1RP-277

GW Monitor Report

DATE: 2009

KECEIVED 2009 DEC 30 PM 1 33

December 23, 2009

Mr. Glenn Von Gonten New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division – Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

SUBJECT: 2009 ANNUAL GROUNDWATER MONITORING REPORT FORMER UNOCAL SOUTH VACUUM UNIT NMOCD CASE NO. 1R-277 SECTION 35, TOWNSHIP 18 SOUTH, RANGE 35 EAST LEA COUNTY, NEW MEXICO

Dear Mr. Von Gonten:

Enclosed is the 2009 Annual Groundwater Monitoring Report for the Former Unocal South Vacuum Unit site located in Lea County, New Mexico (hard copy and compact disk). Chevron Environmental Management Company has been managing the groundwater monitoring activities for the site since their acquisition of Unocal Corporation in 2005.

Please contact me at 432-638-8740, Mr. John MacLeod (Chevron EMC) at 925-842 2477, or Allen Just (Arcadis) at 714-730-9052 Ext. 38 if you have any questions or comments.

Sincerely,

Gilbert J. Van Deventer, REM, PG Trident Environmental – Midland, TX

Attachments

xc: John MacLeod, Chevron EMC (San Ramon CA) Allen Just, Arcadis (Irvine CA) Larry Hill, NMOCD-District 1 (Hobbs NM) 2009 ANNUAL GROUNDWATER MONITORING REPORT FORMER UNOCAL SOUTH VACUUM UNIT NMOCD CASE NO. 1R-277 SECTION 35, TOWNSHIP 18 SOUTH, RANGE 35 EAST LEA COUNTY, NEW MEXICO

DECEMBER 23, 2009

Prepared For:

Chevron Environmental Management Company 6111 Bollinger Canyon Rd. San Ramon, CA 94583

Prepared By:

P. O. Box 7624 Midland, Texas 79708

2009 Annual Groundwater Monitoring Report Former Unocal South Vacuum Unit NMOCD Case NO. 1R-277 Section 35, Township 18 South, Range 35 East Lea County, New Mexico

Prepared for:

Chevron Environmental Management Company

6111 Bollinger Canyon Road San Ramon, CA 94583

Prepared by:

Trident Environmental P. O. Box 7624 Midland, Texas 79708 (432) 638-8740 FAX (413) 403-9968

SUBMITTED BY:

Gilbert J. Van Deventer, PG, REM Project Manager

DATE: 12-23-09

TABLE OF CONTENTS

1.0	Executive Summary1
2.0	Groundwater Sampling Procedures
3.0	Groundwater Elevations, Hydraulic Gradient and Flow Direction
4.0	Groundwater Quality Conditions
5.0	Fate and Transport Modeling Results12
6.0	Conclusions
7.0	Recommendations14

TABLES

Table 1	Summary of Groundwater Elevations and Chloride and TDS Concentrations
---------	---

FIGURES

Figure 1	Groundwater Elevation Map	4
Figure 2	Groundwater Elevation Versus Time Graph	5
Figure 3	Chloride Concentration Map (2009)	9
Figure 4	TDS Concentration Map (2009)1	0
Figure 5	Chloride Concentrations Versus Time (MW-1 through MW-6)	1
Figure 6	TDS Concentrations Versus Time (MW-1 through MW-6)	1

APPENDICES

Appendix A	Laboratory Analytical Reports and Chain-of-Custody Documentation
Appendix B	Monitoring Well Sampling Data Forms
Appendix C	Chloride and TDS Plume Simulations
Appendix D	Description of Fate and Transport Modeling

:

1.0 Executive Summary

Trident Environmental (Trident) was retained by ARCADIS, on behalf of Chevron Environmental Management Company (Chevron EMC), to perform the 2009 annual groundwater sampling and monitoring operations at the Former Unocal South Vacuum Unit (site), which is located at township 18 south, range 35 east, section 35 in Lea County, New Mexico. Chevron EMC is managing Unocal's environmental liability at the site. This report documents the 2009 annual sampling event performed by Trident at the site on July 15, 2009. This report contains the historical groundwater elevation and analytical data from monitoring wells MW-1 through MW-6. The sampling event was conducted in accordance with the November 2, 2000 Groundwater Remediation Plan submitted by Unocal and the requirements specified in the New Mexico Oil and Conservation Division (OCD) letter dated February 8, 2001.

Based on the sampling and monitoring data to date, the following conclusions relevant to groundwater conditions at the Former Unocal South Vacuum Unit are evident:

- Chloride and total dissolved solids (TDS) concentrations in MW-1, near the source area, have generally decreased since 1996 with the exception of slight fluctuations since the 2003 sampling event. Similarly, chloride and TDS levels have decreased in the closest downgradient well, MW-4, since 1999 when that well was installed. Chloride and TDS concentrations in well MW-3 have shown slight but steadily increasing trends indicating an upgradient contributing source of these constituents. Chloride and TDS concentrations in the remaining wells (MW-2, MW-5, and MW-6) have remained relatively consistent with previous levels.
- The fate and transport modeling results continue to support the conclusion that the chloride and TDS plume is not likely to impact existing sources of water supply, the closest of which, a livestock (windmill) well (permit number L 05339) lies over one-half mile south of the source. Operation of the windmill well has been discontinued due to declining water levels in the area and the shallow depth of the well.
- According to conservative model simulations, the chloride plume will travel a maximum of 3,400 feet southeast of the source in approximately 147 years before concentrations return to levels below the New Mexico Water Quality Control Commission (WQCC) standard of 250

mg/L. The same analysis indicates that the TDS plume will travel only 2,300 feet in approximately 84 years before concentrations return to levels below the WQCC standard of 1,000 mg/L.

- Based on the modeling results and predicted natural attenuation processes (advection and dispersion), there will be no adverse impact to human health and the environment nor will the livestock well exceed WQCC standards for chlorides or TDS due to the plume originating and traveling southeast, versus south, from the former saltwater disposal pit.
- Groundwater elevations have steadily decreased at a rate of approximately 0.3 feet per year since the initial sampling event of monitoring well MW-1 in January 1995; with the exception of the 2005 sampling event due to higher than normal rainfall during 2004 and 2005. The decreasing groundwater elevation trend has resumed since 2005.

Exemplary remedial actions were performed to the source area by Unocal, including plugging of the SWD well in 1971 and encapsulating the former saltwater disposal pit with solidification material in 1995, thus eliminating the threat of any continued release from the source. Based on the identified potential receptor and fate and transport modeling results, the chloride/TDS plume at the site presents low risk to human health and the environment; therefore Trident recommends the following actions for site closure:

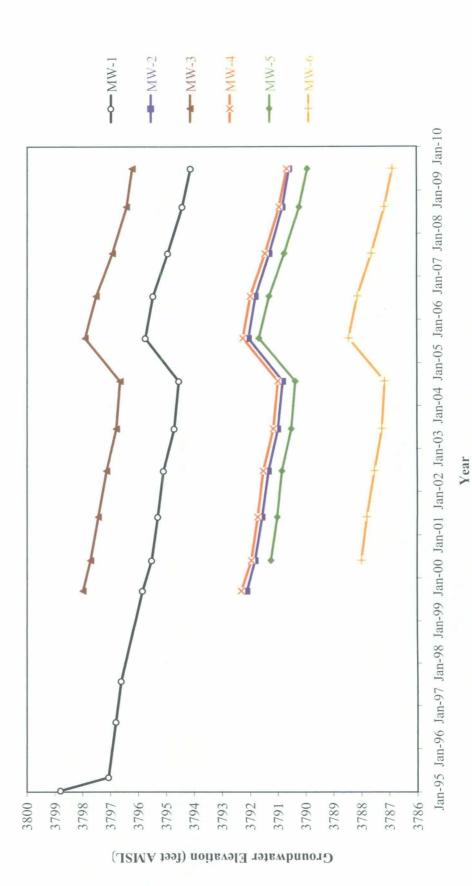
- Continue the natural attenuation annual monitoring program with groundwater sampling and analysis of chloride and TDS concentrations for each of the six monitoring wells.
- Update flow and transport model to confirm the plume is naturally attenuating as described.
- Submit the 2010 annual groundwater monitoring report to OCD in January 2011 to document natural attenuation conditions.

2.0 Groundwater Sampling Procedures

On July 15, 2009, each of the six monitoring wells, MW-1 through MW-6, was gauged for depth to groundwater using a Solinst Model 101 electronic water indicator immediately prior to purging operations. A total of 39 gallons of groundwater was purged from the site monitoring wells (3 to 10 gallons per well) using a decontaminated 2-inch diameter PVC bailer. Groundwater parameters (pH, temperature, and conductivity) were measured using a Hanna Model 98130 multimeter until a minimum of three wells volumes was purged from each well. Water samples for each monitoring well were transferred into 1,000 milliliter (ml) plastic containers for laboratory analysis of chloride using EPA Method SM-4500-Cl-C and TDS using EPA Method SM-2541 and. For each set of samples, chain of custody forms documenting sample identification numbers, collection times, and delivery times to the laboratory were completed. All water samples were placed in an ice-filled cooler immediately after collection and transported to Lancaster Laboratories (Lancaster, PA) for analysis.

3.0 Groundwater Elevations, Hydraulic Gradient and Flow Direction

Depth to groundwater varies from approximately 51.04 ft at MW-2 to 71.90 feet at MW-6 below top of well casing. Groundwater elevations are summarized in Table 1. A groundwater gradient map indicating the direction of groundwater flow is illustrated in Figure 1. A historical groundwater elevation graph is shown in Figure 2. The groundwater gradient direction is to the southeast with a hydraulic gradient of approximately 0.004 ft/ft. According to published reports (*Ground-Water Conditions in Northern Lea County, New Mexico*, Ash, 1963 and *Geology and Ground-Water Conditions in Southern Lea County, New Mexico*, Nicholson and Clebsch, 1961) the groundwater encountered at the site is that of the Tertiary Ogallala Formation. The Ogallala Formation unconformably overlies the impermeable red-beds of the Triassic Chinle Formation at an elevation of approximately 3,700 feet above mean sea level (AMSL). Based on the current groundwater elevations measured on site and published data referenced, the saturated thickness of the Ogallala Formation at the site ranges from approximately 87 to 96 feet.



2009 Annual Groundwater Monitoring Report

Former Unocal South Vacuum Unit

Page 5 of 14

2009 Annual Groundwater Monitoring Report

Former Unocal South Vacuum Unit (1R0277)

Summary of Groundwater Sampling Results								
Mautantaa	Constitute	Chladde	TDO	Depth to	Top of Casing	Groundwater		
Monitoring	Sampling	Chloride	TDS	Groundwater	Elevation	Elevation		
Well	Date	(mg/L)	(mg/L)	(feet BTOC)	(feet AMSL)	(feet AMSL)		
	01/27/1995	1174	2250	59.57	3858.37	3798.80		
	05/18/1995	983	2251	61.30	3858.37	3797.07		
	08/28/1996	1420	2730	61.57	3858.37	3796.80		
	08/13/1997	1400	2800	61.75	3858.37	3796.62		
	09/30/1999	1094	2318	62.51	3858.37	3795.86		
	06/14/2000	927	2040	62.85	3858.37	3795.52		
	06/18/2001	813	1790	63.07	3858.37	3795.30		
MW-1	07/11/2002	784	1680	63.28	3858.37	3795.09		
	07/02/2003	715	2090	63.66	3858.37	3794.71		
	08/12/2004	628	2050	63.83	3858.37	3794.54		
	08/10/2005	774	1830	62.62	3858.37	3795.75		
	07/31/2006	860	2010	62.90	3858.37	3795.47		
	07/27/2007	732	1790	63.43	3858.37	3794.94		
	08/26/2008	895	1960	63.95	3858.37	3794.42		
	07/15/2009	852	2300	64.25	3858.37	3794.12		
	09/30/1999	298	922	49.51	3841.64	3792.13		
	06/14/2000	317	852	49.81	3841.64	3791.83		
MW-2	06/18/2001	288	878	50.06	3841.64	3791.58		
	07/11/2002	284	808	50.29	3841.64	3791:35		
	07/02/2003	268	859	50.63	3841.64	3791.01		
	08/12/2004	451	931	50.81	3841.64	3790.83		
	08/10/2005	355	844	49.58	3841.64	3792.06		
	07/31/2006	401	922	49.83	3841.64	3791.81		
	07/27/2007	430	984	50.33	3841.64	3791.31		
	08/26/2008	354	980	50.80	3841.64	3790.84		
	07/15/2009	482	1060	51.04	3841.64	3790.60		
	09/30/1999	73.6	427	66.74	3864.73	3797.99		
	06/14/2000	75.5	433	67.01	3864.73	3797.72		
	06/18/2001	86.4	495	67.29	3864.73	3797.44		
	07/11/2002	103	509	67.59	3864.73	3797.14		
	07/02/2003	98.3	588	67.94	3864.73	3796.79		
MW-3	08/12/2004	111	605	68.07	3864.73	3796.66		
	08/10/2005	122	533	66.81	3864.73	3797.92		
	07/31/2006	141	619	67.21	3864.73	3797.52		
	07/27/2007	164	705	67.79	3864.73	3796.94		
	08/26/2008	185	592	68.30	3864.73	3796.43		
	07/15/2009	199	766	68.50	3864.73	3796.23		
	09/30/1999	1576	2981	60.18	3852.51	3792.33		
	06/14/2000	1500	2910	60.55	3852.51	3791.96		
	06/18/2001	1530	3180	60.78	3852.51	3791.73		
	07/11/2002	1290	2660	60.98	3852.51	3791.53		
	07/02/2003	1250	2610	61.34	3852.51	3791.17		
MW-4	08/12/2004	1130	2480	61.50	3852.51	3791.01		
	08/10/2005	1050	2230	60.25	3852.51	3792.26		
	07/31/2006	926	2030	60.51	3852.51	3792.00		
	07/27/2007	758	1940	61.04	3852.51	3791.47		
	08/26/2008	720	1790	61.55	3852.51	3790.96		
	07/15/2009	632	1780	61.83	3852.51	3790.68		

 Table 1

 Summary of Groundwater Sampling Results

Continued on next page

Former Unocal South Vacuum Unit (1R0277)

Summary of Groundwater Sampling Results									
Monitoring Well	Sampling Date	Chloride (mg/L)	TDS (mg/L)	Depth to Groundwater (feet BTOC)	Top of Casing Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)			
MW-5	06/14/2000 06/18/2001 07/11/2002 07/02/2003 08/12/2004 08/10/2005 07/31/2006 07/27/2007 08/26/2008	13.7 13.6 15.5 12.5 15.3 14.9 13.3 14.9 13.6	274 322 308 359 375 309 290 290 296 296	68.57 68.80 68.98 69.32 69.46 68.15 68.52 69.07 69.61	3859.84 3859.84 3859.84 3859.84 3859.84 3859.84 3859.84 3859.84 3859.84 3859.84 3859.84	3791.27 3791.04 3790.86 3790.52 3790.38 3791.69 3791.32 3790.77 3790.23			
MW-6	07/15/2009 06/14/2000 06/18/2001 07/11/2002 07/02/2003 08/12/2004 08/10/2005 07/31/2006 07/27/2007 08/26/2008 07/15/2009	13.4 48 50.8 50 46.5 55.1 55 52.4 75.3 88.5 81.4	291 382 431 422 471 410 391 412 516 548 532	69.91 70.79 70.98 71.26 71.52 71.62 70.33 70.64 71.15 71.61 71.90	3859.84 3858.78 3858.78 3858.78 3858.78 3858.78 3858.78 3858.78 3858.78 3858.78 3858.78 3858.78 3858.78 3858.78	3789.93 3787.99 3787.80 3787.52 3787.26 3787.16 3788.45 3788.14 3787.63 3787.17 3786.88			
Windmill	07/31/2006	38.2	400						
WQCC S	Standards	250	1000						

 Table 1

 Summary of Groundwater Sampling Results

Total Dissolved Soilds (TDS) and chloride concentrations listed in milligrams per liter (mg/L)

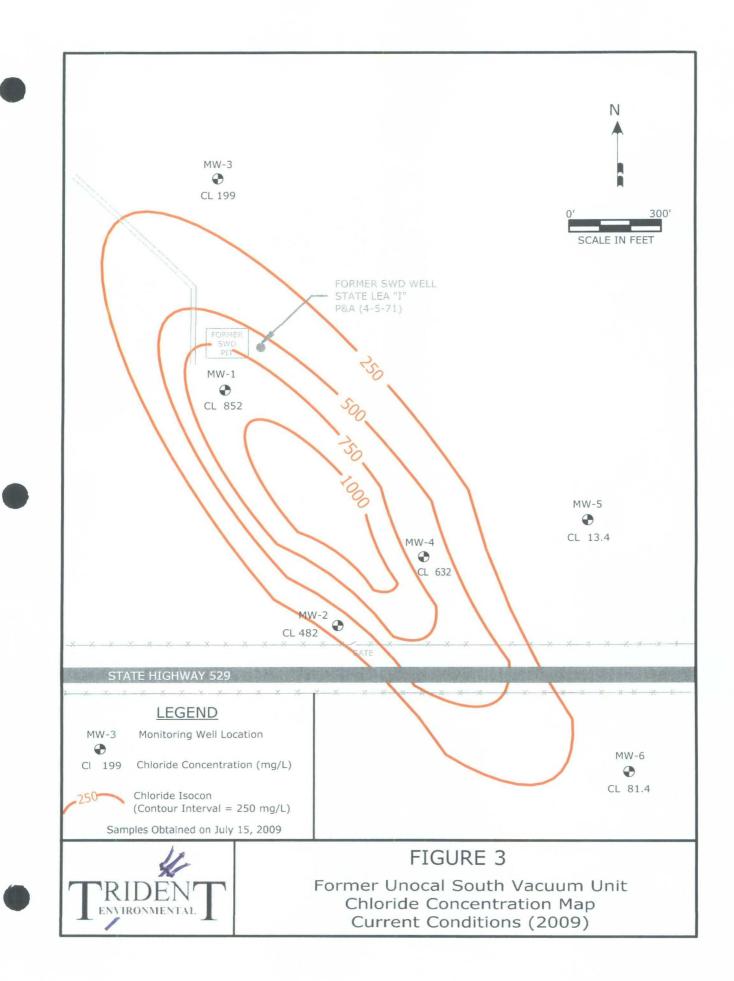
Analyses performed by Trace Analysis Inc. (1995-1998), SPL, Inc. (1999-2005), and Lancaster Laboratories (2006-2009). Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards. AMSL - Above Mean Sea Level; BTOC - Below Top of Casing

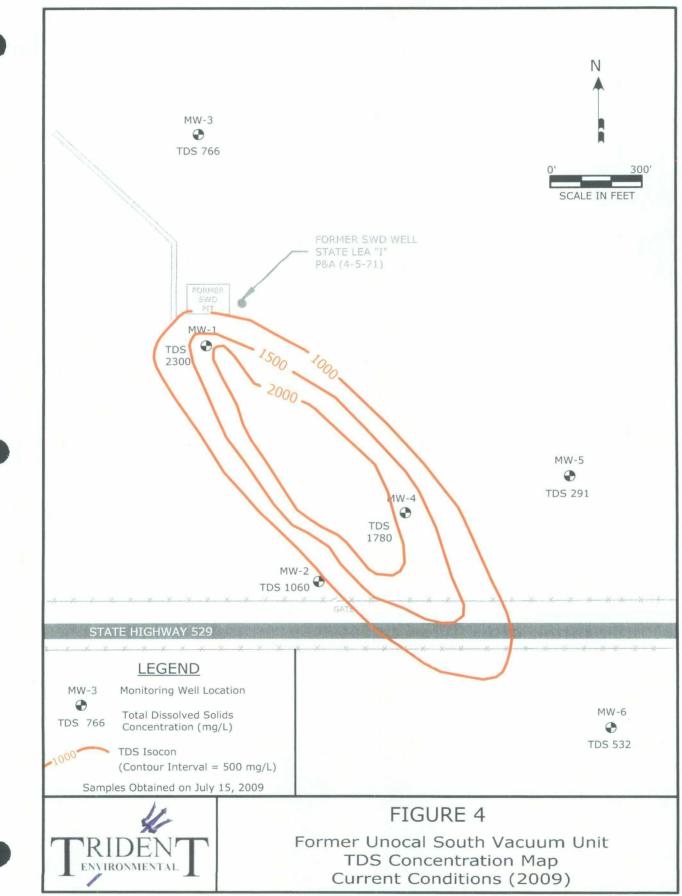
Groundwater flow direction is to the southeast with a gradient of approx. 0.004 ft/ft.

Elevations and state plane coordinates surveyed by Basin Surveys, Hobbs, NM.

Page 7 of 14

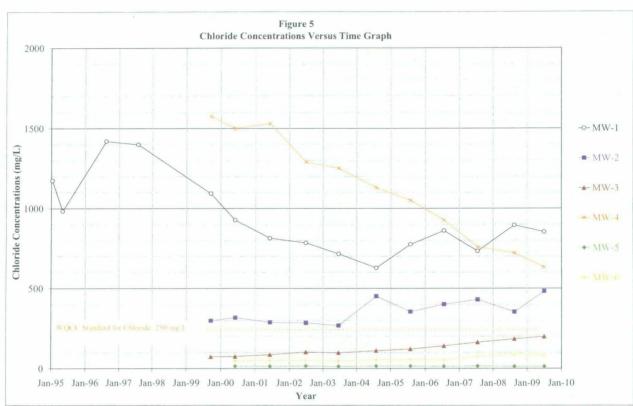
4.0 Groundwater Quality Conditions

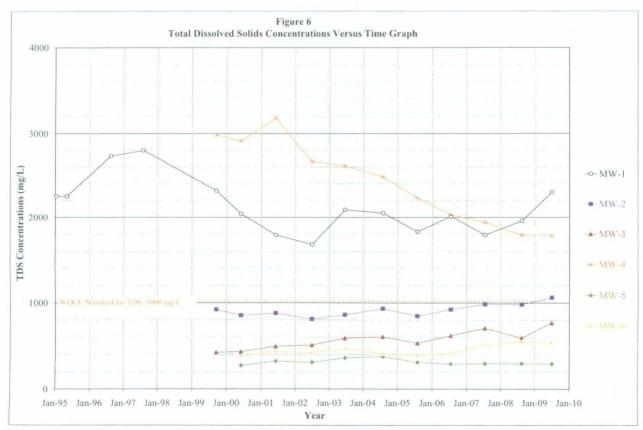

Groundwater sample analytical results are presented in Table 1. The WQCC standards are presented for comparison. Those constituents that recorded concentrations above the WQCC standards are highlighted in boldface type. The WQCC standard of 250 mg/L for chloride was exceeded in MW-1 (852 mg/L), MW-2 (482 mg/L), and MW-4 (632 mg/L). The WQCC standard of 1,000 mg/L for TDS was exceeded only in MW-1 (2,300 mg/L) and MW-4 (1,780 mg/L). The groundwater samples obtained from upgradient monitoring well MW-3 and downgradient wells MW-5 and MW-6 had chloride and TDS concentrations below WQCC standards.


The chloride and TDS concentrations are depicted graphically in Figure 3 and 4, respectively. Graphs depicting historical TDS and chloride concentrations in monitoring wells MW-1 through MW-6 are shown in Figures 5 and 6.

Chloride and TDS concentrations in MW-1, near the former source area, have consistently decreased since 1996, with the exception of slight fluctuations since the 2003 sampling event. Similarly, chloride and TDS levels have steadily decreased in the closest downgradient well, MW-4, since 1999 when that well was installed. This indicates that encapsulating the former saltwater disposal pit with solidification material in 1995, has eliminated the threat of any continued release from the source.

Monitoring well MW-3 continues to exhibit slight but steady increases in chloride and TDS concentrations since 2000, which suggests a possible offsite source of chlorides and TDS located upgradient (northwest) from the site. Chloride and TDS levels in MW-2, MW-5, and MW-6 have remained relatively consistent with previous years.





2009 Annual Groundwater Monitoring Report Former Unocal South Vacuum Unit (1R-277)

Page 11 of 14

5.0 Fate and Transport Modeling Results

Fate and transport modeling was performed by Trident to simulate the movement of the chloride and TDS groundwater plume over time. Simulations were conducted using the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. A more detailed discussion of the flow and transport parameters used, assumptions, model calibrations, and simulation results are described in Appendix D.

Figures displaying modeled simulations of the chloride and TDS plumes over various time increments are included in Appendix C. Advective flow moves the center of plume mass downgradient as depicted in the simulations. The simulations also demonstrate how hydrodynamic dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume.

Continued attenuation by dilution and dispersion of the plume, after the maximum chloride and TDS concentrations decrease to levels below WQCC standards, are shown in the final simulation for each constituent of concern (year 2156 for chloride and year 2093 for TDS, respectively). The center of the chloride plume is approximately 3,400 ft away from the pit and well source in the year 2156. The center of the TDS plume is approximately 2,300 ft away from the pit and well source in the year 2093.

The portions of the chloride and TDS plumes that are above WQCC standards do not reach any of the identified potential receptors at any time during their attenuation. The results of the updated fate and transport model are consistent with those determined in previous annual reports.

Page 12 of 14

6.0 Conclusions

Conclusions relevant to groundwater conditions and the remediation performance at the Former Unocal South Vacuum Unit are presented below.

- Chloride and TDS concentrations in MW-1, near the source area, have generally decreased since 1996. Similarly, chloride and TDS levels have significantly decreased in the closest downgradient well, MW-4, since 1999 when that well was installed. Chloride and TDS concentrations in well MW-3 have shown slight but steadily increasing trends indicating an upgradient contributing source of these constituents. Chloride and TDS concentrations in the remaining wells (MW-2, MW-5, and MW-6) have remained relatively consistent with previous levels.
- The fate and transport modeling results continue to support the contention that the chloride and TDS plume is not likely to impact existing sources of water supply, the closest of which, a livestock (windmill) well (permit number L 05339) lies over one-half mile south of the source. Operation of the windmill well has been discontinued due to declining water levels in the area and the shallow depth of the well.
- According to conservative model simulations, the chloride plume will travel a maximum of 3,400 feet southeast of the source in approximately 147 years before concentrations return to levels below the WQCC standard of 250 mg/L. The same analysis indicates that the TDS plume will travel only 2,300 feet in approximately 84 years before concentrations return to levels below the WQCC standard of 1,000 mg/L.
- Based on the modeling results and predicted natural attenuation processes (dispersion and dilution), there will be no adverse impact to human health and the environment nor will the livestock well exceed WQCC standards for chlorides or TDS due to the plume originating and traveling southeast, versus south, from the former emergency overflow pit.
- Groundwater elevations had steadily decreased at a rate of approximately 0.3 feet per year since the initial sampling event of monitoring well MW-1 in January 1995; however during 2005 the groundwater table increased to an elevation similar to the 1999 level. The recent rise may be attributed to higher than normal rainfall during 2004 and 2005. The decreasing groundwater elevation trend has resumed since 2005.

7.0 Recommendations

Chevron EMC has performed exemplary remedial actions to the source area, including plugging of the SWD well in 1971 and encapsulating the former saltwater disposal pit with solidification material in 1995, thus eliminating the threat of any continued release from the source. Based on the identified potential receptor and fate and transport modeling results, the chloride/TDS plume at the site presents low risk to human health and the environment; therefore Trident recommends the following actions for site closure:

- Continue the natural attenuation annual monitoring program with groundwater sampling and analysis of chloride and TDS concentrations for each of the six monitoring wells.
- Update flow and transport model to confirm the plume is naturally attenuating as described.
- Submit the 2010 annual groundwater monitoring report to OCD in January 2011 to document natural attenuation conditions.

APPENDIX A

Laboratory Analytical Reports

And

Chain-of-Custody Documentation

2425 New Holland Pike, PO Box 12425 Lancaster, PA +7605-2425 +717 656-2300 Fax 717 656-2681+ www.lancastertabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron Environmental Mgmt Co 6111 Bollinger Canyon Road BRTY / 3354 San Ramon CA 94583

925-543-2357

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

July 23, 2009

SAMPLE GROUP

The sample group for this submittal is 1153897. Samples arrived at the laboratory on Friday, July 17, 2009. The PO# for this group is 0015038386 and the release number is MACLEOD.

Client Description MW-1 Grab Water Sample MW-2 Grab Water Sample MW-3 Grab Water Sample MW-4 Grab Water Sample MW-5 Grab Water Sample MW-6 Grab Water Sample

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC ARCADIS COPY TO ELECTRONIC ARCADIS COPY TO ELECTRONIC ARCADIS COPY TO ELECTRONIC ARCADIS COPY TO Attn: Mark M. Miller Attn: Allen Just Attn: Dana Koschel Attn: Sarah Huff

Lancaster Labs Number

5725681

5725682

5725683

5725684

5725685

5725686

2425 New Polland Pike: PO Box 12425, Lancaster: PA 17605-2425 • 717 656-2300 Fax 717 656-2681 • www.lancasterlabs.com

ELECTRONIC COPY TO ELECTRONIC COPY TO ELECTRONIC COPY TO ARCADIS Trident Environmental Chevron Environmental Mgmt Co

Attn: Robin Simon Attn: Gilbert Van Deventer Attn: John MacLeod

Questions? Contact your Client Services Representative Katherine A Klinefelter at (717) 656-2300

Respectfully Submitted,

Robert Heisery

Robert Heisey Senior Specialist

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5725681	Group No. 1153897 NM
MW-1 Grab Water Sample Former Unocal South Vacuum Unit Lea County, NM	
Collected: 07/15/2009 11:25 by GV	Account Number: 11969
Submitted: 07/17/2009 08:50 Reported: 07/23/2009 at 13:32 Discard: 08/23/2009	Chevron Environmental Mgmt Co 6111 Bollinger Canyon Road BR1Y / 3354 San Ramon CA 94583

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SM20 00212	2540 C Total Dissolved Sol	Chemistry n.a.	mg/l 2,300	mg/l 77.6	mg/1 240	1
SM20 01124	4500 Cl C Chloride (titrimetr	Chemistry 16887-00-6	mg/l 852	mg/l 20.0	mg/l 100	50

General Sample Comments

l QC is compliant unless otherwise noted. Please refer to the Quality htrol Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	Total Dissolved Solids Chloride (titrimetric)	SM20 2540 C SM20 4500 Cl C	1	09201021201A 09201112401A	07/20/2009 09:23 07/20/2009 12:40	Susan E Hibner Susan A Engle	1 50

Discard: 08/23/2009

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Labor	ratories	Sample	No.	WW	5725682
MW-2 Grab Water Former Unocal S Lea County, NM		cuum Un:	it		
Collected: 07/1	15/2009	13:51	Бу	GV	
Submitted: 07/ Reported: 07/23					

Group No. 1153897 NM

ł

Account Number: 11969

Chevron Environmental Mgmt Co 6111 Bollinger Canyon Road BRIY / 3354 San Ramon CA 94583

CAT No .	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SM20 00212	2540 C Wet Toral Dissolved Solids	Chemistry n.a.	mg∕1 ⊥.060	mg/l 38.8	mg∕l 120	1
	4500 Cl C Wet Chloride (titrimetric)	Chemistry 16887-00-6	mg∕l 482	mg∕l 8.0	mg∕t 40.0	20

General Sample Comments

EQC is compliant unless otherwise noted. Please refer to the Quality nicol Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	Total Dissolved Solids	SM20 2540 C	1	09201021201A	07/20/2009 09:23	Susan E Hibner	l
	Chloride (titrimetric)	SM20 4500 CT C	1	09201112401A	07/20/2009 12:40	Susan A Engle	20

Discard: 08/23/2009

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 +717-656-2300 Fax:717-656-2681 + www.lancasterlabs.com

Page 1 of 1

Lancaster	Laboratories	Sample	No.	WW	5725683
	Water Sample ocal South Vac y, NM	cuum Uni	it		
Collected	: 07/15/2009 (09:40	Бу	GV	
	: 07/17/2009 07/23/2009 a				

Group No. 1153897 NM

Account Number: 11969

Chevron Environmental Mgmt Co 6111 Bollinger Canyon Road BRIY / 3354 San Ramon CA 94583

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
	2540 C Wet Total Dissolved Solids	Chemistry n.a.	mg∕l 766	mg/1 19.4	mg/l 60.0	l
-	4500 Cl C Wet Chloride (Effrimetric)	Chemistry 16887-00-6	mg/1 199	mg/1 8.0	mg∕l 40.0	20

General Sample Comments

I QC is compliant unless otherwise noted. Please refer to the Quality mutrol Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	Total Dissolved Solids Chloride (titrimetric)	SM2O 2540 C SM2O 4500 CI C	1	09201021201A 09201112401A	07/20/2009 09:23 07/20/2009 12:40	Susan E Hibner Susan A Engle	1 20

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5725684	Group No. 1153897 NM			
MW-4 Grab Water Sample Former Unocal South Vacuum Unit Lea County, NM				
Collected: 07/15/2009 10:55 by GV	Account Number: 11969			
Submitted: 07/17/2009 08:50 Reported: 07/23/2009 at 13:32 Discard: 08/23/2009	Chevron Environmental Mgmt Co 6111 Bollinger Canyon Road BR1Y / 3354			

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SM20 2540 C We 00212 Total Dissolved Solids	t Chemistry	mg∕l 1.780	mg/l 77.6	mg/l 240	I
SM20 4500 Cl C We Oli24 Chloride (titrimetric)	t Chemistry 16887-00-6	mg∕l 632	mg/l 20.0	mg∕i 100	50

San Ramon CA 94583

General Sample Comments

I QC is compliant unless otherwise noted. Please refer to the Quality $\alpha_{\rm COO}$ Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	Total Dissolved Solids Chloride (titrimetric)	SM20 2540 C SM20 4500 C1 C	1 1	09201021201A 09201112401A	07/20/2009 09:23 07/20/2009 12:40	Susan E Hibner Susan A Engle	l 50

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample	No.	WW	5725685
MW-5 Grab Water Sample Former Unocal South Vacuum Uni Lea County, NM	t		
Collected: 07/15/2009 10:19	by	GV	
Submitted: 07/17/2009 08:50 Reported: 07/23/2009 at 13:32 Discard: 08/23/2009			

Group No. 1153897 NM

Account Number: 11969

Chevron Environmental Mgmt Co 6111 Bollinger Canyon Road BR1Y / 3354 San Ramon CA 94583

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SM20 2540 C	Wet Chemistry ds n.a.	mg∕l 291	mg/l 9.7	mg/1 30.0	I
01124 Chloride (titrimetri	Wet Chemistry c) 16887-00-6 for the analyte above was	mg∕1 13.4	mg∕1 1.6	mg∕l 8.0	4

General Sample Comments

Al QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	Total Dissolved Solids	SM20 2540 C	1	09201021201A	07/20/2009 09:23	Susan E Hibner	1
	Chloride (titrimetric)	SM20 4500 CT C	1	09201112401A	07/20/2009 12:40	Susan A Engle	4

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5725686	Group No. 1153897 NM
MW-6 Grab Water Sample Former Unocal South Vacuum Unit Lea County, NM	
Collected: 07/15/2009 14:46 by GV	Account Number: 11969
Submitted: 07/17/2009 08:50 Reported: 07/23/2009 at 13:32 Discard: 08/23/2009	Chevron Environmental Mgmt Co 6111 Bollinger Canyon Road BRIY / 3354 San Ramon CA 94583

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
SM20 2540 C Wet	Chemistry	mg∕l	mg∕l	mg∕1	i
00212 Total Dissolved Solids	n.a.	532	9.7	30.0	
SM20 4500 Cl C Wet	Chemistry	mg∕l	mg∕l	mg∕l	4
Oll24 Chloride (titrimetric)	16887-00-6	81.4	1.6	8.0	

General Sample Comments

I QC is compliant unless otherwise noted. Please refer to the Quality introl Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
	Total Dissolved Solids Chloride (titrimetric)	SM20 2540 C SM20 4500 C+ C	1 1	09201021201A 09201112401A	07/20/2009 09:23 07/20/2009 12:40	Susan E Hibner Susan A Engle	1 4	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax.717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Quality Control Summary

Client Name: Chevron Environmental Mgmt Co Reported: 07/23/09 at 01:32 PM

Group Number: 1153897

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

<u>Analysis Name</u>	Blank <u>Result</u>	Blank MDL**	B1ank <u>100</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: 09201021201A Total Dissolved Solids	Sample nu N.D.	mber(s): 5 9.7	725681-572 30.0	25686 mg∕1	99		80-120		
Batch number: 09201112401A Chloride (titrimétric)	Sample nu	mber(s): 5	725681-572	5686	99		95-103		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u>	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD MAX	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 09201021201A Total Dissolved Solids	Sample i 99					(: 5725682 1.060	BKG: 5725682 1.040	l	9
Batch number: 09201112401A Chloride (titrimetric)	Sample r 96		: 5725681 85-110				BKC: 5725683 203	2 (1)	5

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

		こうこうう		51.000	cation octaine Analysis Medical Analin of Custody		
Mhere quality is a science.		Acct # 11969	1	For Lancaste	For Lancaster Laboratories use only Sample #: 5725681 - 86	SCR#:	013536
				Analyses Requested	equested	Groph1153897	268
Facility # Chevron EMC Site Address: Section 35, T185, R35E, Lea Count	nta. NM	Matrix		Preservation	Codes	Preserva = HCl = HNO ₃	tive Codes T = Thiosulfate B = NaOH
Levá Lead Consu Caminy Real Ste 200 C. Just, P.E.	Arcadis ine CA 92602-1305	Potable	1117qsN 🗍 0328 🗍 1	tended Rng. ica Gel Cleanup borttaM	quantification	porti t low Dr 82	O = Other ng needed rest detection limits 260 compounds firmation
Service Order #: <u>78/72 Briter</u> Bron SAR:		D JiA [x∃□ li8□ 0 H9T .ezi0□ lefoT	нннов П		Naphthalene it by 8260 8260
Date Sample Identification Collected M ルート	Time at Collected G		XƏT8	Э/НdЛ _ реет 	<u>47</u> алми	L Run oxy's on high Run oxy's on all h	oxy's on highest hit oxy's on all hits
1/1/1		~			>>>	Please email reports to:	reports to:
MW-3 7/15/09 MW-4	9 105 5 1				///	allen juste arcadis-vs. com	dis-us, con
	1019	.>`				johnmacleodercheuron.com	b chevron, com
					>		
						Reference MUR methods per Git Konzeventer. KAK 1885, 7120109	R methods meet- 120109
Turnaround Time Requested (TAT) (please circle)	Rejnquiched by:			Date A Time	Received by		Date Time
STD. TAT) 72 hour 48 hour 24 hour 5 day	Reinfordistradistrad by	T.	Nic/g	de Time	Received by	2 /	Date Time
Data Package Options (please circle if required)	Retinquished by	-	Date		Received by:	9	Date Time
) ype 1 - ruu Data) Disk / EDD 3) Standard Form	Relinquished by Commercial Carrier. UPS FedEx Other	ommercial Carrier			Received by:	5	Date Time
Other.	Temperature Upon Deceipt	Deceipt 13.	່ວ		Custody Beals Intact?	? Yes No	

.

1

-

Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

Lancaster Laboratories 2425 New Holland Pike • Lancaster, PA 17601

Environmental Sample Administration Receipt Documentation Log

	Package:	Chilled	Not Chilled
Source Code:60-)		as intact unless otherwise n ncy section	oted in the
Time of Receipt:		<i>v</i>	
Date of Receipt: <u>אוו 7 ////ס</u>	Custody Seal	Present * : YES	NO
Client/Project: Alachis	Shipping Con	tainer Sealed: (ES)	NO

Unpacker Emp. No.: _23/6

			Temperature of	Shipping Contai	ners		
Cooler #	Thermometer ID	Temperature (°C)	Temp Bottle (TB) or Surface Temp (ST)	Wet Ice (WI) or Dry Ice (DI) or Ice Packs (IP)	lce Present? Y/N	Loose (L) Bagged Ice (B) or NA	Comments
1	0479583	1.3°C	7B	WI	Y	ß	
2							
3							
4							
5							
6							
Numbe	r of Trip Blank	ks received N	OT listed on chain	of custody:	0		

Paperwork Discrepancy/Unpacking Problems:

S	ample Administration Ir	nternal Chain of	Custody
Name	Date	Time	Reason for Transfer
Dalan	7117109	1240	Unpacking 1 to Storage
Kristin Zeigh	7-17-09	1303	Place in Storage or (Entry)
5			Entry
			Entry

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

	wawa dataatad	BMQL	Below Minimum Quantitation Level
N.D.	none detected		
TNTC	Too Numerous To Count	. MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meg	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	Ī	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per n
Cal meq g ug ml	(diet) calories milliequivalents gram(s) microgram(s) milliliter(s)	lb. kg mg l ul	pound(s) kilogram(s) milligram(s) liter(s) microliter(s)

< less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

> greater than

ppm parts per million – One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- **N** Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and
- confirmation columns >25%
- U Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

ml

- B Value is <CRDL, but ≥IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- **N** Spike amount not within control limits
- **S** Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
 - * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER ABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client. APPENDIX B

Monitoring Well Sampling Data Forms

.

WELL SAMPLING DATA FORM

	CLIENT:	Chevron E	MC		WELL ID:	MW-1
5						07/15/09
						Van Deventer
PURGIN	G METHOD:	l	✓ Hand Bai	iled 🗌 Purr	np If Pump,	Туре:
SAMPLI	NG METHOD) : [Disposab	le Bailer]Direct from	Discharge Hose Other:
DESCRI	BE EQUIPMI	ENT DECO			DBEFORE S	SAMPLING THE WELL:
⊡ Glov	es 🗹 Alcono	x 🗹 Distille	ed Water Rii	nse 🗌 Oth	er:	
DISPOS	AL METHOD	OF PURGE	E WATER:	Surface	Discharge	Drums 🗹 Disposal Facility
DEPTH HEIGHT	DEPTH OF W TO WATER: OF WATER IAMETER:	COLUMN:	63.95 6.05	Feet	3.0	Min. Gallons to purge 3 well volumes
TIME	VOLUME PURGED	ТЕМР. о С	COND. mS/cm	рН	DO mg/L	PHYSICAL APPEARANCE AND REMARKS
12:48	0					Started hand bailing
12:54	1.3	20.5	3.03	7.52		Clear
12:59	2.7	20.2	3.12	7.45		Clear
13:02	4.0	19.9	3.05	7.62		Collected sample
<u></u>						
<u> </u>			·			
						· · · · · · · · · · · · · · · · · · ·
<u></u>						
0:14	Total Time	(hr:min)	4	I Total Vol (gal)	0.29	= Average Flow Rate (gal/min)

Sample placed into 1000 ml plastic container, and put on ice in cooler.

Delivered sample to Lancaster Laboratories (Lancaster PA) for Chloride and TDS analyses.

WELL SAMPLING DATA FORM

	CLIENT:	Chevron E	мс		WELL ID:	MW-2
e						07/15/09
						Van Deventer
PURGIN	G METHOD:	: {	✓ Hand Bai	led 🗌 Pun	np If Pump,	Туре:
SAMPLI	NG METHOD	D:	⊡ Disposab	le Bailer]Direct from	Discharge Hose
DESCRI	BE EQUIPMI	ENT DECO		ΟΝ ΜΕΤΗΟΙ	D BEFORE	SAMPLING THE WELL:
Glove	es 🗹 Alcono	x ⊡Distill	ed Water Rin	nse 🗌 Oth	er:	
DISPOS	AL METHOD		E WATER:	Surface	Discharge	Drums 🗹 Disposal Facility
DEPTH HEIGHT	DEPTH OF W TO WATER: OF WATER AMETER:	COLUMN:	50.80 20.20		9.9	Min. Gallons to purge 3 well volumes
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg/L	PHYSICAL APPEARANCE AND REMARKS
11:13	0					Started hand bailing
11:25	3	20.2	1.60	8.71		Clear
11:38	7	20.5	1.67	9.16		Clear
11:50	10	20.1	1.70	9.16		Collected sample
ļ						
 				<u> </u>		
				·		
0:37	Total Time	(hr:min)	10	Total Vol (gal)	0.27	= Average Flow Rate (gal/min)
COMME	NTS:	Parameters	obtained us		ted Hanna N	lodel 98130 Multimeter.

Sample placed into 1000 ml plastic container, and put on ice in cooler.

Delivered sample to Lancaster Laboratories (Lancaster PA) for Chloride and TDS analyses.

WELL SAMPLING DATA FORM

	CLIENT:	Chevron E	MC		WELL ID:	MW-3
S	SITE NAME:	Former Ur	nocal S. Va	icuum Unit	DATE:	07/15/09
						Van Deventer
	-	<u> </u>				
PURGIN	G METHOD:	ĺ	☑ Hand Ba	iled 🗌 Pur	np If Pump,	Туре:
SAMPLI) : [J Disposat	ole Bailer	Direct from	Discharge Hose Other:
DESCRI	BE EQUIPME	ENT DECO		ΟΝ ΜΕΤΗΟΙ	D BEFORE S	SAMPLING THE WELL:
Glove	es 🗹 Alcono	x	ed Water Ri	nse 🗌 Oth	er:	
DISPOS	AL METHOD		E WATER:	Surface	Discharge	Drums 🗹 Disposal Facility
DEPTH ⁻ HEIGHT	EPTH OF W TO WATER: OF WATER AMETER:	COLUMN:	77.00 68.30 8.70 Inch	Feet Feet Feet	4.3	Min. Gallons to purge 3 well volumes
TIME	VOLUME PURGED	TEMP. °C_	COND. mS/cm	рН	DO mg/L	PHYSICAL APPEARANCE AND REMARKS
12:06	0					Started hand bailing
12:12	2	20.2	0.90	7.72		
12:18	4	19.8	0.90	7.95		
12:25	6	20.3	0.89	7.88		Collected sample
			·			
}						
}			·		· · · · · · · · · · · · · · · · · · ·	
0:19	Total Time	(hr:min)	6	Total Vol (gal)	0.32	= Average Flow Rate (gal/min)
COMME	NTS:	Parameters	obtained us	·····	ted Hanna N	/odel 98130 Multimeter.

Sample placed into 1000 ml plastic container, and put on ice in cooler.

Delivered sample to Lancaster Laboratories (Lancaster PA) for Chloride and TDS analyses.

WELL SAMPLING DATA FORM

	CLIENT:	Chevron E	МС		WELL ID:	MW-4
S				07/15/09		
						Van Deventer
	-					
PURGIN	G METHOD:	1	✓ Hand Ba	iled 🗌 Purr	np If Pump,	Туре:
SAMPLI):	🗸 Disposat	ole Bailer	Direct from	Discharge Hose Other:
DESCRI	BE EQUIPMI	ENT DECO	νταμινατι	ON METHOD	D BEFORE	SAMPLING THE WELL:
Glove	es 🗹 Alcono	x ⊡Distill	ed Water Ri	nse 🗌Oth	er:	
DISPOS.	AL METHOD	OF PURGE	E WATER:	Surface	Discharge	Drums 🗹 Disposal Facility
DEPTH THEIGHT	DEPTH OF W FO WATER: OF WATER AMETER:	COLUMN:	61.55 9.45	Feet	4.6	Min. Gallons to purge 3 well volumes
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg/L	PHYSICAL APPEARANCE AND REMARKS
10:27	0					Started hand bailing
10:33	2	20.2	2.99	8.44		Clear
10:40	4	20.1	2.97	8.41		Clear
10:50	6	20.4	3.04	8.40		Sample collected
		<u> </u>				
						· · · · · · · · · · · · · · · · · · ·
					-	
·						
<u>,</u>						
		<u></u>	· · · · · · · · · · · · · · · · · · ·			
0:23	Total Time	(hr:min)	6	Total Vol (gal)	0.26	= Average Flow Rate (gal/min)
COMME	NTS:	Parameters	obtained us		ted Hanna N	Nodel 98130 Multimeter.

Sample placed into 1000 ml plastic container, and put on ice in cooler.

Delivered sample to Lancaster Laboratories (Lancaster PA) for Chloride and TDS analyses.

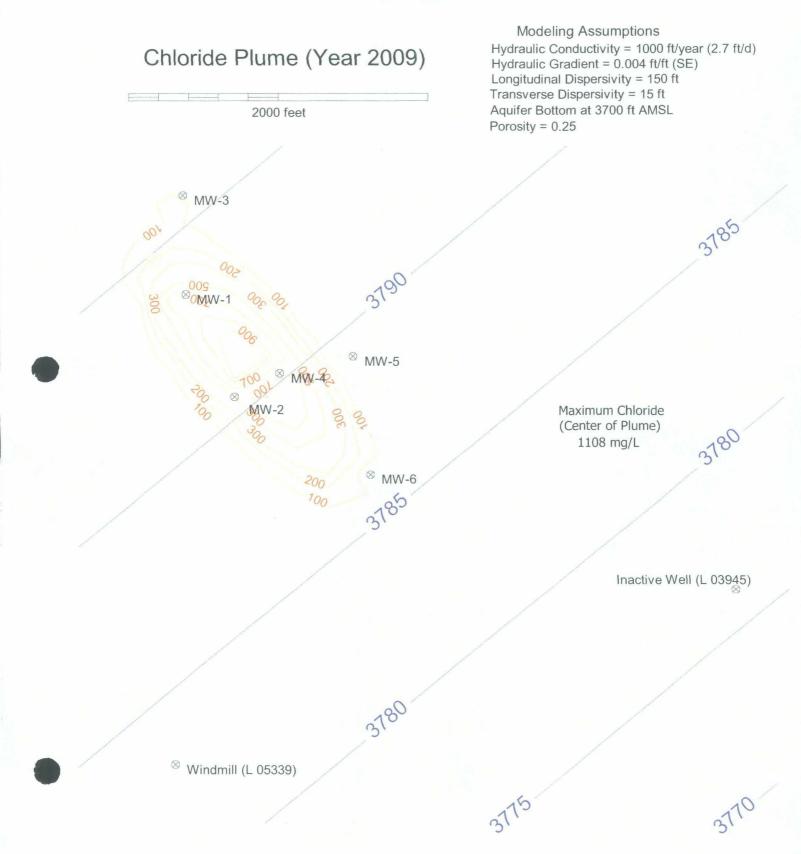
WELL SAMPLING DATA FORM

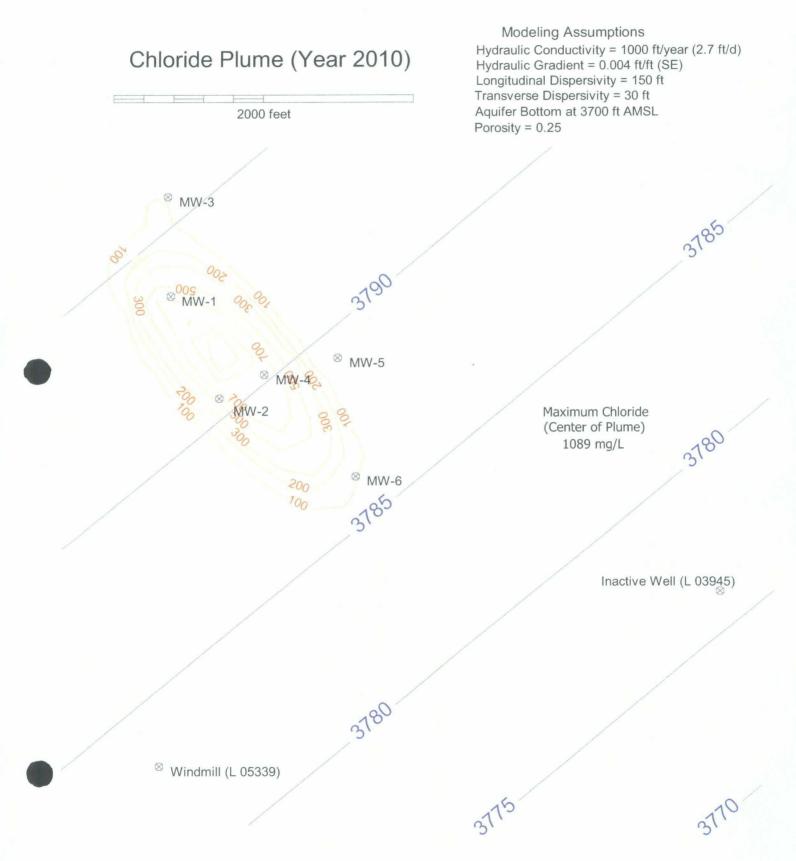
	CLIENT:	Chevron E	МС	WELL ID:	MW-5		
S					07/15/09		
						Van Deventer	
PURGIN	G METHOD:	(🗹 Hand Bai	led 🗌 Purr	p If Pump,	Туре:	
SAMPLI) : [☑ Disposab	le Bailer	Direct from	Discharge Hose Other:	
DESCRI	BE EQUIPMI	ENT DECON	TAMINATI		BEFORE	SAMPLING THE WELL:	
Glove	es 🗹 Alcono	x 🗹 Distille	ed Water Rir	nse 🗌 Oth	er:		
DISPOS	AL METHOD	OF PURGE	E WATER:	Surface	Discharge	Drums 🗹 Disposal Facility	
DEPTH ⁻ HEIGHT	DEPTH OF W TO WATER: OF WATER AMETER:	COLUMN:	69.61 9.39		4.6	Min. Gallons to purge 3 well volumes	
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	pН	DO mg/L	PHYSICAL APPEARANCE AND REMARKS	
9:27	0			I		Started hand bailing	
9:38	3	19.9	0.41	7.95		Clear	
9:57	7	20.4	0.42	7.62		Clear	
10:10	10	20.2	0.41	7.77		Collected sample	
						· · · · · · · · · · · · · · · · · · ·	
ļ							
					- <u></u>		
<u> </u>							
<u> </u>							
0:43	I Total Time	(hr:min)	10	Total Vol (gal)	0.23	= Average Flow Rate (gal/min)	
COMME	NTS:	Parameters	obtained us	ing a calibra	ted Hanna N	Nodel 98130 Multimeter.	

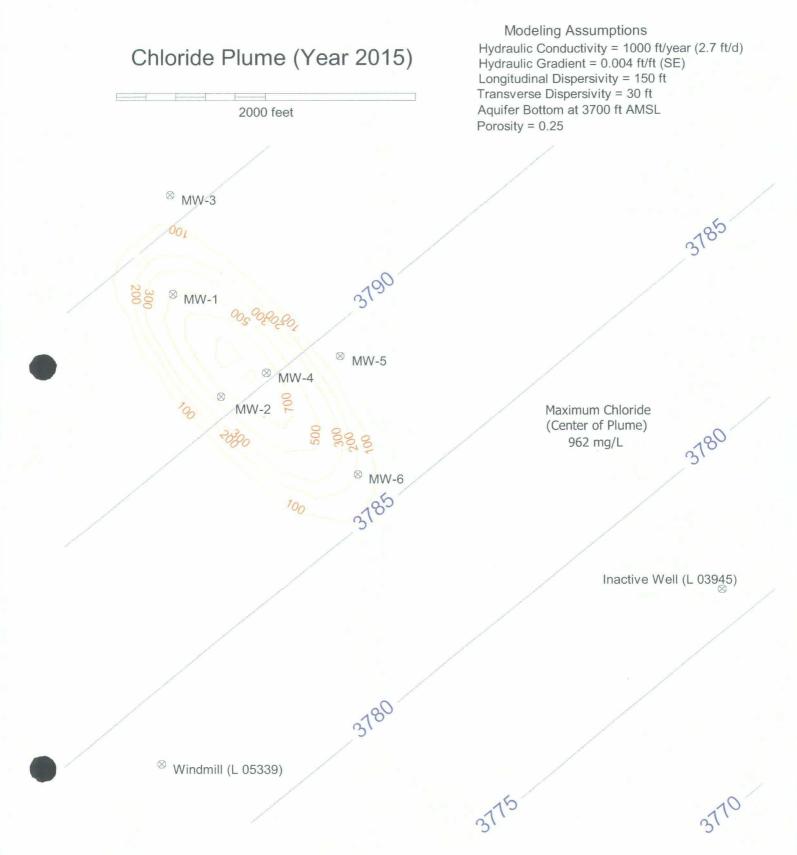
Sample placed into 1000 ml plastic container, and put on ice in cooler.

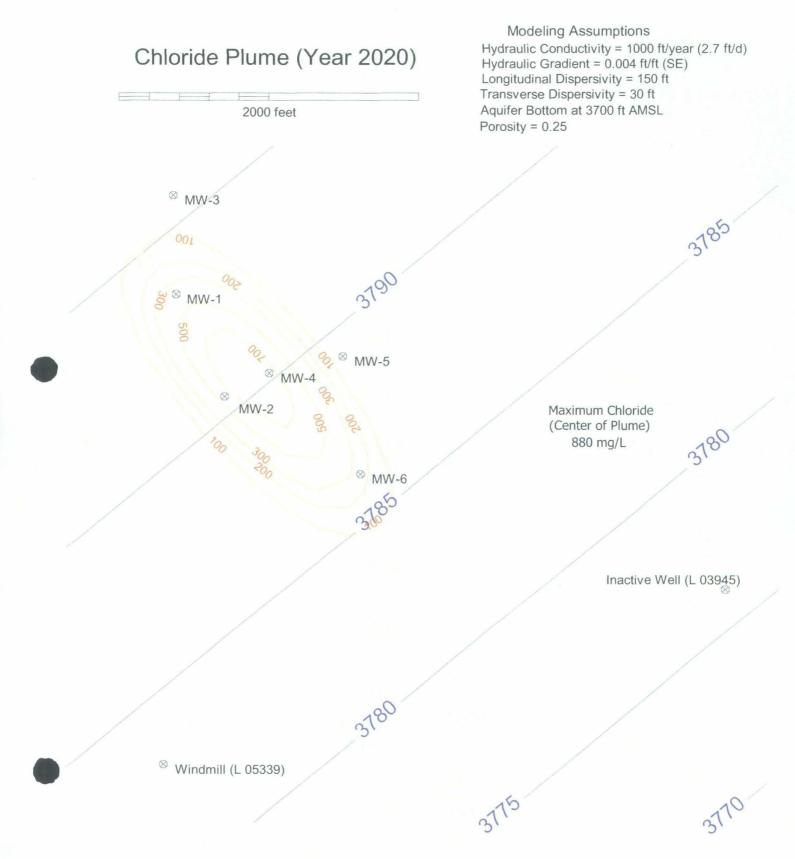
Delivered sample to Lancaster Laboratories (Lancaster PA) for Chloride and TDS analyses.

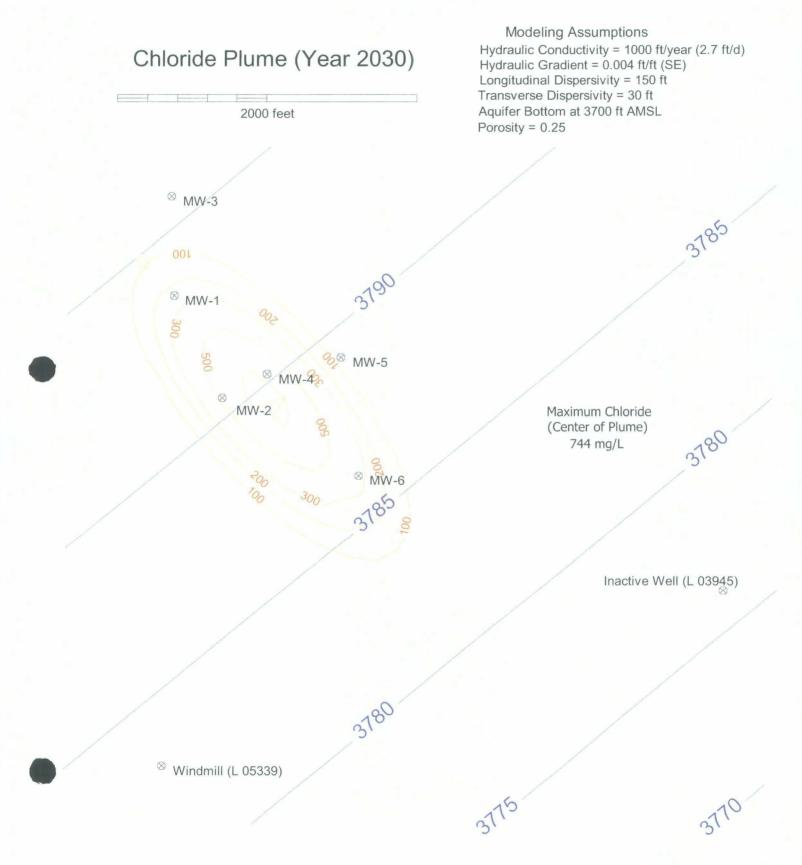
WELL SAMPLING DATA FORM

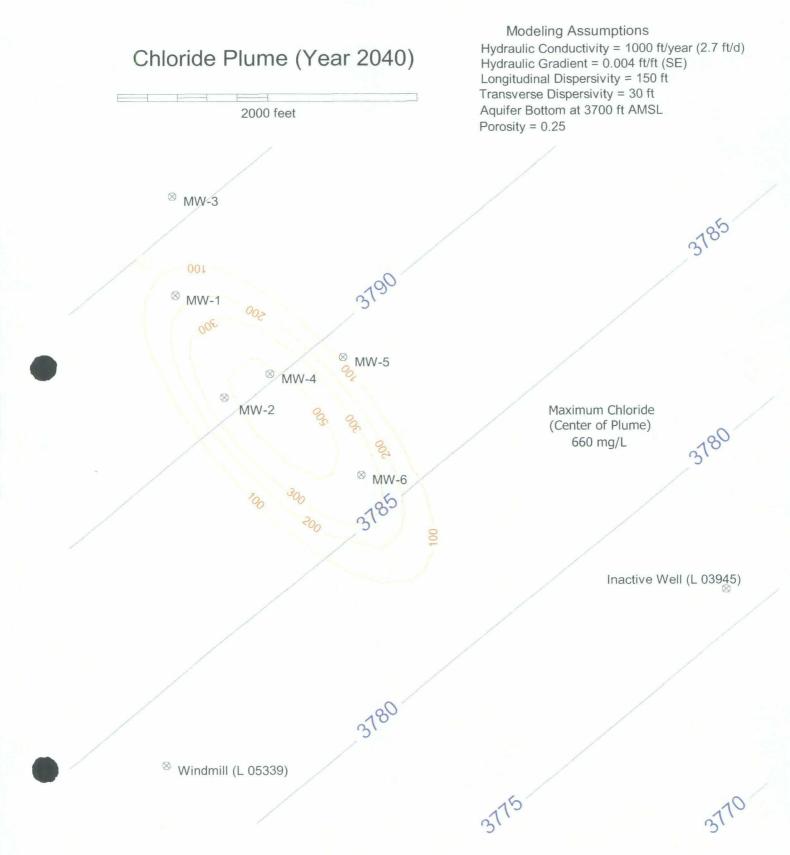

	CLIENT:	Chevron E	<u>MC</u>		WELL ID:	MW-6
S	ITE NAME:	Former Ur	nocal S. Va	cuum Unit	DATE:	07/15/09
PR	DJECT NO.	V-107			SAMPLER:	Van Deventer
	_					
PURGIN	G METHOD:	[☑ Hand Bai	iled 🗌 Pum	p If Pump,	Туре:
SAMPLIN): [🖸 Disposab	le Bailer	Direct from	Discharge Hose Other:
DESCRIE		ENT DECON	TAMINATI		BEFORE	SAMPLING THE WELL:
Glove	es 🗹 Alcono	x	ed Water Rii	nse 🗌 Oth	er:	
DISPOS	AL METHOD		WATER:	Surface	Discharge	Drums 🗹 Disposal Facility
DEPTH 1 HEIGHT	EPTH OF W O WATER: OF WATER AMETER:	COLUMN:	77.20 71.61 5.59 Inch	Feet Feet Feet	2.7	Min. Gallons to purge 3 well volumes
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg/L	PHYSICAL APPEARANCE AND REMARKS
16:45	0					Started hand bailing
16:49	1	20.4	0.76	8.05		Clear
16:52	2	19 <u>.8</u>	0.78	8.09		Well bailing dry (1/2 bailers)
16:56	3	19.8	0.79	8.08		Sample collected
		<u></u>				
			<u> </u>			
					<u></u>	<u> </u>
						
0:11	Total Time	(hr:min)	3	I Total Vol (gal)	0.27	= Average Flow Rate (gal/min)
COMME	NTS:	Parameters	obtained us	sing a calibra	ted Hanna I	Model 98130 Multimeter.

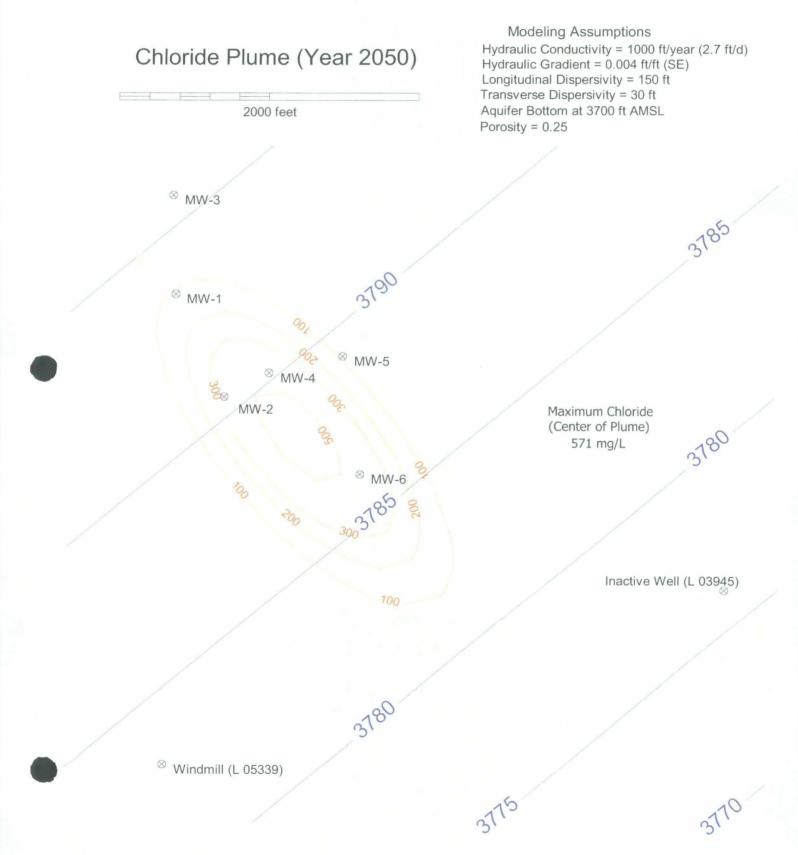

Sample placed into 1000 ml plastic container, and put on ice in cooler.

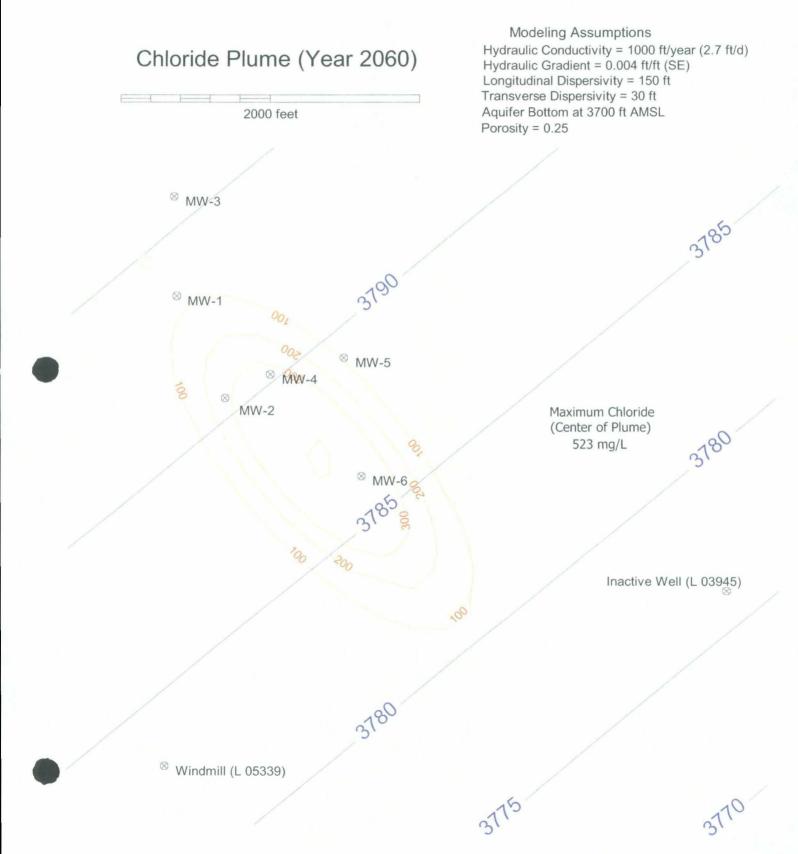

Delivered sample to Lancaster Laboratories (Lancaster PA) for Chloride and TDS analyses.

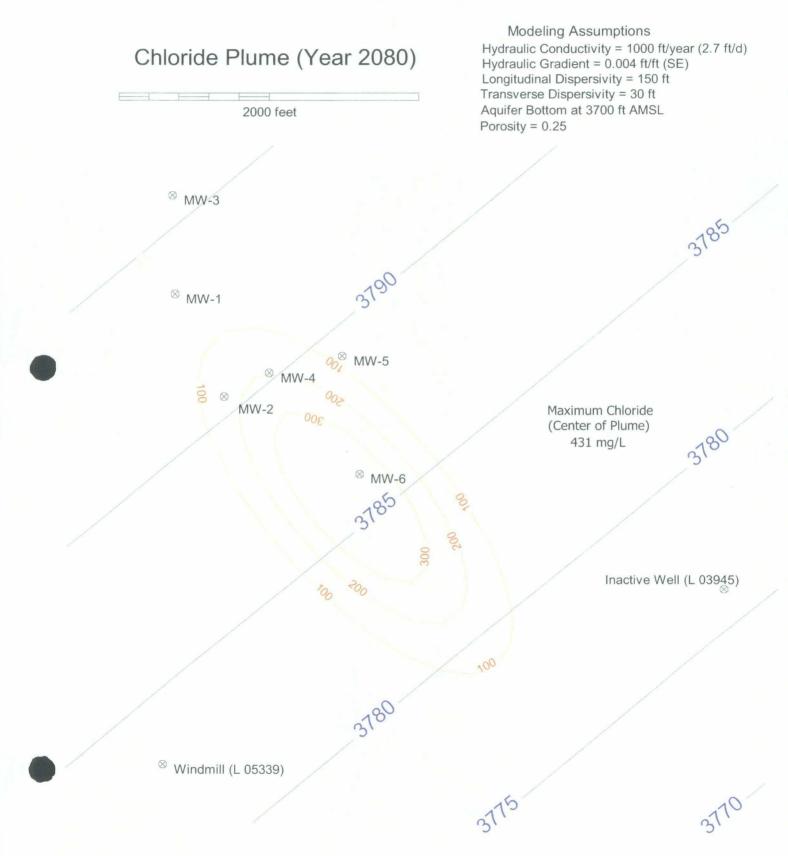

APPENDIX C

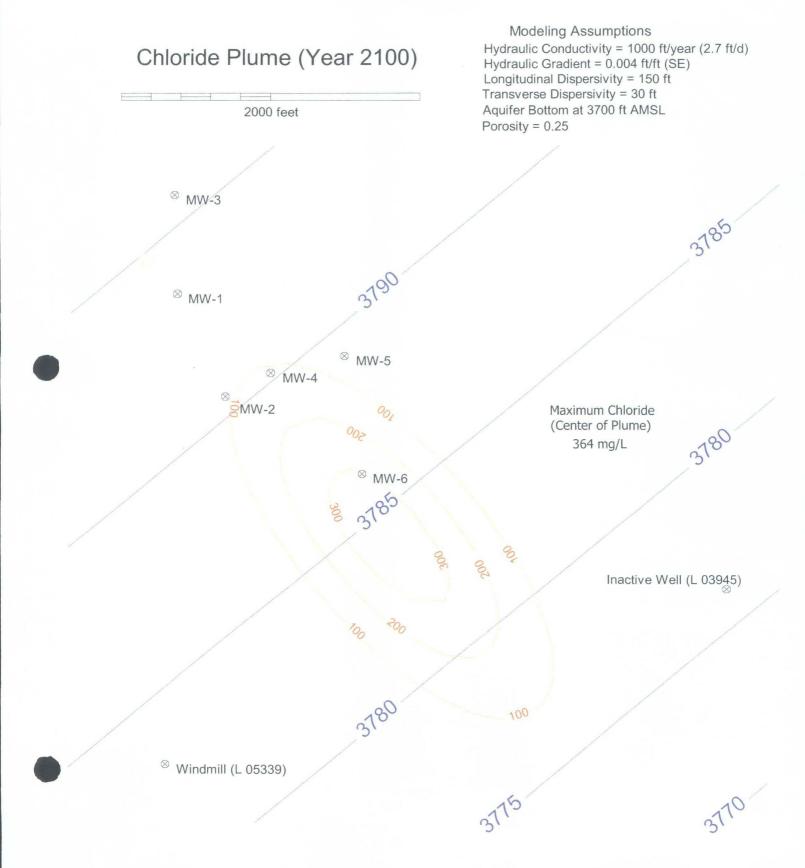

Chloride and TDS Plume Simulations

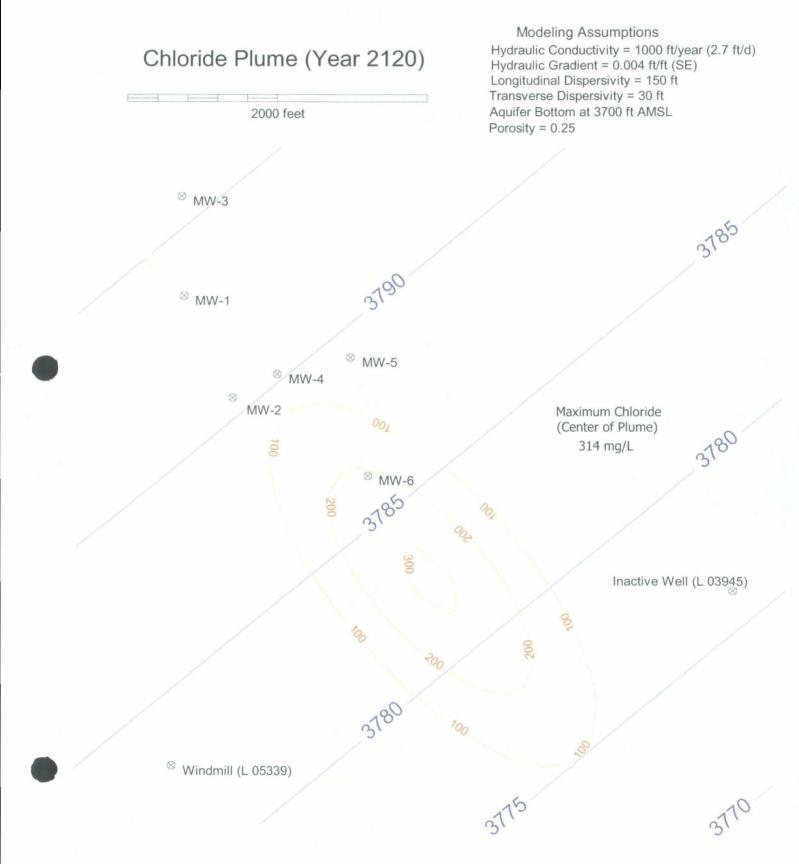


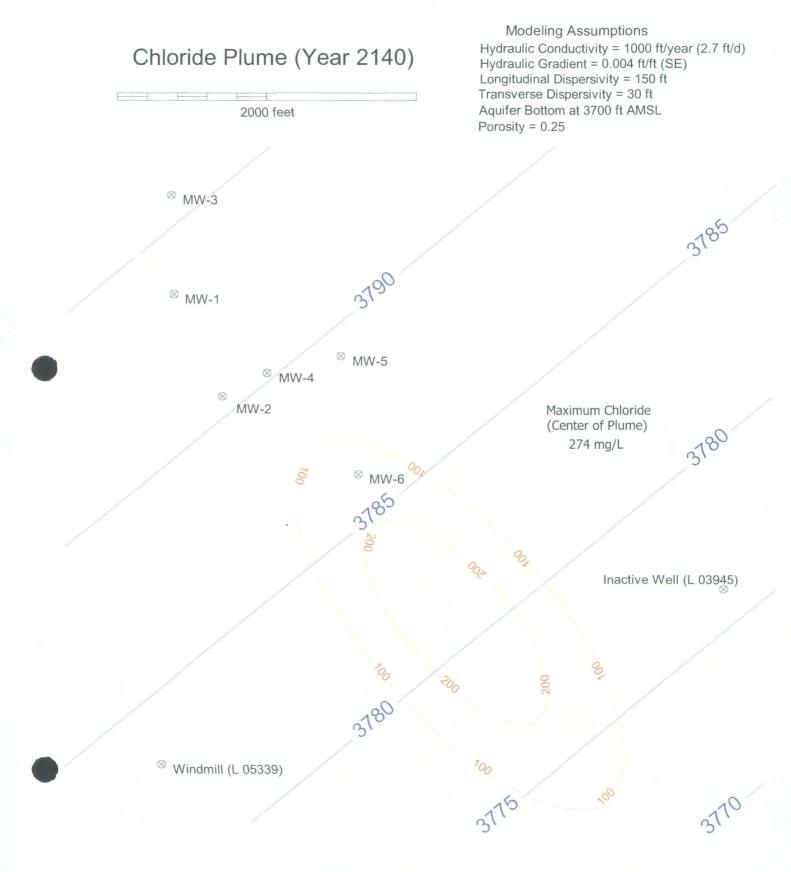


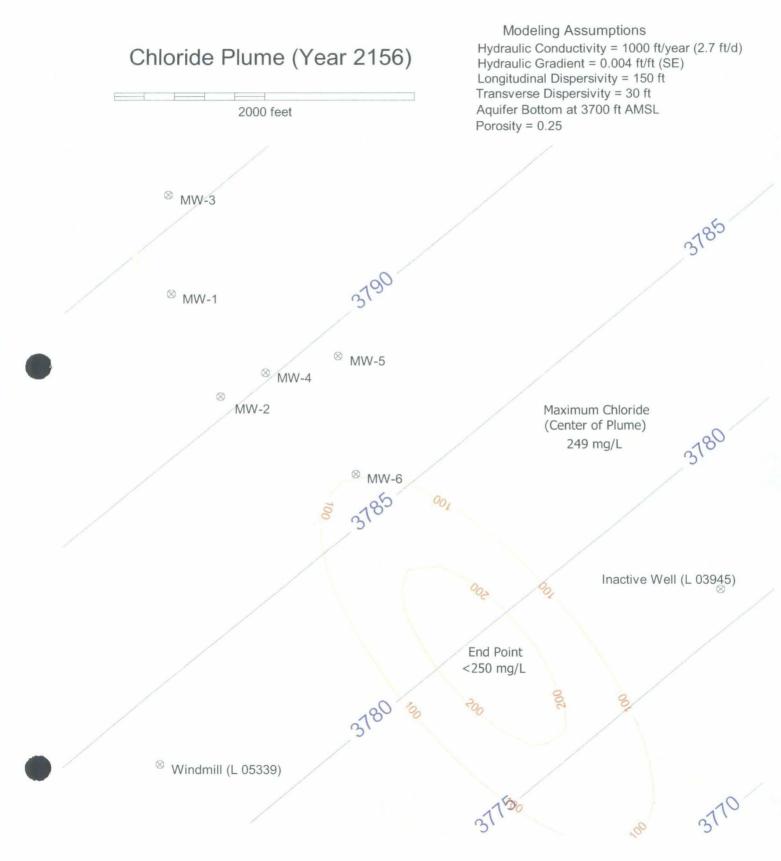


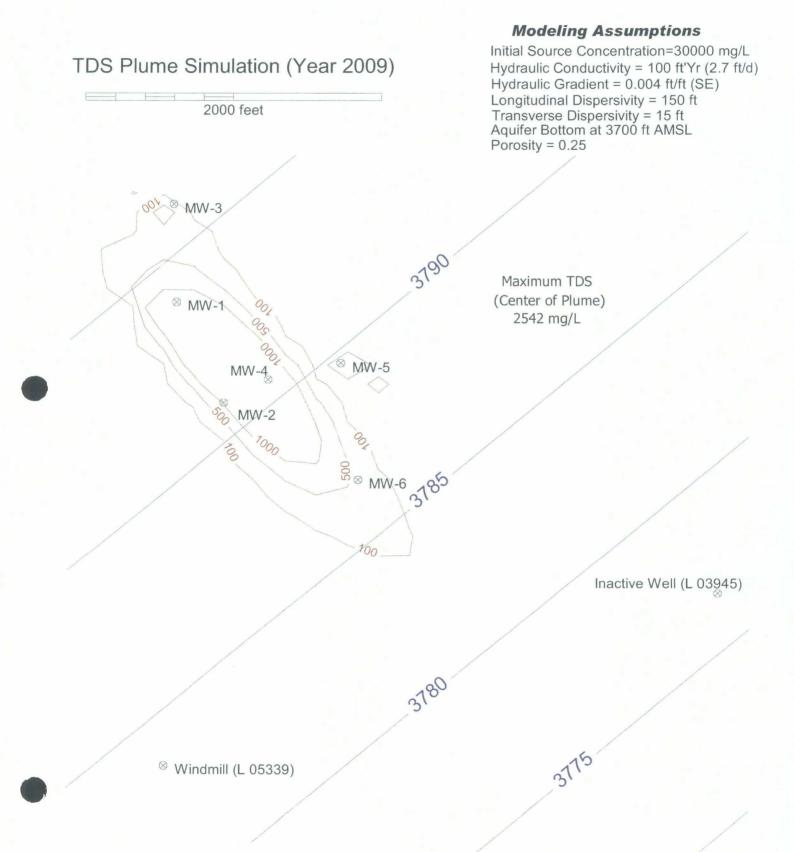


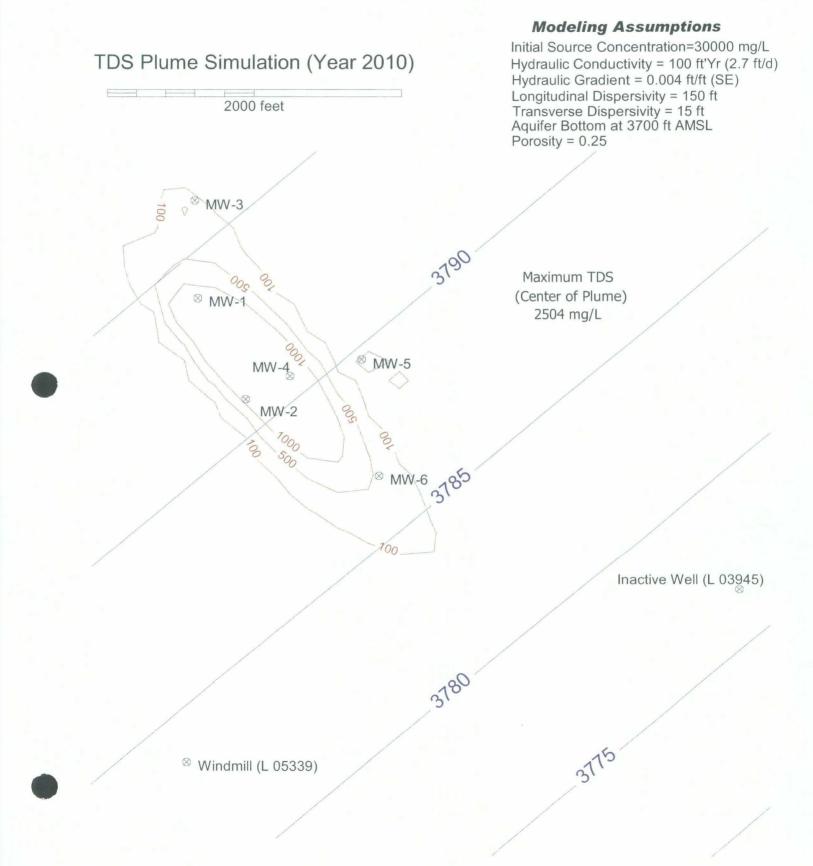


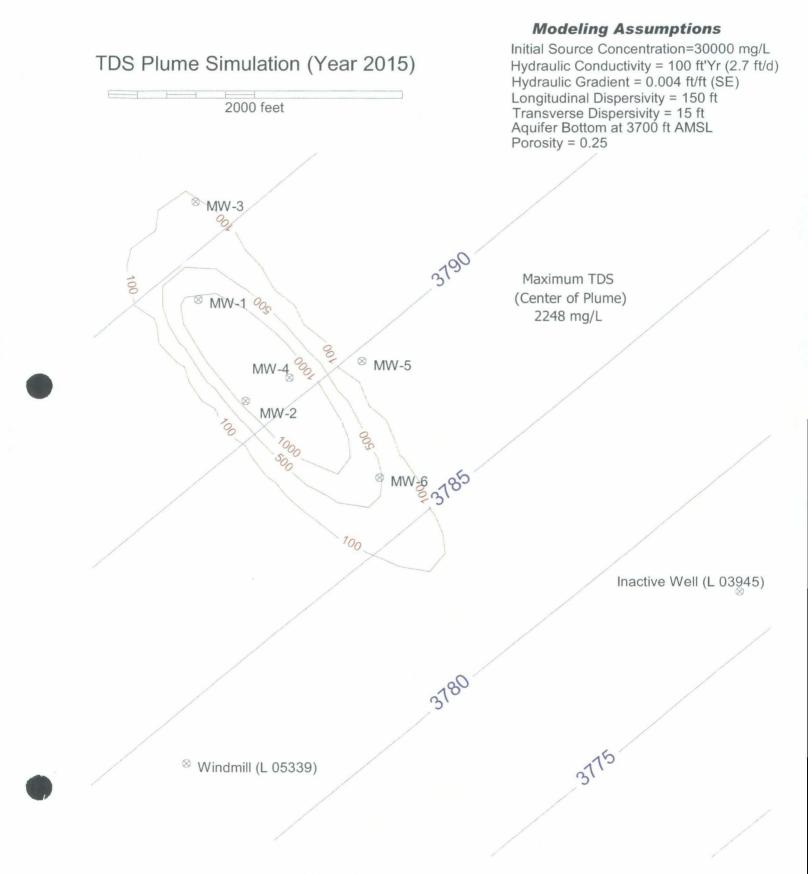


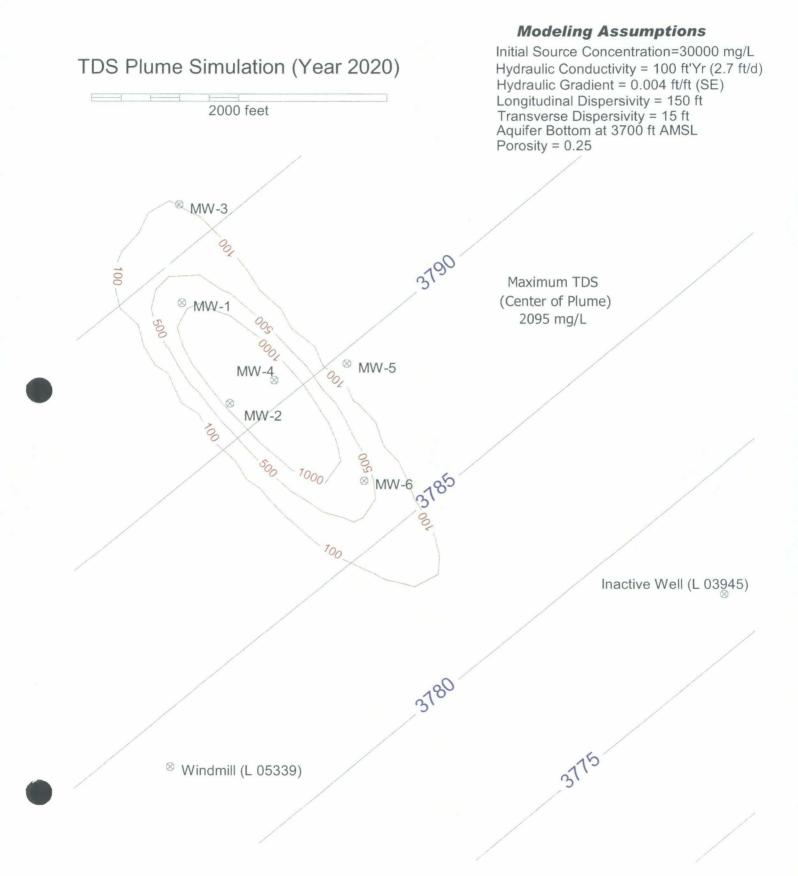


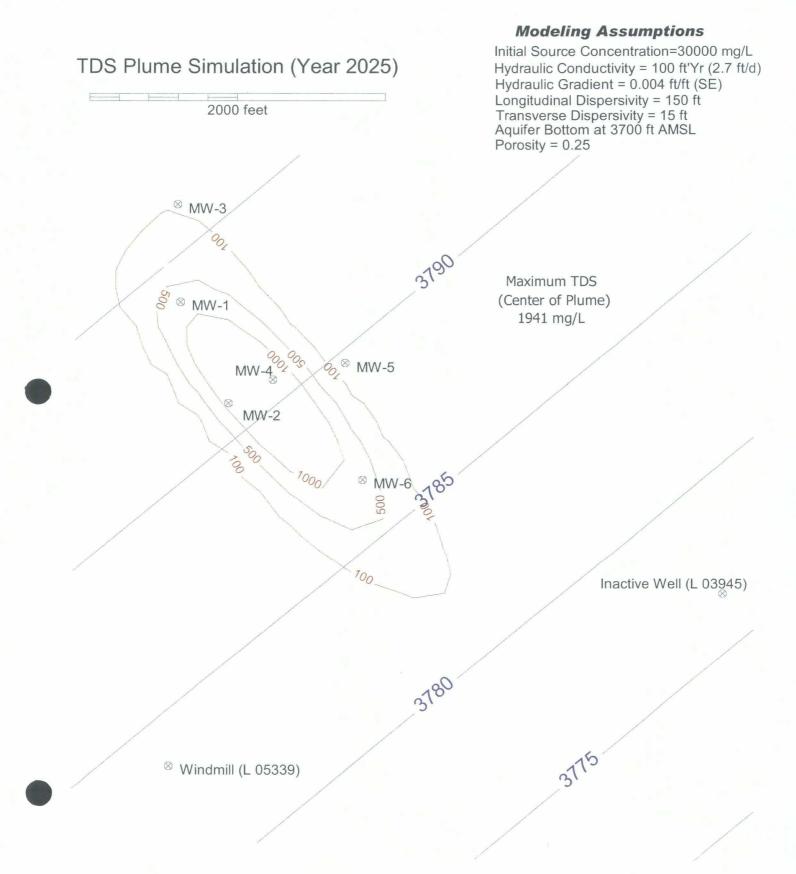


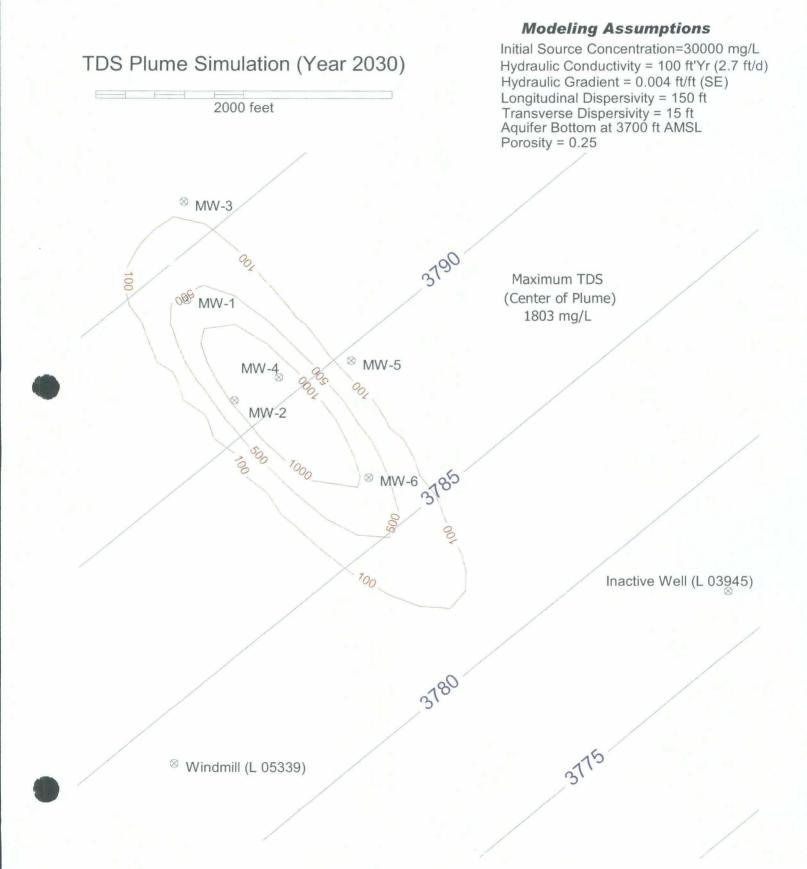


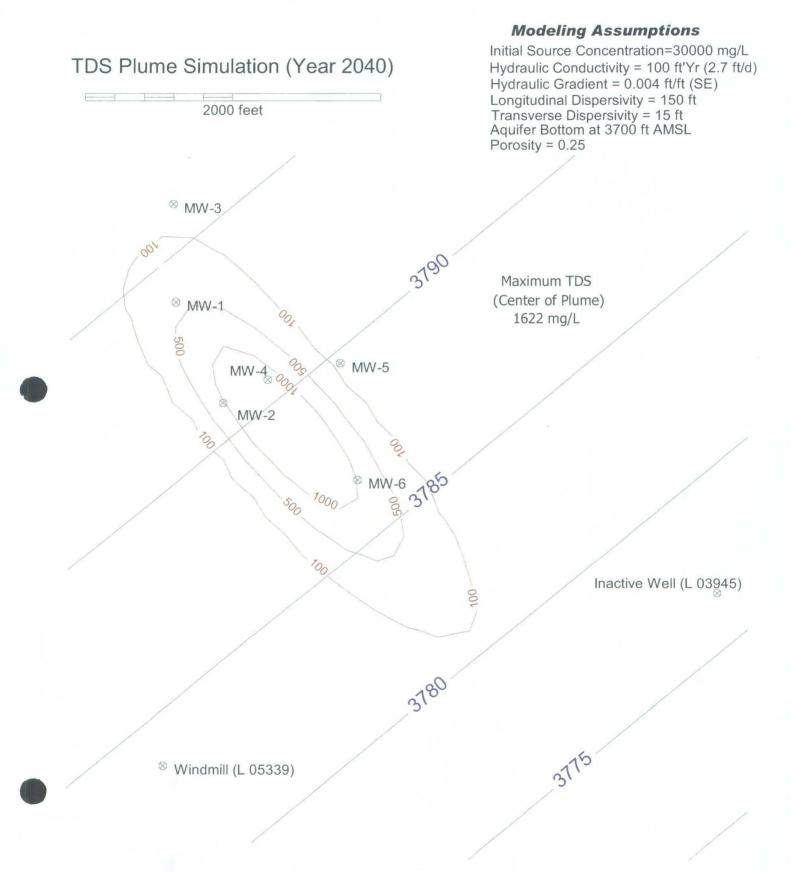


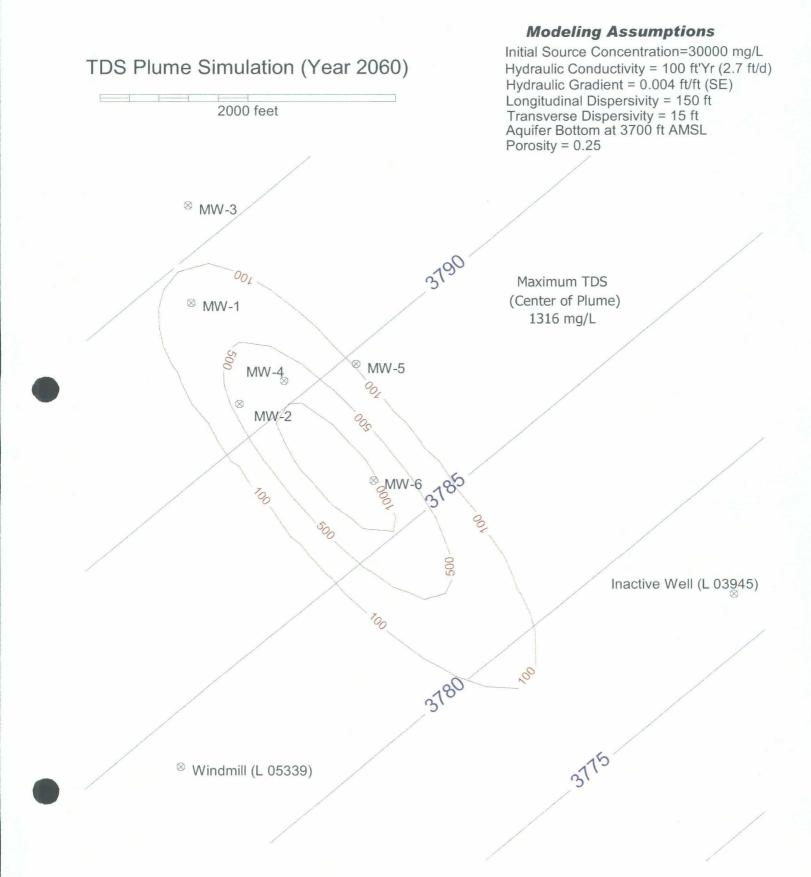


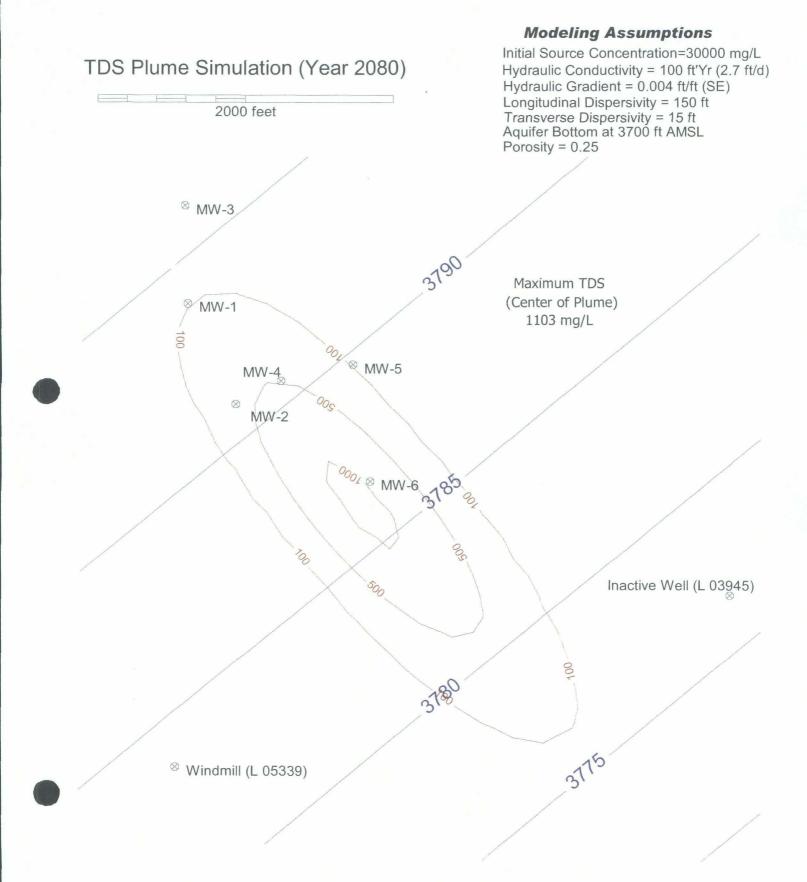


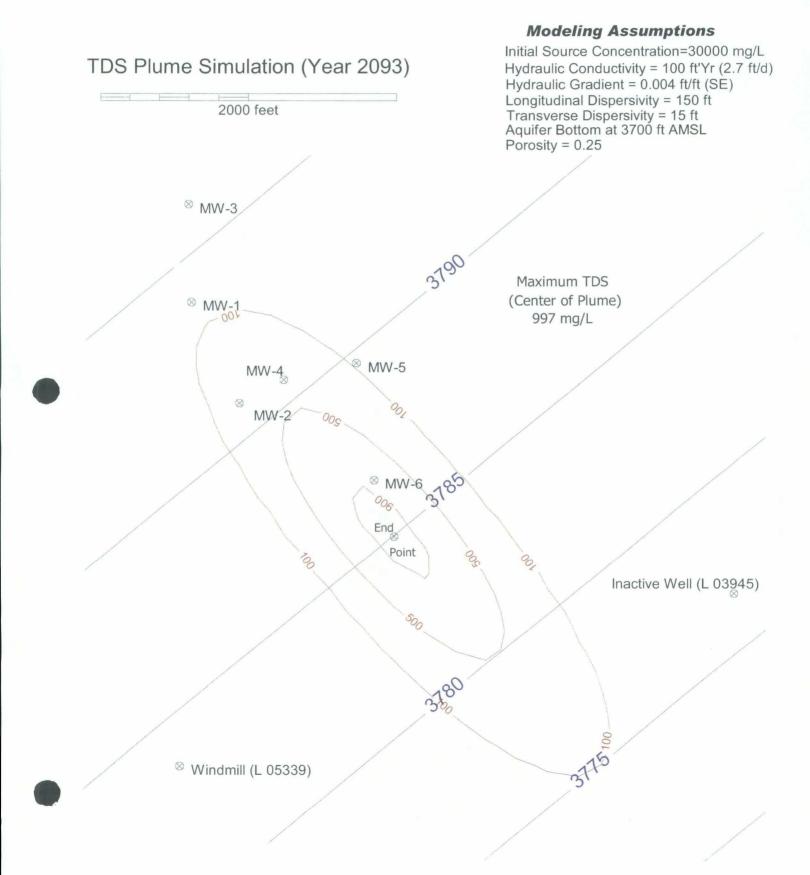












APPENDIX D

Description of Fate and Transport Modeling And Input/Output Data

Description of Fate and Transport Modeling

Conceptual Model

Produced water containing high concentrations of chloride, and resultant high levels of total dissolved solids (TDS), was reportedly discharged into a surface pit and adjoining injection well for a period of about 10 years, until the well was plugged and abandoned in1971. The chloride and TDS plume continued to migrate southeastwards for the next approximately 30 years after the source input was stopped, producing the configuration and constituent concentration distribution observed currently. Extrapolating from current conditions for decades into the future, taking account of both advective flow and attenuation by hydrodynamic dispersion, enables prediction of the probable distance that the residual plume will travel as well as the gradually declining concentrations in the plume.

Basic Site Data

Information about site conditions was obtained from data in a TRW Inc. "Report of Additional Groundwater Investigation, Former Unocal South Vacuum Unit, Lea County, New Mexico" (July 18, 2000). This included lithologic records from well installations, water level data, and water quality analytical results.

Simulation Model

Simulations were conducted with the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. The Windows interface allows for rapid data input, processing, parameter manipulation and optimization, and output in multiple formats. The fundamental mathematics of the model solutions, model verification (benchmarked against MODFLOW), and use of WinTran is documented in the "Guide to Using WinTran" published by ESI.

Base Map

A simplified site base map was created using the New Mexico State Plane Coordinates for each monitoring well which were determined by a registered surveyor after installation.

Flow Parameters

Input requirements for the steady-state groundwater flow simulation include: hydraulic gradient and direction of flow, hydraulic conductivity, aquifer top and bottom elevations, and reference head. The values used were based on the following sources:

• Hydraulic gradient – measured gradient of 0.004 feet/foot from July 15, 2009 site measurements reported by Trident.

- Direction of flow measured direction of approximately S 40° E from July 15, 2009 site measurements reported by Trident.
- Hydraulic conductivity no site measurements were available; therefore, a literature value based on the saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. Fetter (1988, Table 4.5, p. 80) cites an average range of 10⁻⁵ to 10⁻³ cm/sec for hydraulic conductivity of silty sands and fine sands. A conservative upper limit was selected, and converted from S.I. unit to 2.7 ft/day, or approximately 1000 ft/yr.
- Aquifer top and bottom elevations bottom elevation of Ogallala Formation at 3700 feet reported by Trident. The top elevation for an unconfined aquifer must be greater than the reference head. An elevation of 4000 feet was assumed.
- Reference head measured unconfined head of 3795 feet adjacent to the former pit and upgradient well MW-1 from July 15, 2009 measurements reported by Trident.

Transport Parameters

Input requirements for the contaminant transport numerical simulation include: longitudinal and transverse dispersivity, porosity, diffusion coefficient, contaminant half-life, and retardation coefficient. The values used were based on the following sources:

- Longitudinal and transverse dispersivity no site measurements were available; therefore, a literature value based on the plume length was selected. Fetter (1993, Section 2.11, pp. 71-77) notes the apparent scale-dependency of longitudinal dispersivity, which typically may be about 0.1 times the flow length. For the current site scale and plume length of approximately 1500 feet, a value of 150 feet was selected for longitudinal dispersivity. Based on professional judgment, hydrologists commonly assume the longitudinal dispersivity is 5 to 10 times higher than transverse dispersivity; therefore, a value of 30 feet (i.e., one-fifth of the longitudinal value) was selected for transverse dispersivity.
- Porosity no site measurements were available; therefore a literature value based on saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. A range of 0.25 to 0.50 is typically given for unconsolidated "sand" (e.g., Freeze & Cherry, 1979, Table 2.4, p. 37); however, the Ogallala Formation is predominantly very fine grained, compacted and partly cemented, and may also fit within the range of 0.05 to 0.30 for sandstone. Fetter (1988, Table 4.3 and Figure 4.10, pp. 74-75) cites an average value of 0.20 for the specific yield of very fine sands. Specific retention of silty fine sand is approximately 0.05, for a total porosity of 0.25, which is the value selected for the transport modeling. WinTran uses the porosity term to estimate groundwater velocity, and actually requires an effective porosity value. Fetter (1988, Section 4.4, pp. 84-85) notes that pores of most sediments down to clay size are interconnected and that the effective porosity is virtually equal to the total porosity.
- Diffusion coefficient this parameter is normally only relevant for very slow fluid movement, and is commonly assumed to be zero for advective-dominated transport, as in the present case.
- Contaminant half-life this parameter accounts for chemical decay (e.g., radioisotopes, biological transformation of organic molecules); however, the species of interest in the present case are inorganic ions and are not expected to decay to any appreciable extent. A conservative value of 1000 years was used, which produces a negligible decay coefficient of less than 0.001 yr⁻¹.

• Retardation coefficient – this parameter accounts for sorption processes that slow the movement of contaminants relative to the groundwater velocity. Inorganic ions such as chloride are commonly taken as conservative tracers in groundwater and are not considered to be retarded; therefore, a value of 1.0 was selected for the retardation coefficient.

Flow Model Calibration

The vicinity of the site where water level measurements were recorded in July 15, 2009 is simulated closely by the flow model. It is known that groundwater levels in the Ogallala Formation are decreasing slowly (approximately 0.3 ft/yr), but this effect cannot be reproduced in the steady-state flow model. Water levels were probably somewhat higher than the present day during the period of brine disposal and initial transport. Even if the declining trend continues into the future, it does not affect the transport model solution for long extrapolation times, since sufficient saturated thickness remains (i.e., above the assumed aquifer base elevation of 3700 feet) for a valid flow and transport solution.

The average groundwater velocity may be estimated using the Darcy expression: $v = (k \cdot i) / n$ where k is the hydraulic conductivity (1,000 ft/yr), i is the hydraulic gradient (0.004 ft/foot), and n is the effective porosity (0.25). The resultant average velocity is 16 ft/yr.

Transport Model Calibration

The objective of the transport modeling was to first obtain a plume configuration with concentration values that closely match current observed values. This was done by simulating an initial contaminant release to groundwater for a period of 11 years (c. 1960 to 1971) with a constant source concentration located at the pit and injection well, then simulating a 28-year transport period (c. 1971 to 1999) with no further contaminant input but restarting the model from the end of Year 11 by retaining the mass of contaminant from the initial plume. An iterative approach was needed to optimize the initial source concentration so that the plume at Year 39 resembled the actual plume conditions in 1999. An initial value of 14,000 mg/L for chloride and 30,000 mg/L for TDS were found to produce the best match. The initial chloride value was also chosen because it is typical of chloride concentrations within the producing formation (Devonian) in the South Vacuum Oil Field according to chemists at Martin Water Laboratories (verbal communication, 12-05-01). Actual disposal concentrations during the 1960s are unknown, and may have been higher than these values, but it is presumed that some attenuation and dilution may have occurred in the vadose zone, which is currently 48 to 68 feet thick. WinTran does not account for vadose zone transport, and the source input is treated as an injection well with instantaneous transfer of contaminant mass to groundwater.

After calibrating the model such that it corresponded to actual 1999 conditions, the model was again run for 10 years (1999 to 2009) at one-year increments after entering in the known concentrations at each monitoring well.

Simulation of Fate and Transport

Estimation of chloride and TDS fate and transport was achieved by restarting the transport model in 2009. Figures displaying modeled simulations of the chloride and TDS plumes over various time increments are included in Appendix C. Advective flow moves the center of plume mass downgradient as depicted in the simulations. The simulations also demonstrate how hydrodynamic dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume.

Running the model for 147 years in the future (Year 2156) produces a chloride plume center concentration of 248 mg/L (below the WQCC standard of 250 mg/L). The center of the chloride plume is approximately 3,400 ft away from the former pit and well source at that time.

Running the model for 84 years in the future (Year 2093) produces a TDS plume center concentration of 997 mg/L (below the WQCC standard of 1,000 mg/L). The center of the TDS plume is approximately 2,300 ft away from the pit and well source at that time.

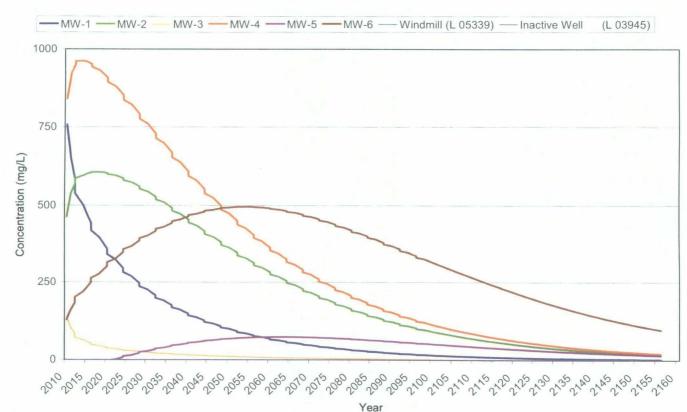
These results support the conclusion that the chloride and TDS plume is not likely to impact any existing sources of water supply, the closest of which is a windmill (NM File No. L05339) located over one-half mile south of the source. Operation of the windmill has been discontinued due to declining water levels in the area and the shallow depth of he well.

The trend of decreasing concentration is not linear (exponential e^{-kt} function). Interestingly, the center of the plume moves at a greater rate (22 feet/year) over successive time intervals than would be assumed from the groundwater velocity alone (16 feet/year), due to the added effect of dispersion.

WinTran Analytical Model of 2D Ground-Water Flow and Finite-Element Contaminant Transport Model

Developed by

James O. Rumbaugh, III


Douglas B. Rumbaugh

(c) 1995 Environmental Simulations, Inc.

Chloride Fate & Transport Simulation run by: Gilbert Van Deventer (Trident Environmental)

Date: 11/6/09 Time: 17:53:02.00

Input File: 2009 CL.WTR
:

Chloride Concentration Vs. Time

Model Entities

```
Number of Wells = 8
```

```
Well #1
  Center of Well -- x: 716.000000 y: 5281.000000
  Radius = 1.000000
   Pumping Rate = 0.000000
   Concentration of Injected Water = 852.000000
  Head at Well Radius
                              = 3793.557161
Well #2
  Center of Well -- x: 1041.670000 y: 4585.770000
  Radius = 1.000000
   Pumping Rate = 0.000000
   Concentration of Injected Water = 482.000000
  Head at Well Radius
                              = 3790.493575
Well #3
   Center of Well -- x: 694.000000 v: 5954.000000
   Radius = 1.000000
   Pumping Rate = 0.000000
   Concentration of Injected Water = 199.000000
  Head at Well Radius = 3795.684412
Well #4
  Center of Well -- x: 1341.000000 y: 4747.000000
   Radius = 1.000000
   Pumping Rate = 0.000000
   Concentration of Injected Water = 632.000000
  Head at Well Radius
                        = 3790.203804
Well #5
  Center of Well -- x: 1829.000000 y: 4861.000000
  Radius = 1.000000
   Pumping Rate = 0.000000
   Concentration of Injected Water = 13.400000
  Head at Well Radius = 3789.245166
Well #6
  Center of Well -- x: 1948.000000 y: 4058.000000
  Radius = 1.000000
   Pumping Rate = 0.000000
  Concentration of Injected Water = 81.400000
  Head at Well Radius
                              = 3786.250006
Well #7
  Center of Well -- x: 650.000000 v: 2081.000000
   Radius = 1.000000
   Pumping Rate = 10.000000
   Concentration of Injected Water = 0.000000
   Head at Well Radius
                             = 3783.199397
Well #8
   Center of Well -- x: 4375.000000 y: 3275.550000
   Radius = 1.000000
   Pumping Rate = 0.000000
   Concentration of Injected Water = 0.000000
   Head at Well Radius
                               = 3776.143897
```

Reference Head = 3795.000000 Defined at -- x: 473.850000 y: 5545.270000

```
Aquifer Properties
    .... Steady-State Flow Model ....
    Permeability..... = 1000.000000 [L/T]
    Porosity..... 0.250000
    Elevation of Aquifer Top....= 4000.000000
    Elevation of Aquifer Bottom. = 3700.000000
    Uniform Regional Gradient...= 0.004000
    Angle of Uniform Gradient...= 310.000000
    Recharge.....= 0.000000
    .... Transient Transport Model ....
    Longitudinal Dispersivity...= 150.000000 [L]
    Transverse Dispersivity....= 30.000000 [L]
    Diffusion Coefficient....= 0.000000 [L2/T]
    Contaminant half-life.... = 1000.000000 [T]
    Retardation Coefficient....= 1.000000
    Upstream Weighting in X....= 0.000000
    Upstream Weighting in Y....= 0.000000
    .... Time Stepping Information ....
    Number of time steps....= 147
    Starting time value..... = 2009.000000
    Initial time step size....= 1.000000
    Time step multiplier..... = 1.000000
    Maximum time step size....= 1.000000
    Time stepping scheme.....= Central Differencing
    .... Simulation Summary ....
    Starting time..... = 2009.000000
    Ending time..... = 2156.000000
    Number of time steps..... 147
    (NOTE: following mass balance errors expressed as percent)
    Transport Mass Balance Error= 0.000007
    Peclet Criterion..... = 1.388889
    Courant Number..... = 0.051968
    Flow Model Type..... Analytic Element
Head Contour Matrix
Number of nodes in the X-direction = 49
Number of nodes in the Y-direction = 49
Minimum X Coordinate = 0.000000
Minimum Y Coordinate = 0.000000
Maximum X Coordinate = 10000.000000
Maximum Y Coordinate = 6289.062500
Minimum Head = 3733.806516
Maximum Head = 3798.435342
```

	Directe	moriae Co	iltenti attoi	((mg/ L) O	utput nom	vv III I I AII	Windmill	Inactive Well
Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)
2010	757	463	139	840	-3	128	0	0
2010	650	538	104	921	-14	160	0	0
2012	585	570	84	951	-19	183	0	0
2012	539	587	72	961	-21	201	0	0
2013	502	596	64	962	-20	218	0	0
2014	471	602	57	958	-19	218	0	0
2015	443	605	52	958	-17	234 249	0	0
2010	419	607	48	942	-17	249	0	0
2017	397	607	48 45	942	-13	203	0	0
2018	397	606	43	931	-12 -9	277	0	0
2019	358	604	42 39	919 907	-9 -6	302		0
		600					0	
2021	341		37	894	-2	314	0	0
2022	325	597	35	880	1	326	0	0
2023	310	592	33	866	4	337	0	0
2024 202 <i>4</i>	296	587	31	851	8	347	0	0
2025	282	581	30	837	11	357	0	0
2026	270	575	28	822	14	367	0	0
2027	258	568	27	807	17	376	0	0
2028	247	560	26	791	21	385	0	0
2029	236	553	25	776	24	394	0	0
2030	226	545	23	761	27	402	0	0
2031	216	536	22	745	30	410	0	0
2032	207	528	22	730	33	417	0	0
2033	199	519	21	714	35	424	0	0
2034	191	510	20	699	38	431	0	0
2035	183	501	19	684	41	437	0	0
2036	175	492	18	668	43	444	0	0
2037	168	483	18	653	46	449	0	0
2038	161	473	17	638	48	455	0	0
2039	155	464	16	624	50	460	0	0
2040	149	454	16	609	52	464	0	0
2041	143	445	15	595	54	469	0	0
2042	137	435	14	580	56	473	0	0
2043	131	426	14	566	58	477	0	0
2044	126	417	13	553	59	480	0	0
2045	121	408	13	539	61	483	0	Ő
2046	117	398	12	526	62	486	0	0
2047	112	389	12	512	64	488	ů 0	0 0
2048	108	380	11	499	65	490	0	0
2049	103	371	11	487	66	492	0	0
2050	99	363	11	474	67	493	0	0
2050	96	354	10	462	68	493	0	0
2051	92	345	10	450	69	494	0	
2052	88	343	9	430	70			0
2033	00	331	フ	438	70	495	0	0

.

Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	Windmill (L 05339)	Inactive Well (L 03945)
2054	85	329	9	427	70	496	0	0
2055	82	321	9	416	71	495	0	0
2056	79	313	8	405	72	495	0	0
2057	76	305	8	394	72	494	0	0
2058	73	297	8	383	72	493	0	0
2059	70	289	8	373	73	492	0	0
2060	67	282	7	363	73	491	0	0
2061	65	275	7	353	73	489	0	0
2062	62	268	7	343	73	487	0	0
2063	60	261	7	334	73	485	0	0
2064	58	254	6	325	73	482	0	0
2065	56	247	6	316	73	480	0	0
2066	54	240	6	307	73	477	0	0
2067	52	234	6	299	73	474	0	0
2068	50	228	5	290	72	470	0	0
2069	48	222	5	282	72	467	0	0
2070	46	216	5	274	72	463	0	0
2071	44	210	5	266	71	460	0	0
2072	43	204	5	259	71	456	0	0
2073	41	198	4	252	71	452	0	0
2074	40	193	4	245	70	447	0	0
2075	38	188	4	238	69	443	0	0
2076	37	182	4	231	69	439	0	0
2077	35	177	4	224	68	434	0	0
2078	34	172	4	218	68	429	0	0
2079	33	168	4	212	67	425	0	0
2080	32	163	3	205	66	420	0	0
2081	30	158	3	200	66	415	0	0
2082	29	154	3	194	65	410	0	0
2083	28	150	3	188	64	405	0	0
2084	27	145	3	183	64	400	0	0
2085	26	141	3	177	63	395	0	0
2086	25	137	3	172	62	389	0	0
2087	24	133	3	167	61	384	0	0
2088	23	129	3	162	60	379	0	0
2089	23	126	3	158	60	374	0	0
2090	22	122	2	153	59	368	0	0
2091	21	119	2	148	58	363	0	0
2092	20	115	2	144	57	357	0	0
2093	20	112	2	140	56	352	0	0 0
2094	19	109	2	136	55	347	0	Ő
2095	18	105	2	132	55	341	Ő	0
2096	17	102	2	128	54	336	0	0
2097	17	99	2	128	53	331	0	0

Chloride Output from WinTran

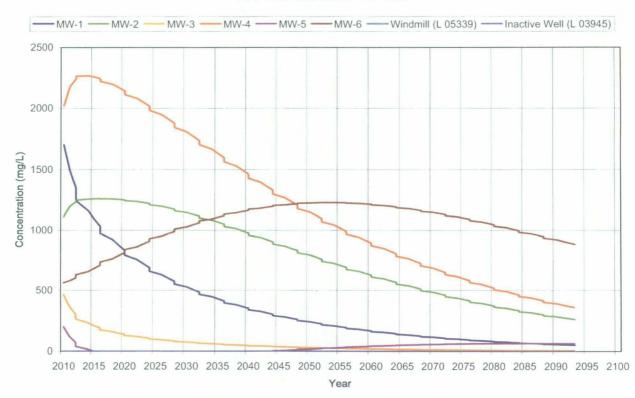
	Directe	moriae Co		((iiig/ L) O	irput nom	vv 111 1 1 an		Inactive Well
Vaar	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)
<u>Year</u> 2098	<u> </u>	<u> </u>	2	120	52	325	0	0
2098	16	94	2	117	51	320	0	0
	15	94 91	2	113	50	315	0	0
2100		88	2	113	30 49	313		0
2101	15		2				0	
2102	14	86		107	49 48	304	0	0
2103	14	83	2	104	48	299	0	0
2104	13	81	1	100	47	294	0	0
2105	13	78	1	97	46	288	0	0
2106	12	76	1	95	45	283	0	0
2107	12	74	1	92	44	278	0	0
2108	11	72	1	89	44	273	0	0
2109	11	69	1	86	43	268	0	0
2110	10	67	1	84	42	263	0	0
2111	10	65	1	81	41	258	0	0
2112	10	63	1	79	40	253	0	0
2113	9	62	1	76	40	248	0	0
2114	9	60	1	74	39	244	0	0
2115	9	58	1	72	38	239	0	0
2116	8	56	1	70	37	234	0	0
2117	8	55	1	68	37	230	0	0
2118	8	53	I	66	36	225	0	0
2119	8	51	1	64	35	221	0	0
2120	7	50	1	62	34	216	0	0
2121	7	48	1	60	34	212	0	0
2122	7	47	1	58	33	207	0	0
2123	7	45	1	56	32	203	0	0
2124	6	44	1	54	32	199	0	0
2125	6	43	1	53	31	195	0	0
2126	6	41	1	51	30	191	0	ů 0
2127	6	40	1	50	30	187	ů 0	ů
2128	5	39	1	48	29	183	0	Ő
2120	5	38	1	47	28	179	0	0
2130	5	37	1	45	28	175	0	ů 0
2130	5	36	1	44	27	171	0	0
2131	5	34	1	43	26	168	0	0
2132	5	33	1	41	26	164	0	0
2135	4	32	1	40	20	160	0	0
2134	4	31	0	39	25	157	0	
2135	4	30	0	39	23	157	0	0
	4	30	0	38 36				0
2137			0		24	150	0	0
2138	4	29 28		35	23	147	0	0
2139	4	28	0	34	23	143	0	0
2140	4	27	0	33	22	140	0	0
2141	3	26	0	32	22	137	0	0

Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	Windmill (L 05339)	
2142	3	25	0	31	21	134	0	0
2143	3	25	0	30	21	131	0	0
2144	3	24	0	29	20	128	0	0
2145	3	23	0	28	20	125	0	0
2146	3	22	0	27	19	122	0	0
2147	3	22	0	27	19	119	0	0
2148	3	21	0	26	18	116	0	0
2149	3	20	0	25	18	114	0	0
2150	3	20	0	24	17	111	0	0
2151	2	19	0	24	17	108	0	0
2152	2	19	0	23	17	106	0	0
2153	2	18	0	22	16	103	0	0
2154	2	17	0	21	16	101	0	0
2155	2	17	0	21	15	99	0	0
2156	2	16	0	20	15	96	0	0

WinTran Analytical Model of 2D Ground-Water Flow and Finite-Element Contaminant Transport Model

Developed by

James O. Rumbaugh, III


Douglas B. Rumbaugh

(c) 1995 Environmental Simulations, Inc.

TDS Fate & Transport Simulation run by: Gilbert Van Deventer (Trident Environmental)

Date: 11/6/09 Time: 18:16:04.00

Input File: TDS 2009.WTR Map File:

TDS Concentrations Vs. Time

.... Steady-State Flow Model

Maximum Head = 3798.819859

Permeability..... = 1000.000000 [L/T] Porosity....= 0.250000 Elevation of Aquifer Top....= 4000.000000 Elevation of Aquifer Bottom.= 3700.000000 Uniform Regional Gradient...= 0.004000 Angle of Uniform Gradient...= 310.000000 Recharge..... = 0.000000 Transient Transport Model Longitudinal Dispersivity...= 150.000000 [L] Transverse Dispersivity....= 15.000000 [L] Diffusion Coefficient....= 0.000000 [L2/T] Contaminant half-life..... = 1000.000000 [T] Retardation Coefficient....= 1.000000 Upstream Weighting in X....= 0.000000 Upstream Weighting in Y....= 0.000000 Time Stepping Information Number of time steps..... 90 Starting time value..... = 2009.000000 Initial time step size....= 1.000000 Time step multiplier.... = 1.000000 Maximum time step size....= 1.000000 Time stepping scheme..... = Central Differencing Simulation Summary Starting time..... = 2009.000000 Ending time..... = 2099.000000 Number of time steps..... 90 (NOTE: following mass balance errors expressed as percent) Transport Mass Balance Error= 0.000487 Peclet Criterion..... = 1.388889 Courant Number..... = 0.050438 Flow Model Type..... = Analytic Element Head Contour Matrix Number of nodes in the X-direction = 49Number of nodes in the Y-direction = 49Minimum X Coordinate = 0.000000 Minimum Y Coordinate = 0.000000Maximum X Coordinate = 10000.000000 Maximum Y Coordinate = 6289.062500 Minimum Head = 3734.910293

Number of Wells = 8Well #1 Center of Well -- x: 716.000000 y: 5281.000000 Radius = 1.000000Pumping Rate = 0.000000Concentration of Injected Water = 2300.000000 Head at Well Radius = 3793.961643Well #2 Center of Well -- x: 1041.670000 y: 4585.770000 Radius = 1.000000Pumping Rate = 0.000000Concentration of Injected Water = 1060.000000 = 3790.911689Head at Well Radius Well #3 Center of Well -- x: 694.000000 y: 5954.000000 Radius = 1.000000Pumping Rate = 0.000000Concentration of Injected Water = 766.000000 Head at Well Radius = 3796.079940Well #4 Center of Well -- x: 1341.000000 y: 4747.000000 Radius = 1.000000Pumping Rate = 0.000000Concentration of Injected Water = 1780.000000 Head at Well Radius = 3790.623255Well #5 Center of Well -- x: 1829.000000 y: 4861.000000 Radius = 1.000000Pumping Rate = 0.000000Concentration of Injected Water = 291.000000 Head at Well Radius = 3789.669101Well #6 Center of Well -- x: 1948.000000 y: 4058.000000 Radius = 1.000000Pumping Rate = 0.000000Concentration of Injected Water = 532.000000 Head at Well Radius = 3786.688589Well #7 Center of Well -- x: 650.000000 y: 2081.000000 Radius = 1.000000Pumping Rate = 10.000000Concentration of Injected Water = 400.000000 Head at Well Radius = 3783.653976 Well #8 Center of Well -- x: 4375.000000 y: 3275.550000 Radius = 1.000000Pumping Rate = 0.000000Concentration of Injected Water = 0.000000 Head at Well Radius = 3776.640336

Reference Head = 3795.000000 Defined at -- x: 619.470000 y: 5537.180000

•	Verm	N 4337 - 1	N 431 / D	N 4317 - 2	N 4 XX 7 - 4	NAN / 5	NANG	Windmill (L 05339)	Inactive Well
-	Year 2010	<u>MW-1</u> 1701	<u>MW-2</u> 1113	<u>MW-3</u> 464	<u>MW-4</u> 2019	<u>MW-5</u> 196	<u>. MW-6</u> 561	<u>(L 03339)</u> 0	(L 03945) 0
	2010	1491	1204	363	2019	118	579	0	0
	2011	1353	1238	302	2179	70	602	0	0
	2012	1249	1253	261	2241	39	627	0	0
	2013	1165	1260	231	2266	16	653	0	0
	2014	1093	i 264	207	2258	0	680	0	0
· •	2015	1029	1265	188	2242	-13	707	0	0
	2017	973	1264	172	2221	-23	734	0	0
L	2018	921	1262	158	2197	-30	760	0	0
•	2018	875	1258	138	2170	-35	786	0	0
	2017	870	1254	136	2142	-40	811	0	0
	2020	791	1248	127	2142	-43	836	0	0
	2021	754	1248	118	2081	-45	860	0	0
	2022	720	1233	110	2048	-46	884	0	0
•	2023	687	1224	104	2046	-46	906	0	0
	2025	656	1213	98	1982	-46	928	0	0
	2026	628	1202	93	1948	-46	949	0	0
	2027	601	1190	88	1913	-45	970	0	0
	2028	575	1177	83	1878	-43	990	0	0
	2028	551	1163	79	1878	-42	1009	0	0
	2029	528	1103	75	1845	-4()	1009	0	0
	2031	506	1133	71	1773	-38	1045	0	0
	2032	485	1117	67	1738	-36	1040	0	0
	2032	466	1100	64	1703	-33	1007	0	0
1997 - A.	2034	447	1083	61	1668	-30	1093	0	0
· ·	2035	429	1066	58	1633	-28	1107	0	0
• • * *	2036	412	1048	56	1598	-25	1121	0	0
	2037.	396	1030	53	1564	-22	1134	0	0
	2038	380	1012	51	1530	-19	1146	0	0
	2039	365	994	48	1496	-16	1157	0	0
	2040	351	975	46	1463	-13	1168	0	0
· · · · ·	2041	338	957	44	1430	-10	1177	0	0
	2042	325	938	42	1397	-7	1186	0	0
• •	2043	313	920	40	1365	-4	1194	0	0
	2044	301	901	39	1333	- 1	1202	0	0
	2045	289	883	37	1302	2	1208	0	0
	2046	278	864	35	1271	5	1214	0	0
<u>.</u>	2047	268	846	34	1241	8	1219	0	0
3	2048	258	828	33	1211	11	1223	0	0
	2049	248	810	31	1182	14	1227	0	0
	2050	239	792	30	1153	17	1229	0	0

. . .

1

.

Direct TDS Concentration (mg/L) Output from WinTran Simulation

	Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	Windmill (L 05339)	Inactive Well (L 03945)
-	2051	230	774	29	1125	20	1231	0	0
,	2052	222	757	28	1097	22	1233	0	0
	2053	214	739	26	1070	25	1233	0	0
	2054	206	722	25	1043	27	1233	0	0
	2055	199	705	24	1017	30	1232	0	0
	2056	191	689	23	991	32	1231	0	0
•	2057	184	673	22	966	35	1228	0	0
	2058	178	656	22	941	37	1226	0	0
	2059	171	641	21	917	39	1222	0	0
	2060	165	625	20	894	41	1218	0	0
	2061	159	610	19	870	43	1214	0	0
	2062	154	595	18	848	45	1209	0	0
· .	2063	148	580	18	826	46	1203	0	0
	2064	143	566	17	804	48	1197	0	0
	2065	138	552	16	783	49	1190	0	0
	2066	133	538	16	762	51	1183	0	0
	2067	128	524	15	742	52	1176	0	0
	2068	124	511	15	723	54	1168	0	0
	2069	119	498	14	703	55	1159	0	0
)	2070	115	485	14	684	56	1150	0	0
	2071	111	473	13	666	57	1141	0	0
	2072	107	460	13	648	58	1132	0	0
	2073	103	448	12	631	59	1122	0	0
	2074	100	437	12	614	60	1112	0	0
	2075	96	425	11	597	60	1101	0	0
	2076	93	414	11	581	61	1091	0	0
1. St. 1	2077	89	403	10	565	62	1080	0	0
	2078	86	393	10	550	62	1068	0	0
	2079	83	382	10	534	63	1057	0	0
	2080	80	372	9	520	63	1045	0	0
	2081	78	362	0	506	63	1034	0	0
	2082	75	352	9	492	63	1022	0	0
	2083	72	343	8	478	64	1009	0	0
	2084	70	334	8	465	64	997	0	0
•	2085	67	325	8	452	64	985	0	0
	2086	65	316	7	439	64	972	0	0
	2087	63	307	7	427	64	960	0	0
	2088	61	299	7	415	64	947	0	0
	2089	59	291	7	403	64	934	0	0
	2090	57	283	6	392	64	921	0	0
	2091	55	275	6	381	63	908	0	0
	2092	53	268	6	370	63	895	0	0
i	2093	51	260	6	360	63	883	0	0