1RP-400-0

3rd QTR 2010 GW Monitoring results

DATE: December 17, 2010

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 *FAX*

December 17, 2010

Mr. Leonard Lowe Environmental Engineer New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 3rd Quarter 2010 Groundwater Monitoring Results DCP X-Line Pipeline Release (1RP-400-0) Unit B, Section 7, T15S, R34E (Lat 33° 02' 11", Long 103° 32' 48")

Dear Mr. Lowe:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the 3rd Quarter 2010 Groundwater Monitoring Results for the DCP X-Line Pipeline Release located within the Etcheverry Ranch, Lea County, New Mexico.

If you have any questions regarding the report, please call at 303-605-1718 or e-mail me <u>swweathers@dcpmidstream.com</u>.

Sincerely

DCP Midstream, LP

Stephen Weathers, PG Principal Environmental Specialist

cc: Mrs. Etcheverry, Landowner - Certified Mail 91 7108 2133 3931 3926 3266 Larry Johnson, OCD Hobbs District Office (Copy on CD) Environmental Files

AEC AMERICAN ENVIRONMENTAL CONSULTING, LLC

November 22, 2010

Mr. Stephen Weathers DCP Midstream, LP 370 Seventeenth Street, Suite 2500 Denver, Colorado 80202

Re: Third Quarter 2010 Groundwater Monitoring Summary X-Line Pipeline Release, Etcheverry Ranch, Lea County, New Mexico Unit B, Section 7, Township 15 South, Range 34 East (1RP-400-0)

Dear Mr. Weathers:

1. 49 mar

This letter summarizes the results of the quarterly groundwater monitoring activities completed September 13, 2010 for DCP Midstream, LP (DCP) at the X-Line Pipeline Release on the Etcheverry Ranch at 33.0364° north, 103.5467° west (Figure 1).

The eight monitoring well locations are shown on Figure 2. All wells were sampled. Well construction information is summarized in Table 1.

The depths to water were measured in each well prior to purging. This data was used to calculate well casing-volume storage. The wells were then purged and sampled using dedicated bailers. Well purging consisted of removing a minimum of three casing volumes of water and, as necessary, continuing bailing until the field parameters temperature, pH and conductivity stabilized. The field sampling forms are attached.

Unfiltered samples were collected from each well upon stabilization except for well MW-8 that was bailed down to within 6 inches of it bottom. Each sample was analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX) using EPA Method SW-846, 8260B. A matrix spike/matrix spike duplicate was analyzed from MW-7. A field duplicate was collected from MW-8.

The samples were placed in an ice-filled chest immediately upon collection and documented using standard chain-of-custody protocol. The samples were delivered to AccuTest Laboratories in Wheat Ridge, Colorado. All affected purge water was stored on site for ultimate disposal.

The groundwater elevation measurements for all sampling episodes are summarized in Table 2. Well MW-8 is not included because its casing elevation has not been established. Hydrographs for wells MW-1 through MW-7 are shown on Figure 3. Figure 3 shows that the water-table elevations both increase and decreased slightly across the site. The water-table elevations remain at the upper end of the fluctuation range measured over the duration of this project.

6885 South Marshall St., Suite 3, Littleton, CO 80128 phone 303-948-7733 fax 303-948-7739

Mr. Stephen Weathers November 22, 2010 Page 2

A State

N. W. M.

10.00

10

No free phase hydrocarbons (FPH) were measured in MW-8. The FPH thickness values that were measured in MW-8 during the monitoring program are summarized in Table 3. FPH has not been detected in MW-8 at a thickness greater than 0.01 feet since December 2008.

A water-table contour map based upon the sampling event measurements was generated using the Surfer program with a kriging option (Figure 4). The water-table configuration reflects the historical conditions of general eastward flow.

The laboratory report is attached. The Quality Assurance data for the sampling event was reviewed. Important quality control evaluations include:

- The samples were all analyzed within the required 14-day holding time;
- None of the individual surrogate spikes were outside their control ranges;
- The method blank and blank spike evaluations were within their respective control limits.
- The matrix spike and the matrix spike duplicate results for MW-7 were all within their acceptable ranges.
- The BTEX relative percentage difference values for primary and duplicate samples from MW-8 had that were less than 10 percent.

The above results establish that the samples are suitable for routine groundwater monitoring evaluation.

Table 4 summarizes the sampling results for this event. A copy of the laboratory report is attached. Examination of Table 4 indicates that:

- 1. No benzene was detected above the method reporting limit in wells MW-1 through MW-7.
- 2. No toluene was detected above the method reporting limit in wells MW-1 through MW-7.
- 3. Ethylbenzene and xylenes were not measured in any of the wells except MW-2 and MW-8.
- 4. MW-2 contained ethylbenzene and xylenes above the method reporting limit; however, the concentrations were substantially below their respective New Mexico Water Quality Control Commission (NMWQCC) groundwater standards.

Mr. Stephen Weathers November 22, 2010 Page 3

5. The MW-8 sample contained benzene, toluene and xylenes at concentrations that exceeded the NMWQCC groundwater standards.

The benzene distribution for this event is shown on Figure 5. Combining the groundwater flow path shown in Figure 4 with this data establishes that the BTEX constituents in MW-8 and the ethylbenzene and xylenes in MW-2 attenuated to below their respective method reporting limits before migrating downgradient to MW-7.

All of the historical data for benzene, toluene, ethylbenzene and total xylenes are summarized in Tables 5, 6, 7, and 8 respectively. There have been no exceedances of the NMWQCC Groundwater Standards since October 2004 for MW-2 and March 2005 for MW-3. There have never been any exceedances in MW-1, MW-4, MW-5, MW-6 and MW-7.

The BTEX concentrations in MW-8 are graphed over time in Figure 6. The benzene toluene and ethylbenzene concentrations have decreased from their spring 2009 highs. The xylenes concentration has continued to increase slightly but it remains below its historic high.

The iSOC® (short for in-situ Submerged Oxygen Curtain) device that was installed in April 2007 in MW-8 to increase the dissolved oxygen in the groundwater was found to be inoperative so it was repaired. Its effectiveness will continue to be evaluated.

The next monitoring episode is scheduled for the fourth quarter of 2010. Do not hesitate to contact me if you have any questions or comments on this report.

Respectfully submitted, AMERICAN ENVIRONMENTAL CONSULTING, LLC

Muchael H. Stewart

Michael H. Stewart, P.E. Principal Engineer

MHS:tbm

TABLES

NV 11	Date	Well	Completion	Top of
Well	Installed	Depth	Interval	Sand
MW-1	3/02	91	71-91	68
MW-2	3/02	88	68-88	62
MW-3	3/02	91	71-91	61
MW-4	4/02	91	71-91	68
MW-5	4/02	89	69-89	56
MW-6	4/02	90	70-90	68
MW-7	5/02	85	65-85	59
MW-8	5/09	84	49-84	45

Table 1 – Monitoring Well Completions

Notes: Units are Feet

Hydrocarbon extraction well (MW-8) completed between approximately 80 and 100 feet

Table 2 - Measured Water Table Elevations

Contraction of the

 $\frac{1}{2} \frac{1}{2} \frac{1}$

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n}$

1 3/3/05	WW-1 4088.54 4088.53 4088.55 4088.55 4088.52 4088.54 4088.53 4088.60 4088.59 4089.19 4089.12 4089.22 4089.18 4089.34	9.07 4089.04 4089.09 4089.06 4089.11 4089.13 4088.90 4089.03 4089.06 4089.03 4089.68	VIW-3 4088.83 4088.86 4088.85 4088.85 4088.82 4088.87 4088.84 4088.90 4088.95 4088.82 4088.81 4088.84 4088.82 4089.24	WW-4 4088.63 4088.73 4088.73 4088.73 4088.70 4088.72 4088.71 4088.78 4088.78 4088.74 4088.70 4088.73 4088.71 4088.79	8.65 4088.63 4088.66 4088.65 4088.70 4088.70 4088.65 4088.65 4088.60 4088.63 4088.62 4088.73	MW-6 4088.69 4088.71 4088.70 4088.69 4088.66 4088.70 4088.68 4088.74 4088.74 4088.69 4088.66 4088.71 4088.68 4088.83	4088.04 4088.01 4088.04 4088.03 4088.08 4088.08 4087.66 4087.63 4087.68 4087.65 4087.65 4087.78
12/09/04	 4089.18	4089.03	4088.82	4088.71	4088.62	4088.68	4087.65
10/18/04	4089.22	4089.06	4088.84	4088.73	4088.63	4088.71	4087.68
6/25/04	4089.12	4089.03	4088.81	4088.70	4088.60	4088.66	4087.63
2/18/04	4089.19	4088.90	4088.82	4088.74	4088.65	4088.69	4087.66
11/20/03	4088.59	4089.13	4088.95	4088.78	4088.70	4088.74	4088.08
Well 5/1/02 9/6/02 4/28/03 6/19/03 7/17/03 8/20/03 9/22/03 10/29/03 11/20/03 2/18/04 6/25/04 10/18/04 12/09/04 3/3/05	4088.60	4089.11	4088.90	4088.78	4088.70	4088.74	4088.08
9/22/03	 4088.53	4089.06	4088.84	4088.71	4088.65	4088.68	4088.03
8/20/03	 4088.54	4089.09	4088.87	4088.72	4088.66	4088.70	4088.04
7/17/03	4088.52	4089.04	4088.82	4088.70	4088.63	4088.66	4088.01
6/19/03	4088.55	4089.07	4088.85	4088.73	4088.65	4088.69	4088.04
4/28/03	 4088.55	4089.05	4088.86	4088.73	4088.67	4088.70	
9/6/02	 4088.53	4089.03	4088.86	4088.73	4088.68	4088.71	
5/1/02	4088.54	MW-2 4089.02 4089.03 4089.05 4089	4088.83	4088.63	<u>WW-5</u> 4088.60 4088.68 4088.67 4088	4088.69	
Well	 MW-1	MW-2	<u>MW-3</u>	MW-4	MW-5	MW-6	MW-7

5	0/28/05	Well 6/3/05 9/28/05 12/12/05 3/1/	3/1/06	6/26/06	9/28/06	06 6/26/06 9/28/06 12/21/06 3/13/07 6/26/07 9/5/07 12/27/07 3/20/08 6/27/08 9/15/08	3/13/07	6/26/07	9/5/07	12/27/07	3/20/08	6/27/08	9/15/08
L													
	4089.25	4089.23	4089.23	4089.22	4089.16	VW-1 4089.26 4089.25 4089.23 4089.23 4089.22 4089.16 4089.24 4089.20 4089.21 4089.26 4089.27 4089.37 4089.36 4089.28	4089.20	4089.24	4089.26	4089.27	4089.37	4089.36	4089.28
	4089.10	4089.07	4089.08	4089.05	4089.00	MW-2 4089.10 4089.10 4089.07 4089.08 4089.05 4089.00 4089.00 4089.09 4089.05 4089.08 4089.10 4089.11 4089.22 4089.21	4089.05	4089.08	4089.10	4089.11	4089.22	4089.21	4089.14
	4088.89	VIW-3 4088.91 4088.89 4088.88 4088	4088.88	4088.85	4088.84	.88 4088.85 4088.84 4088.88 4088.85 4088.87 4088.89 4088.86 4089.01 4089.00	4088.85	4088.87	4088.89	4088.86	4089.01	4089.00	4088.92
	4088.77	MW-4 4088.79 4088.77 4088.76 4088	4088.75	4088.73	4088.73	75 4088.73 4088.73 4088.76 4088.72 4088.75 4088.77 4088.75 4088.88 4088.84	4088.72	4088.75	4088.77	4088.75	4088.88	4088.84	4088.82
	4088.67	4088.66	4088.66	4088.63	4088.62	MW-5 4088.68 4088.67 4088.66 4088.66 4088.63 4088.62 4088.62 4088.66 4088.62 4088.66 4088.66 4088.68 4088.66 4088.76 4088.76	4088.62	4088.66	4088.68	4088.66	4088.76	4088.76	4088.72
10	4088.74	MW-6 4088.75 4088.74 4088.73 4088	4088.72	4088.70	4088.66	8.72 4088.70 4088.66 4088.73 4088.70 4088.73 4088.74 4088.71 4088.84 4088.89	4088.70	4088.73	4088.74	4088.71	4088.84	4088.89	4088.77
	4087.70	4087.70	4087.70	4087.67	4087.62	MW-7 4087.71 4087.70 4087.70 4087.70 4087.67 4087.62 4087.69 4087.66 4087.71 4087.71 4087.70 4087.79 4087.81	4087.66	4087.71	4087.71	4087.70	4087.79	4087.81	4087.75

Well	12/1/08	3/11/09	5/27/09	9/24/09	12/18/09	3/25/10	Well 12/1/08 3/11/09 5/27/09 9/24/09 12/18/09 3/25/10 6/30/10 9/16/10	9/16/10
								-
MW-1		4089.37 4089.27 4089.35		4089.33	4089.37	4089.28	4089.34 4089.34	4089.34
MW-2	4089.19	4089.13			4089.25	4089.19	4089.20	4089.20
MW-3	4088.99	4088.92	4088.07	4088.98		4088.97	4088.92	4088.97
MW-4	4088.84	4088.79 4088.91	4088.91	4088.87	4088.90	4088.81	4088.85	4088.84
MW-5	MW-5 4088.77	4088.69	4088.80	4088.75	4088.79	4088.71	4088.73	4088.72
MW-6	MW-6 4088.84 4088.77	4088.77	4088.87	4088.82		4088.80	4088.78	4088.82
MW-7	4087.82	4087.76	4087.80	MW-7 4087.82 4087.76 4087.80 4087.90	4087.82	4087.75	4087.87	4087.79
Notes:	Units are feet	et -						

Blank cells: Wells not installed

	Product
Measurement	Thickness
Date	(feet)
09/06/02	5.20
04/28/03	5.65
06/19/03	4.01
07/17/03	3.93
09/22/03	3.42
10/29/03	1.42
11/20/03	0.79
06/25/04	0.03
10/18/04	3.26
12/09/04	2.71
03/03/05	0.00
06/03/05	0.12
09/28/05	1.01
12/12/05	0.00
03/01/06	0.04
06/26/06	0.03
09/28/06	0.00
12/21/06	0.28
03/13/07	0.01
06/26/07	1.22
09/05/07	0.40
12/27/07	0.03
03/20/08	0.00
06/27/08	0.00
09/15/08	0.00
12/01/08	0.33
03/11/09	0.00
08/07/09	0.00
09/24/09	0.00
12/18/09	0.00
03/25/10	0.01
06/30/10	0.00
09/16/10	0.00
Units are feet	

Table 3 – Summary of Free Phase Hydrocarbon Thickness in MW-8

La Carta N. M. S. C. Real Property of 大学で inter-調整の

				Xylenes
Well	Benzene	Toluene	Ethlbenzene	(total)
NMWQCC				
Standards	0.01	0.75	0.75	0.62
MW-1	< 0.001	< 0.002	< 0.002	< 0.004
MW-2	< 0.001	< 0.002	0.007	0.0786
MW-3	< 0.001	< 0.002	< 0.002	< 0.004
MW-4	< 0.001	< 0.002	< 0.002	< 0.004
MW-5	< 0.001	< 0.002	< 0.002	< 0.004
MW-6	< 0.001	< 0.002	< 0.002	< 0.004
MW-7	< 0.001	< 0.002	< 0.002	< 0.004
MW-8	0.653	1.07	0.165	6.37
MW-8 Dup	0.685	1.07	0.150	6.62

Table 4 – Third Quarter 2010 Groundwater Monitoring Results

Notes: Units are mg/l

States and

に

10. AND

121-22

A look for

Sec.

A Barris

Sugar St

123-201

Service Service

ない

No.

The second se

NMWQCC Standards: New Mexico Water Quality Control Commission Groundwater Standards

Bold values exceed standards

12/12/05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.561
9/28/05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
6/3/05	<0.001	<0.001	0.00332	<0.001	<0.001	<0.001		FPH
3/3/05	<0.001	<0.001	0.00167	<0.001	<0.001 <0.001	<0.001	<0.001	NS
12/9/04	<0.001	0.00342	0.006137	<0.001	<0.001	<0.001	<0.001	FPH
20/03 9/22/03 10/29/03 11/20/03 2/18/04 6/25/04 10/18/04 12/9/04	<0.001	0.0103	.00584 (<0.001	<0.001	<0.001	<0.001	FPH
6/25/04	<0.001	<0.001 0.00156	0.0173		<0.001	<0.001	<0.001	НЧЯ
2/18/04	<0.001 <0.001	<0.001	0.048 0.0280	<0.001	<0.001	<0.001	<0.001	FPH
11/20/03	<0.001	0.013 <			<0.001 <	<0.001	0.001	FPH
10/29/03	<0.001	0.001	0.044	<0.001	<0.001	<0.001	0.001	FPH
9/22/03	<0.001	0.022	0.049	<0.001	<0.001	<0.001	<0.001	FPH
8/20/03	<0.001	0.024	0.017	Y I	<0.001	<0.001	<0.001	FPH
7/17/03	<0.001	0.155	0.063	<0.001	<0.001	<0.001	<0.001	FPH
6/19/03	<0.001	0.074	0.047	<0.001	<0.001	<0.001	<0.001	Hd∃
4/28/03	<0.001	0.182	0.099	<0.001	0.005	0.003	<0.001	НdЭ
5/21/02	<0.002 0.002 <0.001 <0.001	0.145	0.061 0.176 0.099	<0.002	<0.002 <0.002 0.005 <0.001	0.002		
Well 4/24/02 5/21/02 4/28/03 6/19/03 7/17/03 8/	<0.002	MW-2 0.0255	0.061	MW-4 <0.002 <0.002 <0.001 <0.001	<0.002	MW-6 <0.002 0.002 0.003 <0.001	i I	
Well	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8

	-			_		
< 0.002 0.00093 < 0.002 < 0.002 < 0.002 0.002	<0.001 <0.002 $0.00093 <0.002 <0.002 <0.002 $	<0.001 < 0.001 < 0.001 < 0.002 0.00093 < 0.002 < 0.002 < 0.002	<0.001<0.001<0.002	<0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 < 0.0002 < 0.002 < 0.002 < 0.002	<0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 0.0023 < 0.002 < 0.002 < 0.002	<0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.0
<0.002 0.00057 <0.002 0.00066	<0.001	0.000674 < 0.001 < 0.002 0.00057 < 0.002 0.00096 0.00096	<0.0010.000674 <0.001 <0.002 0.00057 <0.002 0.0096 0.00096	0.0007 < 0.001 0.000674 < 0.001 < 0.002 0.00057 < 0.002 0.00096 0.00096	0.0006 0.0007 <0.001 0.000674 <0.001 <0.002 0.00057 <0.002 0.00096 0.00096	0.0006 0.0007 <0.001 0.000674 <0.001 <0.002 0.00057 <0.002 0.00096 0.00096
<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.001<0.002	<0.001<0.001<0.002<0.002<0.002<0.002<0.002<0.002<0.002	<0.001<0.001<0.002<0.002<0.002<0.002<0.002<0.002<0.002	<0.001<0.001<0.002<0.002<0.002<0.002<0.002<0.002<0.002	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002
<0.002 0.00053 <0.002	<0.002 0.00053 <0.002	<0.001	<0.001	<0.001 <0.001 <0.001 <0.002 0.00053 <0.002 <0.002 <0.002	<0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 0.00053 <0.002 <0.002 <0.002
<0.002 <0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002 <0.002	<0.001<0.001	<0.001<0.001	<0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	
<0.002	<0.002 <0.002 <0.002 <0.002	<0.001<0.001<0.001<0.002	<0.001<0.001<0.002	<0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
<pre>>0.002 < 0.002 < 0.002 < 0.002</pre>	<pre></pre>	<pre>////////////////////////////////////</pre>	<pre></pre>	v.0001 v.001 v.001 v.001 v.001 v.001 v.001 v.002 v.022 v.002 v.022 v.022 <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
<0.002 <0.002 <0.002 <0.002	 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.002 <0.002 <0.002 	0.000674 <0.001 <0.002 <0.001 <0.001 <0.002 <0.001 <0.001 <0.002 <0.001 <0.001 <0.002 <0.001 <0.001 <0.002	<0.001 0.000674 <0.001 <0.002 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.002	0.0007 <0.001	0.0006 0.0007 <0.001	<0.001 0.0006 0.0007 <0.001 0.000674 <0.001 <0.002 <0.001
	100.05 100.05 100.05 100.05 100.05	0.000674 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	<u>↓ </u>	<pre><0.001</pre> <pre><0.001</pre> <pre><0.001</pre> <pre><0.001</pre> <pre><0.001</pre>	<pre><0.001</pre> <pre></pre>	<pre><0.001 <0.001 <0.001 <0.001</pre>	<0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.0005 <0.001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Well	01/02/9	6/30/10 9/16/10
1-WW	<0.0003	<0.001
MW-2	<0.0003	<0.001
MW-3	<0.0003	<0.001
MW-4	<0.0003	<0.001
MW-5	<0.0003	<0.001
MW-6	<0.0003	<0.001
MW-7	<0.0003	<0.001
MW-8	0.594	0.653

Units are mg/l: Duplicate sample results were averaged together: Indicators for estimated (J) values not shown: FPH: Free phase hydrocarbons present. no sample collected: * Sample collected 8/7/09 Notes:

金属

A State

Table 5 - Summary of Laboratory Data for Benzene

12/12/05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	2.98
9/28/05	<0.001	<0.001	<0.001 <0.001 <0.001 0.000482	<0.001	<0.001	<0.001	<0.001	FPH
6/3/05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
3/3/05	<0.001	<0.001	<0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	NS
12/9/04	<0.001	0.00206	<0.001	<0.001	<0.001	<0.001		FPH
10/18/04	<0.001 <0.001 <0.001 <0.001	0.00108 0.00648 0.00206 <0.001 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
Well 4/24/02 5/21/02 4/28/03 6/19/03 7/17/03 8/20/03 10/29/03 11/20/03 2/18/04 6/25/04 10/18/04 3/3/05 6/3/05 12/12/05	<0.001	0.00108	<0.001 0.000158	<0.001	<0.001	<0.001		FPH
2/18/04	<0.001	0.017 0.00652	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
11/20/03	<0.001	0.017	0.003	<0.001	<0.001	<0.001	<0.001	FPH
10/29/03	<0.001	0.004	<0.001	<0.001	<0.001	<0.001	0.001	FPH
9/22/03	<0.001	0.051	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
8/20/03	<0.001	0.092	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
7/17/03		0.15	0.002	<0.001 <0.001	<0.001 <0.001 <0.001	<0.001	<0.001	НdЭ
6/19/03	<0.001 <0.001	0.066	0.005 <0.001	<0.001	<0.001	<0.001	<0.001	НdЭ
4/28/03	<0.001	0.092	0.005	<0.001	<0.001	<0.001	<0.001	НdЭ
5/21/02	0.003	0.833	0.004	<0.002	<0.002	<0.002	1	1
4/24/02	<0.002 0.003 <0.001	0.107	MW-3 <0.002	MW-4 <0.002 <0.002 <0.001	MW-5 <0.002 <0.002 <0.001	MW-6 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001	1	
ell	I-WM	MW-2	W-3	W-4	W-5	W-6	MW-7	MW-8

Table 6 - Summary of Laboratory Data for Toluene

6/26/07 9/5/07 12/27/07 3/20/08 6/27/08 9/15/08 12/1/08 3/11/09 5/27/09 9/24/09 12/18/09 3/25/10	02 <0.002		02 <0.002		Ň	02 <0.002	02 <0.002	1 63.4
12/18/	<pre>< <0.002</pre>		< <0.002	<u> </u>				1.11
9/24/0	<0.002	· ·	<0.002	· ·			<0.002	2.52
5/27/09	<0.002			<0.002		<0.002	<0.002	2.00*
3/11/09	<0.002	0.03 0.0073 0.03 0.0135 0.0048	<0.002	<0.002 0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.002	<0.001 <0.002 0.0013J <0.002 0.0008 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.257
812/1/08	2 < 0.002	0.0135	2 < 0.002	2 < 0.002	2 < 0.002	2 < 0.002	2 < 0.002	FPH 0.35 0.388 0.25 FPH 0.257
8 9/15/0	2 <0.002	0.03	2 <0.00	200.02	200.02	8 <0.002	200.02	0.25
8 6/27/08	2 < 0.002	0.0073	2 <0.002	2 <0.002	2 <0.002	2 0.0009	2 <0.002	0.388
73/20/0	<0.002	0.03	2 <0.00	<0.00	8 <0.002	J <0.00	2 <0.00	0.35
12/27/0	0.002	0.0102 0.0075 0.0039	0.0012	0.001	<u>2 0.000</u>	2 0.0013	2 <0.00	FPH
7 9/5/07	1 < 0.002	2 0.0075	< 0.002	1 <0.002	< 0.002	<0.002	< 0.002	FPH
7 6/26/0	1 <0.001		1 <0.001	1 <0.001				FPH
06 3/13/0	1 <0.00	0.0051	1 <0.00	1 <0.001	1 <0.00	1 <0.001	1 <0.001	0.977
6 12/21/(<0.00	7 < 0.00	<00.00	<0.00	<00.00	<0.00	<0.00	FPH
Well 3/1/06 6/26/06 9/28/06 12/21/06 3/13/07	MW-1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	MW-2 <0.001 0.00114 0.00137 <0.001 0.00512	MW-3 <0.001 <0.001 <0.001 <0.001 <0.001	MW-4 <0.001 <0.001 <0.001 <0.001 <0.001	MW-5 <0.001 <0.001 <0.001 <0.001 <0.001	AW-6 <0.001 <0.001 <0.001 <0.001 <0.001	JW-7 <0.001 <0.001 <0.001 <0.001 <0.001	MW-8 FPH FPH 0.791 FPH
6/26/0t	<0.001	0.0011	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
3/1/06	<0.001	2 < 0.001	3 <0.001	1 < 0.001	5 <0.001	5 < 0.001	7 <0.001	FPH
Well	MW-1	MW-2	MW-3	MW-4	MW-5	MW-(7-WM	MW-8

Well	6/30/10	6/30/10 9/16/10
1-WM	<0.001	<0.002
MW-2	<0.001	<0.002
MW-3	<0.001	<0.002
MW-4	<0.001	<0.002
MW-5	<0.001	<0.002
MW-6	<0.001	<0.002
MW-7	<0.001	<0.002
MW-8	1.48	1.07

Units are mg/l: Duplicate sample results were averaged together: Indicators for estimated (J) values not shown: FPH: Free phase hydrocarbons present, no sample collected: * Sample collected 8/7/09 Notes:

Sales and

A STATE OF

Sec.

Para

and the second

るにな

(Breder

9/28/05 12/12/05	<0.001 <0.001	<0.001 <0.001	,	·	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	FPH 0.928
6/3/05 9/28	 <0.001 <0.		0.00574 0.00101					FPH I
	 							NS
4 3/3/05	 01 <0.001	22 <0.001	84 0.00)1 <0.(10.001		01 <0.001	
12/9/04	<0.001	5 0.00122	2 0.00884 0.	1 <0.00	1 <0.001	<0.001	100.0> 1	
10/18/04	<0.001	0.0033	0.0069	<0.00	<0.001	<0.001		Hd∃
6/25/04	<0.001	0.0005	0.0136	<0.001	<0.001	<0.001	<0.001	
2/18/04	<0.001		0.0138	<0.001	<0.001	<0.001		FPH
11/20/03 2/18/04 6/25/04	<0.001					<0.001	<0.001	FPH
10/29/03	<0.001	0.002		·			0.001	FPH
9/22/03	<0.001	0.012	0.02	<0.001	<0.001	<0.001	<0.001	FPH
8/20/03	<0.001	0.012	0.006	<0.001	<0.001	<0.001	<0.001	FPH
7/17/03	<0.001	0.112	0.023	<0.001	<0.001	0.004	<0.001	FPH
6/19/03	<0.001	0.069	0.02	< 0.001 <	<0.001 <0.001	<0.001	<0.001	FPH
4/28/03	<0.001	0.121	0.0	<0.00	<0.00	0.002 0.002 <0.001	<0.001	FPH
5/21/02	<0.002 <0.002	0.062	0.023	<0.002	<0.002 <0.002	0.002	1	:
Well 4/24/02 5/21/02 4/28/03 6/19/03 7/17/03 8/20/0		0.013	0.023	<0.002	<0.002	0.004	1	1
Well	MW-I	MW-2	MW-3	MW-4	MW-5	9-WM	MW-7	MW-8

3/25/10				<0.002				
12/18/09	<0.002	0.0086	<0.002	<0.002	<0.002	<0.002	<0.002	0.114
5/27/09 9/24/09 12/18/09	ľ	-	ľ	<0.002	ľ	•	<0.002	
	<0.002			<0.002	·			
3/11/09	<0.002			<0.002		1		
12/1/08)	1	<0.002				
9/15/08				<0.002				l I
6/27/08	<0.002			<0.002				Ł
3/20/08	<0.002	10.0	<0.002	<0.002	<0.002	<0.002	<0.002	0.15
12/27/07 3/20/08 6/27/08 9/15/08 12/1/08 3/11/09	<0.002	0	1		<0.002			
9/5/07			1 ·	<0.002	1	(·	L .	I
6/07	<0.001	0.0024	<0.0011	<0.001 <0.001	<0.001	<0.001	<0.001	FPH
3/13/07	<0.001	<0.001 0.00120	<0.001	<0.001	<0.001	<0.001	<0.001	0.437
12/21/06	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
9/28/06	<0.001	0.0003	<0.001		<0.001	0.001	<0.001	0.239
Well 3/1/06 6/26/06 9/28/06 12/21/06 3/13/07 6/2	<0.001	<0.001		·	<0.001	<0.001	<0.001	FPH
3/1/06	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
Well	I-WM	MW-2	MW-3	MW-4	MW-5		MW-7	MW-8

									<u>e</u>
6/30/10 9/16/10	<0.002	0.007	<0.002	<0.002	<0.002	<0.002	<0.002	0.165	: mg/l: Dup
6/30/10	<0.0003	0.0062	<0.0003	< 0.0003	<0.0003	<0.0003	<0.0003	0.145	Units are mg/l:
Well	MW-1	MW-2	MW-3	MW-4	MW-5	9-MM	7-WM	MW-8	Notes:

Units are mg/l: Duplicate sample results were averaged together: Indicators for estimated (J) values not shown: FPH: Free phase hydrocarbons present, no sample collected: * Sample collected 8/7/09

が設備

a state

at the

Service of

3. BAR (A)

1988 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -

Table 2

100.00

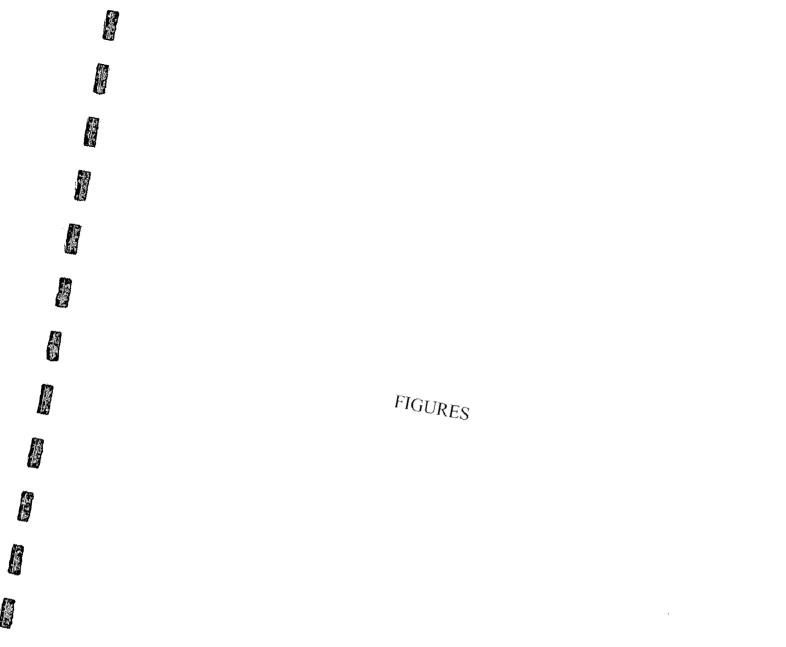
N. M. M.

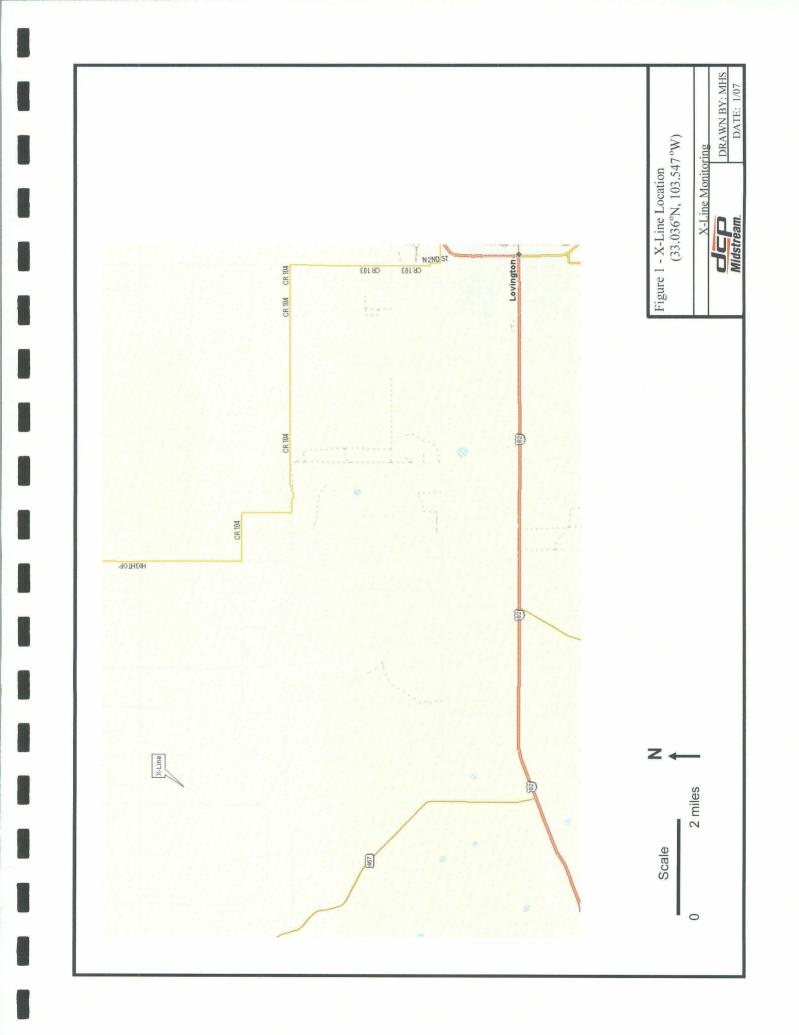
No.

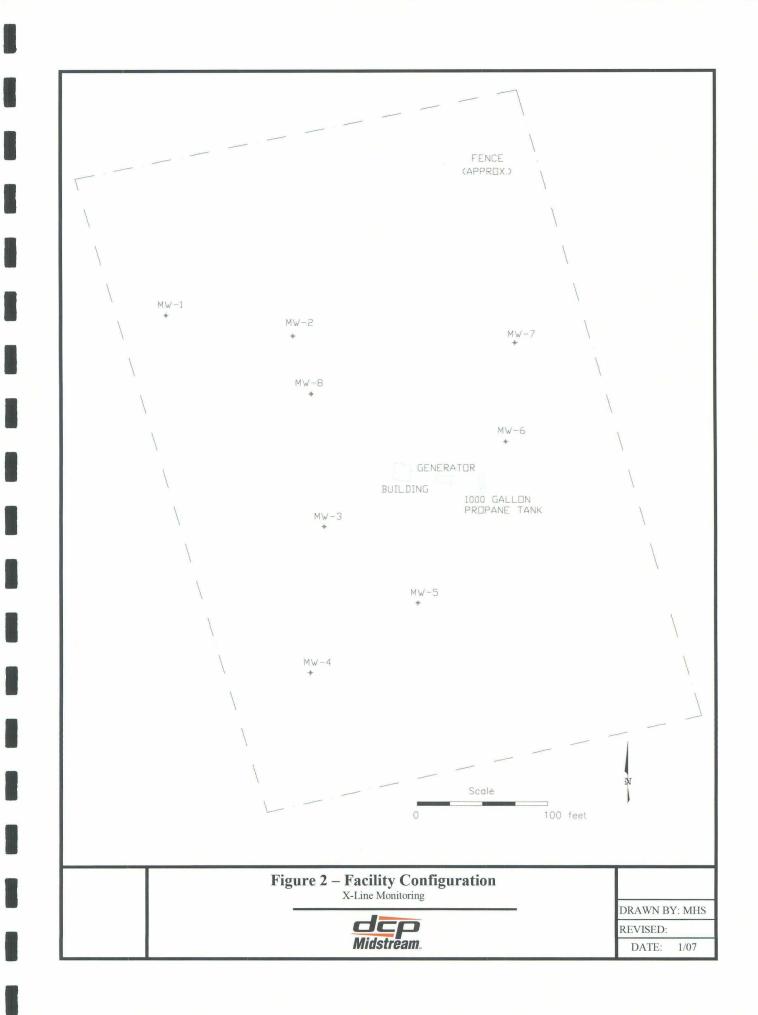
Table 7 - Summary of Laboratory Data for Ethylbenzene

12/12/05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	9.89	
9/28/05	<0.001	<0.001	0.000997	<0.001		<0.001	<0.001	FPH	
6/3/05	<0.001	<0.001	0.00173	<0.001	<0.001	<0.001	<0.001	FPH	
3/3/05	<0.001	<0.001	0.00044	<0.001	<0.001	<0.001	<0.001	NS	
12/9/04	100.0>	<0.001	<0.001	<0.001	<0.001	\ <u>'</u>	<0.001	НdЭ	
10/18/04	100.0>	0.0052	0.0015	<0.001	<0.001	<0.001	<0.001	FPH	
6/25/04 10/18/04	100.0>	0.00106	0.000118	<0.001	<0.001	<0.001	<0.001	FPH	
2/18/04	0.0514	0.00067	<0.001	<0.001	<0.001	<0.001	<0.001	FPH	
10/29/03 11/20/03 2/18/04	<0.001	0.034	0.004	<0.001	<0.001	<0.001	0.001	FPH	
10/29/03	<0.001	0.017	0.001	<0.001	<0.001	0.003	0.006	FPH	
3 9/22/03	<0.001	0.079	0.001	\vee	<0.001	<0.001	<0.001	FPH	
	<0.001	0.179	0.001	<0.001	<0.001	<0.001	<0.001	FPH	
7/17/03	<0.001	0.186	0.006 0.007	<0.001		0.004	<0.001	FPH	
6/19/03	<0.001	0.103		<0.001	0.003	<0.001	<0.001	FPH	
4/28/03	<0.001	0.133	0.039	<0.001	0.003	0.01	<0.001	FPH	
5/21/02	<0.006 <0.006 <0.001	1.27	ĺ	<0.006	<0.006	0.047	1	1	
Well 4/24/02 5/21/02 4/28/03 6/19/03 7/17/03 8/20/0	<0.006	0.38	0.189	<0.006	0.011	0.123		1	
Well	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	

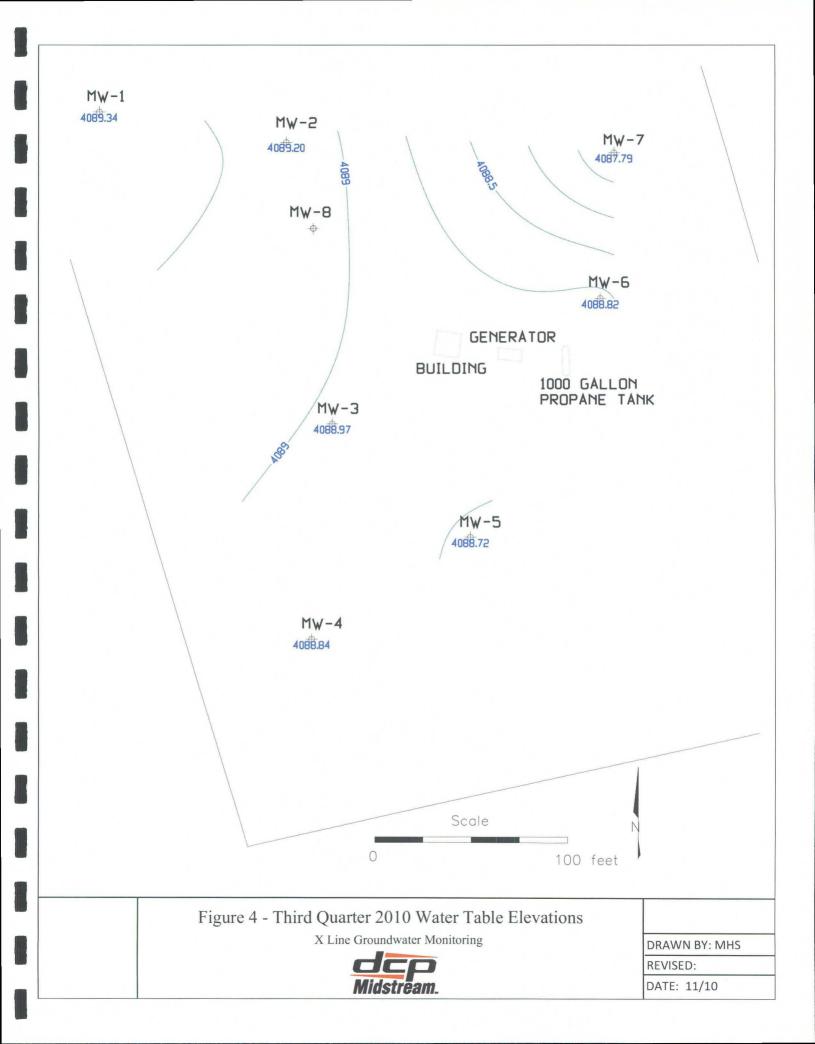
0	-+	~	+	~+	+		-+	
3/25/1(<0.004	0.0923	v	<0.004	Ň	<0.004	<0.004	2220
07 6/26/07 9/5/07 12/27/07 3/20/08 6/27/08 9/15/08 12/1/08 3/11/09 5/27/09 9/24/09 12/18/09 3/25/10	<0.006	0.0916	<0.006		<0.006		<0.006	5.24
9/24/09	ľ	0.103	<0.006	<0.006	<0.006	<0.006	<0.006	5.10
5/27/09	<0.006	0.16	<0.006	<0.006		<0.006	<0.006	4.72*
3/11/09	<0.006	0.12	<0.006	<0.006	<0.006	<0.006	<0.006	3.76
12/1/08	<0.006	0.143	<0.006	<0.006	<0.006	<0.006	<0.006	FPH
9/15/08	<0.006	0.12	<0.006	<0.006	<0.006	<0.006	<0.006	2.42
6/27/08	<0.002	0.0229	<0.002	<0.002	<0.002	<0.002	<0.002	2.80 0.388
3/20/08	<0.006	0.06	<0.006	<0.006	<0.006	<0.006	<0.006	2.80
12/27/07	0.0028	0.0051	<0.006	0.0016	<0.006	<0.006	<0.006	FPH
9/5/07	<0.004	0.0078	<0.004	<0.004	<0.004	<0.004	<0.004	FPH
6/26/07	<0.002	0.013 0.0078 0.0051 0.06 0.0229 0.12 0.143 0.12 0.16	<0.002	<0.002 <0.004 0.0016 <0.006 <0.002 <0.006 <0.006 <0.006	<0.002 < 0.004 < 0.006 < 0.006 < 0.002 < 0.006 < 0.006 < 0.006 < 0.006	<0.002	<0.002	FPH
3/13/07		2	<0.001	<0.001	<0.001	<0.001	<0.001	3.35
12/21/06	<0.001 <0.00	<0.001 0.007	<0.001	<0.001	<0.001 <0.00	<0.001	<0.001	FPH
9/28/06	<0.001	0.0014	<0.001	<0.001	<0.001	<0.001	<0.001	2.27
Well 3/1/06 6/26/06 9/28/06 12/21/06 3/13/	MW-1 <0.001 <0.001 <0.001	MW-2 <0.001 0.00125 0.0014	MW-3 <0.001 <0.001 <0.001	MW-4 < 0.001 < 0.001 < 0.001	JW-5 <0.001 <0.001 <0.001	JW-6 <0.001 <0.001 <0.001	JW-7 <0.001 <0.001 <0.001	FPH
3/1/06	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	MW-8 FPH
Well	MW-I	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8

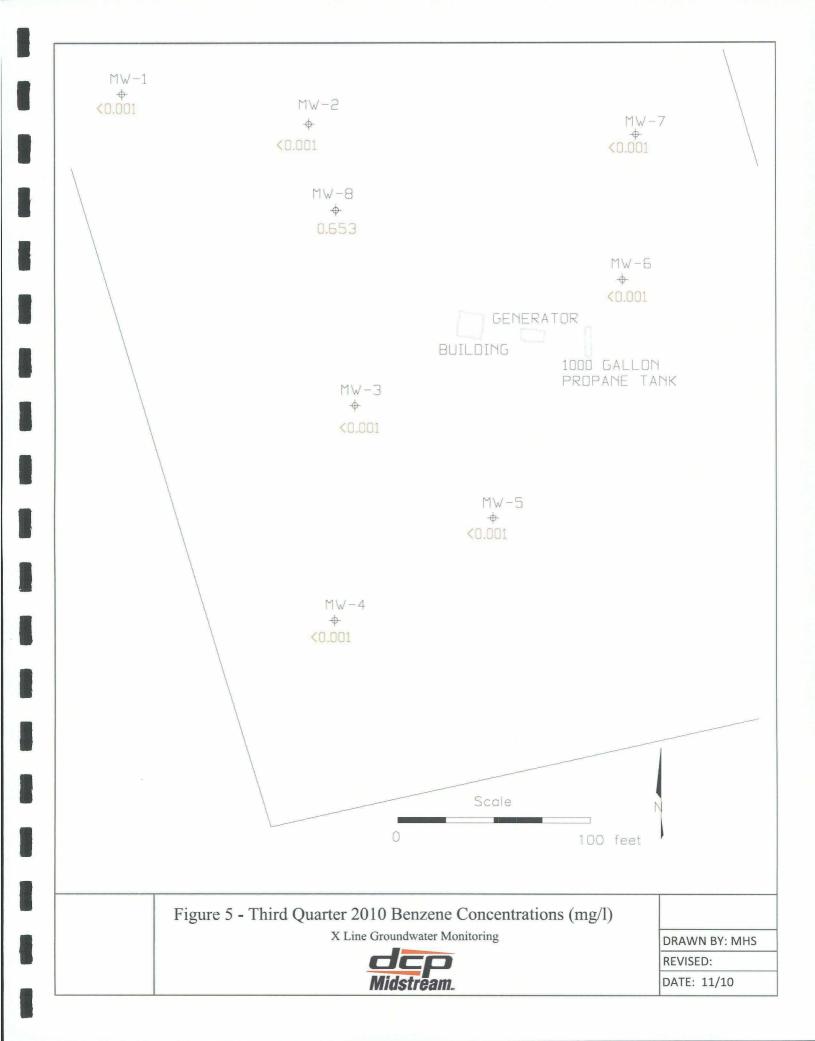

Well	6/30/10	6/30/10 9/16/10
1-WM	<0.0006	<0.004
MW-2	0.0417	0.0786
MW-3	<0.0006	<0.004
MW-4	<0.0006	<0.004
MW-5	<0.0006	<0.004
MW-6	<0.0006	<0.004
MW-7	<0.0006	<0.004
MW-8	3.49	6.37
Notes:	Units are mg/l:	mg/l: Dup

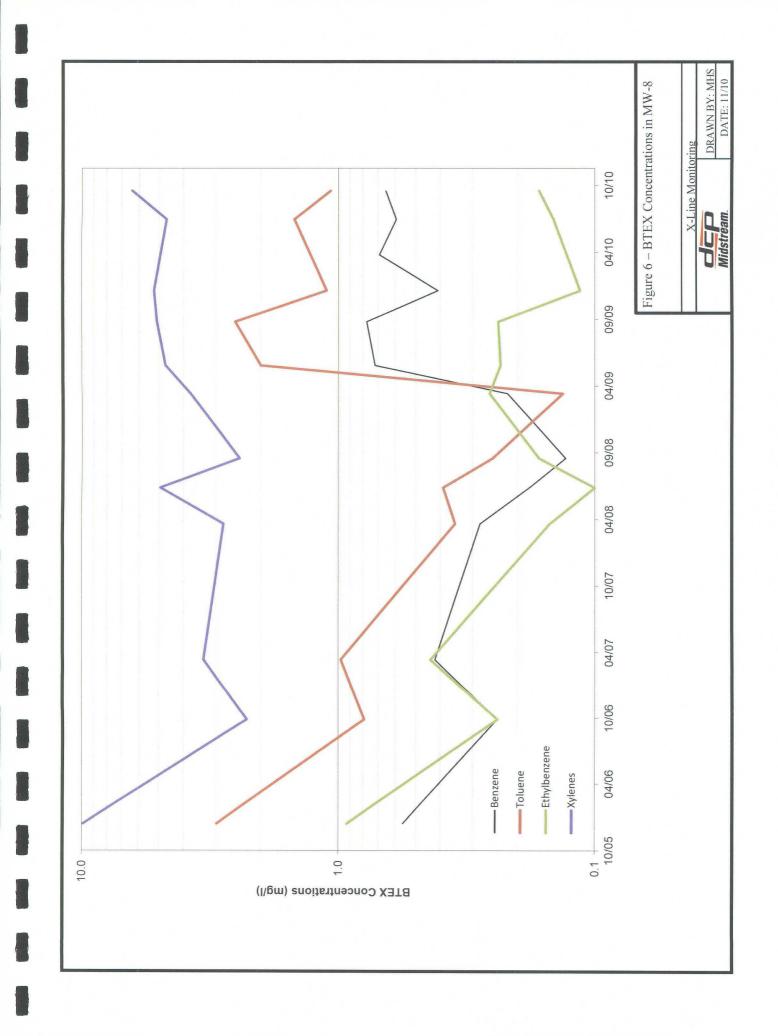

Units are mg/l: Duplicate sample results were averaged together: Indicators for estimated (J) values not shown: FPH: Free phase hydrocarbons present, no sample collected: * Sample collected 8/7/09


35.4

No. N


Table 8 - Summary of Laboratory Data for Xylenes





FIELD SAMPLING FORMS AND LABORATORY ANALYTICAL REPORT

1000 C

No. of

An and a second

Start 1

The second second

and the

A. A. A. S.

1. No. 10

1. A. A.

1.11

No.

and a state

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-1
S	SITE NAME:	X Line	(Etcheverry	Ranch)	-		9/13/2010
PR	OJECT NO.				_ :	SAMPLER:	M Stewart/N Quevedo
PURGING	G METHOD:		Hand Bai	led 🗌 Pu	mp If Pur	np, Type:	Dedicated Bailer
SAMPLIN	IG METHOD):	Dedicated	d Bailer [_Direct fr	om Dischar	ge Hose 🕞 ther:
DESCRIE	BE EQUIPME	ENT DECO	NTAMINATIO	ON METHC	D BEFOR	RE SAMPLI	ING THE WELL:
🔄 Glove	s 🗌 Alcono	x 🗌 Distill	ed Water Rin	nse 🗹C	ther:		
DEPTH T HEIGHT	O WATER:	COLUMN:	91.00 77.35 13.65 Inch	Feet		6.7	_Minimum Gallons to purge 3 well volumes
		(Water Column Height x 0.49)					
TIME	VOLUME PURGED	TEMP. ° C	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.8	19.7	0.615	7.56			
	5.6	20	0.61	7.60			
1535	7.4	19.5	0.62	7.57			
						-	
						·	
		• • • • •					1
		MW-1					
		BTEX (826	0)				
COM	MENTS:						

WELL SAMPLING DATA FORM

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-2
S	ITE NAME:	X Line (Etcheverry	Ranch)	_	DATE:	9/13/2010
PRO	DJECT NO.				_ :	SAMPLER:	M Stewart/N Quevedo
PURGING	METHOD:		🕖 Hand Bail	led 🗌 Pu	mp If Pur	np, Type:	Dedicated Bailer
SAMPLIN	G METHOD	:	Dedicated	d Bailer [Direct fro	om Dischar	ge Hose Dther:
DESCRIB	E EQUIPME	ENT DECO	NTAMINATIO	ON METHC	D BEFOR	RE SAMPLI	NG THE WELL:
🔄 Glove	s 🗌 Alcono:	∝ ⊡Distill	ed Water Rir	nse 🗌 C	ther:		
DEPTH T HEIGHT (EPTH OF W O WATER: DF WATER AMETER:	COLUMN:	88.00 77.32 10.68 Inch	Feet Feet Feet		5.2	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. ° C	COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.1	19.9	0.815	7.23			
	4.2	19.8	0.74	7.36			
1540	6.3	19.6	0.72	7.43			
						·	
			-	· ·			
					·		
		· _			<u> </u>		
CAND	LE NO.:	MW-2			L	<u> </u>	
		BTEX (826	0)		-**		<u>, , , , , , , , , , , , , , , , , , , </u>
	MENTS:	5127 (020	~/		ä. <u></u>	He statements	
001011							

S. Martin

P. State

a. Mark

ないの

.

1.11

Starts

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-3
S		X Line (Etcheverry	Ranch)	_	DATE:	9/13/2010
PR	OJECT NO.				_	SAMPLER:	M Stewart/N Quevedo
PURGING	G METHOD:		🔄 Hand Bai	led 🔲 Pu	mp If Pur	np, Type:	Dedicated Bailer
SAMPLIN	IG METHOD	lt.	Dedicated	d Bailer [Direct fro	om Dischar	ge Hose Dther:
DESCRIE	BE EQUIPME	ENT DECO	ΝΤΑΜΙΝΑΤΙΟ	RE SAMPLI	NG THE WELL:		
🔄 Glove	s 🗌 Alcono	x Distill					
DEPTH T HEIGHT	EPTH OF W O WATER: OF WATER AMETER:	COLUMN:	6.7	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)			
TIME	VOLUME PURGED	TEMP. ° C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.6	20.6	0.738	7.26		L	
	5.2	19.8	0.722	7.34			Bailed three volumes then
	7.8	19.7	0.717	7.30	 	L	sampled: driving rainstorm
			·				
	·						
				<u></u>			
	+				<u> </u>		
				- <u> </u>			
		MW-3					
		BTEX (826	0)				
COM	MENTS:			<u></u>			

No.

and the second

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-4
S	ITE NAME:	X Line ((Etcheverry	Ranch)	_	DATE:	9/13/2010
PR	OJECT NO.				_ :	SAMPLER:	M Stewart/N Quevedo
PURGING	G METHOD:		Hand Bai	led 🗌 Pu	mp If Pur	np, Type:	Dedicated Bailer
SAMPLIN	IG METHOD	:	Dedicated	d Bailer	Direct fro	om Dischar	ge Hose Dther:
DESCRIE	BE EQUIPME	ENT DECO	ΝΤΑΜΙΝΑΤΙΟ	ON METHO	D BEFOF	RE SAMPLI	NG THE WELL:
Glove	s 🗌 Alcono	x Distill	ed Water Rir	nse 🗌 C	Other:		
DEPTH T HEIGHT (EPTH OF W O WATER: OF WATER AMETER:	COLUMN:	91.00 77.49 13.51 Inch	Feet		6.6	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. ° C	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.7	21.1	0.603	7.57			
	5.4	21.1	0.594	7.57			
	8.1	19.8	0.599	7.59			
		······			ļ		
					ļ		
		: 					
<u>·</u>					<u></u>		
					<u></u>	• 	
			I	<u> </u>	L	I	
		MW-4	·····				
	LYSES: MENTS:	BTEX (826					
COM	VILTY FO.						

State of the second

	CLIENT:	DC	P Midstre	am	-	WELL ID:	MW-5	
S	ITE NAME:	X Line (Etcheverry	Ranch)	_	DATE:	9/13/2010	
PR	DJECT NO.				_	SAMPLER:	M Stewart/N Quevedo	
PURGING	G METHOD:		🖂 Hand Bai	led 🗌 Pu	mp If Pur	np, Type:	Dedicated Bailer	
SAMPLIN	IG METHOD	2	Dedicated	Direct fro	om Dischar	ge Hose Dther:		
DESCRIE	BE EQUIPME	ENT DECO	NTAMINATIO	RE SAMPLI	NG THE WELL:			
🔄 Glove								
☑ Gloves □ Alconox □ Distilled Water Rinse □ Other: TOTAL DEPTH OF WELL: 89.00 Feet DEPTH TO WATER: 77.18 Feet HEIGHT OF WATER COLUMN: 11.82 Feet WELL DIAMETER: 2.0 Inch purge 3 well volumes (Water Column Height x 0)								
TIME	VOLUME PURGED	ТЕМР. ° С	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS	
	2.3	20.6	0.678	7.44				
	4.6	19.7	0.67	7.45				
1710	7	19.7	0.67	7.45				
				-				
	-	MW-5	~~~~~	<u></u>				
	-	BTEX (8260	J)					
COM	MENTS:							

WELL SAMPLING DATA FORM

	CLIENT:	DC	P Midstre	am	-	WELL ID:	MW-6		
S	ITE NAME:	X Line	(Etcheverry	Ranch)		DATE:	9/13/2010		
PRO	DJECT NO.	18 BULL - 11			_ :	SAMPLER:	M Stewart/N Quevedo		
			,						
PURGING	METHOD:		🔄 Hand Bai	led 🗌 Pu	mp If Pur	np, Type:	Dedicated Bailer		
SAMPLIN	G METHOD):	U Dedicated	d Bailer [Direct fro	om Dischar	ge Hose Dther:		
DESCRIB	E EQUIPME	ENT DECO	NTAMINATIO	ON METHC	D BEFOR	RE SAMPLI	NG THE WELL:		
Glove:	s 🗌 Alcono	x 🗌 Distill	ed Water Rir	nse 🗌 C	ther:				
DEPTH TO HEIGHT (O WATER:	COLUMN:	90.00 77.07 12.93 Inch	Feet		6.3	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)		
TIME	VOLUME PURGED	TEMP. [.] ° C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
	2.7	21.1	0.582	7.55					
	5.4	20.6	0.61	7.43					
1620	8.1	20.2	0.58	7.65					
			·						
					•				
		-		, ,					
						-			
							· · · · · · · · · · · · · · · · · · ·		
· · · · ·									
	LE NO.:	<u>MW-6</u>							
	ANALYSES: BTEX (8260)								
COM	MENTS:								

· ·

A COLORADO	
A DECEMBER OF	

ß

1.452

WELL SAMPLING DATA FORM

CLIENT: DCP Midstream			_	WELL ID:	MW-7		
S	SITE NAME: X Line (Etcheverry Ranch)					DATE:	9/13/2010
PROJECT NO			;	SAMPLER:	M Stewart/N Quevedo		
PURGINO	G METHOD:		Hand Bai	led 🗌 Pu	mp If Pur	mp, Type:	Dedicated Bailer
SAMPLIN	IG METHOD):	Dedicate	d Bailer	Direct fro	om Dischar	ge Hose Dther:
DESCRIB	BE EQUIPME	ENT DECO	NTAMINATIO	ON METHC	D BEFOR	RE SAMPLI	NG THE WELL:
🔄 Glove	s 🗌 Alcono:	x Distill	ed Water Rii	nse 🗌 O	ther:		
TOTAL DEPTH OF WELL: 85.00 Feet DEPTH TO WATER: 76.64 Feet HEIGHT OF WATER COLUMN: 8.36 Feet WELL DIAMETER: 2.0 Inch purge 3 well volumes (Water Column Height x 0.49)							
TIME	VOLUME PURGED	TEMP. ° C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.7	22.7	0.65	7.57			
	5.4	21.7	0.63	7.61			
1620	8.1	20.0	0.62	7.59			
SAMP	LE NO.:	MW-7			۱ <u>ــــــــــ</u> ا	.	L
ANAL	YSES:	BTEX (826	0)				
COMM	COMMENTS: Collected sample for matrix-spike/					ke duplicate	evaluation

義志記 and the second 「 A BEAR 1.2.2 2.4 gr 5 2 8 S -物料

242×2

<u>. 898.3</u>

WELL SAMPLING DATA FORM

	CLIENT:	DCP Midstream				WELL ID:	MW-8
S	ITE NAME:	X Line (Etcheverry Ranch)				DATE:	.9/13/2010
PR	OJECT NO.					SAMPLER:	M Stewart/N Quevedo
PURGING	G METHOD:		⊡ Hand Bai	led 🗌 Pur	mp If Pun	np, Type:	
SAMPLIN	IG METHOD):	🗹 Disposab	le Bailer	Direct f	rom Discha	rge Hose Other:
DESCRIE		ENT DECO		ON METHO	D BEFOF	RE SAMPLI	NG THE WELL:
⊡ Glove	s 🗌 Alcono	x 🗌 Distill	ed Water Rir	nse 🗌 O	ther:		
DEPTH T HEIGHT (EPTH OF W O WATER: OF WATER AMETER:	COLUMN:	84.00 77.21 6.79 Inch	Feet		13.3	Minimum Gallons to purge 3 well volumes (Water Column Height x 1.96)
TIME	VOLUME PURGED	TEMP. ° C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
[340psi
							2200psi
ЕЕ	ailed Down	·					0.5 gallons
						· · · · · · · · · · · · · · · · · · · ·	
							·
				····			
							· · · · · · · · · · · · · · · · · · ·
L							
SAMF	PLE NO.:	MW-8					
ANAI	YSES:	BTEX (826	0)				
COMI	MENTS:	Collected c	luplicate sam	nple			·

1.7. Januar 1. 1. S. J. Barton

1.000 A.V.

3 acted

1. 20 Mar

1.1

24.22

Sec.

Technical Report for

DCP Midstream, LP

AECCOL: Xline Etcheverry Ranch Proj#400228028

GN00

Accutest Job Number: D17402

Sampling Date: 09/13/10

Report to:

American Environmental Consulting, LLC

mstewart@aecdenver.com

ATTN: Michael Stewart

Total number of pages in report: 24

Jesse P. Smith

Jesse L. Smith Laboratory Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Amanda Kissell 303-425-6021

Certifications: CO. ID. NE. NM. ND (R-027) (PW) UT (NELAP CO00049) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Mountain States • 4036 Youngfield St. • Wheat Ridge. CO 80033-3862 • tel: 303-425-6021 • fax: 303-425-6854 • http://www.accutest.com

e-Hardcopy 2.0 Automated Report

09/24/10

Table of Contents

¢₽,

P

int wind

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	5
3.1: D17402-1: MW1	6
3.2; D17402-2: MW2	7
3.3: D17402-3: MW3	8
3.5: D17402-5: MW5	10
3.6: D17402-6: MW6	11
3.7; D17402-7: MW7	12
3.8; D17402-8: MW8	13
3.9; D17402-9: DUP	14
3.10: D17402-10: TRIP	15
Section 4: Misc. Forms	
4.1: Chain of Custody	17
Section 5: GC/MS Volatiles - QC Data Summaries	
5.1: Method Blank Summary	
5.2: Blank Spike Summary	21
5.3: Matrix Spike/Matrix Spike Duplicate Summary	23

Sample Summary

DCP Midstream, LP

in the second se

Ne.

語言語を

調査を

and the second

の調理の

Í

開きた

Job No: D17402

AECCOL: Xline Etcheverry Ranch Proj#400228028 Project No: GN00

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
D17402-1	09/13/10	15:35 SW	09/15/10	AQ	Ground Water	MW1
D17402-2	09/13/10	15:40 SW	09/15/10	AQ	Ground Water	MW2
D17402-3	09/13/10	17:50 SW	09/15/10	AQ	Ground Water	MW3
D17402-4	09/13/10	17:05 SW	09/15/10	AQ	Ground Water	MW4
D17402-5	09/13/10	17:10 SW	09/15/10	AQ	Ground Water	MW5
D17402-6	09/13/10	16:20 SW	09/15/10	AQ	Ground Water	MW6
D17402-7	09/13/10	16:20 SW	09/15/10	AQ	Ground Water	MW7
D17402-7D	09/13/10	16:20 SW	09/15/10	AQ	Water Dup/MSD	MW7
D17402-7M	09/13/10	16:20 SW	09/15/10	AQ	Water Matrix Spike	MW7
D17402-8	09/13/10	17:50 SW	09/15/10	AQ	Ground Water	MW8
D17402-9	09/13/10	00:00 SW	09/15/10	AQ	Ground Water	DUP
D17402-10	09/13/10	00:00 SW	09/15/10	AQ	Trip Blank Water	TRIP

.

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	DCP Midstream, LP	Job No	D17402
Site:	AECCOL: Xline Etcheverry Ranch Proj#400228028	Report Dat	9/22/2010 2:18:14 PM

On 09/15/2010, nine (9) samples. 1 Trip Blank, and 0 Field Blanks were received at Accutest Mountain States (AMS) at a temperature of 5.4°C. The samples were intact and properly preserved, unless noted below. An AMS Job Number of D17402 was assigned to the project. The lab sample IDs, client sample IDs, and dates of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

	Matrix AQ	Batch ID: V3V387	
12		n the recommended method holding time.	

All method blanks for this batch meet method specific criteria.

Samples D17392-2MS and D17392-2MSD were used as the QC samples indicated.

Matrix AQ	Batch ID:	V5V568
-----------	-----------	--------

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Samples D17402-7MS and D17402-7MSD were used as the QC samples indicated.

AMS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting AMS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

AMS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by AMS indicated via signature on the report cover.

Page 1 of 1

Wednesday, September 22, 2010

的調整

N. S. S.

公司

CORTAN.

10

Sample Results

Report of Analysis

Accutest LabLink@1894 06:39 24-Sep-2010

	Page 1 of 1						
Client Sam Lab Sampl Matrix: Method: Project:	e ID: D1 A(SV	W1 7402-1 2 - Ground Wa V846 8260B ECCOL: Xline	ter Etcheverry Ran	ch Proj#400	Date Sampled Date Received Percent Solids 228028	: 09/15/10	
Run #1 Run #2	File ID 5V10315.I	DF) 1	Analyzed 09/16/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V5V568
Run #1 Run #2	Purge Volt 5.0 ml	ume					
Purgeable	Aromatics						
CAS No.	Compoun	d	Result	RL	MDL Units	Q	
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenz m,p-Xyler		ND ND ND ND	$\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0040 \\ 0.0040 \end{array}$	0.00030 mg/l 0.0010 mg/l 0.00030 mg/l 0.00060 mg/l		
95-47-6 CAS No.	o-Xylene Surrogate	e Recoveries	ND Run# 1	0.0020 Run# 2	0.00060 mg/l Limits		
17060-07-0 2037-26-5 460-00-4	Toluene-E	proethane-D4 08 luorobenzene	99% 88% 88%		63-130% 68-130% 61-130%		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

5.1 B

and a second

- UNION

語る

A COMPANY

Contract

i de la composition de la comp

Sarah Sarah

が思い

大学を

100

		Repo	ort of An	alysis		Page 1 of		
Client Sam Lab Sample Matrix: Method: Project:	e ID: D17402-2 AQ - Ground Wa SW846 8260B		er Date Sampled: 09/13/10 Date Received: 09/15/10 Percent Solids: n/a Ctcheverry Ranch Proj#400228028					
Run #1 Run #2	File ID DF 5V10316.D 1	Analyzed 09/16/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V5V568		
Run #1 Run #2	Purge Volume 5.0 ml							
Purgeable A	Aromatics							
CAS No.	Compound	Result	RL	MDL Units	Q			
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene m,p-Xylene	ND ND 0.0070 0.0568	$\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0040 \end{array}$	0.00030 mg/l 0.0010 mg/l 0.00030 mg/l 0.00060 mg/l				
95-47-6 CAS No.	o-Xylene Surrogate Recoveries	0.0218 Run# 1	0.0020 Run# 2	0.00060 mg/l Limits				
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	113% 92% 99%	Kun# 2	63-130% 68-130% 61-130%				

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.2 []]

	Report of Analysis								
Client Sam Lab Sample Matrix: Method: Project:		SW84	Ground Wate 6 8260B	er Etcheverry Ran	ch Proj#400	Date Sa Date R Percent 228028	eceived	: 09/15/10	
Run #1 Run #2	File ID 5V1031	7.D	DF 1	Analyzed 09/16/10	By DC	Prep Da n/a	te	Prep Batch n/a	Analytical Batch V5V568
Run #1 Run #2	Purge V 5.0 ml	/olume	;						
Purgeable A	Aromatic	cs							
CAS No.	Compo	ound		Result	RL	MDL	Units	Q	
71-43-2 108-88-3 100-41-4 95-47-6	Benzen Toluen Ethylbo m,p-Xy o-Xyle	e enzene ylene		ND ND ND ND ND	0.0010 0.0020 0.0020 0.0040 0.0020	0.00030 0.0010 0.00030 0.00060 0.00060	mg/l mg/l mg/l		
CAS No.	Surrog	gate Re	coveries	Run# 1	Run# 2	Limit	ts		
17060-07-0 2037-26-5 460-00-4	Toluen	e-D8	ethane-D4 obenzene	104% 91% 93%		63-13 68-13 61-13	80%		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

e 1 of 1

100 A 100 A

La de la constante

10-10-10-1 10-10-10-1

and the second

ALC: NO.

and the set

		Repo	rt of An	alysis		Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:			nch Proj#400	Date Sampled Date Received Percent Solids 228028	l: 09/15/10	
Run #1 Run #2	File ID DF 5V10318.D 1	Analyzed 09/16/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V5V568
Run #1 Run #2	Purge Volume 5.0 ml					
Purgeable .	Aromatics					
CAS No.	Compound	Result	RL	MDL Units	Q	
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene m,p-Xylene	ND ND ND ND	$\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0040 \end{array}$	0.00030 mg/l 0.0010 mg/l 0.00030 mg/l 0.00060 mg/l		
95-47-6 CAS No.	o-Xylene Surrogate Recoveries	ND Run# 1	0.0020 Run# 2	0.00060 mg/l		
17060-07-0 2037-26-5 460-00-4	-	110% 93% 92%		63-130% 68-130% 61-130%		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

(---

CO

No. of Control of Cont 設備や A. S.

- And a state of the state of t

B = Indicates analyte found in associated method blank

	Page 1 of 1							
	thod: SW846 8260B Percent Solids: n/a							
Run #1 Run #2	File ID DF 5V10321.D 1	Analyzed 09/16/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V5V568		
Run #1 Run #2	Purge Volume 5.0 ml							
Purgeable	Aromatics							
CAS No.	Compound	Result	RL	MDL Units	Q			
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene m. p. Yylong	ND ND ND ND	0.0010 0.0020 0.0020 0.0040	0.00030 mg/l 0.0010 mg/l 0.00030 mg/l 0.00060 mg/l				
95-47-6	m,p-Xylene o-Xylene	ND	0.0040 0.0020	0.00060 mg/l				
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits				
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	97% 85% 83%		63-130% 68-130% 61-130%				

ND = Not detectedMDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Services.

A Carlot A

2.2.2

2.12

Acres 1

1.140

All and a second

	Report of Analysis									
Client Sam Lab Sampl Matrix: Method: Project:	e ID: D17402-6 AQ - Ground SW846 8260B		nch Proj#400	Date Sampled Date Received Percent Solids 228028	: 09/15/10					
Run #1 Run #2	File IDDF5V10322.DI	Analyzed 09/16/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V5V568				
Run #1 Run #2	Purge Volume 5.0 ml									
Purgeable .	Aromatics									
CAS No.	Compound	Result	RL	MDL Units	Q					
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene m,p-Xylene	ND ND ND ND	0.0010 0.0020 0.0020 0.0040	0.00030 mg/l 0.0010 mg/l 0.00030 mg/l 0.00060 mg/l						
95-47-6	o-Xylene	ND	0.0020	0.00060 mg/l						
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits						
17060-07-0 2037-26-5 460-00-4	I ,2-Dichloroethane-D Toluene-D8 4-Bromofluorobenzen	88%		63-130% 68-130% 61-130%						

ND = Not detectedMDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

3.6

 (\mathcal{F})

B = Indicates analyte found in associated method blank

	Page 1 of 1					
Client Sam Lab Sampl Matrix: Method: Project:	le ID: D17402-7 AQ - Ground SW846 8260		nch Proj#400	Date Sampled Date Received Percent Solids 228028	: 09/15/10	
Run #1 Run #2	File ID DF 5V10312.D 1	Analyzed 09/16/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V5V568
Run #1 Run #2	Purge Volume 5.0 ml					
Purgeable	Aromatics					
CAS No.	Compound	Result	RL	MDL Units	Q	
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene m,p-Xylene	ND ND ND ND	0.0010 0.0020 0.0020 0.0040	0.00030 mg/l 0.0010 mg/l 0.00030 mg/l 0.00060 mg/l		
95-47-6 1330-20-7	o-Xylene Xylene (total)	ND ND	0.0020	0.00060 mg/l 0.00060 mg/l		
CAS No.	Surrogate Recover	es Run# 1	Run# 2	Limits		
17060-07-0 2037-26-5 460-00-4	1.2-Dichloroethane- Toluene-D8 4-Bromofluorobenze	91%		63-130% 68-130% 61-130%		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

And the second sec

A THE PARTY OF

ALC: NOTE:

市政の

And the second

	Report of Analysis									
Client Sam Lab Sample Matrix: Method: Project:	e ID: D17402-8 AQ - Grou SW846 82		Ranch Proj#							
Run #1 Run #2		DF Analyz 0 09/16/1	•	Prep D n/a	Date	Prep Batch n/a	Analytical Batch V5V568			
Run #1 Run #2	Purge Volume 5.0 ml									
Purgeable A	Aromatics									
CAS No.	Compound	Res	alt RL	MDL	Units	Q				
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene m,p-Xylene	0.65 1.07 0.16 4.58	0.04 5 0.04	0 0.020 0 0.0060	mg/l mg/l mg/l mg/l					
95-47-6	o-Xylene	1.79			mg/l					
CAS No.	Surrogate Recove	eries Run	#1 Run	#2 Lim	its					
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethan Toluene-D8 4-Bromofluoroben	85%)	68-1	30% 30% 30%					

ND = Not detectedMDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

3.8

State of the

B = Indicates analyte found in associated method blank

	Report of Analysis									
Client Samp Lab Sample Matrix: Method: Project:			ach Proj#400	Date Sam Date Rece Percent S 228028	eived: 09/15/10					
Run #1 Run #2	File ID DF 5V10324.D 20	Analyzed 09/16/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V5V568				
Run #1 Run #2	Purge Volume 5.0 ml									
Purgeable A	Aromatics									
CAS No.	Compound	Result	RL	MDL U	nits Q					
71-43-2 108-88-3 100-41-4 95-47-6	Benzene Toluene Ethylbenzene m,p-Xylene o Xylene	$\begin{array}{c} 0.685 \\ 1.07 \\ 0.150 \\ 4.72 \\ 1.00 \end{array}$	$\begin{array}{c} 0.020 \\ 0.040 \\ 0.040 \\ 0.080 \\ 0.040 \end{array}$	0.020 m 0.0060 m 0.012 m	g/l g/l g/l g/l					
95-47-0 CAS No.	o-Xylene Surrogate Recoveries	1.90 Run# 1	0.040 Run# 2	0.012 m Limits	ıg/l					
17060-07-0 2037-26-5 460-00-4	l ,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	88% 96% 116%		63-1309 68-1309 61-1309	6					

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Non-

1797 E.V.S

A State State

a state

うたい

K

the second

The second se

14 C

144

Constant of

AND A

the second

An loss of h

	Page 1 of 1					
Client Sam Lab Sample Matrix: Method: Project:	e ID: D17402-10 AQ - Trip Blanl SW846 8260B	k Water e Etcheverry Ran	nch Proj#400	Date Sampled Date Received Percent Solids 228028		
Run #1 Run #2	File ID DF 3V07155.D 1	Analyzed 09/17/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V3V387
Run #1 Run #2	Purge Volume 5.0 ml	<u> </u>				
Purgeable A	Aromatics					
CAS No.	Compound	Result	RL	MDL Units	Q	
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene m,p-Xylene	ND ND ND ND	0.0010 0.0020 0.0020 0.0040	0.00030 mg/l 0.0010 mg/l 0.00030 mg/l 0.00060 mg/l		
95-47-6 CAS No.	o-Xylene Surrogate Recoveries	ND Run# 1	0.0020 Run# 2	0.00060 mg/l Limits		
17060-07-0 2037-26-5	1,2-Dichloroethane-D4 Toluene-D8	91% 93%	Kull# Z	63-130% 68-130%		

85%

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

4-Bromofluorobenzene

460-00-4

J = Indicates an estimated value

61 - 130%

N = Indicates presumptive evidence of a compound

3.10

B = Indicates analyte found in associated method blank

are set

l

ACCUTES

D17402

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

D17402

CHAIN OF CUSTODY

Fresh Ponds Corporate Village, Building B 2235 Route 130, Dayton, NJ 08810 732-329-0200 FAX: 732-329-3499/3480

Accutest Job #: 400228028 Accutest Quote #: -

4.1

.

Client Information		17 Jan 18 1	Facil	ty Inform	ation	2	- A	1		- NG 825 (94	, Age	Anal	ytical Info	mation		
DCP Midstream			erican Envi	ronment	Consul	ting,	LL	2							ļ	
Name Project Name							1									
370 Seventeenth Street, Su	ite 2500	Location		Xline												
Address Denver CO	80202	Location	Etcł	everry l	Ranch					».	0 < 0			1 1		
City State	Zip	Project/PO #									sm/cm					
Stephen Weathers			GN00								1 3		ļ			
Send Report to: Phone #: 303.605.1718		FAX #:							I	8260B						
		Collection			,	De.		rvati		82(0 TEX		l			
	<u> </u>		Sampled		# of	ΓT	_		_	втех	15		1			
Field ID / Point of Collection	Date	Time	By	Matrix	bottles	Ϋ́	NaOH	HOCH	None	B1)	
MW-1	9/13	1535	ms	GW	3	X				х						01
MW-2	9/13	1540	NQ	GW	3	x		T	\top	Х						02
MW-3	9/13	1750	NQ	GW	3	x	T	Τ	Τ	X						03
MW-4	9/13	1705	тź	GW	3	x			T	х						04
MW-5	913	1710	nq	GW	3	x				х						05
MW-6	9/13	1620	nq	GW	3	x				х			1			66
MW-7	9/13	162 6	ms	GW	3	X		T		Х						07
MW-8	9/13	1750	MS	GW	3	X		T		х			[08
DUP	9113		\langle	GW	3	x				Х						01
MW-7 MS/MSD	9/13	1620	45	GW	6	x					X					07asise
TRIP	BY	LaB		GW	3	X				x						10
Turnaround Information	1.00			- in -	Data	Deliv	eral	ole (r	form	ation		an an		Commer	nts / Rem	
21 Day Standard	Approved		NJ Red						rcial '	A"						
Gacabpo	yter :	7/15/10	2:15p	m Ede	5	.4	°C.									

D17402: Chain of Custody Page 1 of 1

Î

Section 5

an the second

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: Account: Project:	D17402 DCPMCODN I AECCOL: Xlin		lstream, LP /erry Ranch Proj	j#4002280)28		Ū
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V5V568-MB1	5V10310.D	1	09/16/10	DC	n/a	n/a	V5V568

The QC reported here applies to the following samples:

Method: SW846 8260B

Page 1 of 1

5.1.1 J

D17402-1, D17402-2, D17402-3, D17402-4, D17402-5, D17402-6, D17402-7, D17402-8, D17402-9

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	2.0	0.30	ug/l
108-88-3	Toluene	ND	2.0	1.0	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.60	ug/l
	m,p-Xylene	ND	4.0	0.60	ug/l
95-47-6	o-Xylene	ND	2.0	0.60	ug/l
CAS No.	Surrogate Recoveries		Limi	ts	
17060-07-0	1,2-Dichloroethane-D4	93%	63-13	30%	
2037-26-5	Toluene-D8	87%	68-13	80%	
460-00-4	4-Bromofluorobenzene	85%	61-13	80%	

A Labor Ĵ 観楽 Í Î

Method B Job Number: Account: Project:	lank Summa D17402 DCPMCODN I AECCOL: Xlir	DCP Mi	dstream, LP verry Ranch Proj	i#4002280	028		Page 1 of 1
Sample V3V387-MB1	File ID 3V07153.D	DF 1	Analyzed 09/17/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V3V387
The QC repor	ted here applies	to the fo	bllowing sample	s:		Method: SW84	6 8260B

,

a see sade

B

1.2

Î

ĺ

D17402-10

.

nd Result	RL MDL Units Q
ND	1.0 0.30 ug/l
zene ND	2.0 0.30 ug/l
ND	2.0 1.0 ug/l
ene ND	4.0 0.60 ug/l
e ND	2.0 0.60 ug/1
	_
te Recoveries	Limits
loroethane-D4 89%	63-130%
D8 92%	68-130%
fluorobenzene 84%	61-130%
ene ND ND ND te Recoveries loroethane-D4 89% D8 92%	2.0 0.30 ug/l 2.0 1.0 ug/l 4.0 0.60 ug/l 2.0 0.60 ug/l . Limits 63-130% 68-130%

Blank Spike Summary

e Summary	7					Page 1 of 1
D17402						-
DCPMCODN I	DCP Mid	lstream, LP				
AECCOL: Xlin	e Etchev	erry Ranch Proj	#4002280)28		
.		· · · · · · · · · · · · · · · · · · ·				
File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
5V10311.D	1	09/16/10	DC	n/a	n/a	V5V568
	D17402 DCPMCODN I AECCOL: Xlin File ID	DCPMCODN DCP Mid AECCOL: Xline Etchev File ID DF	D17402 DCPMCODN DCP Midstream, LP AECCOL: Xline Etcheverry Ranch Proj File ID DF Analyzed	D17402 DCPMCODN DCP Midstream, LP AECCOL: Xline Etcheverry Ranch Proj#4002280 File ID DF Analyzed By	D17402 DCPMCODN DCP Midstream, LP AECCOL: Xline Etcheverry Ranch Proj#400228028 File ID DF Analyzed By Prep Date	D17402 DCPMCODN DCP Midstream, LP AECCOL: Xline Etcheverry Ranch Proj#400228028 File ID DF Analyzed By Prep Date Prep Batch

The QC reported here applies to the following samples:

Method: SW846 8260B

D17402-1, D17402-2, D17402-3, D17402-4, D17402-5, D17402-6, D17402-7, D17402-8, D17402-9

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	50	47.4	95	70-130
100-41-4	Ethylbenzene	50	50.0	100	70-130
108-88-3	Toluene	50	48.4	97	70-140
1330-20-7	Xylene (total)	100	91.6	92	55-134
	m,p-Xylene	50	47.2	94	55-134
95-47-6	o-Xylene	50	44.4	89	55-134
CAS No.	Surrogate Recoveries	BSP	Lir	nits	
17060-07-0	1,2-Dichloroethane-D4	87%	63-	130%	
2037-26-5	Toluene-D8	85%	68-	130%	
460-00-4	4-Bromofluorobenzene	94%	61-	130%	

5.2.1

. Justice Î No. of Street, Ì Î 100 M E. S. A

Blank Spike Summary

Blank Spil Job Number: Account: Project:	ce Summary D17402 DCPMCODN I AECCOL: Xlin	Page 1 of 1					
Sample V3V387-BS1	File ID 3V07154.D	DF I	Anałyzed 09/17/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V3V387
The QC repor	ted here applies	to the fo	llowing samples	s:		Method: SW84	6 8260B

D17402-10

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	50	49.7	99	70-130
100-41-4	Ethylbenzene	50	53.3	107	70-130
108-88-3	Toluene	50	51.3	103	70-140
	m,p-Xylene	50	46.6	93	55-134
95-47-6	o-Xylene	50	47.2	94	55-134
CAS No.	Surrogate Recoveries	BSP	Lii	nits	
17060-07-0	1,2-Dichloroethane-D4	85%	63	-130%	
2037-26-5	Toluene-D8	91%	68	-130%	
460-00-4	4-Bromofluorobenzene	93%	61	130%	

(**1**,2.2 **b**)

ľ

Ì

Í

P

Ì

I

Í

Ĩ

Matrix Spike/Matrix Spike Duplicate Summary Job Number: D17402

N. MARK

C. L. A.

Î

A

Account:	DCPMCODN DCP Midstream, LP
Project:	AECCOL: Xline Etcheverry Ranch Proj#400228028

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
D17402-7MS	5V10313.D	1	09/16/10	DC	n/a	n/a	V5V568
D17402-7MSD	5V10314.D	1	09/16/10	DC	n/a	n/a	V5V568
D17402-7	5V10312.D	1	09/16/10	DC	n/a	n/a	V5V568

The QC reported here applies to the following samples:

Method: SW846 8260B

D17402-1, D17402-2, D17402-3, D17402-4, D17402-5, D17402-6, D17402-7, D17402-8, D17402-9

CAS No.	Compound	D17402-7 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	50	51.2	102	50.3	101	2	59-132/30
100-41-4	Ethylbenzene	ND	50	53.5	107	52.9	106	1	68-130/30
108-88-3	Toluene	ND	50	53.1	106	51.7	103	3	56-142/30
1330-20-7	Xylene (total)	ND	100	99.3	99	97.3	97	2	36-146/30
	m,p-Xylene	ND	50	50.9	102	49.8	100	2	36-146/30
95-47-6	o-Xylene	ND	50	48.4	97	47.5	95	2	36-146/30
CAS No.	Surrogate Recoveries	MS	MSD	DI	7402-7	Limits			
17060-07-0	1,2-Dichloroethane-D4	92%	92%	979	%	63-1309	%		
2037-26-5	Toluene-D8	86%	84%	919	%	68-1309	%		
460-00-4	4-Bromofluorobenzene	98%	95%	919	%	61-1309	%		

Page 1 of 1

5.3.1 G

Account: Project:	DCPMCODN DCP MAECCOL: Xline Etc			j#400228	8028						
Sample	File ID DF	Anal		By		p Date	Prep I	Batch		cal Batch	
D17392-2M		09/17		DC	n/a	•	n/a		V3V387		
D17392-2M		09/17		DC	n/a		n/a		V3V387		
D17392-2	3V07156.D 1	. 09/17	/10	DC	n/a		n/a		V3V387		
The QC rej	ported here applies to the	e following s	ample	es:	-		Method:	SW846	8260B	L	
D17402-10											
		D1739	2-2	Spike	MS	MS	MSD	MSD		Limits	
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD	
71-43-2	Benzene	ND		50	53.7	107	53.9	108	0	59-132/30	
100-41-4	Ethylbenzene	ND		50	55.1	110	55.5	111	1	68-130/30	
108-88-3	Toluene	ND		50	53.4	107	53.4	107	0	56-142/30	
	m,p-Xylene	ND		50	47.4	95	47.8	96	1	36-146/30	
95-47-6	o-Xylene	ND		50	47.2	-94	48.2	96	2	36-146/30	
		MS		MSD	D	7392-2	Limits	÷			
CAS No.	Surrogate Recoveries	1016									
CAS No. 17060-07-0	1,2-Dichloroethane-D4	88%		90%	90	%	63-130 ⁰	%			
	Ū			90% 90%	90 92		63-130 68-130				

ß

Ũ