AP - 055

STAGE 1 REPORT

09/17/2008

REUEIVED

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 FAX

2008 SEP 18 AM 11 48

September 17, 2008

Mr. Wayne Price Environmental Bureau Chief New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: Summary of Site Investigation and 2nd Quarter 2008 Groundwater Results DCP Midstream, LP RR Ext. Pipeline Release (AP #55)
Unit C, Section 19, Township 20 South, Range 37 East
Lea County, New Mexico

Dear Mr. Price:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the Summary of Site Investigation and 2nd Quarter 2008 Groundwater Results for the DCP RR Ext. Pipeline Release located in Lea County, New Mexico (Unit C, Section 19, Township 20 South, Range 37 East).

If you have any questions regarding the report, please call at 303-605-1718 or e-mail me swweathers@dcpmidstream.com.

Sincerely

DCP Midstream, LP

Stephen Weathers, PG

Principal Environmental Specialist

cc: Larry Johnson, OCD Hobbs District Office (Copy on CD)

Environmental Files

September 9, 2008

2008 SEP 18 AM 11 48

Mr. Stephen Weathers DCP Midstream, LP 370 17th Street, Suite 2500 Denver, CO 80202

Re:

Summary of Site Investigative Activities and Second Quarter Groundwater Monitoring Results for the RR Ext Pipeline Release in Lea County New Mexico, Unit C, Section 19 Township 20 South, Range 37 East (AP #55)

Dear Mr. Weathers:

This letter report summarizes the investigative activities and second quarter monitoring event that were completed in June 2008 at the RR Ext Site (Figure 1). The original scope of work and field protocols were included in the May 26, 2006 Stage 1 Abatement Plan Proposal. These activities were approved by the New Mexico Oil Conservation Division (OCD) on February 8, 2008. Additional investigative activities were proposed in a American Environmental Consulting, LLC (AEC) May 23, 2008 Summary Site Investigation Report.

The next section summarizes the investigative activities completed. The following section discusses the groundwater monitoring results. The final section provides recommendations.

SUMMARY OF JUNE 2008 FIELD INVESTIGATIVE ACTIVITIES

The June 2008 field investigative activities included the installation, development and sampling of groundwater monitoring wells MW-6, MW-7 and MW-8. These wells were installed on June 30, 2008 to better delineate the dissolved phase hydrocarbon plume associated with the original release. The well locations are shown on Figure 2.

The wells were installed with a hollow-stem auger drilling rig using the protocols included in the May 26, 2006 Stage 1 Abatement Plan Proposal. The wells were installed to a depth of 37.5feet below ground surface (bgs). The materials were generally described as very-fine grained well-sorted sands (Unified Soil Classification SP) or silty sands (Unified Soil Classification SM). Boring logs from the March 2008 and the June 2008 wells are included in Attachment 1. Photoionization (PID) measurements were taken from the near-surface samples and the top of the vadose zone. The measurements are included on the boring logs.

The wells were completed so that the bottom of the slotted intervals penetrated approximately 10 feet of saturated materials. Well construction information is summarized in Table 1. All cuttings generated during the drilling process were placed on and then covered with visqueen pending appropriate disposal.

Mr. Stephen Weathers September 9, 2008 Page 2

The surface completion for each well included an above-ground well protector and a minimum 2 foot by 2 foot concrete pad. The coordinates and elevation of each well were measured by a licensed surveyor.

The three new wells were developed by removing a minimum of 10 gallons using a submersible pump. The wells were then purged and sampled as part of the quarterly groundwater monitoring event described below.

QUARTERLY GROUNDWATER MONITORING

All eight wells were purged and sampled using dedicated bailers for the quarterly groundwater monitoring event. The wells were first purged to equilibration based the field parameters of temperature, pH and conductivity. They were then sampled for laboratory analysis for benzene, toluene, ethylbenzene and xylenes (BTEX). A field duplicate from MW-2, a matrix spike, matrix spike duplicate (MS/MSD) from MW-4 and a trip blank were also collected to evaluated quality control. All affected development and purge water was disposed of at the DEFS Linam Ranch facility.

Well hydrographs are plotted on Figure 3. Figure 3 demonstrates that the water table declined in a similar fashion across the site indicating that uniform groundwater conditions are present. The measured water table elevations from June 2008 were used to generate a groundwater contour map using the Surfer program with a kriging option. This map is included as Figure 4. Incorporation of the three new wells confirms that the groundwater flow direction is toward the south.

The PID readings are summarized in Table 2. The PID results indicate that substantial ionizable hydrocarbon constituents are present in the vadose zone at the MW-1, MW-2 and MW-3 locations. A slightly elevated reading was also measured in MW-2 from 4-6 feet. There were no other elevated readings. These results indicate that the near-surface effects are restricted to the actual release area.

A review of the laboratory report, included in Attachment 2, indicates that the majority of individual surrogates were measured within their control limits. The quality control evaluations are summarized in Table 3. The duplicate samples exhibited acceptable relative percentage difference (RPD) values. The matrix spike and matrix spike duplicate values were also acceptable. There were no BTEX detections in the trip blank. The above evaluations indicate that the data is suitable for the intended uses. The geotechnical data is also included in Attachment 2.

The sampling data is included in Table 4. The New Mexico Water Quality Control Commission Groundwater Standards are included at the top of the table. Wells MW-1, MW-2, MW-3 MW-4 and MW-8 all exceeded the benzene standards. MW-1, MW-2 and MW-3 exceeded the toluene standard. MW-2 and MW-3 exceeded the xylenes standard. The constituents in the other wells were all below the standards.

Mr. Stephen Weathers September 9, 2008 Page 3

Benzene isopleths for the June 2008 data that were generated by the program Surfer using the kriging algorithm are shown on Figure 5. The isopleths demonstrate that natural attenuation substantially reduces the constituent concentrations as they migrate away from the source area.

All of the sampling results are summarized in Table 5. The benzene concentrations from March 2008 and June 2008 were plotted in Figure 6. These graphs show that the concentration changes in all wells except MW-3 increased in a similar fashion. AEC believes that these increases resulted directly from ponding that resulted from heavy precipitation before the sampling event. The ponding extended through the release area in the approximate configuration shown in Figure 7, preventing the advancement of the additional source sampling borings. The pond was over 1-foot deep in the center. The infiltrating surface water probably mobilized and drove dissolved-phase hydrocarbons down the groundwater flow gradient. The ponded surface water could have also affected the upgradient concentration in MW-1. The impacted soils in this area need to be removed and the area backfilled and regraded to prevent this from reoccurring.

RECOMMENDATIONS

AEC recommends the following based upon the data discussed above:

- 1. The third quarter groundwater monitoring event should be completed.
- 2. The source removal activities proposed by DCP Midstream be approved and completed to stabilize the groundwater plume.
- 3. AEC recommends postponing any additional investigative activities, including the slug testing, until the third quarter monitoring is completed to verify the June 2008 concentrations in MW-6, MW-7 and MW-8 and the source removal activities are completed.

Do not hesitate to contact me if you have any questions or comments on this document.

Respectfully Submitted,

Muchael H. Stewart

AMERICAN ENVIRONMENTAL CONSULTING, LLC

Michael H. Stewart, P.E., C.P.G.

Principal Engineer

TABLES

Table 1 – Summary of Well Construction at the DCP RR Ext Location

Well	Date Installed	Stickup	Total Depth (ground)	Screen Interval (ground)	Sand Interval
MW-1	3/08	2.06	37.5	17.5-37.5	16-37.5
MW-2	3/08	2.41	37.5	17.5-37.5	16-37.5
MW-3	3/08	2.53	37.5	17.5-37.5	16-37.5
MW-4	3/08	3.16	37.5	17.5-37.5	16-37.5
MW-5	3/08	2.15	37.5	17.5-37.5	16-37.5
MW-6	6/08	2.18	37.5	17.5-37.5	16-37.5
MW-7	6/08	2.36	37.5	17.5-37.5	16-37.5
MW-8	6/08	2.76	37.5	17.5-37.5	16-37.5

Notes

- Units are feet
- All casings are 2-inch diameter
- Wells were grouted to the surface with hydrated bentonite pellets and completed with above-ground well protectors
- Borings were backfilled with sand to well installation depth as necessary

Table 2 - Photoionization Detector Measurements

Feet Below Ground Surface	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8
0-2	2.2	2.2	0.4	2.3	2.3	4.2	1.4	0.4
2-4		2.6						0.7
4-6		21.2	NM	NM	NM	NM	NM	0.7
6-8		6.2						NM
8-10	NM	1.9	1.4	4.8	6.1	0.6	0.7	INIVI
10-15			NM	NM	NM	NM	3.4	6.8
15-16		İ	INIVI		INIVI			
16-18	4.2	NM			i		NM	NM
18-20				6.7		0.4		
20-22	(15		3.2		3.8		2.2	
22-23	64.5		ND. () NA	212.4] ,,,,		1 4 2
23-25	1917	1	NM	NM	NM	NM	NIM	4.3
25-27	NIM	>2000	117.2]	5.8	1	NM	4.2
27-29	NM	NM	NM	5.3	NM	1.1]	4.2

All readings are parts per million NM: No measurement

Table 3 - Groundwater Sampling QC Evaluation

- Cooler temperature 1.6 degrees C upon login at laboratory
- Blank spikes all within control limits
- No BTEX detections in the trip blank

RPD Evaluation

Well	Benzene	Toluene	Ethylbenzene	Total Xylenes
MW-2	0.00	6.50	0.1251	0.765
(mg/l) MW-2 Dup	8.98	6.58	0.135J	
(mg/l)	10	7	0.156J	0.930
RPD	10.7%	6.2%	14.4%	19.5%

J value: Concentration between method detection limit and method reporting limit

MW-5 Matrix Spike/Matrix Spike Duplicate (percent)

Well	Benzene	Toluene	Ethylbenzene	Total Xylenes
MS	115	98	103	104
MSD	111	97	100	99

MS: Matrix Spike

MSD: Matrix Spike Duplicate

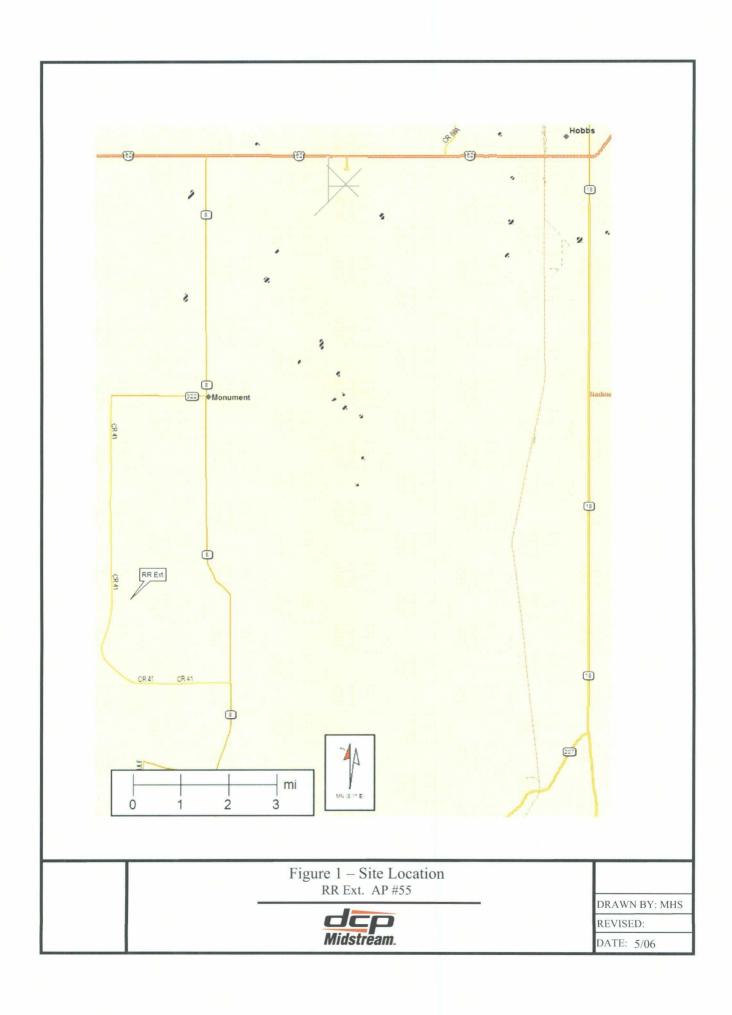
Table 4 - Groundwater Sampling Results

Sampling Results

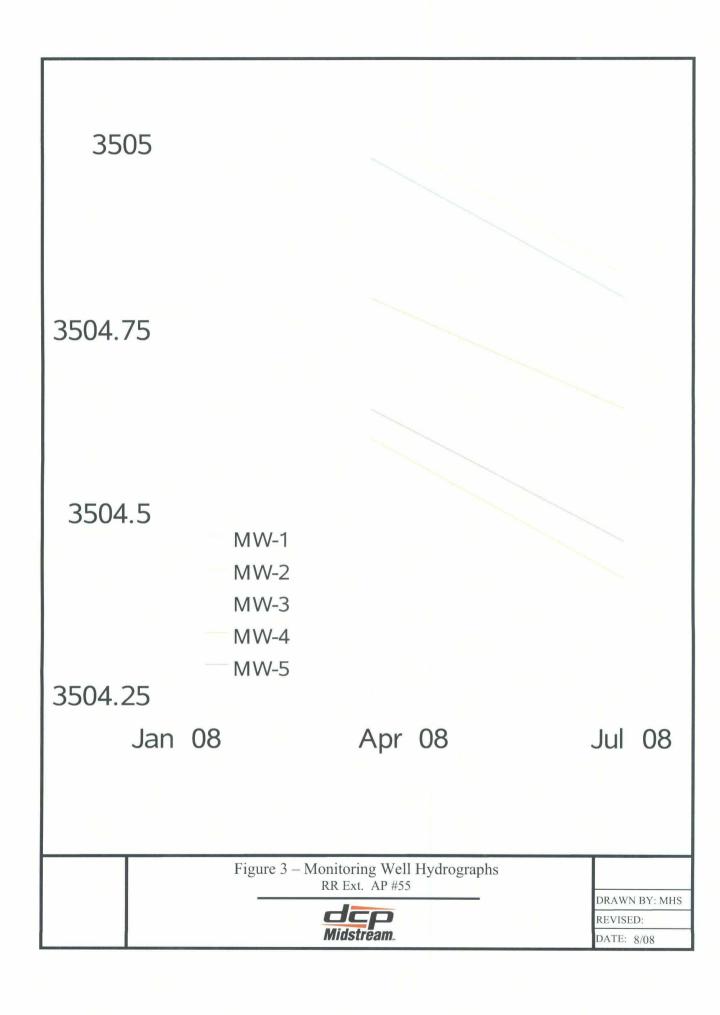
Well	Benzene	Toluene	Ethylbenzene	Total Xylenes
WQCC	010	0.75	0.75	0.60
Standards	.010	0.75	0.75	0.62
MW-1	2.75	2.17	0.054	0.232
MW-2	24.3	18.5	0.319	2.58
DUP	23.5	19.2	0.309	2.36
MW-3	6.18	9.46	0.287	1.23
MW-4	0.0439	0.0256	0.0068	0.0147
MW-5	0.0037	0.0037	< 0.002	< 0.006
MW-6	< 0.002	< 0.002	< 0.002	< 0.006
MW-7	< 0.002	< 0.002	< 0.002	< 0.006
MW-8	0.0384	0.0255	0.00049J	0.0016J

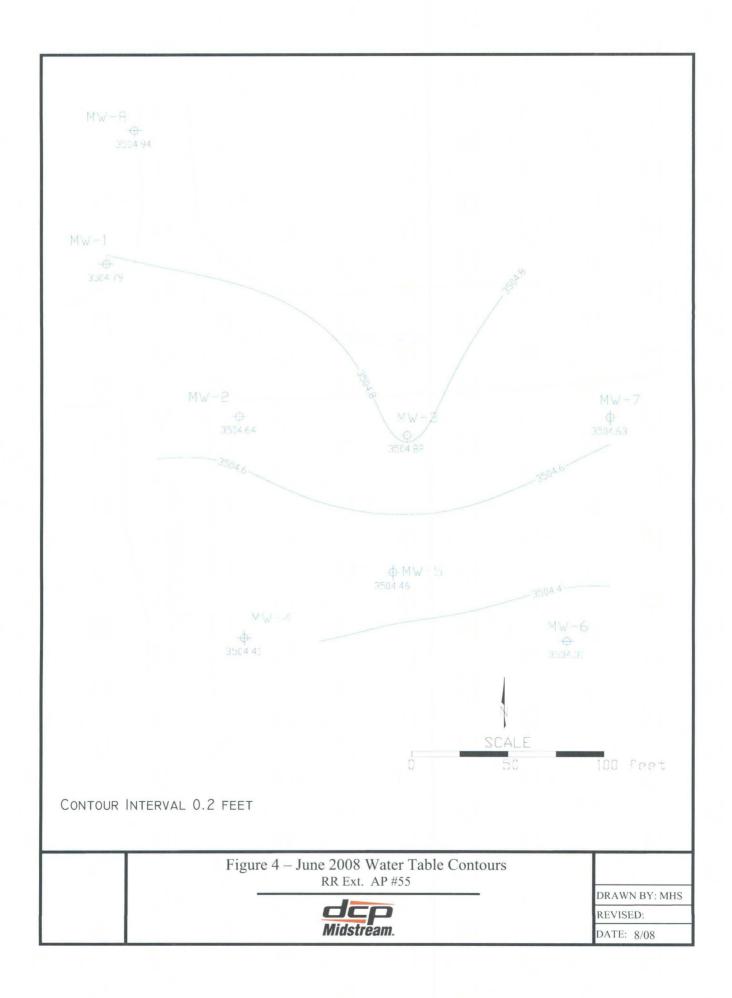
Units mg/l

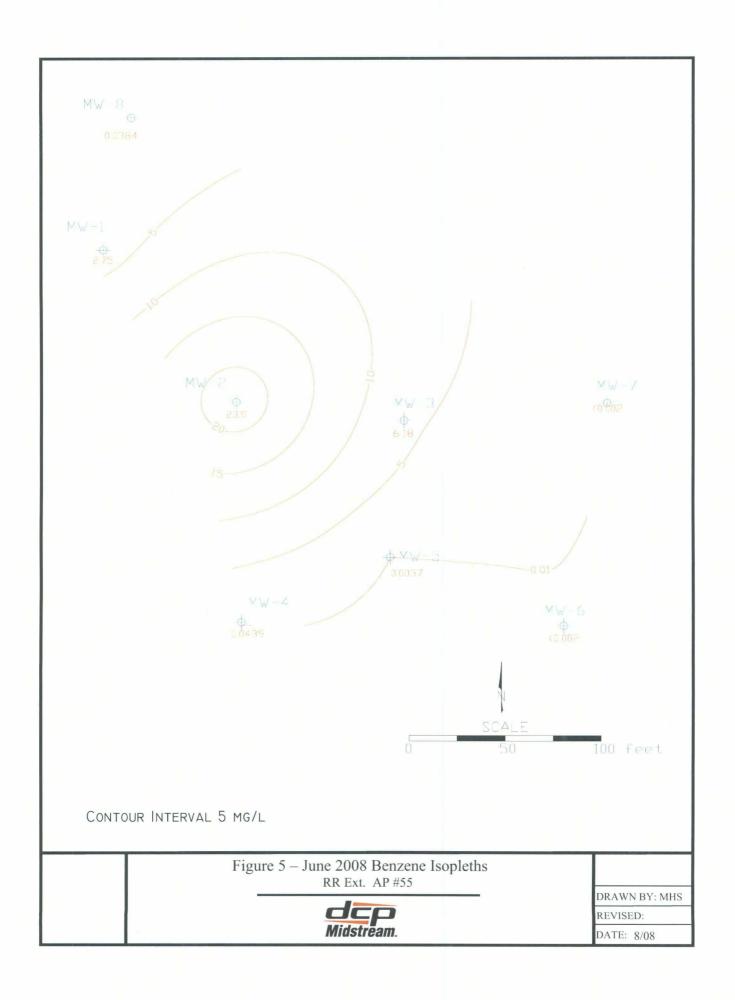
J value: Concentration between method detection limit and method reporting limit Bold values exceed the New Mexico Water Quality Control Commission Groundwater Standards

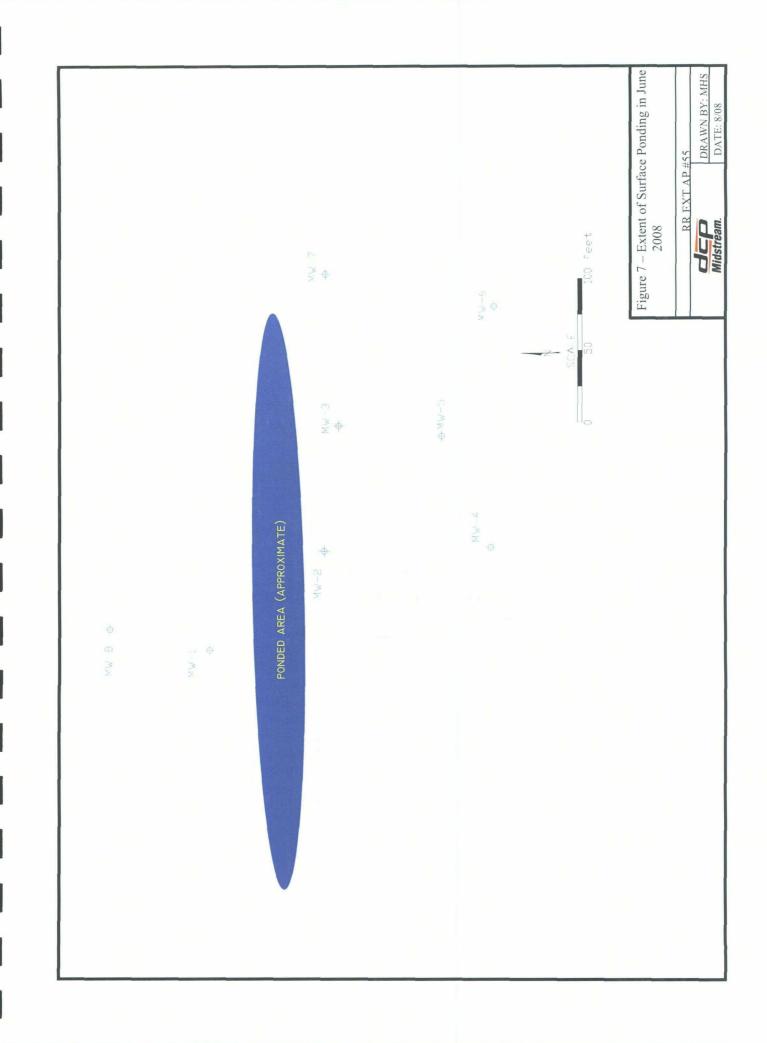

Table 5 - Groundwater Sampling Summary

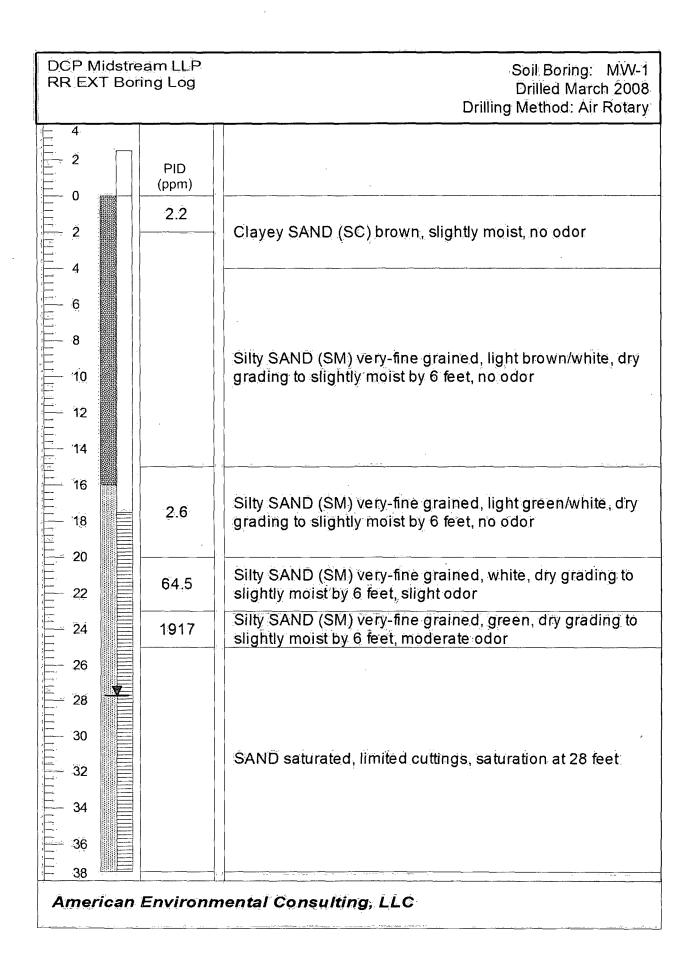
Sampling Results

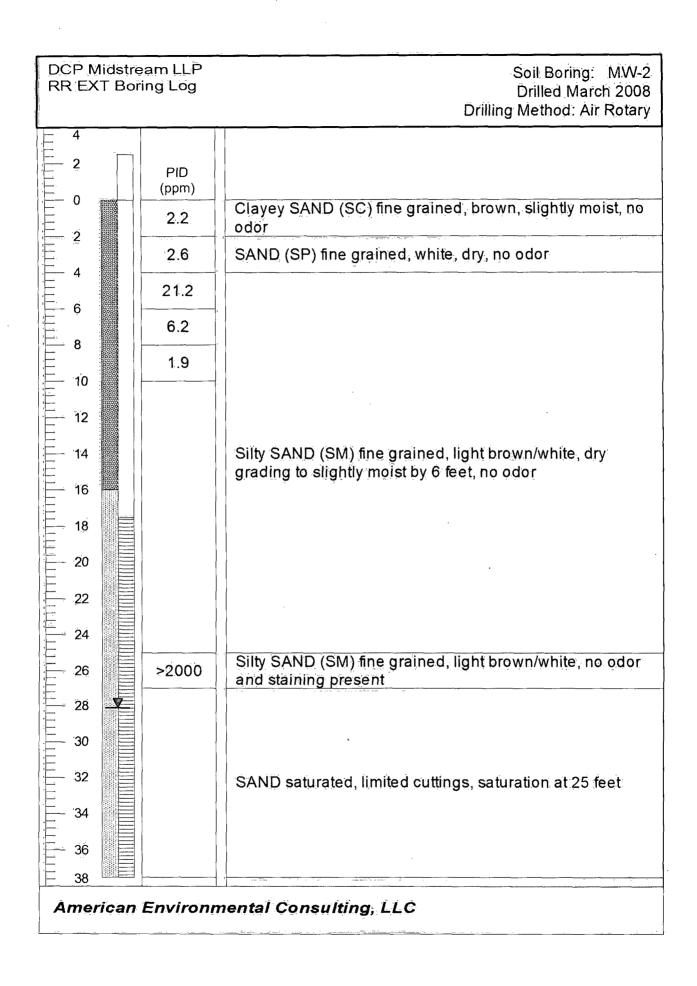

Suits				
	Benzene	Toluene	Ethylbenzene	Total Yylenes
				Xylenes
	010	0.75	0.75	0.62
-	.010	0.75	0.75	0.62
				0.150
				0.128
6/08	2.75	2.17	0.054	0.232
3/08	8.98	6.58	0.135J	0.765
3/08	10	7	0.156J	0.93
6/08	24.3	18.5	0.319	2.58
6/08	23.5	19.2	0.309	2.36
				1
3/08	0.759	0.849	0.0355	0.0786
6/08	6.18	9.46	0.287	1.23
3/08	0.0102	0.0093	< 0.002	0.0023J
6/08	0.0439	0.0256	0.0068	0.0147
3/08	0.0019J	0.0012J	< 0.002	< 0.006
6/08	0.0037	0.0037	< 0.002	< 0.006
-				
6/08	< 0.002	< 0.002	< 0.002	< 0.006
6/08	< 0.002	< 0.002	< 0.002	< 0.006
6/08	0.0384	0.0255	0.00049J	0.0016J
	3/08 6/08 3/08 3/08 6/08 6/08 3/08 6/08 3/08 6/08 6/08	Benzene .010	Benzene Toluene .010 0.75 3/08 1.4 0.948 6/08 2.75 2.17 3/08 8.98 6.58 3/08 10 7 6/08 24.3 18.5 6/08 23.5 19.2 3/08 0.759 0.849 6/08 6.18 9.46 3/08 0.0102 0.0093 6/08 0.0439 0.0256 3/08 0.0019J 0.0012J 6/08 0.0037 0.0037 6/08 <0.002	Benzene Toluene Ethylbenzene .010 0.75 0.75 3/08 1.4 0.948 0.0395 6/08 2.75 2.17 0.054 3/08 8.98 6.58 0.135J 3/08 10 7 0.156J 6/08 24.3 18.5 0.319 6/08 23.5 19.2 0.309 3/08 0.759 0.849 0.0355 6/08 6.18 9.46 0.287 3/08 0.0102 0.0093 <0.002

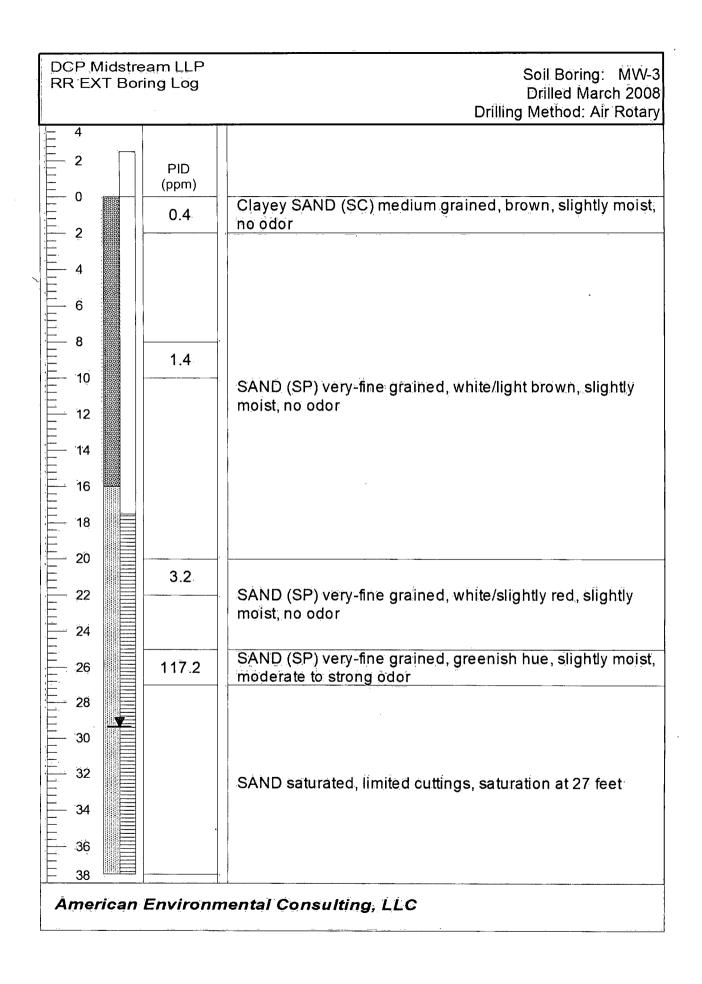

Units mg/l

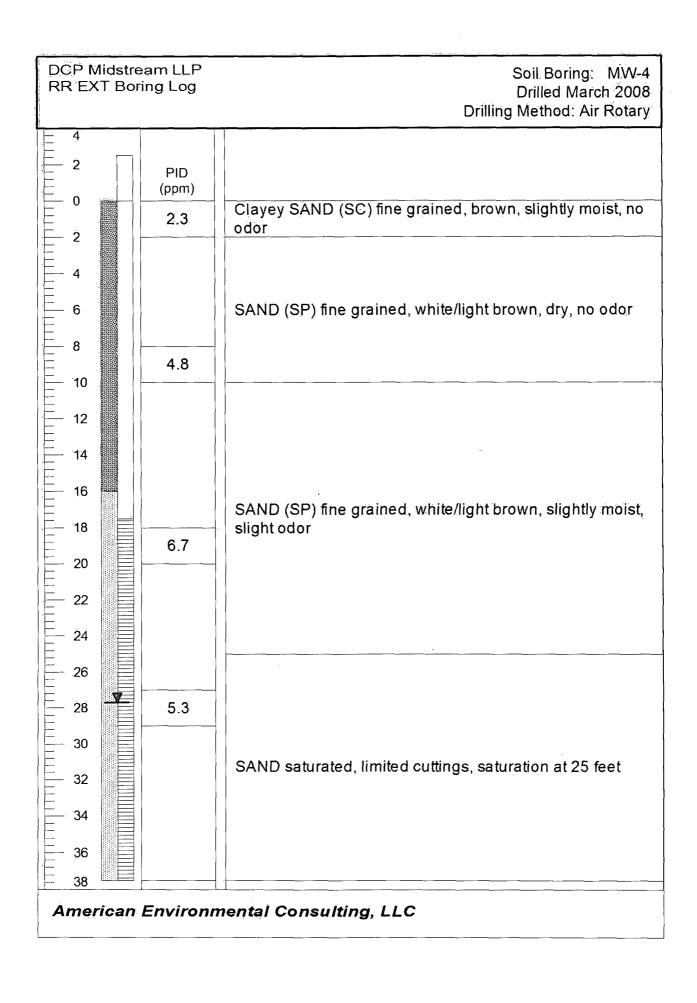

J value: Concentration between method detection limit and method reporting limit Bold values exceed the New Mexico Water Quality Control Commission Groundwater Standards FIGURES



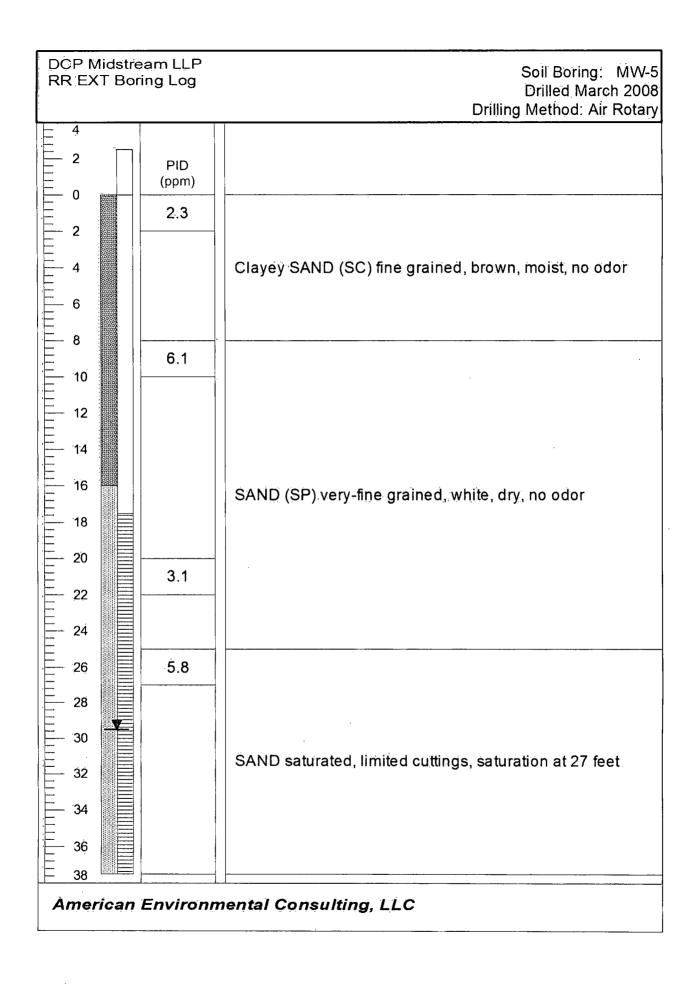


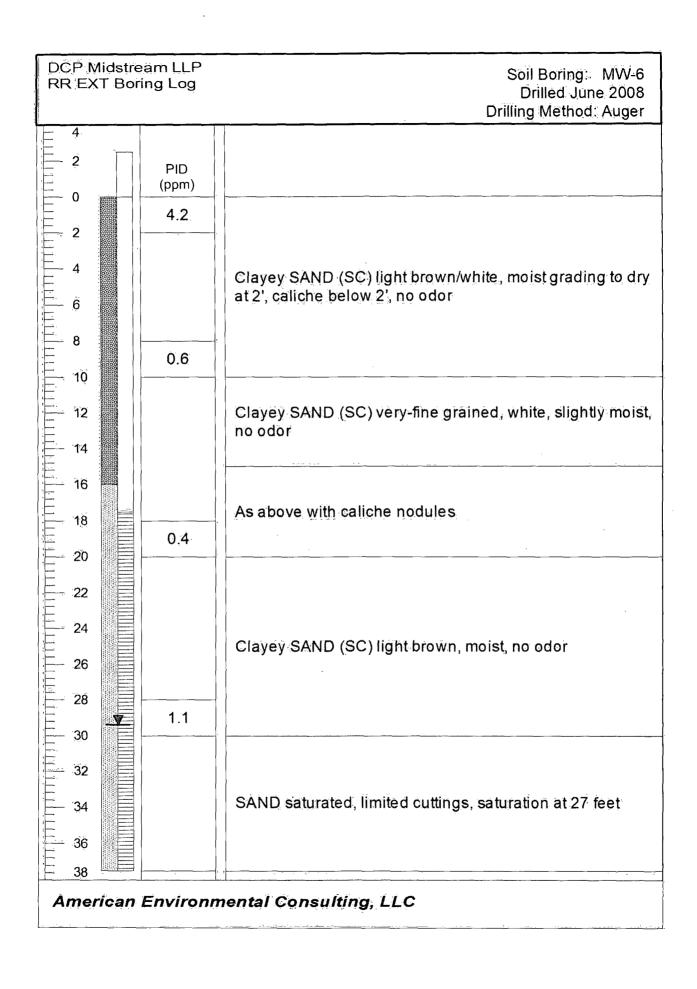


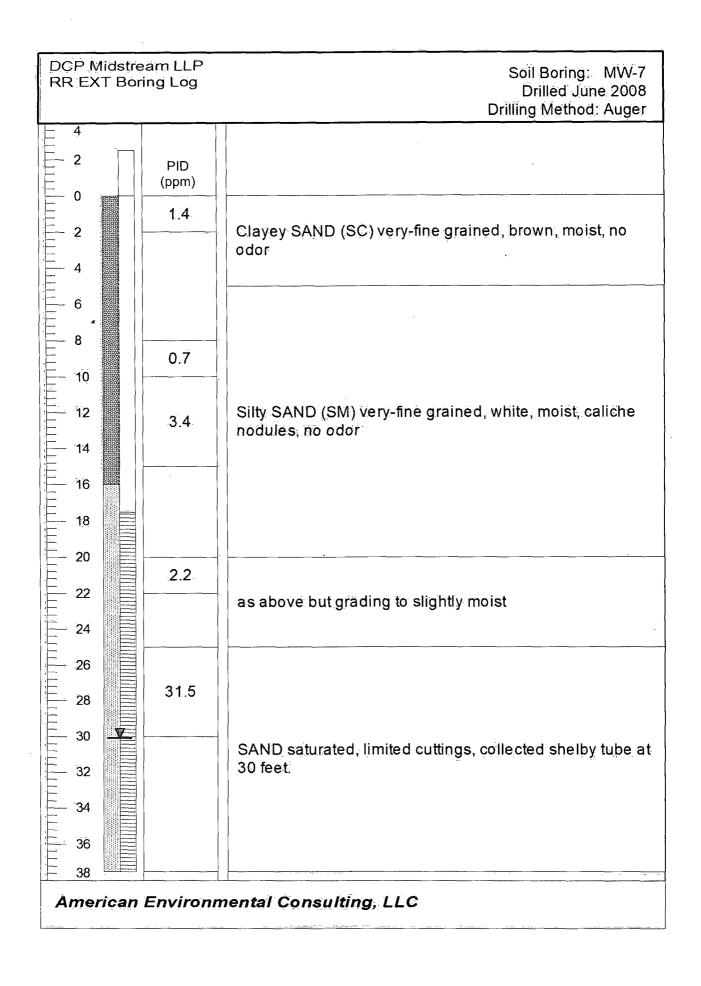


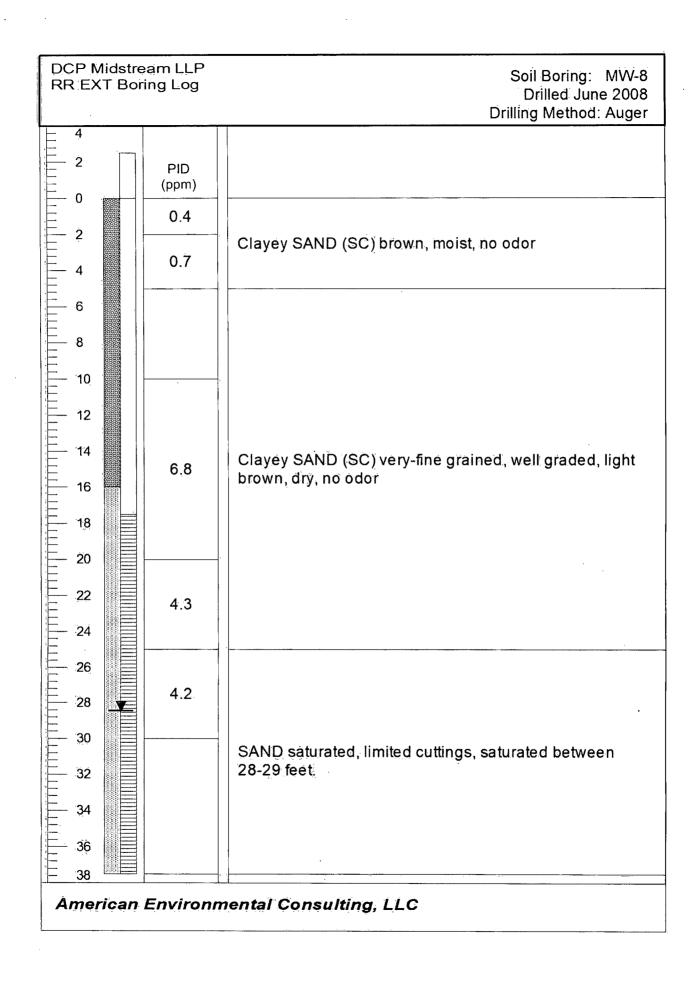


ATTACHMENT 1
BORING LOGS









¥ ...

ATTACHMENT 2

FIELD FORMS GEOTECH REPORT AND ANALYTICAL LABORATORY REPORT

	CLIENT:	DC	DCP Midstream				MW-1
s	ITE NAME:		RR-EXT			DATE:	6/29/2008
PRO	DJECT NO.						M. Stewart/A. Taylor
	•				_		
PURGING	G METHOD:		☑ Hand Bai	led □ Pu	mp If Pui	mp, Type:	
SAMPLIN	IG METHOD): I	☑ Dedicate	d Bailer [☐ Direct fr	om Dischar	rge Hose □Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:
☑ Glove	s 🗆 Alcono	x 🗆 Distill	ed Water Ri	nse 🗆 C	Other:		
DEPTH T HEIGHT	EPTH OF W O WATER: OF WATER AMETER:	COLUMN:	9.78	Feet Feet Feet		1.6	Minimum Gallons to purge 3 well volumes (Water Column Height x 1.96)
TIME	VOLUME PURGED	TEMP. ° F	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	1.7	19.4	2.5	7.07	- mg.z		
	3.4	19.2	2.51	7.07			
	5.1	19	2.52	7.13			
				1			
							,
				-			
	ļ						
	<u> </u>						
0:00	:Total Time		L	:Total Vol		L	:Flow Rate (gal/min)
	PLE NO.:		Sample No.:	MW-1			
	LYSES:	BTEX (826	U)				
СОМ	MENTS:		•				

	CLIENT:		DCP Midstream			WELL ID: MVV-2				
SI	TE NAME:	·- -	RR-EXT			DATE:	6/29/2008			
PRO	JECT NO.				. 8	SAMPLER:	M. Stewart/A. Taylor			
							•			
PURGING	METHOD:		☑ Hand Bai	mp, Type:						
SAMPLIN	AMPLING METHOD: Dedicated Bailer Direct from Discharge Hose Other:									
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPI	LING THE WELL:			
☑ Glove	s □ Alcono	x 🗆 Distill	ed Water Ri	nse 🗆 C	Other:					
DEPTH T HEIGHT (O WATER:	COLUMN:	9.37	Feet		1.6	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)			
TIME	VOLUME PURGED	TEMP.	COND. m S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
	1.7	<u>°F</u> 19.4	1.09	7.27	mg\L		KEWAKKO			
	3.4	19.3	1.08	7.27						
	5.1	19.3	1.08	7.28						
							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
						_				
	<u> </u>	//		<u> </u>	<u> </u>					
0:00	:Total Time		<u> </u>	:Total Vol			:Flow Rate (gal/min)			
	LE NO.:		Sample No.:	MW-2						
	YSES:	BTEX (826								
COMMENTS: Collected duplicate sample "DUP"										

S. Carlo

The same

THE REAL PROPERTY.

	CLIENT:	DC	DCP Midstream			WELL ID:	MW-3
s			RR-EXT		_	DATE:	6/29/2008
					_		M. Stewart/A. Taylor
			· · · · · · · · · · · · · · · · · · ·		_		
PURGING	G METHOD:		☑ Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:	
SAMPLIN	IG METHOE	D:	☑ Dedicate	d Bailer [☐ Direct fr	om Discha	rge Hose □Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFC	RE SAMPI	LING THE WELL:
☑ Glove	s 🗆 Alcono	x 🗆 Distill	ed Water Ri	nse 🗆 🤇	Other:		
TOTAL D DEPTH T HEIGHT WELL DI	PEPTH OF W O WATER: OF WATER AMETER:	VELL: COLUMN: 2.0	40.03 31.75 8.28 Inch	Feet Feet		1.4	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME		COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	1.7	19.4	1.95	7.09	mg.z		
	3.4	19.5	1.95	7.12			
	5.1	19.5	1.95	7.14			
	!		_				
					_		
	<u> </u>						· · · · · · · · · · · · · · · · · · ·
	<u> </u>					ļ	
	<u> </u>						
					<u> </u>		
						ļ	
						 _	<u> </u>
0:00	:Total Time	e (hr:min)		:Total Vol	(gal)	<u> </u>	:Flow Rate (gal/min)
SAMF	PLE NO.:	Collected S	Sample No.:	MW-3			
ANA	LYSES:	BTEX (826	0)			_	
COM	MENTS:						

	CLIENT:	DC	P Midstrea	am		WELL ID:	MW-4	
s	ITE NAME:	RR-EXT			_	DATE:	6/29/2008	
							M. Stewart/A. Taylor	
					,			
PURGING	3 METHOD:	:	☑ Hand Bai	led □ Pu	mp If Pur	mp, Type:		
SAMPLIN	IG METHOD	D:	☑ Dedicated	d Bailer 🏻	☐ Direct fr	om Discha	rge Hose □Other:	
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPI	LING THE WELL:	
☑ Glove	s 🗹 Alcond	x 🗹 Distill	ed Water Ri	nse 🗆 C	Other:			
TOTAL D DEPTH T HEIGHT (WELL DI	EPTH OF V O WATER: OF WATER AMETER:	VELL: COLUMN: 2.0	40.66 30.79 9.87 Inch	Feet Feet Feet		1.6	Minimum Gallons to purge 3 well volumes	
	LVOLUME	TEMP.	COND.	1	I DO		(Water Column Height x 0.49)	
TIME	VOLUME PURGED		m S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS	
	1.7	19.9	1.76	7.24	-	_	Begin Hand Bailing	
	3.4	19.8	1.13	7.27	-	-		
	5.1	19.3	1.78	7.28	-	-		
					-	-		
			<u></u>					
			:					
0:00	:Total Time	e (hr:min)		:Total Vol	(gal)		:Flow Rate (gal/min)	
SAMF	LE NO.:	Collected S	Sample No.:	MW-4				
ANAI	_YSES:	BTEX (826	0)			· • • •		
COMI	MENTS:	Collected a	MS/MSD sa	ample				

を

0 1

	CLIENT:	DC	P Midstrea	am		WELL ID:	MW-5
S	ITE NAME:		RR-EXT			DATE:	6/29/2008
							M. Stewart/A. Taylor
PURGINO	METHOD:	: 1	☑ Hand Bai	led 🗆 Pu	mp If Pur	mp, Type:	
SAMPLIN	G METHOD	D:	☑ Dedicated	d Bailer	☐ Direct fr	om Discha	rge Hose Other:
DESCRIE	BE EQUIPMI	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMP	LING THE WELL:
☑ Glove	s ☑ Alcono	x 🗹 Distill	ed Water Ri	nse 🗆 C	Other:		
TOTAL D	EPTH OF WOOD WATER:	VELL:	42.15 31.46 10.69	Feet Feet		1.8	Minimum Gallons to
WELL DIA	AMETER:	2.0	Inch	1 661		1.0	purge 3 well volumes
	IVOLUME!	TEMP	00110		L 50		(Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	1.7	19.5	1.9	7.26	- \	-	Begin Hand Bailing
	3.4	19.4	1.90	7.28	-	-	
	5.1	19.5	1.91	7.28	-	-	
					-	-	
<u> </u>	<u> </u>						
	<u> </u>						
	<u> </u>	·					
0:00	:Total Time	(hr:min)		:Total Vol	(gal)		:Flow Rate (gal/min)
	LE NO.:		Sample No.:	MW-5			.i low reace (gairmin)
•	_YSES:	BTEX (826				-	
	MENTS:	_ : _ : (020	- /				

古 香香

	CLIENT:	DC	P Midstream			WELL ID:	MW-6
s	ITE NAME:		RR-EXT			DATE:	7/1/2008
						SAMPLER:	M. Stewart/A. Taylor
PURGING	3 METHOD:		☑ Hand Bai	led 🗌 Pu	mp If Pur	mp, Type:	
SAMPLIN	IG METHOD): l	☑ Dedicated	d Bailer	Direct fr	om Discha	rge Hose □Other:
DESCRIE	BE EQUIPMI	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPI	LING THE WELL:
☑ Glove	s 🗆 Alcono	x 🗆 Distill	ed Water Rii	nse 🗆 C	Other:		
DEPTH T HEIGHT	O WATER:	COLUMN:	39.68 31.85 7.83 Inch	Feet		1.3	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	1.7	22.4	1.85	7.42	_	-	Begin Hand Bailing
	3.4	21.3	1.83	7.40	-	-	
	5.1	20.6	1.83	7.35	-	-	
	•			-			
··.	-					,	
	-						
0:00	:Total Time	e (hr:min)		:Total Vol	(gal)		:Flow Rate (gal/min)
SAMF	PLE NO.:	Collected S	Sample No.:	MW-6			
ANA	LYSES:	BTEX (826	0)				
СОМ	MENTS:	Collected N	/IS/MSD san	nple			

	CLIENT:	DC	DCP Midstream			WELL ID:	MW-7
SITE NAME:			RR-EXT		DATE:		7/1/2008
PROJECT NO.			`		_		M. Stewart/A. Taylor
PURGING	G METHOD:		☑ Hand Bai	d Bailed 🔲 Pump If Pump, Type:			
SAMPLIN	IG METHOE):	☑ Dedicated Bailer ☐ Direct fr			om Dischai	rge Hose □Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	LING THE WELL:
☑ Glove	es 🗆 Alcono	x 🗌 Distill	ed Water Ri	nse 🗆 C	Other: .	· · · · · · · · · · · · · · · · · · ·	
TOTAL D	EPTH OF W	VELL:	39.86 32.46	Feet			
HEIGHT	OF WATER	COLUMN:	7.40 Feet		_	1.2	Minimum Gallons to
WELL DIAMETER: 2.0 Inch						purge 3 well volumes (Water Column Height x 0.49)	
TIME	VOLUME		COND.	pН	DO	Turb	PHYSICAL APPEARANCE AND
	PURGED		<i>m</i> S/cm		mg\L	Tuib	REMARKS
	1.3	20.6	1.94	7.37	-	-	Begin Hand Bailing
	2.6	20.6	1.97	7.32	-	-	
	3.9	20.1	1.95	7.37	-	-	
			-				
					<u> </u>		
						· · · -	
		-					
-		i					
0:00 :Total Time (hr:min) :Total Vol (gal)						·Flow Rate (gal/min)	
SAMPLE NO.:		ne (hr:min) :Total Vol (gal) :Flow Rate (gal/min) Collected Sample No.: MW-7					
ANALYSES:							
		BTEX (8260)					
COM	MENTS:						
							····

WELL SAMPLING DATA FORM

	CLIENT:	DC	P Midstrea	am		WELL ID:	MW-8
SI	TE NAME:		RR-EXT		_	DATE:	7/1/2008
						SAMPLER:	M. Stewart/A. Taylor
PURGING METHOD: ☐ Hand Bailed ☐ Pump If Pu							
SAMPLIN	G METHOD): l	☑ Dedicated	d Bailer	☐ Direct fr	om Discha	rge Hose
DESCRIB	E EQUIPME	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMP	LING THE WELL:
☑ Glove:	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗆 C	Other:		
DEPTH TO HEIGHT (O WATER:	COLUMN:	8.79	Feet		1.5	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. ° F	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	1.7	21.6	2.5	7.37	-	-	Began Hand Bailing
	3.4	20.4	2.50	7.37	-		
	5.1	20.9	2.40	7.38	-	-	
						-	
	-						
ļ							
					1		
0:00	:Total Time	(hr:min)		:Total Vol	(gal)		:Flow Rate (gal/min)
	LE NO.:	,	Sample No.:	MW-8			(J)
	YSES:	BTEX (826					· · · · · · · · · · · · · · · · · · ·
	MENTS:						

08/28/08

Technical Report for

American Environmental Consulting

DCP Midstream- RR Ext

Accutest Job Number: T22828

Sampling Date: 06/29/08

Report to:

American Environmental Consulting

mstewart@aecdenver.com

ATTN: Mike Stewart

Total number of pages in report: 31

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Canevaro Laboratory Director

Paul K Carrevaro

Client Service contact: Agnes Vicknair 713-271-4700

Certifications: TX (T104704220-06-TX) AR (88-0756) FL (E87628) KS (E-10366) LA (85695/04004) OK (9103) UT(7132714700)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: T22828-1: MW-1	5
2.2: T22828-2: MW-2	6
2.3: T22828-3: MW-3	7
2.4: T22828-4: MW-4	8
2.5: T22828-5: MW-5	9
2.6: T22828-6: DUP	10
2.7: T22828-7: TRIP BLANK	11
2.8: T22828-8: MW-6	12
2.9: T22828-9: MW-7	13
2.10: T22828-10: MW-8	14
Section 3: Misc. Forms	15
3.1: Chain of Custody	16
Section 4: GC/MS Volatiles - QC Data Summaries	
4.1: Method Blank Summary	
4.2: Blank Spike/Blank Spike Duplicate Summary	
4.3: Blank Spike Summary	
4.4: Blank Spike/Blank Spike Duplicate Summary	
4.5: Matrix Spike/Matrix Spike Duplicate Summary	

Sample Summary

American Environmental Consulting

DCP Midstream- RR Ext

Job No:

T22828

Sample Number	Collected Date	Time By	Received	Matri		Client Sample ID
T22828-1	06/29/08	16:45	07/02/08	AQ	Ground Water	MW-1
T22828-2	06/29/08	16:45	07/02/08	AQ	Ground Water	MW-2
T22828-3	06/29/08	16:20	07/02/08	AQ	Ground Water	MW-3
T22828-4	06/29/08	16:00	07/02/08	AQ	Ground Water	MW-4
T22828-4D	06/29/08	16:00	07/02/08	AQ	Water Dup/MSD	MW-4 MSD
T22828-4S	06/29/08	16:00	07/02/08	AQ	Water Matrix Spike	MW-4 MS
T22828-5	06/29/08	16:05	07/02/08	AQ	Ground Water	MW-5
T22828-6	06/29/08	00:00	07/02/08	AQ	Ground Water	DUP
T22828-7	06/29/08	00:00	07/02/08	AQ	Trip Blank Water	TRIP BLANK
T22828-8	06/29/08	10:55	07/02/08	AQ	Ground Water	MW-6
T22828-9	06/29/08	11:20	07/02/08	AQ	Ground Water	MW-7
T22828-10	06/29/08	12:30	07/02/08	AQ	Ground Water	MW-8

Sample Results		

Page 1 of 1

Client Sample ID: MW-1

Lab Sample ID:

T22828-1

AQ - Ground Water

Date Sampled: 06/29/08 Date Received:

07/02/08

Prep Batch

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Q

Project:

DCP Midstream- RR Ext

DF

Prep Date

Analytical Batch

File ID Run #1 F0092476.D Run #2 F0092511.D

1 20 07/10/08 LJ 07/10/08 LJ

Ву

Analyzed

n/a n/a n/a n/a VF3003 VF3005

Purge Volume

Run #1

5.0 ml

Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL Units
71-43-2	Benzene	2.75 a	0.040	0.0092 mg/l
108-88-3	Toluene	2.17 a	0.040	0.0097 mg/l
100-41-4	Ethylbenzene	0.0540	0.0020	0.00045 mg/l
1330-20-7	Xylene (total)	0.232	0.0060	0.0014 mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%	93%	73-126%
17060-07-0	1,2-Dichloroethane-D4	102%	78%	61-136%
2037-26-5	Toluene-D8	99%	115%	80-125%
460-00-4	4-Bromofluorobenzene	116%	166% ^b	65-147%

(a) Result is from Run# 2

(b) Outside of control limits biased high. There were no target compounds associated with this surrogate

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-2
Lab Sample ID: T22828-2
Matrix: AQ - Ground Water
Method: SW846 8260B
Project: DCP Midstream- RR Ext

Date Sampled: 06/29/08
Date Received: 07/02/08
Percent Solids: n/a

Prep Date Analytical Batch File ID DF Analyzed By Prep Batch VF3006 F0092520.D LJ Run #1 100 07/11/08 n/a n/a VF3007 07/11/08 LJ n/a Run #2 F0092549.D 200 n/a

Purge Volume Run #1 5.0 ml Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	24.3 ^a 18.5 ^a 0.319 2.58	0.40 0.40 0.20 0.60	0.092 0.097 0.045 0.14	mg/l mg/l mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	95% 81% 110% 172% ^b	101% 100% 102% 138%	73-1; 61-1; 80-1; 65-1;	36% 25%	

(a) Result is from Run# 2

(b) Outside of control limits biased high. There were no target compounds associated with this surrogate

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

LJ

Client Sample ID: MW-3

Lab Sample ID:

T22828-3

SW846 8260B

AQ - Ground Water

Date Sampled: 06/29/08 Date Received:

07/02/08 Percent Solids: n/a

Project: DCP Midstream- RR Ext

File ID F0092521.D Run #1

DF 50

Analyzed 07/11/08

Prep Date n/a

Prep Batch n/a

Analytical Batch

VF3006

Run #2

Matrix: Method:

Purge Volume

5.0 ml

Run #1 Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	6.18 9.46 0.287 1.23	0.10 0.10 0.10 0.30	0.023 0.024 0.023 0.068	mg/l mg/l mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	95% 83% 110% 165% ^a	73-126% 61-136% 80-125% 65-147%		36% 25%	

(a) Outside of control limits biased high. There were no target compounds associated with this surrogate

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-4 Lab Sample ID:

Matrix:

T22828-4

AQ - Ground Water

Method:

SW846 8260B

Date Sampled: Date Received:

n/a

n/a

06/29/08 07/02/08

Percent Solids: n/a

By

LJ

LJ

Analyzed

07/10/08

07/10/08

Project:

DCP Midstream- RR Ext

DF

1

1

Prep Date Prep Batch

Analytical Batch VF3005 n/a VF3003 n/a

Purge Volume

F0092501.D

F0092479.D

Run #1

Run #1

Run #2

5.0 ml

File ID

Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL Uni	its Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.0439 0.0256 0.0068 0.0147	0.0020 0.0020 0.0020 0.0060	0.00046 mg/ 0.00048 mg/ 0.00045 mg/ 0.0014 mg/	/1 /1
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	93% 82% 111% 132%	99% 93% 107% 139%	73-126% 61-136% 80-125% 65-147%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-5 Lab Sample ID: T22828-5

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260B

DCP Midstream- RR Ext

Date Sampled: 06/29/08 Date Received: 07/02/08

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F0092502.D 1 07/10/08 LJ n/a n/a VF3005

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.0037 0.0037 ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	94% 83% 111% 147%		73-12 61-13 80-12 65-14	36% 25%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: DUP

Lab Sample ID: Matrix:

Method:

Project:

T22828-6

AQ - Ground Water

SW846 8260B DCP Midstream- RR Ext Date Sampled: 06/29/08 Date Received: 07/02/08

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	F0092522.D	100 -	07/11/08	LJ	n/a	n/a	VF3006
Run #2	F0092550.D	200	07/11/08	LJ	n/a	n/a	VF3007

Purge Volume Run #1 5.0 ml Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	23.5 a 19.2 0.309 2.36	0.40 0.20 0.20 0.60	0.092 0.048 0.045 0.14	mg/l mg/l mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	94% 83% 110% 170% ^b	102% 102% 102% 141%	73-1 61-1 80-1 65-1	36% 25%	

(a) Result is from Run# 2

(b) Outside of control limits biased high. There were no target compounds associated with this surrogate

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TRIP BLANK

Lab Sample ID:

T22828-7

Matrix: Method:

Project:

AQ - Trip Blank Water

SW846 8260B

DCP Midstream- RR Ext

Date Sampled: Date Received:

06/29/08 07/02/08

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	F0092503.D	1	07/10/08	LJ	n/a	n/a	VF3005

Run #2

Purge Volume

5.0 ml

Run #1

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	95% 83% 112% 157% ^a		73-12 61-13 80-12 65-14	86% 25%	

(a) Outside of control limits biased high. There were no target compounds associated with this surrogate

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-6 T22828-8 Lab Sample ID:

Matrix:

AQ - Ground Water

SW846 8260B

Method: Project:

DCP Midstream- RR Ext

07/02/08 Date Received: Percent Solids: n/a

Date Sampled: 06/29/08

Analytical Batch File ID DF Analyzed Ву Prep Date Prep Batch VF3005 Run #1 F0092504.D 1 07/10/08 LJ n/a n/a

Run #2

Purge Volume

5.0 ml

Run #1

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	93% 82% 114% 161% ^a		73-12 61-13 80-12 65-14	36% 25%	

(a) Outside of control limits biased high. There were no target compounds associated with this surrogate

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ву

LJ

Client Sample ID:	MW-7
Lab Sample ID:	T22828-9
Matrix:	AQ - Ground

File ID

AQ - Ground Water SW846 8260B

Date Sampled: Date Received:

Prep Date

n/a

06/29/08 07/02/08

n/a

Method: Project:

DCP Midstream- RR Ext

DF

1

Percent Solids:

Analytical Batch Prep Batch VF3005

Run #1 Run #2

> Purge Volume $5.0 \, ml$

F0092505.D

Run #1 Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	94% 83% 114% 159% ^a		73-12 61-13 80-12 65-14	86% 25%	

Analyzed

07/10/08

(a) Outside of control limits biased high. There were no target compounds associated with this surrogate

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID:

MW-8

Lab Sample ID:

T22828-10

AQ - Ground Water

Matrix: Method:

SW846 8260B

Date Sampled: Date Received:

06/29/08 07/02/08

Percent Solids:

n/a

Project:

DCP Midstream- RR Ext

J

Analytical Batch

Run #1

File ID F0092485.D DF 1

Analyzed 07/10/08

0.0384

0.0255

0.00049

0.0016

Run#1

By LJ

Prep Date n/a

Prep Batch n/a

VF3003

Run #2

Purge Volume

Run #1

 $5.0 \, ml$

Run #2

Purgeable Aromatics

CAS No. Compound

71-43-2 Benzene 108-88-3 Toluene

100-41-4 Ethylbenzene 1330-20-7 Xylene (total)

CAS No. Surrogate Recoveries

1868-53-7 Dibromofluoromethane 17060-07-0 1,2-Dichloroethane-D4 2037-26-5 Toluene-D8

460-00-4 4-Bromofluorobenzene Result RLMDL Units Q

> 0.00200.00046 mg/l 0.0020 0.00048 mg/l

0.00200.00045 mg/l 0.00600.0014 mg/l

Run# 2 Limits

99% 73-126% 100% 61-136%

80-125% 105% 148% a 65-147%

(a) Outside of control limits biased high. There were no target compounds associated with this surrogate

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

			CI	IAI	1 OI	7 C	US	TC)D	Y	12	_								2	•	4
				sh Ponds						В	•	•	Accutest Job #: T22828									
				5 Route 2-329-026						480				Accutest Quote #:					ł /			
			132	-525-020	00, 17,	A. 13	L-JL.	,-545.	,,,,,,											4		
Client Information	10 1		Facili	ty Inform	nation				Ľ			Anal	tical Info	rmation		Buch		-			1	
DCP Midstream		Алт	erican Envi	ronment	al Cons	ulting	, LP		╝		l			Ì	ŀ	1						
Name		Project Nam	e .						Ī		ì	1							g g	i '		
370 Seventeenth Street, Sui	ite 2500								-				l	ŀ			1		8260B	1		
Address Denver CO	80202	Location												i					EX 8			
	Zip	Project/PO #	: .						7			l	1	1					3TE	1		
Stephen Weathers				DCP MI	dstrea	m RR	Ext		4				!							1		■'
Send Report to: Phone #: 303.605.1718		FAX#:								8260B									FOR			
		Collection			-	Pre	serv	ation	3	8				1				<u> </u>	ASD			
Field ID / Point of Collection	Date	Time	Sampled By	Matrix	# of	ថ្ន	500	2504	e o	втех									MS/MSD	ĺ		
MW-1	6/29	445	ins	GW	3	x	+	1	* -	x	 	<u> </u>					 				1	
	659	445	ms	GW	3	x	╁	\dagger	╁	^	 	 		<u> </u>	· · · · · ·					-	1	
MW-2		1 1 1 2			+	+ +	+	╀╌┼	┿		 		<u> </u>	-			├	-		-	1	
MW-3	6/29	420	ms	GW	3	X	+	\vdash	+	X			-	ļ			 					
MW4	6/29	400	MS	GW	3	X	┶	ш	4	Х		ļ								 		
MW-5	6/29	405	ms	GW	3	X	┸	Ш		X		ļ								<u> </u>		
Dup	6/29	000	ms.	GW	3	x				x		<u> </u>										
Trip Blank	, ,			GW	3	x				х							_					4
MW-6	70	1055	us	GW	3	x	\top	П	7	X				Ī								
MW-7	711	1120	MS	GW	3	x	T	П	7	x												
MW-7 MW-5 MG/MGD 609 400	711	1230	MS	GW	6	x	T	П	1										X		1	
MW-8	7/1	1230	urs	GW	3	х		П		x]	
Turnaround Information					Data	Delive	rable	Infor	matic	on				Comme	nts / Rem	arks]	
21 Day Standard	Approved	By:	NJ Red	luced			Comr	nercia	"A"			MAI.	—— ⊢u	: 11	iAC	/ HACE	`					
14 Day			NJ Full				Com	nercia	i 'B"					is H								
X 7 Days EMERGENCY			FULL	LP		<u></u>	SP C	ategoi	ry B					"Hold i						abel.		
Other(Days)			Disk D	eliverable	,		State	Form	8			Accuse	J. 10 111	TOICE D	. m.u.	ouiii,	, OI				1 1	

7/2/08

6:04 2 vanjon

RUSH TAT Is for FAX data

unless previously approved

X Other (Specify)

1 / GO Received By:

Sample Custody must be documented below each time samples change possesion, including courier delivery.

| Date Time: | Received By: | Relinquished By:

T22828: Chain of Custody Page 1 of 3

1.6

16 of 31

ACCUTEST.

T22828

Laboratories

SAMPLE RECEIPT LOG

作出

Ę,

The state of the s

A. 49. 2.

10:04

DATE/TIME RECEIVEL

T22828

30B #:

1 29 MW-7 29-Jun-08 GW 40mL 3 VREF 100.34.5.6 U-42-7124@ 1 2 MW-2 29-Jun-08 GW 40mL 3 VREF 100.34.5.6 U-42-7124@ 1 4 MW-4 29-Jun-08 GW 40mL 3 VREF 1.00.34.5.6 U-42-7124@ 1 4 MW-5 29-Jun-08 GW 40mL 3 VREF 1.00.34.5.6 U-42-7124@ 1 5 MW-5 29-Jun-08 GW 40mL 3 VREF 1.00.34.5.6 U-42-7124@ 1 7 Tip Blank NA TB 40mL 3 VREF 1.00.34.5.6 U-42-7124@ 1 9 MW-7 01-Jun-08 GW 40mL 3 VREF 1.00.34.5.6 U-42-7124@ 1 10 MW-8 01-Jun-08 GW 40mL 3 VREF 1.00.34.5.6 U-42-7124@ 1 10 MW-8 01-Jun-08 GW 40mL 3 VREF 1.00.34.5.6 U-42-7124@ 1 10 MW-8 01-Jun-08 GW 40mL 3 VREF 1.00.34.5.6 U-42-7124@ 1 10 MW-8 01-Jun-08 GW 40mL 3 VREF 1.00.34.5.6 U-42-7124@ 1 10 MW-8 01-Jun-08 GW 40mL 3 VREF 1.00.34.5.6 U-42-7124@ 1 10 MW-8 01-Jun-08 GW 40mL 3 VREF 1.00.34.5.6 U-42-7124@ 1 12.34.5.6 U-42-7124@ 1 12.	CLIENT:		DCP MIDSTREAM	REAM		INITIALS:			E	
1 MW-1 29-Jun-08 GW 40mL 3 VREF 1,633,4,5,6 3 MW-3 29-Jun-08 GW 40mL 3 VREF 1,633,4,5,6 4 MW-4 29-Jun-08 GW 40mL 3 VREF 1,633,4,5,6 5 MW-5 29-Jun-08 GW 40mL 3 VREF 1,633,4,5,6 7 Trip Blank NA TB 40mL 3 VREF 1,633,4,5,6 9 MW-7 01-Jul-08 GW 40mL 3 VREF 1,633,4,5,6 10 MW-8 01-Jul-08 GW 40mL 3 VREF 1,633,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6 11,2,3,4,5,6	COOLER#	SAMPLE ID		DATE	MATRIX	VOL	BOTTLE #	LOCATION	PRESERV	PH
2 MW-2 29-Jun-08 GW 40mL 3 VREF 1,693,4,5,6 4 MW-4 29-Jun-08 GW 40mL 3 VREF 1,693,4,5,6 5 MW-5 29-Jun-08 GW 40mL 3 VREF 1,693,4,5,6 7 Tip Blank NA TB 40mL 3 VREF 1,693,4,5,6 10 MW-8 01-Jul-08 GW 40mL 2 VREF 1,693,4,5,6 10 MW-8 01-Jul-08 GW 40mL 2 VREF 1,693,4,5,6 11 MW-8 01-Jul-08 GW 40mL 2 VREF 1,693,4,5,6 12 MW-8 01-Jul-08 GW 40mL 2 VREF 1,693,4,5,6 13 MW-5 1,23,4,5,6 14 MW-5 1,23,4,5,6 15 MW-8 1,23,4,5,6 17 MW-8 1,23,4,5,6	, -	1	MW-1	29-Jun-08	ВW	40mL	3	VREF	1, 3, 4, 5, 6	U, <2, >12, (A)
3 MWV-3 29-Jun-08 GW 40mL 3 VREF 1,693,4,5,6 5 MWV-5 29-Jun-08 GW 40mL 3 VREF 1,693,4,5,6 6 DUP 29-Jun-08 GW 40mL 3 VREF 1,693,4,5,6 7 Trip Blank NA TB 40mL 3 VREF 1,693,4,5,6 10 MWV-7 01-Jul-08 GW 40mL 3 VREF 1,693,4,5,6 110 MWV-8 01-Jul-08 GW 40mL 3 VREF 1,693,4,5,6 112,3,4,5,6 112,3,4,5,6 112,3,4,5,6 112,3,4,5,6 112,3,4,5,6 112,3,4,5,6 112,3,4,5,6	-	2	MW-2	29-Jun-08	MĐ	40mL	3	VREF	1,@3, 4, 5, 6	U, <2, >12.
4 MW-4 29-Jun-08 GW 40mL 3 VREF 1, 20.3.4.5.6 5 DUP 29-Jun-08 GW 40mL 3 VREF 1, 20.3.4.5.6 7 Trip Blank NA TB 40mL 3 VREF 1, 20.3.4.5.6 9 MW-7 01-Jul-08 GW 40mL 2 VREF 1, 20.3.4.5.6 10 MW-8 01-Jul-08 GW 40mL 2 VREF 1, 20.3.4.5.6 11, 2.3.4.5.6 11, 2.3.4.5.6 11, 2.3.4.5.6 11, 2.3.4.5.6 11, 2.3.4.5.6 11, 2.3.4.5.6	-	8	MW-3	29-Jun-08	ВW	40mL	8	VREF	1,@ 3, 4, 5, 6	U, <2, >12, KA
5 MW-5 29-Jun-08 GW 40mL 3 VREF 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	t	4	MW-4	29-Jun-08	GW	40mL	6	VREF	1, 33, 4, 5, 6	U, <2, >12, (NA)
6 DUP 29-Jun-08 GW 40mL 3 VREF 1(3.3.4.5.6 MW-6 01-Jul-08 GW 40mL 2 VREF 1(3.3.4.5.6 mW-7 01-Jul-08 GW 40mL 2 VREF 1(3.3.4.5.6 mW-7 01-Jul-08 GW 40mL 3 VREF	-	5	MW-5	29-Jun-08	MĐ	40mL	3	VREF	1, 23, 4, 5, 6	U, <2, >12, (A)
MW-6 01-Jui-08 GW 40mL 3 VREF 1, @3,4,5,6 MW-7 01-Jui-08 GW 40mL 2 VREF 1, Ø3,4,5,6 MW-8 01-Jui-08 GW 40mL 3 VREF 1, Ø3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6	-	9	ana	29-Jun-08	MĐ	40mL	က	VREF	13, 3, 4, 5, 6	U, <2, >12, NA
MW-6 01-Jul-08 GW 40mL 2 VREF 1,63,4,5,6 MW-3 01-Jul-08 GW 40mL 3 VREF 1,23,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6	-	7	Trip Blank	NA	TB	40mL	3	VREF	1,33, 4, 5, 6	U, <2, >12, AB
MW-7 01-Jul-08 GW 40mL 2 VREF MW-8 01-Jul-08 GW 40mL 3 VREF	-	80	MW-6	01-Jul-08	МĐ	40mL	8	VREF	1, 23, 4, 5, 6	U, <2, >12, (13)
MW-8 01-Jul-08 GW 40mL 3 VREF	-	6	MW-7	01-Jul-08	МĐ	40mL	2	VREF	1,63,4,5,6	U, <2, >12, NA
	-	10	MW-8	01-Jul-08	GW	40mL	3	VREF	1, 33, 4, 5, 6	U, <2, >12, 🔞
									1, 2, 3, 4, 5, 6	U, <2, >12, NA
									1, 2, 3, 4, 5, 6	U, <2, >12, NA
			•						1,2,3,4,5,6	U, <2, >12, NA
			/						1, 2, 3, 4, 5, 6	U, <2, >12, NA
1, 2, 3, 4, 5, 6 U, C2, 212, 1, 2, 212, 1, 212, 1, 2						D/11	2		1, 2, 3, 4, 5, 6	U, <2, >12, NA
1, 2, 3, 4, 5, 6 U, <2, >12, 3, 4, 5, 6 U, <2				/		7			1, 2, 3, 4, 5, 6	U, <2, >12, NA
1, 2, 3, 4, 5, 6 U, <2, >12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				/					1, 2, 3, 4, 5, 6	U, <2, >12, NA
1, 2, 3, 4, 5, 6 U, <2, >12, 1, 4, 5, 6 U, <2, >12, 1, 2, 3, 4, 5, 6 U, <2, >12, 1, 2, 3, 4, 5, 6 U, <2, >12, 1, 2, 3, 4, 5, 6 U, <2, >12, 1, 2, 3, 4, 5, 6 U, <2, >12, 3, 4, 5, 6 U, <					X	/			1, 2, 3, 4, 5, 6	U, <2, >12, NA
1, 2, 3, 4, 5, 6 U, <2, >12, 1, 2, 3, 4, 5, 6 U, <2, >12, 3, 4, 5, 6									1, 2, 3, 4, 5, 6	U, <2, >12, NA
1, 2, 3, 4, 5, 6 U, <2, >12, 3, 4, 5, 6 U, <2, 3, 4, 5, 6 U, <									1, 2, 3, 4, 5, 6	U, <2, >12, NA
1, 2, 3, 4, 5, 6 U, <2, >12, 12, 3, 4, 5, 6 U, <2, >12, 3, 4, 5, 6 U, <2, 3, 4,									1, 2, 3, 4, 5, 6	U, <2, >12, NA
1,2,3,4,5,6 U, <2, >12, 3,4,5,6 U, <2, 3,4,5,6 U, <2, >12, 3,4,5,6 U, <2, 3,4,5,6 U, <									4,2,3,4,5,6	U, <2, >12, NA
1, 2, 3, 4, 5, 6, 14, -2, >12, 11, 2, 3, 4, 5, 6, 14, -2, >12, 14, 5, 6, 14, -2, >12, 14, 5, 6, 14, -2, >12, 14, 5, 6, 14, -2, >12, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14									1, 2, 3, 4, 5, 6	U, <2, >12, NA
1,2,3,4,5,6 0,42,712									1, 2, 3, 4, 5, 6	V, <2, >12, NA
									1, 2, 3, 4, 5, 6	U, <2, >12, NA

PRESERVATIVES: 1. None 2: HCL 3: HNO3 4: H2804 5: NAOH 6: Other LOCATION: 1: Walk-In #1 (Waters) 2: Walk-In #2 (Solis) VR: Volatile Fridge M: Metals SUB: Subcontract EF: Encore Freezer

T22828: Chain of Custody

Page 2 of 3

F	A 0
	0 1 11 1 1
Ŋ	2 12 12 12

	SAMPLE VERIFICATION	
, 5		

精料

竹篮

T.

连書

多電

Accutest Job Number: 722828	Client: DCP Mid Streem	Project: OCP Matrem alex	m alex
Date/Time Received: 7 1208	40.01	# of Coolers Received:	
Cooler Temps: #1: 1.6 #2:	#3: #4:	#5: #6:	
Method of Delivery: (FEDEX	UPS Accutest Courier	Greyhound Delivery (Other
Airbill Numbers: 8665- 6049	20016 - 7605		
COOLER INFORMATION	SAMPLE INFORMATION	TRIP BLANK INFORMATION	NOI
Custody seal missing or not intact	Sample containers rcvd broken	Trip Blank on COC but not received	ived
Chain of Custody not received	VOC vials have headspace	Trip Blank received but not on COC	200
Temperature criteria not met	Sample labels missing or illegible	Trip Blank not intact	
Wet ice received in cooler	ID on COC does not match label(s)	Received Water Trip Blank	
CHAIN OF CUSTODY	D/T on COC does not match label(s)	Received Soil TB	
Sample D/T unclear or missing	Bottles missing for requested analysis	Number of Encores?	
Analyses unclear or missing	Insufficient volume for analysis	Number of 5035 ktts?	
COC not properly executed	Sample rovd improperly preserved	Number of lab-filtered metals?	
		7	
TECHNICIAN SIGNATURE/DATE:	Jean Jans	VERIFIED BY:	
•	CORRECTIVE ACTIONS	•	•
Client Representative Notified:		Date:	
By Accutest Representative:		Via: Phone Email	
Client Instructions:			

T22828: Chain of Custody

Page 3 of 3

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: T22828

AECCOLI American Environmental Consulting DCP Midstream- RR Ext Account:

Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF3003-MB	F0092471.D	1	07/10/08	LJ	n/a	n/a	VF3003
					-		

Method: SW846 8260B The QC reported here applies to the following samples:

T22828-1, T22828-4, T22828-10

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	2.0	0.46	ug/l	
100-41-4	Ethylbenzene	ND	2.0	0.45	ug/l	
108-88-3	Toluene	ND	2.0	0.48	ug/l	
1330-20-7	Xylene (total)	ND	6.0	1.4	ug/l	
CAS No.	Surrogate Recoveries		Limits		•	
1868-53-7	Dibromofluoromethane	101%	73-126	3%		
17060-07-0	1,2-Dichloroethane-D4	99%	61-136	5%		
2037-26-5	Toluene-D8	106%	80-125	i%		
460-00-4	4-Bromofluorobenzene	141%	65-147	′%		

Page 1 of 1

Method Blank Summary

Job Number: T22828

Account: AECC

AECCOLI American Environmental Consulting

Project:

DCP Midstream- RR Ext

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF3005-MB	F0092499.D	1	07/10/08	LJ	n/a	n/a	VF3005
}							

The QC reported here applies to the following samples:

Method: SW846 8260B

T22828-1, T22828-4, T22828-5, T22828-7, T22828-8, T22828-9

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	2.0 2.0 2.0 6.0	0.46 0.45 0.48 1.4	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries		Limits			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	93% 79% 108% 104%	73-126° 61-136° 80-125° 65-147°	% %		

Job Number:

T22828

Account:

AECCOLI American Environmental Consulting

Project:

DCP Midstream- RR Ext

Sample DF Analytical Batch File ID Analyzed Ву Prep Date Prep Batch VF3006-MB 07/11/08 VF3006 F0092519.D 1 LJ n/a n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

T22828-2, T22828-3, T22828-6

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	2.0 2.0 2.0 6.0	0.46 0.45 0.48 1.4	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries		Limi	ts		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	94% 81% 116% 168%* a	73-12 61-13 80-12 65-14	86% 25%		

(a) Outside control limits biased high. There are no target compounds associated with this surrogate.

Method Blank Summary Job Number: T22828

Account:

AECCOLI American Environmental Consulting

Project:

DCP Midstream- RR Ext

Analytical Batch VF3007 Sample File ID DF Analyzed Ву Prep Date Prep Batch VF3007-MB F0092544.D 1 07/11/08 LJ n/a n/a

Page 1 of 1

The QC reported here applies to the following samples:

Method: SW846 8260B

T22828-2, T22828-6

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3	Benzene Toluene	ND ND	2.0 2.0	0.46 0.48	ug/l ug/l	
CAS No.	Surrogate Recoveries		Limits			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	101% 98% 103% 134%	73-1266 61-1366 80-1256 65-1476	% %		

Method: SW846 8260B

4.2

Blank Spike/Blank Spike Duplicate Summary

Job Number: T22828

Account: AECCOLI American Environmental Consulting

Project: DCP Midstream- RR Ext

	Sample VF3003-BS VF3003-BSD	File ID F0092468.D F0092469.D	-	Analyzed 07/09/08 07/10/08	By LJ LJ	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch VF3003 VF3003
--	-----------------------------------	-------------------------------------	---	----------------------------------	----------------	-------------------------	--------------------------	--------------------------------------

The QC reported here applies to the following samples:

T22828-1, T22828-4, T22828-10

		Spike	BSP	BSP	BSD	BSD		Limits
CAS No.	Compound	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
71-43-2	Benzene	25	28.0	112	27.4	110	· · 2	41-145/30
100-41-4	Ethylbenzene	25	27.7	111	27.7	111	0	49-135/30
108-88-3	Toluene	25	27.6	110	27.6	110	0	66-128/30
1330-20-7	Xylene (total)	75	82.1	109	81.9	109	0	67-122/30
CASN-	Comments Description	DCD	DC	ıD.	T for the			
CAS No.	Surrogate Recoveries	BSP	BS	עו	Limits			

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	100%	100%	73-126%
17060-07-0	1,2-Dichloroethane-D4	103%	102%	61-136%
2037-26-5	Toluene-D8	102%	103%	80-125%
460-00-4	4-Bromofluorobenzene	98%	101%	65-147%

Blank Spike Summary Job Number: T22828

Account:

AECCOLI American Environmental Consulting

Project:

DCP Midstream- RR Ext

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF3005-BS	F0092492.D	1	07/10/08	LJ	n/a	n/a	VF3005

The QC reported here applies to the following samples:

Method: SW846 8260B

T22828-1, T22828-4, T22828-5, T22828-7, T22828-8, T22828-9

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	27.1	108	41-145
100-41-4	Ethylbenzene	25	26.4	106	49-135
108-88-3	Toluene	25	27.0	108	66-128
1330-20-7	Xylene (total)	75	77.9	104	67-122
CAS No.	Surrogate Recoveries	BSP	Lim	its	
1868-53-7	Dibromofluoromethane	101%	73-1	26%	
17060-07-0	1,2-Dichloroethane-D4	101%	61-1	36%	
2037-26-5	Toluene-D8	100%	80-1	25%	
460-00-4	4-Bromofluorobenzene	98%	65-1	47%	

Blank Spike/Blank Spike Duplicate Summary Job Number: T22828

Page 1 of 1

Method: SW846 8260B

Account:

AECCOLI American Environmental Consulting

Project:

460-00-4

DCP Midstream- RR Ext

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VF3006-BS	F0092516.D	1	07/10/08	LJ	n/a	n/a	VF3006
VF3006-BSD	F0092517.D	1	07/11/08	LJ	n/a	n/a	VF3006

The QC reported here applies to the following samples:

T22828-2, T22828-3, T22828-6

4-Bromofluorobenzene

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/1	BSD %	RPD	Limits Rec/RPD	
71-43-2	Benzene	25	27.2	109	27.8	111	2	41-145/30	
100-41-4	Ethylbenzene	25	28.3	113	29.0	116	2	49-135/30	
108-88-3	Toluene	25	28.6	114	. 29.4	118	3	66-128/30	
1330-20-7	Xylene (total)	75	82.6	110	83.1	111	1	67-122/30	
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits				
1868-53-7	Dibromofluoromethane	93%	93	%	73-126	%			
17060-07-0	1,2-Dichloroethane-D4	81%	83	%	61-136	%			
2037-26-5	Toluene-D8	107%	109	9%	80-125	%			

112%

112%

65-147%

Blank Spike/Blank Spike Duplicate Summary Job Number: T22828

Account:

AECCOLI American Environmental Consulting

Project:

DCP Midstream- RR Ext

Sample	File ID	_	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF3007-BS	F0092542.D		07/11/08	LJ	n/a	n/a	VF3007
VF3007-BSD	F0092543.D		07/11/08	LJ	n/a	n/a	VF3007

The QC reported here applies to the following samples:

Method: SW846 8260B

T22828-2, T22828-6

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2 108-88-3	Benzene Toluene	25 25	26.2 25.9	105 104	25.5 25.7	102 103	3	41-145/30 66-128/30
CAS No.	Surrogate Recoveries	BSP	BSI)	Limits			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 102% 100% 98%	100 102 100 100	% %	73-126% 61-136% 80-125% 65-147%	6 6		

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary Job Number: T22828

Page 1 of 1

Account:

AECCOLI American Environmental Consulting

Project:

DCP Midstream- RR Ext

The QC reported here applies to the following samples:

Method: SW846 8260B

T22828-1, T22828-4, T22828-10

		T22828-	4	Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
71-43-2	Benzene	54.2		25	77.5	93	79.0	99	2	60-131/12
100-41-4	Ethylbenzene	1.2	J	25	26.4	101	26.5	101	0	58-127/13
108-88-3	Toluene	39.0		25	54.9	64*	55.2	65*	1	67-123/11
1330-20-7	Xylene (total)	20.4		75	96.5	101	97.0	102	1	62-125/14
					٠					
CAS No.	Surrogate Recoveries	MS		MSD	T22	2828-4	Limits			
1000 00 -	5.1	1010/		1000/			70.1000	,		
1868-53-7	Dibromofluoromethane	101%		102%	999		73-1269			
17060-07-0	1,2-Dichloroethane-D4	102%		100%	939	6	61-1369	6		
2037-26-5	Toluene-D8	102%		102%	107	′%	80 -1259	6		
460-00-4	4-Bromofluorobenzene	101%		101%	139)%	65-147 9	6		

Job Number:

T22828

Account:

AECCOLI American Environmental Consulting

Project:

DCP Midstream- RR Ext

Method: SW846 8260B

The QC reported here applies to the following samples:

T22828-1, T22828-4, T22828-5, T22828-7, T22828-8, T22828-9

CAS No.	Compound	T22828-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	2750	500	3400	130	3350	120	1	60-131/12
100-41-4	Ethylbenzene	62.7	500	641	116	630	113	2	58-127/13
108-88-3	Toluene	2170	500	2720	110	2740	114	1	67-123/11
1330-20-7	Xylene (total)	259	1500	1950	113	1960	113	1	62-125/14
CAS No.	Surrogate Recoveries	MS	MSD	Т22	2828-1	Limits			
1868-53-7	Dibromofluoromethane	92%	93%	93%	6	73-126%	ó		
17060-07-0	1,2-Dichloroethane-D4	86%	82%	789	6.	61-136%	ó		
2037-26-5	Toluene-D8	105%	108%	115	%	80-125%	ó		
460-00-4	4-Bromofluorobenzene	110%	114%	166	%* a	65-1479	6		

(a) Outside of control limits biased high. There were no target compounds associated with this surrogate

Job Number: T22828

Account:

AECCOLI American Environmental Consulting

Project:

DCP Midstream- RR Ext

Sample T22860-4MS T22860-4MSD T22860-4	File ID F0092529.D F0092530.D F0092526.D	1	Analyzed 07/11/08 07/11/08 07/11/08	By LJ LJ LJ	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VF3006 VF3006 VF3006

The QC reported here applies to the following samples:

Method: SW846 8260B

T22828-2, T22828-3, T22828-6

CAS No.	Compound	T22860-4 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	25 25 25 75	29.8 30.3 30.8 86.2	119 121 123 115	27.5 28.6 29.9 83.2	110 114 120 111	8 6 3 4	60-131/12 58-127/13 67-123/11 62-125/14
CAS No.	Surrogate Recoveries	MS	MSD	T22	2860-4	Limits			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	91% 77% 116% 114%	94% 81% 115% 114%	93% 85% 112 183	6	73-1269 61-1369 80-1259 65-1479	6 6		

(a) Outside of control limits biased high. There were no target compounds associated with this surrogate

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 1

Job Number: T22828

Account:

AECCOLI American Environmental Consulting

Project:

DCP Midstream- RR Ext

The QC reported here applies to the following samples:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Γ22884-1MS	F0092554.D	5	07/11/08	LĴ	n/a	n/a	VF3007
Γ22884-1MSD	F0092555.D	5	07/12/08	LJ	n/a	n/a	VF3007
Γ22884-1	F0092553.D	5	07/11/08	LJ	n/a	n/a	VF3007

Method: SW846 8260B

T22828-2, T22828-6

CAS No.	Compound	T22884- ug/l	1 Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 108-88-3	Benzene Toluene	6240 39.7	E	125 125	6070 170	-136* ^a 104	5900 171	-272* ^a 105	3 1	60-131/12 67-123/11
CAS No.	Surrogate Recoveries	MS		MSD	T22	884-1	Limits			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	101% 101% 100% 99%		100% 95% 101% 97%	98% 100' 99% 102'	% 6	73-126% 61-136% 80-125% 65-147%	, , , ,		

⁽a) Outside control limits due to high level in sample relative to spike amount.

July 24, 2008

American Environmental Consulting 6885 South Marshall Street, Suite 3 Littleton, Colorado 80128

Attention:

Mr. Mike Stewart

Subject:

Laboratory Test Results

RR-EXT (DCP)

Project No. DN43,777-300

This letter transmits the results of laboratory tests performed on a sample delivered to our office on July 7, 2008. The test results transmitted at this time are those requested by Mr. Mike Stewart when the sample was submitted.

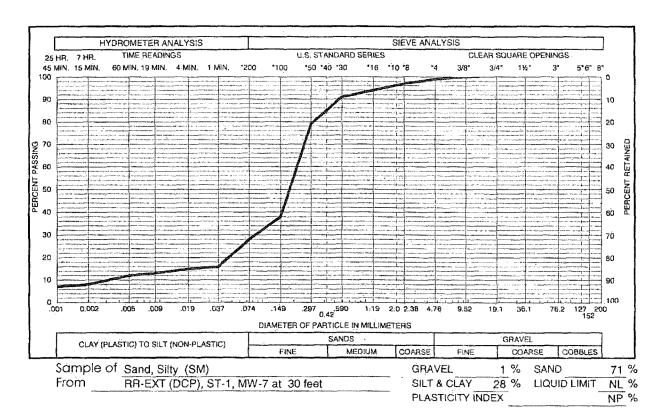
The sample was tested in accordance with applicable American Society of Testing and Materials (ASTM) standards. Test results are presented in Fig. 1 and in the table below.

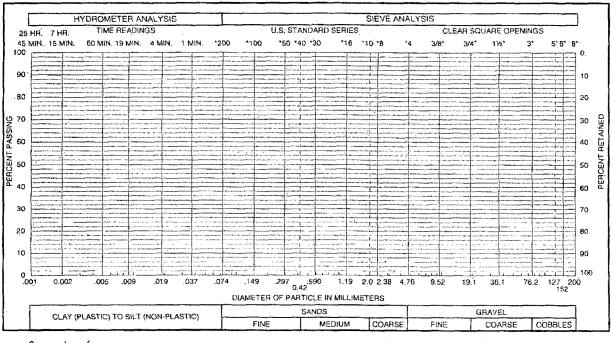
Sieve/Size	Rercent Passing (by weight)
½ inch	100
⅓ inch	99.7
No. 4	99
No. 8	97
No. 16	94
No. 30	91
No. 50	79
No. 100	38
No. 200	28
0.037mm	16
0.019mm	15
0.009mm	13
0.005mm	12
0.002mm	8
0.001mm	7

Liquid Limit (%)	NL
Plasticity Index (%)	NP

Dry Density (pcf)	93
Moisture Content (%)	25.5

	-
Organic Content (%)	1.8
The state of the s	1


Should you have any questions regarding these test results, please call.


Very truly yours,

CTL | THOMPSON, INC.

Paul S. Hunsader Laboratory Manager

PSH/bg (3 copies)

Sample of GR
From SIL
PL

GRAVEL % SAND %
SILT & CLAY % LIQUID LIMIT %
PLASTICITY INDEX %

Gradation
Test Results

FIG. 1

JOB NO. DN43,777-300

Date: 7-18-08 Fax: 3-3-948-7739 Phone: 3-3-948-7	733
Name: Mike Stewart	*****
Company: American Emironmetal Consulting	∞- 3
Project: RR - EXT (DCP)	.www.
Re: Laboratory Testing	-
No. of pages transmitted (including cover sheet):	
. 沙沙沙 大河	= +
If you do not receive all of the described material, please telephone:	
Sender's Name: Paul Hussader	Maria.
Business Phone: (303) 825-0777 Ext. Fax: (303) 825-0113 Sieve Size Percet Passing (by Leight)	
Ya" (@	
3/g;"	
No.4 99	Send-
No. 16 94	
No. 30	-
No. 50 79	
No. 100 /38	
No. 250 26	 ,
0.037 mm	
0.019 mm 15	
0.009 mm 13 Classification -	SM
	-,,,,,,
0.002 mm B 0.001 mm 7	
Dry Den 1: ty (pcf) 93	
morehire Contex (4) 25.5	
Liquid Limst (%) NL	1944.
Plantish Index (96) NP	
Organic Contest (%) 1.8	a, de
Mike, fixed report will follow upon completion	

CONFIDENTIALITY NOTICE: Information transmitted with this FAX is intended only for the use of the individual or entity to whom it is addressed and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. If you are not the intended recipient, any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone and return all pages of this FAX transmittal to us by the U.S. Postal Service to the address shown below. Thank you.

CTL | THOMPSON, INC.

1971 W. 12th Ave. Denver, CO 80204