District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV

State of New Mexico **Energy Minerals and Natural Resources**

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Form C-141

Revised October 10, 2003

Oil Conservation Division 1220 South St. Francis Dr.

1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505 Release Notification and Corrective Action iSEB 1009 152371 **OPERATOR** ☐ Initial Report Final Report MSEB1009151039 oseb1009152580 Daniel Bryant Name of Company Plains Pipeline, LP Contact 34053 3705 E. Hwy 158 Midland, TX 79706 Telephone No. (432) 686-1769 Address Facility Name Cotton Draw BLM Facility Type Pipeline Mineral Owner Lease No. Surface Owner BLM LOCATION OF RELEASE Unit Letter North/South Line Feet from the East/West Line County Section Township Range Feet from the Eddy K 25 248 31E Latitude N 32.186389° Longitude W 103.734694° NATURE OF RELEASE Type of Release Volume Recovered 0 bbls Sweet Crude Oil Volume of Release 10 bbls Source of Release 6" steel transmission line Date and Hour of Occurrence Date and Hour of Discovery 10/10/2005 11:00 10/10/2005 10:45 If YES, To Whom? Initial release volume was reported as 2 bbls so Was Immediate Notice Given? ☐ Yes ☒ No ☐ Not Required Mike Bratcher notification was not performed at the time of the release. By Whom? Daniel Bryant Date and Hour 11/16/2005 13:15 Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. ☐ Yes ⊠ No If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* Internal Corrosion caused a release of 10 bbls sweet crude oil on a 6" gathering line. Line was clamped to mitigate the release until a pipeline replacement could be made. The pressure of the line is 85 lbs and throughput on the pipeline is approximately 10,000 bbls per month. The gravity of the crude oil is 42. H₂S content is <10 ppm. Describe Area Affected and Cleanup Action Taken.* . Please refer to the Remediation Summary and Site Closure Request prepared by Basin Environmental Service Technologies, LLC for details of remedial activities conducted for site closure. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Signature: District Supervisor: Printed Name: Daniel Expiration Date: P/A Approval Date: 3/3//6 Title: Environmental R/C Specialist E-mail Address: dmbryant@paalp.com Conditions of Approval: Pla

Phone: (432) 686-1769

Attach Additional Sheets If Necessary

Basin Environmental Service Technologies, LLC

2800 Plains Highway
P. O. Box 301
Lovington, New Mexico 88260
cjbryant@basin-consulting.com
Office: (505) 396-2378
Fax: (505) 396-1429

REMEDIATION SUMMARY

AND

SITE CLOSURE REQUEST

PLAINS MARKETING, L.P. (231735)
Cotton Draw BLM
Eddy County, New Mexico
Plains SRS # 2005-00237
UNIT K (NE/SW), Section 25, Township 24 South, Range 31 East
Latitude 32°, 11', 11.0" North, Longitude 103°, 44', 04.9" West

Prepared For:

Plains Marketing, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002

Prepared By: Basin Environmental Service Technologies, LLC

January 2009

Project Manager

TABLE OF CONTENTS

INTRODUCTION AND BACKGROUND INFORMATION
NMOCD SITE CLASSIFICATION
SUMMARY OF FIELD ACTIVITIES2
SITE CLOSURE REQUEST5
LIMITATIONS5
DISTRIBUTION7
FIGURES
Figure 1 – Site Location Map Figure 2 – Site and Soil Boring Location Map Figure 3 – Soil Sample Location Map
TABLES
Table 1 – Concentrations of BTEX, TPH and Chlorides in Soil
APPENDICES
Appendix A – New Mexico Office of the State Engineer Water Well Database Report Appendix B – BLM Report of Undesirable Event Checklist Appendix C – Laboratory Reports Appendix D – Boone Archeological Services, LLC Report Appendix E – Soil Boring Logs Appendix F – Photographs Appendix G –Release Notification and Corrective Action (Form C-141)

INTRODUCTION AND BACKGROUND INFORMATION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Plains Marketing, L.P. (Plains), has prepared this Remediation Summary and Site Closure Request for the release site known as the Cotton Draw BLM (SRS# 2005-00237). The site is located in Unit Letter K (NE ¼ SW ¼), Section 25, Township 24 South, Range 31 East, in Eddy County, New Mexico. The property is owned by The United States Department of the Interior Bureau of Land Management (BLM). The BLM Undesirable Event Form is provided as Appendix B. In accordance with BLM protocol, Plains conducted an archeological survey of the area. Results of the survey conducted by Boone Archeological Services, LLC, in Carlsbad, New Mexico, indicated no evidence of cultural resources present at the site. The Archeological Survey is provided as Appendix D. The site latitude is 32° 11' 11.0" North, and the longitude is 103° 44' 04.9" West. The Site Location and Site Map are provided as Figure 1 and Figure 2, respectively. The Release Notification and Corrective Action (NMOCD Form C-141) indicated approximately ten (10) barrels of crude oil was released from the Plains pipeline and zero (0) barrels were recovered during the initial response activities. The Release Notification and Corrective Action is provided as Appendix G.

On October 10, 2005, Basin, on behalf of Plains responded to a pipeline release located on the Cotton Draw pipeline. Plains operations personnel mitigated the crude oil release by installing a temporary clamp on the pipeline. The impacted soil excavated during initial response activities was stockpiled on a 6-mil poly liner adjacent to the excavation. The initial visually stained area covered an area measuring approximately 90 feet in length by 65 feet in width.

NMOCD SITE CLASSIFICATION

A search of the New Mexico Office of the State Engineer (NMOSE) water well database indicated depth to groundwater information was unavailable for Section 25, Township 24 South and Range 31 East. The NMOSE database indicated the depth to groundwater was approximately 192 feet below ground surface (bgs) in Section 2 of the same township and range. The depth to groundwater at the Cotton Draw BLM release site results in a score of zero (0) points being assigned to the site, based on the NMOCD depth to groundwater criteria.

The water well database, maintained by the NMOSE, indicated there are no water wells less than 1,000 feet from the release, resulting in zero (0) points being assigned to this site as a result of this criteria.

There are no surface water bodies within 1,000 feet of the release site. Based on the NMOCD ranking system zero (0) points will be assigned to the site as a result of the criteria.

The NMOCD guidelines indicate the Cotton Draw BLM release site has a ranking score of zero (0) points. Based on this score, the soil remediation levels for a site with a ranking score of zero (0) points are as follows:

Benzene: 10 mg/Kg (ppm) BTEX: 50 mg/Kg (ppm) TPH:

5,000 mg/Kg (ppm)

SUMMARY OF FIELD ACTIVITIES

On October 10, 2005, Basin mobilized to the Cotton Draw BLM release site to begin excavation activities. Impacted soil excavated from the release point and flow path was stockpiled on a 6-mil poly liner adjacent to the excavation pending final disposition. The excavation activities resulted in an excavation measuring approximately 90 feet in length by 65 feet width and 10 feet bgs in depth.

On November 15 and 16, 2005, five (5) soil borings (SB-1 through SB-5) were advanced at the release site to vertically and horizontally investigate the extent of soil impact. A map depicting the soil boring locations is provided as Figure 2 and the soil boring logs are provided as Appendix E. Soil samples were collected at five (5) foot drilling intervals and field screened using a Photo-Ionization Detector (PID). Selected soil samples were submitted to the laboratory for determination of concentrations of benzene, toluene, ethyl-benzene and xylene (BTEX) using method EPA 8021b and total petroleum hydrocarbons (TPH) using method SW-8015 modified. A summary of the analytical results are included in Table 1, Concentrations of BTEX, TPH and Chlorides in Soil. Laboratory analytical results are included in Appendix C.

Soil boring SB-1 was advanced to a total drilling depth of one hundred ten (110) feet. Soil boring SB-1 was advanced in the floor of the excavation at approximately ten (10) feet bgs. The laboratory analytical results indicated concentrations of benzene ranged from below the laboratory method detection limit (MDL) of 0.025 mg/Kg for the soil samples collected at fifty (50) feet, seventy (70) feet, ninety (90) feet, one hundred (100) feet and one hundred ten (110) feet to 6.47 mg/Kg for the soil sample collected at fifteen (15) feet. The BTEX concentrations ranged from 0.657 mg/Kg for the soil sample collected at one hundred ten (110) feet to 157.77 mg/Kg in the soil sample collected at fifteen (15) feet. The laboratory analytical results indicated the TPH concentrations ranged from 1,350 mg/Kg for the soil sample collected at one hundred (100) feet to 17,400 mg/Kg for the soil sample collected at fifteen (15) feet.

A soil sample collected from soil boring SB-1 at twenty (20) feet was analyzed for concentrations of chloride using method EPA 300. The analytical result indicated the chloride concentration was 32.6 mg/Kg.

Soil boring SB-2 was advanced to a total drilling depth of thirty (30) feet. Soil boring SB-2 was advanced in the floor of the excavation northeast of SB-1 at approximately ten (10) feet bgs. The laboratory analytical results indicated concentrations of benzene were below the MDL of 0.025 mg/Kg for all the soil samples collected. The BTEX constituent concentrations ranged from below the MDL of 0.025 mg/Kg for the soil samples collected at five (5) feet, twenty (20) feet and thirty (30) feet to 0.027 mg/Kg for the soil sample collected at ten (10) feet. The laboratory analytical results indicated the TPH concentrations were below the MDL of 10.0 mg/Kg for all the soil samples collected.

Soil boring SB-3 was advanced west of the excavation to a total depth of thirty (30) feet bgs. The laboratory analytical results indicated benzene, BTEX and TPH concentrations were all below the MDL's for all the soil samples collected.

Soil boring SB-4 was advanced southeast of the excavation to a total depth of thirty (30) feet bgs. The laboratory analytical results indicated benzene, BTEX and TPH concentrations were all below the MDL's for all the soil samples collected.

Soil boring SB-5 was advanced east of the excavation to a total depth of thirty (30) feet bgs. The laboratory analytical results indicated benzene, BTEX and TPH concentrations were all below the MDL's for all the soil samples collected.

On January 19, 2006, four (4) soil samples (W. Sd. Wall, E. Sd. Wall, N. Sd. Wall and S. Sd. Wall) were collected from the excavation sidewalls at approximately five (5) feet bgs and four (4) soil samples (SW Floor, NW Floor, NE Floor and SE Floor) were collected from the floor of the excavation at approximately ten (10) feet bgs. The laboratory analytical results indicated benzene concentrations ranged from below the MDL of 0.025 mg/Kg for soil samples W. Sd. Wall, E. Sd. Wall, N. Sd. Wall and S. Sd. Wall to 11.1 mg/Kg for soil sample NW Floor. BTEX concentrations ranged from 0.03 mg/Kg for soil sample N. Sd. Wall to 173.8 mg/Kg for soil sample NW Floor. TPH concentrations ranged from 26.9 mg/Kg for soil sample S. Sd. Wall to 61,600 mg/Kg for soil sample SE Floor.

A stockpile soil sample (Stk Pile) was collected from the on-site stockpile to evaluate the status of the stockpile and the potential use of the stockpile as backfill material. The analytical results indicated soil sample Stk Pile exhibited a benzene concentration of 0.125 mg/Kg, a BTEX concentration of 13.785 mg/Kg and a TPH concentration of 33,000 mg/Kg.

On February 22, 2007, two (2) delineation trenches were advanced on the floor of the excavation. The trenches were positioned to the east and west of the pipeline at approximately ten (10) feet bgs on the floor of the excavation. Four (4) soil samples (E Excv Flr Surface, E D/T 5', E D/T 10' and E D/T 15') were collected from the east trench and four (4) soil samples (W Excv Flr Surface, W D/T 5', W D/T 10', and W D/T 15') were collected from the west trench. The analytical results indicated benzene concentrations ranged from 0.142 mg/Kg for soil sample W Excv Flr Surface to 36.7 mg/Kg for soil sample E D/T 15'. BTEX concentrations ranged from 1.006 mg/Kg for soil sample W Excv Flr Surface to 301.4 mg/Kg for soil sample E D/T 15'. TPH concentrations ranged from 11,200 mg/Kg for soil sample W D/T 10' to 28,900 mg/Kg for soil sample E D/T 15'.

On April 5 and 10, 2007, five (5) additional soil borings (SB-6 through SB-10) were advanced in the floor of the excavation to determine the vertical extent of soil impact at the release site. A map depicting the soil boring locations is provided as Figure 2. Soil samples were collected at five (5) foot drilling intervals and field screened using a PID. Selected soil samples were submitted to the laboratory for determination of concentrations of BTEX using method EPA 8021b and concentrations of TPH using method SW-8015 modified.

Soil boring SB-6 located in the west central portion of the excavation floor was advanced to a total drilling depth of forty-five (45) feet. The laboratory analytical results indicated concentrations of benzene ranged from 0.468 mg/Kg for the soil sample collected at forty-five (45) feet to 18.1 mg/Kg for the soil sample collected at twenty (20) feet. BTEX concentrations ranged from 10.598 mg/Kg for the soil sample collected at forty-five (45) feet to 174.6 mg/Kg for the soil sample collected at twenty (20) feet. TPH concentrations ranged from 1,928 mg/Kg for the soil sample collected at forty-five (45) feet to 28,104 mg/Kg for the soil sample collected at fifteen (15) feet.

Soil boring SB-7 located in the east central portion of the excavation floor was advanced to a total drilling depth of thirty-five (35) feet. The laboratory analytical results indicated concentrations of benzene ranged from 1.47 mg/Kg for the soil sample collected at thirty-five (35) feet to 23.1 mg/Kg for the soil sample collected at twenty (20) feet. BTEX concentrations ranged from 26.02 mg/Kg for the soil sample collected at thirty-five (35) feet to 228.9 mg/Kg for the soil sample collected at twenty (20) feet. TPH concentrations ranged from 12,900 mg/Kg for the soil sample collected at thirty-five (35) feet to 22,989 mg/Kg for the soil sample collected at twenty (20) feet.

Soil boring SB-8 located southeast of SB-7 was advanced to a total drilling depth of thirty (30) feet. The laboratory analytical results indicated concentrations of benzene ranged from below the MDL of 0.020 mg/Kg for the soil samples collected at twenty (20) feet, twenty-five (25) feet and thirty (30) feet to 1.84 mg/Kg for the soil sample collected at five (5) feet. BTEX concentrations ranged from below the MDL of 0.020 mg/Kg for the soil samples collected at twenty (20) feet, twenty-five (25) feet and thirty (30) feet to 37.11 mg/Kg for the soil sample collected at five (5) feet. TPH concentrations ranged from below the MDL of 10.0 mg/Kg for the soil samples collected at twenty-five (25) feet and thirty (30) feet to 7,189 mg/Kg for the soil sample collected at five (5) feet.

Soil boring SB-9 located southeast of SB-6 was advanced to a total drilling depth of twenty (20) feet. The laboratory analytical results indicated concentrations of benzene ranged from 0.726 mg/Kg for the soil sample collected at five (5) feet to 33.1 mg/Kg for the soil sample collected at twenty (20) feet. BTEX concentrations ranged from 15.426 mg/Kg for the soil sample collected at five (5) feet to 261 mg/Kg for the soil sample collected at twenty (20) feet. TPH concentrations ranged from 2,895 mg/Kg for the soil sample collected at five (5) feet to 28,406 mg/Kg for the soil sample collected at twenty (20) feet.

Soil boring SB-10 located northeast of SB-6 was advanced to a total drilling depth of forty (40) feet. The laboratory analytical results indicated concentrations of benzene ranged from 2.02 mg/Kg for the soil sample collected at twenty-five (25) feet to 11.9 mg/Kg for the soil sample collected at fifteen (15) feet. BTEX concentrations ranged from 36.29 mg/kg for the soil sample collected at twenty-five (25) feet to 139.1 mg/Kg for the soil sample collected at fifteen (15) feet. TPH concentrations ranged from 9,818 mg/Kg for the soil sample collected at thirty-five (35) feet to 24,723 mg/Kg for the soil sample collected at fifteen (15) feet.

On January 17, 2008, the NMOCD Artesia District Office granted Plains verbal approval to complete the excavation to approximately twenty (20) feet bgs, install a 20-mil poly liner on the

floor the excavation and backfill the excavation with blended material exhibiting TPH concentrations less than 5,000 mg/Kg.

During February and March 2008, Basin conducted additional excavation activities at the release site. Pursuant to the NMOCD approval, the excavation was completed to an approximate depth of twenty (20) feet bgs. The final dimensions of the excavation were approximately 90 feet in length and 65 feet in width and 20 feet deep. Approximately 5,504 cubic yards (cy) of soil was excavated and blended on-site.

On March 19, 2008, fifteen (15) soil samples were collected from the blended material and submitted to the laboratory for analysis. The laboratory analytical results indicated concentrations of benzene were below the MDL for all fifteen (15) soil samples. BTEX concentrations ranged from 0.013 mg/Kg for soil sample S/P Grid 9 to 0.182 mg/Kg for soil sample S/P Grid 7. TPH concentrations ranged from 542 mg/Kg for soil sample S/P Grid 12 to 2,183 mg/Kg for soil sample S/P Grid 1.

On April 1, 2008, a 20-mil poly liner was installed in the base of the excavation to inhibit vertical migration of the contaminants left in place below the cap and allow for natural attenuation of the contaminants left in-situ. To ensure the integrity of the liner a six (6) inch layer of cushion sand was installed above and below the liner. Site photographs are provided as Appendix F. Confirmation soil sampling results of the blended soil indicated concentrations of TPH were below 5,000 mg/Kg for all fifteen (15) soil samples, making the soil suitable for backfill material. Following the installation of the liner, the excavation was backfilled with the blended soil and contoured to fit the surrounding topography. On November 6, 2008, the remediation site was seeded with vegetation suitable to the landowner.

SITE CLOSURE REQUEST

Based on the analytical results of confirmation soil samples collected from the floor and sidewalls of the excavation, Basin recommends Plains provide the NMOCD Artesia District Office and the BLM Carlsbad District Office a copy of this Remediation Summary and Site Closure Request and request the NMOCD grant site closure to the Cotton Draw BLM release site.

LIMITATIONS

Basin Environmental Service Technologies, LLC has prepared this Remediation Summary and Site Closure Request to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin Environmental Service Technologies, LLC has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin Environmental Service Technologies, LLC has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin Environmental Service Technologies, LLC has prepared this report, in a professional

manner, using the degree of skill and care exercised by similar environmental consultants. Basin Environmental Service Technologies, LLC also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains Marketing, L.P. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC and/or Plains Marketing, L.P.

DISTRIBUTION:

Mike Bratcher Copy 1:

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division (District 2)

1301 W. Grand Avenue Artesia, New Mexico 88210 mike.bratcher@nm.state.us

Copy 2: Jeff Dann

> Plains Marketing, L.P. 333 Clay Street, Suite 1600 Houston, Texas 77002 jpdann@paalp.com

Copy 3: Daniel Bryant

> Plains Marketing, L.P. 3705 E. Highway 158 Midland, Texas 79706 dmbryant@paalp.com

Copy 4: James Amos

> US Department of the Interior Bureau of Land Management 620 East Greene Street

P. O. Box 1778

Carlsbad, New Mexico 88220 James Amos@nm.blm.gov

Copy 5: Camille Bryant

Basin Environmental Consulting

P.O. Box 381

Lovington, New Mexico 88260 cjbryant@basin-consulting.com Figures

TABLE 1

CONCENTRATIONS OF TPH, BTEX AND CHLORIDES IN SOIL

PLAINS MARKETING, L.P. COTTON DRAW BLM EDDY COUNTY, NEW MEXICO EMS: 2005-00237

	SAMPLE				MET	HOD EPA SW	346-8021B, 503	0		İ	SW 848-80	115M	300.1
SAMPLE LOCATION	DEPTH (below ground surface)	SAMPLE DATE	SOIL STATUS	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	M,P- XYLENE (mg/Kg)	O-XYLENE (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO C ₆ .C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₃₅ (mg/Kg)	TOTAL TPH C ₆ -C ₃₅ (mg/Kg)	CHLORIDE (mg/Kg)
SB-1 5'	15' bgs	11/15/05	Excavated	1 35	8 41	6 39	19 7	9 65	45 5	2,640	7,630	10,300	
SB-1 15'	25' bgs	11/15/05	In-Situ	6 47	36 5	21 7	63 3	29 8	157 77	4,870	12,500	17,400	
SB-1 20'	30' bgs	11/15/05	In-Situ	6 21	29 9	17 7	52 9	24 0	130 7	4,250	10,100	14,400	32 6
SB-1 30'	40' bgs	11/15/05	In-Situ	0 038	0 367	0 435	1 44	0 784	3 064	334	1,730	2,060	
SB-1 40'	50' bgs	11/15/05	In-Situ	0 031	0 282	0 360	1 20	0 695	2 568	217	1,160	1,380	
SB-1 50'	60' bgs	11/15/05	In-Situ	<0 025	0 249	0 399	1 33	0 754	2 732	339	2,080	2,420	
SB-1 60'	70' bas	11/15/05	In-Situ	0 027	0 450	0 592	1 80	1 07	3 939	427	2,400	2,830	
SB-1 70'	80' bgs	11/15/05	In-Situ	<0 025	0 170	0 345	1 13	0 634	2 279	252	1,530	1,780	
SB-1 80'	90' bgs	11/15/05	In-Situ	0 054	0 755	0 927	2 72	1 49	5 892	473	2,290	2,760	
SB-1 90'	100' bgs	11/15/05	In-Situ	<0 025	0 264	0 383	1 27	0 701	2 618	233	1,520	1,750	
SB-1 100'	110' bgs	11/15/05	In-Situ	<0 025	0 080	0 145	0 524	0 249	0 998	146	1,200	1,350	
SB-1 110'	120' bgs	11/15/05	In-Situ	<0.025	0 039	0 103	0 346	0 169	0 657	165	1,470	1,640	
The state of the state of	1 2 En 1987	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11.	1987年 1987年 1985年	糖子,炒锅…	40000	7 - T. T.	1.20	7, 37 , 47, 1, 1991	12 -1	1 1 2 5 5 2	~ Jag 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SB-2 5'	15' bgs	11/16/05	Excavated	<0.025	<0.025	<0.025	<0 025	<0 025	<0 025	<100	<100	<100	
SB-2 10'	20' bgs	11/16/05	In-Situ	<0 025	<0.025	<0.025	0.027	<0 025	0 027	<100	<100	<100	
SB-2 20'	30' bgs	11/16/05	In-Situ	<0 025	<0.025	<0 025	<0 025	<0 025	<0 025	<100	<100	<100	
SB-2 30'	40' bgs	11/16/05	In-Situ	<0 025	<0.025	<0.025	<0.025	<0 025	<0 025	<100	<100	<100	
\$100 KM		1516 1 168 W	1. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Carlot Control	A STATE OF THE		F. T. C. 3	S. E. A.	F. W. 17 14.2. 7	1 2	\$500 m	16. 16. 16. 16. 16. 16. 16. 16. 16. 16.	المارية والمسرخ
SB-3 5'	5' bgs	11/16/05	In-Situ	<0.025	<0.025	<0.025	<0 025	<0 025	<0 025	<100	<100	<100	
SB-3 10'	10' bgs	11/16/05	In-Situ	<0.025	<0.025	<0.025	<0 025	<0 025	<0 025	<100	<100	<100	
SB-3 20'	20' bgs	11/16/05	In-Situ	<0.025	<0 025	<0.025	<0 025	<0 025	<0 025	<100	<100	<100	
SB-3 30'	30' bgs	11/16/05	In-Situ	<0.025	<0.025	<0.025	<0.025	<0 025	<0 025	<100	<100	<100	
ATTENDED OF THE STATE OF		775 15 15 280	Elect and and		PACE CALLSON	772 " 2.11	5, 12, 10 14 50°	" رينا وغراق	1 1 5 7 6 7	2 1 5 7 4	7 . " S" . " . " . " . " . " . " . " . "	Ca. 1325	The state of the s
SB-4 5'	5' bgs	11/16/05	In-Situ	<0.025	<0.025	<0 025	<0 025	<0 025	<0.025	<100	<100	<100	
SB-4 10'	10' bgs	11/16/05	In-Situ	<0.025	<0.025	<0.025	<0 025	<0.025	<0 025	<100	<10.0	<100	
SB-4 20'	20' bgs	11/16/05	In-Situ	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<100	<10.0	<100	
SB-4 30'	30' bgs	11/16/05	In-Situ	<0.025	<0.025	<0 025	<0 025	<0.025	<0 025	<100	<100	<100	
11 1 J. J. V. L. C. S. Z.	15,8136	and the same	Wir Ed	The Marian	ुक्कियों येह (धर्य र	a to be stated	Regard to the second	11 15 60	12.365	1.55	200	Y	Marie Mari
SB-5 5'	5' bas	11/16/05	in-Situ	<0.025	<0.025	<0.025	<0.025	<0 025	<0 025	<100	<100	<100	
SB-5 10'	10' bgs	11/16/05	In-Situ	<0 025	<0.025	<0 025	<0 025	<0 025	<0.025	<100	<100	<100	
SB-5 20'	20' bgs	11/16/05	In-Situ	<0.025	<0.025	<0.025	<0 025	<0.025	<0.025	<100	<10.0	<10.0	
SB-5 30'	30' bgs	11/16/05	In-Situ	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<100	<100	<100	
CONTRACTOR OF THE CO	9 77 6 7% ASTS	na Fulli	1 × 1.75 c.	2 M - K 2 2 4 3 1 5	50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Valuable Color			180, 1846	17-42 W.	35.05	Sant Value Stan	13. 4. 5.3
W Sd Wall	5' bgs	01/19/06	In-Situ	<0.025	0.087	0 032	0 123	0 046	0 288	<100	103	103	
SW Floor	10' bgs	01/19/06	Excavated	1 27	13.5	8 08	24 1	11 3	58 25	6.430	37.900	44,300	
NW Floor	10' bgs	01/19/06	Excavated	11 1	44 2	22 4	66 2	29 9	173 8	10,500	35,200	45,700	
NE Floor	10' bgs	01/19/06	Excavated	1 73	11 2	7 15	22 6	10 7	53 38	7.970	43,300	51,300	· · · · · · · · · · · · · · · · · · ·
E Sd Wall	5' bgs	01/19/06	In-Situ	<0.025	0.028	<0.025	0 032	<0.025	0.06	<100	39 9	39 9	
SE Floor	10' bgs	01/19/06	Excavated	6 73	303	15 9	49 4	21 9	124 23	10,300	51,300	61,600	

TABLE 1

CONCENTRATIONS OF TPH, BTEX AND CHLORIDES IN SOIL

PLAINS MARKETING, L.P. COTTON DRAW BLM EDDY COUNTY, NEW MEXICO EMS: 2005-00237

-	SAMPLE		Ī		MET	HOD: EPA SW 8	346-8021B, 503	0			SW 848-80	15M	300.1 CHLORIDE (mg/Kg)
SAMPLE LOCATION	DEPTH (below ground surface)	SAMPLE DATE	SOIL STATUS	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	M,P- XYLENE (mg/Kg)	O-XYLENE (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO C ₅₋ C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₃₅ (mg/Kg)	TOTAL TPH C ₆ -C ₃₅ (mg/Kg)	
Stk Pile	N/A	01/19/06	N/A	0 125	1 33	1 83	6 75	3 75	13 785	3,970	29,000	33,000	
N Sd Wall	5' bgs	01/19/06	In-Situ	<0 025	<0 025	<0 025	0 030	<0 025	0 030	<100	245	245	
S Sd Wall	5' bgs	01/19/06	In-Situ	<0 025	0 068	<0 025	0.412	0 204	0 684	<10.0	26 9	26 9	
至此在海底 经证	Colle March 187	在否分。數學	外中国产品·	18.75 - 38.8°	際心學學	The state of	118 11 11 11	· 操 三甲酸	3 7 7 7 1	. P. 48 T	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	13 13 13 13 13 13 13 13 13 13 13 13 13 1	Transition of the
E Excv Fir Surface	10' bgs	02/22/07	Excavated	0 683	3 00	1 62	4 59	1 83	11 723	1,540	15,660	17,200	
E D/T 5'	15' bgs	02/22/07	Excavated	0 146	0 340	0 127	0 296	0 126	1 035	5,330	6,470	11,800	
E D/T 10'	20' bas	02/22/07	In-Situ	8 30	29 4	143	38 8	143	105 10	6,060	6,640	12,700	
E D/T 15'	25' bgs	02/22/07	In-Situ	36 7	923	36 5	99 1	36 8	301 4	13,300	15,600	28,900	
W Excv Flr Surface	10' bgs	02/22/07	Excavated	0 142	0.331	0 123	0 288	0 122	1 006	1,350	23,950	25,300	
W D/T 5'	15' bgs	02/22/07	Excavated	5 35	30 8	16 7	47 0	16 0	1159	7.080	9,020	16,100	
W D/T 10'	20' bgs	02/22/07	In-Situ	7 39	30 5	13 5	41 4	13.8	106 59	5,280	5,920	11,200	
W D/T 15'	25' bgs	02/22/07	In-Situ	19 6	58 4	25 9	71 0	26 2	201 1	10,600	12,600	23,200	
Y 68 - 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1109 2 92 1	V William Co.	3113 3 1. C.	1 4 4 4 6 76 11	St. St.	14 5 35 700	at The said	5 6 7	21. 150 15	V 4 2 00 X 4	4 3	11.50	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SB-6 5'	15' bgs	04/10/07	Excavated	4 35	20 8	11 1	28 7	13.8	78 75	4,550	7.147	11,697	
SB-6 10'	20' bgs	04/10/07	In-Situ	8 30	28 9	12.5	32.8	173	99 80	5,870	7,837	13,707	
SB-6 15'	25' bgs	04/10/07	In-Situ	6 93	32 2	15 7	44.6	22 3	121 73	12,400	15,704	28,104	
SB-6 20'	30' bgs	04/10/07	In-Situ	18 1	50 3	20 9	59 9	25 4	1746	5,740	6,835	12,575	
SB-6 25'	35' bgs	04/10/07	In-Situ	12 6	42 2	19 0	53.9	23 0	150 7	9.390	12,021	21,411	
SB-6 30'	40' bgs	04/10/07	In-Situ	6 83	27 0	13 6	38 2	16 0	101 6	5,780	6.887	12,667	
SB-6 35'	45' bgs	04/10/07	In-Situ	14 6	42 2	17.4	50 7	21 0	145 9	6,630	8,453	15,083	
SB-6 40'	50' bgs	04/10/07	In-Situ	16 7	49 3	20 2	57 1	24 1	167 4	8,050	9.809	17,859	
SB-6 45'	55' bgs	04/10/07	In-Situ	0 468	1 93	1 46	4 79	1 95	10 598	672	1.310	1,982	
SB-7 20'	30' bgs	04/05/07	In-Situ	23 1	65.3	27.7	793	33 5	228 9	10.200	12.789	22,989	
SB-7 25'	35' bgs	04/05/07	In-Situ	15 9	44 9	19 5	57 1	23 5	160 9	6.530	8,468	14,998	
SB-7 30'	40' bgs	04/05/07	In-Situ	11 1	345	15 3	43 4	21.2	125 5	6,060	7.863	13,923	
SB-7 35'	45' bgs	04/05/07	In-Situ	1 47	5 02	4 18	9 69	5 66	26 02	4.250	8,650	12,900	
74.00 A 100 18 4 5 5 2	2000 18 1000	25 16 July 2 16 July 2 3	S 40 15 15 15 15	197, 82,034		The Wat Was		8 1822 1	1000 10 B	100 30.00		54° 7 754	17 48 18 - 13
SB-8 5'	15' bgs	04/05/07	Excavated	184	8 13	5 46	129	8 78	37 11	2,720	4,469	7,189	
SB-8 10'	20' bgs	04/05/07	In-Situ	0 0213	0 0389	0.0139	0 0893	0.0550	0.2184	53.3	182 3	235 6	
SB-8 15'	25' bgs	04/05/07	In-Situ	0 0022	0 0023	<0.020	0 0068	0 0082	0.01944	<10.0	38 1	38 1	
SB-8 20'	30' bgs	04/05/07	In-Situ	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<100	148	148	
SB-8 25'	35' bgs	04/05/07	in-Situ	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<10.0	<10.0	<10.0	
SB-8 30'	40' bgs	04/05/07	In-Situ	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<100	<10.0	<100	
e(75 PE 25 NG	****	S. ASTANTA	***************************************	\$ 40 M 35.0.	15 025 12 (10) 1 10 ft 1	* 10020	10020	3.44	14.00	T		535 7340
SB-9 5'	15' bas	04/10/07	Excavated	0 726	3 59	1 93	6 03	3 15	15 426	902	1,993	2,895	3.48
SB-9 10'	20' bgs	04/10/07	In-Situ	8 85	243	914	27.5	13.7	83.49	4,580	5,755	10,335	
SB-9 15'	25' bgs	04/10/07	In-Situ	13 0	341	14 4	39 0	16 9	117.4	5,590	6,407	11,997	
SB-9 20'	30' bgs	04/10/07	In-Situ	33 1	798	29 9	82.9	35 3	261	13,600	14.806	28,406	
SB-9 20		-34/10/07	in-oitu	351	790	299		1 3 3 3 3 3 3 5 3 5 5 5 5 5 5 5 5 5 5 5		4 6 5 5 1	14,000		32 No. 12 Co.

TABLE 1

CONCENTRATIONS OF TPH, BTEX AND CHLORIDES IN SOIL

PLAINS MARKETING, L.P. COTTON DRAW BLM EDDY COUNTY, NEW MEXICO EMS: 2005-00237

	SAMPLE				MET	HOD: EPA SW 8	346-8021B, 503	0		I	SW 848-80	15M	300.1 CHLORIDE (mg/Kg)
SAMPLE LOCATION	DEPTH (below ground surface)	SAMPLE DATE	SOIL STATUS	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	M,P- XYLENE (mg/Kg)	O-XYLENE (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO C ₆ .C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₃₅ (mg/Kg)	TOTAL TPH C ₆ -C ₃₅ (mg/Kg)	
SB-10 5'	15' bgs	04/10/07	Excavated	3 07	103	6 13	19 3	8 92	47 72	4,110	11,045	15,155	
SB-10 10'	20' bgs	04/10/07	In-Situ	6 97	20 1	11 4	35 3	15 7	89 47	6,730	10,640	17,370	
SB-10 15'	25' bgs	04/10/07	In-Situ	11 9	33 4	18 2	52 3	23 3	139 1	10,100	14,623	24,723	
SB-10 20'	30' bgs	04/05/07	In-Situ	8 79	21 0	11 7	32 6	156	89 69	7,040	10,946	17,986	
SB-10 25'	35' bgs	04/05/07	In-Situ	2 02	7 01	5 15	148	7 31	36 29	3,660	7,194	10,854	
SB-10 30'	40' bgs	04/05/07	In-Situ	3 1 1	108	7 93	23 4	10.8	56 04	4,400	7,650	12,050	
SB-10 35'	45' bgs	04/05/07	In-Situ	2 29	9 29	6 73	18 8	8 76	45 87	3,650	6,168	9,818	
SB-10 40'	50' bgs	04/10/07	In-Situ	7 97	22 8	12.9	36 2	15 8	95 67	6,520	10,149	16,669	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.4	*			1.5				,	,			1 A-4 \$
S/P Grid 1	N/A	03/19/08	N/A	<0 001	<0 002	0.0045	0 0115	0 0044	0 0204	63 7	2,119	2,1827	
S/P Grid 2	N/A	03/19/08	N/A	<0 001	<0.002	0 0049	0 0141	0 0035	0 0225	36	1,111	1,147	
S/P Grid 3	N/A	03/19/08	N/A	<0 001	<0 002	0 0110	0 0305	0 0090	0.0505	59 9	1,661	1,721	
S/P Grid 4	N/A	03/19/08	N/A	<0 001	<0 002	0 0058	0 0172	0 0045	0 0275	47 1	1,254	1,301	
S/P Grid 5	N/A	03/19/08	N/A	<0 001	<0 002	0 0076	0 0225	0 0057	0 0358	50 4	1,165	1,215	
S/P Grid 6	N/A	03/19/08	N/A	<0 001	<0 002	0 0075	0 0231	0 0055	0 0361	50 7	1,105	1,156	
S/P Grid 7	N/A	03/19/08	N/A	<0 001	<0 002	0 0057	0 0173	0 0048	0 0278	44 2	1,155	1,199	
S/P Grid 8	N/A	03/19/08	N/A	<0 001	0 002	0 0132	0 0413	0 0118	0 0683	59 4	1,099	1,158 4	
S/P Grid 9	N/A	03/19/08	N/A	<0 001	<0.002	0 0027	0 0095	0 0025	0 0147	26 7	665	691 7	
S/P Grid 10	N/A	03/19/08	N/A	<0 001	<0 002	0 0044	0 015	0 0047	0.0241	26 4	695	721 4	
S/P Grid 11	N/A	03/19/08	N/A	<0 001	<0 002	0.0075	0 0249	0 0082	0 0406	37 5	708	745 5	
S/P Grid 12	N/A	03/19/08	N/A	<0 001	<0 002	0 0076	0 0249	0 0082	0 0407	22 7	520 9	543 6	
S/P Grid 13	N/A	03/19/08	N/A	<0 001	0 0022	0 0054	0 0234	0 0073	0 0383	45 5	816	861 5	
S/P Grid 14	N/A	03/19/08	N/A	<0 001	<0 002	0 006	0 0211	0 0072	0 0343	46.8	1,045	1,091 8	
S/P Grid 15	N/A	03/19/08	N/A	<0.001	<0 002	0 0082	0 0221	0 0073	0 0376	37 1	677 1	7142	

Appendices

Appendix A
New Mexico Office of the State Engineer
Water Well Database Report

	New Mexico Office of the State Engineer POD Reports and Downloads
	Township: 24S Range: 31E Sections: 25
	NAD27 X: Y: Zone: Search Radius:
	County: - Basin: - Number. Suffix:
	Owner Name: (First) (Last). Onn-Domestic Onnestic All
	POD / Surface Data Report Avg Depth to Water Report , , Water Column Report .
	, Clear Form WATERS Menu Help
	POD / SURFACE DATA REPORT 03/23/2006 (quarters are 1=NW 2=NE 3=SW 4=SE) (acre ft per annum) (quarters are biggest to smallest X Y are in Feet
DB File Nbr	(darre It per annum) (quarters are biggest to smallest X i are in reed. Use Diversion Owner POD Number Source Two Rng Sec q q Zone X Y
No Records four	nd, try again

New Mexico Office of the State Engineer **POD Reports and Downloads**

Township: 24S Range: 31E Sections: 1,2,3,4,5,6
NAD27 X: Zone: Search Radius:
County: Basin: Number: Suffix:
Owner Name: (First) (Last) Onn-Domestic Onestic
POD / Surface Data Report Avg Depth to Water Report Water Column Report
Clear Form iWATERS Menu Help

AVERAGE DEPTH OF WATER REPORT 03/23/2006

								(nebru	water in	reet)
Bsn	Tws	Rng S	Sec	Zone	X	Y	Wells	Min	Max	Avg
C	24S	31E 0)2				3	160	212	192

Record Count: 3

Appendix B BLM Report of Undesirable Event Checklist Form NM 3162-1 (August 2004)

UNITED STATES DEPARTMENT OF THE INTERIOR Bureau of Land Management New Mexico State Office

REPORT OF UNDESIRABLE EYENT

DATE OF OCCURRENCE/DISCOVERY: 1010 05 TIME OF OCCURRENCE: 11:00
DATE REPORTED TO BLM: 10/12/05 TIME REPORTED: 8:30
BLM OFFICE REPORTED TO: (FIELD/DISTRICT/OTHER) CONSOCIO Jum Amos
LOCATION: (1/4 1/4) NE/SWISECTION 25 T. 245 R. 31E MERIDIAN NM PriMC
COUNTY: Eddy STATE: NM WELL NAME
OPERATOR: COMPANY NAME Plains Picine PHONE NO. 432-L86-1769 CONTACT PERSON'S NAME David Brant
SURFACE OWNER:
LEASE NO.: RIGHT-OF-WAY NO.: NM - 92550
UNIT NAME / COMMUNITIZATION AGREEMENT NO.:
TYPE OF EVENT, CIRCLE APPROPRIATE ITEM (S):
BLOWOUT, FIRE, FATALITY, INJURY, PROPERTY DAMAGE, OIL SPILL, SALTWATER SPILL, OIL AND SALTWATER SPILL, TOXIC FLUID SPILL, HAZARDOUS MATERIAL SPILL, UNCONTROLLED FLOW OF WELLBORE FLUIDS, OTHER (SPECIFY):
CAUSE OF EVENT: Internal corrosion of 6" steel pixline
HazMat Notified: (for spills)
Law Enforcement Notified: (for thefts)
CAUSE AND EXTENT OF PERSONAL INJURIES/CAUSE OF DEATH(S):
Safety Officer Notified:
EFFECTS OF EVENT: Hydrocarbon imported soil
ACTION TAXEN TO CONTROL EVENT: Clamp installed on popular. Soil excanated and placed on pixture
LENGTH OF TIME TO CONTROL BLOWOUT OR FIRE:
VOLUMES DISCHARGED: OIL 2 565 WATER GAS
OTHER AGENCIES NOTIFIED:

4 CT1	ON TAKEN OR TO BE TAKEN	J TO BUEY	TAFT DECTIONENCE.		Page 2
	L INVESTIGATION: TEAM NAME(S)				
	,	·			
	SUMMARY OF RESULTS (of inspec	TION		······································
RESO	URCE LOSS WAS (CIRCLE IT	ГЕМ):	AVOIDABLE	UNAVOIDABLE	
DATE	OF MEMO NOTIFYING MIN	EALS MAN	NAGEMENT SSERVIO	CE THAT LOSS WAS AVOIDA	ABLE:
DATE	Z/TIME/PERSON NOTIFIED:				
				`	· · · · · · · · · · · · · · · · · · ·
	WASHINGTON OFFICE _			·	
SUMI	MARY OF RESULTS OF RECI	AMATION	I/CORRECTIVE ACTI	ON:	
REMA	ARKS:				
SIGN	ATURE OF AUTHORIZED OF	FICER		•	
DATE			LE:		

Appendix C Laboratory Reports

Analytical Report

Prepared for:

Daniel Bryant
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Cotton Draw BLM
Project Number: 2005-00237
Location: Eddy County, NM

Lab Order Number: 5K19002

Report Date: 11/23/05

Project Number: Cotton Draw BLM
Project Number: 2005-00237
Project Manager: Daniel Bryant

Fax (432) 687-4914

Reported:
11/23/05 17 06

ANALYTICAL REPORT FOR SAMPLES

				2.20
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 5'	5K19002-01	Soil	11/15/05 11.05	11/19/05 15 15
SB-1 15'	5K19002-02	Soil	11/15/05 11 13	11/19/05 15 15
SB-1 20'	5K 19002-03	Soil	11/15/05 11:26	11/19/05 15.15
SB-1 30'	5K19002-04	Soil	11/15/05 11 36	11/19/05 15 15
SB-1 40'	5K19002-05	Soil	11/15/05 11 47	11/19/05 15.15
SB-1 50'	5K19002-06	Soil	11/15/05 12 16	11/19/05 15:15
SB-1 60'	5K19002-07	Soil	11/15/05 12 32	11/19/05 15 15
SB-1 70'	5K19002-08	Soil	11/15/05 13 29	11/19/05 15 15
SB-1 80'	5K19002-09	Soil	11/15/05 13.42	11/19/05 15.15
SB-1 90'	5K19002-10	Soil	11/15/05 13 55	11/19/05 15 15
SB-1 100'	5K19002-11	Soil	11/15/05 14 40	11/19/05 15 15
SB-1 110'	5K19002-12	Soil	11/15/05 14 55	11/19/05 15 15
SB-2 5'	5K19002-13	Soil	11/16/05 10:39	11/19/05 15:15
SB-2 10'	5K19002-14	Soil	11/16/05 10 42	11/19/05 15 15
SB-2 20'	5K19002-15	Soil	11/16/05 10:53	11/19/05 15 15
SB-2 30'	5K19002-16	Soil	11/16/05 11:00	11/19/05 15 15
SB-3 5'	5K19002-17	Soil	11/16/05 11.24	11/19/05 15 15
SB-3 10'	5K19002-18	Soil	11/16/05 11 29	11/19/05 15 15
SB-3 20'	5K19002-19	Soil	11/16/05 11:36	11/19/05 15 15
SB-3 30'	5K19002-20	Soil	11/16/05 11.44	11/19/05 15:15
SB-4 5'	5K19002-21	Soil	11/16/05 12:54	11/19/05 15.15
SB-4 10'	5K 19002-22	Soil	11/16/05 12·56	11/19/05 15:15
SB-4 20'	5K19002-23	Soil	11/16/05 13:03	11/19/05 15.15
SB-4 30'	5K19002-24	Soil	11/16/05 13.11	11/19/05 15:15
SB-5 5'	5K19002-25	Soil	11/16/05 13:33	11/19/05 15:15
SB-5 10'	5K19002-26	Soil	11/16/05 13 36	11/19/05 15 15
SB-5 20'	5K19002-27	Soil	11/16/05 13 43	11/19/05 15:15
SB-5 30'	5K19002-28	Soil	11/16/05 13 49	11/19/05 15 15

Project Cotton Draw BLM
Project Number 2005-00237

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported: 11/23/05 17 06

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 5' (5K19002-01) Soil	<u></u>								
Benzene	1.35	0 200	mg/kg dry	200	EK52106	11/21/05	11/22/05	EPA 8021B	
Toluene	8.41	0 200	н	,,	*	17	н	11	
Ethylbenzene	6.39	0 200	17	11	**	"	"	n	
Xylene (p/m)	19.7	0 200	17	н	u		U	и	
Xylene (o)	9.65	0 200	H	н	"	11	"		
Surrogate: a.a,a-Trifluorotoluene		189 %	80-1	20	"	"	"	n,	S-04
Surrogate: 4-Bromofluorobenzene		130 %	80-1	20	n	"	"	"	S-04
Gasoline Range Organics C6-C12	2640	10 0	n	′ 1	EK52115	11/21/05	11/21/05	EPA 8015M	
Diesel Range Organics >C12-C35	7630	10 0	**			"	•	**	
Total Hydrocarbon C6-C35	10300	100	17	н	**	"	"	**	
Surrogate: 1-Chlorooctane		95.2 %	70-1	30	ıı	"	,	"	
Surrogate 1-Chlorooctadecane		172 %	70-1	30	"	"	"	"	S-04
SB-1 15' (5K19002-02) Soil									
Benzene	6.47	0 500	mg/kg dry	500	EK52106	11/21/05	11/22/05	EPA 8021B	
Toluene	36.5	0 500	**	**	"	**	•	ч	
Ethylbenzene	21.7	0 500	**	н	**	*	"	**	
Xylene (p/m)	63.3	0.500	"	"	**	**	н	n	
Xylene (o)	29.8	0 500	н	**			U	œ	
Surrogate. a,a,a-Trifluorotoluene		204 %	80-1	20	"	"	"	"	S-04
Surrogate: 4-Bromofluorobenzene		132 %	80-1	20	"	"	n	"	S-04
Gasoline Range Organics C6-C12	4870	50 0	"	5	EK52115	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	12500	50 0	"	"	**	n	n	н	
Total Hydrocarbon C6-C35	17400	50 0	n	н	11	I)	**	**	
Surrogate: 1-Chlorooctane		33.0 %	70-1	30	"	"	"	"	S-06
Surrogate 1-Chlorooctadecane		52.6 %	70-1	30	"	"	"	"	S-06
SB-1 20' (5K19002-03) Soil									
Benzene	6.21	0 500	mg/kg dry	500	EK52106	11/21/05	11/22/05	EPA 8021B	
Toluene	29.9	0 500	"	**	и		**	н	
Ethylbenzene	17.7	0 500	**	#	"	u	**	**	
Xylene (p/m)	52.9	0 500	**	н	n	**		97	
Xylene (o)	24.0	0.500	ø		11		#	0	
Surrogate: a,a,a-Trifluorotoluene		185 %	80-1	20	"	"	"	"	S-04
Surrogate: 4-Bromofluorobenzene		123 %	80-1	20	"	"	,,	"	S-04
Gasoline Range Organics C6-C12	4250	10 0	u	1	EK52115	11/21/05	11/21/05	EPA 8015M	
Diesel Range Organics >C12-C35	10100	10.0	н	99	**	*	"	e e	
Total Hydrocarbon C6-C35	14400	10 0	*	**		"	u	tt	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project Number. 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported:
11/23/05 17.06

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 20' (5K19002-03) Soil									
Surrogate: 1-Chlorooctane		109 %	70-	130	EK52115	11/21/05	11/21/05	EPA 8015M	
Surrogate. 1-Chlorooctadecane		185 %	70-	130	"	"	"	"	S-0-
SB-1 30' (5K19002-04) Soil									
Benzene	0.0381	0 0250	mg/kg dry	25	EK52106	11/21/05	11/21/05	EPA 8021B	
Toluene	0.367	0.0250	**	"	,,	*	н	11	
Ethylbenzene	0.435	0 0250	,,	н	"	"	,,	"	
Xylene (p/m)	1.44	0 0250	11	н	н	"	н	19	
Xylene (o)	0.784	0 0250	α	,	"		**	"	
Surrogate: a.a.a-Trifluorotoluene		160 %	80-	120	"	"	n	"	S-04
Surrogate: 4-Bromofluorobenzene		120 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	334	10 0	"	1	EK52115	11/21/05	11/21/05	EPA 8015M	
Diesel Range Organics >C12-C35	1730	10.0	u	"	**	**	11	n	
Total Hydrocarbon C6-C35	2060	10 0	**	*	"	*	"	**	
Surrogate: 1-Chlorooctane		85 8 %	70-	130	"	"	,	"	
Surrogate: 1-Chlorooctadecane		119 %	70-	130	"	"	"	"	
SB-1 40' (5K19002-05) Soil									
Benzene	0.0310	0 0250	mg/kg dry	25	EK52106	11/21/05	11/21/05	EPA 8021B	
Toluene	0.282	0 0250	•	u	н	"	u	н	
Ethylbenzene	0.360	0 0250	,	"	н	0	*	•	
Xylene (p/m)	1.20	0 0250	11		•	"		**	
Xylene (o)	0.695	0 0250	*	**		н	0	и	
Surrogate: a,a,a-Trifluorotoluene		150 %	80-	120	"	"	"	"	S-04
Surrogate: 4-Bromofluorobenzene		128 %	80-	120	"	n	"	"	S-04
Gasoline Range Organics C6-C12	217	10 0	n	1	EK52115	11/21/05	11/21/05	EPA 8015M	
Diesel Range Organics >C12-C35	1160	10 0	**	,	н	•	**	н	
Total Hydrocarbon C6-C35	1380	10.0	**	,				n	
Surrogate. 1-Chlorooctane		78.0 %	70-	130	"	,,	"	n	
Surrogate· 1-Chlorooctadecane		102 %	70-	130	,,	"	"	n	

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported:
11/23/05 17 06

Organics by GC Environmental Lab of Texas

	Environmental Lab of Texas										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note		
SB-1 50' (5K19002-06) Soil				Dianol	Daton	1 topated	Mayzed	Wichiou	NOIC		
Benzene	J [0.0245]	0 0250	mg/kg dry	25	EK52106	11/21/05	11/21/05	EPA 8021B			
Toluene	0.249	0 0250	"	"	н	9	#	n			
Ethylbenzene	0.399	0 0250	**	**	,,	*	"	н			
Xylene (p/m)	1.33	0 0250	н		n	u	**	,,			
Xylene (o)	0.754	0.0250		"	и	0	•	ü			
Surrogate: a,a,a-Trifluorotoluene		146 %	80-1	20	,,	"	,	"	S-1		
Surrogate: 4-Bromofluorobenzene		136 %	80-1	20	,,	,,	"	"	S		
Gasoline Range Organics C6-C12	339	10 0	"	1	EK52115	11/21/05	11/21/05	EPA 8015M			
Diesel Range Organics >C12-C35	2080	10 0	17	**	"	11	"	н			
Total Hydrocarbon C6-C35	2420	10 0	*	"			"	н			
Surrogate: 1-Chlorooctane		85.6 %	70-1	30	"	n	"	"			
Surrogate: 1-Chlorooctadecane		123 %	70-1	30	"	"	"	"			
SB-1 60' (5K19002-07) Soil											
Benzene	0.0270	0 0250	mg/kg dry	25	EK52106	11/21/05	11/21/05	EPA 8021B			
Toluene	0.450	0.0250	**		**	**	n	**			
Ethylbenzene	0.592	0 0250	*		**	н	"	**			
Xylene (p/m)	1.80	0 0250	"	"	н	17	"	n			
Xylene (o)	1.07	0.0250	**	**	**	"	н	u			
Surrogate: a,a,a-Trıfluorotoluene		170 %	80-1	20	n	n	"	"	S-		
Surrogate: 4-Bromofluorobenzene		119%	80-1	20	"	"	"	"			
Gasoline Range Organics C6-C12	427	10 0	•	1	EK52115	11/21/05	11/21/05	EPA 8015M			
Diesel Range Organics >C12-C35	2400	100	"	"	**	"	n	н			
Total Hydrocarbon C6-C35	2830	10 0	"	n	n	n	11	n			
Surrogate: 1-Chlorooctane		85.4 %	70-1	30	"	"	"	"			
Surrogate: 1-Chlorooctadecane		129 %	70-1	30	"	"	,,	"			
SB-1 70' (5K19002-08) Soil											
Benzene	ND	0 0250	mg/kg dry	25	EK52106	11/21/05	11/21/05	EPA 8021B			
Toluene	0.170	0 0250	*	•	10	*	**	•			
Ethylbenzene	0.345	0 0250	**		n	"	H	**			
Xylene (p/m)	1.13	0 0250	"	**	n	n	"	**			
Xylene (o)	0.634	0 0250		**	"	n	0	1)			
Surrogate. a,a,a-Trıfluorotoluene		132 %	80-1	20	n	"	"	"	S-(
Surrogate: 4-Bromofluorobenzene		125 %	80-1	20	"	"	ıt	n	S-6		
Gasoline Range Organics C6-C12	252	10.0	**	ı	EK52115	11/21/05	11/21/05	EPA 8015M			
Diesel Range Organics >C12-C35	1530	100	n	*	*	10	•	"			
Total Hydrocarbon C6-C35	1780	100	**	u		10	"	н			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project Cotton Draw BLM

Project Number. 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Reported: 11/23/05 17 06

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
SB-1 70' (5K19002-08) Soil										
Surrogate. 1-Chlorooctane		79.2 %	70-	130	EK52115	11/21/05	11/21/05	EPA 8015M		
Surrogate: 1-Chlorooctadecane		116%	70-	130	"	"	"	"		
SB-1 80' (5K19002-09) Soil				•	_					
Benzene	0.0545	0 0250	mg/kg dry	25	EK52106	11/21/05	11/21/05	EPA 8021B		
Toluene	0.755	0 0250	Ħ		n	**	н	"		
Ethylbenzene	0.927	0 0250	11	"	o		9	11		
Xylene (p/m)	2.72	0 0250	**	"	n	*	n	11		
Xylene (o)	1.49	0 0250	"			"	н	tr		
Surrogate: a,a,a-Trifluorotoluene		165 %	80-	120	"	"	"	"	S-0	
Surrogate 4-Bromofluorobenzene		134 %	80-	120	"	"	"	#	S-0	
Gasoline Range Organics C6-C12	473	100	н	1	EK52115	11/21/05	11/22/05	EPA 8015M		
Diesel Range Organics >C12-C35	2290	100	w	,,		Ħ	**	H		
Total Hydrocarbon C6-C35	2760	10.0	11	"	**	"	n	н		
Surrogate: 1-Chlorooctane		88.8 %	70-	130	"	"	,,	n n		
Surrogate: 1-Chlorooctadecane		129 %	70-	130	"	"	"	"		
SB-1 90' (5K19002-10) Soil										
Benzene	ND	0 0250	mg/kg dry	25	EK52106	11/21/05	11/21/05	EPA 8021B		
Toluene	0.264	0 0250	**	н	0		**	**		
Ethylbenzene	0.383	0.0250	**	*	**	n	17	н		
Xylene (p/m)	1.27	0 0250	н	n	"	11	II.	v		
Xylene (o)	0.701	0 0250	**	"		11		н		
Surrogate a.a.a-Trifluorotoluene		152 %	80-	120	n	"	"	"	S-0	
Surrogate: 4-Bromofluorobenzene		130 %	80-	120	"	n	n	,,	S-0	
Gasoline Range Organics C6-C12	233	10 0	**	1	EK52115	11/21/05	11/22/05	EPA 8015M		
Diesel Range Organics >C12-C35	1520	10 0	v	,	**	и	9	н		
Total Hydrocarbon C6-C35	1750	10 0	"	n	н	"		•		
Surrogate: 1-Chlorooctane		80.8 %	70-	130	"	"	"	"		
Surrogate. 1-Chlorooctadecane		110%	70-	130	,,	rr .	"	"		

Project Number 2005-00237
Project Manager Daniel Bryant

Fax. (432) 687-4914

Reported:
11/23/05 17:06

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dil	Dar-t	Draw J	A 1	Mash - 4	Mar
SB-1 100' (5K19002-11) Soil	Kesuit	Liinit	Oints	Dilution	Batch	Prepared	Analyzed	Method	Note
	310	0.0250	mo/h 1	2.5	FVECTOR	11/21/27	11/01/04	EPA 8021B	
Benzene	ND a agaa	0 0250	mg/kg dry	25	EK52106	11/21/05	11/21/05	EPA 8021B	
Toluene	0.0800	0 0250			*	H	*		
Ethylbenzene Verken (a far)	0.145	0 0250		,,				,	
Xylene (p/m)	0.524	0.0250					"	н	
Xylene (o)	0.249	0 0250				<u> </u>			
Surrogate: a,a,a-Trifluorotoluene		112 %	80-1		"	"	"	u .	
Surrogate: 4-Bromofluorobenzene		87.5 %	80-1	20	v	"	"	,,	
Gasoline Range Organics C6-C12	146	10 0	н	1	EK52115	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	1200	100	,,	"	"	"	,		
Total Hydrocarbon C6-C35	1350	100		"	***		"		
Surrogate: 1-Chlorooctane		79.4 %	70-1		"	"	#	n	
Surrogate. 1-Chlorooctadecane		111%	70-1	30	"	"	"	n	
SB-1 110' (5K19002-12) Soil						· · · - · ·			
Benzene	ND	0 0250	mg/kg dry	25	EK52106	11/21/05	11/21/05	EPA 8021B	
Toluene	0.0397	0.0250					σ	н	
Ethylbenzene	0.103	0 0250	Ħ		n			11	
Xylene (p/m)	0.346	0 0250	n			··	н	#	
Xylene (o)	0.169	0 0250	u		u	19	•	н	
Surrogate: a.a.a-Trifluorotoluene		98.8 %	80-1	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		810%	80-1	20	"	"	"	,,	
Gasoline Range Organics C6-C12	165	10 0	n	1	EK52115	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	1470	10.0	**		u	н	*	o o	
Total Hydrocarbon C6-C35	1640	10 0	н		н	"	n	n	
Surrogate. 1-Chlorooctane		81.2 %	70-1	30	"	11	n n	и	
Surrogate: 1-Chlorooctadecane		113%	70-1	30	"	"	"	rr .	
SB-2 5' (5K19002-13) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EK 52106	11/21/05	11/21/05	EPA 8021B	
Toluene	ND	0 0250	11	н	"	,,	n	**	
Ethylbenzene	ND	0.0250	n		"	n	н	n	
Xylene (p/m)	ND	0 0250		**		**	"	n	
Xylene (o)	ND	0 0250	17	**	"	*	**	17	
Surrogate: a,a,a-Trifluorotoluene		104 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-1		"	"	"	"	
Gasoline Range Organics C6-C12	ND	100	ч	1	EK52115	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	н	**	**	H		9	
Total Hydrocarbon C6-C35	ND	10 0	•	**			н		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project Cotton Draw BLM
Project Number 2005-00237

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported: 11/23/05 17 06

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
\$B-2 5' (5K19002-13) Soil				Ditution	- Baten	Trepared	Anayzed	Wethod	
Surrogate. 1-Chlorooctane		71.8 %	70-	130	EK52115	11/21/05	11/22/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		73.0 %	70-	130	"	"	n	n	
SB-2 10' (5K19002-14) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EK52106	11/21/05	11/21/05	EPA 8021B	
Toluene	J [0.0141]	0 0250	"	"	u	**	"	п	
Ethylbenzene	ND	0.0250	**	H	"	H	*	•	
Xylene (p/m)	0.0278	0 0250	,	**	"	4	н	н	
Xylene (o)	ND	0 0250	н	"	H	19	и	н	
Surrogate: a,a,a-Trifluorotoluene		102 %	80-	120	"	"	n n	n .	
Surrogate: 4-Bromofluorobenzene		83.5 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	100	н	1	EK52115	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	**	•		11	er .	u	
Total Hydrocarbon C6-C35	ND	10 0	**	**	**	н	0	н	
Surrogate. 1-Chlorooctane		74.4 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		76.6 %	70-	130	"	"	"	n	
SB-2 20' (5K19002-15) Soil									_
Benzene	ND	0 0250	mg/kg dry	25	EK52106	11/21/05	11/21/05	EPA 8021B	
Toluene	ND	0 0250	"	11	"	"	n		
Ethylbenzene	ND	0 0250	н	er er	"	H	н	10	
Xylene (p/m)	ND	0 0250		**	**	u	n	н	
Xylene (o)	ND	0 0250	**	10	**	Ħ	0	н	
Surrogate a,a,a-Trifluorotoluene	-	102 %	80-	120	n	"	"	n	
Surrogate 4-Bromofluorobenzene		85.5 %	80-	120	"	"	"	"	*
Gasoline Range Organics C6-C12	ND	10 0	*	1	EK52115	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	**		n		"	¥f	
Total Hydrocarbon C6-C35	ND	10 0	"	н		"	н	10	
Surrogate 1-Chlorooctane		74.8 %	70-	130	n	"	"	"	
Surrogate: 1-Chlorooctadecane		766%	70-	130	,	"	"	"	

Project Number 2005-00237
Project Manager. Daniel Bryant

Fax (432) 687-4914

Reported:
11/23/05 17 06

Organics by GC Environmental Lab of Texas

Analyte	D aguilé	Reporting	Lleven	D.7	6 : 1				
Analyte Sh 2 201 (51/10002 16) Seit	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-2 30' (5K19002-16) Soil					~				
Benzene	ND	0 0250	mg/kg dry	25	EK52106	11/21/05	11/22/05	EPA 8021B	
Toluene	ND	0 0250	"	*	"	"	"	29	
Ethylbenzene	ND	0 0250		н	"	"	n	н	
Xylene (p/m)	ND	0 0250	**	**		Ħ	**	"	
Xylene (o)	ND	0 0250	"	H		н	*	и	
Surrogate: a,a,a-Trifluorotoluene		99 5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.9 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	11	1	EK52115	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	•		n	n	n	
Total Hydrocarbon C6-C35	ND	10 0	"	**		"	**	n	
Surrogate. 1-Chlorooctane		72.6 %	70-1	30	"	и	"	"	
Surrogate: 1-Chlorooctadecane		72.0 %	70-1	30	"	"	"	"	
SB-3 5' (5K19002-17) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EK52106	11/21/05	11/22/05	EPA 8021B	
Toluene	ND	0 0250	"	н	"	"	н	н	
Ethylbenzene	ND	0 0250	н	*	н	*		u	
Xylene (p/m)	ND	0 0250	н	**	**	**	"	•	
Xylene (o)	ND	0 0250	n	"	"	,,	•	**	
Surrogate a.a,a-Trifluorotoluene		96.1 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90 3 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	н	1	EK52115	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	*		"	•	n		
Total Hydrocarbon C6-C35	ND	10 0	"		u	n		**	
Surrogate: 1-Chlorooctane		72 6 %	70-1	30	"	"	"	u u	
Surrogate 1-Chlorooctadecane		760%	70-1	30	"	n	"	"	
SB-3 10' (5K19002-18) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EK52106	11/21/05	11/22/05	EPA 8021B	
Toluene	ND	0 0250	н	"	*	*	"	n	
Ethylbenzene	ND	0 0250	**	,	"	"	,	D.	
Xylene (p/m)	ND	0 0250	"		н	19	н	•	
Xylene (o)	ND	0 0250	"	"	n	н	Ħ	17	
Surrogate. a,a,a-Trifluorotoluene		99.8 %	80-1	20	n	"	n	n	
Surrogate: 4-Bromofluorobenzene		82.8 %	80-1		n	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	**	1	EK52115	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	"	"	н	"	н	u	
Total Hydrocarbon C6-C35	ND	10 0			н				

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project Cotton Draw BLM 2005-00237

Project Number 2005-00237 Project Manager Daniel Bryant Fax: (432) 687-4914

Reported: 11/23/05 17:06

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Annhyzed	Method	Note
SB-3 10' (5K19002-18) Soil	Kosuji	Limit (Onita	Dilution	Daten	rrepared	Analyzed	метноп	Note
Surrogate. 1-Chlorooctane		73.6 %	70-	130	EK52115	11/21/05	11/22/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		77.2 %		130	"	"	"	"	
SB-3 20' (5K19002-19) Soil									*****
Benzene	ND	0 0250	mg/kg dry	25	EK52106	11/21/05	11/22/05	EPA 8021B	
Toluene	ND	0 0250	"	Ħ	**	19	n	н	
Ethylbenzene	ND	0 0250	"	**	**	н	a		
Xylene (p/m)	ND	0 0250	n	н	н	**	*	н	
Xylene (o)	ND	0.0250	Ħ	n	**	17	•	н	
Surrogate a,a,a-Trifluorotoluene		96.8 %	80-	120	n	"	n	"	
Surrogate. 4-Bromofluorobenzene		84 1 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	н	i	EK52115	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	100	v	,,	"	"	"	n	
Total Hydrocarbon C6-C35	ND	100	**	н	•		**		
Surrogate: 1-Chlorooctane		746%	70-	130	п	"	"	r ·	
Surrogate. 1-Chlorooctadecane		78.0 %	70-	130	"	n	"	77	
SB-3 30' (5K19002-20) Soil	_								
Benzene	ND	0 0250	mg/kg dry	25	EK52106	11/21/05	11/22/05	EPA 8021B	
Toluene	ND	0 0250	n	"	,	u	**	н	
Ethylbenzene	ND	0 0250	11	**	**		•	n	
Xylene (p/m)	ND	0.0250	"	н	**		•	o	
Xylene (o)	ND	0 0250	п	n	н	11		н	
Surrogate: a,a,a-Trifluorotoluene		. 95.9 %	80-	120	"	,,	"	n	
Surrogate: 4-Bromofluorobenzene		89.3 %	80-	120	"	,,	"	"	
Gasoline Range Organics C6-C12	ND	10.0	"	1	EK 52115	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	.,	"	n	**	н	
Total Hydrocarbon C6-C35	ND	10.0	н		n	"	"	v	
Surrogate: 1-Chlorooctane		708%	70-	130	"	"	"	n .	~
Surrogate. 1-Chlorooctadecane		70.4 %	70-	130	,,	"	n	n	

Project Cotton Draw BLM Project Number 2005-00237

Project Manager Daniel Bryant

Fax (432) 687-4914

Reported: 11/23/05 17 06

Organics by GC **Environmental Lab of Texas**

^		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-4 5' (5K19002-21) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EK52202	11/22/05	11/22/05	EPA 8021B	
Toluene	ND	0 0250		u		**	*	"	
Ethylbenzene	ND	0 0250	н	н	11	"	n	н	
Xylene (p/m)	ND	0 0250	**	•	н	"	,,	•	
Xylene (o)	ND	0.0250	"	u	"	•	•	u	
Surrogate: a,a,a-Trifluorotoluene		100 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.5 %	80-1	20	n	n	"	"	
Gasoline Range Organics C6-C12	ND	10 0	"	1	EK52116	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	100	"	"	•	n	**	n	
Total Hydrocarbon C6-C35	ND	100	н		**	11	"	**	
Surrogate: 1-Chlorooctane		71.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		75.8 %	70-1	30	n	"	n	u	
SB-4 10' (5K19002-22) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EK52202	11/22/05	11/22/05	EPA 8021B	
Toluene	ND	0.0250	•	н	н	н	n	**	
Ethylbenzene	ND	0.0250	•	"	**	"	"	n	
Xylene (p/m)	ND	0 0250	"	"	**	н	**	W.	
Xylene (o)	ND	0 0250	**	n	"	*	**	TF.	
Surrogate: a,a,a-Trifluorotoluene		99.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.8 %	80-1	20	,,	n	"	n	
Gasoline Range Organics C6-C12	ND	10 0	**	1	EK52116	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	#	*	н		**	11	
Total Hydrocarbon C6-C35	ND	10 0	*	**	"	11	N	11	
Surrogate: 1-Chlorooctane		70.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		72.4 %	70-1	30	11	"	n	"	
SB-4 20' (5K19002-23) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EK52202	11/22/05	11/22/05	EPA 8021B	
Toluene	ND	0 0250	*	**	**	•	н	v	
Ethylbenzene	ND	0 0250	и	**	**		"	11	
Xylene (p/m)	ND	0 0250	**	**	n	н	n	**	
Xylene (o)	ND	0 0250	**	н		**	н		
Surrogate: a,a,a-Trifluorotoluene		99.5 %	80-1	20	"	"	"	"	
Surrogate 4-Bromofluorobenzene		84.5 %	80-1	20	n	"	n	n	
Gasoline Range Organics C6-C12	ND	10 0	*	1	EK52116	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	19	**	,,	•	H	н	
Total Hydrocarbon C6-C35	ND	10 0	11			"	н	*	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project Number. Cotton Draw BLM
Project Number. 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported:
11/23/05 17 06

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 20' (5K19002-23) Soil	····								
Surrogate 1-Chlorooctane		74.0 %	70-	130	EK52116	11/21/05	11/22/05	EPA 8015M	
Surrogate 1-Chlorooctadecane		748%	70-	130	**	"	"	"	
SB-4 30' (5K19002-24) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EK 52202	11/22/05	11/22/05	EPA 8021B	
Toluene	ND	0 0250	"	w		•	**	17	
Ethylbenzene	ND	0 0250	"	*	Ħ	**	u	n	
Xylene (p/m)	ND	0.0250	"	•	"	"	"	n	
Xylene (o)	ND	0 0250	"		11	n	n	н	
Surrogate: a,a,a-Trifluorotoluene		91.0 %	80-	120	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		80.5 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	"	1	EK52116	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	*	,	•	."	n	n	
Total Hydrocarbon C6-C35	ND	10 0	**	**	**		o	n	
Surrogate: 1-Chlorooctane		71.4%	70-	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		70.4 %	70-	130	"	n	**	"	
SB-5 5' (5K19002-25) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EK52202	11/22/05	11/22/05	EPA 8021B	
Toluene	ND	0 0250	н	**	•	*	•	**	
Ethylbenzene	ND	0 0250	,	"	12	n	,,	Ħ	
Xylene (p/m)	ND	0 0250	*	"			**	v	
Xylene (o)	ND	0.0250	n	н	**	11	,	**	
Surrogate: a,a,a-Trifluorotoluene		101 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.6 %	80-	120	"	,,	"	"	
Gasoline Range Organics C6-C12	ND	10 0	u	1	EK52116	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	100	"	н	n	"	"	n	
Total Hydrocarbon C6-C35	ND	100	н	"	н	•	*	**	
Surrogate: 1-Chlorooctane		71.8 %	70-	130	n	"	"	"	
Surrogate 1-Chlorooctadecane		75 0 %	70-	130	"	"	,,	"	

Project. Cotton Draw BLM Project Number 2005-00237 Project Manager Daniel Bryant

Fax (432) 687-4914 Reported:

11/23/05 17 06

Organics by GC **Environmental Lab of Texas**

Analyte 0		Reporting	** *						
- Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-5 10' (5K19002-26) Soil		· · · · · · · · · · · · · · · · · · ·				· · · · · ·			
Benzene	ND	0 0250	mg/kg dry	25	EK52202	11/22/05	11/23/05	EPA 8021B	
Toluene	ND	0 0250	п		*	**	*	u	
Ethylbenzene	ND	0 0250	n	**	"	**	v	"	
Xylene (p/m)	ND	0.0250	n	o	"	"	"	v	
Xylene (o)	ND	0.0250	**	н	"	*	"	**	
Surrogate: a.a.a-Trifluorotoluene		100 %	80-	20	"	,,	"	"	
Surrogate: 4-Bromofluorobenzene		80 7 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	"	1	EK52116	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	100	#	#	*		н	17	
Total Hydrocarbon C6-C35	ND	10 0	н	н	**	*	н	**	
Surrogate: 1-Chlorooctane		73 6 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		71.0 %	70-1	30	u	"	"	"	
SB-5 20' (5K19002-27) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EK52202	11/22/05	11/22/05	EPA 8021B	
Toluene	ND	0 0250		"	**	**	11	**	
Ethylbenzene	ND	0.0250	**	**	,,	#	#	**	
Xylene (p/m)	ND	0 0250	*		**	н	н	v	
Xylene (o)	ND	0 0250	"	и	*	u	**	**	
Surrogate: a,a,a-Trifluorotoluene		105 %	80-1	20	"	"	n n	n	
Surrogate: 4-Bromofluorobenzene		90.3 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	100	**	1	EK52116	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	*	•	n	17	#	"	
Total Hydrocarbon C6-C35	ND	10 0	n	"	Ħ	n	н	**	
Surrogate: 1-Chlorooctane		70.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		74.2 %	70-1	30	"	"	"	"	
SB-5 30' (5K19002-28) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EK52202	11/22/05	11/22/05	EPA 8021B	
Toluene	ND	0 0250	,	o	п	n	"	н	
Ethylbenzene	ND	0.0250	**	"	**	н	4	Ħ	
Xylene (p/m)	ND	0 0250	**	,		H	**	n	
Xylene (o)	ND	0 0250	u	н	"			•	
Surrogate a,a,a-Trifluorotoluene		99.3 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.4 %	80-1	20	"	"	n	"	
Gasoline Range Organics C6-C12	ND	10.0	#	1	EK52116	11/21/05	11/22/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	100	n	**	"	•		и	
Total Hydrocarbon C6-C35	ND	10 0	u		н	*		н	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported:
11/23/05 17 06

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units Di	lution Batch	Prepared	Analyzed	Method	Notes
SB-5 30' (5K19002-28) Soil			·					
Surrogate. 1-Chlorooctane		80.4 %	70-130	EK52116	11/21/05	11/22/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		83.2 %	70-130	"	n	"	n	

Project Cotton Draw BLM Project Number 2005-00237

Project Manager Daniel Bryant

Fax (432) 687-4914 Reported: 11/23/05 17 06

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 5' (5K19002-01) Soil						11161111			
% Moisture	4.7	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-1 15' (5K19002-02) Soil									
% Moisture	5.8	0.1	%	1	EK 52205	11/21/05	11/22/05	% calculation	
SB-1 20' (5K19002-03) Soil									
Chloride	32.6	5 00	mg/kg	10	EK52314	11/22/05	11/23/05	EPA 300 0	
% Moisture	4.4	0 1	%	1	EK 52205	11/21/05	11/22/05	% calculation	
SB-1 30' (5K19002-04) Soil									
% Moisture	3.0	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-1 40' (5K19002-05) Soil									
% Moisture	8.7	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-1 50' (5K19002-06) Soil									
% Moisture	4.6	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-1 60' (5K19002-07) Soil									
% Moisture	1.6	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-1 70' (5K19002-08) Soil									
% Moisture	0.7	0 1	%	1	EK 52205	11/21/05	11/22/05	% calculation	
SB-1 80' (5K19002-09) Soil									
% Moisture	1.7	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-1 90' (5K19002-10) Soil									
% Moisture	5.4	0 1	%	1	EK 52205	11/21/05	11/22/05	% calculation	

Project Cotton Draw BLM

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported:
11/23/05 17 06

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 100' (5K19002-11) Soil									
% Moisture	4.0	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-1 110' (5K19002-12) Soil									
% Moisture	3.5	0 1	%	1	EK 52205	11/21/05	11/22/05	% calculation	
SB-2 5' (5K19002-13) Soil									
% Moisture	4.2	0 1	%	ì	EK52205	11/21/05	11/22/05	% calculation	
SB-2 10' (5K19002-14) Soil									
% Moisture	4.5	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-2 20' (5K19002-15) Soil					_				_
% Moisture	3.1	0 1	%	ī	EK52205	11/21/05	11/22/05	% calculation	
SB-2 30' (5K19002-16) Soil									
% Moisture	2.2	0.1	%	1	EK 52205	11/21/05	11/22/05	% calculation	
SB-3 5' (5K19002-17) Soil									_
% Moisture	2.6	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-3 10' (5K19002-18) Soil						`			_
% Moisture	2.0	0.1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-3 20' (5K19002-19) Soil									
% Moisture	2.3	0 1	%	1	EK 52205	11/21/05	11/22/05	% calculation	
SB-3 30' (5K19002-20) Soil									
% Moisture	2.9	0.1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-4 5' (5K19002-21) Soil									_
% Moisture	3.6	0.1	%	1	EK52205	11/21/05	11/22/05	% calculation	

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Reported: 11/23/05 17:06

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 10' (5K19002-22) Soil									
% Moisture	4.4	0 1	%	ì	EK52205	11/21/05	11/22/05	% calculation	
SB-4 20' (5K19002-23) Soil									
% Moisture	4.6	0 1	%	1	EK 52205	11/21/05	11/22/05	% calculation	
SB-4 30' (5K19002-24) Soil									
% Moisture	2.6	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-5 5' (5K19002-25) Soil									_
% Moisture	2.7	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-5 10' (5K19002-26) Soil									
% Moisture	4.5	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-5 20' (5K19002-27) Soil									
% Moisture	5.7	0 1	%	1	EK52205	11/21/05	11/22/05	% calculation	
SB-5 30' (5K19002-28) Soil									_
% Moisture	3.2	0 1	%	1	EK 52205	11/21/05	11/22/05	% calculation	

Project Number 2005-00237
Project Manager Daniel Bryant

Fax: (432) 687-4914

Reported:
11/23/05 17:06

Reported: 11/23/05 17:06

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK52106 - EPA 5030C (GC)										
Blank (EK52106-BLK1)				Prepared	11/21/05	Analyzed	11/22/05			
Benzene	ND	0 0250	mg/kg wet							
Foluene	ND	0.0250	н							
Ethylbenzene	ND	0.0250	*							
Xylene (p/m)	ND	0.0250	**							
Xylene (o)	ND	0 0250	**							
Surrogate a,a,a-Trifluorotoluene	0 0391		"	0 0400		978	80-120			
Eurrogate 4-Bromofluorobenzene	0.0365		"	0 0400		912	80-120			
.CS (EK52106-BS1)				Prepared.	11/21/05	Analyzed	11/22/05			
Benzene	0 0496	0 00100	mg/kg wet	0 0500	· ·	99 2	80-120			
Toluene	0 0552	0 00100	"	0 0500		110	80-120			
Ethylbenzene	0 0563	0.00100	"	0 0500		113	80-120			
Xylene (p/m)	0 104	0 00100	"	0 100		104	80-120			
Xylene (o)	0 0553	0 00100	•	0 0500		111	80-120			
Surrogate a.a,a-Trifluorotoluene	0.0445		n	0.0400		111	80-120			
Surrogate 4-Bromofluorobenzene	0 0353		"	0 0400		88 3	80-120			
Calibration Check (EK52106-CCV1)				Prepared	11/21/05	Analyzed	11/22/05			
Benzene	49 3		ug/kg	50 0		98 6	80-120			
Toluene	55.5		**	50 0		111	80-120			
Ethylbenzene	57 2		"	50,0		114	80-120			
Xylene (p/m)	105		"	100		105	80-120			
Xylene (o)	56.3		n	50 0		113	80-120			
Surrogate a,a,a-Trifluorotoluene	0 0438		mg/kg wet	0 0400		110	80-120			
Surrogate 4-Bromoftuorobenzene	0 0367		"	0 0400		918	80-120			
Matrix Spike (EK52106-MS1)	Sou	rce: 5K19002	2-13	Prepared	11/21/05	Analyzed	11/22/05			
Benzene	1 28	0 0250	mg/kg dry	1 30	ND	98 5	80-120			
Foluene	1 42	0 0250	*	1 30	ND	109	80-120			
Ethylbenzene	1 40	0.0250	"	1 30	ND	108	80-120			
Xylene (p/m)	2 56	0 0250	н	2 61	ND	98 1	80-120			
Xylene (o)	1 39	0 0250	н	1 30	ND	107	80-120			
Surrogate a,a,a-Trifluorotoluene	0 0415		"	0 0 418		99 3	80-120			
Surrogate 4-Bromofluorobenzene	0 0402		"	0 0418		96 2	80-120			

Project Cotton Draw BLM

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported: 11/23/05 17 06

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Kesuit	Limit	Omis	Pevel	Kesuit	70NEC	Linuis	KFU	Limit	INOTES
Batch EK52106 - EPA 5030C (GC)										
Matrix Spike Dup (EK52106-MSD1)	Sou	rce: 5K19002	2-13	Prepared 1	11/21/05 Ai	nalyzed 11	/22/05			
Benzene	1.27	0 0250	mg/kg dry	1 30	ND	97 7	80-120	0 815	20	
Toluene	1 39	0 0250	*	1 30	ND	107	80-120	1 85	20	
Ethylbenzene	1 35	0.0250	**	1.30	ND	104	80-120	3 77	20	
Xylene (p/m)	2 48	0 0250	· ·	2 61	ND	95 0	80-120	3 21	20	
Xylene (o)	1 35	0 0250	"	1 30	ND	104	80-120	2 84	20	
Surrogate a,a,a-Trifluorotoluene	0 0413		"	0.0418		98 8	80-120			
Surrogate: 4-Bromofluorobenzene	0 0372		"	0 0418		89.0	80-120			
Batch EK52115 - Solvent Extraction (GC)										
Blank (EK52115-BLK1)				Prepared &	z Analyzed	11/21/05				
Gasoline Range Organics C6-C12	ND	100	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10 0	"							
Total Hydrocarbon C6-C35	ND	10 0	11							
Surrogate 1-Chlorooctane	37.8		mg/kg	50 0		75 6	70-130			
Surrogate 1-Chlorooctadecane	38 2		"	50 0		76 4	70-130			
LCS (EK52115-BS1)				Prepared &	z Analyzed	11/21/05				
Gasoline Range Organics C6-C12	397	10 0	mg/kg wet	500		79 4	75-125			
Diesel Range Organics >C12-C35	560	100	н	500		112	75-125			
Total Hydrocarbon C6-C35	957	100	н	1000		95 7	75-125			
Surrogate 1-Chlorooctane	42 2		mg/kg	50 0		84 4	70-130			
Surrogate: 1-Chlorooctadecane	38 9		n	50 0		77 8	70-130			
Calibration Check (EK52115-CCV1)				Prepared 1	11/21/05 Aı	nalyzed 11	/22/05			
Gasoline Range Organics C6-C12	427		mg/kg	500		85 4	80-120			
Diesel Range Organics >C12-C35	500		0	500		100	80-120			
Total Hydrocarbon C6-C35	927		**	1000		92 7	80-120			
Surrogate 1-Chlorooctane	42 0		,	50 0		840	70-130			
Surrogate 1-Chlorooctadecane	37 2		"	50.0		74.4	70-130			

Project Number Cotton Draw BLM 2005-00237

Project Manager Daniel Bryant

Fax (432) 687-4914

Reported: 11/23/05 17:06

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK52115 - Solvent Extraction (GC)										
Matrix Spike (EK52115-MS1)	Sou	ce: 5K19002	2-13	Prepared &	k Analyzed	11/21/05				
Gasoline Range Organics C6-C12	408	10 0	mg/kg dry	522	ND	78 2	75-125			
Diesel Range Organics >C12-C35	584	100	n	522	ND	112	75-125			
Total Hydrocarbon C6-C35	992	100	n	1040	ND	95 4	75-125			
Surrogate 1-Chlorooctane	45 8		mg/kg	50 0		916	70-130			
Surrogate, 1-Chlorooctadecane	41.8		"	50.0		83 6	70-130			
Matrix Spike Dup (EK52115-MSD1)	Sour	ce: 5K19002	2-13	Prepared &	k Analyzed	11/21/05				
Gasoline Range Organics C6-C12	402	100	mg/kg dry	522	ND	77.0	75-125	1 48	20	
Diesel Range Organics >C12-C35	582	100	н	522	ND	111	75-125	0 343	20	
Total Hydrocarbon C6-C35	984	10 0	•	1040	ND	94.6	75-125	0 810	20	
Surrogate 1-Chlorooctane	448		mg/kg	50.0		89 6	70-130			
Surrogate 1-Chlorooctadecane	40 7		"	50.0		81.4	70-130			
Batch EK52116 - Solvent Extraction (GC)										
Blank (EK52116-BLK1)		_		Prepared 1	11/21/05 Aı	nalyzed 11	/22/05			
Gasoline Range Organics C6-C12	ND	10 0	mg/kg wet	They are a						
Diesel Range Organics >C12-C35	ND	10.0	"							
Dieser Ruige Oigaines - C14-C33										
	ND	100	**							
Total Hydrocarbon C6-C35	ND 38 2	10 0	mg/kg	50 0		76.4	70-130			
Total Hydrocarbon C6-C35 Surrogate. 1-Chlorooctane		100		50 0 50 0		76 4 77 6	70-130 70-130			
Total Hydrocarbon C6-C35 Surrogate. I-Chlorooctane Surrogate I-Chlorooctadecane LCS (EK52116-BS1)	38 2	10 0	mg/kg	50 0	11/21/05 Ai	77 6	70-130			
Total Hydrocarbon C6-C35 Surrogate. 1-Chlorooctane Surrogate. 1-Chlorooctadecane	38 2	10 0	mg/kg	50 0	11/21/05 Ai	77 6	70-130			
Total Hydrocarbon C6-C35 Surrogate. 1-Chlorooctane Surrogate 1-Chlorooctadecane LCS (EK52116-BS1)	38 2 38 8		mg/kg "	50 0 Prepared	11/21/05 Ai	77 6 nalyzed. 11	70-130 /22/05			
Total Hydrocarbon C6-C35 Surrogate. 1-Chlorooctane Surrogate 1-Chlorooctadecane LCS (EK52116-BS1) Gasoline Range Organics C6-C12	38 2 38 8 447	10 0	mg/kg " mg/kg wet	50 0 Prepared 1 500	11/21/05 A	77 6 nalyzed. 11 89 4	70-130 /22/05 75-125			·*·
Total Hydrocarbon C6-C35 Surrogate. 1-Chlorooctane Surrogate 1-Chlorooctadecane LCS (EK52116-BS1) Gasoline Range Organics C6-C12 Diesel Range Organics >C12-C35	38 2 38 8 447 516	10 0 10 0	mg/kg " mg/kg wet	50 0 Prepared 1 500 500	11/21/05 Ai	77 6 nalyzed. 11 89 4 103	70-130 /22/05 75-125 75-125			

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported: 11/23/05 17.06

Analyse	D 1:	Reporting	F1 ·	Spike	Source		%REC	DDD	RPD Lumit	X 1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Lımit	Notes
Batch EK52116 - Solvent Extraction (GC)										
Calibration Check (EK52116-CCV1)				Prepared	11/21/05	Analyzed	11/22/05			¯
Gasoline Range Organics C6-C12	426		mg/kg	500		85 2	80-120			
Diesel Range Organics >C12-C35	572		**	500		114	80-120			
Total Hydrocarbon C6-C35	998		#	1000		99.8	80-120			
Surrogate 1-Chlorooctane	52 5		,,	50 0		105	70-130			
Surrogate 1-Chlorooctadecane	49 6		"	50.0		99 2	70-130			
Matrix Spike (EK52116-MS1)	Sour	rce: 5K19002	-21	Prepared	11/21/05	Analyzed	11/22/05			
Gasoline Range Organics C6-C12	406	100	mg/kg dry	519	ND	78 2	75-125			
Diesel Range Organics >C12-C35	561	100	9	519	ND	108	75-125			
Total Hydrocarbon C6-C35	967	10 0	9	1040	ND	93 0	75-125			
Surrogate 1-Chlorooctane	49.0		mg/kg	50 0		98 0	70-130			
Surrogate 1-Chlorooctadecane	438		"	50 0		876	70-130			
Matrix Spike Dup (EK52116-MSD1)	Sour	rce: 5K19002	`-21	Prepared	11/21/05	Analyzed	11/22/05			
Gasoline Range Organics C6-C12	415	100	mg/kg dry	519	ND	80 0	75-125	2 19	20	
Diesel Range Organics >C12-C35	561	100	"	519	ND	108	75-125	0 00	20	
Total Hydrocarbon C6-C35	976	100	"	1040	ND	93.8	75-125	0 926	20	
Surrogate I-Chlorooctane	45.9		mg/kg	50.0		91.8	70-130			
Surrogate 1-Chlorooctadecane	46 1		"	50 0		92 2	70-130			
Batch EK52202 - EPA 5030C (GC)										
Blank (EK52202-BLK1)				Prepared.	11/22/05	Analyzed	11/23/05			
Benzene	ND	0 0250	mg/kg wet							
Toluene	ND	0 0250	**							
Ethylbenzene	ND	0 0250	**							
Kylene (p/m)	ND	0 0250	**							
Kylene (o)	ND	0 0250	*							
Surrogate a,a,a-Trifluorotoluene	0 0396		"	0 0400		99 0	80-120		<u> </u>	
Surrogate 4-Bromofluorobenzene	0 0349		"	0 0400		87.2	80-120			

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported: 11/23/05 17 06

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK52202 - EPA 5030C (GC)										
LCS (EK52202-BS1)				Prepared &	Analyzed	11/22/05				
Benzene	0.0492	0 00100	mg/kg wet	0.0500		98.4	80-120			
Toluene	0 0553	0 00100	*	0 0500		111	80-120			
Ethylbenzene	0 0548	0 00100	**	0 0500		110	80-120			
Xylene (p/m)	0 102	0 00100	"	0 100		102	80-120			
Xylene (o)	0 0549	0.00100	11	0 0500		110	80-120			
Surrogate a.a.a-Trifluorotoluene	0 0 438		,,	0 0400		110	80-120			
Surrogate. 4-Bromofluorobenzene	0 0363		"	0 0400		90 8	80-120			
Calibration Check (EK52202-CCV1)				Prepared 1	1/22/05 Ai	nalyzed 11	/23/05			
Benzene	47 0		ug/kg	50 0		94 0	80-120			
Toluene	52 2		"	50 0		104	80-120			
Ethylbenzene	53 6		"	50 0		107	80-120			
Xylene (p/m)	101			100		101	80-120			
Xylene (o)	53 6		*	50 0		107	80-120			
Surrogate a,a,a-Trifluorotoluene	0 0421		mg/kg wet	0 0400		105	80-120			-1
Surrogate 4-Bromofluorobenzene	0 0397		,,	0.0400		99.3	80-120			
Matrix Spike (EK52202-MS1)	Sou	rce: 5K19002	2-23	Prepared &	Analyzed	11/22/05				
Benzene	1 30	0 0250	mg/kg dry	1.31	ND	99 2	80-120			
Toluene	1.40	0 0250	"	1 31	ND	107	80-120			
Ethylbenzene	1 40	0 0250	"	1 31	ND	107	80-120			
Xylene (p/m)	2 60	0 0250	n	2 62	ND	99 2	80-120			
Xylene (o)	1 40	0.0250	n	1 31	ND	107	80-120			
Surrogate a.a,a-Trifluorotoluene	0 0410		"	0.0419		979	80-120			
Surrogate 4-Bromofluorobenzene	0 0395		"	0 0419		943	80-120			
Matrix Spike Dup (EK52202-MSD1)	Sou	rce: 5K19002	2-23	Prepared &	Analyzed	11/22/05				
Benzene	1 27	0 0250	mg/kg dry	1.31	ND	96 9	80-120	2 35	20	
Toluene	1 43	0 0250	**	1 31	ND	109	80-120	1 85	20	
Ethylbenzene	1 43	0 0250	17	1 31	ND	109	80-120	1 85	20	
Xylene (p/m)	2.63	0 0250	**	2 62	ND	100	80-120	0 803	20	
Xylene (o)	1 42	0 0250	"	1 31	ND	108	80-120	0 930	20	
Surrogate a,a,a-Trifluorotoluene	0 0433		n	0 0419		103	80-120			
Surrogate 4-Bromofluorobenzene	0 0400		"	0 0419		95.5	80-120			

Project Cotton Draw BLM
Project Number 2005-00237

Fax (432) 687-4914

Reported:

11/23/05 17:06

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Project Manager Daniel Bryant

		Reporting		Spike	Source	e	%REC		RPD	
Analyte	Result	Limit	Units	Level	Resul	t %REG	C Limits	RPD	Limit	Notes
Batch EK52205 - General Preparation (Prep)									
Blank (EK52205-BLK1)				Prepared	11/21/05	Analyzed.	11/22/05			
% Solids	100		%							
Duplicate (EK52205-DUP1)	Sou	rce: 5K19001-	-01	Prepared	11/21/05	Analyzed	11/22/05			
% Solids	92 6		%		92 8			0 216	20	
Batch EK52314 - Water Extraction										
Blank (EK52314-BLK1)				Prepared	11/22/05	Analyzed	11/23/05			
Chlonde	ND	0 500	mg/kg							
Blank (EK52314-BLK2)				Prepared	11/22/05	Analyzed	11/23/05			
Chlonde	ND	0.500	mg/kg		_					
LCS (EK52314-BS1)				Prepared	11/22/05	Analyzed	11/23/05			
Chlonde	8 78		mg/L	10 0		87.8	80-120			
LCS (EK52314-BS2)				Prepared	11/22/05	Analyzed	11/23/05			
Chlonde	8 58		mg/L	10.0		85 8	80-120			
Calibration Check (EK52314-CCV1)				Prepared	11/22/05	Analyzed	11/23/05			
Chlonde	8 47		mg/L	100		84 7	80-120			
Calibration Check (EK52314-CCV2)	,			Prepared	11/22/05	Analyzed	11/23/05			
Chlonde	8 59		mg/L	10 0		85 9	80-120			-
Duplicate (EK52314-DUP1)	Soui	rce: 5K17001-	-21	Prepared	11/22/05	Analyzed	11/23/05			
Chlonde	30 0	10 0	mg/kg	-	32 3			7.38	20	

Project Cotton Draw BLM

Project Number 2005-00237

Project Manager: Daniel Bryant

Fax (432) 687-4914

Reported: 11/23/05 17 06

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EK52314 - Water Extraction

Duplicate (EK52314-DUP2)	Sourc	e: 5K21009-	13	Prepared: 11/22/05 Analyzed. 11/23/05			
Chlonde	74 1	100	mg/kg	74 3	0 270	20	

 Plains All American EH & S
 Project
 Cotton Draw BLM
 Fax (432) 687-4914

 1301 S County Road 1150
 Project Number
 2005-00237
 Reported:

 Midland TX, 79706-4476
 Project Manager
 Daniel Bryant
 11/23/05 17 06

Notes and Definitions

S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect J Detected but below the Reporting Limit, therefore, result is an estimated concentration (CLP J-Flag). DET Analyte DETECTED Analyte NOT DETECTED at or above the reporting limit NR dry Sample results reported on a dry weight basis RPD Relative Percent Difference LCS Laboratory Control Spike MS Matrix Spike Duplicate

	Raland Kertuk		
Report Approved By:	Racion C 110	Date:	11/23/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

12600 West I-20 East Odessa, Texas 79763 Phone: 915-563-1800 Fax: 915-563-1713

Project Manager: KFN DUTTON										-		Proj	ect N	ame:	C	0 f 1	[D]	V_	الم	22	W	BL	M		
Company Name BASIN ENV. SVC	2												Proj	ect #:	E	Me	<u>S</u>	2	g a	<u> </u>	-0	\$ 2	37		
Company Address: P. D. BOX 361										_		P	rojec	Loc:	E) z)	Y	Ĉ	20	N	74	N	M		
City/State/Zip: LOVINGTON NM 88	260													PQ #:	E		7/)	B	RY	AI	M VT		
Telephone No: (505) 441- 2124		Fax No:	(\$	% 5) 7	604	- 1	42	Cy	~					4		7								
•			ليك							-															
Sampler Signature:		. /								-		Ĭ			-		Αn	alyze	e Fo	7.				1	
															CLP:	\vdash	ᆉ	+	X			1	.		
		·			F	reserv	abve		I	Μŧ	atrix		1006	T	1	8	7	7			Ì	18		<u> </u>	
10 ²	2¢¢5	Яеф	Containers						(y)			y):	1015M)1005 10	Anions (C), SO4, CO3, HCO3)	EC	Metels; As Ag Ba Cd Cr Pb Hg	الإستاقطة فالسيست شروقاة والروووون الاتجابات		5030			TDES (304.1)		RUSH TAT (Pre-Schedule	AT
5 (lab use only) FIELD CODE	Date Sampled	Time Sempled	No. of Cont	}ce	HNO ₃	HCI NaOH	H ₂ SO ₄	None	Ouriel (spacity) Water	Sludge	Soil	Other (specify):	TPH 418.1 8015M 1005	Anions (C), 3C	SAR / ESP / CEC	Metels: As Ag	Volatiles	Semivolatiles	BTEX 80218/5030	RCI S	Total Gamma	CHLORIDES		RUSH TAT	Standard T
TO 58-1 5'	15 NOV	1105	1	Х							X		X						\mathbf{L}			\coprod			×
-62 SR -1 15'		1113		Ш							Ш		Щ				\bot	_	Ц	_	1	\sqcup		ļ	4
-03 SB-1 26'		1126		Ш						1_	Ш		\coprod	1	_		_	_	\coprod		_	X			1
-64 \$B - 1 38'		1136		Ш	_		_			<u> </u>					<u> </u>			_	\coprod		_	$\bot \downarrow$		-	$\!$
-65 SB- 1 4p'		1147		Ш	_		L	\sqcup	1	1_	Ш		\coprod		1_		_	1	\sqcup	_	_	\sqcup			#
ol SB-1 50'		1216		Ш	_	_	_		.	1_	Ш		4		_			_	\coprod	4	1	$\downarrow \downarrow$		-	#
-07 \$8-1 60'		1232		Ш	_		_				1		11		↓_		_	_	igwdap	4	\bot]	#
-68 SB-1 70' -69 SB-1 80'		1329		\coprod	_	_	┞-	-	4	4-	Ш		4	_	╀-		-	_	$\!$	+	_	++		<u> </u>	₩
		1342	-	╂┼┼	_	_	ـ	-	_	┼-			H	+	╄-			-	╂┤	+		\dashv	-	-	₩
opedal Instructions:		1355	4	A					┛		*	Ш	4	-	mole		rfain	900	ota:	ــــــــــــــــــــــــــــــــــــــ			<u> </u>	<u> </u>	上
special instructions:														Te	mpe mpe	ratur	e Up	on F	Rece	ipt		sc			
Relinquished by Date Time	Received by:					······			ī	Date			Time		. [i. A	` د		٠ دنوس	· · ·		_			. •
Sen Dutton 19Nover 1515								_)ate		ļ,	Time	4	40	۲.	31	4.S.	7 .		. '		, `	•	
Relinquished by: Date Time	Received by EL	e mc	سوسعي	li'a .			•	1	11-		٠.	1	-					-	•,		•				,

12600 West I-20 East Odessa, Texas 79763 Phone: 915-563-1800 Fax: 915-563-1713

Project Manager:	KEL	V DUT	TON		····										Pŗ	ojeci	Nan	ne: <u>(</u>	20	176	N	D	PH	B	_1	341	7_		_
Company Name	BAS	IN E	NV SV	<u>'C</u>												Pr	ojec	ŧ#:_ <u>≠</u>	EI	48		00	15	-0	Øó	73	7		_
Company Address:	P. 0	BOX	3ø1												+	Proje	ect L	oc: _	E	私	<u>Y</u>	CD.	KA	07	<u>u</u>	NI	4		
City/State/Zip:	LOV	ING TO	N. NH	88265	<u>ජ</u>																					IAA			_
Telephone No	505	441-2	124	,	Fax No:	61	05)3	16	7-1	4	29	7							,									
Sampler Signature:		Kan	Duch	an)							-																		
																			-	1	Analy	ze F	Or:			SOCIEDA			
					*													TCL	ρ:	\Box	$oldsymbol{\mathbb{I}}$		П	\sqcap	T		\Box		
																		TOTA	AL:		I	X]				1		
									Presi	ervativ	e			Matr	ìχ	ğ	Π		\top	8	T	T	1 1				L		
SALAB # (lab use only)		FIELD CODE		Sampled & &	Time Sampled	No. of Containers	lce	HNO	HCI	NaOH H ₂ SO ₄	None	Other (Specify)	Water	Sludge	Soil Other (specify):	TPH. 418.1 (8015M) 1005 1006	Cations (Ca., Mg. Na., K)	Anions (Cl. SO4, CO3, HCO3)		Metals: As Ag Ba Cd Cr Pb Hg : Volatiles	Sernivolatiles	BTEX 80218/5030	RCI	N.O.R.M.	Total Garrera			RUSH TAT (Pre-Schedule	Standard TAT
-11 SB-		ØØ'		15 NAV	1440	1	x			1				~~	. T	ĺν				7	†	Ŷ		M	\top	\top		٦,	v
-12 SB -		AS'		15 NOV	1455	1	f	-	-	\dashv	H				1	Ħ	\vdash	+	+	+	十			H	十	+			f
্ৰাপ্ত প্ৰিপ্ত -		5′		16 NOV	1 039	11	tt			1	+			_	H	H			\top	十	1	11			十	7		\top	T
-14 SB-				TOMOR		+	╁┼	-	┝╼┼		+-		\vdash	+	╢	H	\vdash	+	┰┼	+	+	++-	-	-	+		 	+	ł
		tø'		 	1042	1	₩	-	-		-	\vdash	$\vdash \vdash$	-	╫	₩	╀┤		-+		+-	#		├─┼			++	+	ł
TIS \$3-		2¢'			1053	₩.	II.							1	Щ.	#	_		4		4	4		\sqcup	\downarrow		┰	4	1
-16 SB-	2 3	3ø'			1100										Ц_						\perp	$\perp \!\!\! \perp \!\!\! \perp$			\perp				1
-17 SB-	3 5	. 1			1124									T					\top									İ	1
-18 53-		ø'			1129	11	Ħ			1			H	7		11			7	1	\top	#			7	\top	П	\top	Ť
-19 SB-		(d'			1136	ff	ff			_			H			#			\dagger	1	+	#			+	1	廿	1	t
-20 SB-		8ø′			1144	4	L			1						t			十	十	1			\sqcap	1	1	П	٦,	ţ
Special Instructions:		<i>*</i>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,	7-4		<u>. </u>	L		نــــا	لببا						Sami	ple (Conta	iner	s inta	ict?	بب	(§	<u></u>	N N		Χ.
,																	1	Tem	pera	iture i	Upon	Rec	ceipt.				٠.		
				.,														Labo	orati	ory C	omn	nente	s:	. ***		ا سيها		•	-
Relinquished by:		Date	Time	Received by:									Da	te		Tim	8	<i>;</i>	-, ^ - 41 s		•	٠,,٠	١.				·'	• ,	
Lon Dutter	· `	1 moves	1515																¥ 0	iz (315	201		. 5		- ~ _	,	. ,	
Relinquished by:		Date	Time	Received by El	OT:	 -	-:-					 	Da	te	_	Tim	e			٠.			٠,				•		
				8.0 m/s 1/2	ne mc	مارس				٠.	. 1		io	~. <i>0</i> .S	, Ì.	150	ς.												
				1 77 60	A. F. CC	7 - 1		~->				1	<u>' </u>		نـــــــــــــــــــــــــــــــــــــ			<u>L</u>	<u></u>							نــــنــم			

12600 West I-20 East Odessa, Texas 79763 Phone: 915-563-1800 Fax: 915-563-1713

Project Manager: KEN DUTTON			Project Na	me: <u>COTTO</u>	N DRAW	BYH
Company Name BASIN ENV SV	0				2005-0	
Company Address: P. O. BOX 301						
City/State/Zip: LOVINGTON, NM			PC	o#: PAA	Y COUNTY ID. BRY	ANT
Telephone No: (595)441-2124	Fax No: (5 Ø5)	369-1429				
Telephone No: (505) 441-2124 Sampler Signature: 2000 Au	the					
					alyze For:	
	***			TCLP: TOTAL:	x	
		reservative Matrix	1006	8		1
5K4002	Date Sampled & Sampled Containers No. of Containers tee HNO.	HGI NaOH H-SO ₄ None Other (Spocify) Water Sludge	Other (spacify): TPH: 418:1 (5016M) 1005 11 Cations (Ca. Mg. Na. K)	Arions (CI. 804. COS. HCOS) SAR / ESP / OEC Metale: As Ag Ba Cd Cr Pb Hg Volatiles	Sernivolatibes BTEX 6021 B45030 RCI N.O.R.M. Total General	RUSH TAT (Pre-Schedule Standard TAT
LAB # (lab use only): FIELD CODE	 		0 = 8	₹ 8 × 3	Sem RCI N.O.	- E 5
21 \$B-4 5'	16 NOV 1254 1 X		- X	++++	- X - - 	
-22 SB-4 18'	1256	- - - - - - - - - - - - - - - - - - - 	╼╂╂┼╌┥	┠╌╏╸╏		
-24 SB-4 36'	13¢3		- 	┠╌┠╌╏╍╏	- 	┼┼┼┼
-5 SB-5 5'	1311		╌╂╂┼╌	╂╂╂╂	+++++	╁┼╁┼
-24 3B-5 1p'	1336		╌╂╂┼╌	┞╶╂┈╎┈╏ ╴╏		
27 SB-5 20'	1343			┠┈╏╸╏╸╏		┤╶ ╂╌╂╼╬┤
-28 SB - 5 36'	1349			f = f + f + f		
					1*1-1-1	
Special Instructions:				Sample Containe Temperature Up Laboratory Con	on Receipt: 2,5	N-
Religioushed by Date Time	Received by:	Date `	Time	Hozgias	3	
Relinquished by Date Time	Received by ELOT:	Date (~! Φ Φ ∋	Time 15 15			•
	*					

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Plient: Plains P/L				
Date/Time: 11-19-05@1515				-
Order #: 5K (900 2:				
nitíals: JMM				
Sample Receipt		st	,	
Temperature of container/cooler?	(Ses)	No	2.5 C	
Shipping container/cooler in good condition?	Yes	No		
Custody Seals intact on shipping container/cooler?	Ves /	No	Not present	
Custody Seais intact on sample bottles?	(TES)	No	Not present	
Chain of custody present?	CFES.	No		
Sample Instructions complete on Chain of Custody?	(Fest)	No	<u> </u>	
Chain of Custody signed when relinquished and received?	(Yes)	No		
Chain of custody agrees with sample label(s)	(Pes)	No	-	
Container labels legible and intact?	(78S)	No		
Sample Matrix and properties same as on chain of custody?	(res)	No	-	
Samples in procer container/bottle?	(Yes)	No !)	
Samples procerly preserved?	(FES)	No	,	
Sample bottles intact?	(res	No		
Preservations documented on Chain of Custody?	(Yes)	No	,	
Containers documented on Chain of Custody?	(Pes>	No	,	
Sufficient sample amount for indicated test?	(PES)	No	1	
All samples received within sufficient hold time?	Pres	No	,	
VOC samples have zero headspace?	(es)	No	Not Applicable	
Variance Docu Contact Person: - Date/Time: Regarding:			Contacted by:	
Corrective Action Taken:				
	المنامات ما ميسان المنام مسيده مواليو، والمام الميسان			

•		······································		

Analytical Report

Prepared for:

Daniel Bryant
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Cotton Draw BLM
Project Number: 2005-00237
Location: Eddy Co., NM

Lab Order Number: 6A20010

Report Date: 01/30/06

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported: 01/30/06 11 37

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
W Sd Wall	6A20010-01	Soil	01/19/06 10:15	01/20/06 08 35
SW Floor	6A20010-02	Soil	01/19/06 10 45	01/20/06 08 35
NW Floor	6A20010-03	Soil	01/19/06 10 50	01/20/06 08 35
NE Floor	6A20010-04	Soil	01/19/06 10 56	01/20/06 08 35
E Sd Wall	6A20010-05	Soil	01/19/06 10 35	01/20/06 08 35
SE Floor	6A20010-06	Soil	01/19/06 10 40	01/20/06 08.35
Stk Pile	6A20010-07	Soil	01/19/06 11 08	01/20/06 08 35
N Sd Wall	6A20010-08	Soil	01/19/06 10:30	01/20/06 08 35
S Sd Wall	6A20010-09	Soil	01/19/06 10:21	01/20/06 08 35

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported:
01/30/06 11 37

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
W. Sd. Wall (6A20010-01) Soil	Kesuit	Limit	Cints	Dilution	Вател	Prepared	Analyzed	Method	Notes
						·	<u> </u>	EPA 8021B	
Benzene	J [0.0142]	0 0250	mg/kg dry	25	EA62410	01/24/06	01/25/06	EPA 8021B	
Toluene	0.0874	0 0250	,		,,		,	н	
Ethylbenzene Xylene (p/m)	0.0327 0.123	0 0250	н	,		,	,,		
Xylene (0)	0.123	0 0250 0 0250	,,						
Surrogate. a,a,a-Trifluorotoluene	0.0407	82.5 %	80-1	120	,,	"	"		
Surrogate 4-Bromofluorobenzene		108 %	80-1		,,	"	,,	,,	
Gasoline Range Organics C6-C12	J [6.53]	100 %	mg/kg dry	120		01/20/06	01/21/06	EPA 8015M	
Diesel Range Organics >C12-C35	103	10 0	mg/kg ury	н	EA62026	01/20/00	01/21/06	"	•
Total Hydrocarbon C6-C35	103	10 0	n	н	n	**	*	n	
Surrogate. 1-Chlorooctane	103	101 %	70-1	130	,,	,,	n	"	
Surrogate: 1-Chlorooctadecane		97.4%	70-7		,,	"	,,	"	
Surroguie. 1 Chioroociuuecune		77.4 70	70-1	150					
SW Floor (6A20010-02) Soil									
Benzene	1.27	0.200	mg/kg dry	200	EA62410	01/24/06	01/26/06	EPA 8021B	
Toluene	13.5	0 200	н	n		"		**	
Ethylbenzene	8.08	0.200	"	n		*		,,	
Xylene (p/m)	24.1	0 200	"	n	*	•		**	
Xylene (o)	11.3	0 200	н	"	n	"	н	**	
Surrogate a,a,a-Trifluorotoluene		127 %	80-1	120	"	"	"	,,	S-0-
Surrogate 4-Bromofluorobenzene		136 %	80-1	120	"	"	"	"	S-0-
Gasoline Range Organics C6-C12	6430	100	mg/kg dry	10	EA62027	01/20/06	01/24/06	EPA 8015M	
Diesel Range Organics >C12-C35	37900	100	19	11	"	"	u.	"	
Total Hydrocarbon C6-C35	44300	100	**	11	11	н	"		
Surrogate: 1-Chlorooctane		32 0 %	70-1	130	"	,,	n	"	S-06
Surrogate: 1-Chlorooctadecane		206%	70-1	130	"	"	"	"	S-06
NW Floor (6A20010-03) Soil									
Benzene	11.1	0 500	mg/kg dry	500	EA62410	01/24/06	01/26/06	EPA 8021B	
Toluene	44.2	0 500	"	n	н	**	**	н	
Ethylbenzene	22.4	0 500		**	**	**	*	**	
Xylene (p/m)	66.2	0 500	**	**	н	17	н	n	
Xylene (o)	29.9	0 500	**	"	**	•	*	n	
Surrogate: a.a,a-Trıfluorotoluene		465 %	80-1	120	"	"	"	n .	S-0-
Surrogate: 4-Bromofluorobenzene		130 %	80-1	120	"	"	"	"	S-0-
Gasoline Range Organics C6-C12	10500	100	mg/kg dry	10	EA62027	01/20/06	01/24/06	EPA 8015M	
Diesel Range Organics >C12-C35	35200	100	17	u	9	н		u	
Total Hydrocarbon C6-C35	45700	100			•		**	**	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project Cotton Draw BLM
Number 2005-00237

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Reported: 01/30/06 11 37

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
NW Floor (6A20010-03) Soil								*****	
Surrogate: 1-Chlorooctane		15.2 %	70-	130	EA62027	01/20/06	01/24/06	EPA 8015M	S-0
Surrogate: 1-Chlorooctadecane		179%	70-	130	"	"	,,	"	S-0
NE Floor (6A20010-04) Soil									
Benzene	1.73	0 200	mg/kg dry	200	EA62410	01/24/06	01/26/06	EPA 8021B	
Toluene	11.2	0 200	н		н	**	н	n	
Ethylbenzene	7.15	0 200	н	n	,,	**	"	w	
Xylene (p/m)	22.6	0 200	n			"	н	**	
Xylene (o)	10.7	0 200	Ħ	"	•	"	n	*	
Surrogate. a,a,a-Trifluorotoluene		128 %	80-	120	"	"	"	"	S-0
Surrogate: 4-Bromofluorobenzene		132 %	80-	120	"	"	"	"	S-0
Gasoline Range Organics C6-C12	7970	100	mg/kg dry	10	EA62027	01/20/06	01/24/06	EPA 8015M	
Diesel Range Organics >C12-C35	43300	100	11	н	"	*	н	#	
Total Hydrocarbon C6-C35	51300	100	"		•	**	*		
Surrogate. 1-Chlorooctane		37.0 %	70-	130	"	"	n	"	S-00
Surrogate: 1-Chlorooctadecane		24.2 %	70-	130	"	"	"	n	S-06
E. Sd. Wall (6A20010-05) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EA62410	01/24/06	01/26/06	EPA 8021B	
Toluene	0.0286	0.0250	"	n	*	н		11	
Ethylbenzene	ND	0 0250	"	*	*	Ħ	•	"	
Xylene (p/m)	0.0325	0 0250	"		*	н	**	u	
Xylene (o)	ND	0 0250	"	"	**	и	"	"	
Surrogate. a,a,a-Trifluorotoluene		80.0 %	80-	120	"	"	"	"	
Surrogate 4-Bromofluorobenzene		99 2 %	80-	120	,,	"	,,	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EA62027	01/20/06	01/23/06	EPA 8015M	
Diesel Range Organics >C12-C35	39.9	10 0		**	n		н	"	
Total Hydrocarbon C6-C35	39.9	10 0		**	"	*	н	31	
Surrogate: 1-Chlorooctane		114%	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-	130	,,	"	,,	"	

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported:
01/30/06 11 37

Organics by GC Environmental Lab of Texas

Anchus	p. 1.	Reporting	Elect-		_				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SE Floor (6A20010-06) Soil									
Benzene	6.73	0 500	mg/kg dry	500	EA62410	01/24/06	01/26/06	EPA 8021B	
Toluene	30.3	0 500	"	•	н	"	"	"	
Ethylbenzene	15.9	0 500	н	"	n	,,	**	"	
Xylene (p/m)	49.4	0 500	н	"	**	0	•	"	
Xylene (o)	21.9	0 500	н	"	"	н	"		
Surrogate: a,a,a-Trifluorotoluene		120 %	80-1	120	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		130 %	80-1	120	**	"	rr	n	S-0
Gasoline Range Organics C6-C12	10300	100	mg/kg dry	10	EA62027	01/20/06	01/24/06	EPA 8015M	
Diesel Range Organics >C12-C35	51300	100	н	и	н	33	"	"	
Total Hydrocarbon C6-C35	61600	100	н	**	n	,,	н	11	
Surrogate 1-Chlorooctane		17.9 %	70-1	30	"	11	"	n	S-0
Surrogate 1-Chlorooctadecane		15.7 %	70-1	130	"	"	"	n	S-0
Stk Pile (6A20010-07) Soil									
Benzene	0.125	0 0250	mg/kg dry	25	EA62503	01/25/06	01/25/06	EPA 8021B	
Toluene	1.33	0.0250	**		n	n	u	11	
Ethylbenzene	1.83	0.0250	*		н	u		11	
Xylene (p/m)	6.75	0 0250		n	**		**	11	
Xylene (o)	3.75	0 0250	н	"	"	*	**	н	
Surrogate: a.a,a-Trifluorotoluene		340 %	80-1	120	"	"	"	"	S-0
Surrogate 4-Bromofluorobenzene		108 %	80-1	120	n	"	n	"	
Gasoline Range Organics C6-C12	3970	100	mg/kg dry	10	EA62027	01/20/06	01/24/06	EPA 8015M	
Diesel Range Organics >C12-C35	29000	100			**		*	*	
Total Hydrocarbon C6-C35	33000	100	11	н	**	•	**	н	
Surrogate 1-Chlorooctane		24 4 %	70-1	130	"	rr	"	"	S-0
Surrogate 1-Chlorooctadecane		193%	70-1	130	"	н	n	"	S-0
N. Sd. Wall (6A20010-08) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EA62503	01/25/06	01/26/06	EPA 8021B	··········
Toluene	J [0.0123]	0 0250	"	н	**	**	10	,,	
Ethylbenzene	ND	0 0250	n	*	**	**	**	9	
Xylene (p/m)	0.0307	0 0250	H	*	**	"	н	v	
Xylene (o)	ND	0 0250	"	n	**	"	N	н	
Surrogate: a,a,a-Trifluorotoluene		82.8 %	80-1	120	n	11	"	"	
Surrogate: 4-Bromofluorobenzene		97.8 %	80-1	20	,,	,,	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EA62027	01/20/06	01/25/06	EPA 8015M	
Diesel Range Organics >C12-C35	245	10 0	"	"	**	н		"	
Total Hydrocarbon C6-C35	245	10 0	e	"	,,	,	**	11	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project Number 2005-00237
Project Manager Daniel Bryant

Fax. (432) 687-4914

Reported: 01/30/06 11 37

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
N. Sd. Wall (6A20010-08) Soil									
Surrogate 1-Chlorooctane		116%	70-1	30	EA62027	01/20/06	01/25/06	EPA 8015M	
Surrogate 1-Chlorooctadecane		113 %	70-1.	30	"	"	"	n	
S. Sd. Wall (6A20010-09) Soil									
Benzene	J [0.0108]	0.0250	mg/kg dry	25	EA62503	01/25/06	01/25/06	EPA 8021B	J
Toluene	0.0681	0 0250	•	n		**	н	44	
Ethylbenzene	J [0.0236]	0 0250	н		**	n	n	•	j
Xylene (p/m)	0.412	0 0250	н	17	**	u	"	**	
Xylene (o)	0.204	0 0250	н	89	17		"	w	
Surrogate: a,a.a-Trifluorotoluene		84.8 %	80-1.	20	"	"	"	"	
Surrogate 4-Bromofluorobenzene		106 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EA62027	01/20/06	01/23/06	EPA 8015M	
Diesel Range Organics >C12-C35	26.9	10 0	,,		н	•		,,	
Total Hydrocarbon C6-C35	26.9	10.0	**	"	"	n		11	
Surrogate: 1-Chlorooctane		111%	70-1	30	"	"	"	"	
Surrogate. 1-Chlorooctadecane		105 %	70-1	30	,,	"	,,	"	

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported:
01/30/06 11.37

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
0.3	0 1	%	1	EA62306	01/20/06	01/23/06	% calculation	
3.2	0 1	%	1	EA62306	01/20/06	01/23/06	% calculation	
					_			
3.8	0 1	%	1	EA62306	01/20/06	01/23/06	% calculation	
2.2	0 1	%	l	EA62306	01/20/06	01/23/06	% calculation	
1.4	, 01	%	1	EA62306	01/20/06	01/23/06	% calculation	
3.9	0 1	%	i	EA62306	01/20/06	01/23/06	% calculation	
1.5	0 1	%	1	EA62306	01/20/06	01/23/06	% calculation	
0.5	0 1	%	t	EA62306	01/20/06	01/23/06	% calculation	
0.3	0 1	%	1	EA62306	01/20/06	01/23/06	% calculation	
	3.8 2.2 1.4 3.9 1.5	Result Limit 0.3 0 1 3.2 0 1 3.8 0 1 1.4 .0 1 3.9 0 1 1.5 0 1 0.5 0 1	Result Limit Units 0.3 0 1 % 3.2 0 1 % 3.8 0 1 % 2.2 0 1 % 3.9 0 1 % 1.5 0 1 % 0.5 0 1 %	Result Limit Units Dilution 0.3 0 1 % 1 3.2 0 1 % 1 3.8 0 1 % 1 2.2 0 1 % 1 3.9 0 1 % 1 1.5 0 1 % 1 0.5 0 1 % 1	Result Limit Units Dilution Batch 0.3 0 1 % 1 EA62306 3.2 0 1 % 1 EA62306 3.8 0 1 % 1 EA62306 2.2 0 1 % 1 EA62306 3.9 0 1 % 1 EA62306 1.5 0 1 % 1 EA62306 0.5 0 1 % 1 EA62306	Result Limit Units Dilution Batch Prepared 0.3 0 1 % 1 EA62306 01/20/06 3.2 0 1 % 1 EA62306 01/20/06 3.8 0 1 % 1 EA62306 01/20/06 2.2 0 1 % 1 EA62306 01/20/06 1.4 0 1 % 1 EA62306 01/20/06 3.9 0 1 % 1 EA62306 01/20/06 1.5 0 1 % 1 EA62306 01/20/06 0.5 0 1 % 1 EA62306 01/20/06	Result Limit Units Dilution Batch Prepared Analyzed 0.3 0.1 % 1 EA62306 01/20/06 01/23/06 3.2 0.1 % 1 EA62306 01/20/06 01/23/06 3.8 0.1 % 1 EA62306 01/20/06 01/23/06 2.2 0.1 % 1 EA62306 01/20/06 01/23/06 1.4 0.1 % 1 EA62306 01/20/06 01/23/06 3.9 0.1 % 1 EA62306 01/20/06 01/23/06 1.5 0.1 % 1 EA62306 01/20/06 01/23/06 0.5 0.1 % 1 EA62306 01/20/06 01/23/06	Result

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Reported:
01/30/06 11 37

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Lımit	Notes
Batch EA62026 - Solvent Extraction (GC)										
Blank (EA62026-BLK1)				Prepared &	Analyzed	01/20/06				
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0								
Total Hydrocarbon C6-C35	ND	10 0	n							
Surrogate 1-Chlorooctane	56 3		mg/kg	50 0		113	70-130			
Surrogate 1-Chlorooctadecane	50.5		"	50 0		101	70-130			
LCS (EA62026-BS1)				Prepared &	z Analyzed	01/20/06				
Gasoline Range Organics C6-C12	473	10 0	mg/kg wet	500		94 6	75-125			
Diesel Range Organics >C12-C35	571	10 0	"	500		114	75-125			
Total Hydrocarbon C6-C35	1040	10 0	"	1000		104	75-125			
Surrogate 1-Chlorooctane	59 5		mg/kg	50 0		119	70-130		-,	
Surrogate 1-Chlorooctadecane	48 9		"	50 0		97.8	70-130			
Calibration Check (EA62026-CCV1)				Prepared (01/20/06 A	nalyzed 01	1/21/06			
Gasoline Range Organics C6-C12	541		mg/kg	500		108	80-120			
Diesel Range Organics >C12-C35	587		**	500		117	80-120			
Total Hydrocarbon C6-C35	1130			1000		113	80-120			
Surrogate 1-Chlorooctane	579		"	50.0		116	70-130			
Surrogate 1-Chlorooctadecane	50 9		"	50 0		102	70-130			
Matrix Spike (EA62026-MS1)	Sou	rce: 6A19013	3-01	Prepared &	k Analyzed	01/20/06				
Gasoline Range Organics C6-C12	466	10 0	mg/kg dry	506	ND	92 1	75-125			
Diesel Range Organics >C12-C35	609	100	н	506	110	98 6	75-125			
Total Hydrocarbon C6-C35	1080	100	н	1010 ,	110	96 0	75-125			
Surrogate 1-Chlorooctane	58 0		mg/kg	50 0		116	70-130			
Surrogate 1-Chlorooctadecane	50 5		"	50 0		101	70-130			
Matrix Spike Dup (EA62026-MSD1)	Sou	rce: 6A19013	3-01	Prepared &	Analyzed	01/20/06				
Gasoline Range Organics C6-C12	465	100	mg/kg dry	506	ND	91.9	75-125	0 215	20	
Diesel Range Organics >C12-C35	608	10 0	,,	506	110	98 4	75-125	0 164	20	
Total Hydrocarbon C6-C35	1070	100	**	1010	110	95 0	75-125	0 930	20	
Surrogate 1-Chlorooctane	578		mg/kg	50.0		116	70-130			
Surrogate 1-Chlorooctadecane	50 7		"	50 0		101	70-130			

Project Number 2005-00237

Fax (432) 687-4914

Reported:
01/30/06 11 37

Project Number 2003-00237

Project Manager Daniel Bryant

									0.00	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		Zinit		20.01	Account .		5,000	~	2	
Batch EA62027 - Solvent Extraction (GC)										
Blank (EA62027-BLK1)				Prepared:	01/20/06 A	nalyzed 0	1/21/06			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	100	"							
Total Hydrocarbon C6-C35	ND	10 0	n							
Surrogate 1-Chlorooctane	56.3		mg/kg	50 0		113	70-130			
Surrogate 1-Chlorooctadecane	50 6		"	50 0		101	70-130			
LCS (EA62027-BS1)				Prepared (01/20/06 A	nalyzed 0	1/21/06			
Gasoline Range Organics C6-C12	521	10 0	mg/kg wet	500		104	75-125			
Diesel Range Organics >C12-C35	569	10 0	н	500		114	75-125			
Total Hydrocarbon C6-C35	1090	10,0	н	1000		109	75-125			
Surrogate 1-Chlorooctane	55 8		mg/kg	50 0		112	70-130		-	
Surrogate 1-Chlorooctadecane	48 9		"	50 0		978	70-130			
Calibration Check (EA62027-CCV1)				Prepared (01/20/06 A	nalyzed 0	1/23/06			
Gasoline Range Organics C6-C12	521		mg/kg	500		104	80-120			
Diesel Range Organics >C12-C35	560		**	500		112	80-120			
Total Hydrocarbon C6-C35	1080		"	1000		108	80-120			
Surrogate 1-Chlorooctane	61.4		"	50 0		123	70-130			
Surrogate 1-Chlorooctadecane	539		"	50 0		108	70-130			
Matrix Spike (EA62027-MS1)	Sou	ırce: 6A20010)-09	Prepared (01/20/06 A	nalyzed 0	1/24/06			
Gasoline Range Organics C6-C12	569	10 0	mg/kg dry	502	ND	113	75-125	-11		
Diesel Range Organics >C12-C35	551	10 0	n	502	26.9	104	75-125			
Total Hydrocarbon C6-C35	1120	10 0	н	1000	26 9	109	75-125			
Surrogate 1-Chlorooctane	57.4		mg/kg	50 0		115	70-130			***
Surrogate 1-Chlorooctadecane	52 0		,,	50 0		104	70-130			
Matrix Spike Dup (EA62027-MSD1)	Sou	ırce: 6A20010)-09	Prepared (01/20/06 A	nalyzed. 0	1/24/06			
Gasoline Range Organics C6-C12	582	100	mg/kg dry	502	ND	116	75-125	2 26	20	
Diesel Range Organics >C12-C35	576	10 0	,,	502	26 9	109	75-125	4 44	20	
Total Hydrocarbon C6-C35	1160	10 0	н	1000	26 9	113	75-125	3 51	20	
Surrogate 1-Chlorooctane	58.5		mg/kg	50 0		117	70-130			
Surrogate 1-Chlorooctadecane	53 3		"	50 0		107	70-130			

Project Number 2005-00237
Project Manager Daniel Bryant

Reported: 01/30/06 11 37

Fax (432) 687-4914

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA62410 - EPA 5030C (GC)										
Blank (EA62410-BLK1)	<u>par-se</u>			Prepared ()1/24/06 A	nalvzed 01	/25/06			
Benzene	ND	0 0250	mg/kg wet			, _ 0 0 1				
Toluene	ND	0 0250	"							
Ethylbenzene	ND	0 0250	н							
Xylene (p/m)	ND	0 0250	"							
Xylene (o)	ND	0 0250	*							
Surrogate a,a,a-Trifluorotoluene	32 5		ug/kg	40 0		812	80-120			
Surrogate 4-Bromofluorobenzene	40 4		"	40 0		101	80-120			
LCS (EA62410-BS1)				Prepared &	. Analyzed	01/24/06				
Benzene	1 02	0 0250	mg/kg wet	1.25		81 6	80-120			
Toluene	1 04	0 0250	· ·	1 25		83 2	80-120			
Ethylbenzene	1 05	0 0250	"	1 25		84 0	80-120			
Xylene (p/m)	2 06	0 0250	"	2 50		82 4	80-120			
Xylene (o)	1 06	0 0250	н	1 25		84 8	80-120			
Surrogate a,a,a-Trifluorotoluene	38 8		ug/kg	40 0	····	970	80-120			
Surrogate 4-Bromofluorobenzene	38 4		"	40 0		96 0	80-120			
Calibration Check (EA62410-CCV1)				Prepared ()1/24/06 A	nalyzed 01	/25/06			
Benzene	41 3		ug/kg	50 0		82 6	80-120			
Toluene	42 7		**	50 0		85 4	80-120			
Ethylbenzene	41 0		**	50.0		82 0	80-120			
Xylene (p/m)	81 9		**	100		819	80-120			
Xylene (o)	43 1		11	50 0		86 2	80-120			
Surrogate a,a,a-Trifluorotoluene	340		"	40 0		85 0	80-120			
Surrogate 4-Bromofluorobenzene	43 3		"	40 0		108	80-120			
Matrix Spike (EA62410-MS1)	Sou	rce: 6A20008	B- 0 1	Prepared ()1/24/06 A	nalyzed 01	/27/06			
Benzene	0 0585	0 00100	mg/kg dry	0 0516	ND	113	80-120			
Toluene	0 0593	0 00100	"	0.0516	ND	115	80-120			
Ethylbenzene	0 0591	0 00100	*	0 0516	ND	115	80-120			
Xylene (p/m)	0 116	0 00100	"	0 103	ND	113	80-120			
Xylene (o)	0 0611	0 00100	н	0 0516	ND	118	80-120			
Surrogate a,a,a-Trifluorotoluene	37.4		ug/kg	40 0		93 5	80-120			
Surrogate 4-Bromofluorobenzene	46 0		"	40 0		115	80-120			

Project. Cotton Draw BLM Project Number 2005-00237 Project Manager Daniel Bryant

Fax (432) 687-4914 Reported:

01/30/06 11.37

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA62410 - EPA 5030C (GC)										
Matrix Spike Dup (EA62410-MSD1)	Sou	rce: 6A20008	3-01	Prepared (01/24/06 A	nalyzed 01	/27/06			
Benzene	0 0601	0 00100	mg/kg dry	0 0516	ND	116	80-120	2 62	20	
Toluene	0 0604	0 00100	17	0 0516	ND	117	80-120	1 72	20	
Ethylbenzene	0 0611	0 00100	"	0 0516	ND	118	80-120	2 58	20	
Xylene (p/m)	0 117	0 00100	"	0 103	ND	114	80-120	0 881	20	
Xylene (o)	0 06115	0 00100	"	0 0516	ND	118	80-120	0.00	20	
Surrogate a,a,a-Trifluorotoluene	38 2		ug/kg	40 0		95 5	80-120			
Surrogate 4-Bromofluorobenzene	44 6		"	40 0		112	80-120			
Batch EA62503 - EPA 5030C (GC)										
Blank (EA62503-BLK1)				Prepared &	k Analyzed	01/25/06				
Benzene	ND	0 0250	mg/kg wet							
Toluene	ND	0 0250	"							
Ethylbenzene	ND	0.0250	**							
Xylene (p/m)	ND	0 0250	"							
Xylene (o)	ND	0 0250	"							
Surrogate, a,a,a-Trifluorotoluene	34.7		ug/kg	40 0		868	80-120			
Surrogate 4-Bromofluorobenzene	38 8		n	40 0		970	80-120			
LCS (EA62503-BS1)				Prepared &	2 Analyzed	01/25/06				
Benzene	1 02	0.0250	mg/kg wet	1 25		816	80-120			<u> </u>
Toluene	1 05	0 0250		1 25		84 0	80-120			
Ethylbenzene	1 02	0 0250	н	1 25		816	80-120			
Xylene (p/m)	2 04	0 0250	*	2 50		81 6	80-120			
Xylene (o)	1 08	0 0250	**	1 25		86 4	80-120			
Surrogate a,a,a-Trifluorotoluene	33 6		ug/kg	40 0		840	80-120		.,	
Surrogate 4-Bromofluorobenzene	43.6		"	40 0		109	80-120			

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Reported: 01/30/06 11.37

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA62503 - EPA 5030C (GC)	· _									-,
Calibration Check (EA62503-CCV1)				Prepared (01/25/06 A	nalyzed. 01	/26/06			
Benzene	41 5		ug/kg	50 0		83 0	80-120	3000		
Toluene	42.2		**	50 0		84 4	80-120			
Ethylbenzene	40 0		*	50 0		80 0	80-120			
Xylene (p/m)	80 2		n	100		80 2	80-120			
Xylene (o)	419		н	50.0		83 8	80-120			
Surrogate a,a,a-Trifluorotoluene	35 7		"	40 0		89 2	80-120			
Surrogate 4-Bromofluorobenzene	347		"	40 0		868	80-120			
Matrix Spike (EA62503-MS1)	Sou	rce: 6A20010	0-08	Prepared: (01/25/06 A	nalyzed 01	/26/06			
Benzene	1 01	0 0250	mg/kg dry	1 26	ND	80 2	80-120			
Toluene	1 06	0 0250	11	1 26	0 0123	83 2	80-120			
Ethylbenzene	1 03	0 0250		1 26	ND	81 7	80-120			
Xylene (p/m)	2 06	0 0250	*	2 51	0 0307	808	80-120			
Xylene (o)	1 04	0 0250	"	1 26	ND	82 5	80-120			
Surrogate a,a,a-Trifluorotoluene	37 5		ug/kg	40 0		93 8	80-120			
Surrogate 4-Bromofluorobenzene	46 3		"	40 0		116	80-120			
Matrix Spike Dup (EA62503-MSD1)	Sou	rce: 6A20010)-08	Prepared (01/25/06 A	nalyzed 01	/26/06			
Benzene	1 02	0 0250	mg/kg dry	1.26	ND	81 0	80-120	0 993	20	
Toluene	1 04	0 0250	11	1.26	0.0123	816	80-120	1 94	20	
Ethylbenzene	1 04	0 0250	"	1 26	ND	82 5	80-120	0 974	20	
Xylene (p/m)	2 05	0 0250	"	2 51	0 0307	80 5	80-120	0 372	20	
Xylene (o)	1 06	0 0250	n	1 26	ND	84 1	80-120	1 92	20	
Surrogate a,a,a-Trifluorotoluene	33 0		ug/kg	40 0		82 5	80-120			
Surrogate 4-Bromofluorobenzene	40 3		"	40 0		101	80-120			

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Reported: 01/30/06 11 37

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

	 -									
		Reporting		Spike	Source		%REC		RPD	
Analyte	Resul	t Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EA62306-BLK1)			Prepared 01/20/06 Analyzed 01/2	23/06	
% Solids	100	%			
Duplicate (EA62306-DUP1)	Source: 6A	19013-01	Prepared 01/20/06 Analyzed 01/2	23/06	
% Solids	98 7	%	98 8	0.101	20
Duplicate (EA62306-DUP2)	Source: 6A	20009-07	Prepared 01/20/06 Analyzed 01/2	23/06	
% Solids	98 6	%	99 1	0 506	20

Plains All American EH & S	Project [.]	Cotton Draw BLM	Fax (432) 687-4914
1301 S County Road 1150	Project Number	2005-00237	Reported:
Midland TX, 79706-4476	Project Manager	Daniel Bryant	01/30/06 11 37

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect
J	Detected but below the Reporting Limit, therefore, result is an estimated concentration (CLP J-Flag)
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By: Report Approved By: Report Approved By: Date: 1/30/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

Page 13 of 13

12600 West I-20 East Odessa, Texas 79763 Phone: 915-563-1800 Fax: 915-563-1713

Project Ma	anager: Ke	meth Du	Han											Pro	oject	Nan	ne:_	2	0	+7	Lo.	9	[]	ra	w	Be	1/1	1
Compan	y Name	in Envir	on me	nta/											Pre	ojeci	t#:	£	M	15	Ħ	∠ 2	0	25	;- ₍	DC	72	37
Company A		BOX 301		•				- <u> </u>						F	¹ roje	ct Le	oc:	ځر		l	/	/ (OC Vi va	, sel	
		ington, Mi	u 88	7.60												PO	#:		04	14	//	1/	7.	<u>ー</u> /、	30	111		<u>−</u>
Telepho	one No: 505	-441-7124		Fax No.	. <	50	<u> </u>	. 79	7		17	<u> </u>									-{	-0-	-		~	<u> </u>	#/	
	nature:			· un ivo		<u>ر پ ر</u>	_	۱٠ حو			<u>, , , , , , , , , , , , , , , , , , , </u>										-							
Sampler sig	nature:	7							<u> </u>										1	Analy	ze F	or:					1	
															<u> </u>		TOTA	_	+	+	X							
		- AMANA		I	T .	\Box	F	reser	/ative		Ŧ	N	latri:	-	1006			1	200						Ì		9	
Modo			Date Sampled	Time Sampled	of Containers						(Specify)			Other (specify):	TPH: 418.1 (8015) 1005 1	Cations (Ca, Mg, Na, K)	Anions (CI, SO4, CO3, HCO3)		Metals. As Ag ba od or pp ng.	latiles	BTEX 8021 B/5030		8	amma			RUSH TAT (Pre-Schedule	Standerd TAT
LAB # (lab use only)	FIE	ELD CODE	Date	Time	So.	<u>8</u>	₹ No.	를 를 된 등	H ₂ SO ₂	Мопв	Other (Water	15	Other	PH: 4	ations	nions	AR /	Wetals. A	Semivolatiles	3TEX 8	5	N.O.R.M	Total Gamma		ŀ	SCSH	Stand
0.00	bel. 5d. Wa		1/19/06	1015	1	X		_			1		17	+	χ			Ή.		1"	X		-	+	+			X
-02 -03 -04 -05 -05	SW Floor	•		1045)														\square	
-03	NW Floor			1050			[\Box				
-04	NE Floor			10.56	1																			$oxed{oxed}$		1		
-05	E. Sd. Wa,	11		1035	1																							
do	SE Floor			1040	_																							\prod
-00	STKPLE			1108	1	П					T		П	T				Ţ			\prod			T	\top		П	П
-0×	N. 5d. Wa	[[1030	ı	П	T				Т		\top					-			П			\Box	T			Ш
9	5. Sd. Was	ll	*	1501	1	V					T	T	4		₩					1	*				T			₩
											T		1							1	Τ			1	\top			
Special Instructions:					•	B J.		. I.	.lJ				·	.1	·	ŀ	Sami Temp	era	ure l	Upon	Red	eipt:		- C	0	N	<u> </u>	
Relinquished by.	3	Date Time 1/19/06 1/640		n Ele	UC.	<i>b</i> a	אג	ođ	í		//	Date	}	ſ	Time			-	ູ້ວ								-	
Relinquished by	and .	Date Time	Received by EL	οτ: εντ (ίθ	l	<u> </u>	-1				1/2	Date (1	Time 35			46	ا	2	ea	(g	110	Úæ.				

Environmental Lab of Texas Variance / Corrective Action Report — Sample Log-In

tite/Time:	ient: Plains			
Sample Receipt Checklist Sample Receipt Checklist				
Sample Receipt Checklist cerature of container/cooler? ping container/cooler in good condition? ping container/cooler in good condition? ping container/cooler in good condition? ping container/cooler in good container/cooler? ping container/cooler in good container/cooler? ping last consumple bottles? ping last uctions complete on Chain of Custody? ping coustody signed when relinquished and received? ping last uctions complete on Chain of Custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions and unitadr? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last uctions are as on chain of custody? ping last unit uctions are as on chain of custody? ping last unit unit uctions are as on chain of custody? ping last unit unit uctions are as on chain of custody? ping last unit unit unit unit uctions are as on chain of custody? ping last unit unit unit unit unit unit unit uni	estime: 1/20/06 87:35			
Sample Receipt Checklist Describe a container cooler? Per No				
Sample Receipt Checklist Sample Receipt Checklist Yes No	ier#: <u> </u>			
Sample Receipt Checklist Sample Receipt Checklist Yes No	into CM -			
ncerature of container/cooler? pring container/cooler in good condition? yes No Not present stody Seals intact on shipping container/cooler? yes No Not present stody Seals intact on sample bottles? yes No Not present stody Seals intact on sample bottles? yes No Not present yes No Not present yes No not present yes No not present yes No not present yes No	ials.			
ncerature of container/cooler? Yes No No No C	Sample Ecocint	· Chackli	C+	
point container/cooler in good condition? Seals intact on shipping container/cooler? Seals intact on shipping container/cooler? Seals intact on sample bottles? No Not present stody Seals intact on sample bottles? No Not present				-10 01
Reday Seals intact on shipping container/cooler? Reday Seals intact on sample bottles? Reday Seals intact on sample and intact? Reday Seals intact on sample label(s) Reday Seals intact on sample sample label(s) Reday Seals intact on sample sample label(s) Reday Seals intact on sample sample label(s) Reday Seals intact on sample sample label(s) Reday Seals intact on sample sample label(s) Reday Seals Intact on sample sample label(s) Reday Seals Intact on sample sample label(s) Reday Seals Intact on sample sample label(s) Reday Seals Intact on sample sample label(s) Reday Seals Intact on sample sample label(s) Reday Seals Intact on sample sample label(s) Reday Seals Intact on sample sample label(s) Reday Seals Intact on sample label(s)	pging container/cooler in good condition?			11.0
stady Seals intact on sample bottles? yes No Not present in a not foustody present? mple Instructions complete on Chain of Custody? an of Custody signed when relinquished and received? an of Custody agrees with sample label(s) antancer labels legible and intact? mple Matrix and procerties same as on chain of custody? mples in procer container/bottle? moles crocerly preserved? mole bottles intact? yes No mole bottles intact? yes No mole cottles intact. yes No mole cot	stody Seals intact on shipping container/cooler?			Nict present
in of custody present? pple Instructions complete on Chain of Custody? pin of Custody signed when relinquished and received? pin of Custody agrees with sample label(s) Itarians latels legible and intact? Poly No Interest latels legible and intact? Interest latels l	tody Seals intact on sample bottles?			
In a contact Person: Pariance Documentation: Pariance Documentati	in of custody present?			1
with of Gustody signed when relinquished and received? In of custody agrees with sample label(s) Indianer labels legible and intact? Inple Matrix and procerties same as on Chain of custody? Inple Matrix and procerties same as on Chain of custody? Incles in procer container/bottle? Incles croterly preserved? Incles croterly preser	nple Instructions complete on Chain of Custody?	Y25		!
Interpretation of custody agrees with sample label(s) Interpretation of custody agrees with sample label(s) Interpretation of custody? Interpretation of cus	an of Custody signed when relinquished and received?			
Indicated lacets legible and intact? Indicated procerties same as on chain of custody? Indicated procert container/bottle? Indicated content preserved? Indicated content of custody? Indicated preserved? Indicated commented on Chain of Custody? Indicated sample amount for indicated test? Indicated sample amount for indicated test? Indicated samples received within sufficient hold time? Indicated samples received within sufficient hold time? Indicated samples received within sufficient hold time? Indicated preservations: Indicated preservations: Indicated preservations: Indicated preservation: Indica	in of custody agrees with sample label(s)			
nple Matrix and procerties same as on chain of custody? Incles in proper container/bottle? Incles crocerly preserved? Incles crocerly preserved. Incles crocerly prese	itainer labels legible and intact?			
roles in proper container/bottle? Incles cropedly preserved? Incles cropedly preserved. Incles cropedly preserv			No	
roles crocerly preserved? role bottles intact? servations documented on Chain of Custody? role tottles intact? servations documented on Chain of Custody? role tottles intact? servations documented on Chain of Custody? role tottles intact? role intact sample amount for indicated test? semples received within sufficient hold time? C samples have zero headspace? role intact Person: Variance Documentation: contact Person: Date/Time: Contacted by: role intact Person: Contacted by:	ngles in proper container/bottle?			1,
whole cottles intact? Servations documented on Chain of Custody? Servations No No	ncies crocerly preserved?			:
Servations documented on Chain of Custody? Italianers documented	nole bottles intact?		No	
variance Documentation: Variance Documentation: Date/Time: Contacted by:	servations documented on Chain of Custody?		No	
Samples received within sufficient hold time? C samples have zero headspace? No Not Accilicable her observations: Variance Documentation: Entact Person: - Date/Time: Contacted by: egarding:	itainers documented on Chain of Custody?		No	
C samples have zero headspace? The nobservations: Variance Documentation: Contacted by: Egarding:	ficient sample amount for indicated test?	1 Kes	No	
Variance Documentation: Date/Time: Contacted by:		(2 3	No	
Variance Documentation: entact Person: Date/Time: Contacted by:	C samples have zero headspace?	(P35	No	Not Accilcable
ntact Person: Date/Time: Contacted by: garding:				
	ontact Person: Date/Time:			Contacted by:
	orrective Action Taken:			
errective Action Taken:				
errective Action Taken:				
			-	

Analytical Report

Prepared for:

Daniel Bryant
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Cotton Draw BLM
Project Number: 2005-00237
Location: Eddy County, NM

Lab Order Number: 7B23008

Report Date: 03/01/07

•

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
E EXCV FLR SURFACE	7B23008-01	Soil	02/22/07 09 45	02-23-2007 13 04
E D/T 5'	7B23008-02	Soil	02/22/07 10 00	02-23-2007 13.04
E D/T 10'	7B23008-03	Soil	02/22/07 10 15	02-23-2007 13 04
E D/T 15'	7B23008-04	Soil	02/22/07 10 30	02-23-2007 13 04
W EXCV FLR SURFACE	7B23008-05	Soil	02/22/07 11 00	02-23-2007 13 04
W D/T 5'	7B23008-06	Soil	02/22/07 11 15	02-23-2007 13:04
W D/T 10'	7B23008-07	Soil	02/22/07 11 30	02-23-2007 13 04
W D/T 15'	7B23008-08	Soil	02/22/07 11 45	02-23-2007 13 04

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Organics by GC Environmental Lab of Texas

Environmental Lab of Texas												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note			
E EXCV FLR SURFACE (7B23008-01)	Soil											
Benzene	0.683	0 0250	mg/kg dry	25	EB72303	02/23/07	02/26/07	EPA 8021B				
Toluene	3.00	0.0250	11		**	н	,	n				
Ethylbenzene	1.62	0 0250		"	н	**	н	n				
Xylene (p/m)	4.59	0 0250	"		и	"		n				
Xylene (o)	1.83	0.0250	"	*	"	"	"	**				
Surrogate: a,a,a-Trifluorotoluene		146 %	75-1	25	"	"	"	"	S-0			
Surrogate: 4-Bromofluorobenzene		153 %	75-1	25	"	"	"	"	S-6			
Carbon Ranges C6-C12	1540	50 0	mg/kg dry	5	EB72312	02/23/07	02/24/07	EPA 8015M				
Carbon Ranges C12-C28	14500	50 0	11	"	"	н	11					
Carbon Ranges C28-C35	1110	50 0	Ħ	*	•	"	,,					
Total Hydrocarbons	17200	50 0	**	"	н	er e	*	**				
Surrogate 1-Chlorooctane		29.2 %	70-1	30	"	"	"	"	S-0			
Surrogate 1-Chlorooctadecane		79.8 %	70-1	30	"	"	"	"				
E D/T 5' (7B23008-02) Soil												
Benzene	0.146	0 00200	mg/kg dry	2	EB72406	02/24/07	02/24/07	EPA 8021B				
Toluene	0.340	0 00200	11	•	"	н	*	п				
Ethylbenzene	0.127	0 00200	"		**	н	н					
Xylene (p/m)	0.296	0 00200	**	**	н	ч	0	н				
Xylene (o)	0.126	0 00200	n	•	•		u	**				
Surrogate a,a,a-Trifluorotoluene		75.6 %	75-1	25	"	"	"	"				
Surrogate 4-Bromofluorobenzene		82.0 %	75-1	25	"	"	"	"				
Carbon Ranges C6-C12	5330	10 0	mg/kg dry	1	EB72312	02/23/07	02/24/07	EPA 8015M				
Carbon Ranges C12-C28	6320	10 0	"	**	"	11	"	"				
Carbon Ranges C28-C35	198	10 0	н			**	n	0				
Total Hydrocarbons	11800	10 0	**	**		19	*	•				
Surrogate: 1-Chlorooctane		192 %	70-1	30	n	"	"	"	S-0			
Surrogate. 1-Chlorooctadecane		220 %	70-1	30	"	"	n	"	S-0			
E D/T 10' (7B23908-03) Soil												
Benzene	8.30	0 100	mg/kg dry	100	EB72406	02/24/07	02/26/07	EPA 8021B				
Foluene	29.4	0 100	н	"	**	"	11	"				
Ethylbenzene	14.3	0 100	n	"	u	н	"	**				
Xylene (p/m)	38.8	0 100	n	"	•		"	*				
Kylene (o)	14.3	0 100	**	н	н	11	n	**	~			
Surrogate: a,a.a-Trifluorotoluene		137 %	75-1.	25	"	n	"	n	S-0			
Surrogate 4-Bromofluorobenzene		148 %	75-1.		"	"	"	"	S-0			
Carbon Ranges C6-C12	6060		mg/kg dry	1	EB72312	02/23/07	02/24/07	EPA 8015M				
						· · ·						

Environmental Lab of Texas

A Xenco Laboratories Company

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Reporting	•						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
E D/T 10' (7B23008-03) Soil									
Carbon Ranges C12-C28	6470	10 0	mg/kg dry	i	EB72312	02/23/07	02/24/07	EPA 8015M	
Carbon Ranges C28-C35	177	10 0		**	**	"	н	н	
Total Hydrocarbons	12700	100	n	u	*	и	"		
Surrogate: 1-Chlorooctane		193 %	70-1	130	"	"	"	n	S-0
Surrogate 1-Chlorooctadecane		210 %	70-1	130	"	"	"	n	S-0
E D/T 15' (7B23008-04) Soil									
Benzene	36.7	0 200	mg/kg dry	200	EB72406	02/24/07	02/26/07	EPA 8021B	
Toluene	92.3	0 200	"		**	"	11	**	
Ethylbenzene	36.5	0 200	*	n		n	"		
Xylene (p/m)	99.1	0 200	*	"	н		н	n	
Xylene (o)	36.8	0 200	"	**	**	"	**	п	
Surrogate: a.a.a-Trifluorotoluene		210 %	75-1	25	"	"	"	"	S-0
Surrogate: 4-Bromofluorobenzene		154 %	75-1	25	"	"	"	"	S-0
Carbon Ranges C6-C12	13300	50 0	mg/kg dry	5	EB72312	02/23/07	02/24/07	EPA 8015M	
Carbon Ranges C12-C28	14600	50 0	**	9	"	"	n	n	
Carbon Ranges C28-C35	1030	50 0	**	"	**	н	11	н	
Total Hydrocarbons	28900	50 0	#	н	"	"	"	r.	
Surrogate. 1-Chlorooctane		54.8 %	70-1	130	"	"	"	n	S-0
Surrogate: 1-Chlorooctadecane		67.4 %	70-1	130	"	n	"	n	S-0
W EXCV FLR SURFACE (7B23008-05)) Soil								
Benzene	0.142	0 00200	mg/kg dry	2	EB72406	02/24/07	02/24/07	EPA 8021B	
Toluene	0.331	0 00200	н		н	n	•	u	
Ethylbenzene	0.123	0 00200	*	·	#	4	н	51	
Xylene (p/m)	0.288	0 00200	"	,,	**	н	11	11	
Xylene (o)	0.122	0 00200	11	,	*	"	н	н	
Surrogate: a,a,a-Trifluorotoluene		75.6 %	75-1	125	,,	"	"	n .	
Surrogate: 4-Bromofluorobenzene		82.0 %	75-1	25	,,	n	"	n	
Carbon Ranges C6-C12	1350	50 0	mg/kg dry	5	EB72312	02/23/07	02/24/07	EPA 8015M	
Carbon Ranges C12-C28	22800	50 0	"	"	**	11		n	
Carbon Ranges C28-C35	1110	50 0	"	,,	"	"	"	••	
Total Hydrocarbons	25300	50 0	11	**	#	н	n	**	
Surrogate: 1-Chlorooctane		24.8 %	70-1	30	n	"	,,	"	S-0
Surrogate: 1-Chlorooctadecane									~ "

Environmental Lab of Texas

A Xenco Laboratories Company

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Organics by GC Environmental Lab of Texas

	_	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
W D/T 5' (7B23008-06) Soil									
Benzene	5.35	0 200	mg/kg dry	200	EB72406	02/24/07	02/26/07	EPA 8021B	
Toluene	30.8	0 200	"	4	**	•	"	и	
Ethylbenzene	16.7	0 200	n	4	*	**	**	sı	
Xylene (p/m)	47.0	0 200	11	"	н	u	н	n	
Xylene (o)	16.0	0 200		11	11	"			
Surrogate: a.a.a-Trifluorotoluene		199 %	75-1	25	"	"	"	"	S-
Surrogate: 4-Bromofluorobenzene		138 %	75-1	25	"	"	"	"	S-1
Carbon Ranges C6-C12	7080	10 0	mg/kg dry	1	EB72605	02/26/07	02/28/07	EPA 8015M	
Carbon Ranges C12-C28	8300	10.0	10	N	n	"	n	Ħ	
Carbon Ranges C28-C35	696	10 0	н	11	н	11		"	
Total Hydrocarbons	16100	100	н	tr.	н	11	н	н	
Surrogate: 1-Chlorooctane		43.2 %	70-1	30	,	n	"	"	S-4
Surrogate. 1-Chlorooctadecane		55.4 %	70-1	30	D	"	n	"	S-0
W D/T 10' (7B23008-07) Soil		i							
Benzene	7.39	0 200	mg/kg dry	200	EB72406	02/24/07	02/26/07	EPA 8021B	<u> </u>
Toluene	30.5	0 200	w	"	11			н	
Ethylbenzene	13.5	0 200			*	**	н	11	
Xylene (p/m)	41.4	0.200		"	н	10	•	19	
Xylene (o)	13.8	0 200	n	•	n	**	•	"	
Surrogate a.a.a-Trifluorotoluene		206 %	75-1	25	n n	"	"	n	S-0
Surrogate: 4-Bromofluorobenzene		130 %	75-1	25	"	"	"	"	S-0
Carbon Ranges C6-C12	5280	10 0	mg/kg dry	1	EB72605	02/26/07	02/27/07	EPA 8015M	
Carbon Ranges C12-C28	5680	10 0	**	n	11	**	"	"	
Carbon Ranges C28-C35	200	10 0	w	**	**	n	,,	п	
Total Hydrocarbons	11200	100		н	**	и	n	**	
Surrogate 1-Chlorooctane		190 %	70-1	30	"	"	"	n	S-0
Surrogate· 1-Chlorooctadecane		224 %	70-1	30	,,	"	"	"	S-0
W D/T 15' (7B23008-08) Soil									
Benzene	19.6	0 200	mg/kg dry	200	EB72406	02/24/07	02/26/07	EPA 8021B	
Toluene	58.4	0 200	*	н	**	"	н		
Ethylbenzene	25.9	0 200	n	**	**	u	•	**	
Xylene (p/m)	71.0	0 200	**		"	*	v	**	
Xylene (o)	26.2	0 200	11	**	**	*		**	
Surrogate a,a,a-Trifluorotoluene		133 %	75-1	25	"	,,	"	"	S-0
Surrogate: 4-Bromofluorobenzene		141 %	75-1	25	n	n	"	"	S-0
Carbon Ranges C6-C12	10600	50 0	mg/kg dry	5	EB72605			EPA 8015M	

Environmental Lab of Texas

A Xenco Laboratories Company

Plains All American EH & S
1301 S County Road 1150 Proje
Midland TX, 79706-4476 Proje

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Organics by GC

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
W D/T 15' (7B23008-08) Soil									
Carbon Ranges C12-C28	11800	50 0	mg/kg dry	5	EB72605	02/26/07	02/28/07	EPA 8015M	
Carbon Ranges C28-C35	772	50 0	**	"	**	n	н	**	
Total Hydrocarbons	23200	50 0	u	**	#	n	,	"	
Surrogate: 1-Chlorooctane		43.8 %	70-13	30	"	"	"	"	S-06
Surrogate 1-Chlorooctadecane		562%	70-13	30	"	"	n	"	S-06

Project Number Cotton Draw BLM 2005-00237

Project Manager Daniel Bryant

Fax (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
E EXCV FLR SURFACE (7B23008-01) Soil			Cinto	Dilution	Batch	Prepared	Analyzed	Method	Notes
% Moisture	4.6	0 1	%	1	EB72401	02/23/07	02/24/07	% calculation	
E D/T 5' (7B23008-02) Soil									
% Moisture	5.5	0 1	%	1	EB72401	02/23/07	02/24/07	% calculation	,
E D/T 10' (7B23008-03) Soil				_					
% Moisture	5.4	0 1	%	1	EB72401	02/23/07	02/24/07	% calculation	
E D/T 15' (7B23008-04) Soil					_				
% Moisture	6.7	0 1	%	1	EB72401	02/23/07	02/24/07	% calculation	
W EXCV FLR SURFACE (7B23008-05) Soil									
% Moisture	2.8	0 1	%	1	EB72401	02/23/07	02/24/07	% calculation	
W D/T 5' (7B23008-06) Soil									
% Moisture	5.9	0 1	%	1	EB72401	02/23/07	02/24/07	% calculation	
W D/T 10' (7B23008-07) Soil									
% Moisture	4.6	0 1	%	1	EB72401	02/23/07	02/24/07	% calculation	
W D/T 15' (7B23008-08) Soil									
% Moisture	3.9	0 1	%	1	EB72401	02/23/07	02/24/07	% calculation	

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager. Daniel Bryant Fax (432) 687-4914

Organics by GC - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source	44055	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB72303 - EPA 5030C (GC)										
Blank (EB72303-BLK1)				Prepared &	Analyzed	02/23/07				<u> </u>
Benzene	ND	0 00100	mg/kg wet							
Toluene	ND	0 00100	"							
Ethylbenzene	ND	0 00100	**							
Xylene (p/m)	ND	0 00100	н							
Xylene (o)	ND	0 00100								
Surrogate a,a,a-Frifluorotoluene	40.8		ug/kg	50 0		816	75-125			
Surrogate 4-Bromofluorobenzene	46 5		"	50 0		93 0	75-125			
LCS (EB72303-BS1)				Prepared &	Analyzed	02/23/07				
Benzene	0 0519	0.00100	mg/kg wet	0.0500		104	80-120			
Toluene	0 0468	0 00100	**	0 0500		93 6	80-120			
Ethylbenzene	0 0456	0 00100		0 0500		91 2	80-120			
Xylene (p/m)	0 0938	0 00100	"	0 100		93 8	80-120			
Xylene (o)	0.0420	0 00100	"	0 0500		84 0	80-120			
Surrogate a,a,a-1 rifluorotoluene	45 7		ug/kg	50 0		91.4	75-125			
Surrogate: 4-Bromofluorobenzene	52.4		"	50 0		105	75-125			
Calibration Check (EB72303-CCV1)				Prepared 0	2/23/07 A	nalyzed 02	2/24/07			
Benzene	44 2		ug/kg	50 0		88.4	80-120			
Toluene	40 8		"	50 0		816	80-120			
Ethylbenzene	40 6			50 0		81 2	80-120			
Xylene (p/m)	82 0		n	100		82 0	80-120			
Xylene (o)	40 0		**	50 0		80 0	80-120			
Surrogate a,a,a-Trifluorotoluene	41 3		"	50 0		82 6	75-125			
Surrogate 4-Bromofluorobenzene	43 0		"	50 0		86 0	75-125			
Matrix Spike (EB72303-MS1)	Sou	rce: 7 B2 1003	i-01	Prepared 0	2/23/07 A	nalyzed 02	2/26/07			
Benzene	0 0949	0 00200	mg/kg dry	0 103	ND	92 1	80-120			
Toluene	0.0854	0 00200	"	0 103	ND	82 9	80-120			
Ethylbenzene	0 0836	0 00200	**	0 103	ND	81 2	80-120			
Xylene (p/m)	0 171	0 00200	*	0 206	ND	83 0	80-120			
Xylene (o)	0 0837	0 00200	"	0 103	ND	81.3	80-120			
Surrogate a,a,a-Trifluorotoluene	40 2		ug/kg	50 0		80 4	75-125			
Surrogate 4-Bromofluorobenzene	46 0		n	50 0		92 0	75-125			

0

0

Plains All American EH & S

Project Cotton Draw BLM

Fax (432) 687-4914

1301 S County Road 1150 Midland TX, 79706-4476 Project Number 2005-00237 Project Manager Daniel Bryant

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC	Na.	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EB72303 - EPA 5030C (GC)

Matrix Spike Dup (EB72303-MSD1)	Sou	Source: 7B21003-01			2/23/07 A	nalyzed 0			
Benzene	0 0911	0 00200	mg/kg dry	0 103	ND	88 4	80-120	4 10	20
Toluene	0 0844	0 00200	н	0 103	ND	819	80-120	121	20
Ethylbenzene	0 0825	0 00200	*	0 103	ND	80 1	80-120	1 36	20
Xylene (p/m)	0 170	0 00200	*	0 206	ND	82 5	80-120	0.604	20
Xylene (o)	0 0824	0 00200	"	0.103	ND	80 0	80-120	1 61	20
Surrogate a,a,a-Trifluorotoluene	42.1		ug/kg	50 0		84.2	75-125		
Surrogate 4-Bromofluorobenzene	45 1		"	50 0		90 2	75-125		

Batch EB72312 - Solvent Extraction (GC)

Blank (EB72312-BLK1)				Prepared 02/23	/07 Analyzed 02	2/26/07	
Carbon Ranges C6-C12	ND	10,0	mg/kg wet				
Carbon Ranges C12-C28	ND	10 0	n				
Carbon Ranges C28-C35	ND	100	"				
Total Hydrocarbons	ND	100	**				
Surrogate 1-Chlorooctane	52 2		mg/kg	50.0	104	70-130	
Surrogate 1-Chlorooctadecane	63 5		n	50 0	127	70-130	
LCS (EB72312-BS1)				Prepared 02/23	/07 Analyzed 02	2/26/07	
Carbon Ranges C6-C12	232	100	mg/kg wet	200 '	116	75-125	
Carbon Ranges C12-C28	192	100	*	200	96 0	75-125	
Carbon Ranges C28-C35	ND	10 0	**	0 00		75-125	
Total Hydrocarbons	424	10 0	**	400	106	75-125	
Surrogate 1-Chlorooctane	53 1		mg/kg	50 0	106	70-130	
Surrogate 1-Chlorooctadecane	54 1		"	50 0	108	70-130	
Calibration Check (EB72312-CCV1)				Prepared 02/23	/07 Analyzed 02	2/24/07	
Carbon Ranges C6-C12	240		mg/kg wet			80-120	
Carbon Ranges C12-C28	220		**			80-120	
Total Hydrocarbons	460		19			80-120	
Surrogate 1-Chlorooctane	62 0		mg/kg	50 0	124	70-130	
Surrogate 1-Chlorooctadecane	61 4		"	50.0	123	70-130	

Environmental Lab of Texas

A Xenco Laboratories Company

Project Cotton Draw BLM

Project Number 2005-00237
Project Manager Daniel Bryant

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB72312 - Solvent Extraction (GC)	_									
Matrix Spike (EB72312-MS1)	Sour	rce: 7B23006	-01	Prepared ()2/23/07 Ai	nalyzed 02	/24/07			
Carbon Ranges C6-C12	609	10 0	mg/kg dry	543	ND	112	75-125			
Carbon Ranges C12-C28	518	100	**	543	ND	95 4	75-125			
Carbon Ranges C28-C35	ND	100	"	0 00	ND		75-125			
Total Hydrocarbons	1130	10 0	н	1090	ND	104	75-125			
Surrogate 1-Chlorooctane	52.2		mg/kg	50.0		104	70-130			
Surrogate: 1-Chlorooctadecane	54.3		n	50.0		109	70-130			
Matrix Spike Dup (EB72312-MSD1)	Sour	rce: 7B23006	-01	Prepared ()2/23/07 Aı	nalyzed 02	/24/07			
Carbon Ranges C6-C12	588	100	mg/kg dry	543	ND	108	75-125	3 64	20	
Carbon Ranges C12-C28	543	100		543	ND	100	75-125	4.71	20	
Carbon Ranges C28-C35	ND	100	н	0 00	ND		75-125		20	
Total Hydrocarbons	1130	10.0	**	1090	ND	104	75-125	0 00	20	
Surrogate 1-Chlorooctane	62.4		mg/kg	50.0	-	125	70-130			
Surrogate 1-Chlorooctadecane	59 6		"	50 0		119	70-130			
Batch EB72406 - EPA 5030C (GC) Blank (EB72406-BLK1)	<u></u>			Prepared &	Analyzed	02/24/07				
Benzene	ND	0 00100	mg/kg wet							
Toluene	ND	0 00100	"							
Ethylbenzene	ND	0 00100	n							
Xylene (p/m)	ND	0 00100								
•	ND ND	0 00100 0 00100	н							
Xylene (p/m) Xylene (o) Surrogate a,a,a-Trifluorotoluene			" ug/kg	50.0		838	75-125			
Xylene (o) Surrogate a.a.a-Triftuorotoluene	ND			50.0 50 0		83 8 84 8	75-125 75-125			
Xylene (o)	ND 41 9		ug/kg	50 0	: Analyzed	848				
Xylene (o) Surrogate a.a.a-Triftuorotoluene Surrogate 4-Bromofluorobenzene LCS (EB72406-BS1)	ND 41 9		ug/kg	50 0	Analyzed	848				
Xylene (o) Surrogate a.a.a-Trifluorotoluene Surrogate 4-Bromofluorobenzene LCS (EB72406-BS1) Benzene	ND 41 9 42 4	0 00100	ug/kg "	50 0 Prepared &	Analyzed	848 02/24/07	75-125			
Xylene (0) Surrogate a,a,a-Trifluorotoluene Surrogate 4-Bromofluorobenzene	ND 41 9 42 4	0.00100	ug/kg "	50 0 Prepared & 0 0500	. Analyzed	848 02/24/07 93 6	75-125 80-120			
Xylene (o) Surrogate a.a.a-Trifluorotoluene Surrogate 4-Bromofluorobenzene LCS (EB72406-BS1) Benzene Toluene Ethylbenzene	ND 41 9 42 4 0 0468 0 0419	0.00100 0.00100 0.00100	ug/kg "	50 0 Prepared & 0 0500 0 0500	. Analyzed	84 8 02/24/07 93 6 83 8	75-125 80-120 80-120			
Xylene (o) Surrogate a.a.a-Trifluoroioluene Surrogate 4-Bromofluorobenzene LCS (EB72406-BS1) Benzene Toluene	ND 41 9 42 4 0 0468 0 0419 0 0420	0.00100 0.00100 0.00100 0.00100	ug/kg " mg/kg wet "	50 0 Prepared & 0 0500 0 0500 0 0500	Analyzed	848 02/24/07 93 6 83 8 84 0	75-125 80-120 80-120 80-120			
Xylene (o) Surrogate a,a,a-Trifluoroioluene Surrogate 4-Bromofluorobenzene LCS (EB72406-BS1) Benzene Toluene Ethylbenzene Xylene (p/m)	ND 41 9 42 4 0 0468 0 0419 0 0420 0 0863	0.00100 0.00100 0.00100 0.00100 0.00100	ug/kg " mg/kg wet "	50 0 Prepared & 0 0500 0 0500 0 0500 0 100	Analyzed	848 02/24/07 93 6 83 8 84 0 86.3	80-120 80-120 80-120 80-120			

Environmental Lab of Texas

A Xenco Laboratories Company

Project Number Cotton Draw BLM 2005-00237

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Organics by GC - Quality Control

Analyte	Danile	Reporting	11	Spike	Source	0/PEC	%REC	ממס	RPD Limit	Notes	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	ivotes	
Batch EB72406 - EPA 5030C (GC)											
Calibration Check (EB72406-CCV1)				Prepared &	Analyzed	02/24/07					
Benzene	45 4		ug/kg	50 0		90 8	80-120				
Toluene	42 6		n	50 0		85 2	80-120				
Ethylbenzene	42 3		Ħ	50 0		84 6	80-120				
Xylene (p/m)	88 4		**	100		88 4	80-120				
Xylene (o)	40 7		**	50 0		81 4	80-120				
Surrogate a,a,a-Trifluorotoluene	42 9		"	50 0		85 8	75-125				
Surrogate 4-Bromofluorobenzene	413		,,	50 0		82 6	75-125				
Matrix Spike (EB72406-MS1)	Sou	rce: 7B23011	-05	Prepared (02/24/07 A	.nalyzed: 02	2/26/07				
Benzene	0 108	0.00200	mg/kg dry	0 137	ND	78 8	80-120			N	
Toluene	0 0927	0 00200	"	0 137	ND	67 7	80-120			N	
Ethylbenzene	0 0851	0 00200	"	0 137	ND	62 1	80-120			N	
Xylene (p/m)	0 179	0 00200	"	0 274	ND	65 3	80-120			N	
Xylene (o)	0 0809	0 00200	,	0 137	ND	59 1	80-120			N	
Surrogate a,a,a-Trifluorotoluene	33 4		ug/kg	50 0		66 8	75-125			S-DU	
Surrogate 4-Bromofluorobenzene	36 6		"	50 0		73 2	75-125			S-DU	
Matrix Spike Dup (EB72406-MSD1)	Sou	rce: 7B23011	-05	Prepared 02/24/07 Analyzed 02/26/07							
Benzene	0 111	0 00200	mg/kg dry	0 137	ND	81 0	80-120	2 75	20		
Toluene	0 0945	0 00200		0 137	ND	69 0	80-120	1 90	20	N	
Ethylbenzene	0 0884	0 00200		0 137	ND	64 5	80-120	3 79	20	N	
Xylene (p/m)	0 182	0 00200	H.	0 274	ND	66 4	80-120	1 67	20	N	
Xylene (o)	0 0790	0 00200	**	0 137	ND	57 7	80-120	2 40	20	N	
Surrogate a.a,a-Trifluorotoluene	35 2		ug/kg	50 0		70 4	75-125			S-DU	
Surrogate 4-Bromofluorobenzene	36 7		"	50 0		73 4	75-125			S-DU	
Batch EB72605 - Solvent Extraction (GC)											
Blank (EB72605-BLK1)				Prepared (02/26/07 A	nalyzed 0	2/28/07				
Carbon Ranges C6-C12	ND	10 0	mg/kg wet			. ,			····		
Carbon Ranges C12-C28	ND	10 0	"								
Carbon Ranges C28-C35	ND	10 0	17								
Total Hydrocarbons	ND	10 0	e e								
Surrogate 1-Chlorooctane	51.4		mg/kg	50.0		103	70-130				
Surrogate 1-Chlorooctadecane	588		n	50 0		118	70-130				

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Organics by GC - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB72605 - Solvent Extraction (GC)										· <u>-</u> -
LCS (EB72605-BS1)				Prepared &	k Analyzed	02/26/07				
Carbon Ranges C6-C12	553	100	mg/kg wet	500		111	75-125			
Carbon Ranges C12-C28	473	100	**	500		94 6	75-125			
Carbon Ranges C28-C35	ND	10 0	"	0.00			75-125			
Total Hydrocarbons	1030	100	"	1000		103	75-125			
Surrogate 1-Chlorooctane	60 8		mg/kg	50 0		122	70-130			
Surrogate 1-Chlorooctadecane	55 3		"	50 0		111	70-130			
Calibration Check (EB72605-CCV1)				Prepared	02/26/07 A	nalyzed. 0	2/27/07			
Carbon Ranges C6-C12	236		mg/kg	250		94.4	80-120			
Carbon Ranges C12-C28	248		**	250		99 2	80-120			
Total Hydrocarbons	485		*	500		97 0	80-120			
Surrogate 1-Chloroociane	64 3		n	50 0		129	70-130			
Surrogate 1-Chloroociadecane	64.9		"	50 0		130	70-130			
Matrix Spike (EB72605-MS1)	Sou	rce: 7B26001	-01	Prepared	02/26/07 A	nalyzed 0	2/28/07			
Carbon Ranges C6-C12	601	100	mg/kg dry	530	ND	113	75-125			
Carbon Ranges C12-C28	494	100	н	530	25 5	88 4	75-125			
Carbon Ranges C28-C35	ND	100	"	0 00	24 1		75-125			
Total Hydrocarbons	1090	100		1060	496	98 2	75-125			
Surrogate 1-Chlorooctane	56 3		mg/kg	50.0		113	70-130			
Surrogate 1-Chloroociadecane	548		"	50 0		110	70-130			
Matrix Spike Dup (EB72605-MSD1)	Sou	rce: 7B26001	-01	Prepared	02/26/07 A	nalyzed 0	2/28/07			
Carbon Ranges C6-C12	599	100	mg/kg dry	530	ND	113	75-125	0 00	20	
Carbon Ranges C12-C28	482	10 0	**	530	25 5	86 1	75-125	2 64	20	
Carbon Ranges C28-C35	ND	10 0	"	0 00	24 1		75-125		20	
Total Hydrocarbons	1080	100	"	1060	49 6	97 2	75-125	1 02	20	
Surrogate 1-Chlorooctane	548		mg/kg	50 0		110	70-130			
Surrogate 1-Chlorooctadecane	54 1		,,	50 0		108	70-130			

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager. Daniel Bryant Fax (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Lımit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch I	EB72401	- General Pr	eparation (Prep)
---------	---------	--------------	------------------

Blank (EB72401-BLK1)			Prepared 02/23/07 Analyzed 02/2	24/07	
% Solids	99 9	%			
Duplicate (EB72401-DUP1)	Source: 7E	323003-01	Prepared 02/23/07 Analyzed 02/2	24/07	
% Solids	87 7	%	89 9	2 48	20
Duplicate (EB72401-DUP2)	Source: 7E	323008-06	Prepared 02/23/07 Analyzed 02/2	24/07	
% Solids	93.9	%	94 1	0 213	20

Plains All American EH & S
Project Number
Midland TX, 79706-4476
Project Manager

Cotton Draw BLM
2005-00237
Daniel Bryant
Fax (432) 687-4914
Daniel Bryant

Notes and Definitions

S-DUP	Duplicate analysis confirmed surrogate failure due to matrix effects
S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect
M8	The MS and/or MSD were below the acceptance limits See Blank Spike (LCS)
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By: Date:

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

3/1/2007

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

Page 13 of 13

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ken Dutton			PAGE 01 O	F 01										_		Pro	ject	Nan	ne: <u>C</u>	0	TTC	N E	ORA	W	BLM	1					_
	Company Name	Basin Environmental S	ervice T	echnolo	gies, LLC														Pro)ect	t#: <u>2</u>	200	5-0	023	7								
	Company Address:	P. O. Box 301														_		P	roje	ct L	o c : <u>E</u>	dd	y Co	ount	y, NI	۷ſ							
	City/State/Zip:	Lovington, NM 88260						_												PO	#: F	244	D.	. Bŋ	/ant								
	Telephone No:	(505) 441-2124				Fax No:		(50)	4) 3	98-1 ₋	129						Rer	nort	Fon	mat		X)	Stan	daro	ı		TF	RRE		П	NPD	ES	
	Sampler Signature:	$\frac{1}{2}$	ton			e-mail:	-)ba		env	v.c	<u>om</u>	* <u></u>		,	,		.,,,,,,	_		.		-	•				_			
(îab use	only)					•	•															TC	LP:	Ana	alyze	Foi	_	_	_		\dashv		
ORDE		8										0					Mate		m I			TOT	AL:		\downarrow	┈┼	X					72 hrs	
ONDE	1 (102300	3 D	\top	T	<u> </u>		П	_		rese	valic	n & F	FOR	Conta	iners		Matr		8015B	1006	}		١	₹ Se			8260					24, 48,	
AB # (lab use only)	27799	₩ CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	otal #. of Containers	tae	HNO	HCI	4,SO ₄	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Studge GW = Groundwater S=So#Solfd	NP≂Non-Potable Specify Other	418.1 8015M	۲	Cations (Ca, Mg, Na, K)	Antons (Cl. SO4, Alkalinity)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg	Volatões	Semwolatiles	BTEX 8021B/5030 or BTEX RCI	200	Y.O.Y.W.			-Schedule)	Standard TAT
-01		LR SURFACE		 " -	22 Feb 07	0945	Œ.	Ĕ 1	X	-		_	-	_	-	Ť	<u>ှိ ့</u> SOI	_	×		Ť	1	"		-	-	X	+	\dagger	+-		_	X X
-05		D/T 6'	- 	 	22 Feb 07	1000	H	1	X		_	1	7		7	1	SOI		X		+	1	寸	7	1	_	x	†	\top	T	H	_	X
-03		D/T 10'	1	1	22 Feb 07	1015		1	х			_		7	1	1	SOI	\neg	х	\exists	1	7	寸	\neg	_	_	x	T	\top		П	$\overline{}$	X
o 4		D/T 15'	1		22 Feb 07	1030		1	х								SOI	L	х			1			1	_	x	T	\top	T		\exists	X
-05	W EXCV F	LR SURFACE			22 Feb 07	1100		1	Х								SOI	L	Х								x	${\mathbb T}$					Х
-0(e	W	D/T 5'			22 Feb 07	1115		1	х								SOI	L_	X								x	floor					X
-07	w	D/T 10'		<u> </u>	22 Feb 07	1130		1	х								SOL	L	х								x			L			X
-06	W	D/T 15'		ļ	22 Feb 07	1145		1	х		_		_		\perp	_[SOI	L	Х	\perp	4	_	_	_	_	\perp	x	\perp	\bot	┷~	Ш	_	X
				ļ					<u> </u>					4	4	_				4	_	4	4	_	4	4	_	+	\downarrow	\bot	\sqcup	_	
Special	Instructions:			<u> </u>					<u> </u>	L.,			J				····	لــ			Labo Sam	ple.	Gốn	tain	ers li	itac	7	上經				I Neg	
Relinguis Relinguis Relinguis	Dutton shed by:	Date 23 FCBØ Date Date	7 07	ime Ime	Received by: Received by: Received by ELC	HI.									<i>3</i> 3	Dai FE Dai	<u> 108</u>	Q	Time	שכ	Cust Sam	ody ody ple by S	sea sea Sea Han amp	ontai ils or ils or ils or ile NC er?	ner(s r cor slive left	tair ler(red Rep IPS	ner(s) (s)	PÜĞ AZA		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		N N N N N N N N e Sta	
Jo	1)	23FEB U		04	haenis			<u>_</u>							2-(07		ر با ا		Tem	per	ātur	èΰρ	ốn R	lece	ipt:		[. c	3		•C	

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

ient: Plains				
ate/ Time: 2/23/07 13:04				
161D#. 7623				
itials.				
<u> </u>				
Sample Receipt	Checklist			00 - m4 lui4i-la
1 Temperature of container/ cooler?	(Yes)	No	1.0 0	Client Initials
2 Shipping container in good condition?	(Yes)	No	(
3 Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
	⊘Yes	No	Not Present	
4 Custody Seals intact on sample bottles/ container? 5 Chain of Custody present?	Z(es)	No	NOLFICSOIL	
6 Sample instructions complete of Chain of Custody?	Yes	No		
7 Chain of Custody signed when relinquished/ received?	₹S)	No		
	YES	No	ID written on Cont./ L	id
8 Chain of Custody agrees with sample label(s)? 9 Container label(s) legible and intact?		No	Not Applicable	iu
10 Sample matrix/ properties agree with Chain of Custody?	Yes	No	Not Applicable	
11 Containers supplied by ELOT?	¥es →	No		
12 Samples in proper container/ bottle?	(Es	No	See Below	
13 Samples properly preserved?		No	See Below	
14 Sample bottles intact?	Yes	No	See pelow	
†15 Preservations documented on Chain of Custody?	/Yes	No		
16 Containers documented on Chain of Custody?	Ves	No		
		No	Coe Polow	
f17 Sufficient sample amount for indicated test(s)? #18 All samples received within sufficient hold time?	Yes	No	See Below	
All Samples received within sufficient floid time?	Yes	No	See Below	
19 Subcontract of sample(s)?	(Yes)	No	Net Applicable	
20 VOC samples have zero headspace?	(Tes)	1 140	Not Applicable	
Contact: Contacted by:	mentation	-	Date/ Time:	
Regarding:				
				
Corrective Action Taken:				
				
Check all that Apply: See attached e-mail/ fax	<u></u>			
Client understands and wou	ld like to pro	ceed with	analysis	
Cooling process had begun	•		•	

Analytical Report

Prepared for:

Daniel Bryant
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Cotton Draw BLM
Project Number: 2005-00237
Location: Eddy County, NM

Lab Order Number: 7D11007

Report Date: 04/17/07

Project Number 2005-00237
Project Manager. Daniel Bryant

Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB - 8 5'	7D11007-01	Soil	04/05/07 10 38	04-11-2007 13 20
SB - 8 10'	7D11007-02	Soil	04/05/07 10 47	04-11-2007 13 20
SB - 8 15'	7D11007-03	Soil	04/05/07 10 59	04-11-2007 13 20
SB - 8 20'	7D11007-04	Soil	04/05/07 11 08	04-11-2007 13 20
SB - 8 25'	7D11007-05	Soil	04/05/07 11 21	04-11-2007 13 20
SB - 8 30'	7D11007-06	Soil	04/05/07 11 28	04-11-2007 13 20
SB - 7 20'	7D11007-07	Soil	04/05/07 13 45	04-11-2007 13 20
SB - 7 25'	7D11007-08	Soil	04/05/07 13 55	04-11-2007 13 20
SB - 7 30'	7D11007-09	Soil	04/05/07 14 08	04-11-2007 13 20
SB - 7 35'	7D11007-10	Soil	04/05/07 14 28	04-11-2007 13 20
SB - 6 5'	7D11007-11	Soil	04/10/07 09 56	04-11-2007 13.20
SB - 6 10'	7D11007-12	Soil	04/10/07 10.04	04-11-2007 13 20
SB - 6 15'	7D11007-13	Soil	04/10/07 10 15	04-11-2007 13 20
SB - 6 20'	7D11007-14	Soil	04/10/07 10 21	04-11-2007 13 20
SB - 6 25'	7D11007-15	Soil	04/10/07 10 37	04-11-2007 13 20
SB - 6 30'	7D11007-16	Soil	04/10/07 10 45	04-11-2007 13 20
SB -6 35'	7D11007-17	Soil	04/10/07 10 55	04-11-2007 13 20
SB -6 40'	7D11007-18	Soil	04/10/07 11 09	04-11-2007 13 20
SB -6 45'	7D11007-19	Soil	04/10/07 12 39	04-11-2007 13 20
SB -9 5'	7D11007-20	Soil	04/10/07 08 49	04-11-2007 13 20
SB -9 10'	7D11007-21	Soil	04/10/07 08 56	04-11-2007 13 20
SB -9 15'	7D11007-22	Soil	04/10/07 09 06	04-11-2007 13 20
SB -9 20'	7D11007-23	Soil	04/10/07 09 18	04-11-2007 13 20
SB -10 5'	7D11007-24	Soil	04/10/07 13 19	04-11-2007 13 20
SB -10 10'	7D11007-25	Soil	04/10/07 13 26	04-11-2007 13 20
SB -10 15'	7D11007-26	Soil	04/10/07 13 36	04-11-2007 13 20
SB -10 20'	7D11007-27	Soil	04/10/07 13 44	04-11-2007 13 20
SB -10 25'	7D11007-28	Soil	04/10/07 13.53	04-11-2007 13 20
SB -10 30'	7D11007-29	Soil	04/10/07 14 00	04-11-2007 13 20
SB - 10 35'	7D11007-30	Soil	04/10/07 14 08	04-11-2007 13 20
SB -10 40'	7D11007-31	Soil	04/10/07 14 27	04-11-2007 13 20

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant

Organics by GC

Environmental Lab of Texas

		Environ	mental La	b of To	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB - 8 5' (7D11007-01) Soil									
Benzene	1.84	0 100	mg/kg dry	100	ED71107	04/11/07	04/12/07	EPA 8021B	
Toluene	8.13	0 100	n	11	**	"	W	u	
Ethylbenzene	5.46	0 100	si .	**	**		11	n	
Xylene (p/m)	12.9	0 100	9		*	*	*	•	
Xylene (o)	8.78	0 100	"	"	**	•		**	
Surrogate a.a.a-Trifluorotoluene		186 %	75-12	25	"	"	"	n	S-0
Surrogate. 4-Bromofluorobenzene		129 %	75-12	?5	"	"	"	"	S-0
Carbon Ranges C6-C12	2720	100	mg/kg dry	1	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	4280	10 0	n	**	**	"	**	n	
Carbon Ranges C28-C35	189	100	"	"	ų	н	9	"	
Total Hydrocarbons	7190	100	н	*	n	н	н		
Surrogate: 1-Chlorooctane		124 %	70-13	80	"	"	"	rr .	
Surrogate: 1-Chlorooctadecane		156%	70-13	30	n	"	n	"	S-0-
SB - 8 10' (7D11007-02) Soil									
Benzene	0.0213	0 00200	mg/kg dry	2	ED71107	04/11/07	04/11/07	EPA 8021B	
Toluene	0.0389	0 00200	"	**	**	н	**	**	
Ethylbenzene	0.0139	0 00200	n	"	*	н	n	"	
Xylene (p/m)	0.0893	0 00200	n	н		**	11	o o	
Xylene (o)	0.0550	0 00200	**	w	**	"	"	v	
Surrogate a,a,a-Trifluorotoluene		119 %	75-12	25	"	"	,,	"	
Surrogate: 4-Bromofluorobenzene		113 %	75-12	?5	"	"	"	"	
Carbon Ranges C6-C12	53.3	100	mg/kg dry	ı	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	161	10 0	**	**	**	,	**	н	
Carbon Ranges C28-C35	21.3	100	19	H	e e	,	**	11	
Total Hydrocarbons	235	100	**	и	"	п			
Surrogate. 1-Chlorooctane		107 %	70-13	80	"	"	"	"	
Surrogate 1-Chlorooctadecane		116%	70-13	80	"	"	"	n	
SB - 8 15' (7D11007-03) Soil									
Benzene	0.00215	0 00200	mg/kg dry	2	ED71107	04/11/07	04/11/07	EPA 8021B	
Toluene	0.00233	0 00200	н	*	e	11	#	11	
Ethylbenzene	J [0.00128]	0.00200	17	"	n	"	и	w	
Xylene (p/m)	0.00681	0 00200	"	"	**		п	"	
Xylene (o)	0.00815	0 00200	"		#	**	н	,,	
Surrogate: a,a,a-Trifluorotoluene		93.2 %	75-12	?5	"	"	"	"	_
Surrogate 4-Bromofluorobenzene		960%	75-12	25	"	,,	"	"	
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	1	ED71603	04/16/07	04/16/07	EPA 8015M	

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax (432) 687-4914

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB - 8 15' (7D11007-03) Soil							 .		
Carbon Ranges C12-C28	38.1	10 0	mg/kg dry	1	ED71603	04/16/07	04/16/07	EPA 8015M	
Carbon Ranges C28-C35	J [1.92]	10 0	,,	"	**	Ħ	17	n	
Total Hydrocarbons	38.1	10.0		"	"	"	"		
Surrogate: 1-Chlorooctane		87.4 %	70-1	30	"	"	"	n	
Surrogate. 1-Chlorooctadecane		101 %	70-1	30	"	"	"	н	
SB - 8 20' (7D11007-04) Soil									
Benzene	ND	0 00200	mg/kg dry	2	ED71107	04/11/07	04/11/07	EPA 8021B	
Toluene	ND	0 00200	"	**	W	**	**	**	
Ethylbenzene	ND	0 00200	11	n	**	n		er.	
Xylene (p/m)	ND	0 00200	"	n	н	**	**	**	
Xylene (o)	ND	0 00200	"	**	**	n	•	н	
Surrogate. a,a,a-Trifluorotoluene		97.0 %	75-1	25	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.0 %	75-1	25	"	"	"	"	
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	1	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	14.8	10 0	*	4	"	"	*	н	
Carbon Ranges C28-C35	ND	100	"	н	19	н		W	
Total Hydrocarbons	14.8	10 0		*	n	**	**	**	
Surrogate: 1-Chlorooctane		86.6 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70-1	30	u	"	"	"	
SB - 8 25' (7D11007-05) Soil									
Benzene	J [0.00106]	0 00200	mg/kg dry	2	ED71107	04/11/07	04/11/07	EPA 8021B	
Toluene	ND	0.00200	**	n	**	п		H.	
Ethylbenzene	ND	0 00200	н	"	н	**		111	
Xylene (p/m)	ND	0 00200	н	"	•	•	•	11-	
Xylene (o)	ND	0 00200	17	**	**	н	,	н	
Surrogate: a,a,a-Trıfluorotoluene		103 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		85.6%	75-1	25	"	,,	"	"	
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	1	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10 0	W.	**	н	H	n	н	
Carbon Ranges C28-C35	ND	10 0	**	н	н	*	*	н	
Total Hydrocarbons	ND	10 0	"	**	**	"	"	11	
Surrogate: 1-Chlorooctane		88.8 %	70-1	30	,,	"	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1		"	"	"	"	

Environmental Lab of Texas

A Xenco Laboratories Company

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant

Organics by GC

Environmental Lab of Texas

Analyte	D agult	Reporting	Unite	D.L.	Б	ъ .		M. d. 1	.,
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB - 8 30' (7D11007-06) Soil									
Benzene	ND	0 00200	mg/kg dry	2	ED71107	04/11/07	04/11/07	EPA 8021B	
Toluene	ND	0 00200	**	"	"	н	н		
Ethylbenzene	ND	0 00200	"	"	H	"	**	н	
Xylene (p/m)	ND	0 00200	H	**	**	"	u		
Xylene (o)	ND	0 00200	"		"	н	"		
Surrogate: a,a,a-Trıfluorotoluene		968%	75-1	25	"	"	"	"	
Surrogate 4-Bromofluorobenzene		81.6%	75-1	25	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10 0	н	n	n	**	n	n	
Carbon Ranges C28-C35	ND	10 0	**	**	**	"	n	н	
Total Hydrocarbons	ND	10.0	"	"	11	н	н	n	
Surrogate: 1-Chlorooctane		80 2 %	70-1	30	"	n	"	"	
Surrogate: 1-Chlorooctadecane		94.0 %	70-1	30	"	n	"	"	
SB - 7 20' (7D11007-07) Soil									
Benzene	23.1	0 200	mg/kg dry	200	ED71108	04/11/07	04/12/07	EPA 8021B	
Toluene	65.3	0 200	**			**	"	u	
Ethylbenzene	27.7	0 200		11	*	"	"	n	
Xylene (p/m)	79.3	0 200	**	**	"			**	
Xylene (o)	33.5	0 200	**		**			**	
Surrogate: a,a,a-Trifluorotoluene		302 %	75-1	25	"	"	"	"	S-0
Surrogate: 4-Bromofluorobenzene		132 %	75-1	25	,,	"	"	"	S-t
Carbon Ranges C6-C12	10200	50 0	mg/kg dry	5	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	12000	50 0	"	**	n	*	"	п	
Carbon Ranges C28-C35	789	50.0	11	*	17	н	n	ч	
Total Hydrocarbons	23000	50 0	n		n	"	**	•	
Surrogate: 1-Chlorooctane		110 %	70-1	30	"	,,	"	"	S-0
Surrogate. 1-Chlorooctadecane		54.8 %	70-1	30	n	"	"	n	S-0
SB - 7 25' (7D11007-08) Soil									
Benzene	15.9	0 200	mg/kg dry	200	ED71108	04/11/07	04/12/07	EPA 8021B	
Toluene	44.9	0 200	"	*	н	**	17	9	
Ethylbenzene	19.5	0.200	"	*	*	**		W	
Xylene (p/m)	57.1	0 200	**	*	н		н	*	
Xylene (o)	23.5	0 200	**		"				
Surrogate: a,a,a-Trifluorotoluene		262 %	75-1	25	"	11	"	"	S-6
Surrogate. 4-Bromofluorobenzene		124 %	75-1	25	,,	"	"	,,	
Carbon Ranges C6-C12	6530	50.0	mg/kg dry	5	ED71306	04/13/07	04/13/07	EPA 8015M	

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax (432) 687-4914

Project Cotton Draw BLM

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB - 7 25' (7D11007-08) Soil									
Carbon Ranges C12-C28	7810	50.0	mg/kg dry	5	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C28-C35	658	50 0		н	rt	u	"	н	
Total Hydrocarbons	15000	50 0		11	9	+	**	**	
Surrogate 1-Chlorooctane	-	13.7 %	70-	130	,,	"	"	'n	S-0
Surrogate: 1-Chlorooctadecane		42.2 %	70-	130	"	"	"	u '	S-0
SB - 7 30' (7D11007-09) Soil									
Benzene	11.1	0 100	mg/kg dry	100	ED71108	04/11/07	04/12/07	EPA 8021B	
Toluene	34.5	0 100	"	"	11	**	**	**	
Ethylbenzene	15.3	0 100	"	**	**		*	"	
Xylene (p/m)	43.4	0 100	**	"	н	*		n	
Xylene (o)	21.2	0 100			"	#	**		
Surrogate: a,a,a-Trifluorotoluene		1310 %	75-	125	,,	"	"	"	S-0-
Surrogate 4-Bromofluorobenzene		136%	75-	125	"	"	"	Ħ	S-0-
Carbon Ranges C6-C12	6060	50 0	mg/kg dry	5	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	7260	50 0	**	"	"	"	"	n	
Carbon Ranges C28-C35	603	50 0	"	*	Ħ	•	**	11	
Total Hydrocarbons	13900	50 0	*	"	n	**	11	н	
Surrogate: 1-Chlorooctane		13.4 %	70-	130	n	"	"	"	S-00
Surrogate: 1-Chlorooctadecane		40.0 %	70-	130	"	"	"	n	S-06
SB - 735' (7D11007-10) Soil									
Benzene	1.47	0 100	mg/kg dry	100	ED71108	04/11/07	04/12/07	EPA 8021B	
Toluene	5.02	0.100	**	**	**	u		**	
Ethylbenzene	4.18	0.100	"	**	"	н	н	Ħ	
Xylene (p/m)	9.69	0 100	"	n	н	"	"	u u	
Xylene (o)	5.66	0 100	**		"	"	**	н	
Surrogate a,a,a-Trifluorotoluene		167 %	75-	125	"	"	"	"	S-0-
Surrogate: 4-Bromofluorobenzene		121 %	75-	125	"	n	n	,,	
Carbon Ranges C6-C12	4250	50 0	mg/kg dry	5	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	7970	50 0	v	н	"		*	11	
Carbon Ranges C28-C35	680	50 0	"	,,	"	"	"	n	
Total Hydrocarbons	12900	50 0		**	11	н	11	"	
Surrogate 1-Chlorooctane		36.2 %	70-	130	"	"	,,	"	S-00
Surrogate 1-Chlorooctadecane		514%	70-	130	"	"	"	"	S-00

Environmental Lab of Texas

A Xenco Laboratories Company

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant

Fax (432) 687-4914

Organics by GC Environmental Lab of Texas

1	n	Reporting	• •						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB - 65' (7D11007-11) Soil									
Benzene	4.35	0 100	mg/kg dry	100	ED71108	04/11/07	04/13/07	EPA 8021B	
Toluene	20.8	0 100	11	**	**	n	"	51	
Ethylbenzene	11.1	0 100	**	н	н	17	"	н	
Xylene (p/m)	28.7	0 100	17	"	"	"	п	n	
Xylene (o)	13.8	0 100	"	11	"		"	0	
Surrogate a.a,a-Trifluorotoluene		234 %	75-1	25	"	n	"	"	S-0
Surrogate: 4-Bromofluorobenzene		124 %	75-1	25	"	n	"	"	
Carbon Ranges C6-C12	4550	100	mg/kg dry	1	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	6970	10 0	н	n.		10	**	н	
Carbon Ranges C28-C35	177	100	0	**	"	н	*	**	
Total Hydrocarbons	11700	10 0	*	"	**	"	н	**	
Surrogate: 1-Chlorooctane		139 %	70-1	30	"	"	"	"	S-0-
Surrogate: 1-Chlorooctadecane		193 %	70-1	30	"	"	"	n	S-0-
SB - 6 10' (7D11007-12) Soil									
Benzene	8.30	0 100	mg/kg dry	100	ED71108	04/11/07	04/12/07	EPA 8021B	****
Toluene	28.9	0 100	**	**	**	**	"		
Ethylbenzene	12.5	0.100	**	*	11	ď	"	ŧ	
Xylene (p/m)	32.8	0 100		•	•	**	"	**	
Xylene (o)	17.3	0 100		11		н			
Surrogate a,a,a-Trifluorotoluene		1150 %	75-1	25	"	"	"	"	S-0
Surrogate: 4-Bromofluorobenzene		115 %	75-1	25	"	,,	"	"	
Carbon Ranges C6-C12	5870	50 0	mg/kg dry	5	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	7200	50 0	n	**	*	**	u	**	
Carbon Ranges C28-C35	637	50 0	"	•	u	н	•	**	
Total Hydrocarbons	13700	50 0	11	n	н	"	"	**	
Surrogate 1-Chlorooctane		12.8 %	70-1	30	n	n	"	"	S-0
Surrogate. 1-Chlorooctadecane		39.4 %	70-	30	"	n	"	"	S-0
SB - 6 15' (7D11007-13) Soil									
Benzene	6.93	0 100	mg/kg dry	100	ED71108	04/11/07	04/12/07	EPA 8021B	
Toluene	32.2	0 100	n	"	"	н	"	15	
Ethylbenzene	15.7	0 100	*	**		"		v	
Xylene (p/m)	44.6	0 100	"	11	**	n	**	"	
Xylene (o)	22.3	0 100	"		**	17		н	
Surrogate: a,a,a-Trifluorotoluene		1180 %	75-	125	"	n	"	"	S-0
Surrogate: 4-Bromofluorobenzene		129 %	75-1	25	"	"	"	"	S-0
Carbon Ranges C6-C12	12400	50 0	mg/kg dry	5	ED71306	04/13/07	04/13/07	EPA 8015M	

Environmental Lab of Texas

A Xenco Laboratories Company

Project Number 2005-00237

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyta	Result	Reporting	Here						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB - 6 15' (7D11007-13) Soil									
Carbon Ranges C12-C28	14900	50 0	mg/kg dry	5	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C28-C35	804	50 0	"	н	**	W	n	n.	
Total Hydrocarbons	28100	50 0	,,	"	н	"	R	4	
Surrogate. 1-Chlorooctane		35.6 %	70-	130	"	"	"	n	S-00
Surrogate· 1-Chlorooctadecane		62.0 %	70-	130	"	"	"	"	S-00
SB - 6 20' (7D11007-14) Soil									
Benzene	18.1	0.100	mg/kg dry	100	ED71108	04/11/07	04/12/07	EPA 8021B	
Toluene	50.3	0 100	"	n	*		"	**	
Ethylbenzene	20.9	0 100	"	n	n	**	н	н	
Xylene (p/m)	59.9	0 100	**	**	**		n	"	
Xylene (o)	25.4	0 100	"	*	*	H	п	**	
Surrogate: a,a,a-Trifluorotoluene		216%	75-	125	, "	n	"	"	S-04
Surrogate: 4-Bromofluorobenzene		146 %	75-	125	n	"	"	"	S-04
Carbon Ranges C6-C12	5740	10 0	mg/kg dry	1	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	6640	10 0	"	"	н	**	н	#	
Carbon Ranges C28-C35	195	10 0		"	n	**	н	**	
Total Hydrocarbons	12600	10 0	**	"		*	"	11	
Surrogate 1-Chlorooctane		162 %	70-	130	"	"	,,	"	S-04
Surrogate: 1-Chlorooctadecane		193 %	70-	130	"	"	"	"	S-04
SB - 6 25' (7D11007-15) Soil									
Benzene	12.6	0 100	mg/kg dry	100	ED71108	04/11/07	04/12/07	EPA 8021B	
Toluene	42.2	0 100	n	"	*	**	н	и	
Ethylbenzene	19.0	0.100	"		**	H	"	и	
Xylene (p/m)	53.9	0 100	н	**	,	•	"	**	
Xylene (o)	23.0	0 100		"	**	H	**	и	
Surrogate a,a,a-Trifluorotoluene		174 %	75-	125	,,	#	"	"	S-0-
Surrogate. 4-Bromofluorobenzene	,	131 %	75-	125	*	"	n	"	S-0-
Carbon Ranges C6-C12	9390	50 0	mg/kg dry	5	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	11200	50 0	11	"	"	н	•	**	
Carbon Ranges C28-C35	821	50.0	**		н		u		
Total Hydrocarbons	21400	50 0	н	**	**	"	**	**	
Surrogate: 1-Chlorooctane		23.8 %	70-	130	"	"	"	n	S-00
Surrogate. 1-Chlorooctadecane		51.8%	70-	130	"	"	"	"	S-06

Environmental Lab of Texas

A Xenco Laboratories Company

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Organics by GC Environmental Lab of Texas

		Environ							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB - 6 30' (7D11007-16) Soil									
Benzene	6.83	0 100	mg/kg dry	100	ED71108	04/11/07	04/12/07	EPA 8021B	
Toluene	27.0	0 100	"	**	*	*			
Ethylbenzene	13.6	0 100		*	*	н	"	n	
Xylene (p/m)	38.2	0 100	"	**	**	11	н	n	
Xylene (o)	16.0	0 100	17	**	11		9	н	
Surrogate: a,a,a-Trıfluorotoluene		286 %	75-1	25	"	n	"	"	S-0
Surrogate 4-Bromofluorobenzene		134 %	75-1	25	n	"	"	"	S-0-
Carbon Ranges C6-C12	5780	10 0	mg/kg dry	1	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	6690	10.0	"	**	**	•	"	н	
Carbon Ranges C28-C35	197	100	и	**	**		*	tr.	
Total Hydrocarbons	12700	10 0	"	11		"	"	#	
Surrogate [·] 1-Chlorooctane		162 %	70-1	30	"	,,	"	,,	S-0-
Surrogate: 1-Chlorooctadecane		193 %	70-1	30	"	"	n	"	S-0-
SB -6 35' (7D11007-17) Soil									
Benzene	14.6	0 100	mg/kg dry	100	ED71108	04/11/07	04/12/07	EPA 8021B	
Toluene	42.2	0 100	"		н	**	n	ff.	
Ethylbenzene	17.4	0 100	n	11	"	4	n	н	
Xylene (p/m)	50.7	0 100	"		11	Ħ	**	· ·	
Xylene (o)	21.0	0 100		"	н	"	n		
Surrogate [·] a.a.a-Trıfluorotoluene		188 %	75-1	25	n	"	"	"	S-0
Surrogate: 4-Bromofluorobenzene		146 %	75-1	25	"	"	"	"	S-0
Carbon Ranges C6-C12	6630	50 0	mg/kg dry	5	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	7800	50 0	**	•	н	н	**	"	
Carbon Ranges C28-C35	653	50 0	н	"	н	n	"	**	
Total Hydrocarbons	15100	50 0	11	н	"	n		н	
Surrogate [.] I-Chlorooctane		143%	70-1	30	"	"	"	"	S-0
Surrogate: 1-Chlorooctadecane		43.0 %	70-1	30	"	"	"	"	S-0
SB -6 40' (7D11007-18) Soil						<u></u>			
Benzene	16.7	0 100	mg/kg dry	100	ED71108	04/11/07	04/12/07	EPA 8021B	
Toluene	49.3	0.100	n	11	**	**	н	W.	
Ethylbenzene	20.2	0 100	"	**	**	"	n	**	
Xylene (p/m)	57.1	0 100	u	н			*		
Xylene (o)	24.1	0 100	**	**	*	11	"	N .	
Surrogate a,a.a-Trifluorotoluene		193 %	75-1	25	"	"	"	"	S-0
Surrogate: 4-Bromofluorobenzene		129 %	75-1	25	n	"	"	n	S-0-

Environmental Lab of Texas

A Xenco Laboratories Company

Project Number 2005-00237
Project Manager. Daniel Bryant

Fax (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB -6 40' (7D11007-18) Soil	<u> </u>			5.000					
Carbon Ranges C12-C28	9080	50 0	mg/kg dry	5	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C28-C35	729	50 0	н	**		n	v	**	
Total Hydrocarbons	17900	50 0	11	**	,,	,	*	н	
Surrogate. I-Chlorooctane		172%	70-1	130	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	"	n	S-0
Surrogate: 1-Chlorooctadecane		45.0 %	70-1	130	"	"	"	"	S-0
SB -6 45' (7D11007-19) Soil									
Benzene	0.468	0 0250	mg/kg dry	25	ED71108	04/11/07	04/13/07	EPA 8021B	
Toluene	1.93	0 0250	"	н	**	*	11	**	
Ethylbenzene	1.46	0 0250	"	**	n	W.	*	**	
Xylene (p/m)	4.79	0.0250	11	**	**	11	"	**	
Xylene (o)	1.95	0 0250	"	н	H	**	н	"	
Surrogate: a,a,a-Trıfluorotoluene		150 %	75-1	125	"	"	n	"	S-0
Surrogate 4-Bromofluorobenzene		120 %	75-1	125	n	"	"	"	
Carbon Ranges C6-C12	672	10.0	mg/kg dry	i	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	1190	100	"	"	"	и	11	"	
Carbon Ranges C28-C35	120	10 0	**	н	"	**	н	**	
Total Hydrocarbons	1980	10 0	"	11	н	11	er .	**	
Surrogate: 1-Chlorooctane		105 %	70-1	130	"	"	"	n	
Surrogate 1-Chlorooctadecane		122 %	70-1	130	"	n.	"	"	
SB -9 5' (7D11007-20) Soil									
Benzene	0.726	0 0500	mg/kg dry	50	ED71108	04/11/07	04/12/07	EPA 8021B	
Toluene	3.59	0 0500	"	**	"	"	"	н	
Ethylbenzene	1.93	0 0500	**	н	n	"	u	н	
Xylene (p/m)	6.03	0 0500	"	**	**	n	u	п	
Xylene (o)	3.15	0 0500	"	#				"	
Surrogate: a,a,a-Trıfluorotoluene		161 %	75-1	125	"	"	n	"	S-0
Surrogate. 4-Bromofluorobenzene		123 %	75-1	125	"	"	"	"	
Carbon Ranges C6-C12	902	10 0	mg/kg dry	1	ED71306	04/13/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	1830	100	**	**	**	n	n	•	
Carbon Ranges C28-C35	163	100		"	11	•	н	n	
Total Hydrocarbons	2900	10 0		н	н	n		11	
Surrogate: 1-Chlorooctane		104 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		127 %	70-1	130	n	"	"	"	

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 27

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Organics by GC

Environmental Lab of Texas

<u> </u>				an or re				. <u> </u>	
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB -9 10' (7D11007-21) Soil								<u> </u>	
Benzene	8.85	0 100	mg/kg dry	100	ED71108	04/11/07	04/13/07	EPA 8021B	
Toluene	24.3	0 100	**	n	*	"	"	11	
Ethylbenzene	9.14	0 100	н	19	*		*	n	
Xylene (p/m)	27.5	0 100	"	•	•	н	"	n	
Xylene (o)	13.7	0 100	n	"	"	n	0	**	
Surrogate: a,a,a-Trifluorotoluene		296 %	75-1	125	"	"	"	n	S-0
Surrogate: 4-Bromofluorobenzene		132 %	75-1	125	"	"	"	"	S-0
Carbon Ranges C6-C12	4580	10 0	mg/kg dry	1	ED71202	04/12/07	04/12/07	EPA 8015M	
Carbon Ranges C12-C28	5550	100	**	19	**	"	**	н	
Carbon Ranges C28-C35	205	10.0	"	н	,,	,	**	e e	
Total Hydrocarbons	10300	100	н	19		n	•	н	
Surrogate: 1-Chlorooctane		136%	70-1	130	"	"	"	"	S-0
Surrogate 1-Chlorooctadecane		174 %	70-1	130	"	"	"	n	S-0
SB -9 15' (7D11007-22) Soil									
Benzene	13.0	0 100	mg/kg dry	100	ED71108	04/11/07	04/13/07	EPA 8021B	
Toluene	34.1	0 100	**	11	**	11	**	н	
Ethylbenzene	14.4	0 100	•	*	"	*		**	
Xylene (p/m)	39.0	0 100	н	11	•	*	**	"	
Xylene (o)	16.9	0 100	11	н	**	*	*	н	
Surrogate: a,a,a-Trifluorotoluene		163 %	75-1	125	"	,	п	"	S-0
Surrogate: 4-Bromofluorobenzene		133 %	75-1	125	"	"	"	"	S-0
Carbon Ranges C6-C12	5590	10 0	mg/kg dry	1	ED71202	04/12/07	04/12/07	EPA 8015M	
Carbon Ranges C12-C28	6200	10 0	н	u	н	**	**	"	
Carbon Ranges C28-C35	207	10 0	**	"	"	**	*	•	
Total Hydrocarbons	12000	10 0	u				"	"	
Surrogate 1-Chlorooctane		139 %	70-	130	"	"	"	"	S-0
Surrogate: 1-Chlorooctadecane		181 %	70-1	130	"	"	"	"	S-0
SB -9 20' (7D11007-23) Soil									
Benzene	33.1	0 100	mg/kg dry	100	ED71108	04/11/07	04/13/07	EPA 8021B	
Toluene	79.8	0 100	"		**	19	17	n	
Ethylbenzene	29.9	0 100	"	"	"	**	**	U	
Xylene (p/m)	82.9	0 100	"	"	п	**	**	**	
Xylene (o)	35.3	0.100	n	,,	0	11	11	0	
Surrogate a,a,a-Trifluorotoluene		318 %	75-	125	"	"	n	"	S-0
Surrogate. 4-Bromofluorobenzene		168 %	75-1	125	"	"	"	"	S-0
Carbon Ranges C6-C12	13600	50 0	mg/kg dry	5	ED71202	04/12/07	04/12/07	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

A Xenco Laboratories Company

Page 10 of 27

Project Number 2005-00237
Project Manager. Daniel Bryant

Fax (432) 687-4914

Organics by GC

Environmental Lab of Texas

_		Environ	mentai L	ab of 10	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB -9 20' (7D11007-23) Soil									
Carbon Ranges C12-C28	13900	50 0	mg/kg dry	5	ED71202	04/12/07	04/12/07	EPA 8015M	
Carbon Ranges C28-C35	906	50.0	"	•	**	**	и		
Total Hydrocarbons	28400	50 0	u	"	"	n	н	u.	
Surrogate: 1-Chlorooctane		28 0 %	70-	130	,,	"	"	"	S-0
Surrogate. 1-Chlorooctadecane		58.4 %	70-	130	"	n	"	н	S-0
SB -10 5' (7D11007-24) Soil									
Benzene	3.07	0 0500	mg/kg dry	50	ED71108	04/11/07	04/13/07	EPA 8021B	
Toluene	10.3	0 0500	11	н	*	•	"	**	
Ethylbenzene	6.13	0 0500	"		" 1	•	н	**	
Xylene (p/m)	19.3	0 0500	17	,,		H	n	**	
Xylene (o)	8.92	0 0500	"		H	"	11	41	
Surrogate. a,a,a-Trifluorotoluene		161 %	75-	125	"	"	"	"	S-0-
Surrogate: 4-Bromofluorobenzene		162 %	75-	125	"	"	"	"	S-0-
Carbon Ranges C6-C12	4110	50 0	mg/kg dry	5	ED71202	04/12/07	04/12/07	EPA 8015M	
Carbon Ranges C12-C28	10200	50 0	"	**	,,	н	11	**	
Carbon Ranges C28-C35	845	50 0	"		**	**	н	**	
Total Hydrocarbons	15200	50 0	"	,,	н	•	**	n	
Surrogate: 1-Chlorooctane		27.2 %	70-	130	n	"	n	"	S-00
Surrogate: 1-Chlorooctadecane		48.0 %	70-	130	"	"	"	n	S-0
SB -10 10' (7D11007-25) Soil									
Benzene	6.97	0 100	mg/kg dry	100	ED71108	04/11/07	04/13/07	EPA 8021B	
Toluene	20.1	0.100	u	8	**	н	*	н	
Ethylbenzene	11.4	0 100	н	**	*	"	*	**	
Xylene (p/m)	35.3	0 100	"	u	"	н	"	*	
Xylene (o)	15.7	0 100	"	"	н	"	**		
Surrogate. a,a,a-Trifluorotoluene		156 %	75-	125	"	"	"	"	S-0
Surrogate: 4-Bromofluorobenzene		135 %	75-	125	"	"	"	"	S-0
Carbon Ranges C6-C12	6730	50 0	mg/kg dry	5	ED71202	04/12/07	04/12/07	EPA 8015M	
Carbon Ranges C12-C28	9820	50 0	u	"	"	*	**	**	
Carbon Ranges C28-C35	820	50 0	" "	*		**	Ħ	n	
Total Hydrocarbons	17400	50 0	n	17			н		
Surrogate. I-Chlorooctane		16.4 %	70-	130	"	"	"	"	S-0
Surrogate: 1-Chlorooctadecane		47.6 %	70-	130	"	"	"	"	S-0

Environmental Lab of Texas

A Xenco Laboratories Company

0

•

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Organics by GC

Environmental Lab of Texas

Analyta	Danule	Reporting	1 Insta	D.1	n-: •	D 1	A	Made 1	N T = 2
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB -10 15' (7D11007-26) Soil								······································	
Benzene	11.9	0.100	mg/kg dry	100	ED71108	04/11/07	04/13/07	EPA 8021B	
Toluene	33.4	0 100	н	**	•	"	"	19	
Ethylbenzene	18.2	0 100	*	**	19	*	**	*	
Xylene (p/m)	52.3	0 100	"	"	H		н	**	
Xylene (o)	23.3	0 100	"		h h		"		
Surrogate a,a,a-Trifluorotoluene		202 %	75-1	25	"	"	"	n	S-0-
Surrogate: 4-Bromofluorobenzene		145 %	75-1	25	*	"	"	"	S-0
Carbon Ranges C6-C12	10100	50 0	mg/kg dry	5	ED71202	04/12/07	04/12/07	EPA 8015M	
Carbon Ranges C12-C28	13700	50.0	**	"	*	17	H	Ħ	
Carbon Ranges C28-C35	923	50 0	**	•	**	*	u	"	
Total Hydrocarbons	24700	50 0	n	**	n	"		u .	
Surrogate: 1-Chlorooctane		22.6 %	70-1	30	"	"	"	"	S-0
Surrogate 1-Chlorooctadecane		57.2 %	70-1	30	"	,,	"	n	S-0
SB -10 20' (7D11007-27) Soil									
Benzene	8.79	0 100	mg/kg dry	100	ED71304	04/13/07	04/13/07	EPA 8021B	
Toluene	21.0	0 100	n	•	n	"	"	"	
Ethylbenzene	11.7	0 100	n	"	**	"	"	44	
Xylene (p/m)	32.6	0 100	"	"	**	н	н	*	
Xylene (o)	15.6	0 100	н	11		**	10	**	
Surrogate [,] a,a,a-Trifluorotoluene		1330 %	75-1	125	"	"	"	u	S-0
Surrogate: 4-Bromofluorobenzene		127 %	75-1	25	"	n	"	"	S-0
Carbon Ranges C6-C12	7040	50 0	mg/kg dry	5	ED71202	04/12/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	10100	50 0	u	11	n	4	11	n	
Carbon Ranges C28-C35	846	50 0	"	**	**	11		н	
Total Hydrocarbons	18000	50 0	**	п	**	11		н	
Surrogate [,] 1-Chlorooctane		15.9 %	70-1	130	"	,,	"	n	S-0
Surrogate. 1-Chlorooctadecane		47.4 %	70-1	130	#	"	"	rr	S-0
SB -10 25' (7D11007-28) Soil									
Benzene	2.02	0 0500	mg/kg dry	50	ED71304	04/13/07	04/13/07	EPA 8021B	
Toluene	7.01	0 0500	"	ч	"	#	**	"	
Ethylbenzene	5.15	0 0500	"	"	н	"	*	н	
Xylene (p/m)	14.8	0 0500	n	"	n	"	,,	er.	
Xylene (o)	7.31	0.0500	"	"	#	н	11		
Surrogate: a,a,a-Trifluorotoluene		226 %	75-	125	"	,,	"	"	S-0
Surrogate. 4-Bromofluorobenzene		123 %	75-1	125	"	"	"	"	
Carbon Ranges C6-C12	3660	50 0	mg/kg dry	5	ED71202	04/12/07	04/13/07	EPA 8015M	

Environmental Lab of Texas

A Xenco Laboratories Company

•

•

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Environ	mentai L	au oi i e	EXAS				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB -10 25' (7D11007-28) Soil									
Carbon Ranges C12-C28	6490	50 0	mg/kg dry	5	ED71202	04/12/07	04/13/07	EPA 8015M	
Carbon Ranges C28-C35	704	50.0	n	•	**	n		"	
Total Hydrocarbons	10900	50 0	Ħ	*	"	n	ч	н	
Surrogate. 1-Chlorooctane		9.40 %	70-1	130	"	H	11	"	S-(
Surrogate 1-Chlorooctadecane		37 8 %	70-1	130	"	"	rr .	u	S-0
SB -10 30' (7D11007-29) Soil									
Benzene	3.11	0 100	mg/kg dry	100	ED71304	04/13/07	04/13/07	EPA 8021B	
Toluene	10.8	0 100	•	**		"	*	o o	
Ethylbenzene	7.93	0 100	•	**	•		11	н	
Xylene (p/m)	23.4	0 100	"	"	0	и	*	n	
Xylene (o)	10.8	0 100	•	"		"	"	"	
Surrogate: a,a,a-Trıfluorotoluene		218 %	75-1	125	"	"	"	n	S-0
Surrogate 4-Bromofluorobenzene		111%	75-1	125	"	"	"	"	
Carbon Ranges C6-C12	4400	50 0	mg/kg dry	5	ED71202	04/12/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	6930	50 0	**	**	er er	"	11	**	
Carbon Ranges C28-C35	720	50 0	**	н	44	н	9	и	
Total Hydrocarbons	12000	50 0	**	"	**	n	*	n	
Surrogate: 1-Chlorooctane		28.6 %	70-1	130		#	"	"	S-0
Surrogate: 1-Chlorooctadecane		396%	70-1	130	"	"	, ,	"	S-0
SB -10 35' (7D11007-30) Soil									
Benzene	2.29	0.100	mg/kg dry	100	ED71304	04/13/07	04/13/07	EPA 8021B	
Toluene	9.29	0 100	"	"	**	**	**	н	
Ethylbenzene	6.73	0 100	*	**	**		"	ų	
Xylene (p/m)	18.8	0 100		н	49	"	н	**	
Xylene (o)	8.76	0.100	**	н	**	**	a	•	
Surrogate: a,a,a-Trifluorotoluene		191 %	75-	125	"	,,	"	"	S-0
Surrogate: 4-Bromofluorobenzene		114 %	75-1	125	"	"	"	n	
Carbon Ranges C6-C12	3650	10 0	mg/kg dry	1	ED71202	04/12/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	5940	10 0	**	"	•	*	•	n	
Carbon Ranges C28-C35	228	10.0	н	n	"	"		n	
Total Hydrocarbons	9820	10 0	"	#	**	•	n	"	
Surrogate 1-Chlorooctane		139 %	70-1	130	"	"	"	n	S-6
Surrogate: 1-Chlorooctadecane		175 %	70-1	130	"	"	"	n,	S-0

Environmental Lab of Texas

A Xenco Laboratories Company

0

Project Cotton Draw BLM

Project Number. 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Organics by GC

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB -10 40' (7D11007-31) Soil									
Benzene	7.97	0 200	mg/kg dry	200	ED71304	04/13/07	04/13/07	EPA 8021B	
Toluene	22.8	0 200	•		"	"	**	w	
Ethylbenzene	12.9	0 200	n		*	п	"	**	
Xylene (p/m)	36.2	0.200	u u		,	"	n	11	
Xylene (o)	15.8	0.200	n		"	"	·	"	
Surrogate a.a.a-Trifluorotoluene		208 %	75-1	25	"	"	"	,,	S-0-
Surrogate: 4-Bromofluorobenzene		107 %	75-1	25	"	"	"	"	
Carbon Ranges C6-C12	6520	50 0	mg/kg dry	5	ED71202	04/12/07	04/13/07	EPA 8015M	
Carbon Ranges C12-C28	9320	50 0	H	,,	"	**	н	st.	
Carbon Ranges C28-C35	829	50.0	**	п	**	**	"	н	
Total Hydrocarbons	16700	50 0	"			•	"	и	
Surrogate: 1-Chlorooctane		15.8 %	70-1	30	"	"	"	n	S-06
Surrogate 1-Chlorooctadecane		45.8 %	70-1	30	"	"	n	"	S-06

Project Cotton Draw BLM

Project Number 2005-00237
Project Manager Daniel Bryant

Fax: (432) 687-4914

$\label{lem:conditional} \textbf{General Chemistry Parameters by EPA / Standard Methods}$

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB - 8 5' (7D11007-01) Soil									
% Moisture	7.0	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB - 8 10' (7D11007-02) Soil									
% Moisture	22.5	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB - 8 15' (7D11007-03) Soil									
% Moisture	19.1	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB - 8 20' (7D11007-04) Soil									
% Moisture	8.5	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB - 8 25' (7D11007-05) Soil									
% Moisture	9.2	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB - 8 30' (7D11007-06) Soil									
% Moisture	8.5	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB - 7 20' (7D11007-07) Soil									
% Moisture	10.3	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB - 7 25' (7D11007-08) Soil									
% Moisture	5.9	0.1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB - 730' (7D11007-09) Soil									
% Moisture	6.0	0.1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB - 7 35' (7D11007-10) Soil									
% Moisture	6.4	0.1	%	ì	ED71206	04/11/07	04/12/07	% calculation	
SB - 65' (7D11007-11) Soil									
% Moisture	6.9	0 1	%	ı	ED71206	04/11/07	04/12/07	% calculation	

Environmental Lab of Texas

A Xenco Laboratories Company

Project Cotton Draw BLM

Project Number. 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB - 6 10' (7D11007-12) Soil									
% Moisture	5.7	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB - 6 15' (7D11007-13) Soil							_		
% Moisture	3.8	0 1	%	i	ED71206	04/11/07	04/12/07	% calculation	
SB - 6 20' (7D11007-14) Soil									
% Moisture	6.5	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB - 6 25' (7D11007-15) Soil									
% Moisture	6.9	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB - 6 30' (7D11007-16) Soil									
% Moisture	7.2	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB -6 35' (7D11007-17) Soil									
% Moisture	6.0	0 1	%	l	ED71206	04/11/07	04/12/07	% calculation	
SB -6 40' (7D11007-18) Soil									
% Moisture	7.5	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB -6 45' (7D11007-19) Soil									
% Moisture	9.4	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB -9 5' (7D11007-20) Soil									
% Moisture	6.2	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB -9 10' (7D11007-21) Soil	_								
% Moisture	6.1	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB -9 15' (7D11007-22) Soil									
% Moisture	5.7	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 16 of 27

Project Cotton Draw BLM

Project Number: 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB -9 20' (7D11007-23) Soil	,								
% Moisture	5.8	0.1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB -10 5' (7D11007-24) Soil									
% Moisture	6.1	0 1	%	ı	ED71206	04/11/07	04/12/07	% calculation	
SB -10 10' (7D11007-25) Soil					_				
% Moisture	4.7	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB -10 15' (7D11007-26) Soil					_				
% Moisture	6.1	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB -10 20' (7D11007-27) Soil									
% Moisture	6.7	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB -10 25' (7D11007-28) Soil									
% Moisture	5.5	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB -10 30' (7D11007-29) Soil									
% Moisture	7.0	0.1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB -10 35' (7D11007-30) Soil									
% Moisture	5.6	0 1	%	1	ED71206	04/11/07	04/12/07	% calculation	
SB -10 40' (7D11007-31) Soil									
% Moisture	7.2	0.1	%	1	ED71206	04/11/07	04/12/07	% calculation	

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch ED71107 - EPA 5030C (GC)											
Blank (ED71107-BLK1)	Prepared & Analyzed 04/11/07										
Benzene	ND	0 00100	mg/kg wet								
Coluene Coluene	ND	0 00100	н				,				
Ethylbenzene	ND	0 00100								•	
Xylene (p/m)	ND	0 00100	"								
Xylene (o)	ND	0.00100	"			· ·					
Surrogate a,a,a-Trifluorotoluene	52 6		ug/kg	50 0		105	75-125				
Surrogate 4-Bromofluorobenzene	417		"	50 0		83 4	75-125				
LCS (ED71107-BS1)				Prepared &	Analyzed	04/11/07					
Benzene	0 0501	0 00100	mg/kg wet	0 0500		100	80-120				
Гоluene	0.0472	0.00100	"	0.0500		94 4	80-120				
Ethylbenzene	0 0460	0.00100	n	0 0500		92 0	80-120				
Xylene (p/m)	0 0892	0 00100		0 100		89 2	80-120				
Xylene (o)	0 0487	0 00100	**	0 0500		97 4	80-120				
Surrogate a,a,a-Trifluorotoluene	549		ug/kg	50 0		110	75-125				
Surrogate 4-Bromofluorobenzene	446		"	50 0		89 2	75-125				
Calibration Check (ED71107-CCV1)				Prepared. 0	4/11/0 7 A	nalyzed 04	1/12/07				
Benzene	53 8		ug/kg	50.0		108	80-120				
Toluene	49 9		n	50 0		99.8	80-120				
Ethylbenzene	49 4		**	50 0		98 8	80-120				
Xylene (p/m)	89 4		"	100		89 4	80-120				
Xylene (o)	51 1		"	50 0		102	80-120				
Surrogate a,a,a-Trifluorotoluene	56.4		"	50 0		113	75-125				
Surrogate 4-Bromofluorobenzene	448		"	50 0		89 6	75-125				
Matrix Spike (ED71107-MS1)	Sou	Source: 7D11005-01			Prepared: 04/11/07 Analyzed 04/12/07						
Benzene	0 0935	0 00200	mg/kg dry	0 103	ND	90 8	80-120				
Foluene	0 0864	0 00200	"	0 103	ND	83 9	80-120				
Ethylbenzene	0 0879	0 00200	n	0 103	ND	85.3	80-120				
Xylene (p/m)	0 161	0 00200	H	0 206	ND	78 2	80-120				
Xylene (o) .	0 0891	0 00200	*	0 103	ND	86 5	80-120				
Surrogate a,a,a-Trifluorotoluene	46 4		ug/kg	50 0		928	75-125				
Surrogate 4-Bromofluorobenzene	44 1		"	50 0		88 2	75-125				

Environmental Lab of Texas

0

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 18 of 27

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager. Daniel Bryant Fax (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte		Reporting		Spike	Source		%REC		RPD		
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch ED71107 - EPA 5030C (GC)											
Matrix Spike Dup (ED71107-MSD1)	Source: 7D11005-01			Prepared (04/11/07 A						
Benzene	0 0958	0 00200	mg/kg dry	0.103	ND	93.0	80-120	2 39	20		
l'oluene	0 0908	0 00200	"	0 103	ND	88 2	80-120	5 00	20		
Ethylbenzene	0 0947	0 00200	*	0 103	ND	919	80-120	7.45	20		
Xylene (p/m)	0 171	0 00200	e e	0.206	ND	83 0	80-120	5 96	20		
Xylene (o)	0 0946	0 00200	**	0.103	ND	91 8	80-120	5 95	20		
Surrogate a,a,a-Trifluorotoluene	49 5		ug/kg	50 0		99 0	75-125				
Surrogate 4-Bromofluorobenzene	43.4		"	50 0		86 8	75-125				
Batch ED71108 - EPA 5030C (GC)					***						
Blank (ED71108-BLK1)				Prepared. (04/11/07 A	nalyzed 04	/12/07				
Benzene	ND	0 00100	mg/kg wet								
Toluene	ND	0 00100									
Ethylbenzene	ND	0 00100									
Xylene (p/m)	ND	0 00100	"								
Xylene (o)	ND	0 00100	**								
Surrogate a,a,a-Trifluorotoluene	53 5		ug/kg	50 0		107	75-125				
Surrogate 4-Bromofluorobenzene	419		"	50 0		838	75-125				
LCS (ED71108-BS1)	Prepared 04/11/07 Analyzed 04/12/07										
Benzene	0 0484	0 00100	mg/kg wet	0 0500		96 8	80-120				
Foluene	0 0457	0 00100	#	0 0500		91.4	80~120				
Ethylbenzene	0 0472	0 00100	н .	0 0500		94 4	80-120				
Kylene (p/m)	0 0873	0 00100	"	0 100		87.3	80-120				
Xylene (o)	0 0482	0 00100	"	0 0500		96 4	80-120				
Surrogate a,a,a-Trifluorotoluene	51 1		ug/kg	50 0		102	75-125				
Surrogate 4-Bromofluorobenzene	43 7		"	50 0		874	75-125				

Project Cotton Draw BLM

Project Number 2005-00237
Project Manager Daniel Bryant

Fax: (432) 687-4914

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source	%REC	%REC	RPD	RPD Lumit	Notes
	Result	Limit	Units	Level	Result	70KEC	Limits	KLD	Limit	ivotes
atch ED71108 - EPA 5030C (GC)									****	
.CS Dup (ED71108-BSD1)				Prepared (04/11/07 Ar	nalyzed 04	/13/07			1
enzene	0 0488	0 00100	mg/kg wet	0 0500		97 6	80-120	0 823	20	
oluene	0 0481	0 00100	**	0.0500		96 2	80-120	5 12	20	
Ethylbenzene	0 0469	0 00100	н	0 0500		93 8	80-120	0 638	20	
Xylene (p/m)	0.0881	0 00100		0 100		88 1	80-120	0.912	20	
Xylene (o)	0 0480	0 00100	**	0 0500		96.0	80-120	0416	20	
Surrogate a,a,a-Trifluorotoluene	52 6		ug/kg	50 0		105	75-125			
Surrogate 4-Bromofluorobenzene	41 5		"	50.0		83 0	75-125			
Calibration Check (ED71108-CCV1)				Prepared (04/11/07 At	nalyzed 04	/13/07			
Benzene	53 1		ug/kg	50.0		106	80-120			
Toluene	50 1		•	50 0		100	80-120			
Ethylbenzene	52 1		*	50 0		104	80-120			
Xylene (p/m)	94 1		"	100		94 1	80-120			
Xylene (o)	51 9		0	50 0		104	80-120			
Surrogate a,a,a-Trifluorotoluene	53 7		"	50 0		107	75-125		h	
Surrogate 4-Bromofluorobenzene	418		"	50 0		83 6	75-125			
Matrix Spike (ED71108-MS1)	Source: 7D11007-19			Prepared 04/11/07 Analyzed 04/13/07						
Benzene	1 75	0 0250	mg/kg dry	1 38	0 468	92 9	80-120			
Toluene	2 86	0 0250	**	1 38	1 93	67 4	80-120			
Ethylbenzene	2 67	0 0250	н	1 38	1 46	87 7	80-120			
Xylene (p/m)	6 65	0 0250	*	2 76	4 79	67 4	80-120			
Xylene (o)	3 03	0 0250	**	1 38	1.95	78 3	80-120			
Surrogate a,a,a-Trifluorotoluene	72 2		ug/kg	50 0		144	75-125			
Surrogate 4-Bromofluorobenzene	58 4		"	50 0		117	75-125			
Batch ED71202 - Solvent Extraction (GC)										
Blank (ED71202-BLK1)	Prepared & Analyzed 04/12/07									
Carbon Ranges C6-C12	ND	10 0	mg/kg wet							
Carbon Ranges C12-C28	ND	10 0	**							
Carbon Ranges C28-C35	ND	10 0	*							
Total Hydrocarbons	ND	100	**							
Surrogate 1-Chlorooctane	46 3		mg/kg	50 0		92 6	70-130			
Surrogate 1-Chlorooctadecane	52 3		n	50 0		105	70-130			

Environmental Lab of Texas

A Xenco Laboratories Company

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

land.co	n .	Reporting	• •	Spike	Source	0/850	%REC	ppe	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED71202 - Solvent Extraction (GC)										
LCS (ED71202-BS1)	_ _		· 	Prepared &	& Analyzed	04/12/07				
Carbon Ranges C6-C12	600	10 0	mg/kg wet	500		120	75-125			
Carbon Ranges C12-C28	467	10.0	н	500		93 4	75-125			
Carbon Ranges C28-C35	ND	10 0	n	0 00			75-125			
Total Hydrocarbons	1070	100	н	1000		107	75-125			
Surrogate 1-Chlorooctane	519		mg/kg	50 0		104	70-130			
Surrogate 1-Chlorooctadecane	512		"	50 0		102	70-130			
Calibration Check (ED71202-CCVI)				Prepared (04/12/07 Aı	nalyzed 04	1/13/07			
Carbon Ranges C6-C12	250		mg/kg	250		100	80-120			
Carbon Ranges C12-C28	263		н	250		105	80-120			
Total Hydrocarbons	513		н	500		103	80-120			
Surrogate 1-Chlorooctane	517		"	50 0		103	70-130			
Surrogate 1-Chlorooctadecane	52 3		"	50 0		105	70-130			
Matrix Spike (ED71202-MS1)	Sou	rce: 7D12005	5-01	Prepared (04/12/07 Aı	nalyzed 04	l/13/07			
Carbon Ranges C6-C12	659	10 0	mg/kg dry	538	ND	122	75-125		···	
Carbon Ranges C12-C28	557	100	n	538	170	100	75-125			
Carbon Ranges C28-C35	ND	100	n	0 00	ND		75-125			
Total Hydrocarbons	1220	10 0	н	1080	170	111	75-125			
Surrogate 1-Chlorooctane	58.9		mg/kg	50 0		118	70-130			
Surrogate 1-Chlorooctadecane	56 0		"	50.0		112	70-130			
Matrix Spike Dup (ED71202-MSD1)	Sou	rce: 7D12005	5-01	Prepared (04/12/07 Aı	nalyzed 04	V13/07			
Carbon Ranges C6-C12	638	10 0	mg/kg dry	538	ND	119	75-125	2 49	20	
Carbon Ranges C12-C28	657	100	"	538	170	119	75-125	174	20	
Carbon Ranges C28-C35	ND	100	"	0 00	ND		75-125		20	
Total Hydrocarbons	1290	10 0	**	1080	170	118	75-125	611	20	
Surrogate 1-Chlorooctane	53 5		mg/kg	50 0		107	70-130			
Surrogate 1-Chlorooctadecane	50 2		n	50 0		100	70-130			

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

	ъ	Reporting		Spike	Source	0/856	%REC	D DD	RPD	Mad
Analyte	Result	Lımit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED71304 - EPA 5030C (GC)										
Blank (ED71304-BLK1)				Prepared &	Analyzed	04/13/07				
Benzene	ND	0 00100	mg/kg wet							
Toluene	ND	0 00100	H							
Ethylbenzene	ND	0 00100								
Xylene (p/m)	ND	0 00100	**							
Xylene (o)	ND	0 00100	**							
Surrogate a,a,a-Trifluorotoluene	55 7		ug/kg	50 0		111	75-125			
Surrogate 4-Bromofluorobenzene	42 9		"	50 0		85 8	75-125			
LCS (ED71304-BS1)				Prepared &	Analyzed	04/13/07				
Benzene	0 0498	0 00100	mg/kg wet	0.0500		99 6	80-120			
Toluene	0 0475	0 00100	**	0 0500		95 0	80-120			
Ethylbenzene	0 0439	0.00100	**	0 0500		878	80-120			
Xylene (p/m)	0 0869	0 00100	n	0 100		86 9	80-120			
Xylene (o)	0 0471	0 00100	"	0 0500		94.2	80-120			
Surrogate a,a,a-Trifluorotoluene	55 3		ug/kg	50 0		111	75-125			
Surrogate 4-Bromofluorobenzene	40 9		"	50 0		818	75-125			
Calibration Check (ED71304-CCV1)				Prepared &	Analyzed.	04/13/07				
Benzene	44 6		ug/kg	50 0		89 2	80-120			
Toluene	41 3		"	50 0		82 6	80-120			
Ethylbenzene	40 3		"	50 0		80 6	80-120			
Xylene (p/m)	8 18		"	001		818	80-120			
Xylene (o)	42 2		•	50 0		84.4	80-120			
Surrogate a,a,a-Trifluorotoluene	46 0		"	50 0		92 0	75-125			
Surrogate 4-Bromofluorobenzene	40 9		"	50 0		818	75-125			
Matrix Spike (ED71304-MS1)	Sou	rce: 7D12010)-01	Prepared &	z Analyzed	04/13/07				
Benzene	0 0975	0 00200	mg/kg wet	0 100	ND	97.5	80-120			
Toluene	0 0941	0 00200	**	0 100	ND	94 1	80-120			
Ethylbenzene	0 0963	0 00200	11	0 100	ND	96 3	80-120			
Xyłene (p/m)	0 177	0 00200	**	0 200	0 00186	87 6	80-120			
Xylene (o)	0 0979	0.00200	**	0 100	ND	97 9	80-120			
Surrogate a,a,a-Trifluorotoluene	52 5		ug/kg	50.0		105	75-125			
Surrogate 4-Bromofluorobenzene	45 9		"	50 0		918	75-125			

Project Cotton Draw BLM

Project Number 2005-00237
Project Manager Daniel Bryant

Fax (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED71304 - EPA 5030C (GC)									·=	
Matrix Spike Dup (ED71304-MSD1)	Sou	rce: 7D12010)-01	Prepared &	& Analyzed	04/13/07				
Benzene	0 0897	0 00200	mg/kg wet	0 100	ND	89.7	80-120	8 33	20	
Toluene	0 0848	0 00200		0 100	ND	84 8	80-120	104	20	
Ethylbenzene	0 0873	0 00200	**	0 100	ND	87 3	80-120	9 80	20	
Xylene (p/m)	0 165	0 00200	w	0 200	0 00186	816	80-120	7 09	20	
Xylene (o)	0 0878	0 00200	•	0 100	ND	87 8	80-120	10 9	20	
Surrogate a,a,a-Trifluorotoluene	48 6		ug/kg	50 0		972	75-125			
Surrogate 4-Bromofluorobenzene	417		"	50 0		83 4	75-125			
Batch ED71306 - Solvent Extraction (GC)										
Blank (ED71306-BLK1)				Prepared &	& Analyzed	04/13/07				
Carbon Ranges C6-C12	ND	100	mg/kg wet							
Carbon Ranges C12-C28	ND	100	и							
Carbon Ranges C28-C35	ND	100	"							
Total Hydrocarbons	ND	10 0	**							
Surrogate 1-Chlorooctane	42 1	_	mg/kg	50 0		84 2	70-130			
Surrogate 1-Chlorooctadecane	539		"	50 0		108	70-130			
LCS (ED71306-BS1)				Prepared &	& Analyzed	04/13/07				
Carbon Ranges C6-C12	615	10 0	mg/kg wet	500		123	75-125			
Carbon Ranges C12-C28	484	10 0	**	500		96 8	75-125			
Carbon Ranges C28-C35	ND	100	н	0 00			75-125			
Total Hydrocarbons	1100	10 0	н	1000		110	75-125		4	
Surrogate 1-Chlorooctane	54 3		mg/kg	50 0	-,-	109	70-130			
Surrogate 1-Chlorooctadecane	56 2		"	50 0		112	70-130			
LCS Dup (ED71306-BSD1)				Prepared &	& Analyzed	04/13/07				
Carbon Ranges C6-C12	614	100	mg/kg wet	500		123	75-125	0 00	20	
Carbon Ranges C12-C28	483	10 0	**	500		96 6	75-125	0.207	20	
Carbon Ranges C28-C35	ND	100	"	0 00			75-125		20	
Total Hydrocarbons	1100	10.0	*	1000		110	75-125	0 00	20	
Company 1 Chl.	520			50.0		100	70 120			

mg/kg

50 0

500

530

536

Surrogate. 1-Chlorooctane

Surrogate 1-Chlorooctadecane

106

107

70-130

70-130

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager. Daniel Bryant Fax (432) 687-4914

Organics by GC - Quality Control

Environmental Lab of Texas

Angles		Reporting		Spike	Source	0/5-0	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED71306 - Solvent Extraction (GC)										
Calibration Check (ED71306-CCV1)				Prepared &	Analyzed	04/13/07				
Carbon Ranges C6-C12	254		mg/kg	250		102	80-120			
Carbon Ranges C12-C28	268		н	250		107	80-120			
Total Hydrocarbons	522		*	500		104	80-120			
Surrogate 1-Chlorooctane	52 1		п	50.0		104	70-130			
Surrogate 1-Chlorooctadecane	541		"	50 0		108	70-130			
Batch ED71603 - Solvent Extraction (GC)				-		-				
Blank (ED71603-BLK1)				Prepared &	Analyzed	04/16/07				
Carbon Ranges C6-C12	ND	10 0	mg/kg wet	•						
Carbon Ranges C12-C28	ND	100	"							
Carbon Ranges C28-C35	ND	100	"							
Total Hydrocarbons	ND	10 0	н							
Surrogate 1-Chlorooctane	43 4		mg/kg	50 0		868	70-130			
Surrogate 1-Chlorooctadecane	56 5		"	50 0		113	70-130			
LCS (ED71603-BS1)				Prepared &	Analyzed	04/16/07				
Carbon Ranges C6-C12	623	100	mg/kg wet	500		125	75-125			
Carbon Ranges C12-C28	494	100	"	500		98 8	75-125			
Carbon Ranges C28-C35	ND	100		0 00			75-125			
Total Hydrocarbons	1120	100	•	1000		112	75-125			
Surrogate 1-Chlorooctane	52.8		mg/kg	50 0		106	70-130			
Surrogate 1-Chlorooctadecane	576		"	50 0		115	70-130			
Calibration Check (ED71603-CCV1)				Prepared &	Analyzed	04/16/07				
Carbon Ranges C6-C12	260		mg/kg wet	250		104	80-120			
Carbon Ranges C12-C28	271		"	250		108	80-120			
Total Hydrocarbons	531		n	500		106	80-120			
Surrogate 1-Chlorooctane	52 7		mg/kg	50.0		105	70-130			

50 0

545

Surrogate 1-Chlorooctadecane

109

70-130

Project: Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED71603 - Solvent Extraction (GC)										
Matrix Spike (ED71603-MS1)	Sou	rce: 7D11007	'-03	Prepared &	2 Analyzed	04/16/07				
Carbon Ranges C6-C12	711	10 0	mg/kg dry	618	ND	115	75-125			
Carbon Ranges C12-C28	761	10.0	•	618	38 1	117	75-125			
Total Hydrocarbons	1490	10.0	"	1240	38 1	117	75-125			
Surrogate 1-Chlorooctane	52 6		mg/kg	500		105	70-130			
Surrogate 1-Chlorooctadecane	50 3		"	50 0		101	70-130			
Matrix Spike Dup (ED71603-MSD1)	Sou	rce: 7D11007	'-03	Prepared &	k Analyzed	04/16/07				
Carbon Ranges C6-C12	720	10 0	mg/kg dry	618	ND	117	75-125	1 72	20	
Carbon Ranges C12-C28	790	100	"	618	38 1	122	75-125	4 18	20	
Total Hydrocarbons	1530	100	н	1240	38 1	120	75-125	2 53	20	
Surrogate 1-Chlorooctane	528		mg/kg	50 0		106	70-130			
Surrogate 1-Chlorooctadecane	50 5		"	50.0		101	70-130			

Project Cotton Draw BLM

Project Number 2005-00237 Project Manager Daniel Bryant Fax (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED71206 - General Preparation (Prep)										
Blank (ED71206-BLK1)				Prepared 0	4/11/07 A	nalyzed 04	/12/07			
% Solids	100		%							2
Duplicate (ED71206-DUP1)	Sou	rce: 7D09006-	01	Prepared 0	4/11/07 A	nalyzed 04	/12/07			
% Solids	89 0		%		88 4			0 676	20	
Duplicate (ED71206-DUP2)	Sou	rce: 7D11005-	12	Prepared 0	04/11/07 A	nalyzed 04	/12/07			
% Solids	95 5		%		95.6			0.105	20	
Duplicate (ED71206-DUP3)	Sou	rce: 7D11007-	17	Prepared 0	4/11/07 A	nalyzed 04	/12/07			
% Solids	93 1		%		94 0			0 962	20	

Plains All American EH & S	Project	Cotton Draw BLM	Fax (432) 687-4914
1301 S County Road 1150	Project Number	2005-00237	
Midland TX, 79706-4476	Project Manager	Daniel Bryant	

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect
M8	The MS and/or MSD were below the acceptance limits See Blank Spike (LCS)
J	Detected but below the Reporting Limit, therefore, result is an estimated concentration (CLP J-Flag).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matnx Spike
Dup	Duplicate

	Brent Burron		
Report Approved By:	The state of the s	Date:	4/17/2007

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 27 of 27

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ken Dutton	PAGE 01 O	F 04		********			······································	*******					Proj	ect f	Van	ie: <u>C</u>	OT	ON	DR	<u>AW</u>	BL	M				******			
	Company Name	Basin Environmental Se	rvice T	echnol	ogies, LLC	A.J.W. (1987)		··········	·////				************	**********				Pro	ect	#: _2	005	002	37	*********	edenkiden odnen			,			*****
	Company Address	P. O. Box 301			*************************************				·····				····		***********	····	Pi	ojec	t Lo	oc: E	ddy	Cou	1ty, !	чм						***********	****
	City/State/Zip:	Lovington, NM 88260	********************	·	***************************************					******		***********	**********	**********		****			PO	#: <u>F</u>	ΆΑ -	D. E	ryar	ıt	oues-of-third-bloom		F LC O				
	Telephone No:	(505) 441-2124				Fax No		(50	5) 3!	96-1	429					Rei	port	Forn	nat:	[3	Sta	anda	rd		От	TRR	P	Г] NP	DES	
	Sampler Signature	Sow Dia	ton)		e-mail:		kd	utt	on(<u>@b</u>	asi	ner	V.C	om		**	SMIND LWIN					***************************************	W0785245404			2442004400/2	~12000000000000000000000000000000000000		t engentista	
(lab use	only)																	********	100 1774 0	*****	TCLP	erganismin.	naiyz	te Fo	-	-		pages process	_	hrs	
ORDER	1#: 7D1100	7						ĭ	Pre	eser\	atio	n &	f of C	onta	iners	Mati	rix	œ T		<u> </u>	TOTAL	+	П		X					48, 72	
LAB # (lab use only)	2.9	86400	Date Sampled	Time Sampled	ield Fillered	at # of Containers 4 025		£.	Ō			Ŝ	Other (Soucify)	» Orluking Water St.» Sludg » Groundwater S.» Soli/Sol	Non-Potable Specify Other	418 1 (8015M	305	Cations (Ca, Mg, Na, K)	SAR / ESP / CEC	Metals. As Ag Ba Cd Cr Pb Hg Se	Volatiles	Sernivolatiles	BTEX 8021B/5030 or BTEX 8260		NORM		en en en en en en en en en en en en en e	e-Schedule) 24,	Standard TAT		
01		D CODE B-8 5'	O Beginning Depth	رم Ending Depth		1038	- 13.	1	-	I	=	I	2	2 3	ž °	§ SO		X	+	Ö .	100	ž	Š		Σ X	ig i	2	+	+	E.	Σ X
07		3-8 10'	5'	10'	5-Apr-07 5-Apr-07	1038		1				\vdash	\dashv	+	+	50		<u>^</u>	\dashv	+	+	╁	H		Ĥ	+	+	+	+	H	^ X
03		3-8 15'	10'	15'	5-Apr-07	1059		1					1	T	1	soi		X	1	+	\dagger	T			x	+	1	+	1		х
04		3-8 20'	15'	20'	5-Apr-07	1108		1	х					1	┪	SO		x	7	1	┪	T			x	T	1	1	1		Х
05	SE	3-8 25'	20'	25'	5-Apr-07	1121		1	Х							soi	IL	х	T	1	1	T		1	х		\top	T		П	х
06	SE	3-8 30'	25'	30,	5-Apr-07	1128		1	х					T		so	IL	Х		T					х		T		T		х
ΓQ	SE	3-7 20'	15'	20'	5-Apr-07	1345		1	х							so	IL.	х							х						Х
08	SE	3-7 25'	50,	25'	5-Apr-07	1355		1	Х							so	IL	X							x						X
09	SE	3-7 30'	25'	30.	5-Apr-07	1408		1	х					\perp		so	<u>IL</u>	х			\perp				x	_					х
10	<u> </u>	3-7 35'	30.	35'	5-Apr-07	1428		1	х					\perp		so		x	-			Ļ	Ш	<u></u>	x	\perp		丄	<u></u>	Ш	X
Special I	nstructions: neg-by:	Date	T	me me	Received by	the arrange of the transfer of the state of	···•••	·****			******	***************************************			ī)ate	T	Tune		Sami VOC Labe	rator ole Co s Free is on	ontai e of l cont	ners Head ainer	Intac Ispac r(s)	ct? ce?			000)))	N N N	
Rélinquis	en) Dutter	11APR@7	Ĭ	<u>ಶಹ</u> me	Lynas Received by	Klacki	ile	XX	<u>(</u>					4	t	.07 Date		100 Time		Cust Sam	ody si xdy si ole Hi y San y Cou	éals and l	un çi Deliv	bole <i>i</i> ered	(s)		f	edEx	} } : Loi	N N N ne St	
Relinguis ZY17	da Blackaz	ext 4.11.07	1.2	me Z.O	Received by EL	01. <u>. MC</u>	27	<u>ا</u>	₩÷)-07		fime ਂਟ੍ਰਦ	- 1.	Tem	perati	ire L	pon	Rece	aipt.	94 10 wwys	essandadora	2,1)	,c	

12600 West I-20 East Odessa, Texas 79765 Phone. 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ken Dutton		PAGE 02 0	F 04		••••••					······································			_ P	rojec	t Na	ne:	CO.	TTO	N C	RA	W B	LM						
	Company Name	Basin Environment	tal Service	Technol	ogies, LLC					**************						•••	Р	rojec	t#:_	200	5-00)237	7						******	
	Company Address.	P. O. Box 301		***********	WWW.com.com.com.com.com.com.com.com.com.com			*******	********							-	Proj	ect L	oc:	Edd	у Со	unty	y, NM	<u> </u>	**********					,,,,,,, ,
	City/State/Zip:	Lovington, NM 882	60	***********			A			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·····				******	-		PO) #: <u>_</u>	PAA	- D.	Bry	ant			,,				
	Telephone No:	(505) 441-2124	*******************************			Fax No:		(50	5) 3!	96-14	129				••••	Repo	ort Fo	rmat	: [X	Stan	dard			TRI	RP] NP	DES	
	Sampler Signature:	Kon Du	itton	,		e-mail.		<u>kd</u>	utt	on(<u>Db</u> :	asi	nen	v.cc	<u>om</u>	<i>Made to the total and the tot</i>	pam	**********	rances and	e) nto tec to o d		agozana	n formanen	miganerona	***************************************	encompact from	er et autonomissier.	deen acomposition and a second	edinomentă	
lab use o	only)		1														-	********	-04000000	TC	AND DESCRIPTIONS	Ana	lyze I	For	T			and the same of th	1 2	
ORDER	45.							22	700		or to a	- 0	i of C			Matrix		7		TOT		1	1	X	4 1				48, 72 hrs	
only)	T.		ipth T		Đ	æ		4024	,	3561		7 · O 9	7010	Uirca	ileis	St. = Shudg S = Soll/Sol	Specify other	1X 10	, Na, K)	, Alkatimity)	\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Metals As Ag Ba Cd C/ Pb Hg Se	manage state des des sales parties and principal	80218/503d or BTEX 8260					o-Schedule) 24,	
LAB# (leb use	FIEL	D CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total # of Containers	łce	HNO;	HO	H ₂ SO _t	NaC!!	None None	Other (Speody)	DW. Drinking Water GW. Groundwater	NP Non-Potable	TX 1005	Cations (Ca, Mg.	Anions (C) SO4, Alkalınıry)	SAR / ESP / CE	Metals As Ag 15	Votatiles Semvotatiles	BTEX 80218/50	RCI	NO.R.M			RUSH TAT (Pre-Schedule)	Standard FAT
١١	S	B-6 5'	0	5'	10-Apr-07	0956		1	Х							SOIL	. x							Х						Х
12	SE	3-6 10'	5'	10'	10-Apr-07	1004		1	Х							SOIL	. x							X					$oldsymbol{ol{ol{ol}}}}}}}}}}}}}}}}$	х
13	SE	3-6 15'	10	15'	10-Apr-07	1015	Ш	1	х							SOIL	. ×							X		11			lacksquare	X
14	SE	3-6 20'	15	20.	10-Apr-07	1021		1	Х							SOIL	<u>. x</u>							<u> </u>		igsquare			lacksquare	Х
15	SE	3-6 25'	20	25'	10-Apr-07	1037		1	Х		\perp				_	SOIL	<u>. L</u> x				_			<u> </u>	<u> </u>	\perp			Ш	X
16	SE	3-6 30'	25	30'	10-Apr-07	1045		1	Х		\perp					SOIL	<u>. x</u>	1_		_	\bot		_	X	<u> </u>	$\downarrow \downarrow \downarrow$			11	X
17	SE	3-6 35'	30	35'	10-Apr-07	1055		1	Х		_	_				SOIL	. ×	<u> </u>		_	_	_	4	<u> </u>	<u> </u>	$\downarrow \downarrow$			1	X
18	SE	3-6 40'	35	40'	10-Apr-07	1109		1	Х		_	_	_		_	SOIL	<u>. x</u>	<u> </u>		_	_	_		X	<u> </u>	igsquare			++	X
19	SE	3-6 45'	40	45'	10-Apr-07	1239		1	X		_	_		-	4	SOIL	<u>. ×</u>	1		_	_	_	_	X	<u> </u>	$\downarrow \downarrow \downarrow$		4	\sqcup	X
10		B-9 5'	0	5'	10-Apr-07	0849		1	Х						<u> </u>	SOIL	. <u> </u> ×	1_				\perp	丄	<u> </u>	<u></u>		Ш.			X
Relin aci nh	n Dutton	11 APR	04 10	Time	Received by:	Blackw	ac	<u>(</u>						4	///	ate 07	Tu /0.'0	О	San VO Lab Cus Cus	nple Os Fi els c itody itody	Confree of sea	aine of He ntair Is on	eadsp ner(s n con n coo	ntaci? pace? i) ntaine pler(s)	? ir(s)	!	12000C	355	N N N N N	* 5.
Rélinquist Reinguist	red by		ate ate	I ime	Received by EL		and an article and		······································	erangua) et man	manus de la constanta de la co	Problem de side de servicio		-		ate ate	Tir			by S	mani ampl ourie	er/Ó	Hent I	Rep.	DH	íL.	Y FedE	x Lo	N	ar
Lens	la Elecko	vd 411		20		· Trxan	щ	<u>م</u>	P							1-07			Ten	nper:	ature	Upo	on Re	eceip	t ⁻	***************************************	2,	0_	*C	

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ken Dutton	······································	******	PAGE 03 O	F 04	****									Pro	oject	Nan	10: <u>C</u>	<u>OT</u>	ron	I DR	.AW	BL	M					
	Company Name	Basin Environment	tal Service Te	echnol	ogies, LLC	way (. A. C.		********	***								Pr	oject	#: <u>2</u>	<u> 005</u> -	-002	237			~~~~			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Company Address:	P. O. Box 301	·····	······································		······································	·····			******					********	F	roje	ect Lo	c: E	ddy !	Cour	nty, i	NM				·····		************	-
	City/State/Zip:	Lovington, NM 882	60	············			*****				***************************************		·-···					РО	#: <u>P</u>	<u>AA -</u>	D. E	3ryar	it						***************************************	_
	Telephone No	(505) 441-2124	***************************************	********************		Fax No:		(505)	396-	1429	9			,		Repor	t Fo	rmat:	X	Sta	anda	ard		Пт	RRP	ı		NPDE	ES	
	Sampler Signature:	How Dut	ton	******************************	******************************	e-mail [.]		<u>kdu</u>	tton	@t	oas	ine	nv.	cor	<u>n</u>	-	poston	THE THE STATE OF T	DARK CHARGO IX	5151104C546331	arazzaniejo	ina	anangga anangga	994947.WWW	4000000000	andrews weeks	Concession in 1950	wandow	······································	
(lab use	only)	·																		TCLP	:[nalyz				T	T	72 hrs	2	
ORDER	₹#:							20	Prese	rvati	or &	i ji of	Cont	taine		Matrix	158	Π	<u> </u>	OTAL		\vdash		X ⊗				\$	ġ	
LAB # (lab use only)	FIEL	_D CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Fotal a of Containurs 4020	HNO.	10	н,30,	NaOH	Na ₂ S ₂ O ₁	None	,	OW - Drinking Water St - Sludg CW - Groundwater S. Soll/Sol NP - Non-Potable Specify Oth	1PH 4181 (8015M) 801	TPH TX 1905 TX 1006	Cabons (Ca. Mg. Na. K.) Animas (Cl. SCA. Alkalimis)	SAR/ESP/CEC	Metals As Ag Ba Cd Or Pb Hg Se	Votables	Serravolanies	BTEX 8071B/5030 or BTEX 8260	RCI NORM			RUSH TAT Pre-Schedule) 24.	Standard TAT	
21	St	3-9 10'	5'	10'	10-Apr-07	0856		1	x							SOIL	х	-						х		I	П		X	
22	St	3-9 15'	10'	15'	10-Apr-07	0906		1)	x_							SOIL	X		\perp		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$			х			11		<u> </u>	-
23	Si	3-9 20'	15'	20'	10-Apr-07	0918		1	x_		<u> </u>				\perp	SOIL	x				<u> </u>		-	<u>x</u>			Ш		<u> </u>	
24	<u> </u>	3-10 5'	0	5'	10-Apr-07	1319		1 2	× L		_			_	_	SOIL	X		\bot	_	_	$oxed{oxed}$		<u>x</u>	_	\downarrow	$\bot \bot$		Х	
25	SB	-10 10'	5'	10'	10-Apr-07	1326		1 2	<u>X</u>		<u> </u>			_	_	SOIL	X	igsquare			\bot	$oxed{oxed}$		X		_	$\bot \downarrow$		X	~
36	SB	-10 15'	10'	15'	10-Apr-07	1336		1	x _	_		_			_	SOIL	X				$oldsymbol{\perp}$			X		\bot	Ш	_	<u> </u>	_
27	SB	-10 20'	15'	20'	10-Apr-07	1344		1	× L	_	<u> </u>				_	SOIL	X				_			X		丄	$\bot \downarrow$	_	X	_
28	SB	i-10 25'	20'	25'	10-Apr-07	1353		1 3	x _							SOIL	X							X		\perp	11		<u> x</u>	_
29	SB	-10 30'	25'	30'	10-Apr-07	1400		1	x _		<u> </u>	_		_	_	SOIL	X				1			X		丄	11		<u> x</u>	-
30	SB	I-10 35'	30'	35'	10-Apr-07	1408		1	<u>xL</u>		<u> </u>	<u></u>			\bot	SOIL	<u>Lx</u>						<u> </u>	x L		丄	Ш	丄	<u> x</u>	
Relinguis Relinguis	hed by	1 1 APIR Da	ate Ti	uv	<u></u>						4.	/ Dai	7 A	Tim 7:40 Tim	e) e		s Free s on ody so ody so ole Ha y San y Cou	ontai e of I cont eals eals and I mpler uner?	Head tained on co on co Deliver/Officer ?	Intactispace (s) contain coder rered nt Re	ct? ce? iner(s (s)				N N N N N Lane	Star				
Lor	de Dalla	acc 4.11	1.07 1:	20	Lyan	s. my	270	نمدد	4					04	1-//	1-07			Temp	er dit			1780	CHOL.	•••••••••	www.creistern	۷،۱	<u> </u>	~~~~ ~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax. 432-563-1713

	Project Manager:	Ken Dutton	r ationing and any and and and any and an	·	PAGE 04 0	F 04	*****	***************************************		•••••							Pro	ojeci	t Na	me:	co	TTO	NC	DR/	W	BLM	<u></u>		*************		
	Company Name	Basin Environmenta	ol Service To	chnol	ogies, LLC				en dell'hieron					***************************************				Pr	ojec	t#:	200	5-0	023	17					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
	Company Address.	P. O. Box 301	······································						***************************************		*************	*****	**********	***************************************	.,	-	f	roje	ect L	.oc:	Edd	ly Co	ount	ty, NI	И		************	nt read we need the	··········		
	City/State/Zip:	Lovington, NM 8826	0	K4*********	***************************************				***************************************					·*····					P() #:	PA	<u>1 - D</u>	. Br	yant		•		····		,	
	Telephone No:	(505) 441-2124				Fax No.		(50	5) 3	96-1	429					F	tepor	t Foi	rmal	t:	X	Stan	idari	đ	[TR	RP			NPDE	s
	Sampler Signature:	Low Du	tto	7-+		e-mail [.]		<u>kd</u>	lutt	on(<u>D</u> ba	asir	ner	IV.CC	<u>m</u>	-			**********	Arpenousts	option/editor	ANNE ANTON	on suppose		nenipypekii	er emegras	ances Process		orezionenen	eticanoganici	uen)
(lab use																		L		and or construction		LP:	An.	alyze			-	T		72 ms	
ORDER	t #:							X	Pri	eserv	atio	1 8 #	of C	ontali	ners	М	atnx	188	Т		101		Se	+	7					å	
LAB # (lab use only)	FIEL	D CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Fittered	Tutal #. of Containers 4529	ice	HNO,	HC:	H ₂ SO,	NaCit	Na ₂ S ₂ O ₃	Other (Specify)		CW » Croundwater 580H50H NPNon-Potable - Specify Oth	8015M	TPH TX 1005 TX 1006	Cauons (Ca, Mg, Na, K)	Amons (Cl., SO4, Alkalinity)	SAR / ESP / CPC	Metals As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semivolables Offer socialities and after some	BIEA BUZIBIOUSU BIEA OZG RCI	NORW			RUSH TAT (Pre-Schedule) 24.	
31	SB	-10 40'	35'	40'	10-Apr-07	1427		1	х							s	OIL	х						1		x	Ţ	I	П	I	х
	***************************************										\dashv	+			\vdash	 	~~~~	-	-				\dashv	\dashv	-	+	+	+	\vdash	+	+
									H		\dashv	+	\dashv	-	+		**********	\vdash	 		-	\dashv	\dashv	+	+	+	\dagger	+	$\dag \uparrow$	+	$\dagger \dagger$
												1	1									1		土	土	1	工	I	団		口
				······································							_	_	_	_	_	L			_		_	_	_	_	_	4	_	_	igert	\bot	4-1
											\dashv	+	\dashv		╂	├-	***************************************	╀	├-			\dashv	-	+	+	+	+	+	\vdash	+	+
	***************************************										\dashv	\dashv	\dashv	-	+	 	······································	T	T			-	\dashv	+	+	\dagger	+	+	H	+	+
													丁				***************************************							工	土	工	工	工		工	囗
	nstructions:						***************************************	-	*********		***********						*******			Sar VO	nple Cs F	Cor ree	itain of H	mme Iers _: li Ieads	ntaci pace				8	N N	-
Relinquist Relinquist	V Dutton	1.1.4.2.2.1 Dai	07 10	me ØØ me	Received by: Place yet by: Received by:	Dacke	\mathcal{L}^{2}	00	(4	k 11	ate 197	10	Tim 200 Tim	>	Cus Cus	stody stody	/ sea / sea	als o als o	ijner(i in cor in cor iblive	ntain oler(:	er(s) s)	ł -		裂	N N N	
· mmiters	raw szy	l Das			nacenee by										,			, x1 ()			by S		ler	Client		∖? Di	HL	Fe	dEx	N Lone S	
Reingus	ned by Flacki	wel 411.		TIE 2	Received by ELI	5 a	10	<u></u>	<u>~</u>	,-	***************************************		****	0		ate '-c]		Tim	e	1				oon F			northogasais		2,0	*()

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

ent: Basin	Inv. SRVS Tech				
Re/ Time: 4-11 -0	7 1:20				
10 ID#: 70 W	1007				
tials 9L					
	Sample Receipt	Checklist		Clier	nt Initials
Temperature of con-	tainer/ cooler?	(Yes)	No) o ° C	
Shipping container i	n good condition?	Yes >	No		
	t on shipping container/ cooler?	Yes)	No	Not Present	
	t on sample bottles/ container?	Yes'	No	Not Present	
Chain of Custody pr	esent?	Yes)	No		
Sample instructions	complete of Chain of Custody?	Yes	No		
·	gned when relinquished/ received?	(Yes)	No		
Chain of Custody ag	grees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
Container label(s) le	egible and intact?	Yes)	No	Not Applicable	
	perties agree with Chain of Custody?	(Yes)	No		
Sample matrix/ proContainers supplied		(Yes)	No		
Samples in proper	container/ bottle?	ੴes	No	See Below	
3 Samples properly p	oreserved?	Yes>	No	See Below	
		(Yes)	No		
5 Preservations docu	act? umented on Chain of Custody?	∠Yes>	No		
	ented on Chain of Custody?	Yes>	No		
	amount for indicated test(s)?	(Yes)	No	See Below	
	ed within sufficient hold time?	Yes	No	See Below	
9 Subcontract of san		Yes	No	Not Applicable	
······································	e zero headspace?	Yes	No	Not Applicable	
ontact. garding:	Variance Documents Contacted by.	mentation		Date/ Time.	
orrective Action Taken					
neck all that Apply:	See attached e-mail/ fax Client understands and wou Cooling process had begun			-	

Analytical Report 300152

for

PLAINS ALL AMERICAN EH&S

Project Manager: Daniel Bryant

Cotton Draw BLM 2005-00237

25-MAR-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675
Norcross(Atlanta), GA E87429

South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

25-MAR-08

Project Manager: Daniel Bryant
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 300152

Cotton Draw BLM

Project Address: Eddy County, NM

Daniel Bryant:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 300152. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 300152 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully.

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 300152

PLAINS ALL AMERICAN EH&S, Midland, TX

Cotton Draw BLM

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
S/P Grid 1	S	Mar-19-08 09:00		300152-001
S/P Grid 2	S	Mar-19-08 09:10		300152-002
S/P Grid 3	S	Mar-19-08 09:20		300152-003
S/P Grid 4	S	Mar-19-08 09:30		300152-004
S/P Grid 5	S	Mar-19-08 09:40		300152-005
S/P Grid 6	S	Mar-19-08 09:50		300152-006
S/P Grid 7	S	Mar-19-08 10:00		300152-007
S/P Grid 8	S	Mar-19-08 10:10		300152-008
S/P Grid 9	S	Mar-19-08 10:20		300152-009
S/P Grid 10	S	Mar-19-08 10:30		300152-010
S/P Grid 11	S	Mar-19-08 10:40		300152-011
S/P Grid 12	S	Mar-19-08 10:50		300152-012
S/P Grid 13	S	Mar-19-08 11:00		300152-013
S/P Grid 14	S	Mar-19-08 11:10		300152-014
S/P Grid 15	S	Mar-19-08 11:20		300152-015

Certificate of Analysis Summary 300152

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Cotton Draw BLM

Project Id: 2005-00237 Contact: Daniel Bryant

Date Received in Lab: Fri Mar-21-08 03:15 pm

Report Date: 25-MAR-08

Project Location: Eddy County, NM Project Manager: Brent Barron, II

	Lab Id:	300152-0	01	300152-0	02	300152-0	003	300152-0	004	300152-0	005	300152-0	006
Analysis Requested	Field Id:	S/P Grid	.1	S/P Grid	2	S/P Grid	13	S/P Grid	l 4	S/P Gno	ł 5	S/P Grid	l 6
71nutysis Requesicu	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Mar-19-08 (09 00	Mar-19-08	09 10	Mar-19-08	09 20	Mar-19-08	09 30	Mar-19-08	09 40	Mar-19-08	09 50
BTEX by EPA 8021B	Extracted:	Mar-24-08	09 00	Mar-24-08	09 00	Mar-24-08	09 00	Mar-24-08	09 00	Mar-24-08	09 00	Mar-24-08	09 00
	Analyzed	Mar-24-08	16 28	Mar-24-08	16 46	Mar-24-08	17 04	Mar-24-08	17 22	Mar-24-08	17 40	Mar-24-08	17 58
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0 0010	ND	0 0010	ND	0 0010	ND	0 0010	ND	0 0010	ND	0 0010
Toluene		ND	0 0020	ND	0 0020	ND	0 0020	ND	0 0020	ND	0 0020	ND	0 0020
Ethylbenzene		0 0045	0 0010	0 0049	0 0010	0 0110	0 0010	0 0058	0 0010	0 0076	0 0010	0 0075	0 0010
m,p-Xylenes		0 0115	0 0020	0 0141	0 0020	0 0305	0 0020	0 0172	0 0020	0 0225	0 0020	0 0231	0 0020
o-Xylene		0 0044	0.0010	0 0035	0 0010	0 0090	0 0010	0 0045	0 0010	0 0057	0 0010	0 0055	0 0010
Xylenes, Total		0 0159		0 0176		0 0395		0 0217		0 0282		0 0286	
Total BTEX		0 0204		0 0225		0 0505		0 0275		0 0358		0 0361	
Percent Moisture	Extracted:												
	Analyzed:	Mar-24-08	16.30	Mar-24-08	16 30								
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		1 57		3 11		3 03		3 17		3 43		3 6	
TPH By SW8015 Mod	Extracted:	Mar-24-08	14 55	Mar-24-08	14 55	Mar-24-08	14 55	Mar-24-08	14 55	Mar-24-08	14 55	Mar-24-08	14 55
	Analyzed:	Mar-24-08	23 28	Mar-24-08	23 55	Mar-25-08	00 22	Mar-25-08	00 49	Mar-25-08	01 16	Mar-25-08	01 42
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		63 7	15 2	36 0	15 5	59 9	15 5	47 1	15 5	504	15 5	50 7	15 6
C12-C28 Diesel Range Hydrocarbons		1730	15 2	921	15 5	1370	15 5	1040	15 5	960	15 5	907	15 6
C28-C35 Oil Range Hydrocarbons		389	15 2	190	15 5	291	15 5	214	15 5	205	15 5	198	15 6
Total TPH		2182 7		1147		1720 9		1301 1		1215 4		1155 7	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron Odessa Laboratory Director

Certificate of Analysis Summary 300152

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Cotton Draw BLM

Project Id: 2005-00237 Contact: Daniel Bryant Project Location: Eddy County, NM

Date Received in Lab: Fri Mar-21-08 03:15 pm

Report Date: 25-MAR-08 Project Manager: Brent Barron, II

	Lab Id:	300152-0	07	300152-0	08	300152-0	09	300152-0	10	300152-0	11	300152-0	12
Analysis Requested	Field Id:	S/P Grid	. 7	S/P Grid	8	S/P Gnd	9	S/P Grid	10	S/P Grid	11	S/P Grid	12
Anutysis Requesteu	Depth:												
	Matrix:	SOIL		SOIL	SOIL			SOIL		SOIL		SOIL	
	Sampled:	Mar-19-08	10 00	Mar-19-08 1	0 10	Mar-19-08 1	0 20	Mar-19-08	10 30	Mar-19-08	10 40	Mar-19-08	10 50
BTEX by EPA 8021B	Extracted:	Mar-24-08	09 00	Mar-24-08 (9 00	Mar-24-08 (9 00	Mar-24-08	00 00	Mar-24-08	09 00	Mar-24-08	09 00
Didn's Zin our	Analyzed ·	Mar-24-08	18 16	Mar-24-08 1	8 34	Mar-24-08 1	8 52	Mar-24-08 19 10		Mar-24-08	20 05	Mar-24-08	20 22
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0 0010	ND	0 0010	ND	0 0010	ND	0 0010	ND	0 0010	ND	0 0010
Toluene		ND	0 0020	0 0020	0 0020	ND	0 0020	ND	0 0020		0 0020	ND	0 0020
Ethylbenzene		0 0057	0 0010	0 0132	0 0010	0 0027	0 0010	0 0044	0.0010	0 0075	0 0010	0 0076	0 0010
m,p-Xylenes		0 0173	0 0020	0 0413	0 0020	0 0095	0 0020	0 0150		0 0249	0 0020	0 0249	0 0020
o-Xylene		0 0048	0 0010	0 0118	0 0010	0 0025	0 0010	0 0047	0 0010	0 0082	0 0010	0 0082	0 0010
Xylenes, Total		0 0221		0 0531		0 012		0 0197		0 0331		0 0331	
Total BTEX		0 0278		0 0683		0 0147		0 0241		0 0406		0 0407	
Percent Moisture	Extracted:												
	Analyzed:	Mar-24-08	16 30	Mar-24-08 1	6 30	Mar-24-08 1	6 30	Mar-24-08	16 30	Mar-24-08	16 30	Mar-24-08	16 30
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		3 11		3 85		4 62		3 99		4 11		4 34	
TPH By SW8015 Mod	Extracted:	Mar-24-08	14 55	Mar-24-08	4 55	Mar-24-08 1	4 55	Mar-24-08	14 55	Mar-24-08	14 55	Mar-24-08	14 55
y	Analyzed:	Mar-25-08	02 09	Mar-25-08 (3 02	Mar-25-08 (3 29	Mar-25-08	3 56	Mar-25-08	04 22	Mar-25-08	04 48
•	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		44 2	15 5	59 4	156	267	15 7	26 4	15 6	37 5	15 6	22 7	15 7
C12-C28 Diesel Range Hydrocarbons		964	15 5	910	156	562	15 7	591	156	584	15.6	447	15 7
C28-C35 Oil Range Hydrocarbons		191	15 5	189	156	103	15 7	104	15.6	124	15 6	73 9	15 7
Total TPH		1199 2		1158 4		691 7		721 4		745 5		543 6	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron Odessa Laboratory Director

Certificate of Analysis Summary 300152

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Cotton Draw BLM

Project Id: 2005-00237 Contact: Daniel Bryant

Project Location: Eddy County, NM

Date Received in Lab: Fri Mar-21-08 03:15 pm

Report Date: 25-MAR-08
Project Manager: Brent Barron, II

	Lab Id:	300152-013		300152-0	14	300152-0	15		
Analysis Requested	Field Id:	S/P Gnd 13		S/P Grid	14	S/P Gnd	15		
Analysis Requested	Depth:								
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	Mar-19-08 11 (00	Mar-19-08 1	1 10	Mar-19-08 1	1 20		
BTEX by EPA 8021B	Extracted:	Mar-24-08 09 (00	Mar-24-08 0	9 00	Mar-24-08 (9 00		
	Analyzed:	Mar-24-08 20 4	40	Mar-24-08 2	20 58	Mar-24-08 2	21 16		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		ND 00	010	ND	0 0010	ND	0 0010		
Toluene		0 0022 0 0	020	ND	0 0020		0 0020		
Ethylbenzene		0 0054 0 0	010	0 0060		0 0082	0 0010		
m,p-Xylenes		0 0234 0 0	020	0 0211	0 0020	0 0221	0 0020		
o-Xylene		0 0073 0 0	010	0 0072	0 0010	0 0073	0 0010		
Xylenes, Total		0 0307		0 0283		0 0294			
Total BTEX		0 0383		0 0343		0 0376			
Percent Moisture	Extracted:								
	Analyzed:	Mar-24-08 16 3	30	Mar-24-08 l	6 30	Mar-24-08 1	16 30		
	Units/RL:	%	RL	%	RL	%	RL		
Percent Moisture		4 77		2 43		3 61			
TPH By SW8015 Mod	Extracted:	Mar-24-08 14 5	55	Mar-24-08 1	4 55	Mar-24-08 1	4 55		
	Analyzed:	Mar-25-08 05 1	15	Mar-25-08 0	5 41	Mar-25-08 (06 08		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
C6-C12 Gasoline Range Hydrocarbons		45 5 1	15 8	46 8	15 4	37 1	15 6		1
C12-C28 Diesel Range Hydrocarbons		708	15 8	924	15 4	603	15 6		
C28-C35 Oil Range Hydrocarbons		108	158	121	15 4	74 1	15 6		
Total TPH		861 5		1091 8		7142			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratones XENCO Laboratones assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount involced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron
Odessa Laboratory Director

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.

1

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte.

 The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Phone	rax
(281) 589-0692	(281) 589-0695
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(305) 823-8500	(305) 823-8555
(770) 449-8800	(770) 449-5477
	(281) 589-0692 (214) 902 0300 (210) 509-3334 (813) 620-2000 (305) 823-8500

Project Name: Cotton Draw BLM

Work Order #: 300152

Project ID: 2005-00237

Lab Batch #: 718032

Sample: 300152-001 / SMP

Batch:

Matrix: Soil

Units: mg/kg	l so	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		1-,	[D]	/***	
1,4-Difluorobenzene	0.0351	0.0300	117	80-120	
4-Bromofluorobenzene	0.0333	0.0300	111	80-120	

Lab Batch #: 718032

Sample: 300152-002 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	[-1	"-"	[D]		
1,4-Dıfluorobenzene	0.0341	0.0300	114	80-120	
4-Bromofluorobenzene	0.0343	0.0300	114	80-120	

Lab Batch #: 718032

Sample: 300152-003 / SMP

Batch:

Matrix: Soil

Units: mg/kg SURROGATE RECOVERY S					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Dtfluorobenzene	0.0344	0.0300	115	80-120	
4-Bromofluorobenzene	0.0330	0.0300	110	80-120	

Lab Batch #: 718032

Sample: 300152-004 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY									
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags						
Analytes			[D]								
1,4-Dıfluorobenzene	0.0350	0.0300	117	80-120							
4-Bromofluorobenzene	0.0331	0.0300	110	80-120							

Lab Batch #: 718032

1

Sample: 300152-005 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY										
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,4-Difluorobenzene	0.0347	0.0300	116	80-120							
4-Bromofluorobenzene	0.0359	0.0300	120	80-120							

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Cotton Draw BLM

Work Order #: 300152

Project ID: 2005-00237

Lab Batch #: 718032

Sample: 300152-006 / SMP

Matrix: Soil Batch:

Units: mg/kg	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	11-3	[-,	[D]	,,,,,	
1,4-Dıfluorobenzene	0.0347	0.0300	116	80-120	
4-Bromofluorobenzene	0.0359	0.0300	120	80-120	

Lab Batch #: 718032

Sample: 300152-007 / SMP

Matrix: Soil Batch:

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	(1-3)	[~]	[D]	/ • • • • • • • • • • • • • • • • • •		
1,4-Difluorobenzene	0.0359	0.0300	120	80-120		
4-Bromofluorobenzene	0.0356	0.0300	119	80-120		

Lab Batch #: 718032

Sample: 300152-008 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		(0)	[D]			
1,4-Dıfluorobenzene	0.0350	0.0300	117	80-120		
4-Bromofluorobenzene	0.0391	0.0300	130	80-120	**	

Lab Batch #: 718032

Sample: 300152-009 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	1-4	""	[D]	/*		
1,4-Difluorobenzene	0.0356	0.0300	119	80-120		
4-Bromofluorobenzene	0.0366	0.0300	122	80-120	**	

Lab Batch #: 718032

Sample: 300152-010 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0333	0.0300	111	80-120		
4-Bromofluorobenzene	0.0357	0.0300	119	80-120		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Cotton Draw BLM

Work Order #: 300152

Project ID: 2005-00237

Lab Batch #: 718032

Sample: 300152-011 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analytes 1,4-Dıfluorobenzene	0.0350	0.0300	117	80-120		
4-Bromofluorobenzene	0.0432	0.0300	144	80-120	**	

Lab Batch #: 718032

Sample: 300152-012 / SMP

Batch: 1

Matrix: Soil

SURROGATE RECOVERY STUDY					
Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
0.0250	0.0200	1	00.120		
				**	
	Amount Found	Amount True Found Amount [A] [B] 0.0350 0.0300	Amount True Recovery	Amount True Recovery Limits %R	

Lab Batch #: 718032

Sample: 300152-013 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0364	0.0300	121	80-120	**	
4-Bromofluorobenzene	0.0386	0.0300	129	80-120	**	

Lab Batch #: 718032

Sample: 300152-014 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	`.`	',	[D]			
1,4-Dıfluorobenzene	0.0342	0.0300	114	80-120		
4-Bromofluorobenzene	0.0474	0.0300	158	80-120	**	

Lab Batch #: 718032

Sample: 300152-015 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0353	0.0300	118	80-120		
4-Bromofluorobenzene	0.0399	0.0300	133	80-120	**	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Cotton Draw BLM

Work Order #: 300152

Project ID: 2005-00237

Lab Batch #: 718032

Sample: 506398-1-BKS / BKS

Batch:

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0304	0.0300	101	80-120		
4-Bromofluorobenzene	0.0357	0.0300	119	80-120		

Lab Batch #: 718032

Sample: 506398-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		'	[D]			
1,4-Dıfluorobenzene	0.0324	0.0300	108	80-120		
4-Bromofluorobenzene	0.0318	0.0300	106	80-120		

Lab Batch #: 718032

Sample: 506398-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0300	0.0300	100	80-120	·	
4-Bromofluorobenzene	0.0314	0.0300	105	80-120		

Lab Batch #: 718093

Sample: 300152-001 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	73.5	100	74	70-135		
o-Terphenyl	46.3	50.0	93	70-135		

Lab Batch #: 718093

Sample: 300152-002 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount {B}	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	73.8	100	74	70-135	<u> </u>
o-Terphenyl	44.4	50.0	89	70-135	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Work Order #: 300152

Lab Batch #: 718093

Sample: 300152-003 / SMP

Project ID: 2005-00237

Batch: | Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	77.8	100	78	70-135		
o-Terphenyl	48.3	50.0	97	70-135		

Lab Batch #: 718093 Sample: 300152-004 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]	1		
1-Chlorooctane	71.0	100	71	70-135	<u></u>	
o-Terphenyl	41.8	50.0	84	70-135		

Lab Batch #: 718093 Sample: 300152-005 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	70.0	100	70	70-135		
o-Terphenyl	42.1	50.0	84	70-135		

Lab Batch #: 718093 Sample: 300152-006 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	1 1 1		[D]	/		
I-Chlorooctane	82.6	100	83	70-135		
o-Terphenyl	52.1	50.0	104	70-135		

Lab Batch #: 718093 Sample: 300152-007 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	82.9	100	83	70-135		
o-Terphenyl	47.9	50.0	96	70-135		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Cotton Draw BLM

Work Order #: 300152

Project ID: 2005-00237

Lab Batch #: 718093

Sample: 300152-008 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	84.8	100	85	70-135		
o-Terphenyl	49.4	50.0	99	70-135		

Lab Batch #: 718093

Sample: 300152-009 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		[D]				
1-Chlorooctane	85.3	100	85	70-135		
o-Terphenyl	48.6	50.0	97	70-135		

Lab Batch #: 718093

Sample: 300152-009 S / MS

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	86.3	100	86	70-135	·	
o-Terphenyl	43.2	50.0	86	70-135		

Lab Batch #: 718093

Sample: 300152-009 SD / MSD

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	89.7	100	90	70-135		
o-Terphenyl	51.1	50.0	102	70-135		

Lab Batch #: 718093

Sample: 300152-010 / SMP

Batch: 1

1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	76.6	100	77	70-135	l				
o-Terphenyl	44.7	50.0	89	70-135					

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Cotton Draw BLM

Work Order #: 300152

Project ID: 2005-00237

Lab Batch #: 718093

Sample: 300152-011 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY							
TPH By SW8015 Mod	Amount Found [A]	True Amount {B}	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1-Chlorooctane	85.6	100	86	70-135				
o-Terphenyl	49.5	50.0	99	70-135				

Lab Batch #: 718093

Sample: 300152-012 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	78.3	100	78	70-135					
o-Terphenyl	45.2	50.0	90	70-135					

Lab Batch #: 718093

Sample: 300152-013 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes		!	[D]						
1-Chlorooctane	82.6	100	83	70-135					
o-Terphenyl	48.9	50.0	98	70-135					

Lab Batch #: 718093

Sample: 300152-014 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	75.5	100	76	70-135					
o-Terphenyl	47.4	50.0	95	70-135					

Lab Batch #: 718093

Sample: 300152-015 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1-Chlorooctane	70.0	100	70	70-135					
o-Terphenyl	42.5	50.0	85	70-135					

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Cotton Draw BLM

Work Order #: 300152

Project ID: 2005-00237

Lab Batch #: 718093

Sample: 506429-1-BKS / BKS

Batch: 1 M

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			{D}						
1-Chlorooctane	92.6	100	93	70-135					
o-Terphenyl	50.2	50.0	100	70-135					

Lab Batch #: 718093

Sample: 506429-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes	, , ,	,-,	[D]						
1-Chlorooctane	84.1	100	84	70-135					
o-Terphenyl	44.6	50.0	89	70-135					

Lab Batch #: 718093

Sample: 506429-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1-Chlorooctane	96.0	100	96	70-135	,				
o-Terphenyl	51.3	50.0	103	70-135					

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS/BSD Recoveries

Project Name: Cotton Draw BLM

Work Order #: 300152

Analyst: SHE

Date Prepared: 03/24/2008

Project ID: 2005-00237

Date Analyzed: 03/24/2008

Lab Batch ID: 718032

Sample: 506398-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Analytes		{PJ	[©]	[2]	[12]	resum (x)	[0]					
Benzene	ND	0.1000	0.0920	92	0.1	0.0934	93	2	70-130	35		
Toluene	ND	0.1000	0.0928	93	0.1	0.0944	94	2	70-130	35		
Ethylbenzene	ND	0.1000	0.0919	92	0.1	0.0948	95	3	71-129	35		
m,p-Xylenes	ND	0.2000	0.1855	93	0.2	0.1902	95	3	70-135	35		
o-Xylene	ND	0.1000	0.0987	99	0.1	0.1001	100	1	71-133	35		

Analyst: SHE

Date Prepared: 03/24/2008

Date Analyzed: 03/24/2008

Lab Batch ID: 718093

Sample: 506429-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C12 Gasoline Range Hydrocarbons	ND	1000	926	93	1000	957	96	3	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	999	100	1000	1030	103	3	70-135	35	

Relative Percent Difference RPD = 200*|(D-F)/(D+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Project Name: Cotton Draw BLM

Work Order #: 300152

Lab Batch ID: 718093

QC- Sample ID: 300152-009 S

Project ID: 2005-00237

Date Analyzed: 03/25/2008

Batch #:

Matrix: Soil

Date Prepared: 03/24/2008

Analyst: SHE

Reporting Units: mg/kg		MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
TPH By SW8015 Mod Analytes	Parent Sample	Spike	Spiked Sample Result	Sample		Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag	
	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD		
C6-C12 Gasoline Range Hydrocarbons	26.7	1050	883	82	1050	895	83	1	70-135	35		
C12-C28 Diesel Range Hydrocarbons	562	1050	1340	74	1050	1360	76	3	70-135	35		

Sample Duplicate Recovery

Project Name: Cotton Draw BLM

Work Order #: 300152

Lab Batch #: 718053 **Date Analyzed:** 03/24/2008

Project ID: 2005-00237

Date Prepared: 03/24/2008

Analyst: RBA

QC- Sample ID: 300152-001 D Batch #: Matrix: Soil

Reporting Units: %	SAMPLE/SAMPLE DUPLICATE RECOVERY											
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag							
Analyte		[B]			<u> </u>							
Percent Moisture	1.57	1.22	25	20	F							

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

Page
۳.
₽
д,
B 1

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

a XENCO Laboratory Company

12600 West I-20 East Odessa, Texas 79765 Phone 432-563-1800 Fax. 432-563-1713

	Project Manager	Ken Dutton			PAGE 01 C	F 02										. Р	roje	ct Na	ıma:	cc	тт	ON	DR/	wı	BLN	1				
	Company Name	mpany Name Basin Environmental Service Technologies, LLC Project # 2005-00237																												
	Company Address	ny Address P. O. Box 301 Project Loc: Eddy County, NM																												
	City/State/Zip	Lovington, NM 88260																ρ	O#:	PA.	A - C) в	yant							
	Telephone No.	(505) 441-2124				Fax No:		(505	i) 39	6-14:	29					Repo	nt Fo	orma	ıt:	X	Star	ndar	d		TA	RP			(PDES	
	Sampler Signature.	Zin Dil	162			e-mail	-	kďι	utto	n@)ba	sin	env	COI	m															
		276 10 10 M	- K-2				-								<u>=-</u>		F	_		_	a 1	Ar	alyze	For	_	_		_	T. 1	
(lab use o	24015	5'2_						ž,									上				CLP TAL		\pm	<u>+</u>	ď				48, 72 hrs	
LAB # (leb use only) ZO		LD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	1 I	# of Containers 40-4		erva OH-				Nove	Other (Specify)	DW-Ortnking Water StShudg	3015M 801	7X 1005 TX 100	Cations (Ca Mg Na. K)	Anions (Ct. SO4, Alkaimity)	SAR / ESP / CEC	Metals As Ag Ba Cd Cr Pb Hg Se	Vokatiles	STEX 6021 B/5030 or BTEX A260	RCJ	NORM			e Schedule) 24.	Standard TAT
	S/P	GRID 1			19-Mar-08	0900		1	х		Ι	I				SOIL	×						I	×		$oxed{\Box}$		\perp		х
2	S/P	GRID 2			19-Mar-08	0910		1	x	1	1	1				SOIL	<u> x</u>	4		Ц			\perp	×	4		Ц	\perp	Ц	X
3	S/P	GRID 3		<u> </u>	19-Mar-08	0920	Ц	1	X	4	1	\perp	1	Ш		SOIL	Į×	4	Ц	Ш	Ц		\perp	_ ×	L	\perp	Ш	4	$\overline{}$	X
4	S/P	GRID 4		<u> </u>	19-Mar-08	0930	Ц	1	X	\perp	4	_	4	Ц	Ц	SOIL	<u> x</u>	4_	Ш	Ш	Ц		_	1>	4	↓.	Ц	\bot	_	X
_ 5	S/P	GRID 5		<u> </u>	19-Mar-08	0940	Ц	1	X	1	┵	1	┸	Ш		SOIL	1×	4				_	4	×	4	1	Ц	_	Ш	X
b	S/P	GRID 6		<u>L</u> _	19-Mar-08	0950		1	x	\perp	_	⊥	L		L	SOIL	×	<u>:L</u>					\perp	>	4	\perp	Ш	\perp	\perp	X
1	S/P	GRID 7			19-Mar-08	1000		1	χĮ	\perp	\perp	L	1		Ш	SOIL	<u>Ix</u>	L	L.				\perp)	Ŀ	\perp	\coprod	\perp	Ш	X
- H	S/P	GRID 8			19-Mar-08	1010		1	X		Ι					SOIL	x							×	Ŀ			\perp	Ш	X
9	S/P	GRID 9			19-Mar-08	1020	П	1	x		T	Ţ	Т			SOIL	X							×			П		\square	X
10	S/P	GRID 10	Τ.		19-Mar-08	1030	П	1	x		Τ	T	Ţ			SOIL	Tx				П		T	×		Τ			\coprod	X
Special I	nstructions:	Date	T 7	me	Received by										Da	te I	Tin	10	San	nple Cs F	Cor	rtain of H	nmei ers Ir eads ineris	tact pace			<u>ې</u> ک	3000	2 2 2	
٠	WHITE	33 110110	باد	515												-		•	Cus	tody	y sea	als o	n cor	itaine			ې		N N N	
Retinquist	ned by	Date	Τ,	me	Received by										Da	1	Tin		Sar	nple by f	Han	oler/C	eliver Cliegt	ed Rep		1L		Y	N N N one Sta	ır
Relinquish	ned by	Date		me	Received by ELC	on ne Fitc	<u>n</u>							03	ნი კ.კ		1m 151:		Ten	nper	alun	e Up	on R	ecen	×		<u>3</u>	,0	•c	
					J																									

Page
20
9.

		1 -1 -7	~
Enviror	nmental	Lab of	lexas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

a XENCO Laboratory Company

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax 432-563-1713

	Project Manager	Ken Dutton			PAGE 02 C	F 02		_				_				Pr	ojec	t Na	me:	co	П	N E	RA	W E	BLM		_			
	Company Name	Basin Environments	Service	Techno	logies, LLC	- 											P	rojec	t#:_	200	5-0	0237	_							
	Company Address	P. O. Box 301	_													1	Proj	ect L	oc.	Edd	y Co	unty	, NM							
	City/State/Zip	Lovington, NM 8826	0_															P) #:	PAA	- D.	Bry	ant							
	Telephone No	(505) 441-2124				Fax No		(50	5) 39	96-14	429_					Repor	t Fo	rmat	. (X,	Stan	dard			TR	RP			NPDE	ES.
	Sampler Signature	Sint of) it	1/2:		e-mail.		kd	lutte	on@	<u>Dba</u>	isin	env	00	m															
(lab use																	E		_	TC		Anal	yze	For	_	Т	\Box		\exists	
ORDE	R#. 30015	2_	_			_		1455		serv	ation	1 & 3	of Co	ntaln	iers	Matrix	8			TOT		8	Ŧ	9					1	72.0
LAB # (lab use only)	FIEL	D CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Fillorod	Total # of Containers 4c2	fce	нио,	НСІ	H,50,	Na,S,D,	None	Other (Specify)	DW-Drinking Water StSuag GW - Groundwater St. Soll/Sol NP-Non-Potable Specify Oth	12	121	Celions (Ca. Mg Na K)	Anlans (Cl. SQ4, Alkalinity)	SAR / ESP / CCC	Metals As Ag Ba Cd Cr Pb Hg S	Semvolables	BTEX 8021B/5030 or BTEX 8260	RCI	NORM			RUSH TAT Proceedings 24	Standard TAT
I	S/P (GRID 11			19-Mar-08	1040		1	х			I	I			SOIL	х					I	Ι	X	(L	\square		I	X
12	S/P 0	GRID 12		L	19-Mar-08	1050	L	1	X		\perp	\Box	I	L		SOIL	x	Ш			I	1	L	X	ī		\square	\Box		X
13	S/P C	RID 13	l_	1_	19-Mar-08	1100	<u>.</u>	1	x			╧		L	Ш	SOIL	X			┙	\perp			<u> x</u>	L		Ш		\perp	X
14	\$/P 0	GRID 14			19-Mar-08	1110		1	x						Ш	SOIL	X							X			Ш		\perp	×
_5	S/P G	GRID 15			19-Mar-08	1120	L	1	x	_	_	1	Ļ	L	Ц	SOIL	X	Ц		4	4	1	\downarrow	X	4	1	Ц	_	\downarrow	×
-	 			+-				Н	Н	\dashv	+	+	╁	┝	Н		╀	Н	-+	+	+	+	╁	+	╀╌	┢	Н	+	+	+
									П		\perp	Ť	\top	T						1			İ	T	T			\exists	1	土
			-						Ц	_	4	\bot	Ţ	Ļ			Ļ		4	4	4	+	4	Ļ	1_	1	\sqcup	_	+	\bot
Special Relination	Instructions	Date		Time	Received by			ليا 		_1_	<u>l</u>				Dai	le	Tim		Sam VOC Labe	ple (Cont ee o	ainer f Hea ntain	ment rs int adspa	act? ace	?	<u> </u>	<u> </u>	A POST OF THE POST		
Réinquis		23 HILLS		15 Time	Received by		_					_		_	Dai		Tim	•	Cust Sam	ody ole i	seal land	s on Deli	conti cook ivere ent R UP	er(s)	L	,	Y	N N N one S	
Relinquis	hed by	Date		lime	Received by ELC	e fitch								C	0a) 3 -2,	ļ.	S (1	Tem	pera	ture	Upo	n Re	ceip	x .			3,0) • 0	;

Environmental Lab of Texas Vanance/ Corrective Action Report- Sample Log-In

	· .		Ū		
Client	Plains				
Date/ Time	03.21-08@145				
Lab ID#.	300152				
Initials	JMF				
	Sample Receipt	Chacklist			
	Cample Reselpt	OHOUMHOL		c	lient Initials
#1 Tempera	ature of container/ cooler?	(Yes)	No	3.0 °C	
	container in good condition?	Yes	No		
	Seals intact on shipping container/ cooler?	(Yes	No	Not Present	
	Seals intact on sample bottles/ container?	Yes	No	Not Present	
	Custody present?	Yes	No	HOLFTESEIN	
	instructions complete of Chain of Custody?	Yes	No		
	Custody signed when relinquished/ received?	Yes	No	 	 -
	Custody agrees with sample label(s)?	(Yes	No	ID written on Cont / Lid	
	er label(s) legible and intact?	Aes J	No	Not Applicable	
	matnx/ properties agree with Chain of Custody?	Yes	No	Not Applicable	
		Yes		 	
	ers supplied by ELOT?		No_	 	
	s in proper container/ bottle?	Yes	<u>No</u>	See Below	
	s properly preserved?	(Yes)	No	See Below	
	bottles intact?	Yes	No_	 	
	rations documented on Chain of Custody?	(Yes)	No		
	ers documented on Chain of Custody?	(Yes	No		
	nt sample amount for indicated test(s)?	Yes	No	See Below	
	ples received within sufficient hold time?	(Yes)	No	See Below	
#19 Subcon	tract of sample(s)?	Yes	No	Not Applicable	
#20 VOC sa	amples have zero headspace?	(Yes	No	Not Applicable	
	Variance Docu	mentation			
Contact	Contacted by			Date/ Time.	
Regarding					
Corrective A	ction Taken				
Check all tha	Client understands and wou			•	
	Cooling process had begun	snortly after	sampling	g event	

Appendix D
Boone Archeological Services, LLC Report

1/03

FAX:

TITLE PAGE/ABSTRACT/ NEGATIVE SITE REPORT CFO/RFO

1. BLM Report No. 2. Reviewer's Initials/Date								
4. Type of Report:	4. Type of Report: Negative (X) Positive ()							
5. Title of Report: Class III archaeological survey of an area where petroleum produce leaked from 11 Nov. 2005 to								
Author(s): Danny & Ann Boone				7. Report Date:	14 Nov. 2005			
8. Consultant Name & Address: Boone Archaeological Serv 2030 North Canal Carlsbad, NM 88220 Direct Charge: Danny Boone Field Personnel Names; Dann Phone: (505) 885-1352				9. Cultural Resou BLM: 190-292 STATE: NM-C 10. Consultant R BAS 10-05-31	-05-G 95-157			
Responsible Individual: Ken Dutt Address: 1301 S Country Road 11	11. Customer Name: Plains All American Pipeline, L.P. Responsible Individual: Ken Dutton (Agent) Address: 1301 S Country Road 1150 Midland, Texas 79706-4476							
13. Land Status B)	ш	STATE	PRIVATE	OTHER	TOTAL			
a. Area Surveyed (acres) 1.	43 (+/-)	0	0	0	1.43 (-/+)			
b. Area of Effect (acres) 1.	0 (-/+)	0	0	0	1.0 (+/-)			
14. a. Linear: Length; NA b. Block: Irregular Shape rou	Width; Na ghly 1,00 feet s							
 15. Location: (Maps Attached if Negative Survey) a. State: New Mexico b. County: Eddy c. BLM Office: Carlsbad d. Nearest City or Town: Loving, NM e. Legal Location: T 24S, R 31E, Sec. 25, NEW SWW. f. Well Pad Footages: NA g. USGS 7.5 Map Name(s) and Code Number(s): Paduca Breaks NW, NM (1973) 32103-B6 								

FAX:

16.1	Pro	ject Data;
	a.	Records Search: Date(s) of BLM File Review: 9 Nov. 2005 Name of Reviewer (s): Danny Boone
		Date(s) of ARMS Data Review: 10 Nov. 2005 Name of Reviewer (s): Ann Boone
		Findings (see Field Office requirements to determine area to be reviewed during records search):
)		LA 107821 is within 1.0 mile.
	ъ.	Description of Undertaking:
)		Location and sores are estimations based on a hand held GPS Unit. The project is a area where fluid leaking from a buried pipeline that will be cleaned up. Excavation and impact of the affected area had occured prior to the cultural inventory survey therefore a buffer zone estimated to be from 50 to 100 feet around the perimeters was surveyed. This area is irregular shaped.
	c.	Environmental Setting (NRCS soil designation; vegetative community; etc.):
		Topography: Rolling dunal plain.
)		Vegetation: Overall groundcover is approximately 30% consisting primarily of mesquite, sage brush, snakeweed, stick cholia cactus, asserted grasses and other flora.
		NRCS: Kermit-Berino association: Sandy, deep soils from wind-worked mixed sand deposits.
,	d.	Field Methods: (transect intervals; crew size; time in field, etc.):
		Transects: A grid spaced 15 meters or less apart.
)		Crew Size: One
ì		Time in Field: 0.5 hour.
	e	Artifacts Collected (?): None
17.	C	ultural Resource Findings:
	a.	Identification and description: None
	b.	Evaluation of significance of Each Resource:
18,	M	anagement Summary (Recommendations):
pip	eliı	litural Resources were encountered therefore archaeological clearance of an area where petroleum produce leaked from a ne for Plains All American Pipeline, L.P. is recommended. If cultural resources are encountered at any time, all activity should and the BLM Archaeologist notified immediately.

19.

I certify that the information provided above is correct and accurate and meets all appreciable BLM standards.

Responsible Archaeologist Signature

and Corone

15 Nov. 2005

Date

Appendix E Soil Boring Logs

Depth —	Soil Column	PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Cotto Eddy C NE/SW	Marketing, L. P. n Draw BLM Site ounty, New Mexico I S25, T24S, R31E S: 2005-00237
Excavation Flo	or, 10' bgs					0.40	to Completion Date
							ring Completion Data 0 Feet bgs
						Installed 1 Basin Envi	6 November 2005 ronmental Service chnologies
5		6.2 ppm	None	None	Sand (SP) White-Brown, Ve Fine Grained, Well Sorted, I	ry	eles selected for analysis
						Soil Boring C	ompletion Data
— 10 —		26.2 ppm	None	None	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, I		6 bags of hydrated Bentonite Plug Surface to 30' bgs
— 15		3.1 ppm	None	None	Sand (SP) Red-Brown, Very Grained, Well Sorted, Imbed caliche nodules, Dry		
					Caliche Layer, Dry (16' to 19	9' bgs)	
— 20		0.2 ppm	None	None	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted,		
 25		0.1 ppm	None	None			
						TITLE	DESCRIPTION
						Appendix E Cotton Draw BLM Site	Soil Boring 2
— 30	TD 📶	0.1 ppm	None	None		DRAWN BY	DATE

••••••••••

Depth	Soil Column	PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Cotto Eddy C NE/SV	s Marketing, L. P. on Draw BLM Site ounty, New Mexico V S25, T24S, R31E S: 2005-00237
		0.1 ppm	None	None	Caliche Layer, Dry (1՝ to 9՝ bն	TD: 3 Installed 1 Basin Envi	oring Completion Data 60 Feet bgs 6 November 2005 fronmental Service chnologies bles selected for analysis
10 1		0.2 ppm	None	None	Sand (SP) White-Brown, Ver Fine Grained, Well Sorted, D	y	ompletion Data 6 bags of hydrated Bentonite Plug Surface to 30' bgs
— 15 —		0.2 ppm	None	None	Caliche Layer, Dry (16' to 19	9' bgs)	
20 		0.1 ppm	None	None	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, D		
25		0.2 ppm	None	None		TITLE	DESCRIPTION
30	то	0.2 ppm	None	None		Appendix E Cotton Draw BLM Site DRAWN BY KAD	Soil Boring 3 DATE 21 March 2006

•••••••••••

Depth	Soil Column	PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Cotto Eddy C NE/SW	s Marketing, L. P. in Draw BLM Site ounty, New Mexico J S25, T24S, R31E S: 2005-00237
	[]					Soil Bo	ring Completion Data
						TD: 3	0 Feet bgs
						Basin Envi	6 November 2005 ronmental Service chnologies
5		0.6 ppm	None	None	Caliche Layer, Dry (1' to 9' bզ	gs) Samp	oles selected for analysis
_	~ ; ;					Soil Boring C	ompletion Data
— 10 —		0.1 ppm	None	None	Sand (SP) White-Brown, Ver Fine Grained, Well Sorted, D		6 bags of hydrated Bentonite Plug Surface to 30' bgs
— 15 —		0.1 ppm	None	None			
— 20		0.1 ppm	None	None	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, [
— — 25	7/ 21 21	0.1 ppm	None	None			
					1	TITLE	DESCRIPTION
	12 3.					Appendix E Cotton Draw BLM Site	Soil Boring 4
— 30 т	D A	0.1 ppm	None	None		DRAWN BY	DATE
						KAD	21 March 2006

•••••••••••

Depth —	Soil Column	PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Cotto Eddy C NE/SV	ns Marketing, L. P. on Draw BLM Site County, New Mexico W S25, T24S, R31E
_						EM	NS: 2005-00237
							oring Completion Data
_					•	Installed 1	30 Feet bgs 16 November 2005
5		0.1 ppm	None	None	Caliche Layer, Dry (1' to 8' bg	Te	vironmental Service echnologies aples selected for analysis
_						Soil Boring (Completion Data
— 10 —		4.6 ppm	None	None	Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Dr		6 bags of hydrated Bentonite Plug Surface to 30' bgs
15		0.3 ppm	None	None			
20		8.9 ppm	None	None	Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Dr		
					imbedded w/gravel rock		
<u> </u>		0.1 ppm	None	None	ſ	TITLE	DESCRIPTION
_	% %					Appendix E Cotton Draw BLM Site	Soil Boring 5
<u> </u>	тр	8.0 ppm	None	None	ŀ	DRAWN BY	DATE

Depth (feet)	Soil Columns	PID Reading	Petroleum F	Petroleum Stain	Soil Description
-0 		(1435)	Heavy	None	
Ē,			Heavy	None	0 - 19' - Sand, red to brown, very fine grained,
- 10 - - -		(1004)	Heavy	None	well sorted, dry
15 E		1042	Heavy	None	19 - 20' - Caliche
— 20 — —		964	Heavy	None	20 - 21' - Sand, red to brown, very fine grained, well sorted, dry
25 	7. ♥ • • • •	883	Heavy	None	21 - 22' - Caliche
30	Σ. ∇.	(1160)	Heavy	None	22 - 40' - Sand, red to brown, very fine grained, well sorted, imbedded with gravel
35	Ž Ž	712	Moderate	None	
E-40 E-	Z. V	624	None	None	40 - 43' - Sand, red to brown, very fine grained, well sorted, dry
L ₄₅	TD	1239			43 - 45' - Red Bed, clay, dry

Soil Boring Details

Thickness of Bentonite Seal 45 Ft

Date Drilled_

Depth of Exploratory Bonng	45 Ft		
Depth to Groundwater		···	
Ground Water Elevation			

April 10, 2007

Y	Indicates the PSH level measured on
T	Indicates the groundwater level measured on

Indicates samples selected for Laboratory Analysis.

PID Head-space reading in ppm obtained with a photo-ionization detector.

Notes

- The soil boring was advanced on date using air rotary drilling techniques.
- 2.) The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- 3) The depths indicated are referenced from below ground surface (bgs)

Boring Log Details
Soil Boring SB-6
Cotton Draw BLM Eddy County, New Mexico
Plains Marketing, L.P.

Basin Environmental Services

Prep By CDS Checked By CJB

December 31, 2008

Soil Boring SB-7 Petroleum Petroleum Depth Soil PID Soil Description (feet) Columns Reading Stain Odor Soil Boring Details April 5, 2007 Date Drilled. Thickness of Bentonite Seal _ Depth of Exploratory Bonng 35 Ft Backfill Depth to Groundwater _ 0 - 20' - Backfill Material Ground Water Elevation_ Heavy None (507) 20 - 25' - Sand, red to brown, very fine grained, Moderate None well sorted, imbedded with caliche, dry (603) Indicates the PSH level measured on Moderate None 25 - 35' - Sand, red to brown, very fine grained, Indicates the groundwater level measured on (1127)well sorted, dry Indicates samples selected for Laboratory Analysis Moderate None Head-space reading in ppm obtained with a photo-ionization detector Terminated at 35' due to drill stem slant

Notes

- The soil boring was advanced on date using air rotary drilling techniques.
- The lines between material types shown on the profile log represent approximate boundanes. Actual transitions may be gradual
- 3.) The depths indicated are referenced from below ground surface. (bgs)

Boring Log Details
Soil Boring SB-7
Cotton Draw BLM Eddy County, New Mexico
Plains Marketing, L.P.

Basin Environmental Services

Prep By CDS	Checked By. CJB
December 31, 2008	

Soil Description

0 - 14' - Sand, red to brown, very fine grained, well sorted, dry

14 - 15' - Caliche
15 - 17' - Sand, red to brown, very fine grained, well sorted, dry
17 - 18' - Caliche

18 - 25' - Sand, red to brown, very fine grained, well sorted, dry

Soil Boring Details

Date Drilled	April 5, 2007
Thickness of Bentonite Sea	30 Ft
Depth of Exploratory Boring	30 Ft
Depth to Groundwater	
Ground Water Elevation	

Y.	Indicates the PSH level measured on
Y	Indicates the groundwater level measured on

Indicates samples selected for Laboratory Analysis.

PiD Head-space reading in ppm obtained with a photo-ionization detector.

Notes

- The soil boring was advanced on date using air rotary drilling techniques.
- 2.) The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- 3.) The depths indicated are referenced from below ground surface. (bgs)

Boring Log Details
Soil Boring SB-8
Cotton Draw BLM Eddy County, New Mexico
Plains Marketing, L.P.

Basin Environmental Services

Prep By: CDS Checked By: CJB
December 31, 2008

Depth Soil PID Petroleum Petroleum (feet) Columns Reading Odor Stain Heavy None (1632) Heavy None (1252) Heavy None (1191) Heavy None (776)

Soil Description

0 - 20' - Sand, red to brown, very fine grained, well sorted, dry

Soil Boring Details

Date Drilled April 10, 2007
Thickness of Bentonite Seal 20 Ft
Depth of Exploratory Boring 20 Ft
Depth to Groundwater
Ground Water Elevation

ፗ	Indicates the PSH level measured on
T	Indicates the groundwater level measured on
0	Indicates samples selected for Laboratory Analysis

PID Head-space reading in ppm obtained with a photo-ionization detector

Notes

- The soil boring was advanced on date using air rotary drilling techniques
- 2.) The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual
- 3.) The depths indicated are referenced from below ground surface (bgs)

Boring Log Details
Soil Boring SB-9
Cotton Draw BLM Eddy County, New Mexico
Plains Marketing, L.P.

Basin Environmental Services

Prep By CDS Checked By CJB

December 31, 2008

Depth Soil PID Petroleum Petroleum Soil Description (feet) Columns Reading Odor Stain Moderate None (1216) 0 - 13' - Sand, red to brown, very fine grained, Moderate None well sorted, dry (1299) Moderate None 13 - 14' - Caliche (938) 14 - 16' - Sand, red to brown, very fine grained, well sorted, dry Heavy None 16 - 17' - Caliche (604) Heavy None 17 - 30' - Sand, red to brown, very fine grained, well sorted, imbedded with gravel (1302) Moderate None (596) Moderate None 30 - 39' - Sand, red to brown, very fine grained, (1109) well sorted, dry 37 - 40' - Red Bed, clay, dry (1209)

Soil Boring Details

Date Dniled.

Thickness of Bentonite Seal _	40 Ft	
Depth of Exploratory Boring	40 Ft	
Depth to Groundwater		
Ground Water Elevation		

April 10, 2007

-		
w	Indicates the PSH level measured on	
×	iliuicales (ile ron level illeasureu ur	

Y	Indicates the groundwater level measured on	
----------	---	--

Indicates samples selected for Laboratory Analysis.

PID Head-space reading in ppm obtained with a photo-ionization detector

Notes

- The soil boring was advanced on date using air rotary drilling techniques.
- 2.) The times between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- 3) The depths indicated are referenced from below ground surface (bgs)

Boring Log Details
Soil Boring SB-10
Cotton Draw BLM Eddy County, New Mexico
Plains Marketing, L.P.

Basin Environmental Services

Prep By CDS Checked By CJB
December 31, 2008

Appendix F Photographs

Cotton Draw BLM excavation

Installing sand at Cotton Draw BLM Release Site

Installing liner at Cotton Draw BLM Release Site

Backfilling activities at Cotton Draw BLM Release Site

Cotton Draw BLM Release Site on Completion of Remediation Activities

Appendix G
Release Notification and Corrective Action
(Form C-141)

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia. NM 88210
District III
1000 Rto Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

Name of Company Pains Pipeline, I.P Contact Daniel Bryant Address P.O. Box 3119 - Midland, TX 79702 Telephone No. 0. (32) 686-1769	Address P.O. Box 3119 – Midland, TX 79702 Facility Name	Telephone I Facility Typ ON OF REI th/South Line 89° Longitude E OF REL/ Volume of Date and F 10/10/2003 d Mike Brate Date and I	No. (432) 686-1769 e Pipeline LEASE Feet from the Ease e W 103.734694° EASE Release 10 bbls four of Occurrence	Lease N ast/West Line	County											
Surface Owner BLM	Surface Owner BLM Surface Owner BLM LOCATIC Unit Letter Section K 25 24S 31E Latitude N 32.18638 NATUR Type of Release Sweet Crude Oil Source of Release 6" steel transmission line Was Immediate Notice Given? Yes No Not Require	Pacility Typ ON OF REI th/South Line B9° Longitude E OF REL Volume of Date and F 10/10/2003 If YES, To d Mike Brate Date and F	EASE Release 10 bbls four of Occurrence	Lease N ast/West Line	County											
Surface Owner BLM	Surface Owner BLM LOCATIO Unit Letter Section Z 24S 31E Latitude N 32.18638 NATURA Type of Release Sweet Crude Oil Source of Release 6" steel transmission line Was Immediate Notice Given? Yes No Not Require	DN OF REA th/South Line 89° Longitude E OF REL Volume of Date and F 10/10/2003 If YES, To d Mike Brate Date and F	Feet from the East 10 bbls four of Occurrence	ast/West Line	County											
LOCATION OF RELEASE Until Letter Section Township Range 24S 31E Feet from the North/South Line Feet from the East/West Line County Eddy Latitude N 32.186389° Longitude W 103.734694° NATURE OF RELEASE Type of Release Sweet Crude Oil Volume of Release 10 bbls Volume Recovered 0 bbls Nource of Release Sweet Crude Oil Volume of Release 10 bbls Volume Recovered 0 bbls Nource of Release Sweet Crude Oil Volume of Release 10 bbls Volume Recovered 0 bbls Nource of Release Sweet Crude Oil Volume of Release 10 bbls Volume Recovered 0 bbls Nource of Release Sweet Crude Oil Date and Hour of Occurrence Date and Hour of Discovery 10/10/2005 1045 10/10/2005	Unit Letter Section Township Range Section North Latitude N 32.18638	by Congitude By Longitude FOR REL Volume of Date and F 10/10/2003 If YES, To Mike Brate Date and F	Feet from the East W 103.734694° EASE Release 10 bbls four of Occurrence	ast/West Line	County											
Latitude N 32.186389° Longitude W 103.734694° NATURE OF RELEASE	Unit Letter Section Township Range 31E Feet from the North Latitude N 32.18638 NATURATURATION Type of Release Sweet Crude Oil Source of Release 6" steel transmission line Was Immediate Notice Given? Yes No Not Require By Whom? Daniel Bryant	B9° Longitude E OF REL Volume of Date and F 10/10/2003 If YES, To Mike Brate Date and F	Feet from the East W 103.734694° EASE Release 10 bbls four of Occurrence	Volume R	•											
Latitude N 32.186389° Longitude W 103.734694° NATURE OF RELEASE	Unit Letter Section Township Range 31E Feet from the North Latitude N 32.18638 NATURATURATION Type of Release Sweet Crude Oil Source of Release 6" steel transmission line Was Immediate Notice Given? Yes No Not Require By Whom? Daniel Bryant	B9° Longitude E OF REL Volume of Date and F 10/10/2003 If YES, To Mike Brate Date and F	Feet from the East W 103.734694° EASE Release 10 bbls four of Occurrence	Volume R	•											
Latitude N 32.186389° Longitude W 103.734694° NATURE OF RELEASE Type of Release Sweet Crude Oil Volume of Release 10 bbls Volume Recovered 0 bbls Source of Release 6° sect transmission line Date and Hour of Discovery 10/10/2005 10-45 Was Immediate Notice Given? Yes No No Not Required Milke Bratcher mofification was not performed at the time of the release. By Whom? Daniel Bryant Date and Hour 11/16/2005 13:15 Was a Watercourse Reached? Yes No No Not Required Milke Bratcher mofification was not performed at the time of the release. By Whom? Daniel Bryant Date and Hour 11/16/2005 13:15 Was a Watercourse was Impacted, Describe Fully.* If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* Internal Corrosion caused a release of 10 bbls sweet crude oil on a 6° gathering line. Line was clamped to mitigate the release until a pipeline replacement could be made. The pressure of the line is 85 lbs and throughput on the pipeline is approximately 10,000 bbls per month. The gravity of the crude oil is 42. H ₂ S content is <10 ppm. Describe Area Affected and Cleanup Action Taken.* Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD market as "final Report" does not relieve the operator of inshifty should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other details, state, or local laws anuflor regulations. OIL CONSERVATION DIVISION Approved by Distri	Latitude N 32.18638 NATUR Type of Release Sweet Crude Oil Source of Release 6" steel transmission line Was Immediate Notice Given? ☐ Yes ☑ No ☐ Not Require By Whom? Daniel Bryant	B9° Longitude E OF REL Volume of Date and F 10/10/2003 If YES, To Mike Brate Date and F	EASE Release 10 bbls four of Occurrence	Volume R	•											
NATURE OF ReLease Type of Release	Type of Release Sweet Crude Oil Source of Release 6" steel transmission line Was Immediate Notice Given? Yes No Not Require By Whom? Daniel Bryant	Volume of Date and F 10/10/2003 If YES, To d Mike Brate Date and F	EASE Release 10 bbls Tour of Occurrence													
NATURE OF ReLease Type of Release	Type of Release Sweet Crude Oil Source of Release 6" steel transmission line Was Immediate Notice Given? Yes No Not Require By Whom? Daniel Bryant	Volume of Date and F 10/10/2003 If YES, To d Mike Brate Date and F	EASE Release 10 bbls Tour of Occurrence													
Type of Release Sweet Crude Oil Date and Hour of Occurrence Date and Hour of Discovery	Type of Release Sweet Crude Oil Source of Release 6" steel transmission line Was Immediate Notice Given? Yes No Not Require By Whom? Daniel Bryant	Volume of Date and F 10/10/2003 If YES, To Mike Brate Date and F	Release 10 bbls four of Occurrence													
Source of Release 6" steel transmission line Date and Hour of Occurrence Date and Hour of Decurrence Date and Decurrence Date and Decurrence Date and Decurrence Date and Decurrence Date and Hour Difference Dat	Source of Release 6" steel transmission line Was Immediate Notice Given? ☐ Yes ☒ No ☐ Not Require By Whom? Daniel Bryant	Date and F 10/10/2003 If YES, To Mike Brate Date and F	lour of Occurrence													
Was Immediate Notice Given? Yes No Not Required If YES, To Whom? Initial release volume was repreted as 2 bbls so Mike Bratcher notification was not performed at the time of the release.	Was Immediate Notice Given? ☐ Yes ☑ No ☐ Not Require By Whom? Daniel Bryant	10/10/2003 If YES, To Mike Brate Date and I														
Was Immediate Notice Given? Yes No Not Required Wike Bratcher Date and Hour 11/16/2005 13:15 Was a Watercourse Reached? Yes No If Whom? Daniel Bryant Date and Hour 11/16/2005 13:15 Was a Watercourse Reached? If Was a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* Internal Corrosion caused a release of 10 bbls sweet crude oil on a 6" gathering line. Line was clamped to mitigate the release until a pipeline replacement could be made. The pressure of the line is 85 lbs and throughput on the pipeline is approximately 10,000 bbls per month. The gravity of the crude oil is 42. H ₂ S content is <10 ppm. Describe Area Affected and Cleanup Action Taken.* Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a true to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Approved by District Supervisor:	☐ Yes ☐ No ☐ Not Require By Whom? Daniel Bryant	If YES, To Mike Brate Date and I		,												
By Whom? Daniel Bryant Date and Hour 11/16/2005 13:15	By Whom? Daniel Bryant	d Mike Brate Date and I				so .										
Was a Watercourse Reached? Yes No If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* Internal Corrosion caused a release of 10 bbls sweet crude oil on a 6" gathering line. Line was clamped to mitigate the release until a pipeline replacement could be made. The pressure of the line is 85 lbs and throughput on the pipeline is approximately 10,000 hbls per month. The gravity of the crude oil is 42. H ₂ S content is <10 ppm. Describe Area Affected and Cleanup Action Taken.* Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Approved by District Supervisor:																
If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* Internal Corrosion caused a release of 10 bbls sweet crude oil on a 6" gathering line. Line was clamped to mitigate the release until a pipeline replacement could be made. The pressure of the line is 85 lbs and throughput on the pipeline is approximately 10,000 bbls per month. The gravity of the crude oil is 42. H ₂ S content is <10 ppm. Describe Area Affected and Cleanup Action Taken.* Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Approved by District Supervisor:	Was a Watercourse Decohad?															
Describe Cause of Problem and Remedial Action Taken.* Internal Corrosion caused a release of 10 bbls sweet crude oil on a 6" gathering line. Line was clamped to mitigate the release until a pipeline replacement could be made. The pressure of the line is 85 lbs and throughput on the pipeline is approximately 10,000 bbls per month. The gravity of the crude oil is 42. H ₂ S content is <10 ppm. Describe Area Affected and Cleanup Action Taken.* Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Approved by District Supervisor:		If YES, Vo	dume Impacting the	Watercourse.	,											
Describe Cause of Problem and Remedial Action Taken.* Internal Corrosion caused a release of 10 bbls sweet crude oil on a 6" gathering line. Line was clamped to mitigate the release until a pipeline replacement could be made. The pressure of the line is 85 lbs and throughput on the pipeline is approximately 10,000 bbls per month. The gravity of the crude oil is 42. H ₂ S content is <10 ppm. Describe Area Affected and Cleanup Action Taken.* Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Describe Area Affected and Remedial Action Taken.* In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION																
Internal Corrosion caused a release of 10 bbls sweet crude oil on a 6" gathering line. Line was clamped to mitigate the release until a pipeline replacement could be made. The pressure of the line is 85 lbs and throughput on the pipeline is approximately 10,000 bbls per month. The gravity of the crude oil is 42. H ₂ S content is <10 ppm. Describe Area Affected and Cleanup Action Taken.* Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Daniel Bryant Approved by District Supervisor:	If a Watercourse was Impacted, Describe Fully.*															
Internal Corrosion caused a release of 10 bbls sweet crude oil on a 6" gathering line. Line was clamped to mitigate the release until a pipeline replacement could be made. The pressure of the line is 85 lbs and throughput on the pipeline is approximately 10,000 bbls per month. The gravity of the crude oil is 42. H ₂ S content is <10 ppm. Describe Area Affected and Cleanup Action Taken.* Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Daniel Bryant Approved by District Supervisor:																
Internal Corrosion caused a release of 10 bbls sweet crude oil on a 6" gathering line. Line was clamped to mitigate the release until a pipeline replacement could be made. The pressure of the line is 85 lbs and throughput on the pipeline is approximately 10,000 bbls per month. The gravity of the crude oil is 42. H ₂ S content is <10 ppm. Describe Area Affected and Cleanup Action Taken.* Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Daniel Bryant Approved by District Supervisor:																
Internal Corrosion caused a release of 10 bbls sweet crude oil on a 6" gathering line. Line was clamped to mitigate the release until a pipeline replacement could be made. The pressure of the line is 85 lbs and throughput on the pipeline is approximately 10,000 bbls per month. The gravity of the crude oil is 42. H ₂ S content is <10 ppm. Describe Area Affected and Cleanup Action Taken.* Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Daniel Bryant Approved by District Supervisor:	Describe Course of Brokley and Boundial Assistant Land		ww													
could be made. The pressure of the line is 85 lbs and throughput on the pipeline is approximately 10,000 bbls per month. The gravity of the crude oil is 42. H ₂ S content is <10 ppm. Describe Area Affected and Cleanup Action Taken.* Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Daniel Bryant Approved by District Supervisor:		athering line L	ine was clamped to n	nitioate the relea	ase until a ninelir	ne renlacement										
Describe Area Affected and Cleanup Action Taken.* Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Approved by District Supervisor:	could be made. The pressure of the line is 85 lbs and throughput on the	pipeline is app	roximately 10,000 hh	ols per month. T	he gravity of the	crude oil is										
Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Daniel Bryant Approved by District Supervisor:	42. H ₂ S content is <10 ppm.															
Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Daniel Bryant Approved by District Supervisor:																
Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Daniel Bryant Approved by District Supervisor:																
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Daniel Bryant Approved by District Supervisor:	Describe Area Affected and Cleanup Action Taken.* .															
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Daniel Bryant Approved by District Supervisor:	Impacted soil will be remediated per NMOCD quidelines															
regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Approved by District Supervisor:	impacted soit with be remediated per starteers guidelines.					•										
regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Approved by District Supervisor:																
regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Approved by District Supervisor:	I hereby certify that the information given above is true and complete to	the best of my	knowledge and unde	retard that nurs	uent to NMOCD	cular and										
public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Approved by District Supervisor:																
or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Daniel Bryant Approved by District Supervisor:	public health or the environment. The acceptance of a C-141 report by	the NMOCD m	arked as "Final Repo	rt" does not relie	eve the operator	of liability										
Signature: Daniel Bryant OIL CONSERVATION DIVISION Approved by District Supervisor:	should their operations have failed to adequately investigate and remedi	ate contaminati	on that pose a threat t	to ground water,	, surface water, h	uman health										
OIL CONSERVATION DIVISION Signature: Daniel Bryant Approved by District Supervisor:		does not reliev	e the operator of resp	onsibility for co	ompliance with a	ny other										
Signature: David By T Printed Name: Daniel Bryant Approved by District Supervisor:	I		OIL CONSE	RVATION	DIVISION											
Printed Name: Daniel Bryant Approved by District Supervisor:	or IR, +		011 0011010		L T AL/AL/I											
Printed Name: Daniel Bryant	Signature: Usur P															
	Printed Name: Daniel Bryant	Approved by District Supervisor:														
1 Little Limited manager 12 (1 Nagovolis) 1 Land 1 The Little 1 Project 1 Pr					***************************************											
Title: Environmental R/C Specialist Approval Date: Expiration Date:	Title: Environmental R/C Specialist	Approval Dat	c:	Expiration I	Oute:											
E-mail Address. dmbryant@paalp.com Conditions of Approval:	E-mail Address. dmbryant@paalp.com	Conditions of Approval:			Attached 🖂											
Attached	Day 11/2 - 21 (120) (127)				Attached											
Date: 11 30 05 Phone: (432) 686-1769	Attach Additional Sheets If Necessary	t .														