1R- 427-169

REPORTS

DATE:

6-11-10

Texerra

75 Wuthering Hts Dr Colorado Springs, Colorado 80921 OCD Tel: 917-339-6791 E-mail: <u>lpg@texerra.com</u> 2010 AUG -7_P |: 0|

July 22nd, 2010

Mr. Edward Hansen

New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RECEIVED

e

RE: Addendum to: ICP Report & <u>Termination Request</u> Rice Operating Company – EME SWD System EME N-18 Boot: UL N Sec 18 T 20S R 37E NMOCD Case No. 1R427-169 AIIG - 2 2U Environmental Bureau Oil Conservation Division

Sent Via E-mail and U.S. Certified Mail No. 7007 0710 0003 0305 3897

Mr. Hansen,

Texerra submits this ICP Report and Termination Request Addendum on behalf of Rice Operating Company (ROC). During the June 16th, 2010 meeting between ROC and NMOCD, NMOCD requested that residual soil chlorides be compensated for through the removal of an equivalent mass of groundwater chlorides from a nearby recovery well.

We estimate that there are 322 lbs of residual soil chloride contributed from the former EME N-18 boot based on an impact area of 20x20x27-feet, a contributed average chloride concentration of 239 ppm (mg/kg) in the unsaturated zone and 278 ppm in the saturated zone. Our calculations indicate that removing 322 lbs from the nearby groundwater recovery system located at EME L-6 boot (which exhibited a groundwater chloride concentration of 11,200 mg/L) would require the removal of approximately 91 bbls (Table 1, Figure 1).

ROC removed 580 bbls of groundwater from EME L-6 between April 26 and May 5, 2010 (Figure 2). Approximately 350 bbls of this was in excess of what was required in similar compensation for a previous project (EME Jct. I-13, NMOCD Case No. 1R427-171), which received termination through NMOCD on June 23, 2010. This overage adequately compensates for the 91 bbls required for the EME N-18 Boot site. We therefore submit that the long term potential for groundwater impacts from contributed, residual chlorides at EME N-18 Boot has been adequately addressed, and we submit this report in support of our request for administrative termination of this project.

۰.

t

ROC is the service provider (agent) for the EME Salt Water Disposal System and has no ownership of any portion of pipeline, well or facility. The EME SWD System is owned by a consortium of oil producers, System Parties, who provide all operating capital on a percentage ownership/usage basis.

We appreciate your consideration of this request.

Sincerely,

L. Peter (Pete) Galusky, Jr. Ph.D., P.G. Principal

Copy: Rice Operating Company

.

.

Soil Chloride Calculator	1]					
Estimated Mass of Contributed, Residual Soil Chloride and Calculation of Equivalent							
Volume of Regionally Affected Groundwater in Compensation							
Company:	pany						
Site:	EME N-18	Boot	<u> </u>				
This estimate prepared by:	L P Galusk	y, Jr. w/ Te	exerra				
Date:	7/12/2010	<u> </u>					
	1						
Estimation of Residual Chloride Mass	1						
	1						
Inputs in Blue Font							
Parameter	Value	Unit	Notes				
length of affected area	20	ft	limits of jct box excavation				
width of affected area	20	ft	limits of jct box excavation				
affected depth	27	ft	measured				
depth to water table	30	ft	estimated				
avg CI- conc of affected soil in unsaturated zone	385	ppm	measured				
est CI- conc of affected soil in saturated zone	424	ppm	from lowest unsat zone measurement				
est. natural background CI- conc	146	ppm	measured adjacent to affected area				
soil mass density	3,000	lbs/cu yd	estimated/assumed				
thickness of affected aquifer	10	ft	prescribed by NMOCD				
Output in Black and Red Fonts		∲= •= •= •= •= • • • }					
Parameter	Value	Unit	Notes				
affected area	314	sq ft	calculated eliptical area				
unsaturated zone CI- conc attributed to source	239	ppm	calculated				
saturated zone CI- conc attributed to source	278	ppm	calculated				
volume of affected soil in unsaturated zone	314	cu yds	calculated				
mass of affected soil in unsaturated zone	942,000	lbs	calculated				
volume of affected soil in saturated zone	116	cu yds					
mass of affected soil in saturated zone	348,889	lbs					
	1						
unsaturated zone mass of contributed residual soil chloride	225	lbs	calculated				
saturated zone mass of contributed residual soil chloride	97	lbs	calculated				
total estimated mass of contributed residual chlorides	322	lbs	calculated				
	1						
Calculation of Equivalent Volume of Affected	T						
Groundwater to Remove to Compensate for Residual			<u> </u>				
Inputs in Blue Font		1					
CI- conc of recovery well	11,200	ppm	measured at EME L-6				
avg daily pumping rate of recover well	0.5	gpm	measured/estimated				
Output in Black and Red Fonts							
avg daily pumping rate of recovery well	17.1	bbls/day	calculated				
CI- conc of recovery well	3.5	lbs/bbl	calculated				
# bbls to remove contributed CI- from unsat zone	91	bbis	calculated				
days pumping required to remove contributed CI-	5.3	davs	calculated				

Table 1 – Estimation of contributed, residual chloride mass and equivalent volume of regionally impacted groundwater to be removed in compensation. These calculations are summarized, below.

.

Table 1 (cont'd) – Explanation of Calculations

Calculation of Contributed, Residual Chloride Mass

- The total mass of the affected soil volume in the <u>unsaturated zone</u> is calculated as the surface footprint times depth to the water table, times an assumed value for porosity, times an assumed value for soil bulk density.
- The "contributed" soil chloride mass from the <u>unsaturated zone</u> is then calculated as the contributed average soil chloride concentration (the measured average soil chloride concentration minus a presumed value for the natural or regulatory soil chloride concentration) times the affected soil chloride mass.
- The total mass of the affected soil volume in the <u>saturated zone</u> is calculated as the surface footprint times a prescribed saturated thickness, times an assumed value for porosity, times an assumed value for soil bulk density.
- The "contributed" soil chloride mass from the <u>saturated zone</u> is then calculated as the contributed average soil chloride concentration (the measured average soil chloride concentration minus a presumed value for the natural or regulatory soil chloride concentration) times the affected saturated zone soil chloride mass.
- The total, contributed chloride mass is then calculated as the sum of the contributed chloride mass from the unsaturated zone and the saturated zone.

Calculation of Groundwater Volume with Equivalent Mass of Chlorides

- The chloride density from a designated pumping well is determined by measuring its groundwater chloride concentration (and converted to convenient units of lbs/bbl).
- The equivalent volume of groundwater that needs to be withdrawn is then calculated as the total mass of contributed, residual chlorides divided by the groundwater chloride density.

Figure 1 – EME N-18 boot residual soil chloride concentrations (measured by field titration on 06.07.10 by Rice Operating Company). Bubble diameters are proportional to the indicated chloride concentrations (in ppm). The average <u>unsaturated zone residual</u> soil chloride concentration within the affected radius of 10 ft (indicated by blue bubbles) was **385 ppm**. The estimated <u>saturated zone residual chloride concentration</u> of **424 ppm** was calculated as the average of the two deepest unsaturated zone chloride measurements within the affected radius. The estimated <u>natural background soil chloride concentration</u> of **146 ppm** was taken as the average of measurements outside of the affected area (gray bubbles).

. .

Figure 2 – Location of EME N-18 Boot relative to regional groundwater chloride plume and EME L-6 recovery well. (Data source: "up-gradient" monitor wells for various open NMOCD projects).

6

Texerra

٩.

4

505 N Big Spring, Suite 404 Midland, Texas 79701 Tel: 432-634-9257 E-mail: <u>lpg@texerra.com</u>

June 11th, 2010

2010 JUN 18 A 11: 19

Mr. Edward Hansen

New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RE: Investigation and Characterization Plan Report & <u>Termination Request</u> Rice Operating Company – EME SWD System EME N-18 Boot: UL N Sec 18 T 20S R 37E NMOCD Case No. 1R427-169

Sent Via E-mail and U.S. Certified Mail No. 7007 0710 0003 0305 3880

Mr. Hansen,

Texerra has directed and supervised work outlined in the NMOCD approved Investigation and Characterization Plan of March 10th, 2009 for this project. Soil borings were advanced to the water table capillary fringe at the center of the former vent location and 10ft and 20 ft to the east.

Soil cuttings were described and residual soil chlorides and hydrocarbons were measured using field methods, which were subsequently corroborated by laboratory analysis. A brief summary of the key findings is given below

- The site is located within an area of known historical groundwater chloride impacts (Figure 1).
- Residual soil petroleum hydrocarbon concentrations were negligible (< 10 ppm) as indicated by field PID meter (Figures 2a 2c).
- The water table was estimated to occur at approximately 27 ft bgs based on field soil moisture.
- Residual soil chloride concentrations were moderately elevated (less than 500 ppm) near the former vent location but dropped to insignificant levels 16 ft to the east (Figure 3, Appendix).
- A clay infiltration barrier was installed across the site during removal of the former vent (Figure 4) in August, 2004.
- The surface at this location is well vegetated, excepting to the south and southwest which are in and adjacent to an active oil field service roadway (Figure 5).

The risk of groundwater contamination from residual petroleum hydrocarbons is believed to be non-existent based on the insignificant levels of hydrocarbons found during the field investigation.

1

The risk of groundwater contamination from residual soil chlorides is believed to be exceedingly low due to the low and localized concentrations found. Any potential risk for groundwater impact is further diminished by the presence of an installed clay infiltration barrier.

Texerra therefore respectfully requests that NMOCD grant this project "remediation termination" or a similar closure status.

ROC is the service provider (agent) for the EME Salt Water Disposal System and has no ownership of any portion of pipeline, well or facility. The EME SWD System is owned by a consortium of oil producers, System Parties, who provide all operating capital on a percentage ownership/usage basis.

We greatly appreciate your consideration of this request.

Thank you for your consideration.

Sincerely,

L. Peter (Pete) Galusky, Jr. Ph.D., P.G. Principal

Copy: Rice Operating Company

Figure 1 – Location of EME N-18 Boot relative to regional groundwater chloride plume. (Data source: "up-gradient" monitor wells for various open NMOCD projects).

1.0.00									
Logo	ger:	Pete G	alusky	Former ict box site	MPER	ATING COM			
Drill	ler: H	arrison &	Cooper		TE	POINT			
Consu	Itant:	Техе	rra	SB-1 SB-3 SB-2	R -				
Drilling I	Method	Air Re	otary	55-2					
Start [Date:	6/7/2	0 10		SINCE 1955				
End D	ate:	6/7/2	0 10		Project Name:	Well ID:			
Comm	ents: Lo	ocated a	t the sou	rce of the former junction box site.	EME N-18	boot SB-1			
					Location: U	L/N sec. 18 T20S R37E			
	-	Dra	fted by: L	ara Weinheimer	Lat: 32°34'10.105"N County: Lea				
	ID =	= 25 ft		DGW = 27 ft	Long: 103°17'43	3.493"W State: NM			
Depth (feet)	chlorid field tes	e sts	B PID	Description	Lithology	Well Construction			
				10 - 15 ft					
			-						
15 ft	291		0	light gray					
				20 - 25 ft					
20.4	577	CI-	0.1	GRAVELLY SILTY SAND					
20 10	5/7	GR				Dentonite			
	1	< 10	.0	light brown		seal			
		DRO							
		< 10	.0						
	105	CI-							
25 ft	466	768	0						
		GR							
		DRO							
		< 10	0						

Figure 2a – Soil boring log, residual chloride and petroleum hydrocarbon concentrations at the former junction box location (boring no. SB-1).

4

Log	ger:	Pe	te Galu	sky	Former ict hox site	OPER	ATING	GOA
Dril	ler:	Harri	son & C	ooper		ALE	S. Standard	PROM
Consu	ultant:	_	Texerra		SB-1 SB-3 SB-2			2
Drilling	Method	ŀ	Air Rota	ry	002	BI	NEE 195	5
Start	Date:		6/7/2010	0				
End D	Date:		6/7/2010	0		Project Name:		Well ID:
Comm	ents: L	ocat	ted 161	ft east	of the former junction box site.	EME N-18	SB-2	
						Location: U	L/N sec.	18 T20S R37E
	TD	45	Drafte	d by: Li	ara Weinheimer	Lat: 32°34'10.09	95"N	County: Lea
	ID :	= 15	π		$DGW = 27 \pi$	Long: 103°1/4	3.297"W	State: NM
Depth (feet)	chlorid field te	de sts	LAB	PID	Description	Lithology	Well	Construction
					0 - 5 ft			
					CALICHE RUBBLE			
5 ft	171		Cl- < 16	0.6	light brown			
			GRO					
			DRO		•			
			< 10.0					
10 ft	148			0.3	5 - 15 ft			bentonite
					COARSE LOAMY SAND			
		_						seal
					light brown	and the second second		
15 ft	119		CF < 16	0.2				
		-	GRO					
			< 10.0					
			DRO					
		- 1	< 10.0					

Figure 2b – Soil boring log, residual chloride and petroleum hydrocarbon concentrations 16 ft east of the former junction box location (boring no. SB-1).

Log	ger:	Pe	te Galus	sky	Formariat have site	Τ	OPE	RA	TING	Co.
Dril	ler: H	Harris	son & C	ooper	Former jct. box site		TEE			NP AN
Consu	ltant:		Texerra		SB-1 SB-3 SB-3	1		T		
Drilling	Method	A	ir Rota	ry	5B-2					-
Start	Date:	1	6/7/2010)						
End D	Date:		6/7/2010)		Project Name:		Well ID:		
Comm	ents: L	ocat	ed 8 ft	east of	f the former junction box site.	EME N-18 boot SE		SB-3		
Drafted by: La			Drafte ft	d by: La	ara Weinheimer DGW = 27 ft	Location: UL/N sec. 18 T20S R Lat: 32°34'10.113"N County: L Long: 103°17'43 389"W State: NM			18 T20S R37E County: Lea State: NM	
Depth (feet)	chlorid field te	de sts	LAB	PID	Description	T	Lithology		Well	Construction
					10 - 15 ft					
		-								
					SANDT CALICILE NOBBLE					
15 ft	291			0	light brown					
		-								
20 ft	300		Cl- 256	0						bentonite
			GRO < 10.0		15 - 30 ft					seal
			DRO < 10.0		GRAVELLY COARSE LOAMY SAND					
25 ft	382		CI- 464	0.1	light brown					
			GRO < 10.0							
			DRO < 10.0							

Figure 2c – Soil boring log, residual chloride and petroleum hydrocarbon concentrations 8 ft east of the former junction box location (boring no. SB-1).

6

Figure 3 – EME N-18 boot residual soil chloride concentrations (measured by field titration on 06.07.10 by Rice Operating Company). Bubble diameters are proportional to the indicated chloride concentrations (in ppm).

7

1.1

Figure 4 – Clay infiltration barrier installed at EME N-18 boot in August, 2004.

Figure 5 – Photograph of EME N-18 Boot location taken on June 7th, 2010.

• 11

Appendix – Laborotory Analyses

É ARDINAL	PHONE (575) 393-2326 • 101 E MARI AND • HORBS, MM 88240					
LABORATORIES						
ANALYTICAL RESU RICE OPERATING	ILTS FOR COMPANY					
112 W. TAYLOR HOBBS, NM 88240	JER					
Receiving Date: 06/08/10	Sampling Date: 08/07/10					
Reporting Date: 06/10/10	Sample Type: SOIL					
Project Number: NOT GIVEN	Sample Condition: COOL & INTACT					
Project Name: EME N-18 BOOT	Analyzed By: AB					
Hojeti Looaton. Line HTO Door	Andryzod by: Ab					
	GRO DRO					
	(C ₆ -C ₁₀) (>C ₁₀ -C ₂₈) CI*					
LAB NUMBER SAMPLE ID	(mg/kg) (mg/kg) (mg/kg)					
ANALYSIS DATE	06/09/10 06/09/10 06/09/10					
H20050-1 SB-1 @ 20'	<10.0 <10.0 816					
H20050-2 SB-1 @ 25'	<10.0 <10.0 768					
H20050-3 SB-2 @ 5'	<10.0 <10.0 <16					
H20050-4 SB-2 @ 15						
H20050-6 SB-3 @ 25'						
Quality Control	490 457 500					
	500 500 500					
Relative Percent Difference						
METHODS: TPH GRO & DRO: EPA SW-846 (1.2 0.5 7.4 3015 M: Cl': Std. Methods 4500-Cl'B					
*Analyses performed on 1:4 will adueous extra	cts.					
Reported on wet weight.						
$(b, b) \in \mathcal{N}$	/ /					
(Al. A Maana	Or hulin					
Chemist //						
	Date					
H20050 TCL RICE						
PLEASE I/OTE: Lability and Damages. Cardinal's liability and dirent's enclusive remerky for any claim arising, whether taxed in contract or tort, shall be liaited to the amount paid by client for analysis. All delines including those for noglopence and any other cause whatdeever shall be deemed waved unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable						
sumue, in no event shall carolinal be litable for independent damages, including, without limitation, business intomotions, loss of use, or loss of profile incurred by client, da subsidiarias infilibility or successors unsing out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Result where active a caracter time active active and believe and a constant of the matter active a						
racio onerto ma sampos localide acove. This report shall nor be reproduced except in full with written approval di Caramai Laboralones						