrations of benzene, BTEX, Chlorides and TDS in Groundwater, and Concentrations of TPH in Groundwater are provided as Tables 3 and 8, respectively.

Laboratory analytical results of the groundwater sample collected from monitor well MW-1 indicated a benzene concentration of 19.0 mg/L, a BTEX concentration of 35.525 mg/L and a TPH concentration of 343 mg/L. The analytical results indicated concentrations of PAH were less than the laboratory method detection limit (MDL) for each constituent in monitor well MW-1. Laboratory analytical results of the groundwater samples collected from monitor wells MW-2 and MW-4 indicated benzene and BTEX concentrations were less than the appropriate laboratory MDL. Laboratory analytical results of the groundwater sample collected from monitor well MW-3 indicated a benzene concentration of 0.0031 mg/L and BTEX concentration of 0.0031 mg/L.

Anticipated Actions

Based on the analytical results of the third and fourth quarter sampling events, the release site appears to be delineated and additional monitor wells are not required, at this time. PSH recovery will continue on a weekly schedule from monitor well MW-1. All fluids recovered from monitor well MW-1 will be disposed of at a NMOCD permitted disposal. The on-site monitor wells will be monitored and sampled on a quarterly basis.

If you have any questions or require further information, please contact me at (575) 605-7210 or Mr. Jason Henry (Plains) at (575) 441-1099.

Respectfully,

Camille Bryant Project Manager

Basin Environmental Consulting, LLC

amile Royant

Enclosures

Figure 1 – Site Location Map

Figure 2 – Site Map

•

Figure 3 – Monitor Well MW-1 Boring Log

Figure 4 - Monitor Well MW-2 Boring Log

Figure 5 - Monitor Well MW-3 Boring Log

Figure 6 – Monitor Well MW-4 Boring Log

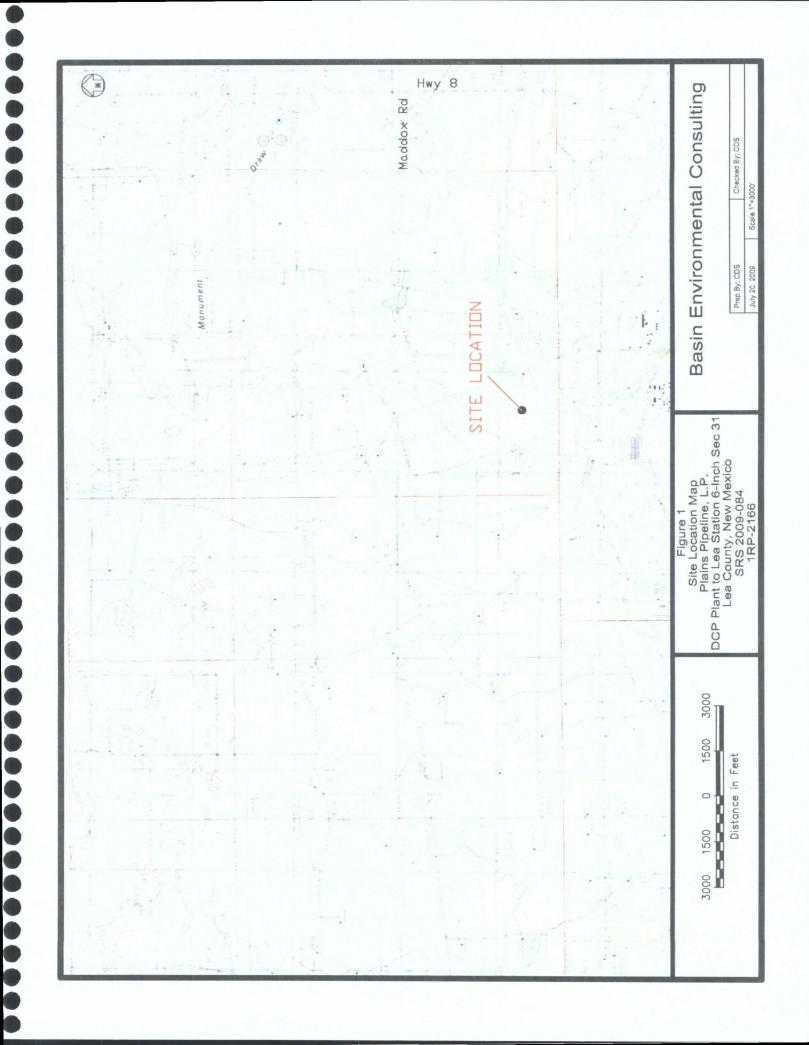
Table 1 - 2009 Cumulative PSH Recovery Data

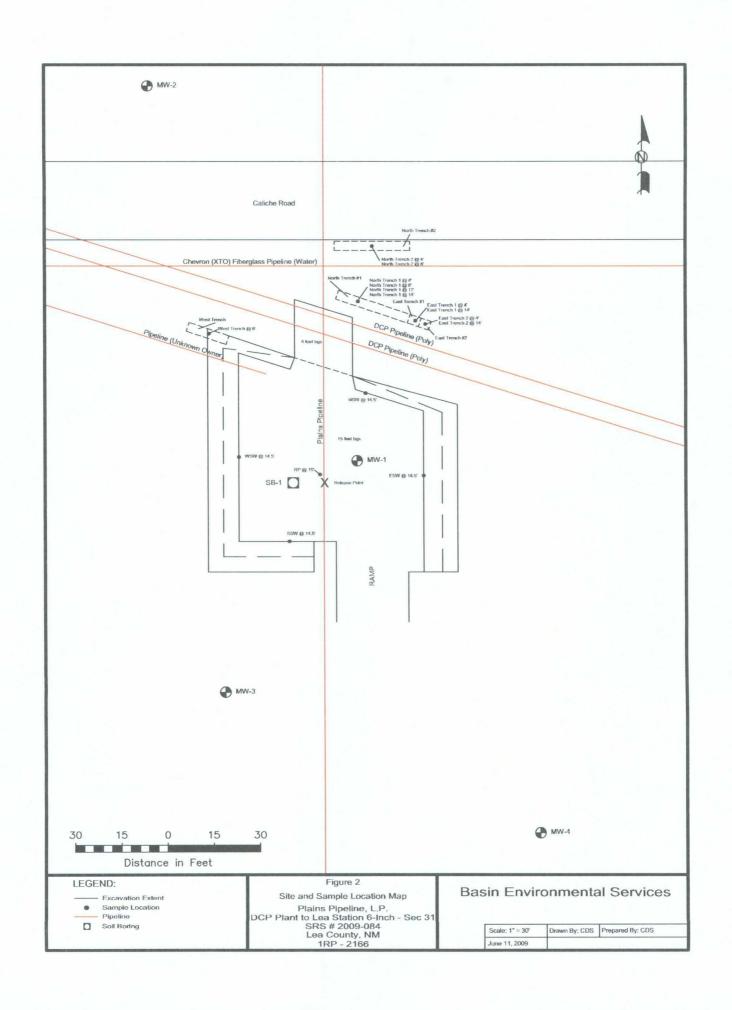
Table 2 – Groundwater Elevation Data Table

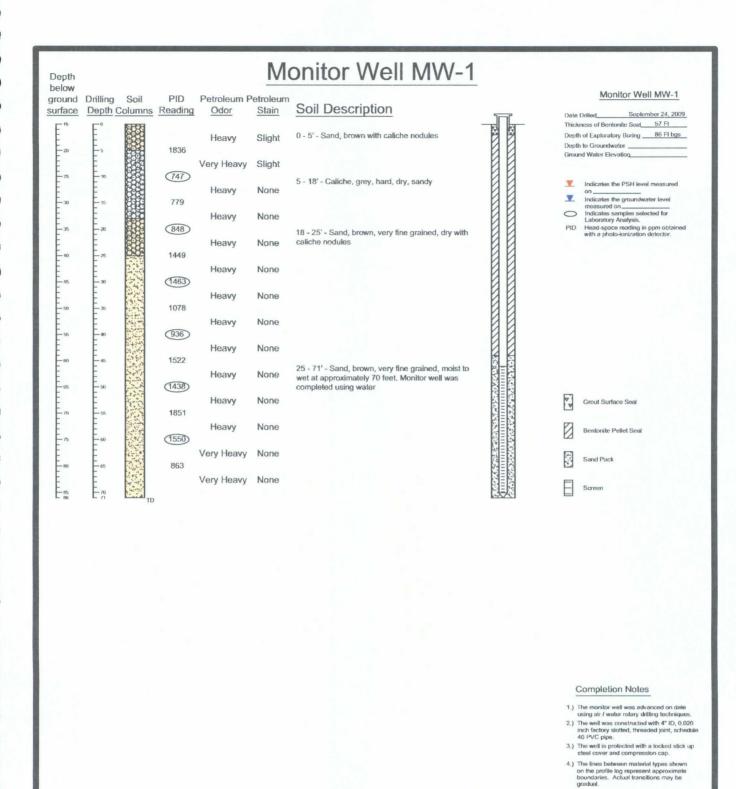
Table 3 – Concentrations of benzene, BTEX, Chlorides and TDS in Groundwater

Table 4 - Concentrations of RCRA and NMWQCC Metals in Groundwater

Table 5 - Concentrations of Volatile Organic Compounds in Groundwater


Table 6 - Concentrations of Semi-Volatile Organic Compounds in Groundwater


Table 7 - Concentrations of Anions and Cations in Groundwater


Table 8 - Concentrations of TPH in Groundwater

Laboratory Analytical Reports

cc: Jason Henry – Plains, Denver City, Texas
Jeff Dann – Plains, Houston, Texas
Larry Johnson – NMOCD, Hobbs District Office
Brian Henington – NMSLO, Santa Fe
file

Monitor Well MW-1
DCP Plant to Lea Station 6-Inch Sec 31
Lea County, New Mexico
Plains Pipeline, L.P.

Basin Environmental Consulting

Prep By: CDS Checked By: CDS
October 7, 2009

3.) The depths indicated are referenced from

ground surface.

Monitor Well MW-2 Monitor Well MW-2 Petroleum Petroleum Drilling Soil PID Soil Description Depth Columns Reading Stain Odor Date Drilled Seplember 21, 2009 Thickness of Bentonite Seal 61 Ft 0 - 3' bgs - Sand, light brown, clayey with caliche Depth of Exploratory Boring 90 Ft bgs None None Depth to Groundwater, 0.3 None None 2 - 14' bgs - Caliche, white, soft, dry, sandy 02 Indicates the PSH level measured None None on _____ Indicates the groundwater level V. (20.5) 0 None None 16.8 None None 39.7 None None (37.1) None None 46.6 None None 46.9 None None (48.1) None None 14 - 90' bgs - Sand, brown, very fine grained, dry, hard 18 - 23 feet. Lost circulation at 80 feet bgs 35.4 None None Grout Surface Seal and completed drilling with water 47.9 None None Bentonite Pellet Seal (48.9) None None 46.2 None None 45.4 None None

Completion Notes

- The monitor well was advanced on date using air / water rotary drilling techniques
- The well was constructed with 2" ID, 0.020 inch factory slotted, threaded joint, schedule 40 PVC pipe.
- The well is protected with a locked stick up steel cover and compression cap.
- 4.) The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- The depths indicated are referenced from ground surface.

Monitor Well MW-2
DCP Plant to Lea Station 6-Inch Sec 31
Lea County, New Mexico
Plains Pipeline, L.P.

(43.4)

443

None

None

Basin Environmental Consulting

Prep By: CDS	Checked By: CDS	
October 7, 2009		

Monitor Well MW-3

Drilling Soil PID Petroleum Petroleum Soil Description Depth Columns Reading Odor Stain 0 - 5' bgs - Clay, light brown, sandy with caliche None None nodules, some organics 25 None None 5 - 12' bgs - Caliche, white, soft, dry, sandy None None 12 - 18' bgs - Sand, light brown, very fine grained (10.5) with some caliche nodules None None 11.1 18 - 24' bgs - Caliche, white, soft, dry, sandy None None 15.1 24 - 33' bgs - Sand, light brown and Caliche, white, None None (8.0) None None 8.2 None None 4.9 None None (9.1) None None 13.9 33 - 90' bgs - Sand, reddish brown, very fine None None grained, dry. Lost circulation at 60 feet bgs and 8.6 completed drilling with water None None (8.4)

Monitor Well MW-3

September 22, 2009 Date Drilled Thickness of Bentonite Seat 61 Ft Depth of Exploratory Boring 90 Ft bgs Depth to Groundwater Ground Water Elevation

Indicates the PSH level measured

Y

Indicates the groundwater level measured on

measured on ...
Indicates samples selected for Laboratory Analysis.
Head-space reading in ppm obtained with a photo-ionization detector.

12. A CONTROL OF THE CONTROL OF THE

Grout Surface Seal

Bentonite Pellet Seal

Sand Pack

Completion Notes

- The monitor well was advanced on date using air / water rotary drilling techniques.
 The well was constructed with 2" ID, 0.020 inch factory slotted, threaded joint, schedule 40 PVC pipe.
- The well is protected with a locked stick up steel cover and compression cap.
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- The depths indicated are referenced from ground surface.

Monitor Well MW-3 DCP Plant to Lea Station 6-Inch Sec 31 Lea County, New Mexico Plains Pipeline, L.P.

Basin Environmental Consulting

Prep By: CDS

Checked By: CDS

October 7, 2009

Monitor Well MW-4

				Monitor vveil ivivv-
Drilling Soil Depth Columns	PID Reading	Petroleum I Odor	Petroleum Stain	Soil Description
Deptili Columns	Reauling	Odor	Stairi	Soil Description
E°		None	None	0 - 5' bgs - Sand, light brown, clayey with caliche nodules, some organics
E' SS	18.5	None	None	5 - 10' bgs - Caliche, while, soft, dry, sandy
10 10 10	27.2	None	None	10 -15' bgs - Sand, light brown, very fine grained, dry
15	29.8	None	None	15 - 20' bgs - Sand, light brown, very fine grained,
20 8	5.7	None	None	dry with some caliche nodules
-75	25.0			20 - 28' bgs - Caliche, white, hard, dry, sandy
- 30	26.2	None	None	28 - 33' bgs - Sand, light brown, very fine grained, dry with caliche nodules
35	41.1	None	None	33 - 35' bgs - Sand, reddish brown, very fine grained, dry with caliche nodules
-40	31.4	None	None	
45	(27.9)	None	None	
50	30.4	None	None	
56	25.4	None	None	
		None	None	33 - 89' bgs - Sand, reddish brown, very fine
60	(33.9)			grained, dry. Lost circulation at 60 feet bgs and completed drilling with water
-65				
70				

Monitor Well MW-4

September 22, 2009 Date Drilled_ Thickness of Bentonite Seat 60 Ft Depth of Exploratory Boring 89 Ft bgs Depth to Groundwater _ Ground Water Elevation

Indicates the PSH level measured

Grout Surface Seal

Bentonite Pellet Seal

Sand Pack

Completion Notes

- The monitor well was advanced on date using air / water rotary drilling techniques.
 The well was constructed with 2" ID, 0.020 inch factory slottled, threaded joint, schedule 40 PVC pipe.
- The well is protected with a locked stick up steel cover and compression cap.
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- The depths indicated are referenced from ground surface.

Monitor Well MW-4 DCP Plant to Lea Station 6-Inch Sec 31 Lea County, New Mexico Plains Pipeline, L.P.

Basin Environmental Consulting

Prep By: CDS

Checked By: CDS

October 7, 2009

2009 CUMULATIVE PSH RECOVERY DATA PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6-INCH Sec. 31 LEA COUNTY, NEW MEXICO SRS# 2009-084 IRP-2136

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS (Feet)	CORRECTED GROUNDWATER ELEVATION	OIL RECOVERED (Gallons)
MW -1	10/06/09	-	69.87	70.13	0.26	<u>-</u>	4
MW -1	10/16/09	-	69.74	71.30	1.56	-	4
MW-1	10/21/09	-	69.31	71.41	2.10	-	4
MW-1	10/30/09	-	68.98	72.34	3.36	-	5
MW-1	11/05/09	-	69.07	72.16	3.09		5
MW-1	11/19/09		68.81	72.96	4.15	-	6
MW-1	11/24/09	-	69.25	72.11	2.86		3
MW-1	12/08/09		68.78	72.94	4.16	-	5
MW-1	12/17/09	-	69.05	72.85	3.80	-	5
MW-1	12/21/09		69.14	72.31	3.17	-	5
MW-1	12/28/09	-	68.91	72.96	4.05	-	5.
			* 1 No. 1				

Total (gallons)

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. DCP PLANT TO LEA STATION 6-INCH SEC. 31 LEA COUNTY, NEW MEXICO

PLAINS SRS NO: 2009-084 NMOCD REF NO: 1RP-2166

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-1	09/29/09	-	69.82	69.83	0.01	-
MW-1	10/06/09	-	69.87	70.13	0.26	-
MW-1	10/16/09	-	69.74	71.30	1.56	-
MW-1	10/21/09	-	69.31	71.41	2.10	-
MW-1	10/30/09	-	68.98	72.34	3.36	-
MW-1	11/05/09	-	69.07	72.16	3.09	-
MW-1	11/19/09	_	68.81	72.96	4.15	_
MW-1	11/24/09	-	69.25	72.11	2.86	•
MW-1	12/08/09	-	68.78	72.94	4.16	-
MW-1	12/10/09	-	69.51	71.41	1.90	-
MW-1	12/17/09	-	69.05	72.85	3.80	-
MW-1	12/21/09	-	69.14	72.31	3.17	-
MW-1	12/28/09	-	68.91	72.96	4.05	-
					,	1.6
MW-2	09/29/09	3,539.39	-	82.26	0.00	3,457.13
MW-2	12/10/09	3,539.39	_	82.36	0.00	3,457.03
			45.81			
MW-3	09/29/09	3,539.31	•	82.54	0.00	3,456.77
MW-3	12/10/09	3,539.31	-	82.67	0.00	3,456.64
		The state of the s			eg Y	
MW-4	09/29/09	3,540.12	-	83.58	0.00	3,456.54
MW-4	12/10/09	3,540.12	-	84.68	0.00	3,455.44
	222					

CONCENTRATIONS OF BENZENE, BTEX, CHLORIDES AND TOTAL DISSOLVED SOLIDS IN GROUNDWATER

PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6" SECTION 31 LEA COUNTY, NEW MEXICO PLAINS SRS NO. 2009-084 NMOCD REFERENCE NO: 1R-2166

				ME	THODS: EP	METHODS: EPA SW 846-8021B, 5030	1B, 5030			
SAMPLE LOCATION	SAMPLE	DATE	BENZENE	BENZENE TOLLIENE	ETHYL	M,P-	SANA IAX-O	TOTAI	CHLORIDES	TDS
NOTICO AT TAKE	DATE	ANALYZED			BENZENE	XYLENES	(mg/L)		(mg/L)	(mg/L)
			(T Bun)	(m. 8,)	(mg/L)	(mg/L)	(m.8)	(m.g.m.)		
SB-1	04/16/09	04/17/09	1.915	2.23	0.1761	0.337	0.113	4.7711	54.6	788
						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1		4
MW-1	12/10/09	12/17/09	19.0	13.09	0.812	1.894	0.729	35.525	•	1
				:						
MW-2	12/10/09	12/17/09	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	,	1
			a) 4	,		,				
MW-3	12/10/09	12/17/09	0.0031	<0.0020	<0.0010	<0.0020	<0.0010	<0.0031	•	ı
			1	,						
MW-4	12/10/09	12/17/09	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	•	1
				*						4
NMOCD CRITERIA			0.01	0.75	0.75	TOTAL XY	TOTAL XYLENES 0.62		250	10,000

TABLE 4
CONCENTRATIONS OF RCRA AND NAWQCC METALS IN GROUNDWATER
PLAINS PIPELINE, L.P.
DCP PLANT TO LEA STATION 6-INCH SEC 31
LEA COUNTY, NEW MEXICO

All water concentrations are reported in mg/L

NMOCD REFERENCE NUMBER 1RP-2166

	Метситу	14 0.0001	24 <0.0001	08 <0.0001	J\gm 200.0
	əniZ	0.014	0.024	0.008	J\gm 0j
	Silver	<0.002	<0.002	<0.002	J\gm č0.0
	muinələS	0.028	0.008	9000	J\gm &0.0
	Nickel	900.0	0.013	0.007	J\gm Հ. 0
	munəbdyloM	0.02	0.024	0.019	J\gm 0.1
	989naganaM	0.045	0.147	0.065	⅃ ∖ൠℼ Հ. Օ
PA 7470A	bead	<0.002	0.005	<0.002	J\gm &0.0
5-6020A, E	lron	2.1	5.9	1.860	
EPA SW846-6020A, EPA 7470A	Copper	800.0	0.014	0.01	
3	Cobalt	<0.005	900.0	<0.005	ച\ջտ 20.0
	Сһготіит	0.007	0.01	900.0	J\gm &0.0
	muimbsD	<0.001	<0.001	<0.001	J\gm 10.0
	Вогол	0.317	0.224	0.184	J\gm &7.0
	Barium	0.126	0.704	0.176	J\gm 0.1
	Arsenic	0.019	0.024	0.04	J\gm I.0
	munimulA	2.36	6.51	2.22	J\gm 0.č
	SAMPLE DATE	60/52/60	09/55/09	09/55/00	ontaminant MM WQCC er tions 1- 103.A.
	SAMPLE SAMPLE LOCATION DATE	MW-2	MW-3	MW-4	Maximum Contaminant Levels from NM WQCC Drinking water standards Sections 1- 101.UU and 3-103.A.

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN WATER PLAINS, LP DCP PLANT TO LEA STATION 6-INCH SEC 31
LEA COUNTY, NEW MEXICO
NMOCD REFERENCE NUMBER 1RP-2166 Table 5

-J
\sim
C.
~:
_
_
d)
¥
Œ,
ဟ
~
ਨ
٠.
-
Œ
-
=
~
ψ
ပ
~
ā
న
\sim
<u>. </u>
Ð.
Œ
~
_
=
٧
•

Chloroethane	<0.01	<0.01	<0.01	-
Chlorobenzene	<0.005	<0.005	<0.005	-
Carbon Tetrachloride	<0.005	<0.005	<0.005	J\gm 10.0
Carbon Disulfide	<0.05	<0.05	<0.05	-
tert-Butylbenzene	<0.005	<0.005	<0.005	•
sec-Butylbenzene	<0.005	<0.005	<0.005	-
ənəznədiyinB-n	<0.005	<0.005	<0.005	-
38TM	<0.005	<0.005	<0.005	-
Bromomethane	<0.005	<0.005	<0.005	-
mıotomora	<0.005	<0.005	<0.005	-
Bromodichloromethane	<0.005	<0.005	<0.005	-
Bromochloromethane	<0.005	<0.005	<0.005	<u>-</u>
Bromobenzene	<0.005	<0.005	<0.005	-
Benzene	<0.005	<0.005	<0.005	J\gm f0.0
Sample	MW-2	MW-3	MW-4	n Contaminant rom NMWQCC water standards 1-101.UU and 3-103.A.
Date Sampled	09/53/09	09/53/09	09/53/09	Maximum Contaminant Levels from NMWQCC Drinking water standards Sections 1-101.UU and 3-

Table 5

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN WATER PLAINS PIPELINE, LP DCP PLANT TO LEA STATION 6-INCH SEC. 31
LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1RP-2166

mg/L
į.
are
entrations
conce
water
A//

cis-1,2-Dichloroethene	<0.005	<0.005	<0.005	J\gm1.0
1,1-Dichloroethene	<0.005	<0.005	<0.005	J\gm &00.0
9nsrtheoroldoid-2,t	<0.005	<0.005	<0.005	1\gm f0.0
1,1-Dichloroethane	<0.005	<0.005	<0.005	J\ _B m č00.0
Dichlorodifluormethane	<0.005	<0.005	<0.005	-
9nəznədoroldəid-4,1	<0.005	<0.005	<0.005	-
9neznedorold:6,1	<0.005	<0.005	<0.005	-
1,2-Dichlorobenzene	<0.005	<0.005	<0.005	-
Dibromomethane (methylene bromide)	<0.005	<0.005	<0.005	-
(BDB) enstheomordid-2,1	<0.005	<0.005	<0.005	J\gm 1000.0
1,2-Dibromo-3- ensqorqoroldo	<0.005	<0.005	<0.005	-
Dibromochloromethane	<0.005	<0.005	<0.005	-
p-Cymene(p- lsopropyltoluene)	<0.005	<0.005	<0.005	-
4-Chlorotoluene	<0.005	<0.005	\mathbf{L}^{v}	-
2-Chlorotoluene	<0.005	<0.005	<0.005	•
Chloromethane	<0.01	<0.01	<0.01	•
Chloroform	<0.005	<0.005	<0.005	1\8m1.0
Sample	MW-2	MW-3	MW-4	ontaminant NMWQCC If standards 11.UU and 3- A.
Date Sampled	09/28/09	09/53/09	09/23/09	Maximum Contaminant Levels from NMWQCC Drinking water standards Sections 1-101.UU and 3-

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN WATER PLAINS, LP Table 5

DCP PLANT TO LEA STATION 6-INCH SEC. 31
LEA COUNTY, NEW MEXICO
NMOCD REFERENCE NUMBER 1RP-2166
All water concentrations are in mg/L

	_	_	_	
ansdieoroldserteT-S,f,f,f	<0.005	<0.005	<0.005	<u>-</u>
Styrene	<0.005	<0.005	<0.005	-
n-Propylbenzene	<0.005	<0.005	<0.005	•
Naphthalene	<0.01	<0.01	<0.01	⊒\քm £0.0
-γ-Methyl-2-pentanone (MIBK)	<0.05	<0.05	<0.05	•
Methylene chloride	900.0	900.0	0.006	ച\քա1.0
l sobtobylbenzene	<0.005	<0.005	<0.005	-
Hexachlorobutadiene	<0.005	<0.005	<0.005	•
Ethylbenzene	<0.005	<0.005	<0.005	J\gm &\.0
enaqorqoroldəiG-£,1-znart	<0.005	<0.005	<0.005	-
eneqoropropene	<0.005	<0.005	<0.005	-
1,1-Dichloropropane	<0.005	<0.005	<0.005	•
2,2-Dichloropane	<0.005	<0.005	<0.005	-
1,3-Dichloropropane	<0.005	<0.005	<0.005	-
1,2-Dichloropropane	<0.005 <0.005	<0.005 <0.005	<0.005	-
frans-1,2-Dichloroethene	<0.005	<0.005	<0.005	-
Sample Location	MW-2	MW-3	MW-4	ontaminant NMWQCC er standards 91.UU and 3-
Date Sampled	09/53/09	60/52/60	09/53/09	Maximum Contaminant Levels from NMWQCC Drinking water standards Sections 1-101.UU and 3-

Table 5

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER
PLAINS PIPELINE, LP
DCP PLANT TO LEA STATION 6-INCH SEC. 31
LEA COUNTY, NEW MEXICO
NMOCD REFERENCE NUMBER 1RP-2166

Į,
9
50
2.
ġ
are
S
ons
ati
20
\vec{z}
ĕ
2
cou
Ž
afe
ā
3
₹
~

Vinyl Chloride	<0.002	<0.002	<0.002	J\gm f00.0
ənəlyX-q,m	<0.01	<0.01	<0.01	J/6m S9.0
o-Xylene	<0.005	<0.005	<0.005	Total Xylene
ənəznədlydəminT-Z,£,t	<0.005	<0.005	<0.005	-
ənəznədlydəmirT-4,2,t	<0.005	<0.005	<0.005	•
9nsqorqoroldɔirT-ɛ,允,t	<0.005	<0.005	<0.005	
Prichlorofluoromethane	<0.005	<0.005	<0.005	-
Trichloroethene (TCE)	<0.005	<0.005	<0.005	J \gm 10.0
1,1,2-Trichloroethane	<0.005	<0.005	<0.005	-
ft,1,1-Trichloroethane	<0.005	<0.005	<0.005	J/ gm 90.0
1,2,4-Trichlorobenzene	<0.005	<0.005	<0.005	-
9.2,3-Trichlorobenzene	<0.005	<0.005	<0.005	-
eneulo⊺	<0.005	<0.005	<0.005	J\gm &T.0
Tetrachloroethene (PCE)	<0.005	<0.005	<0.005	-
1,1,2,2-Tetrachloroethane	<0.005	<0.005 <0	<0.005	J∖gm S0.0
Sample Location	MW-2	MW-3	MW-4	ontaminant NMWQCC er standards 11.UU and 3-
Date Sampled	60/53/00	09/53/09	60/53/00	Maximum Contaminant Levels from NMWQCC Drinking water standards Sections 1-101.UU and 3-

TABLE 6
CONCENTRATIONS OF SEMI-VOLATILE COMPOUNDS IN GROUNDWATER
PLAINS PIPELINE, L.P.
DCP PLANT TO LEA STATION 6-INCH SEC 31

ll water concentrations are reported in mg/L

LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1RP-2166

	Pyrene	<0.005	<0.005	<0.005		<0.05
	Ррепапівнене	<0.005	<0.005	<0.005	,	•
	Naphthalene	<0.005	<0.005	<0.005	,	<0.05
	- Մջքիչվոցթիքիցիցու		•	,		<0.05
	I-Methylnaphthalene	-	-	-		<0.05
	onenyq(bo-E,2,1 onebn1	<0.005	<0.005	<0.005		<0.05
	Fluorene	< 0.005	<0.005	<0.005		<0.05
510	onorhneroufi	<0.005	<0.005	<0.005		<0.05
EPA SW846-8270C, 3510	onoorathur h,r xnodiQ	<0.005	<0.005	<0.005		<0.05
A SW846	Ситузене	<0.005	<0.005	<0.005	,	<0.0>
EF	Benzolk Auoranthene	<0.005	<0.005	<0.005	,	<0.05
	9n9lyr9q[i,h,g oxn9B	<0.005	<0.005	<0.005		<0.05
į	Benzo[b]Auoranthene	<0.005	<0.005	<0.005		\$0.05
	Benzolalpy rene	<0.005	<0.005	<0.005		<0.05
	Benzo[a]anthracene	<0.005	<0.005	<0.005	,	<0.05
	эпээвтинА	<0.005	<0.005	<0.005		<0.05
	Acenaphthylene	<0.005	<0.005	<0.005		<0.05
	onodidquooA	<0.005	<0.005	<0.005		<0.05
	SAMPLE	60/67/60	60/67/60	60/67/60		12/10/09
	SAMPLE SAMPLE LOCATION DATE	MW-2	MW-3	MW-4	1,1	MW.1

TABLE 7
CONCENTRATIONS OF ANIONS/CATIONS IN GROUNDWATER
PLAINS PIPELINE, L.P.
DCP PLANT TO LEA STATION 6-INCH SEC 31
LEA COUNTY, NEW MEXICO
NMOCD REFERENCE NUMBER IRP -2166

All water concentrations are reported in mg/L

SAMPLE	SAMPLE SAMPLE				H	EPA SW375.4, 325.3, 310, 160.1 SW846 6010B	5,3, 310, 160.1	SW846 6010B				
DAIE	DAIE LOCATION	Calcium	Magnesium	Potassium	Sodium	Chloride	Sulfate	Bicarbonate	Carbonate	Nitrate	Phosphate	Flouride
6/26/2009	MW-2	58	39.8	<12.5	125	164	204	192	200	86.9	<1.25	6.1
6/26/2009	MW-3	29	20.2	<12.5	199	268	119	260	961	3.66	<1.25	6.01
6/26/2006	MW-4	69	22.2	<12.5	203	307	93.5	180	204	2.25	<1.25	7.52
Maximum Contamina Levels from NM WQC Drinking water standards Sections 1- 101.UU and 3-103.A.	Maximum Contaminant Levels from NM WQCC Drinking water standards Sections 1- 101.UU and 3-103.A.	-	-	-	-	.1\gm 0 22	J/gm 009	-	-	J/gm 01	-	J\gm ծ.l

CONCENTRATIONS OF TPH IN GROUNDWATER

PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6-INCH SEC. 31 LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2009-084 NMOCD REF NO: 1RP-2166

		METH	IOD: EPA SW	V 846-8015 Mc	dified
SAMPLE	SAMPLE	GRO	DRO	ORO	TOTAL TPH
LOCATION	DATE	C ₆ -C ₁₂	C ₁₂ -C ₂₈	C ₂₈ -C ₃₅	C ₆ -C ₃₅
		(ma/L)	(ma/L)	(ma/L)	(ma/L)
MW-1	12/10/09	332	11	<1.50	343

Analytical Report 330361

for

1

1

1

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station 6" - Sec 31 2009-0234

24-APR-09

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers:
Houston, TX T104704215-08B-TX - Odessa/Midland, TX T104704400-08-TX

Florida certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675
Miramar, FL E86349
Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

24-APR-09

Project Manager: Jason Henry
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 330361

DCP Plant to Lea Station 6" - Sec 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 330361. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 330361 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

(1)

(b)

1 (1)

0

Sample Cross Reference 330361

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" - Sec 31

Sample 1d Matrix **Date Collected** Sample Depth Lab Sample 1d W SB-1 Apr-16-09 10:00 330361-001

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-0234

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" - Sec 31

Date Received in Lab: Fri Apr-17-09 08:07 am Report Date: 24-APR-09

Project Manager: Brent Barron, II

	I ab Id:	100-195055	
	Eight Id.		
Analysis Rounested	rieta Ia:	- n-n-n-n-n-n-n-n-n-n-n-n-n-n-n-n-n-n-n	
name that me finite	Дерін:		
	Matrix:	WATER	
	Sampled:	Apr-16-09 10:00	
Anions by EPA 300	Extracted:		
	Analyzed:	Apr-17-09 17:20	
	Units/RL:	mg/L RL	
Chloride		54.6 5.00	
BTEX by FPA 8021B	Extracted:	Apr-22-09 16:30	
A CONTRACTOR OF THE CONTRACTOR	Analyzed:	Apr-23-09 06:16	
	Units/RL:	mg/L RL	
Benzene		1.915 0.0100	
Toluene		2.230 0.0200	
Ethylbenzene		0.1761 0.0100	
m,p-Xylenes	-	0.3370 0.0200	
o-Xylene	•	0.1130 0.0100	
Total Xylenes		0.45 0.0100	
Total BTEX		4.7711 0.0100	
TDS by SM2540C	Extracted:		
•	Analyzed:	Apr-20-09 15:30	
	Units/RL:	mg/L RL	
Total dissolved solids		788 5.00	

This analytical report, and the entire data package is represents, has been made for your exclusive and confidential use. The interpretations and resting expersed throughout this analytical report present the best judgment of XEXCO Laboratories. XEXCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Director

0

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	rax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West 1-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" - Sec 31

Work Orders: 330361,

Project ID: 2009-0234

Lab Batch #: 756783

Sample: 528751-1-BKS / BKS

Batch: | Matrix: Water

Units: mg/L Date Analyzed: 04/22/09 21:43	SU	RROGATE R	RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control- Limits %R	Flags
Analytes			{D}		
1,4-Difluorobenzene	0.0296	0.0300	99	80-120	
4-Bromofluorobenzene	0.0319	0.0300	106	80-120	

Lab Batch #: 756783

Sample: 528751-1-BSD / BSD

Batch: | Matrix: Water

Units: mg/L	Date Analyzed: 04/22/09 22:03	St	RROGATE F	RECOVERY	STUDY	
ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0298	0.0300	99	80-120	
4-Bromofluorobenzene		0.0325	0.0300	108	80-120	

Lab Batch #: 756783

Sample: 528751-1-BLK / BLK

Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 04/22/09 22:44	SU	RROGATE R	ECOVERY	STUDY	**
вте	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0248	0.0300	83	80-120	
4-Bromofluorobenzene		0.0301	0.0300	100	80-120	

Lab Batch #: 756783

Sample: 330361-001 / SMP

Batch:

Matrix: Water

Units: mg/L	Date Analyzed: 04/23/09 06:16	SU	RROGATE R	ECOVERY	STUDY	
ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0245	0.0300	82	80-120	
4-Bromofluorobenzene		0.0310	0.0300	103	80-120	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: DCP Plant to Lea Station 6" - Sec 31

Work Order #: 330361

(1)

Project ID:

2009-0234

Lab Batch #: 756413

Sample: 756413-1-BKS

Matrix: Water

Date Analyzed: 04/17/2009

Date Prepared: 04/17/2009

Analyst: LATCOR

Reporting Units: mg/L	Batch #:	BLANK /	BLANK SP	IKE REC	COVERYS	STUDY
Anions by EPA 300	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]	[B]	Result [C]	%R [D]	%R	
Chloride	ND	10.0	10.2	102	90-110	

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" - Sec 31

Date Prepared: 04/22/2009 Batch #: 1

Work Order #: 330361 Lab Batch ID: 756783 Analyst: ASA

Sample: 528751-1-BKS

Project ID: 2009-0234 **Date Analyzed:** 04/22/2009

Matrix: Water

Units: mg/L		BLANI	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANKS	PIKE DUPL	CATE F	ECOVE	RY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes		[<u>B</u>	[2]	[a]	<u>a</u>	Result [F]	[5]				
Benzene	QV	0.1000	0.1020	102	0.1	0.1027	103	_	70-125	25	
Toluene	QN	0.1000	0.0972	26	0.1	0.0974	16	0	70-125	25	
Ethylbenzene	QN	0.1000	0.1019	102	0.1	0.1021	102	0	71-129	25	
m,p-Xylenes	QN	0.2000	0.2053	103	0.2	0.2057	103	0	70-131	25	
o-Xylene	QN	0.1000	0.0955	96	0.1	0960.0	96	_	71-133	25	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" - Sec 31

Work Order #: 330361

Lab Batch #: 756413 Date Analyzed: 04/17/2009

Project ID: 2009-0234

Date Prepared: 04/17/2009

Analyst: LATCOR

QC-Sample ID: 330361-001 S

Batch #:

Water Matrix:

MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Parent Sample Result	Spike Added	Result	%R	Control Limits %R	Flag
[A] .	[B]				
54.6	100	159	104	80-120	
	Parent Sample Result [A]	Parent Sample Spike Result Added [A] [B]	Parent Sample Result Added [A] [B] Spiked Sample Result [C]	Parent Sample Result Added [A] [B] Spiked Sample Result Result [C] [D]	Sample Spike Result %R Limits Result Added [C] [D] %R [A] [B]

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Clative Percent Difference [E] = 200*(C-A)/(C+B)
All Results are based on MDL and Validated for QC Purposes

Chloride

1

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station 6" - Sec 31

54.6

Work Order #: 330361

Lab Batch #: 756413

Date Analyzed: 04/17/2009

Project ID: 2009-0234

Date Prepared: 04/17/2009 Analyst: LATCOR

54.6

QC- Sample ID: 330361-001 D Batch #:

Matrix: Water

20

SAMPLE / SAMPLE DUPLICATE RECOVERY Reporting Units: mg/L Anions by EPA 300 Parent Sample Sample Control RPD Result Duplicate Limits Flag %RPD Result [A] [B] Analyte

 Lab Batch #: 756504

 Date Analyzed: 04/20/2009
 Date Prepared: 04/20/2009
 04/20/2009
 Analyst: WRU

 QC- Sample ID: 330361-001 D
 Batch #: 1
 Matrix: Water

Reporting Units: mg/L	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Analyte		• •	1		
Total dissolved solids	788	800	2	30	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

Unair OU FOUSTOUT RECORD AREAL ISIS REQUEST 12600 West L20 East Odessa, Texas 19785 Fax: 432 563-1113	Project Name: DCP Plant to Lea Station 6" - Sec 31	s, LLC Project 3: 2009-0234	Project Loc: Lea County, HM	PO #: PAA - J. Henry	Fax No: (573) 396-1429 Report Format:	e-mail: cdstantey@basin-consulting.com	Preservation & Lof Containers Matrix 45	paiding Sample before and to help sample con a control of the state	0416/09 1000 3 X X Water				Laboratory Commenter: Sanda Cogning Nagy VITCE Foot of Hasterney	Reserved by: Date [Inches of countries of the Change of the Change of the countries of the	Received by: Sample Semple Sem	Constitution of the Consti
	and the state of t	Basin Environmental Service Technologies, LLC		Lowington, NM 83260		. ls		ന്ദുമള Darinniga B വുമള Gariba						Polyson Receipt	1	Tare Same

Variance/ Corrective Action Rep	ori- Sample	e Log-Ir	1	
Ollenic Places Basin				
Date/ Time: 04-17-09 @ 0867				
ab 10# 330361 .				
nitials. JMF				
Sample Receipt C	Checklist			
			Cile	ent Initials
11 Temperature of container/ cooler?	(Yes)	No	2.S °C	
#2 Shipping container in good condition?	Yes)	No		
Custody Seals intact on shipping container/ cooler?	Yes	No	(Not Present)	
44 Custody Seals intact on sample bottles/ container? / label	(Yes)	No	Not Present	
#5 Chain of Custody present?	Yes	No		
#6 Sample instructions complete of Chain of Custody?	(Yes)	No		
#7 Chain of Custody signed when relinquished/ received?	(Yes)	No		
#8 Chain of Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont./ Lid	
#9 Container label(s) tegible and intact?	(Yes)	No	Not Applicable	
#10 Sample matrix/ properties agree with Chain of Custody?	(Yes →	No		
#11 Containers supplied by ELOT?	Yes	No		
#12 Samples in proper container/ bottle?	(Yes-)	No	See Below	
#13 Samples properly preserved?	(Yes)	No	See Below	
#14 Sample bottles intact?	(Yes-	No		
#15 Preservations documented on Chain of Custody?	(Yes	No		
#16 Containers documented on Chain of Custody?	Yes	No		
#17 Sufficient sample amount for indicated test(s)?	(Yes')	No	See Below	
#18 All samples received within sufficient hold time?	(Yes)	No	_See-Below	
#19 Subcontract of sample(s)?	Yes	No	Not Applicable	
#20 VOC samples have zero headspace?	(Yes)	No	Not Applicable	
Contact: Contacted by:	nentation		Date/ Time:	
Regarding: Corrective Action Taken:				
Check all that Apply: See attached e-mail/ fax Cilent understands and would Cooling process had begun seems.			,	

Page 12 of 12

Analytical Report 346678

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station Sec. 31 2009-084

03-NOV-09

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-08-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00308), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87428), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-08-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-08-TX)
Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370-08-TX)
Xenco-Boca Raton (EPA Lab Code: FL00449): Florida(E86240),
South Carolina(96031001), Louisiana(04154), Georgia(917)

03-NOV-09

Project Manager: Jason Henry
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 346678

DCP Plant to Lea Station Sec. 31

Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 346678. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 346678 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and OUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 346678

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station Sec. 31

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	Sep-29-09 11:30		346678-001
MW-3	W	Sep-29-09 13:00		346678-002
MW-4	W	Sep-29-09 14:00		346678-003

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station Sec. 31

Project ID:

2009-084

Report Date: 03-NOV-09

Work Order Number: 346678

Date Received: 10/01/2009

Sample receipt non conformances and Comments:

None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-775240 Inorganic Anions by EPA 300

E300MI

Batch 775240, Chloride, Fluoride, Sulfate recovered below QC limits in the Matrix Spike.

Samples affected are: 346678-003, -001, -002.

The Laboratory Control Sample for Chloride, Fluoride, Sulfate is within laboratory Control Limits

E300MI

Batch 775240, Nitrate as N RPD is outside the QC limit. This is most likely due to sample non-

homogeneity.

Samples affected are: 346678-003, -001, -002.

Batch: LBA-775584 Alkalinity by SM2320B

None

Batch: LBA-775620 VOAs by SW-846 8260B

None

Batch: LBA-775661 SVOAs by SW-846 8270C

SW8270C

Batch 775661, Hexachlorobutadiene, Hexachloroethane RPD was outside laboratory control

limits.

Samples affected are: 346678-003, -001, -002

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S
Project Name: DCP Plant to Lea Station Sec. 31

Project ID: 2009-084 Work Order Number: 346678 Report Date: 03-NOV-09 Date Received: 10/01/2009

Batch: LBA-775780 Total Lead by SW6020A

SW6020

Batch 775780, Iron, Zinc recovered below QC limits in the Matrix Spike. Boron recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Barium, Iron, Manganese recovered above QC limits in the Matrix Spike Duplicate.

Samples affected are: 346678-003, -001, -002.

The Laboratory Control Sample for Iron, Manganese, Zinc, Barium, Boron is within laboratory

Control Limits

Batch: LBA-775998 Mercury, Total by EPA 245.1

None

Batch: LBA-776000 Metals per ICP by SW846 6010B

None

Page 5 of 41 Ver. 1.000

Project Location: Lea County, NM Contact: Jason Henry **Project Id:** 2009-084

1

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am

Report Date: 03-NOV-09

	ı
on, II	
Вап	ļ
Brent	ļ
ect Manager:	
Proj	
	ı

	Lab Id:	346678-001	346678-002	346678-003	
Anathoric Donners	Field Id:	MW-2	MW-3	WW4	
Anaiysis Nequesieu	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Sep-29-09 11:30	Sep-29-09 13:00	Sep-29-09 14:00	
Alkalinity by SM2320B	Extracted:				
	Analyzed:	Oct-02-09 14:00	Oct-02-09 14:00	Oct-02-09 14:00	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Alkalinity, Total (as CaCO3)		200 4.00	196 4.00	204 4.00	
Alkalinity, Carbonate (as CaCO3)		ND 4.00	ND 4.00	ND 4.00	
Alkalinity, Bicarbonate (as CaCO3)		200 4.00	196 4.00	204 4.00	
Anions by E300	Extracted:				
	Analyzed:	Oct-01-09 08:40	Oct-01-09 08:40	Oct-01-09 08:40	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Fluoride		6.31 1.00	00.1 1.00	7.52 1.00	
Chloride		164 2.50	268 2.50	307 2.50	
Sulfate		204 2.50	119 2.50	93.5 2.50	
Nitrate as N		6.98 0.250	3.66 0.250	2.25 0.250	
Ortho-Phosphate		ND 1.25	ND 1.25	ND 1.25	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical treport repressant the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount involced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

Page 6 of 41

Project Id: 2009-084

Contact: Jason Henry
Project Location: Lea County, NM

Certificate of Analysis Summary 346678

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am

Report Date: 03-NOV-09

Project Manager: Brent Barron, Il

	-			-	,
	Lab Id:	346678-001	346678-002	346678-003	
Analysis Popuseted	Field Id:	MW-2	MW-3	MW4	
naisanhay sistingiy	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Sep-29-09 11:30	Sep-29-09 13:00	Sep-29-09 14:00	
ICP-MS Metals by SW 6020A	Extracted:	Oct-05-09 13:00	Oct-05-09 13:00	Oct-05-09 13:00	
	Analyzed:	Oct-06-09 12:03	Oct-06-09 12:08	Oct-06-09 12:12	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Aluminum		2.36 0.010	6.51 0.010	2.22 0.010	
Arsenic		0.019 0.002	0.024 0.002	0.040 0.002	
Barium		0.126 0.005	0.704 0.005	0.176 0.005	
Boron		0.317 0.010	0.224 0.010	0.184 0.010	
Cadmium		ND 0.001	ND 0.001	ND 0.001	
Chromium		0.007 0.003	0.010 0.003	0.006 0.003	
Cobalt		ND 0.005	0.006 0.005	ND 0.005	
Copper		0.008 0.003	0.014 0.003	0.010 0.003	
Iron		2.10 0.150	5.90 0.150	1.86 0.150	
Lead		ND 0.002	0.005 0.002	ND 0.002	
Manganese		0.045 0.003	0.147 0.003	0.065 0.003	
Molybdenum		0.020 0.004	0.024 0.004	0.019 0.004	
Nickel		0.006 0.005	0.013 0.005	0.007 0.005	
Selenium		0.028 0.003	0.008 0.003	0.006 0.003	
Silver		ND 0.002	ND 0.002	ND 0.002	
Zinc		0.014 0.003	0.024 0.003	0.008 0.003	
Mercury by EPA 7470A	Extracted:	Oct-05-09 11:00	Oct-05-09 11:00	Oct-05-09 11:00	
	Analyzed:	Oct-07-09 12:55	Oct-07-09 12:55	Oct-07-09 12:55	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Mercury		0.0001 0.0001	1000:0 QN	ND 0.0001	

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron, II
Odessa Laboratory Manager

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the bost judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-084

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am Report Date: 03-NOV-09

Project Manager: Brent Barron, II

!								ſ
	Lab Id:	346678-001		346678-002	2	346678-003	03	
Loton Donnes	Field Id:	MW-2		MW-3		MW4		
Anutysis Nequesieu	Depth:							
	Matrix:	WATER		WATER		WATER	~	
	Sampled:	Sep-29-09 11:30	0	Sep-29-09 13:00	00:5	Sep-29-09 14:00	4:00	
Metals per ICP by SW846 6010B	Extracted:							
	Analyzed:	Oct-07-09 10:27		Oct-07-09 10:27	72.(Oct-07-09 10:27	0:27	
	Units/RL:	mg/L RL	RL	mg/L RL	RL	mg/L RL	RL	
Calcium		58.0 2.50	50	67.0 2.50	2.50	0.69	69.0 2.50	
Magnesium		39.8 0.250	250	20.2	20.2 0.250	22.2	22.2 0.250	
Potassium		ND 12.5	2.5	ND	ND 12.5	ND	ND 12.5	
Sodium		125 12.5	2.5	199	199 12.5	203	203 12.5	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this manificial report represent the best judgmen of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Since 1990

Odessa Laboratory Manager Brent Barron, II

Page 8 of 41

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-084

Certificate of Analysis Summary 346678 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am

Project Manager: Brent Barron, II

Report Date: 03-NOV-09

					, , ,
	Lab Id:	346678-001	346678-002	346678-003	
Account to the second	Field Id:	MW-2	MW-3	MW4	
Andiysis Nequesied	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Sep-29-09 11:30	Scp-29-09 13:00	Sep-29-09 14:00	
SVOAs by EPA 8270C	Extracted:	Oct-02-09 10:30	Oct-02-09 10:33	Oct-02-09 10:36	
	Analyzed:	Oct-03-09 16:46	Oct-03-09 17:23	Oct-03-09 18:02	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Acenaphthene		ND 0.005	ND 0.005	ND 0.005	
Acenaphthylenc		ND 0.005	ND 0.005	ND 0.005	
Aniline (Phenylamine, Aminobenzene)		ND 0.020	ND 0.020	ND 0.020	
Anthracene		ND 0.005	ND 0.005	ND 0.005	
Benzo(a)anthracene		ND 0.005	ND 0,005	ND 0.005	
Benzo(a)pyrene		ND 0.005	ND 0.005	ND 0.005	
Benzo(b)fluoranthene		ND 0.005	ND 0.005	ND 0.005	
Benzo(k)fluoranthene		ND 0.005	ND 0.005	ND 0.005	
Benzo(g,h,i)perylene		ND 0.005	ND 0.005	ND 0.005	
Benzoic Acid		ND 0.030	ND 0.030	ND 0.030	
Benzyl Butyl Phthalate		ND 0.005	ND 0.005	ND 0.005	
bis(2-chloroethoxy) methane		ND 0.010		ND 0.010	
bis(2-chloroethyl) ether		ND 0.010	ND 0.010	ND 0.010	
bis(2-chloroisopropyl) ether		010.0 QN	ND 0.010	ND 0.010	
bis(2-ethylhexyl) phthalate		ND 0.005	ND 0.005	ND 0.005	
4-Bromophenyl-phenylether		ND 0.010	ND 0.010	ND 0.010	
4-chloro-3-methylphenol		ND 0.010	ND 0.010		
4-Chloroanilinc					
2-Chloronaphthalene		ND 0.010	ND 0.010		
2-Chlorophenol		ND 0.010	ND 0.010	ND 0.010	
4-Chlorophenyl Phenyl Ether		ND 0.010	ND 0.010	010.0 QN	
Chrysene		ND 0.005	ND 0.005	ND 0.005	
Dibenz(a,h)Anthracene		ND 0.005	ND 0.005	ND 0.005	
Dibenzofuran		ND 0.010	ND 0.010	ND 0.010	
di-n-Butyl Phthalate		ND 0.005	ND 0.005	ND 0.005	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and exustle expressed throughout this handlyited theort repressed the best judgment of XENCO Laboratories. XENCO Laboratories assumes no exponsibility and markes no warmany to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, Il

Ver. 1.000

Page 9 of 41

Project Id: 2009-084
Contact: Jason Henry
Project Location: Lea County, NM

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am Report Date: 03-NOV-09

Report Date: 03-NOV-09
Project Manager: Brent Barron, II

					Tologonia managara managara	
	Lab Id:	346678-001	346678-002	346678-003		
Audioic Donnoctod	Field Id:	MW-2	MW-3	WW-4		
Anaiysis Nequesieu	Depth:					
	Matrix:	WATER	WATER	WATER		
	Sampled:	Sep-29-09 11:30	Sep-29-09 13:00	Scp-29-09 14:00		
SVOAs by EPA 8270C	Extracted:	Oct-02-09 10:30	Oct-02-09 10:33	Oct-02-09 10:36		
	Analyzed:	Oct-03-09 16:46	Oct-03-09 17:23	Oct-03-09 18:02		
	Units/RL:	mg/L RL	mg/L RL	mg/L RL		
1,2-Dichlorobenzene		ND 0.010	ND 0.010	ND 0.010		
1,3-Dichlorobenzene		ND 0.010	ND 0.010	ND 0.010		
1,4-Dichlorobenzene		ND 0.010	ND 0.010	010'0 QN		
3,3-Dichlorobenzidine	·	010'0 QN	ND 0.010	010.0 QN		
2,4-Dichlorophenol		ND 0.010	ND 0.010	ND 0.010		
Diethyl Phthalate		ND 0.005	ND 0.005	ND 0.005		
Dimethyl Phthalate		ND 0.005	ND 0.005	ND 0.005		
2,4-Dimethylphenol		ND 0.010	ND 0.010	ND 0.010		
4,6-dinitro-2-methyl phenol		ND 0.010	010'0 QN	ND 0.010		
2,4-Dinitrophenol		ND 0.010	010'0 QN	ND 0.010		
2,4-Dinitrotoluene		ND 0.010	ND 0.010	ND 0.010		
2,6-Dinitrotoluene		ND 0.010	ND 0.010	ND 0.010		
di-n-Octyl Phthalate		ND 0.005	ND 0.005	ND 0.005		
Fluoranthene		ND 0.005	ND 0.005	ND 0.005		
Fluorene		ND 0.005	ND 0.005	ND 0.005		
Hexachlorobenzene		ND 0.010	ND 0.010	ND 0.010		
Hexachlorobutadiene		ND 0.010	ND 0.010	ND 0.010		
Hexachlorocyclopentadiene		ND 0.010	ND 0.010	ND 0.010		
Hexachloroethane		ND 0.010	ND 0.010	ND 0.010		
Indeno(1,2,3-c,d)Pyrene		ND 0.005	ND 0.005	ND 0.005		
Isophorone		ND 0.010	ND 0.010	ND 0.010		
2-Methylnaphthalene		ND 0.005	ND 0.005	ND 0.005		
2-methylphenol		ND 0.010	ND 0.010	ND 0.010		
3&4-Methylphenol		010.0 QN	ND 0.010	ND 0.010		
Naphthalene		ND 0.005	ND 0.005	ND 0.005		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and treatist expressed intengiout this ramiyitiest report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron, II
Odessa Laboratory Manager

Page 10 of 41

Project Id: 2009-084

Contact: Jason Henry
Project Location: Lea County, NM

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am

Report Date: 03-NOV-09

Project Manager: Brent Barron, II

Analysis Requested Analysis Requested Depth: Matrix: Sampled: SVOAs by EPA 8270C Extracted: Analyzed: Units/RL:	MW-2 WATER Sep-29-09 11:30	MW-3	4 WM	
10) Si	WATER Scp-29-09 11:30	-		
/OAs by EPA 8270C	WATER Scp-29-09 11:30			
/OAs by EPA 8270C	Sep-29-09 11:30	WATER	WATER	
/OAs by EPA 8270C		Sep-29-09 13:00	Scp-29-09 14:00	
	Oct-02-09 10:30	Oct-02-09 10:33	Oct-02-09 10:36	
	Oct-03-09 16:46	Oct-03-09 17:23	Oct-03-09 18:02	
2-Nitroaniline	mg/L RL	mg/L RL	mg/L RL	
	ND 0.010	ND 0.010	010'0 QN	
3-Nitroaniline	ND 0.010	010'0 QN	010'0 QN	
4-Nitroaniline	ND 0.020	ND 0.020	ND 0.020	
Nitrobenzene	ND 0.010	010'0 QN	010'0 QN	
2-Nitrophenol	010.0 QN	010'0 QN	ND 0.010	
4-Nitrophenol	010.0 QN	010'0 QN	ND 0.010	
N-Nitrosodi-n-Propylamine	010.0 QN	ND 0.010	ND 0.010	
N-Nitrosodiphenylamine	010'0 QN	010'0 QN	ND 0.010	
Pentachlorophenol	ND 0.010	010'0 QN	ND 0.010	
Phenanthrene	ND 0.005	ND 0.005	ND 0.005	
Phenol	ND 0.010	ND 0.010	ND 0.010	
Pyrene	ND 0.005	ND 0.005	ND 0.005	
Pyridine	ND 0.010	ND 0.010	ND 0.010	
1,2,4-Trichlorobenzene	ND 0.010	ND 0.010	ND 0.010	
2,4,5-Trichlorophenol	ND 0.010	010'0 QN	ND 0.010	
2,4,6-Trichlorophenol	ND 0.010	ND 0.010	ND 0.010	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron, II Odessa Laboratory Manager

Page 11 of 41

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-084

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am

03-NOV-09 Report Date:

Project Manager: Brent Barron, II

	Lab Id:	346678-001	346678-002	346678-003	
	Field Id:	MW-2	MW-3	MW4	
Analysis Requested	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Sep-29-09 11:30	Scp-29-09 13:00	Sep-29-09 14:00	
VOAs by SW-846 8260B	Extracted:	Oct-05-09 11:37	Oct-05-09 11:39	Oct-05-09 11:41	
	Analyzed:	Oct-05-09 12:34	Oct-05-09 12:56	Oct-05-09 13:18	
	Units/RL:	mg/LRL	mg/L RL	mg/L RL	
Benzene		ND 0.005	ND 0.005	ND 0.005	
Bromobenzene		ND 0.005	ND 0.005	ND 0.005	
Bromochloromethane		ND 0.005	ND 0.005	ND 0.005	
Bromodichloromethane			ND 0.005	ND 0.005	;
Bromoform		ND 0.005	ND 0.005	ND 0.005	
Bromomethanc		ND 0.005	ND 0.005	ND 0.005	
MTBE		ND 0.005	ND 0.005	ND 0.005	
n-Butylbenzene		ND 0.005	ND 0.005	ND 0.005	
Sec-Butylbenzene		ND 0.005	ND 0.005	ND 0.005	
tert-Butylbenzene		:	ND 0.005	ND 0.005	
Carbon Disulfide		ND 0.050	ND 0.050	ND 0.050	
Carbon Tetrachlonde		ND 0.005	ND 0.005	ND 0.005	
Chlorobenzene		ND 0.005	ND 0.005	ND 0.005	
Chlorocthane			İ		
Chloroform					
Chloromethane		ND 0.010	ND 0.010	ND 0.010	
2-Chlorotoluene		ND 0.005	ND 0.005	ND 0.005	
4-Chlorotoluene		ND 0.005	ND 0.005	ND 0.005	
p-Cymene (p-Isopropyltoluene)		ND 0.005	ND 0.005	ND 0.005	
Dibromochloromethane		ND 0.005	ND 0.005	ND 0.005	
1,2-Dibromo-3-Chloropropane		ND 0.005	ND 0.005	ND 0.005	
1,2-Dibromoethane		ND 0.005	ND 0.005	ND 0.005	
Dibromomethane			ND 0.005	ND 0.005	
1,2-Dichlorobenzene		ND 0.005	ND 0.005	ND 0.005	
1,3-Dichlorobenzene		ND 0.005	ND 0.005	ND 0.005	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed fronghout link analytical report repressent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and mades no warranty to the end use of fine data bereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-084

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am

Report Date: 03-NOV-09

=	=
Barron	Darion,
Dront	
Monogon.	cri Mallagei.
Deci	

	17.17.1	100 007771	346620000	347778 003	
	ran ta:	3400/0-001	3400/0-007	5400-0700+6	
Analysis Roungstod	Field Id:	MW-2	MW-3	MW-4	
maista har sistematic	Depth:			_	
	Matrix:	WATER	WATER	WATER	_
	Sampled:	Sep-29-09 11:30	Sep-29-09 13:00	Scp-29-09 14:00	
VOAs by SW-846 8260B	Extracted:	Oct-05-09 11:37	Oct-05-09 11:39	Oct-05-09 11:41	
	Analyzed:	Oct-05-09 12:34	Oct-05-09 12:56	Oct-05-09 13:18	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
1,4-Dichlorobenzenc	_	ND 0.005	ND 0.005	ND 0.005	
Dichlorodifluoromethane		ND 0.005	ND 0.005	ND 0.005	
1,1-Dichloroethane		ND 0.005	ND 0.005	ND 0.005	
1,2-Dichloroethane		ND 0.005	ND 0.005	ND 0.005	
1,1-Dichloroethene		ND 0.005	ND 0.005	ND 0.005	
cis-1,2-Dichloroethene		ND 0.005	ND 0.005	ND 0.005	
trans-1,2-dichloroethene		ND 0.005	ND 0.005	ND 0.005	
1,2-Dichloropropanc		ND 0.005	ND 0.005	ND 0.005	
1,3-Dichloropropane		ND 0.005	ND 0.005	ND 0.005	
2,2-Dichloropropanc		ND 0.005	ND	ND 0.005	
1,1-Dichloropropene		ND 0.005	QN	ND 0.005	
cis-1,3-Dichloropropene		ND 0.005	ND 0.005	ND 0.005	
trans-1,3-dichloropropene		ND 0.005	QN	ND 0.005	
Ethylbenzene		ND 0.005	ND	ND 0.005	
Hexachlorobutadiene		ND 0.005	ND 0.005	ND 0.005	
isopropylbenzene		ND 0.005	ND		
Methylene Chloride		0.006 0.005	0.006 0.005	0.006 0.005	
Naphthalene		ND 0.010	QN		
n-Propylbenzene			ND	ļ	
Styrene		ND 0.005	ND 0.005		
1,1,1,2-Tetrachloroethanc		ND 0.005	ND 0.005	ND 0.005	
1,1,2,2-Tetrachloroethanc		ND 0.005	ND 0.005	ND 0.005	
Tetrachloroethylene		ND 0.005	ND 0.005	ND 0.005	
Tolucne		ND 0.005	ND 0.005	ND 0.005	
1,2,3-Trichlorobenzene		ND 0.005	ND 0.005	ND 0.005	

This analytical roport, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Page 13 of 41

Project Id: 2009-084
Contact: Jason Henry
Project Location: Lea County, NM

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Talle to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am Report Date: 03-NOV-09

Project Manager: Brent Barron, II

	Lab Id:	346678-001	346678-002	346678-003	
Analysis Donnestad	Field Id:	MW-2	MW-3	MW-4	
Anuiysis Nequesicu	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Sep-29-09 11:30	Sep-29-09 13:00	Sep-29-09 14:00	
VOAs by SW-846 8260B	Extracted:	Oct-05-09 11:37	Oct-05-09 11:39	Oct-05-09 11:41	
	Analyzed:	Oct-05-09 12:34	Oct-05-09 12:56	Oct-05-09 13:18	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
1,2,4-Trichlorobenzene	-	ND 0.005	ND 0.005	ND 0.005	
1,1,1-Trichloroethane		ND 0.005	ND 0.005	ND 0.005	
1,1,2-Trichloroethane		ND 0.005	ND 0.005	ND 0.005	
Trichloroethene		ND 0.005	ND 0.005	ND 0.005	
Trichlorofluoromethane		ND 0.005	ND 0.005	ND 0.005	
1,2,3-Trichloropropane		ND 0.005	ND 0.005	ND 0.005	
1,2,4-Trimethylbenzene		ND 0.005	ND 0.005	ND 0.005	
1,3,5-Trimethylbenzene		ND 0.005	ND 0.005	ND 0.005	
o-Xylene		ND 0.005	ND 0.005	ND 0.005	
m,p-Xylenes		ND 0.010	ND 0.010	ND 0.010	
Vinyl Chloride		ND 0.002	ND 0.002	ND 0.002	

This enalytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interportations and evestile expersed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron, II Odessa Laboratory Manager

Page 14 of 41

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America Phone Fax (281) 240-4200 (281) 240-4280 4143 Greenbriar Dr, Stafford, Tx 77477 (214) 902 0300 (214) 351-9139 9701 Harry Hines Blvd , Dallas, TX 75220 (210) 509-3334 (210) 509-3335 5332 Blackberry Drive, San Antonio TX 78238 (813) 620-2000 (813) 620-2033 2505 North Falkenburg Rd, Tampa, FL 33619 (305) 823-8500 (305) 823-8555 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 (432) 563-1800 (432) 563-1713 (361) 884-0371 (361) 884-9116 842 Cantwell Lanc, Corpus Christi, TX 78408

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station Sec. 31

Work Orders : 346678,

Project ID: 2009-084

Lab Batch #: 775661

Sample: 539448-1-BKS / BKS

Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 10/03/09 14:52	ECOVERY S	STUDY			
SVOAs by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	0.045	0.050	90	43-116	
2-Fluorophenol	0.035	0.050	70	21-100	
Nitrobenzene-d5	0.045	0.050	90	35-114	_
Phenol-d6	0.024	0.050	48	10-94	
Terphenyl-D14	0.046	0.050	92	33-141	
2,4,6-Tribromophenol	0.050	0.050	100	10-123	

Lab Batch #: 775661

Sample: 539448-1-BSD / BSD

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 10/03/09 15:30 SURROGATE RECOVERY STUDY						
SVOAs by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
2-Fluorobiphenyl	0.043	0.050	86	43-116		
2-Fluorophenol	0.036	0.050	72	21-100		
Nitrobenzene-d5	0.047	0.050	94	35-114	-	
Phenol-d6	0.024	0.050	48	10-94		
Terphenyl-D14	0.047	0.050	94	33-141		
2,4,6-Tribromophenol	0.052	0.050	104	10-123		

Lab Batch #: 775661

Sample: 346678-001 / SMP

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 10/03/09 16:46	SU	RROGATE RE	ECOVERY	STUDY	
SVOAs by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		ı
2-Fluorobiphenyl	0.043	0.050	86	43-116	
2-Fluorophenol	0.024	0.050	48	21-100	
Nitrobenzene-d5	0.042	0.050	84	35-114	
Phenol-d6	0.013	0.050	26	10-94	
Tcrphenyl-D14	0.052	0.050	104	33-141	1
2,4,6-Tribromophenol	0.045	0.050	90	10-123	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Page 16 of 41 Ver. 1.000

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station Sec. 31

Work Orders: 346678,

Project ID: 2009-084

Lab Batch #: 775661

Sample: 346678-002 / SMP

Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 10/03/09 17:23 SURROGATE RECOVERY STUDY					
SVOAs by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	0.010	2.22		42.116	
2-Fluorobiphenyl	0.043	0.050	86	43-116	
2-Fluorophenol	0.021	0.050	42	21-100	
Nitrobenzene-d5	0.041	0.050	82	35-114	
Phenol-d6	0.011	0.050	22	10-94	
Terphenyl-D14	0.051	0.050	102	33-141	
2,4,6-Tribromophenol	0.044	0.050	88	10-123	

Lab Batch #: 775661

Sample: 346678-003 / SMP

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 10/03/09 18:02	SU	RROGATE RI	ECOVERY	STUDY	
SVOAs by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
2-Fluorobiphenyl	0.041	0.050	82	43-116	
2-Fluorophenol	0.023	0.050	46	21-100	
Nitrobenzene-d5	0.039	0.050	78	35-114	
Phenol-d6	0.013	0.050	26	10-94	
Terphenyl-D14	0.052	0.050	104	33-141	_
2,4,6-Tribromophenol	0.044	0.050	88	10-123	

Lab Batch #: 775661

Sample: 539448-1-BLK / BLK

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 10/06/09 14:37	St	SURROGATE RECOVERY STUDY					
SVOAs by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Analytes			[10]				
2-Fluorobiphenyl	0.047	0.050	94	43-116			
2-Fluorophenol	0.035	0.050	70	21-100			
Nitrobenzene-d5	0.045	0.050	90	35-114			
Phenol-d6	0.023	0.050	46	10-94			
Terphenyl-D14	0.057	0.050	114	33-141			
2,4,6-Tribromophenol	0.039	0.050	78	10-123			

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Page 17 of 41 Ver. 1.000

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station Sec. 31

Work Orders: 346678,

Project ID: 2009-084

Lab Batch #: 775620

Sample: 539623-1-BKS / BKS

Batch: | Matrix: Water

Units: mg/L Date Analyzed: 10/05/09 11:04 SURROGATE RECOVERY STUDY					
VOAs by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes					
4-Bromofluorobenzene	0.0474	0.0500	95	74-124	
Dibromofluoromethane	0.0476	0.0500	95	75-131	
1,2-Dichloroethane-D4	0.0492	0.0500	98	63-144	
Toluene-D8	0.0502	0.0500	100	80-117	

Lab Batch #: 775620 Sample: 539623-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 10/05/09 11:47	SURROGATE RECOVERY STUDY					
VOAs	by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
	Analytes			101			
4-Bromofluorobenzene		0.0475	0.0500	95	74-124		
Dibromofluoromethane		0.0468	0.0500	94	75-131		
1,2-Dichloroethane-D4		0.0505	0.0500	101	63-144		
Toluene-D8		0.0491	0.0500	98	80-117		

Lab Batch #: 775620 Sample: 346678-001 / SMP Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 10/05/09 12:34	SURROGATE RECOVERY STUDY					
VOAs	by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
4-Bromofluorobenzene		0.0468	0.0500	94	74-124		
Dibromofluoromethane		0.0453	0.0500	91	75-131		
1,2-Dichloroethane-D4		0.0479	0.0500	96	63-144		
Toluene-D8		0.0491	0.0500	98	80-117		

Lab Batch #: 775620 Sample: 346678-002 / SMP Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 10/05/09 12:56	SURROGATE RECOVERY STUDY					
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
4-Bromofluorobenzene		0.0483	0.0500	97	74-124		
Dibromofluoromethane		0.0450	0.0500	90	75-131		
1,2-Dichloroethane-D4		0.0495	0.0500	99	63-144		
Toluene-D8		0.0493	0.0500	99	80-117		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station Sec. 31

Work Orders : 346678,

Project ID: 2009-084

Lab Batch #: 775620

Sample: 346678-003 / SMP

Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 10/05/09 13:18	SU	RROGATE R	ECOVERY	STUDY	
VOAs	by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0480	0.0500	96	74-124	
Dibromofluoromethane		0.0472	0.0500	94	75-131	
1,2-Dichloroethane-D4		0.0513	0.0500	103	63-144	
Toluene-D8		0.0482	0.0500	96	80-117	

Lab Batch #: 775620

Sample: 346678-003 S / MS

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 10/05/09 13:39	SURROGATE RECOVERY STUDY					
VOAs	by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
4-Bromofluorobenzene		0.0475	0.0500	95	74-124		
Dibromofluoromethane		0.0477	0.0500	95	75-131		
1,2-Dichloroethane-D4		0.0497	0.0500	99	63-144		
Toluene-D8		0.0491	0.0500	98	80-117		

Lab Batch #: 775620

Sample: 346678-003 SD / MSD

Batch:

Matrix: Water

Units: mg/L	Date Analyzed: 10/05/09 14:01	SU	RROGATE R	ECOVERY :	STUDY	
VOAs	by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0485	0.0500	97	74-124	
Dibromofluoromethane		0.0466	0.0500	93	75-131	
1,2-Dichloroethane-D4		0.0481	0.0500	96	63-144	
Tolucne-D8		0.0492	0.0500	98	80-117	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

2009-084

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678 Project ID:

 Lab Batch #: 775584
 Sample: 775584-1-BKS
 Matrix: Water

 Date Analyzed: 10/02/2009
 Date Prepared: 10/02/2009
 Analyst: WRU

Reporting Units: mg/L	Batch #:	BLANK/I	BLANK SPI	KE REC	COVERYS	STUDY
Alkalinity by SM2320B	Blank Result	Spike Added	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes	[A]	[B]	[C]	%K D	70 K	
Alkalinity, Total (as CaCO3)	ND	200	172	86	80-120	

 Lab Batch #: 775780
 Sample: 539604-1-BKS
 Matrix: Water

 Date Analyzed: 10/06/2009
 Date Prepared: 10/05/2009
 Analyst: HAT

Reporting Units: mg/L	Batch #:	BLANK /	BLANK SPI	KE REC	OVERY S	STUDY
ICP-MS Metals by SW 6020A Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Aluminum	ND	0.200	0.198	99	75-125	
Arsenic	ND	0.050	0.048	96	75-125	
Barium	ND	0.050	0.050	100	75-125	
Boron	ND	0.020	0.018	90	75-125	
Cadmium	ND	0.020	0.021	105	75-125	
Chromium	ND	0.050	0.050	100	75-125	
Cobalt	ND	0.050	0.049	98	75-125	
Copper	ND	0.050	0.049	98	75-125	
Iron	ND	0.200	0.200	100	75-125	
Lead	ND	0.050	0.047	94	75-125	
Manganese	ND	0.050	0.050	100	75-125	
Molybdenum	ND	0.050	0.049	98	75-125	
Nickel	ND	0.050	0.049	98	75-125	
Selenium	ND	0.050	0.050	100	75-125	
Silver	ND	0.020	0.021	105	75-125	
Zinc	ND	0.050	0.052	104	75-125	

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

Page 20 of 41 Ver. 1.000

Blank Spike Recovery

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678 Project ID: 2009-084

Lab Batch #: 775240Sample: 775240-1-BKSMatrix: WaterDate Analyzed: 10/01/2009Date Prepared: 10/01/2009Analyst: LATCOR

Reporting Units: mg/L Batch #: BLANK/BLANK SPIKE RECOVERY STUDY Spike Blank Blank Blank Control Anions by E300 Result Added Spike Spike Limits Flags **[B]** Result %R %R [A] **Analytes** [C] [D]ND 2.70 2.76 102 90-110 Fluoride 10.0 10,2 102 90-110 Chloride ND 11.0 108 90-110 Sulfate ND 11.9 98 Nitrate as N ND 2.00 1.96 90-110 Ortho-Phosphate ND 1.70 1.75 103 90-110

Blank Spike Recovery [D] = 100*[C]/[B]
All results are based on MDL and validated for QC purposes.
BRL - Below Reporting Limit

Blank Spike Recovery

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Project ID:

2009-084

Lab Batch #: 775620

Sample: 539623-1-BKS

Matrix: Water

Date Analyzed: 10/05/2009

Date Prepared: 10/05/2009

Analyst: KHM

Reporting Units: mg/L	Batch #: 1	BLANK /B	LANK SPI	KE REC	OVERYS	TUDY
VOAs by SW-846 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Benzene	ND	0.050	0.046	92	66-142	
Bromobenzene	ND	0.050	0.049	98	60-130	
Bromochloromethane	ND	0.050	0.046	92	73-125	
Bromodichloromethane	ND	0.050	0.049	98	75-125	
Bromoform	ND	0.050	0.056	112	75-125	
Bromomethane	ND	0.050	0.047	94	70-130	
МТВЕ	ND	0.050	0.051	102	75-125	_
n-Butylbenzene	ND	0.050	0.047	94	75-125	
Sec-Butylbenzene	ND	0.050	0.049	98	75-125	
tert-Butylbenzene	ND	0.050	0.050	100	75-125	
Carbon Disulfide	ND	0.500	0.467	93	60-140	
Carbon Tetrachloride	ND	0.050	0.048	96	62-125	
Chlorobenzene	ND	0.050	0.052	104	60-133	
Chloroethane	ND	0.050	0.041	82	70-130	
Chloroform	ND	0.050	0.045	90	74-125	
Chloromethane	ND	0.050	0.044	88	70-130	
2-Chlorotolucne	ND	0.050	0.049	98	73-125	
4-Chlorotolucne	ND	0.050	0.048	96	74-125	
p-Cymene (p-Isopropyltoluene)	ND	0.050	0.051	102	75-125	
Dibromochloromethane	ND	0.050	0.054	108	60-130	
1,2-Dibromo-3-Chloropropane	· ND	0.050	0.043	86	59-125	
1,2-Dibromoethane	ND	0.050	0.047	94	73-125	
Dibromomethane	ND	0.050	0.043	86	69-127	
1,2-Dichlorobenzene	ND	0.050	0.049	98	75-125	
1,3-Dichlorobenzene	ND	0.050	0.049	98	75-125	
1,4-Dichlorobenzene	ND	0.050	0.049	98	75-125	
Dichlorodifluoromethane	ND	0.050	0.048	96	70-130	
1,1-Dichloroethane	, ND	0.050	0.046	92	60-130	
1,2-Dichlorocthane	ND	0.050	0.041	82	68-127	

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

1,1-Dichloroethene

cis-1,2-Dichloroethene

trans-1,2-dichloroethene

1,2-Dichloropropane

82

86

86

59-172

60-130

60-130

74-125

0.041

0.043

0.043

0.048

ND

ND

ND

ND

0.050

0.050

0.050

0.050

Blank Spike Recovery

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Project ID:

2009-084

Lab Batch #: 775620

Sample: 539623-1-BKS

Matrix: Water

Date Analyzed: 10/05/2009

Date Prepared: 10/05/2009

Analyst: KHM

Reporting Units: mg/L	Batch #:	BLANK /E	BLANK SPI	KE REC	OVERYS	STUDY
VOAs by SW-846 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
1,3-Dichloropropane	ND	0.050	0.046	92	75-125	
2,2-Dichloropropanc	ND	0.050	0.046	92	60-140	
1,1-Dichloropropene	ND	0.050	0.039	78	75-125	
cis-1,3-Dichloropropene	ND	0.050	0.051	102	60-140	
trans-1,3-dichloropropene	ND	0.050	0.050	100	66-125	
Ethylbenzene	ND	0.050	0.048	96	75-125	
Hexachlorobutadiene	ND	0.050	0.052	104	75-125	
isopropylbenzene	ND	0.050	0.049	98	75-125	
Methylene Chloride	ND	0.050	0.041	82	75-125	
Naphthalene	ND	0.050	0.050	100	65-135	
n-Propylbenzene	ND	0.050	0.051	102	75-125	
Styrene	ND	0.050	0.049	98	60-130	
1,1,1,2-Tetrachloroethane	ND	0.050	0.052	104	75-125	
1,1,2,2-Tetrachloroethane	ND	0.050	0.048	96	50-130	
Tetrachloroethylene	ND	0.050	0.050	100	60-130	
Toluene	ND	0.050	0.049	98	59-139	
1,2,3-Trichlorobenzene	ND	0.050	0.052	104	75-137	
1,2,4-Trichlorobenzene	ND	0.050	0.052	104	75-135	
1,1,1-Trichloroethane	ND	0.050	0.043	86	75-125	
1,1,2-Trichloroethane	ND	0.050	0.048	96	75-127	
Trichloroethene	ND	0.050	0.048	96	62-137	
Trichlorofluoromethane	ND	0.050	0.052	104	67-125	
1,2,3-Trichloropropane	ND	0.050	0.051	102	75-125	
1,2,4-Trimethylbenzene	ND	0.050	0.048	96	75-125	

ND

ND

ND

ND

0.050

0.050

0.100

0.050

0.049

0.052

0.101

0.043

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

1,3,5-Trimethylbenzene

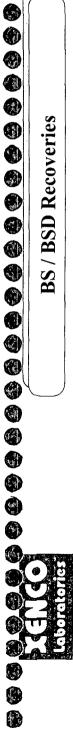
o-Xylene

m,p-Xylenes

Vinyl Chloride

98

104


101

70-125

75-125

75-125

75-125

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Analyst: LATCOR

Lab Batch ID: 775998

Date Prepared: 10/05/2009 Sample: 539849-1-BKS

Batch #: 1

Date Analyzed: 10/07/2009 **Project ID: 2009-084**

Matrix: Water

Units: mg/L		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANK S	PIKE DUPL	ICATE 1	RECOVE	RY STUD	Y	
Mercury by EPA 7470A	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		<u>B</u>	[2]	[<u>D</u>]	亘	Result [F]	<u>5</u>				
Mercury	QN	0.0010	6000'0	06	0.001	0.0000	100	=	75-125	20	

Relative Perecm Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Page 24 of 41

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Lab Batch ID: 775661 Analyst: CLR

Sample: 539448-1-BKS

Date Prepared: 10/02/2009 Batch #: 1

Date Analyzed: 10/03/2009 **Project ID: 2009-084**

Matrix: Water

Units: mg/L		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	SPIKE / E	LANK S	PIKE DUPL	ICATE 1	RECOVE	RY STUD	Y	
SVOAs by EPA 8270C Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	BIK. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Acenaphthene	QN	0.050	0.044	88	0.05	0.044	88	0	54-114	25	l)
Acenaphthylene	QX	0.050	0.042	84	0.05	0.043	98	2	53-113	25	
Aniline (Phenylamine, Aminobenzene)	S	0.050	0.038	9/	0.05	0.038	92	0	35-104	25	
Anthracene	QN	0.050	0.045	06	0.05	0.048	96	9	911-95	25	
Benzo(a)anthracene	QX	0.050	0.041	82	0.05	0.043	98	5	59-116	25	
Benzo(a)pyrene	QN	0.050	0.046	92	0.05	0.049	86	9	58-118	25	
Benzo(b)fluoranthene	QN	0.050	0.047	94	0.05	0.051	102	8	54-123	25	
Benzo(k)fluoranthene	QN	0.050	0.048	96	0.05	0.050	001	4	52-122	25	
Benzo(g,h,i)perylene	QN	0.050	0.056	112	0.05	090'0	120	7	47-129	25	
Benzoic Acid	Q.	0.150	0.033	22	0.15	0:030	20	01	4-113	25	
Benzyl Butyl Phthalate	QN	0.050	0.041	82	0.05	0.043	98	5	57-122	. 25	
bis(2-chloroethoxy) methane	QN	0.050	0.042	84	0.05	0.044	88	5	53-112	25	
bis(2-chloroethyl) ether	QN	0.050	0.040	80	0.05	0.041	82	2	801-25	25	
bis(2-chloroisopropyl) ether	QN	0.050	0.040	80	0.05	0.040	08	0	54-111	25	
bis(2-cthylhexyl) phthalate	QN	0.050	0.043	98	0.05	0.044	88	2	59-119	25	
4-Bromophenyl-phenylether	QN	0.050	0.044	88	0.05	0.047	94	7	58-112	52	
4-chloro-3-methylphenol	QV	0.050	0.044	88	0.05	0.046	92	4	58-116	25	
4-Chloroaniline	QN	0.050	0.047	94	0.05	0.049	86	4	2-123	25	
2-Chloronaphthalene	QN	0.050	0.044	88	0.05	0.042	84	\$	58-105	25	
2-Chlorophenol	QN	0.050	0.041	82	0.05	0.044	88	4	901-85	25	

Relative Percent Difference RPD = 200*(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Page 25 of 41

Work Order #: 346678

Analyst: CLR

Sample: 539448-1-BKS

Date Prepared: 10/02/2009

Batch #: 1

Date Analyzed: 10/03/2009 Project ID: 2009-084 Matrix: Water

Lab Batch ID: 775661 Units: mg/L

SVOAs by EPA 8270C	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	BIK. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	<u>₹</u>	[B]	Result [C]	% [0]	<u> </u>	Duplicate Result [F]	[G. R	%	%R	%RPD	
4-Chlorophenyl Phenyl Ether	S	0.050	0.043	98	0.05	0.045	06	5	601-65	25	
Chrysene	QN	0.050	0.046	92	0.05	0.048	96	4	58-116	25	
Dibenz(a,h)Anthracene	QN	0.050	0.056	112	0.05	090.0	120	7	46-131	25	
Dibenzofuran	QN	0.050	0.044	88	0.05	0.046	92	4	56-111	25	
di-n-Butyl Phthalate	QN	0.050	0.047	94	0.05	0.049	86	4	60-118	25	
1,2-Dichlorobenzene	QN	0.050	0.042	84	0.05	0.034	89	21	53-106	25	
1,3-Dichlorobenzene	QN	0.050	0.042	84	0.05	0.034	89	21	52-105	25	
1,4-Dichlorobenzene	QN	0.050	0.042	84	0.05	0.034	89	21	54-105	25	
3,3-Dichlorobenzidine	QN	0.050	0.038	92	0.05	0.041	82	8	36-123	25	
2,4-Dichlorophenol	QN	0.050	0.045	06	0.05	0.046	92	2	011-09	25	
Dicthyl Phthalatc	QN	0.050	0.044	88	90.0	0.047	64	7	62-114	25	
Dimethyl Phthalate	QN	0.050	0.043	98	0.05	0.046	65	7	59-113	25	
2,4-Dimethylphenol	QN	0.050	0.037	74	50:0	0.041	82	01	50-108	25	
4,6-dinitro-2-methyl phenol	ND	0.050	0.044	88	50:0	0.047	64	7	611-78	52	
2,4-Dinitrophenol	ND	0.050	0.042	84	50.0	0.044	88	5	52-111	25	
2,4-Dinitrotoluene	ND	0.050	0.043	98	50.0	0.047	64	6	911-09	25	
2,6-Dinitrotoluene	QN	0.050	0.043	98	50.0	0.046	76	7	60-115	25	
di-n-Octyl Phthalate	QN	0.050	0.042	84	50.0	0.043	98	2	49-129	_ 25	
Fluoranthene	QN	0.050	0.047	94	50.0	0.050	001	9	55-120	25	
Fluorene	ND	0.050	0.044	88	50:0	0.046	76	4	56-114	25	
										1	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Analyst: CLR

Lab Batch ID: 775661

Units: mg/L

Date Prepared: 10/02/2009

Batch #: 1

Date Analyzed: 10/03/2009 Project ID: 2009-084 Matrix: Water

Sample: 539448-1-BKS

SVOAs by EPA 8270C	Blank Sample Result	Spike Added	Blank Spike Result	Blank Spike	Spike Added	Blank Spike Duplicate	BIK. Spk Dup. %R	RPD	Control Limits %R	Control Limits	Flag
Analytes		[B]	[0]	<u>a</u>	亘	Result [F]	[5]				
Hexachlorobenzene	QN	0.050	0.047	94	0.05	0.050	001	9	601-09	25	
Hexachlorobutadiene	QN	0.050	0.046	92	0.05	0.035	70	27	52-107	25	<u>.</u>
Hexachlorocyclopentadiene	QN	0.050	0.045	06	0.05	0.048	96	9	32-115	25	
Hexachloroethane	QN	0.050	0.042	84	0.05	0.032	64	27	46-115	25	Ŧ
Indeno(1,2,3-c,d)Pyrenc	QN	0.050	0.054	801	0.05	0.058	911	7	44-132	25	
Isophorone	QN	0.050	0.043	98	0.05	0.045	06	5	57-107	25	
2-Methylnaphthalenc	QN	0.050	0.046	92	0.05	0.041	82	=	57-106	25	
2-methylphenol	QN	0.050	0.037	74	0.05	0.038	9/	3	52-106	25	
3&4-Methylphenol	QN	001.0	0.067	19	0.1	690'0	69	3	23-140	25	
Naphthalene	QN	0.050	0.043	98	0.05	0.038	92	12	011-89	25	
2-Nitroanilinc	QN	0.050	0.044	88	0.05	0.048	96	6	55-120	25	
3-Nitroaniline	ND	0.050	0.049	86	0.05	0.051	102	4	49-120	25	
4-Nitroaniline	QN	0.050	0.054	801	0.05	0.057	114	5	811-29	25	
Nitrobenzene	QN	0.050	0.043	98	0.05	0.045	06	5	201-95	25	
2-Nitrophenol	QN	0.050	0.044	88	0.05	0.046	92	4	501-25	25	
4-Nitrophenol	QN	0.050	0.032	64	0.05	0.033	99	3	18-104	25	
N-Nitrosodi-n-Propylamine	QN	0.050	0.041	82	0.05	0.041	82	0	21-137	25	
N-Nitrosodiphenylamine	QN	0.050	0.042	84	0.05	0.045	06	7	121-09	25	
Pentachlorophenol	ND	0.050	0.035	20	0.05	0.038	92	8	36-132	25	
Phenanthrene	QN	0.050	0.047	94	0.05	0.049	86	4	911-95	25	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)]
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Analyst: CLR

Lab Batch ID: 775661

Units: mg/L

Sample: 539448-1-BKS

Date Prepared: 10/02/2009

Batch #: 1

Date Analyzed: 10/03/2009 Project ID: 2009-084 Matrix: Water Flag

Limits %RPD Control

25 25 25 25 25 25

SVOAs by EPA 8270C	Blank Sp Sample Result Ad	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits
Analytes	[¥]	[8]	Result [C]	%R [D]	[E]	Duplicate Result [F]	%R [<u>G</u>	%	%R
Phenol	QV.	0.050	0.027	54	0.05	0.027	54	0	68-61
Pyrene	QN	0.050	0.044	88	0.05	0.047	94	7	611-25
Pyridinc	QN	0.050	0.021	42	0.05	0.020	40	5	5-94
1,2,4-Trichlorobenzene	QN	0.050	0.044	88	0.05	0.037	74	17	56-104
2,4,5-Trichlorophenol	QN	0.050	0.044	88	0.05	0.047	94	7	55-114
2,4,6-Trichlorophenol	QN	0.050	0.043	98	0.05	0.046	92	7	57-113

Relative Percent Difference RPD = 200*[(C-F)/(C+F)]
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Lab Batch #: 775240

Project ID: 2009-084

Date Analyzed: 10/01/2009

Date Prepared: 10/01/2009

Analyst: LATCOR

QC- Sample ID: 346505-001 S

Batch #: 1 Matrix: Water

MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
[A]	[B]				
9.20	27.0	30.7	80	90-110	X
154	100	240	86	90-110	X
71.1	100	159	88	90-110	Х
3.75	20.0	23.9	101	90-110	
ND	17.0	16.6	98	90-110	
	Parent Sample Result [A] 9.20 154 71.1 3.75	Parent Spike Result Added [B]	Parent Spike Result IC	Parent Spike Spiked Sample Result IA	Sample Result Added IC

Matrix Spike Percent Recovery [D] = 100*(C-A)/B
Relative Percent Difference [E] = 200*(C-A)/(C+B)
All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Work Order #: 346678

Lab Batch ID: 775780

Date Analyzed: 10/06/2009

QC-Sample ID: 345663-002 S

Matrix: Water Batch #:

Project ID: 2009-084

Analyst: HAT Date Prepared: 10/05/2009

Reporting Units: mg/L		Σ	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	E/MAT	RIX SPII	CE DUPLICA	TE REC	OVERY S	STUDY		
ICP-MS Metals by SW 6020A Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD	Control Limits %R	Control Limits %RPD	Flag
Aluminum	0.067	0.200	0.279	901	0.200	0.290	112	4	75-125	25	
Arsenic	900'0	0.050	0.047	82	0.050	0.051	96	~	75-125	25	
Barium	0.458	0.050	0.509	102	0.050	0.523	130	3	75-125	25	×
Boron	0.312	0.020	0.340	140	0.020	0.358	230	5	75-125	25	×
Cadmium	QN	0.020	0.016	80	0.020	0.017	85	9	75-125	25	
Chromium	QN	0.050	0.057	114	0.050	0.062	124	8	75-125	25	
Cobalt	QN	0.050	0.054	801	0.050	0.059	118	6	75-125	25	
Copper	9000	0.050	0.053	94	0.050	0.057	102	7	75-125	25	
Iron	36.1	0.200	36.2	50	0.200	36.5	200	-	75-125	25	×
Lead	0.026	0.050	0.075	86	0.050	0.081	110	∞	75-125	25	
Manganesc	2.98	0.050	3.03	100	0.050	3.07	180	_	75-125	25	×
Molybdenum	QN	0.050	950'0	112	0.050	0.062	124	10	75-125	25	
Nickel	600.0	0.050	0.058	86	0.050	0.062	901	7	75-125	25	!
Selenium	QN	0.050	0.038	9/	0.050	0.042	84	10	75-125	25	
Silver	QN	0.020	0.016	80	0.020	0.018	06	12	75-125	25	
Zinc	0.027	0.050	0.064	74	0.050	0.068	82	9	75-125	25	×

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F))

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 30 of 41

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Work Order #: 346678

Project ID: 2009-084

Lab Batch ID: 775998	QC- Sample ID: 346432-016 S	346432-	016 S	Bat	Batch #:	l Matrix: Water	:: Water				
Date Analyzed: 10/07/2009	Date Prepared: 10/05/2009	10/05/2(600	Ans	ılyst: I	Analyst: LATCOR					
Reporting Units: mg/L		M	ATRIX SPIKI	./MATI	RIX SPIF	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	TE REC	OVERY S	STUDY		
Mercury by EPA 7470A	Parent		Spiked Sample Spiked	Spiked	:	le Spiked Duplicate Sp	Spiked	dad	Control	Control	Ė
,	Sample Result	Spike	Kesult [C]	Sample %R	Spike	Spiked Sample Result [F]	MP.	47. %	Limits Limits %RPD	Limits %RPD	r lag
Analytes	<u>(</u>	[<u>B</u>		<u>a</u>	Ξ		<u>5</u>				,
Mercury	0.0001	0.000.0	0.0011	001	0.0010	1100 0.0010 0.0011	0 001		75-125	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 31 of 41

Work Order #: 346678

Lab Batch ID: 775620

Date Analyzed: 10/05/2009

QC- Sample ID: 346678-003 S Date Prepared: 10/05/2009

Batch #:

Project ID: 2009-084

Matrix: Water KHM Analyst:

Reporting Units: mg/L		M	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	/MAT	RIX SPII	KE DUPLICA	TE REC	OVERY S	STUDY		
VOAs by SW-846 8260B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes		Added [B]	<u> </u>	¥ <u>[</u>	Added [E]	Kesuit [F]	ğ <u>Ş</u>	%	% K	%KFU	
Benzene	QN	0.050	0.045	06	0.050	0.046	92	2	66-142	21	
Bromobenzene	QN	0.050	0.047	94	0.050	0.049	86	4	60-130	20	
Bromochloromethane	Q.	0.050	0.046	92	0.050	0.044	88	4	73-125	20	
Bromodichloromethane	QV	0.050	0.046	92	0.050	0.047	94	2	75-125	20	
Bromoform	QN	0.050	0.048	96	0.050	0.052	104	∞	75-125	20	
Bromomethane	QV	0.050	0.044	88	0.050	0.043	98	2	70-130	20	
MTBE	QV	0.050	0.051	102	0.050	0.052	104	2	75-125	20	
n-Butylbenzene	QN	0.050	0.045	06	0.050	0.046	92	2	75-125	20	
Sec-Butylbenzene	QN	0.050	0.047	94	0.050	0.048	96	2	75-125	20	
tert-Butylbenzene	QN	0.050	0.049	86	0.050	0.049	86	0	75-125	20	
Carbon Disulfide	QN	0.500	0.454	16	0.500	0.448	06	-	60-140	20	
Carbon Tetrachloride	QN	0.050	0.045	06	0.050	0.047	94	4	62-125	20	
Chlorobenzene	QN	0.050	0.048	96	0.050	0.051	102	9	60-133	21	
Chlorocthane	QN	0.050	0.040	08	0.050	0.039	28	3	70-130	50	
Chloroform	ND	0.050	0.044	88	0.050	0.044	88	0	74-125	20	
Chloromethane	ND	0.050	0.042	84	0.050	0.040	08	5	70-130	20	
2-Chlorotoluene	QN	0.050	0.047	94	0.050	0.047	94	0	73-125	20	
4-Chlorotoluene	QN	0.050	0.046	62	0.050	0.047	94	2	74-125	20	
p-Cymene (p-Isopropyltoluene)	QN	0.050	0.049	86	0.050	0.050	001	2	75-125	20	
Dibromochloromethane	QN	0.050	0.048	96	0.050	0.051	102	9	60-130	20	
1,2-Dibromo-3-Chloropropane	QN	0.050	0.043	98	0.050	0.045	06	5	59-125	87	
1,2-Dibromoethane	ND	0.050	0.045	06	0.050	0.049	86	6	73-125	20	
Dibromomethane	QN	0.050	0.042	84	0.050	0.044	88	5	69-127	23	
Diplomoneurance	1	0.000	0.042	50	0.000	0.01	99	,		02-127	4

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*[(C-F)/(C+F)]

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 32 of 41

Work Order #: 346678

Lab Batch ID: 775620

Date Analyzed: 10/05/2009

QC-Sample ID: 346678-003 S

Batch #:

Project ID: 2009-084

Matrix: Water

Analyst: KHM Date Prepared: 10/05/2009 Reporting Units: mg/L

VOAs by SW-846 8260B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
1,2-Dichlorobenzenc	QN	0.050	0.047	94	0.050	0.048	96	2	75-125	20	
1,3-Dichlorobenzene	ND	0.050	0.049	86	0.050	0.050	100	2	75-125	20	
1,4-Dichlorobenzene	QN	0.050	0.047	94	0.050	0.048	96	2	75-125	20	
Dichlorodi fluoromethane	QN	0.050	0.048	96	0.050	0.044	88	6	70-130	23	
1,1-Dichlorocthane	QN	0.050	0.045	06	0.050	0.045	06	0	60-130	20	
1,2-Dichlorocthane	QN	0.050	0.041	82	0.050	0.042	84	2	68-127	20	
1,1-Dichloroethene	QN	0.050	0.041	82	0.050	0.040	80	2	59-172	22	
cis-1,2-Dichloroethene	QN	0.050	0.042	84	0.050	0.043	98	2	60-130	20	
trans-1,2-dichloroethene	QN	0.050	0.043	98	0:050	0.043	98	0	60-130	20	
1,2-Dichloropropane	QN	0.050	0.046	92	0.050	0.048	96	4	74-125	20	
1,3-Dichloropropanc	QN	0.050	0.043	98	0.050	0.047	94	6	75-125	20	
2,2-Dichloropropanc	QN	0.050	0.044	88	0.050	0.045	06	2	60-140	20	
1,1-Dichloropropene	ND	0.050	0.039	78	0.050	0.040	08	3	75-125	20	
cis-1,3-Dichloropropene	ND	0.050	0.048	96	0.050	0.050	100	4	60-140	20	
trans-1,3-dichloropropenc	ND	0.050	0.046	92	0.050	0.049	86	9	66-125	20	
Ethylbenzene	ND	0.050	0.045	06	0.050	0.047	94	4	75-125	20	
Hexachlorobutadicne	ND	0.050	0.049	86	0.050	0.052	104	9	75-125	20	
isopropylbenzene	ND	0.050	0.046	92	0.050	0.048	96	4	75-125	20	
Methylene Chloride	900.0	0.050	0.045	78	0.050	0.045	78	0	75-125	35	-
Naphthalene	QN	0.050	0.047	94	0.050	0.049	86	4	65-135	20	
n-Propylbenzene	ND	0.050	0.048	96	0.050	0.050	100	4	75-125	20	
Styrene	ND	0.050	0.046	65	0.050	0.048	96	4	60-130	51	
1,1,1,2-Tetrachloroethane	ND	0.050	0.048	96	0.050	0.050	100	4	75-125	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 33 of 41

Work Order #: 346678

Lab Batch ID: 775620

Project ID: 2009-084

Lab Batch ID: 775620	QC- Sample ID: 346678-003 S	346678-0	003 S	Ba	Batch #:	1 Matrix	Matrix: Water				
Date Analyzed: 10/05/2009 Reporting Units: mg/L	Date Prepared: 10/05/2009	10/05/20	60	Ans	Analyst:	КНМ					
VOAs by SW-846 8260B	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample Result (F)	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[V]	[B]	2	<u>a</u>	亘		<u>5</u>				
1,1,2,2-Tetrachlorocthane	QN	0.050	0.045	06	0.050	0.048	96	9	50-130	31	
Tetrachloroethylenc	QN	0.050	0.048	96	0.050	0.050	001	4	60-130	20	
Toluene	QN	0.050	0.046	62	0.050	0.047	94	2	59-139	21	
1,2,3-Trichlorobenzene	ND	0.050	0.049	86	0.050	0.052	104	9	75-137	20	
1,2,4-Trichlorobenzene	ΩN	0.050	0.049	86	0.050	0.050	100	2	75-135	20	
1,1,1-Trichloroethane	ND	0.050	0.042	84	0.050	0.041	82	2	75-125	20	
1,1,2-Trichloroethanc	ΩN	0.050	0.046	92	0.050	0.049	86	9	75-127	20	
Trichloroethene	QN	0.050	0.045	06	0.050	0.046	65	2	62-137	24	
Trichlorofluoromethane	QN	0.050	0.049	86	0.050	0.045	06	6	67-125	20	
1,2,3-Trichloropropane	QN	0.050	0.047	94	0.050	0.052	104	01	75-125	20	
1,2,4-Trimethylbenzene	ND	0.050	0.047	94	0.050	0.047	94	0	75-125	20	
1,3,5-Trimethylbenzene	QN	0.050	0.047	94	0.050	0.047	94	0	70-125	20	
o-Xylene	QN	0.050	0.048	96	0.050	0.049	86	2	75-125	20	

20 20

75-125 75-125

100 9/

0.100 0.038

0.050 0.100

82 6

0.050 0.100

Vinyl Chloride m,p-Xylenes

0.097 0.041

2 呈

∞

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F))

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Lab Batch #: 775240

Date Prepared: 10/01/2009

Project ID: 2009-084 Analyst: LATCOR

Date Analyzed: 10/01/2009 QC- Sample ID: 346505-001 D

Batch #: 1

Matrix: Water

Reporting Units: mg/L

SAMPLE / SAMPLE DUPLICATE RECOVERY

Anions by E300 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Fluoride	9.20	9.26	1	20	
Chloride	154	145	6	20	
Sulfate	71.1	58.6	19	20	
Nitrate as N	3.75	2.42	43	20	F
Ortho-Phosphate	ND	ND	NC	20	

Lab Batch #: 775780

Date Analyzed: 10/06/2009

Date Prepared: 10/05/2009

Analyst: HAT

QC-Sample ID: 345663-002 D

Batch #:

Matrix: Water

Reporting Units: mg/L	SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
ICP-MS Metals by SW 6020A	Parent Sample Result	Sample Duplicate	RPD	Control Limits	Flag

ICP-MS Metals by SW 6020A Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Aluminum	0.067	0.069	3	25	
Arsenic	0.006	0.005	18	25	
Barium	0.458	0.466	2	25	
Boron	0.312	0.340	9	25	
Cadmium	ND	ND	NC	25	
Chromium	ND	ND	NC	25	
Cobalt	ND	ND	NC	25	
Соррег	0.006	0.006	0	25	
Iron	36.1	37.1	3	25	
Manganese	2.98	3.08	3	25	
Molybdcnum	ND	ND	NC	25	
Nickel	0.009	0.009	0	25	
Sclenium	ND	ND	NC	25	
Silver	ND	ND	NC	25	
Zinc	0.027	0.029	7	25	

Page 35 of 41

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Lab Batch #: 775780

Project ID: 2009-084

Date Analyzed: 10/06/2009

ICP-MS Metals by SW 6020A

Analyte

Date Prepared: 10/05/2009 Batch #:

Analyst: HAT Matrix: Water

QC- Sample ID: 345663-002 D Reporting Units: ug/L

SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Parent Sample Result [A]	Sample Duplicate Result B	RPD	Control Limits %RPD	Flag

24.5

Lab Batch #: 776000

Date Analyzed: 10/07/2009

Date Prepared: 10/07/2009

25.5

Analyst: LATCOR

4

25

QC-Sample ID: 346678-001 D

Batch #:

Matrix: Water

Lead

Reporting Units: mg/L	SAMPLE /	SAMPLE	DUPLIC	ATE RECO	OVERY
Metals per ICP by SW846 6010B Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Analyte					
Calcium	58.0	57.3	1	25	
Magnesium	39.8	40.5	2	25	
Potassium	ND	ND	NC	25	
Sodium	125	121	3	25	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

MW-4 (09/29/09 1400 6 X X X (09/29/09 1400 6 X X X X X (09/29/09 1400 6 X X X X X X (09/29/09 1400 6 X X X X X X X X X (09/29/09 1400 6 X X X X X X X X X X X X X X X X X X
--

NMOUD - Analytical Parameters for Initial Groundwater Sampling (3-12-03) Auth Personers . pillo emojudo quich in yair teachdalaine character and cha Octobil Chemical Colorona Magnostam Potassium Potassium Sociitan Caloraide Spilitate Biragbonate Alkahaliy Strata Photiphate Huoride RCRAMents Argenia Harium Calenium Chaomian Chaomian Lond Moreary Sciences Silver Additional WOOX, North Copper from Managame Nangame Aliminam tenna Cohali Malybelsom Nakel All compressed front in LLS, ETA SW, 986 Microsoft Stag (VOCO) & ATTO (SVOCO)

1

Environmental Lab of Texas

1

0

	Variance/ Corrective Action Rep	port- Sample	≥ Log-Ir	1	
Client.	Plains/Basin Env.				
Date/ Time.	10-01-09 @ 0735				
Lab ID#.	346678				
initials	JMF				
, man					
	Sample Receipt	Checklist			
r					Client Initials
	ature of container/ cooler?	(Yes >	No	1-1 °C	
	container in good condition?	Yes	No	The state of the s	
	Seals intact on shipping container/ cooler?	Yes	No	(Not Present)	
	Seals Intaction sample bottles/ container? Custody present?	CYES	No No	Not Present	
	instructions complete of Chain of Custody?	(Yes)	No		ļ
	Custody signed when relinquished/ received?	Yes	No		
	Custody agrees with sample label(s)?	T Cos	No	ID written on Cont./ Lld	
	er label(s) legible and intact?	Tres	No	Not Applicable	
	matrix/ properties agree with Chain of Custody?	1 2005	No	1401 Municapie	
	ers supplied by ELOT?	(Yes)	No	 	
	s in proper container/ bottle?	Yes	No	See Below	-
	s properly preserved?	(Yes)	No	See Bolow	
	bottles intact?	res)	No	Oce Octow	
	vations documented on Chain of Custody?	(Yes-)	No		
	ners documented on Chain of Custody?	Yes	No	<u> </u>	1
	int sample amount for indicated test(s)?	Yes	No	See Below	
	ples received within sufficient hold time?	VESS	No	See Below	
	tract of sample(s)?	Yes	No	Not Applicable	Xenco
	amples have zero headspace?	(Yes)	No	Not Applicable	130.00
Contact: Regarding:	Variance Docur Contacted by:	mentation		Date/ Time:	
Corrective A	ction Taken:				
Check all the	at Apply: See attached e-mail/ fax Client understands and wou			•	

Ver. 1.000

Jeanne Fitch

From: Jeanne Fitch [jeanne.fitch@xenco.com]
Sent: Thursday, October 01, 2009 11:50 AM

o: 'Curt D. Stanley'

Subject: RE: MW samples DCP Plant (enalysis question)

Thanks Curt....FYI...NO3 has a 48 hr TAT and MW-2 was sampled at 11:30 on 09/29/09.

Thank You,

Jeanne Fitch

Environmental Lab of Texas a Xenco Company 13600 West I-20 East Odessa, TX 79765 (432) 563-1800

From: Curt D. Stanley [mailto:cstanley@basinenv.com] Sent: Thursday, October 01, 2009 11:46 AM To: Jeanne Flich Subject: Re: MW samples DCP Plant (analysis question)

Jeanne

Please run NO3, PO4 and F... and yes we need RCRA 8, plus 9 WQCC metals...

Thanks, Curt

----- Original Message -----From: <u>Jeanne Fitch</u> To: <u>Curt D. Stanley</u> Sent: Thursday, October 01, 2009 7:14 AM Subject: Re: MW samples DCP Flant (analysis question)

Hi Curt.

I noticed on your additional into page for the MW samples that NO3,PO4,and F were listed under Gen Chem but not on the COC. Did you need them analyzed as well? And just to confirm....you would like the RCRA 8 Metals + the additional 9 WQCC Metals. Please let me know.

Thank You,

Jeanne Fitch

Environmental Lab of Texas a Xenco Company 12600 West I-20 East Odessa, TX 79765 (432) 563-1800

Please consider the environment before printing this enail.

10/1/2009

Page 40 of 41

Jeanne Fitch

From: Curt D. Stanley [cstanley@basinenv.com] Sent: Tuesday, November 03, 2009 2:23 PM

Subject: Re: REVISED WO#346678 DCP Plant to Lea Station 6" #2

Jeanne.

Please revise the site name on these reports to read DCP Plant to Lea Station Sec 31. The project number should be 2009-084. Sorry for the confusion at this end, Please revise and reissue.

Thanks

---- Original Message ----Trom: Jeanne Fitch
To: Curt D Stanley: "Camille J, Bryant"
Co: jineny@paatb.com
Sent: Friday, October 09, 2009 7:24 AM
Subject: Re: REVISED W0#346578 DCP Plant to Lea Station 6" #2

Hello Curt.

I have attached a revised report WO#346678 for DCP Plant to Lea Station 6" #2. As per your request we have reported the VOC SW8260 as mg/L and broke down the Total Alkalinity into Carbonate/Bicarbonate and Total Alkalinity. Please let me know if I can help you with anything else.

Thank You.

Jeanne Fitch

Environmental Lab of Texas a Xenco Company 12600 West 1-20 East Odesso, TX 79765 (432) 563-1800

Please consider the environment before printing this small.

11/3/2009

Analytical Report 355581

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station 6-Inch Sec 31 2009-084

22-DEC-09

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-08-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00308), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AAL11), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-08-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-08-TX)
Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370-08-TX)
Xenco-Boca Raton (EPA Lab Code: FL00449): Florida(E86240),
South Carolina(96031001), Louisiana(04154), Georgia(917)

22-DEC-09

Project Manager: Jason Henry
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 355581

DCP Plant to Lea Station 6-Inch Sec 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 355581. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 355581 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

0

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6-Inch Sec 31

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	Dec-10-09 09:15		355581-001
MW-3	W	Dec-10-09 10:00		355581-002
MW-4	W	Dec-10-09 10:45		355581-003
MW-I	W	Dec-10-09 11:30		355581-004

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Project ID: Work Order Number: 355581

2009-084

Report Date: 22-DEC-09

Date Received: 12/14/2009

Sample receipt non conformances and Comments:

None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-786064 TPH by SW8015 Mod

None

Batch: LBA-786220 BTEX by EPA 8021

None

Batch: LBA-786316 TCLP SVOCs by SW-846 8270C

None

Batch: LBA-786588 BTEX by EPA 8021

SW8021BM

Batch 786588, 4-Bromofluorobenzene recovered above QC limits Qc Data not confirmed by reanalysis. Samples affected are: 546021-1-BLK.

Batch: LBA-786597 BTEX by EPA 8021

None

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-084

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Date Received in Lab: Mon Dec-14-09 05:20 pm 22-DEC-09 Report Date:

Brent Barron II Project Manager.

Lab Id: 355581-001		355581-002 MW-3 WATER	355581-003 MW-4	355581-004	
Field Id: MW-2		w-3 TER	MW-4		
### Depth: Matrix: WATER		TER		MW-1	
Matrix: WATER		TER			
Sampled: Dec-10-09 09:1 BTEX by EPA 8021 Extracted: Dec-17-09 13:0 Analyzed: Dec-17-09 13:0 Units/RL: mg/L			WATER	WATER	
BTEX by EPA 8021 Extracted: Dec-17-09 13:0 Analyzed: Dec-17-09 18:1 Units/RL: mg/L ND 0.0 ND 0.0 ND 0.0		Dcc-10-09 10:00	Dec-10-09 10:45	Dec-10-09 11:30	
Analyzed: Dec-17-09 18:: Units/RL: mg/L ND 0.0		Dec-18-09 14:00	Dec-18-09 15:00	Dec-18-09 14:00	
Units/RL: mg/L ND 0.0 ND 0.0		Dec-19-09 09:02	Dec-19-09 21:31	Dec-19-09 16:33	
CLOS	RL mg/L	RL	mg/L RL	mg/L RL	
		0.0031 0.0010	ND 0.0010	19.00 0.1000	
		ND 0.0020	ND 0.0020	13.09 0.2000	
	ND 0.0010 N	ND 0.0010	ND 0.0010	0.8120 0.1000	
m,p-Xylenes ND 0,0020		ND 0.0020	ND 0.0020	1.894 0.2000	
o-Xylene ND 0.0010		ND 0.0010	ND 0.0010	0.7290 0.1000	
Xylenes, Total ND 0.0010		ND 0.0010	ND 0.0010	2.623 0.1000	
Total BTEX ND 0.0010		0.0031 0.0010	ND 0.0010	35.53 0.1000	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report repressent the beat judgment of XENCO Laboratories. XENCO Laboratories assumes no exponsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

Page 5 of 24

Project Location: Lea County, NM

Contact: Jason Henry Project Id: 2009-084

Certificate of Analysis Summary 355581 PLAINS ALL AMERICAN EH&S, Midland, TX

(

0

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Date Received in Lab: Mon Dec-14-09 05:20 pm

1 Brent Barron 22-DEC-09 Report Date: Project Manager:

					Project Manager: Brent Barron, II	Brent Barron, II	
	Lab Id:	355581-001	355581-002	355581-003	355581-004		
Amelicie Donnoctod	Field Id:	MW-2	MW-3	MW4	MW-1		
Anaiysis nequesieu	Depth:						
	Matrix:	WATER	WATER	WATER	WATER		
	Sampled:	Dec-10-09 09:15	Dec-10-09 10:00	Dec-10-09 10:45	Dec-10-09 11:30		
SVOA PAHs List	Extracted:				Dec-17-09 12:01		
SUB: T104704215-08B-TX	Analyzed:				Dec-18-09 14:09		
	Units/RL:				mg/L RL		
Acenaphthene					ND 0.050		
Acenaphthylene					ND 0.050		
Anthracene			į		ND 0.050		
Benzo(a)anthracene					ND 0.050		
Benzo(a)pyrenc					ND 0.050		
Benzo(b)fluoranthene					ND 0.050		
Benzo(k)fluoranthene					ND 0.050		
Benzo(g.h,i)perylene					ND 0.050		
Chrysene					ND 0.050		
Dibenz(a,h)anthracene					ND 0.050		
Fluoranthene					ND 0.050		
Fluorene					ND 0.050		
Indeno(1,2,3-c,d)Pyrene					ND 0.050		
1-Methylnaphthalene					ND 0.050		
2-Methylnaphthalene					ND 0.050		
Naphthalene					ND 0.050		
Phenanthrene					ND 0.050		
Pyrene					ND 0.050		

This enalytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and excusit expressed throughout this analytical toport repressed the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brefit Barron, II

Page 6 of 24

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-084

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Date Received in Lab: Mon Dec-14-09 05:20 pm

Project Manager: Brent Barron, II 22-DEC-09 Report Date:

					right manugar. Dien Dunon, in	cit Dairon, II	
	Lab Id:	355581-001	355581-002	355581-003	355581-004		
Analysis Donnostod	Field Id:	MW-2	MW-3	MW4	MW-1		
naisanhay sistingu	Depth:						
	Matrix:	WATER	WATER	WATER	WATER		
	Sampled:	Dec-10-09 09:15	Dec-10-09 10:00	Dec-10-09 10:45	Dec-10-09 11:30		
TPH by SW8015 Mod	Extracted:				Dec-15-09 11:00		
	Analyzed:				Dec-17-09 02:00		•
	Units/RL:				mg/L RL		
C6-C12 Gasoline Range Hydrocarbons					332 1.50		
C12-C28 Diesel Range Hydrocarbons					11.0 1.50		
C28-C35 Oil Range Hydrocarbons					ND 1.50		
Total TPH	_				343 1.50		

This analytical roport, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and restalt expressed throughout lift standistical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and mates no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

Page 7 of 24

(II)

(D

ad

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MOL and above the SOL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting OC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and OUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America Phone Fax 4143 Greenbriar Dr, Stafford, Tx 77477 (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 9701 Harry Hines Blvd, Dallas, TX 75220 (210) 509-3334 (210) 509-3335 5332 Blackberry Drive, San Antonio TX 78238 (813) 620-2000 (813) 620-2033 2505 North Falkenburg Rd, Tampa, FL 33619 (305) 823-8500 (305) 823-8555 5757 NW 158th St, Miami Lakes, FL 33014 (432) 563-1800 (432) 563-1713 12600 West I-20 East, Odessa, TX 79765 842 Cantwell Lane, Corpus Christi, TX 78408 (361) 884-0371 (361) 884-9116

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Orders: 355581,

Project ID: 2009-084

Lab Batch #: 786220

Sample: 545803-1-BKS / BKS

Batch: | Matrix: Water

Units: mg/L	Date Analyzed: 12/17/09 11:50	SU	RROGATE RI	ECOVERY	STUDY	
ВТІ	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0315	0.0300	105	80-120	
4-Bromofluorobenzene		0.0309	0.0300	103	80-120	

Lab Batch #: 786220

Sample: 545803-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 12/17/09 12:13	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits -%R	Flags
Analytes	İ		[D]		
1,4-Difluorobenzene	0.0310	0.0300	103	80-120	
4-Bromofluorobenzene	0.0296	0.0300	99	80-120	

Lab Batch #: 786220

Sample: 545803-1-BLK / BLK

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 12/17/09 13:23	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021	Amount Found [A]	True Amount {B}	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0265	0.0300	88	80-120	
4-Bromofluorobenzene	0.0308	0.0300	103	80-120	

Lab Batch #: 786220

Sample: 355581-001 / SMP

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 12/17/09 18:34	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0268	0.0300	89	80-120	
4-Bromofluorobenzene	0.0314	0.0300	105	80-120	

Lab Batch #: 786220

Sample: 355467-002 S / MS

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/18/09 01:53	SU	RROGATE R	ECOVERY	STUDY	
ВТІ	EX by EPA 8021 Analytes	Amount Found [A]	True Amount B	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0309	0.0300	103	80-120	
4-Bromofluorobenzene		0.0334	0.0300	111	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Orders: 355581,

Project ID: 2009-084

Lab Batch #: 786220

Sample: 355467-002 SD / MSD

Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 12/18/09 02:16	SU	RROGATE R	ECOVERY	STUDY	
ВТІ	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes			101	ļ.	
1,4-Difluorobenzene		0.0282	0.0300	94	80-120	
4-Bromofluorobenzene		0.0313	0.0300	104	80-120	

Lab Batch #: 786588

Sample: 546021-1-BKS / BKS

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/19/09 19:37	SU	RROGATE R	RECOVERY	STUDY	
вті	EX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	Analytes	0.0324	0.0300	108	80-120	
4-Bromofluorobenzene		0.0351	0.0300	117	80-120	

Lab Batch #: 786588

Sample: 546021-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/19/09 19:59	SURROGATE RECOVERY STUDY				
ВТІ	EX by EPA 8021 Analytes	Amount Found [A]	True Amount {B}	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0320	0.0300	107	80-120	
4-Bromofluorobenzene		0.0355	0.0300	118	80-120	

Lab Batch #: 786588

Sample: 546021-1-BLK / BLK

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/19/09 21:08	SU	RROGATE R	ECOVERY	STUDY	
ВТІ	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0267	0.0300	89	80-120	1
4-Bromofluorobenzene		0.0368	0,0300	123	80-120	*

Lab Batch #: 786588

Sample: 355581-003 / SMP

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/19/09 21:31	SURROGATE RECOVERY STUDY				
вті	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0255	0.0300	85	80-120	
4-Bromofluorobenzene		0.0309	0.0300	103	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Orders: 355581,

Project ID: 2009-084

Lab Batch #: 786588

Sample: 355581-003 S / MS

Batch: | Matrix: Water

Units: mg/L Date Analyzed: 12/20/09 04:	23 SU	SURROGATE RECOVERY STUDY			
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0288	0.0300	96	80-120	
4-Bromofluorobenzene	0.0281	0.0300	94	80-120	

Lab Batch #: 786588

Sample: 355581-003 SD / MSD

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/20/09 04:46	SU	RROGATE R	RECOVERY	STUDY	
ВТЕ	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes		}	[D]	i	
1.4-Difluorobenzene		0.0297	0.0300	99	80-120	!
4-Bromofluorobenzene		0.0281	0.0300	94	80-120	· · · · · · · · · · · · · · · · · · ·

Lab Batch #: 786597

Sample: 546010-1-BKS / BKS

Batch:

Matrix: Water

Units: mg/L	Date Analyzed: 12/18/09 12:37	SU	RROGATE R	RECOVERY	OVERY STUDY				
втв	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
	Analytes			101					
1,4-Difluorobenzene		0.0311	0.0300	104	80-120				
4-Bromofluorobenzene		0.0292	0.0300	97	80-120				

Lab Batch #: 786597

Sample: 546010-1-BSD / BSD

Batch:

Matrix: Water

Units: mg/L	Date Analyzed: 12/18/09 13:01	SU	RROGATE R	ECOVERY	STUDY	
вті	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
L Dia	Analytes					
1,4-Difluorobenzene		0.0321	0.0300	107	80-120	
4-Bromofluorobenzene		0.0300	0.0300	100	80-120	

Lab Batch #: 786597

Sample: 546010-1-BLK / BLK

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 12/18/09	14:10 SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021 Analytes	Amount Found {A}	True Amount {B}	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0262	0.0300	87	80-120	•
4-Bromofluorobenzene	0.0301	0.0300	100	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Page 11 of 24 Final Ver. 1.000

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Orders: 355581,

Project ID: 2009-084

Lab Batch #: 786597

Sample: 355581-002 / SMP

Batch: | Matrix: Water

Units: mg/L Date Analyzed: 12/19/09 09:02	SU	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Diffuorobenzene	0.0266	0.0300	89	80-120		
4-Bromofluorobenzene	0.0295	0.0300	98	80-120		

Lab Batch #: 786597

Sample: 355581-004 / SMP

Batch: | Matrix: Water

Units: mg/L Date Analyzed: 12/19/09 16:33		SU	RROGATE RE	ECOVERY S	STUDY	
BTEX by EPA 8021		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0283	0.0300	94	80-120	-
4-Bromofluorobenzene		0.0289	0.0300	96	80-120	

Lab Batch #: 786597

Sample: 355592-003 S / MS

Batch: | Matrix: Water

Units: mg/L	Date Analyzed: 12/19/09 18:28	SU	RROGATE R	ECOVERY	STUDY	
ВТЕ	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0285	0.0300	95	80-120	
4-Bromofluorobenzene		0.0335	0.0300	112	80-120	

Lab Batch #: 786597

Sample: 355592-003 SD / MSD

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 12/19/09 18:5	1 SU	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0287	0.0300	96	80-120		
4-Bromofluorobenzene	0.0311	0.0300	104	80-120		

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Page 12 of 24 Final Ver. 1.000

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Orders: 355581,

Project ID: 2009-084

Lab Batch #: 786316

Sample: 545778-1-BLK / BLK

Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 12/18/09 10:20	SÜ	RROGATE R	ECOVERY	STUDY	
SV	OA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl		0.050	0.050	100	43-116	
2-Fluorophenol		0.041	0.050	82	21-100	
Nitrobenzene-d5		0.051	0.050	102	35-114	
Phenol-d6		0.026	0.050	52	10-94	
Terphenyl-D14		0.057	0.050	114	33-141	
2,4,6-Tribromophenol		0.052	0.050	104	10-123	

Lab Batch #: 786316

Sample: 545778-1-BKS / BKS

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/18/09 10:58	SU	RROGATE R	ECOVERY S	STUDY	
SV	OA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl		0.044	0.050	88	43-116	
2-Fluorophenol		0.036	0.050	72	21-100	
Nitrobenzene-d5		0.045	0.050	90	35-114	
Phenol-d6		0.026	0.050	52	10-94	
Terphenyl-D14		0.047	0.050	94	33-141	
2,4,6-Tribromophenol		0.046	0.050	92	10-123	

Lab Batch #: 786316

Sample: 545778-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 12/18/09 11:36	SU	RROGATE R	ECOVERY	STUDY	
SVOA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	0.042	0.050	84	43-116	
2-Fluorophenol	0.034	0.050	68	21-100	· ·
Nitrobenzene-d5	0.043	0.050	86	35-114	
Phenol-d6	0.025	0.050	50	10-94	
Terphenyl-D14	0.044	0.050	88	33-141	
2,4,6-Tribromophenol	0.044	0.050	88	10-123	

Page 13 of 24

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Orders: 355581,

Project ID: 2009-084

Lab Batch #: 786316

Sample: 355933-001 S / MS

Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 12/18/09 12:53	SU	RROGATE F	RECOVERY	STUDY	
SVOA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	0.195	0.250	78	43-116	
2-Fluorophenol	0.147	0.250	59	21-100	
Nitrobenzene-d5	0.192	0.250	77	35-114	
Phenol-d6	0.161	0.250	64	10-94	
Terphenyl-D14	0.204	0.250	82	33-141	
2,4,6-Tribromophenol	0.188	0.250	75	10-123	

Lab Batch #: 786316

Sample: 355581-004 / SMP

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 12/18/09 14:09	SU	RROGATE R	ECOVERY	STUDY	
SVOA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	0.041	0.050	82	43-116	
2-Fluorophenol	0.020	0.050	40	21-100	
Nitrobenzene-d5	0.041	0.050	82	35-114	
Phenol-d6	0.015	0.050	30	10-94	
Terphenyl-D14	0.045	0.050	90	33-141	_
2,4,6-Tribromophenol	0.033	0.050	66	10-123	

Lab Batch #: 786064

Sample: 545721-1-BKS / BKS

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 12/16/09 16:59	SU	RROGATE R	ECOVERY	STUDY	_
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		į	[D]		
1-Chlorooctane	12.6	10.0	126	70-135	_
o-Terphenyl	6.41	5.00	128	70-135	

Lab Batch #: 786064

Sample: 545721-1-BSD / BSD

Batch:

Matrix: Water

Units: mg/L	Date Analyzed: 12/16/09 17:26	SU	RROGATE R	ECOVERY	STUDY	
ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		12.7	10.0	127	70-135	
o-Terphenyl		6.29	5.00	126	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Orders: 355581,

Project ID: 2009-084

Lab Batch #: 786064

Sample: 545721-1-BLK / BLK

Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 12/16/09 17:53	SU	RROGATE R	ECOVERY	STUDY	
ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		11.0	10.0	110	70-135	
o-Terphenyl		5.74	5.00	115	70-135	

Lab Batch #: 786064

Sample: 355581-004 / SMP

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/17/09 02:00	SU	RROGATE F	RECOVERY	STUDY	
ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		11.9	10.0	119	70-135	
o-Terphenyl		5.49	5.00	110	70-135	

Lab Batch #: 786064

Sample: 355467-003 S / MS

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/17/09 03:20	SU	RROGATE R	ECOVERY	STUDY	
ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags
1-Chlorooctane		12.2	10,0	122	70-135	-
o-Terphenyl		6.05	5.00	121	70-135	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Page 15 of 24 Final Ver. 1.000

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Order #: 355581

Analyst: BRB Lab Batch ID: 786220

Sample: 545803-1-BKS

Date Prepared: 12/17/2009

Batch #: 1

Project ID: 2009-084 **Date Analyzed:** 12/17/2009

Matrix: Water

Flag Control Limits %RPD 25 25 25 25 25 BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Control Limits %R 70-125 70-125 71-133 71-129 70-131 RPD 0 0 0 Blk. Spk Dup. %R [G] 107 101 <u>1</u>04 101 101 Duplicate Result [F] 0.101.0 Blank Spike 0.1008 0.1011 0.2089 0.1073 Spike Added | --0.1 0.2 0.1 Ξ 0.1 Blank Spike %R [D] ₫ 101 107 100 104 0.101.0 0.2082 Blank Spike Result 0.1007 0.1068 0.1001 $\overline{2}$ 0.1000 0.1000 0.1000 0.2000 Spike Added 0.1000 <u>B</u> Blank Sample Result [A] QN. S. S Ę S BTEX by EPA 8021 Units: mg/L Analytes Ethylbenzene m,p-Xylenes o-Xylene Benzene Toluene

Analyst: ASA

Lab Batch ID: 786597

Date Prepared: 12/18/2009

Batch #: 1

Sample: 546010-1-BKS

Matrix: Water

Date Analyzed: 12/18/2009

Units: mg/L		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANKS	PIKE DUPI	CATE F	RECOVE	RY STUD	Y	
BTEX by EPA 8021	Blank Sample Result	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD	Control Limits	Control Limits %RPD	Flag
Analytes		[8]	[2]	[0]	[E]	Result [F]	<u>5</u>				
Benzene	QN	0.1000	0.1057	106	0.1	0.1110	E	5	70-125	25	
Toluene	QN	0.1000	0.1073	107	0.1	0.1126	113	5	70-125	25	
Ethylbenzene	QN	0.1000	0.1067	107	0.1	0.1123	112	5	71-129	25	
m,p-Xylenes	QN	0.2000	0.2190	110	0.2	0.2313	911	5	70-131	25	
o-Xylene	QN	0.1000	0.1124	112	1.0	0.1192	611	9	71-133	25	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)]
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Order #: 355581

Lab Batch ID: 786588

Analyst: ASA

Sample: 546021-1-BKS

Date Prepared: 12/18/2009 Batch #: 1

Date Analyzed: 12/19/2009 **Project ID: 2009-084** Matrix: Water

Units: mg/L		BLAN	BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	TANK S	PIKE DUPL	ICATE	RECOVE	RY STUD	Y	
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		<u>B</u>	[c]	[0]	E	Result [F]	5				
Benzene	QN	0.1000	0.1123	112	0.1	0.1126	113	0	70-125	25	
Toluenc	QN	0.1000	0.1132	113	0.1	0.1141	114	_	70-125	25	
Ethylbenzene	QN	0.1000	0.1130	113	0.1	0.1146	115	1	71-129	25	
m,p-Xylenes	QN	0.2000	0.2308	115	0.2	0.2351	118	2	181-02	25	
o-Xylene	ND	0.1000	0.1218	122	0.1	0.1248	125	2	71-133	25	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

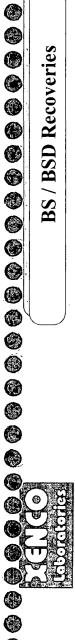
Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Sample: 545778-1-BKS

Lab Batch ID: 786316 Analyst: KAN

Work Order #: 355581

Date Prepared: 12/17/2009 Batch #: 1


Project ID: 2009-084

Date Analyzed: 12/18/2009 Matrix: Water

Units: mg/L		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANKS	PIKE DUPI	ICATE 1	RECOVE	RY STUD	λ	
SVOA PAHs List	Blank Sample Result	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Dunlicate	Blk. Spk Dup. %R	RPD	Control Limits	Control Limits	Flag
Analytes	<u>:</u>	<u>B</u>	[C]	<u>a</u>	<u>a</u>	Result [F]	<u>5</u>	2		}	
Acenaphthene	QN	0.050	0.046	92	0.05	0.045	8	2	27-132	31	i
Accnaphthylene	QN	0.050	0.046	92	0.05	0.045	06	2	46-108	25	
Anthracene	QN	0.050	0.047	94	0.05	0.046	92	2	47-145	25	
Benzo(a)anthracene	QN	0.050	0.048	96	0.05	0.047	94	2	33-143	25	
Всп20(а)ругепе	QN	0.050	0.048	96	0.05	0.047	94	2	65-135	25	
Benzo(b)fluoranthene	QV	0.050	0.051	102	0.05	0,049	86	4	24-159	25	
Benzo(k)fluoranthene	Q	0.050	0.047	94	0.05	0.048	96	2	25-125	25	
Benzo(g,h,i)perylene	QN	0.050	0.047	94	0.05	0.045	06	4	65-135	25	
Chrysene	QN	0.050	0.045	06	0.05	0.044	88	2	65-135	25	
Dibenz(a,h)anthracene	QN	0.050	0.049	86	0.05	0.048	96	2	50-125	25	
Fluoranthene	QN	0.050	0.048	96	0.05	0.048	96	0	47-125	25	
Fluorene	QN	0.050	0.048	96	0.05	0.047	94	2	48-139	25	
Indeno(1,2,3-c,d)Pyrene	QN	0.050	0.049	86	0.05	0.048	96	2	27-160	25	
Naphthalene	QN	0.050	0.044	88	0.05	0.044	88	0	26-175	25	
Phenanthrene	ND	0.050	0.046	92	0.05	0.046	92	0	65-135	25	
Pyrene	QN	0.050	0.047	94	0.05	0.046	92	2	23-152	31	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Page 18 of 24

(4)

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Order #: 355581

Analyst: BEV

Sample: 545721-1-BKS Lab Batch ID: 786064

Date Prepared: 12/15/2009

Batch #: 1

Project ID: 2009-084

Date Analyzed: 12/16/2009 Matrix: Water

Limits %RPD 25 25 BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Control Limits %R 70-135 70-135 RPD 00 Blk. Spk Dup. %R [G] 17 66 Duplicate Result [F] Blank Spike 77.3 7.86 Spike Added 100 2 Blank Spike %R [D] 102 7 Blank Spike Result [C] 71.0 102 Spike Added 100 100 B Blank Sample Result ¥ ND ₽ E TPH by SW8015 Mod C6-C12 Gasoline Range Hydrocarbons C12-C28 Diesel Range Hydrocarbons Units: mg/L Analytes

Flag

Blank Spike Recovery [D] = 100*(CJ/[B])
Blank Spike Duplicate Recovery [G] = 100*(FJ/[E])
All results are based on MDL and Validated for QC Purposes Relative Percent Difference RPD = 200*[(C-F)/(C+F)]

Page 19 of 24

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Order #: 355581

Lab Batch #: 786316 **Date Analyzed:** 12/18/2009

Project ID: 2009-084

Date Prepared: 12/17/2009

Analyst: KAN

QC-Sample ID: 355933-001 S

Batch #:

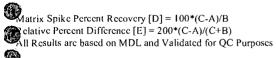
Matrix: Water

Reporting Units: mg/L	MATE	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
SVOA PAHs List by SW-846 8270C Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Acenaphthene	ND	0.250	0.207	83	27-132	
Accnaphthylene	ND	0.250	0.210	84	46-108	
Anthracene Procedure to the control of the control	ND	0.250	0.207	83	47-145	
Benzo(a)antifracene	ND	0.250	0.209	84	33-143	
Benzo(a)pyrene	ND	0.250	0.208	83	65-135	
Benzo(b)fluoranthene	ND	0.250	0.239	96	24-159	
Benzo(k)fluoranthene	ND	0.250	0.220	88	25-125	
Benzo(g,h,1)peryiene	ND	0.250	0.215	86	65-135	
Chrysene	ND	0.250	0.199	80	65-135	
Dibenz(a,h)anthracene	ND	0.250	0.217	87	50-125	
Fluoranthene	ND	0.250	0.217	87	47-125	
Fluorene	ND	0.250	0.222	89	48-139	
Indeno(1,2,3-c,d)Pyrene	ND	0.250	0.219	88	27-160	
Naphthalene	ND	0.250	0.191	76	26-175	
Phenanthrene	ND	0.250	0.205	82	65-135	
Pyrcne	ND	0.250	0,210	84	23-152	

Lab Batch #: 786064

Date Analyzed: 12/17/2009

Date Prepared: 12/15/2009


Analyst: BEV

QC-Sample ID: 355467-003 S

Batch #:

Matrix: Water

	Reporting Units: mg/L	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
	TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	%R	Control Limits	Flag
	Analytes	Result [A]	Added [B]	C	[D]	%R	
9	C6-C12 Gasoline Range Hydrocarbons	ND	100	100	100	70-135	
)	C12-C28 Diesel Range Hydrocarbons	ND	100	77.6	78	70-135	

RL - Below Reporting Limit

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Order #: 355581

Lab Batch ID: 786220

Project ID: 2009-084 QC- Sample ID: 355467-002 S

BRB Analyst:

Matrix: Water Batch #:

Date Analyzed: 12/18/2009

Date Prepared: 12/17/2009

eporting Units: mg/L		W	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	/MAT	RIX SPIH	KE DUPLICAT	TE RECO	VERY S	STUDY		
BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Spiked Result Sample [C] %R	Spiked Sample %R	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
•		•					-			•	
Benzene	QN	0.1000	0.1045	105	0.1000	0.0987	66	9	70-125	25	
Toluene	ND	0.1000	0.1052	105	0.1000	0.0975	86	∞	70-125	25	
Ethylbenzene	ND	0.1000	0.1046	105	0.1000	6960'0	62	8	71-129	25	
m,p-Xylenes	ND	0.2000	0.2121	106	0.2000	0.1997	001	9	70-131	25	
o-Xylene	ND	0.1000	0.1111	111	0.1000	0.1048	105	9	71-133	25	

QC- Sample ID: 355581-003 S Date Analyzed: 12/20/2009 Lab Batch ID: 786588

Date Prepared: 12/18/2009

Matrix: Water ASA Analyst: Batch #:

	•				•						
Reporting Units: mg/L		M	ATRIX SPIKI	MAT.	RIX SPII	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	FE REC	VERY S	STUDY		
BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Spiked Result Sample [C] %R	Spiked Sample %R [D]		Spike Spiked Sample Added Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	QN ON	0.1000	0.0844	84	0.1000	0.0827	83	2	70-125	25	
Tolucne	ND	0.1000	0.0875	88	0.1000	0.0875	88	0	70-125	25	
Ethylbenzene	NΩ	0.1000	0.0885	68	0.1000	0.0894	68	-	71-129	25	
m,p-Xylenes	ND	0.2000	96/110	06	0.2000	0.1843	92	3	70-131	25	
o-Xvlenc	QN	0.1000	0.0943	94	0.1000	0.0959	96	2	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

Work Order #: 355581

Lab Batch ID: 786597

Date Analyzed: 12/19/2009

QC-Sample ID: 355592-003 S Date Prepared: 12/18/2009

Analyst: Batch #:

Matrix: Water ASA

Project ID: 2009-084

Flag Limits %RPD Control 25 25 25 25 25 Control Limits %R 70-125 70-125 71-129 70-131 71-133 MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY ∞ 9 Spiked Dup. |G| 82 79 82 83 87 Duplicate Spiked Sample Result [F] 0.1066 0.0815 0.1780 0.1674 0.1877 Spike Added 0.1000 0.1000 0.1000 0.1000 0.2000 Spiked Sample % <u>⊡</u> 88 84 96 90 88 Spiked Sample Result 0.1138 0.0884 0.1829 0.1784 0.1963 $\overline{\mathbf{c}}$ Spike Added 0.1000 0.1000 0.1000 0.2000 0.1000 Parent Sample Result 0.0236 0.0989 0.0027 0.1004 ₹ $\frac{1}{2}$ BTEX by EPA 8021 Analytes Reporting Units: mg/L Ethylbenzene m,p-Xylenes o-Xylene Benzene Toluene

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F))

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected. J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 22 of 24

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

> Phone: 432-563-1800 Fax: 432-563-1713 12600 West F20 East Odessa, Texas 79765

Project Name: DCP Plant to Lea Station 6-Inch Sec 31

PAGE ON OF ON

Curt Stanley

Project Manager:

Company Name

Basin Environmental Service Technologies, LLC

Lovington, NM 88260

City/State/Zip:

Company Address: P. 0. Box 301

(505) 441-2244

Telephone No:

Project Loc: Lea County, NM

Project #: 2009-084

PO#: PAA - J. Henry

□ NPDES

TRRP

Report Format: X Standard

(505) 396-1429

Fax No:

		\ \		•															ı		ı	١	ŀ	I	İ	T
																		TCLP.	A.							*44
	255501						Ļ					ŀ	ŀ		4		ŀ	ğ	_		1	≺ा			(201	£7 .
	וסגרכר						٦	Prese	Preservation & # of Containers	n & 4	Š	ıtain	4	ĝ	-1	_	_		9ć			09			797	27
	FIELD CODE	ցենլույեն ըթեք	chdeg Depth	Date Sampled	belqma2 emiT	bene#i⊟ blei	cotal at of Containers	HNO ₃	нсі	POS'H	HO@N	andM	Other (Specify) DW - Drinking Water 51 - Studge	CM = Croundwater s=solivsoil	ertoe Maroa specification → qui rose Maroa r.ert :H9T	8001 XT 8001 XT :H9T	Cations (Ca. Mg, Na. K)	SAR / ESP / CEC	Metels: As Ag Be Cd Cr Pb Hg 5	səlüsloV	SelitalovimeS	BTEX 8021BI FO 30 or BTEX 628	M.O.R.M.	OYSB DAG	TDS (EPA METHOD SM.	CHLORIDES E 300 RUSH TAT (Pre-Schodule) 24
	MW-2			12/10/2009	0915	L	_	×	×	 	-			§	-			-	_			×	Щ			
	MW-3			12/10/2009	1000			×	×		_			₹	\sqcup			\vdash	Щ			×				-
4	MW-4			12/10/2009	1045		9	×	×	\vdash				ΩM	Н							×	-			┪
•	RW-1			12/10/2009	1130	 	1	×	×					ĕ	×		_					×		X		
						H	-	<u> </u>							_										-	-
						╁	十	╁		╁	╀				ļ		✝	╂	┞			-	⊢			\vdash
						╀╌	t	╁		 	╀				_			\vdash				-	-			
						├-	+	╀		-	-		-		_		† -	├-	<u> </u>			-	-			\vdash
						├	┢	-		\vdash	-							-				Н				
						├	\vdash	-			-															_
15	Special Instructions:					\mathbf{I}	1	1	٤	AWA	7	43	-11 liter amberghis/neat	2 4 4 K	\$ 1			Laboratory Comments Service Sommered Intito VOCs Free of Headson		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Service Comments: Service Sombiners Into C? VOCs Free of Head space?	} € %			90	ZZ
T-1 ->-		Date Time	8 Y	Received by:			1						Date		E	[1000		eals the	888	Libera on Constructs) Custody seals on container Custody seals on container	Library on (constraints) Custody seals on container(s) Custody seals on container(s)	्ट	**	A 0 £	2 z 3
Refinquished b	0	Date /	ine	Received by:				1		l	İ	ļ	Date		- Ime		Sam	Sample Hand Delivered by Sampler/Client By by Courier?	and C mpler mer		nple Hand Delbvered by Sampler/Client Bab. by Courier? UPS		풀		⊱≻≅	Yedex Lone Star
1-1	Relinquished by:	Date Time		Received by BLOT:	T. 7.	1						2	Date 7. 7.		Time 1720		Temp	eratı	5	<u>8</u>	Temperature Upon Receipt:	Ë			200	ပ္

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client:	Plains	/Basin					
Date/ Time:	12-14-0	9 C 1720					
Lab ID#:		355591					
Initials:	JME	<u> </u>					
•		Sample Receip	t Checklist		(Client Initials	s
#1 Temper	rature of conta	iner/ cooler?	Yes	No	2-6 °C		
		good condition?	(Yes)	No			
		on shipping container/ cooler?	Yes	No	(Not Present		
#4 Custody	y Seals intact o	on sample bottles/ container? / ala	Yes	D No	Not Present		
#5 Chain o	of Custody pres	sent?	Yes	No			
#6 Sample	instructions c	omplete of Chain of Custody?	(Yes -	No_			
#7 Chain o	of Custody sign	ned when relinquished/ received?	(Yes -	No			
#8 Chain o	of Custody agn	ees with sample label(s)?	Yes	No	ID written on Cont./ Lid		
#9 Contain	er label(s) leg	ible and intact?	Yes	No	Not Applicable]
#10 Sample	e matrix/ prope	erties agree with Chain of Custody?	Yes	No]
#11 Contail	ners supplied	by ELOT?	Yes -	No			
#12 Sample	es in proper co	ontainer/ bottle?	Yes	No	See Below		
#13 Sample	es properly pre	eserved?	Yes	No	See Below		1
#14 Sample	e bottles intact	?	Yes	No			1
#15 Preser	vations docum	nented on Chain of Custody?	(Yes)	No		· · · · · ·	1
#16 Contai	ners documen	ted on Chain of Custody?	(Yes	No			1
#17 Sufficie	ent sample am	ount for indicated test(s)?	Yes	No	See Below		
#18 All san	nples received	within sufficient hold time?	(Yes	No	See Below		1
#19 Subco	ntract of samp	le(s)?	(Yes)	No	Not Applicable	PAH -> Xe	co Housto
#20 VOC s	amples have a	zero headspace?	(Yes	No	Not Applicable		
Contact:		Variance Doc	amentation	_	Date/ Time:		
Corrective A	Action Taken:						
Check all th	at Apply:	See attached e-mail/ fax Client understands and wo Cooling process had begu					