GW-175

4th QTR 2010 GW Monitoring Results

DATE: 02.09.11

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 *FAX*

RECEIVED OCD

2011 FEB -9 A 11: 34

February 8, 2011

Mr. Leonard Lowe Environmental Engineer New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 4th Quarter 2010 Groundwater Monitoring Results DCP Hobbs Gas Plant (GW-175) Unit G, Section 36, Township 18 South, Range 36 East Lea County, New Mexico

Dear Mr. Lowe:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the 4th Quarter 2010 Groundwater Monitoring Results for the DCP Hobbs Gas Plant located in Lea County, New Mexico (Unit G, Section 36, Township 18 South, Range 36 East).

If you have any questions regarding the report, please call at 303-605-1718 or e-mail me <u>swweathers@dcpmidstream.com</u>.

Sincerely

DCP Midstream, LP

Stephen Weathers, P.G. Principal Environmental Specialist

cc: Larry Johnson, OCD Hobbs District Office (Copy on CD) Environmental Files

FOURTH QUARTER 2010 GROUNDWATER MONITORING REPORT

DCP HOBBS GAS PLANT GW-175 LATITUDE: N 32.70533° LONGITUDE: W 103.3066° LEA COUNTY, NEW MEXICO

Prepared For: Mr. Steve Weathers DCP Midstream, LP 370 17th Street, Suite 2500 Denver, Colorado 80202

Diane Escobedo Staff Geologist

John Riggi, P.G. Senier Project Geologist

Prepared by: Conestoga-Rovers & Associates

2420 West 26th Ave, Suite 450-D Denver, CO 80211

Office: 7209759120 Fax: 7209759150

FEBRUARY 4, 2011 REF. NO. 059097(8) This report is printed on recycled paper.

12.3

26. 2. 2.5

Sec. 6 2.

30,74 20

- 2. And

X.

1. - 1. 2. 2. A.

14. J. J.

10.0 Mar 20

E

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	GROUNDWATER MONITORING AND SAMPLING	1
3.0	ANALYTICAL RESULTS	2
4.0	CONCLUSIONS	2

Page

1. 42.55

1.315.00

an 10 x

<u> - 3</u>00

2. 2. 2

19.10

1. C.

20.20

10.00

20.0

LIST OF FIGURES (Following Text)

- FIGURE 1 VICINITY MAP
- FIGURE 2 GROUNDWATER ELEVATION CONTOUR MAP
- FIGURE 3 GROUNDWATER BTEX ANALYTICAL RESULTS

LIST OF TABLES (Following Text)

TABLE 1	CURRENT GROUNDWATER ANALYTICAL RESULTS

TABLE 2HISTORICAL GROUNDWATER ANALYTICAL RESULTS

LIST OF APPENDICES

APPENDIX A WELL SAMPLING FORMS

APPENDIX B STANDARD OPERATING PROCEDURES FOR GROUNDWATER MONITORING AND SAMPLING

APPENDIX C LABORATORY ANALYTICAL REPORT

059097 (8)

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) is submitting this *Fourth Quarter* 2010 *Groundwater Monitoring Report* to DCP Midstream, LP (DCP) for the Hobbs Gas Plant in Lea County, New Mexico. This report summarizes the December 2010 groundwater sampling event. Groundwater monitoring and sampling details, analytical results and conclusions are presented below.

Site Background

The site is a cryogenic processing plant located in Lea County, New Mexico approximately nine miles west of Hobbs, New Mexico (Figure 1). The site occupies approximately 3.5 acres in an undeveloped area. Facilities include a laboratory, an amine unit, compressors, sumps, mol sieve dehydration, tank batteries and an onsite water production well used for non-potable water. The DCP Apex Compressor Station is located approximately 750 feet (ft) north of the Hobbs Gas Plant. There are six groundwater monitoring wells onsite.

Hydrogeology

Historical static groundwater depths have ranged between 60.13 (MW-A) and 62.44 ft below ground surface (bgs)(MW-F). Static groundwater depths ranged from 60.24 (MW-A) to 61.93 ft bgs (MW-F) on December 16, 2010. Groundwater flows to the southeast with a gradient of 0.0055 ft/ft (Figure 2).

2.0 GROUNDWATER MONITORING AND SAMPLING

CRA gauged and collected samples from groundwater monitoring wells MW-A through MW-F on December 16, 2010. Each well cap was removed to allow groundwater levels to stabilize and equilibrate prior to gauging. All sampled groundwater monitoring wells were purged of approximately three well-casing volumes while temperature, pH, and conductivity were measured. Groundwater samples, including a duplicate sample, were collected using clean disposable bailers and decanted into clean containers supplied by the analytical laboratory. Groundwater samples were submitted under chain-of-custody to Accutest Laboratories of Texas. CRA well sampling forms are presented as Appendix A. CRA's standard operating procedures for groundwater monitoring and sampling are presented as Appendix B.

Purged Groundwater

Purged groundwater was transported to the DCP Linam Ranch Facility, where purged groundwater was disposed in the onsite sump.

059097 (8)

Sens.

3.0 ANALYTICAL RESULTS

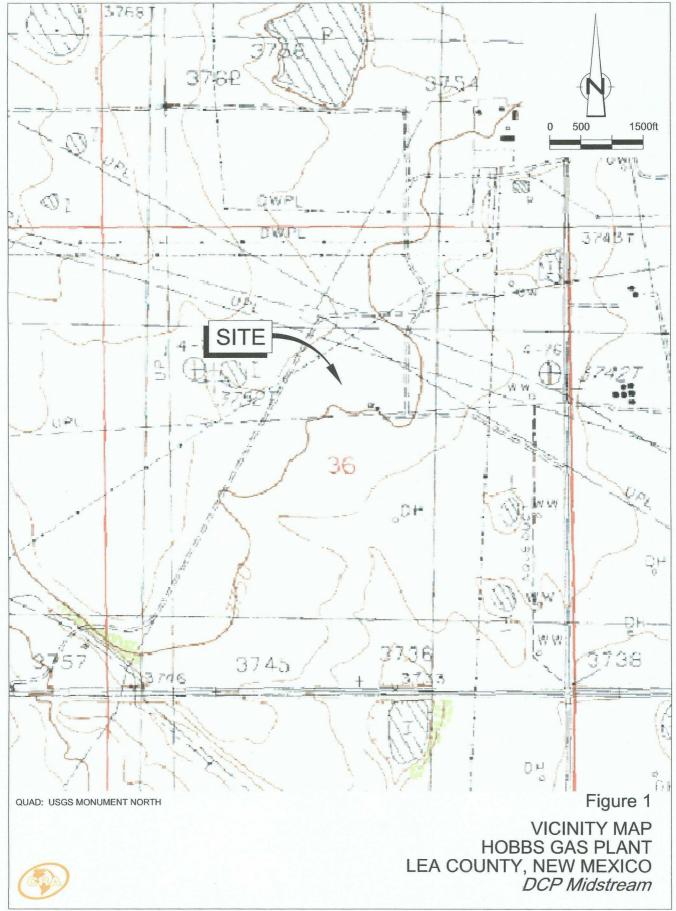
Groundwater Analytical Methods

Groundwater samples collected from MW-A through MW-F were analyzed for the following:

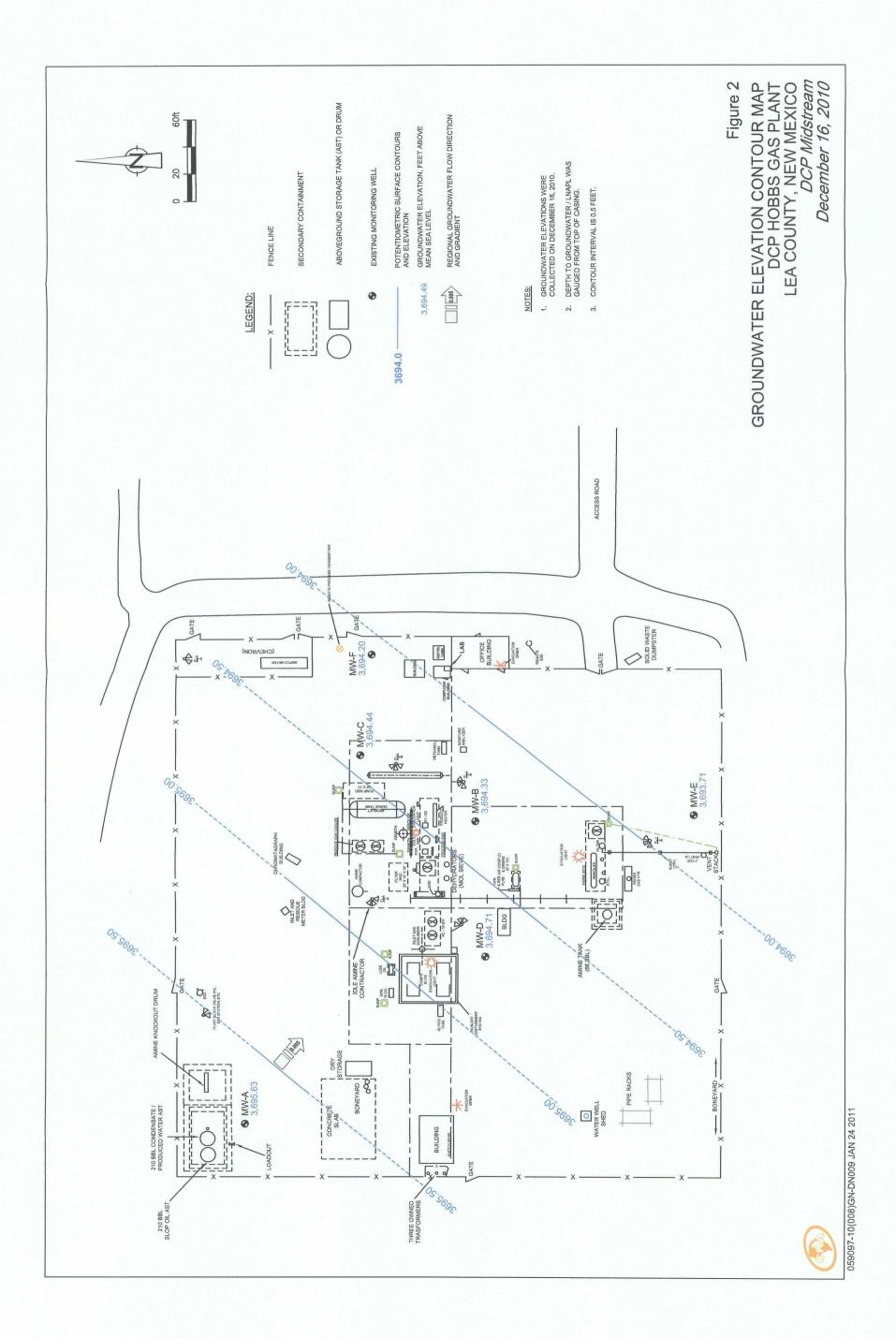
• Benzene, toluene, ethylbenzene, and xylenes (BTEX) by SW-846 8260B.

Groundwater Sampling Results

BTEX was detected above New Mexico Water Quality Control No Commission (NMQCC) cleanup levels in groundwater samples MW-A, MW-D, MW-E and MW-F. Benzene concentrations were detected at 154 micrograms per liter ($\mu g/l$) in sample MW-B and 10.7 µg/l in sample MW-C. Hydrocarbon concentrations in groundwater are presented on Figure 3. Current analytical results are summarized in Table 1. Historical groundwater analytical results are summarized in Table 2. The laboratory analytical report is presented as Appendix C.


4.0 <u>CONCLUSIONS</u>

Benzene concentrations were detected above NMWQCC standards in groundwater samples from wells MW-B and MW-C during the fourth quarter 2010. DCP will continue quarterly monitoring and sampling in 2011 to evaluate site groundwater conditions.


FIGURES

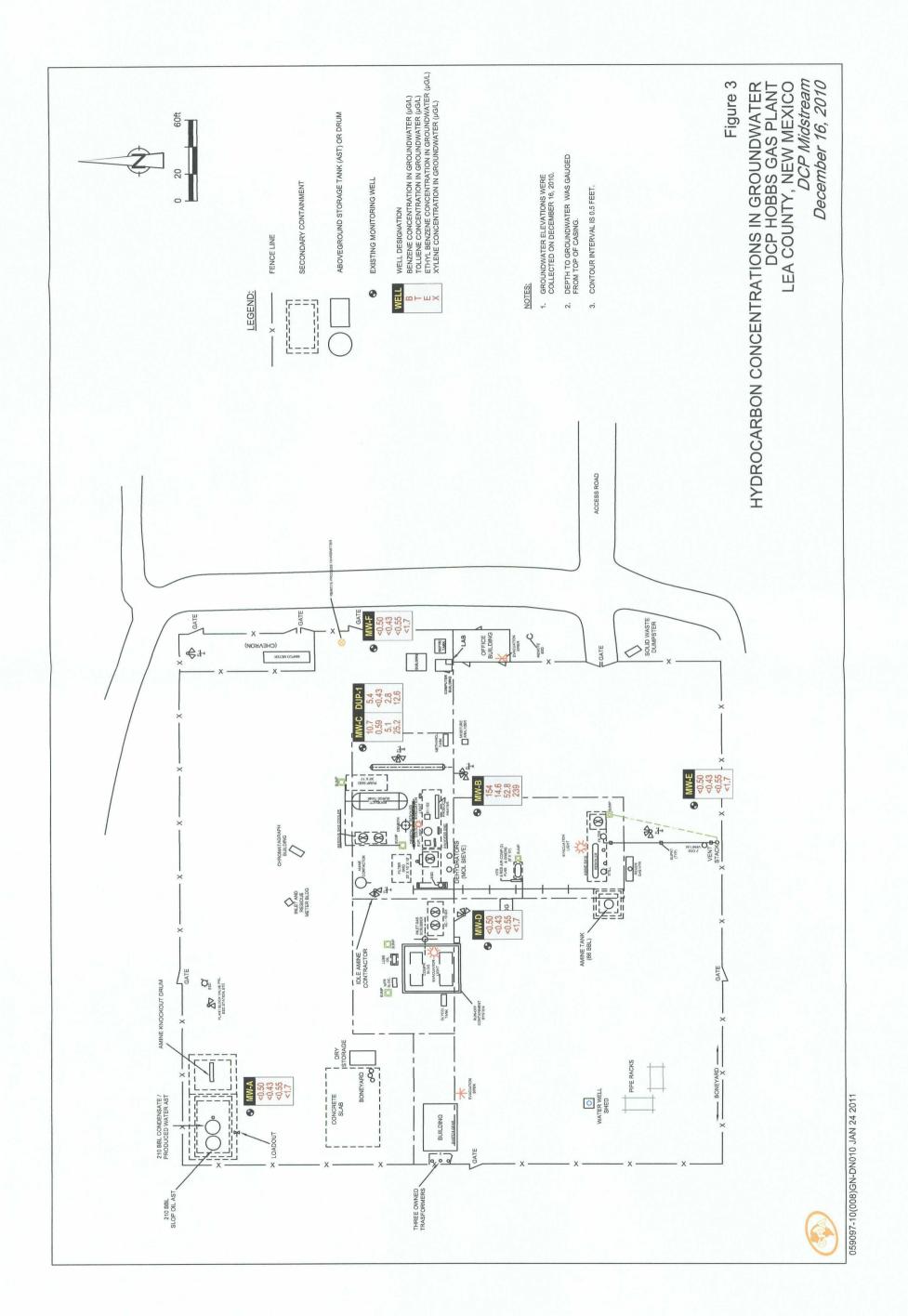

FIGURE 1: VICINITY MAP

FIGURE 2: GROUNDWATER ELEVATION CONTOUR MAP FIGURE 3: GROUNDWATER BTEX ANALYTICAL RESULTS

059097-10(010)GN-MD001 FEB 09/2010

TABLES

TABLE 1: CURRENT GROUNDWATER ANALYTICAL RESULTSTABLE 2: HISTORICAL GROUNDWATER ANALYTICAL RESULTS

C. C. . 202

ite de alte

autor, mak

1200

1. 1. 1. A.

- seitzies

1997 - 19

2 - 2 - V

1.14

1 4. V 40

Y . 4 . 4

Yes .

Table 1.	Current Ground	dwater Ana	lytical Res	ults - DCP	Hobbs Gas I	Plant, Lea Cou	nty, New M	1exico
*****************	Date	TOC	DTW	GWE	Benzene	Toluene	Ethyl -	Total
Well ID	Date	ICC	DIW	GWE	Denzene	Toruene	benzene	Xylenes
		(ft msl)	(ft bgs)	(ft msl)	4	Concentratio	ons in µg/l	>
NMWQCO	C Cleanup Levels				10	750	750	620
MW-A	12/16/2010	3755.87	60.24	3695.63	< 0.50	<0.43	< 0.55	<1.7
MW-B	12/16/2010	3755.94	61.61	3694.33	154	14.6	52.8	239
MW-C	12/16/2010	3755.59	61.15	3694.44	10.7 /5.4	0.59/<0.43	5.1/2.8	25.2/12.6
MW-D	12/16/2010	3755.43	60.72	3694.71	< 0.50	< 0.43	< 0.55	<1.7
MW-E	12/16/2010	3754.36	60.65	3693.71	< 0.50	< 0.43	<0.55	<1.7
MW-F	12/16/2010	3756.13	61.93	3694.20	< 0.50	<0.43	<0.55	<1.7

CONESTOGA-ROVERS & ASSOCIATES

Notes and Abbreviations:

ID = Identification

2.9.0

1.10

TOC = Top of casing

DTW = Depth to water

GWE = Groundwater elevation

BTEX = Benzene, toluene, ethylbenzene, and total xylenes by SW-846 8021 or 8260B

ft msl = Feet above mean sea level

ft bgs = Feet below ground surface

 $\mu g/l = Micrograms per liter$

< x = Not detected above x $\mu g/l$

x / y = Sample results / blind duplicate results

BOLD = Indicates concentration above the NMQCC Cleanup Levels

NMWQCC = New Mexico Water Quality Control Commission

CONESTOGA-ROVERS & ASSOCIATES

2

Table 2	Historical Grou	indwater Ana	Uytical Resu	lts- DCP Hob	bs Gas Plar	Historical Groundwater Analytical Results- DCP Hobbs Gas Plant, Lea County, New Mexico	w Mexico						
Well ID	Date	TOC	MTO	GWE	Нq	Conductivitiy	Temperature	DO	ORP	Benzene	Toluene	Ethyl - benzene	Total Xylenes
		(It msl)	(ft bgs)	([t ms])	s.u.	µS/cm	°C	mg/l	νm		Concentrat	ions in µg/1	Ì
NMWQCC	Cleanup Level	5								10	750	750	620
MW-A	3/5/2008	3755.87	60.18	3695.69	7.20	431	17.46	11.42	21.3	11	<5.0	3.8	15.0
MW-A	6/2/2008	- /	60.19	3695.68	7.31	573	20.57	5.49	31.1	< 0.46	< 0.48	< 0.45	< 1.4
MW-A	9/15/2008		60.58	3695.29	6.81	533	19.27	4.96	238.7	< 0.46	< 0.48	< 0.45	< 1.4
MW-A	12/3/2008		60.41	3695.46	7.37	505	18.20	7.17	183.9	< 0.46	< 0.48	< 0.45	< 1.4
MW-A	2/27/2009		60.18	3695.69	7.29	505	19.34	8.15	64.1	< 0.46	< 0.48	< 0.45	< 1.4
A-VIM	6/25/2009		60.21	3695.66	6.90	660	19.80	8.20	145.0	< 2.0	< 2.0	< 2.0	< 6.0
MW-A	9/1/2009	.,	60.37	3695.50	20.2	670	19.86	8.11	69.0	< 2.0	< 2.0	< 2.0	< 6.0
MW-A	11/17/2009	- /	60.40	3695.47	7.82	576	17.67	t	1	< 2.0	< 2.0	< 2.0	< 6.0
MW-A	3/25/2010		60.40	3695.47	7.51	567	21.70	ł	;	< 2.0	< 2.0	< 2.0	< 6.0
MW-A	6/8/2010		60.39	3695.48	7.36	513	22.28	ł	•	< 2.0	< 2.0	< 2.0	< 6.0
MW-A	9/21/2010		60.13	3695.74	7.11	585.0	20.30	ţ	1	<0.50	<0.43	<0.55	<1.7
MW-A	12/16/2010		60.24	3695.63	7.27	225.7	. 18.00	۱	ı	<0.50	<0.43	<0.55	<1.7
C /V1/ C	3 / 5 / 2000		נין פר	0C 7072	6 67	200	14.00	СК Г	1111	650	42	120	062
G- 111	onnz /e /e		00.10	07.4400) (000	10.77	44.7	1.412-	000	* L		00/
g-MW	9/ 7/ 7008		61.69	3694.2	8.	868	19.99	60.1	-120.1	444	86.5	ន្ម	/10
MW-B	8007/c1/6		50.20	06.5695	0.60	206	19.65	92.0	9.161-	865	36.0	151	14/
(p)g-MW	9/ 15/ 2008		62.04	3693.90	6.60	902	19.63	050	-151.6	488	46.0	200	1,210
MW-B	12/3/2008		61.93	3694.01	6.93	889	18.39	1.57	-161.4	25.6	0.56]	7.1	29.2
MW-B	2/27/2009		61.68	3694.26	6.87	921	18.83	0.96	-115.7	592	86.3	176	1,230
MW-B	6/25/2009		61.63	3694.31	6.60	130	19.80	2.50	-131.0	1,490	270	411	2,750
MIV-B	9/1/2009		61.81	3694.13	6.60	130	20.36	1.92	-206.0	1,420	195	380	2,930
MW-B	11/17/2009		61.85	3694.09	6.99	822	17.50	ŧ	1	. 199	29	68.5	159
MW-B	3/25/2010	3755.94	61.70	3694.24	6.99	1007	20.80	ı	:	199	7.8	112	375
MW-B	6/8/2010		61.77	3694.17	6.98	866	21.56	ı	1	438	20.2	161	836
MW-B(d)	6/8/2010	3755.94	61.77	3694.17	6.98	866	21.56	۱	1	631	26.8	191	1,230
MW-B	9/21/2010	3755.94	61.58	3694.36	6.73	981.4	19.70	ı	;	572 a	21.7	167	885
MW-B	12/16/2010	3755.94	61.61	3694.33	7.04	994.3	17.50	ł	1	154	14.6	52.8	239
MW-C	3/5/2008	3755.59	61.18	3694.41	6.91	535	17.46	6.50	-104.1	61	5.3	19.0	78.0
MW-C(d)	3/5/2008	3755.59	61.18	3694.41	6.91	535	17.46	6.50	-104.1	160	ለ 25	160	140
MW-C	6/2/2008	3755.59	61.22	3694.37	6.90	781	20.00	2.64	-121.2	75.4	4.9	26.3	121
MW-C(d)	6/2/2008	3755.59	61.22	3694.37	6.90	781	20.00	2.64	-121.2	103	8.1	36.9	170
U-MW	9/15/2008		61.54	3694.05	6.51	679	18.99	1.97	160.3	130	5.7	47.3	777
MW-C	12/3/2008		61.48	3694.11	6.88	621	18.24	2.31	-17.8	39.0	< 0.48	10.5	33.3
MW-C(d)	12/3/2008		61.48	3694.11	6.88	621	18.24	2.31	-17.8	50.6	< 0.48	13.6	44.5
MW-C	2/27/2009		61.15	3694.44	6.90	614	18.56	1.96	-8.7	6.69	0.78]	20.1	86.8
MVV-C(d)	2/27/2009		61.15	3694.44	6.90	614	18.56	1.96	-8.7	36.6	< 0.48	10.0	43.3
MW-C	6/25/2009		61.16	3694.43	6.60	760	19.60	4.42	54.0	54.3	0.72]	11.9	53.0
MW-C(d)	6/25/2009		61.16	3694.43	6.60	760	19.60	4.42	54.0	64.2	0.87 }	19.0	82.4
MW-C	9/1/2009		61.35	3694.24	6.78	066	19.27	2.66	40.0	82.8	1.3]	23.1	132
MIV-C(d)	9/1/2009		61.35	3694.24	6.78	066	19.27	2.66	40.0	71.5	1.0]	19.8	110
WW-C	11/17/2009		61.37	3694.22	7.26	631	17.17	ι	ł	R	< 2.0	9.3	23
MW-C(d)	11/17/2009	3755.59	61.37	3694.22	7.26	631	17.17	۱	1	25.7	< 2.0	2.7	44.3
MW-C	3/25/2010	3755.59	61.27	3694.32	7.13	686	19.20	t	1	48.2	3.0	16.9	141
MW-C(d)	3/25/2010	3755.59	61.27	3694.32	7.13	686	19.20	ı	1	52.2	2.9	20.3	13
O-WM	6/8/2010	3755.59	61.33	3694.26	6.92	621	23.06	ŧ	1	20.4	1.1	8.5	52.3
J MM-C	0107/17/6	3/502	61.10	3694.49	6.58	741.8	19.2	ı	1	124	3.1	50.4	2/6
MW-C	12/16/2010	3755.59	61.15	3694.44	6.95	760.5	18.1	ł	;	10.7	0.59	5.1	25.2
MW-C(d)	12/16/2010	21.00.00	61.15	3694.44	0.40	C.U0/	19.1	ŧ	ł	5.4	<0.45	7.8	971

Unity Ten Up OP OP <th< th=""><th>Table 2 F</th><th>listorical Grou</th><th>ndwater Ana</th><th>lytical Resu</th><th>Its- DCP Hobt</th><th>bs Gas Plan</th><th>Historical Groundwater Analytical Results- DCP Hobbs Gas Plant, Lea County, New Mexico</th><th>w Mexico</th><th></th><th></th><th>kico</th><th></th><th></th><th></th></th<>	Table 2 F	listorical Grou	ndwater Ana	lytical Resu	Its- DCP Hobt	bs Gas Plan	Historical Groundwater Analytical Results- DCP Hobbs Gas Plant, Lea County, New Mexico	w Mexico			kico			
Control (Find)		Date	TOC	DTW	GWE	Hq	Conductivitiy	Temperature	g	ORP	Benzene	Toluene	Ethyl - henzene	Total Xylenes
J.J. Constrained Solid Constrained Constrained <thconstrained< th=""> Constraind</thconstrained<>	NMMOCUCI	ann Laral	- I	(ft bgs)	(ft msl)	3.u.	µ5/cm	ů	mg/l	۸ű		Concentrat	tions in µg/1	ţ
		caump Level									3	nc/	06/	621
ψ/2/2008 53:53 61:01 50:45 71:3 60:60 <		3/5/2008	3755.43	60.77	3694.66	6.85	507	17,23	9.66	22.5	< 1.0	< 5.0	< 1.0	< 3.0
Y/Y/2008		6/2/2008	3755.43	60.77	3694.66	7.13	668	19.99	5.39	29.2	< 0.46	< 0.48	< 0.45	< 1.4
21/2/2008 553.6 600 <td< td=""><td></td><td>0007/c1/6</td><td>0755.43</td><td>01.10</td><td>3694.33 3604 35</td><td>40.0 70.0</td><td>040 507</td><td>19.42 17.05</td><td>3.65</td><td>176.6</td><td></td><td>< 0.48</td><td>< 0.45</td><td></td></td<>		0007/c1/6	0755.43	01.10	3694.33 3604 35	40.0 70.0	040 507	19.42 17.05	3.65	176.6		< 0.48	< 0.45	
		2/27/2009	3755.43	60.79	3694.64	2.01	589	19.59	7.22		 0.40 10.46 	0.46	< 0.45	1.41.4
9/1/2008 355.43 0.05 304.47 5.61 8.03 7.20		6/25/2009	3755.43	60.77	3694.66	6.70	820	20.10	6.38	177.0	< 2.0	< 2.0	< 2.0	< 6.0
1/1/1/2008 5554.3 60.9 594.47 7.57 63.8 16.67 - - - - 2.20 - 2.20 - 2.20 2.20 - 2.20 - 2.20 - 2.20 2.20 - 2.20 - 2.20 - 2.20 2.20 - 2.20 2.20 - 2.20 - 2.20		9/1/2009	3755.43	60.96	3694.47	6.81	860	19.90	6.11	118.0	< 2.0	< 2.0	< 2.0	< 6.0
y1/y2/100 37543 0.01 9604 7.2 0.02 0.01	D-WIM	11/17/2009	3755.43	60.96	3694.47	7.67	658	16.67	ł	1	< 2.0	< 2.0	< 2.0	< 6.0
9 0		0102/42/6	3755.43	60.89	3694.54	7.18	706	19.50	ł	ł	< 2.0	< 2.0	< 2.0	< 6.0
1/1/1/2009 355/36 60/3 60/30		0107/12/0	3755 43	60.54	20.9402	f-0.7	636 730 c	22.28	ı	ł	< 2.0	< 2.0	270 271	0.9
3/5/208 3/5/208 <t< td=""><td>D-WW</td><td>12/16/2010</td><td>3755.43</td><td>e0.06 60.72</td><td>3694.71</td><td>7.03</td><td>2.067</td><td>05.91 18.70</td><td></td><td>. 1</td><td>05.05</td><td>€9.05 64.05</td><td>cc.0> ≥5 0></td><td>17</td></t<>	D-WW	12/16/2010	3755.43	e0.06 60.72	3694.71	7.03	2.067	05.91 18.70		. 1	05.05	€9.05 64.05	cc.0> ≥5 0>	17
6 7		3/5/2008	3754 36	40 7E	12 2035	00 7	701	00.51	00.0	r ac				1
9 9/12/2008 3754.36 61.13 960.13 67.43 60.06		6/2/2008	3754.36	60.78	3693.58	7.07	40) 633	677/1	9.72 9.72	4.00 4.4	-14 < 0.46	0.6 0.48	5.5 < 0.45	- 14
2/2/2/2009 373-46 6/13 5907.25 70 50110 503 6/04 6/046 <t< td=""><td></td><td>9/15/2008</td><td>3754.36</td><td>61.21</td><td>3693.15</td><td>6.74</td><td>601</td><td>19.27</td><td>4.02</td><td>228.3</td><td>< 0.46</td><td>< 0.48</td><td>< 0.45</td><td>< 1.4</td></t<>		9/15/2008	3754.36	61.21	3693.15	6.74	601	19.27	4.02	228.3	< 0.46	< 0.48	< 0.45	< 1.4
27/2/200 37436 6013 30535 701 650 912 0.646 0.486 0.486 0.436 0.445 0		12/3/2008	3754.36	61.13	3693.23	7.03	592	18.58	5.25	186.2	< 0.46	< 0.48	< 0.45	< 1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2/27/2009	3754.36	60.81	3693.55	7.01	590	19.10	6.29	91.2	< 0.46	< 0.48	< 0.45	< 1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6//22/9	3754.36	60.74	3693.62	6.80	270	20.10	5.19	60.0	< 2.0	< 2.0	< 2.0	< 6.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MIN-E	6002/1/6	00.90.00 2754.26	60.93	593.43	6.9 7	/80	46.07	c 6.c	16.0	< 2.0	< 2.0	< 20	< 6.0
5/5/2010 375436 6035 36037 572 329 7 7 0 2 0 2 0 2 0 2 0 2 0 3 0 0 <td></td> <td>3/25/2010</td> <td>3754 36</td> <td>60.87</td> <td>3603 54</td> <td>75.7</td> <td>010</td> <td>10.50</td> <td>;</td> <td>:</td> <td>022</td> <td></td> <td></td> <td>< 6.0</td>		3/25/2010	3754 36	60.87	3603 54	75.7	010	10.50	;	:	022			< 6.0
9,21/2010 2754.35 6.65 3695.71 6.72 7.90 7.91 12/14/2010 3754.36 6.65 3693.71 6.77 7.90 6.94 6.95 12/14/2010 3754.36 6.65 3693.71 6.77 7.91 9.71 6.93 6.93 9/15/2008 3756.13 6.20 3694.12 6.76 6.77 7.91 9.71 6.94 6.048 6.048 6.045 <t< td=""><td></td><td>6/8/2010</td><td>3754.36</td><td>60.83</td><td>3693.53</td><td>2.00</td><td>513</td><td>22 ED</td><td></td><td>1 1</td><td>220</td><td>2 0 C ></td><td></td><td>0.0 2 6 0</td></t<>		6/8/2010	3754.36	60.83	3693.53	2.00	513	22 ED		1 1	220	2 0 C >		0.0 2 6 0
9/11/2010 375/13 6/05 369.77 7.01 6.79 7.01 7.01 6.70 6.03 6.05 5.00 7.01 5.00 7.03 6.05 5.00 7.01 5.00 7.01 5.00 7.01 5.00 7.01 5.00 7.01 5.00 7.01 6.05 5.00 7.01 6.05 5.00 7.01 6.05 6.05 6.05 6.05 6.05 7.01 6.05		9/21/2010	3754.36	60.65	3693.71	6.72	730	19.40	1	1	<0.50	<0.43	<0.55 <0.55	<1.7
12/16/2010 375.35 60.65 599.371 701 6913 3.6 1.9 <.6.5		9/21/2010	3754.36	60.65	3693.71	6.72	730	19.4D	ı	1	<0.50	<0.43	<0.55	<1.7
3/5/2008 3756:13 6.2(1) 364:12 6.5 6.5 17.0(1) 9.71 3.6 1.9 <5.0 <1.0 6/2/2008 3756:13 6.2.0 369:40 6.5 8.73 13.0 3.08 2.14 <0.46 <0.48 <0.45 9/15/2008 3756:13 6.2.12 369:30 6.5 917 17.79 3.75 1864 <0.48 <0.45 <0.45 2/27/2009 3756:13 6.197 3.647 10.0 1922 3.27 108.0 <2.0 <2.0 9/17/2009 3756:13 6.197 3.647 10.0 1922 3.57 108.0 <2.0 <2.0 <2.0 9/17/2010 3756:13 6.193 369:40 6.5 1100 1922 3.57 108.0 <2.0 <2.0 <2.0 9/17/2010 3756:13 6.193 369:40 6.5 1100 1922 3.57 108.0 <2.0 <2.0 <2.0 9/22/2010 3756:13 6.193 369:40 6.5 1100 1922 3.57 108.0 <2.0 <2.0 <2.0 9/22/2010 3756:13 6.193 369:40 6.5 1000 1922 3.57 108.0 <2.0 <2.0 <2.0 9/22/2010 3756:13 6.193 369:40 6.5 1000 1922 3.57 108.0 <2.0 <2.0 <2.0 <2.0 9/22/2010 3756:13 6.193 369:40 6.5 1000 1926 3.56 2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0		12/16/2010	3754.36	60.65	3693.71	7.01	698.8	18.10	1	1	<0.50	<0.43	<0.55	<1.7
6/2/2008 3756:13 6.04 6.046 6.046 6.045 6.045 9/15/2008 3756:13 6.24 869.40 6.57 877 137.1 6.046 6.046 6.045 12/15/2008 3756:13 6.127 369.41 6.27 875 188.41 6.046 6.048 6.045 7/12/2008 3756:13 6.129 369.41 6.27 875 188.41 6.046 6.048 6.045 7/12/2009 3756:13 6.19 369.410 6.57 100 192.80 2.20	MW-F	3/5/2008	3756.13	62.01	3694.12	6.76	657	17.01	9.71	3.6	1.9	, < 5.0	< 1.0	3,8
9/15/2008 375(13 6.244 3603.61 6.45 9.43 <0.46	MW-F	6/2/2008	3756.13	62.06	3694.07	6.76	879	19.00	3.08	21.4	< 0.46	< 0.48	< 0.45	< 1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MW-F	9/15/2008	3756.13	62.44	3693.69	6.43	876	19.17	2.52	234.3	< 0.46	< 0.48	< 0.45	< 1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12/3/2008	3756.13	62.22	3693.91	6.76	617	17.79	3.79	188.4	< 0.46	< 0.48	< 0.45	< 1.4
9/1/2009 375.13 0.130 0.393.17 0.20 220 220 220 9/1/2009 375.13 0.13 6.13 6.10 100 19.26 230 220 20 20 20 20 20 20 <		5/ 2/ / 2002	3/30.13	16.10	3694.16	0.77	857	18.61	3.85	93.4	< 0.46	< 0.48	< 0.45	
11/11/2009 3755.13 62.13 3694.00 639 1030 18,7		9/1/2009	3756.13	60.18 67 18	7603.05	0 5 0 5 1 2 9	110	19.60	00.0 70 t	108.0	077	0.4 4	0.7 2	0.0 >
3/25/2010 3755/13 5.02 3694.11 6.94 1030 15.0 2.0 2.0 2.0 15.0 15.1 3694.01 7.65 13 6.192 3694.01 7.00 375.1 6.103 355.1 6.20 2.00	MW-F	11/17/2009	3756 13	60 13 60 13	3694 00		011	18.67	/7.0	100.0		022	017	. 0.0
	MW-F	3/25/2010	3756.13	62.02	3694.11	6.94	1053	19.00	: 1	1	< 2.0	< 2.0	< 2.0	< 6.0 < 6.0
- <0.50 <0.43 <0.55 - <0.50 <0.43 <0.55	MW-F	6/8/2010	3756.13	62.12	3694.01	7.03	906	22.06	ı	ı	< 20	< 20	< 20	< 6.0
- <0.50 <0.43 <0.55		9/21/2010	3756.13	61.92	3694.21	6.67	1003	19.10	ł	ł	<0.50	<0.43	<0.55	<1.7
More and A birm lations To the and fination: The - Top of casing Diversity to ware Diversity to ware Diversity to ware Diversity to ware severation Diversity to ware severation Diversity to the base of thase of the base of thase of the base of thase of the base		12/16/2010	3756.13	61.93	3694.20	6.90	1058	17.60	1	1	<0.50	<0.43	<0.55	4.7
10 The relationant 10 The relationation 10 The relationation 10 Desired compare alreading 10 Desired corporation 10 Desired corporati	Notes and Abbrevi.	ations:												
DW - Prych to water DW - Explain wetter D - Che - Consulvators plevation D - Che - Consulvators plevation D - Che - Statistic restliction priorital D - Statistic metaletion point D - Statistic metaletion point D - Statistic metaletion D - Management of the statistic metaletion	1D = Identification TDC = Ton of casing													
CME = Consultances relevation COD = Dissolved oncygin COB = Consultance relevation COB = Consultance relevance ETEX = Reviews guarent sort for ETEX = Reviews guarent sort for Figs = Fiest house granned sort for Figs = Fiest house for for Figs = Fiest house for house for Figs = Fiest hou	DTW - Depth to wa	e hter												
DD - Distainton relation potential ETEX = Percenta, Industry optimida ETEX = Percenta, Industry ethylheratera, and Itaal sylvenes by SW 446 8021 or 6260B ff mail = Fer laboux endor and itaal sylvenes by SW 446 8021 or 6260B ff mail = Fer laboux endor and undi- the mail = Fer laboux endor and undi- py for an Acrossinens per relation as a = Standard undi- py for an Acrossinens per relation as a = Standard undi- the Milingrams per left (1 = Milingrams per lifer mail = Induscias mg/1 = Milingrams per lifer (2 = Doul analyzed (2 = Doul analyzed (3 = Douls ana	GWE - Groundwate	er elevation												
Cord * contains constant more and total vylenes by SW &66 &021 or &260B Time * Fee hances eithy finance in the second total vylenes by SW &66 &021 or &260B Time * Fee hances eithy finance in the second total vylenes by SW &66 &021 or &260B Time * Fee hances ender the second total vylenes by SW &66 &021 or &260B Time * Fee hances ender the second total vylenes by SW &66 &021 or &260B Time * Fee hances ender the second total vylenes by SW &66 &021 or &260B Time * Fee hances ender the second total vylenes by SW &66 &021 or &260B Time * Fee hances ender the second total vylenes by SW &66 &021 or &260B Time * Fee hances ender the second total valence of the secon	DO = Dissolved oxy	Bon						-						
fran - Fer Jahour maar van kend fran - Fer Jahour grund sarfiers as - Standard um B/ Cran - Microsiannes per contigneter C-D-Begree Cokina M/ - Millousis M/ - Millousi	ORP = Oxidation re RTPX = Renzene Iol	duction potential loone ethylhenze	no and total or	locar by CM	10 m 100 71 a	g								
(h by - Fire blow groud surface s - Standautres per continuer g/(rm - Marsiennes per continuer - Degree Cation g/(r m - Marsiennes per continuer - Net intervent alow v sup() Net intervent alow v sup() 	ft msl = Feet above :	mean sea level		the for carton i	070 10 1700 040-									
ра спользания регонішнен ст. – Degree Cakina му – Milliolia му – Milliolia му – Milliolia му – Milliolia му – And dereted abov s.kyl/ – • Ми dereted abov s.kyl/ – • Ми dereted abov s.kyl/ – • Ми dereted abov s.kyl/ (a) – Duplicate sterorum // (b) – Duplicate sterorum // (c) – Duplicate stero	ft bgs = Feet below {	ground surface												
 C Dagree Cickins mg/1 - Milligrams per liter mg/1 - Milligrams per liter<td>s.u. = standard unit uS/rm = Microstern</td><td>ene net centimete</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>	s.u. = standard unit uS/rm = Microstern	ene net centimete	•											
reg/1 = Milligrams per liter m/s = Halligrams per liter g/1 = Mitrosons per liter g/1 = Mitrosons per liter g/1 = Mitrosons per liter g/1 = Mitroson x pg/ = - Not measured/proper star-fortably Control Commission (a) = Papil is from an # 2 MMVQCC = Now Measor Meaner Quality Control Commission 1/dame/1/Stared/Proper fiae/USPA(10997: HOBSA(10997: EEPOES)(10997: ATD AAND MAINTENANCE REPOI	C - Degrees Celciu	s saunnan est sua	5											
mV - Milliouls Gil - Mittorian per lifer BOLD - Indrawa conventantan Abure da HMFNQCC Chemp Lavala - Net mostared Apola - Net Apol - Net mostared Apola - Net Apol - Net Meaco Water Chally Control Commission NMFNQCC - New Meaco Water Chally Control Commission NMFNQCC - New Meaco Water Chally Control Commission 1/don-e1/Staned/Proper Fiela/(BPA/USDPX: FED/OFIN_USDPX: PTB-4, CWM AND REMEDIAL OPEA/TIONS AND MAINTENANCE REPOI	mg/1 - Mulligrams	per liter												
resy. 1 van degraar per na wee de NNWQCC Clearup Loreds < - Not detreeted down xug/ - Not nearcent down xug/ (a) - Dopticate sample (b) - Dopticate sample (b) - Dopticate sample (b) - Dopticate sample (c) - NNWQCC - New Alector Water Chally Control Computsion NNWQCC - New Alector Water Chally Control Computsion (1do-n1/Stanet/Frager Filea/GPO(BS04.2007; FEDOFE)(15907; KFT8-4) CNM AND REMEDIAL OPECATIONS AND MAINTENANCE REPOI	mV - Millivolts	and liter												
4. Not detected above xig/1 4. Not analyzed (d) = Orgitude statements (d) = Orgitude stateme	BOLD = Indirates con	per nucr rentration above thi	" NMWQCC CIP	anun Lavels										
→ sort measured (not daw)244 (1) → Doption stample a ★ Readit is from rum # 2 NMWQCC = New Measor Maare Quality Control Commutision NAMMQCC = New Measor Maare Quality Control Commutision	<x =="" al<="" detected="" not="" td=""><td>hove x µg/l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x>	hove x µg/l												
a * Readi is from run # 2 NMWQCC = New Merco Mater Quality Control Commission Materel (Stared) Froger fram (Bergel (Enser: HOBBE) (LOWER) FRITE-ACC MARK AND MAINTENANCE REPOI	 Mot measured/. (d) = Durbicate sam 	not analyzed ple												
NMWQCC = New Mexro Water Quality Control Commission Vatered Strated Proper Flate (Berk) (Bower: HOBBS/(BOWER: REPR. J. C.W.M. AND REAEDLA D'REATIONS AND MAINTENANCE REPOI	a - Result is from ru	n#2												
\\def{areal}/Fareal/Fareal/Fareal Fareal/Fareal Fareal	NMWQCC = New 1	vlexico Water Qu.	ality Control C	ommission										
	//acu-st/staten/	ject ruce/www.		09/-KEFURIS	2	GWM ANU	EMEDIAL Ureka III	ONS AND MAIN JEF	ANCE KENU					

CONESTOGA-ROVERS & ASSOCIATES

6

6 T T

1.4

ы

APPENDIX A

WELL SAMPLING FORMS

State 1

1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -

÷ 4,23

And the second

Part 1

1.0000

1. 25

2.25.55

12.1.21

2.8 . 10 . 10

1 24-2

1. 2. 2.

1 B

1. S. 2.

1.2.16

19. 2. 8. 4

Date 12 Dire HEISTLS Reagan Channes Contest 2 14.1 SF/SC alico 1200- Lunder 120-10,2002 LEFT HUR SITE : 540 - 16172 H 1150 - MERHONDE Stander 1-2. Kon ener Proto Acces MNTD. SM MEC 1210 Becan b 120 50 GAUGANG WORLS ALC VIER OFE IN DATASHEETS LEFT SITE 15000 FINISHED GANGING - REPSONE FOR GWS - Sienes ou 7 - (4) AND SOURE CARE - ARTINED AT OFFICE 17625 16422

18 16335 Date 12-16-10 Date Liniatton Location Propert / Cleant 05909.2 Project / Client Gus 080 - LURDED Tisuels, Calbanter HACH METER Ph ____ 100. 1340- LEFT OFFICE 164200 _____ CSO - ARRIVE Sichous 72-17 5172 12. tNis DROK 3 TO ATOR 11256 Borton that & Homerul J SANOTY ļ. 1300- 5-102200 GWS 1510 - FINISHEN GWSELE 1. 10.313 15-201- 3.6443) out now? To OFFICE LIAMAN TO DROFOFF PURCES MATGER 1530- LETET FUR OFFICE GH6534 1700 - Arcanont (2 chiere 2

CONESTOGA-ROVERS & ASSOCIATES											124 6365	HacH # 5579	(a (+ Date 2 h-4 = 4:0 # 00 3375 Fes/12	The 12 = 10.0 # 043 234 Ford/12	len -1413=1413 # 24 c/de~ my
eet	Comments	(100)	(gor)	Cyce D	Geo D	Geod	G00 D				9097-11-02	Ω			
ield She	Casing Diam.	Ś	6	5	\$	2.	8				r/Task: 059	1-1/-2		ring Gauging For	
Groundwater Monitoring Field Sheet	Amount of Product Removed	. (({					Project Number/Task: 059097-11-02	Date: /Z		t:/Projects_In_Progress/6-cliars/05/059097:059097:059097 Field Data/GW Sampling/2010/Sept 2010/GW Monitoring Gauging Form.doc	
ater Mon	Product Thickness		(l										GW Sampling\2010\S	
Groundw	Depth to Bottom	69.20	73. 88	70.43	71.45	73,89	70.97							97\059097 Field Data	
U	MTQ	60.72	61.93	60.24	60.45	ie1.15	61.61				AS PLANT	しょし		0650\.260650\06	
	DTP			(Project Name: HOBBS GAS PLANT	MAS		s\6-cliars\05\05	
	Time	1215	2121	1219	1221	1223	1226				ect Name:	Field Staff:		ects_In_Progres.	
	Well ID	MW-D	MW-F	WW-A	MW-E	MW-C	MW-B				Proj	Fiel		t:\Proj	

l

CONESTOGA-ROVERS & ASSOCIATES

WELL SAMPLING FORM

١

Project Name: Hobbs Gas Plant	CRA Mgr: John Riggi	Well ID: MW-A
Project Number: 059097	Date: 12-16-10	Well Yield: 5713
Site Address:	Sampling Method: Hand Bailing	Well Diameter 2
HOTSES		Field Staff: JP/JRC
Initial Depth to Water: 60.24	Total Well Depth: 70.93	Water Column Height: 10.69
Volume/ft: . (6	1 Casing Volume: 1.71	3 Casing Volumes: 5.13
Purging Device: Bailon	Did Well Dewater?: NO	Total Gallons Purged: 5.30
Start Purge Time: 1340	Stop Purge Time: 1 3 48	Total Time: 03,

1 Casing Volume = Water column height x Volume/ ft.

ł

No.

 Well Diam.
 Volume/fi (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

í

Time	Volume Purged (gallons)	Temp. (°C)	рН	Cond. (uS)	Comments
1349	.250	17.2	7.36	625.5	
1350	.250	17.8	7.34	625.9	
1351	1250	18.0	7,27	225.7	

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
mw-A	12-16-00	1355	40m/	HCL		

1:\Projects_ln_Progress\6-chars\05----\0590--\059097\059097\059097 Field Data\GW Sampling\2010\Sept 2010\GW Sampling Form MW-A.doc

CONESTOGA-ROVERS & ASSOCIATES

WELL SAMPLING FORM

(

Project Name: Hobbs Gas Plant	CRA Mgr: John Riggi	Well ID: MW-B
Project Number: 059097	Date: 1,2-16-10	Well Yield: 4.49
Site Address:	Sampling Method: Hand Bailing	Well Diameter 2
HOBBS		Field Staff: JP/ JZL
Initial Depth to Water: 61.61	Total Well Depth: 70,97	Water Column Height: 9.36
Volume/ft: .16	1 Casing Volume: 1.49	3 Casing Volumes: 4.49
Purging Device: BAILER	Did Well Dewater?:	Total Gallons Purged: 4.75
Start Purge Time: 1447	Stop Purge Time: 145-4	Total Time:

1 Casing Volume = Water column height x Volume/ ft.

10. 2

jj

0

4.5

 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

ť

Time	Volume Purged (gallons)	Temp. (°C)	рН	Cond. (uS)	Comments
1435	,250	17.4	6.97	鲁1127	
14 54	,250	17.9	6.99	948,6	
1457	0250	17.9	7.03	971,0	
1458	0250	17.5	7.04	994.3	·

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-B	12-16-10	1500	40m/	HCL		

1:\Projects_ln_Progress\6-chars\05----\0590--\059097\059097\059097 Field Data\GW Sampling\2010\Sept 2010\GW Sampling Form MW-B.doc

	í	
× ×		CONESTOGA-ROVERS & ASSOCIATES X
DuP-/	VELL SAMPLING FOR	M Duip-/
Project Name: Hobbs Gas Plant	CRA Mgr: John Riggi	Well ID: MW-C
Project Number: 059097	Date: 12-16-10	Well Yield: 6.1/
Site Address:	Sampling Method: Hand Bailing	Well Diameter 🕱
HOBBS Gas PLANT		Field Staff: SP/JRL
Initial Depth to Water: 61.15	Total Well Depth: 73.39	Water Column Height: 12.74
Volume/ft:	1 Casing Volume: 2.63	3 Casing Volumes: 6. //
Purging Device: BAILER	Did Well Dewater?: 20	Total Gallons Purged: 6-20
Start Purge Time: 1928	Stop Purge Time: 1439	Total Time: 11m, N

I Casing Volume = Water column height x Volume/ ft.

22

¥ 7 3

10 X . Z . 0

10.2.1

R. N.

10.00 T

A.A.A.

Well Diam. 2" 4" 6"

<u>Volume/ft (gallons)</u> 0.16 0.65 1.47

,

Time	Volume Purged (gallons)	Temp. (°C)	рН	Cond. (uS)	Comments
		<u>_</u>			A. it
1437	-025	17. 3	6 33	776 2	DrP
1438	.25	18.1	7.0.2	776 2 712-3	
1439	.35	13. i	6.95	760.5	
·					
		·····		-	

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
mw-C	12-16-10	1440	40-1	HCL		
·					-	

E/Projects_In_Progress\6-chars\05----\0590--\059097\059097\059097 Field Data\GW Sampling\2010\Sept 2010\GW Sampling Form MW-C.doc

CONESTOGA-ROVERS & ASSOCIATES

l

WELL SAMPLING FORM

Project Name: Hobbs Gas Plant	CRA Mgr: John Riggi	Well ID: MW-D
Project Number: 059097	Date: 12-16-10	Well Yield: 4.35
Site Address:	Sampling Method: Hand Bailing	Well Diameter a
flazz s		Field Staff: SP/SAL
Initial Depth to Water: 60.72	Total Well Depth: 69,80	Water Column Height: 9.08
Volume/ft: مار	1 Casing Volume: 1.45	3 Casing Volumes: 9.35
Purging Device: BAILETZ	Did Well Dewater?: ハン	Total Gallons Purged: 4.45
Start Purge Time: 1302	Stop Purge Time: 1312	Total Time:

1 Casing Volume = Water column height x Volume/ ft.

ľ

ł

.

i ja	i x Volume/ ft.		<u>Well Diam.</u> 2" 4" 6"	<u>Volume/fi (gallons)</u> 0.16 0.65 1.47	
	Temp. (°C)	рН	Cond. (uS)	Comments	
	19.5	6.93	859.7		
,	18.9	6.94	847.9	· · · · · · · · · · · · · · · · · · ·	
	13.7	7.03	794.7.		
-1	······································		1		

Time	Volume Purged (gallons)	Тетр. (°С)	рН	Cond. (uS)	Comments
1309	.25	14.5	6.98	859.7	
1310	25	18.9	6.94	847.9	
1311	.25	15.7	7.03	794.7.	
		······································			······································
	L				

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-D	12-16-10	1312	40m1	HCL		
-						

E\Projects_ln_Progress\6-chars\05----\0590--\059097\059097\059097 Field Data\GW Sampling\2010\Sept 2010\GW Sampling Form MW-D.doc

CONESTOGA-ROVERS & ASSOCIATES

WELL SAMPLING FORM

Project Name: Hobbs Gas Plant	CRA Mgr: John Riggi	Well ID: MW-E
Project Number: 059097	Date: 12-16-10	Well Yield: 5.18
Site Address:	Sampling Method: Hand Bailing	Well Diameter 📿
HOBERS		Field Staff: SP/SRL
Initial Depth to Water: 60.65	Total Well Depth: 71.45	Water Column Height: 10-80
Volume/ft: ,/6	1 Casing Volume: 1.72	3 Casing Volumes: 5.18
Purging Device: BalleTL	Did Well Dewater?: NO	Total Gallons Purged: 5.25
Start Purge Time: 1403	Stop Purge Time: 1410	Total Time: 7mm

1 Casing Volume = Water column height x Volume/ ft.

Î

 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

Time	Volume Purged (gallons)	Temp. (°C)	рН	Cond. (uS)	Comments
1411	,250	16.8	7.04	762.4	
1412	.250	17.10	6,94	753.4	
1413	-250	18.1	7,01	698.8	
	-				

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
Μω-Ε	12-16-10	1415	40m/	MCL		

1:/Projects_In_Progress\6-chars\05----\059097\059097\059097\059097 Field Data\GW Sampling\2010\Sept 2010\GW Sampling Form MW-E.doc

紡 CONESTOGA-ROVERS & ASSOCIATES

WELL SAMPLING FORM

Project Name: Hobbs Gas Plant	CRA Mgr: John Riggi	Well ID: MW-F
Project Number: 059097	Date: 12-16-10	Well Yield: 5-73
Site Address:	Sampling Method: Hand Bailing	Well Diameter 😞
HOBBS		Field Staff: A/JZL
Initial Depth to Water: 61.93	Total Well Depth: 73.38	Water Column Height: 11.95
Volume/ft: ./6	1 Casing Volume: #1.91	3 Casing Volumes: 5, 7, 3
Purging Device: BAILETZ	Did Well Dewater?: ملى	Total Gallons Purged: 6,00
Start Purge Time: 73.21	Stop Purge Time: 13.31	Total Time: 10

I Casing Volume = Water column height x Volume/ ft.

l

 Well Diam.
 Volume/fl (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1,47

Time	Volume Purged (gallons)	Temp. (°C)	рН	Cond. (uS)	Comments
1324	.25	17.1	618	1069	
1330	.35	17.6	6.90	1061	
1331	.35	17.6	6,90	1058	
		····			

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-F	12-16-10	1331	40m/	MCL		
				······································		

E\Projects_In_Progress\6-chars\05----\0590--\059097\059097\059097 Field Data\GW Sampling\2010\Sept 2010\GW Sampling Form MW-F.doc

APPENDIX B

and the second s

Augustan a

د جور عرو بي

t and the sta

1.95 a ?.

19. P.

Sec. 2

2 - 2 - 2 - 2

059097 (8)

STANDARD OPERATING PROCEDURES FOR GROUNDWATER MONITORING AND SAMPLING

STANDARD FIELD PROCEDURES FOR GROUNDWATER MONITORING AND SAMPLING

This document presents standard field methods for groundwater monitoring, purging and sampling, and well development. These procedures are designed to comply with Federal, State and local regulatory guidelines. Conestoga-Rovers & Associates' specific field procedures are summarized below.

Groundwater Monitoring

Prior to performing monitoring activities, the historical monitoring and analytical data of each monitoring well shall be reviewed to determine if any of the wells are likely to contain separate phase hydrocarbons (SPH) and to determine the order in which the wells will be monitored (i.e. cleanest to dirtiest). Groundwater monitoring should not be performed when the potential exists for surface water to enter the well (i.e. flooding during a rainstorm).

Prior to monitoring, each well shall be opened and the well cap removed to allow water levels to stabilize and equilibrate. The condition of the well box and well cap shall be observed and recommended repairs noted. Any surface water that may have entered and flooded the well box should be evacuated prior to removing the well cap. In wells with no history of SPH, the static water level and total well depth shall be measured to the nearest 0.01 foot with an electronic water level meter. Wells with the highest contaminant concentrations shall be measured to the nearest 0.01 foot using an electronic interface probe. The water level shall be measured to the nearest 0.01 foot using an electronic interface probe. The water level meter and/or interface probe shall be thoroughly cleaned and decontaminated at the beginning of the monitoring event and between each well. Monitoring equipment shall be washed using soapy water consisting of Liqui-noxTM or AlconoxTM followed by one rinse of clean tap water and then two rinses of distilled water.

Groundwater Purging and Sampling

Prior to groundwater purging and sampling, the historical analytical data of each monitoring well shall be reviewed to determine the order in which the wells should be purged and sampled (i.e. cleanest to dirtiest). No purging or groundwater sampling shall be performed on wells with a measurable thickness of SPH or floating SPH globules. If a sheen is observed, the well should be purged and a groundwater sample collected only if no SPH is present. Wells shall be purged either by hand using a disposal or PVC bailer or by using an aboveground pump (e.g. peristaltic or WatteraTM) or down-hole pump (e.g. GrundfosTM or DC Purger pump).

Groundwater wells shall be purged approximately three to ten well-casing volumes (depending on the regulatory agency requirements) or until groundwater parameters of temperature, pH, and conductivity have stabilized to within 10% for three consecutive readings. Temperature, pH, and conductivity shall be measured and recorded at the start of purging, once per well casing volume removed, and at the completion of purging. The total volume of groundwater removed shall be recorded along with any other notable physical characteristic such as color and odor. If required, field parameters such as turbidity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) shall be measured prior to collection of each groundwater sample.

Groundwater samples shall be collected after the well has been purged and allowed to recharge to 80% of the pre-purging static water level, or if the well is slow to recharge, after waiting a minimum of 2 hours. Groundwater samples shall be collected using clean disposable bailers or

pumps (if an operating remediation system exists on site and the project manager approves of its use for sampling) and shall be decanted into clean containers supplied by the analytical laboratory. New latex gloves and disposable tubing or bailers shall be used for sampling each well. If a PVC bailer or down-hole pump is used for groundwater purging, it shall be decontaminated before purging each well by using soapy water consisting of Liqui-noxTM or AlconoxTM followed by one rinse of clean tap water and then two rinses of distilled water. If a submersible pump with non-dedicated discharge tubing is used for groundwater purging, both the inside and outside of pump and discharge tubing shall be decontaminated as described above.

Sample Handling

Except for samples that will be tested in the field, or that require special handling or preservation, samples shall be stored in coolers chilled to 4° C for shipment to the analytical laboratory. Samples shall be labeled, placed in protective foam sleeves or bubble wrap as needed, stored on crushed ice at or below 4° C, and submitted under chain-of-custody (COC) to the laboratory. The laboratory shall be notified of the sample shipment schedule and arrival time. Samples shall be shipped to the laboratory within a time frame to allow for extraction and analysis to be performed within the standard sample holding times.

Sample labels shall be filled out using indelible ink and must contain the site name; field identification number; the date, time, and location of sample collection; notation of the type of sample; identification of preservatives used; remarks; and the signature of the sampler. Field identification must be sufficient to allow easy cross-reference with the field datasheet.

All samples submitted to the laboratory shall be accompanied by a COC record to ensure adequate documentation. One copy of the COC shall be kept in the QA/QC file and another copy shall be retained in the project file. Information on the COC shall consist of the project name and number; project location; sample numbers; sampler/recorder's signature; date and time of collection of each sample; sample type; analyses requested; name of person receiving the sample; and date of receipt of sample.

Laboratory-supplied trip blanks shall accompany the samples and be analyzed to check for crosscontamination, if requested by the project manager.

Well Development

Wells shall be developed using a combination of groundwater surging and extraction. A surge block shall be used to swab the well and agitate the groundwater in order to dislodge any fine sediment from the sand pack. After approximately ten minutes of swabbing the well, groundwater shall be extracted from the well using a bailer, pump and/or reverse air-lifting through a pipe to remove the sediments from the well. Alternating surging and extraction shall continue until the sediment volume in the groundwater (i.e. turbidity) is negligible, which typically requires extraction of approximately ten well-casing volumes of groundwater. Preliminary well development usually is performed during well installation prior to placing the sanitary surface seal to ensure sand pack stabilization. Well development that is performed after surface seal installation, should occur 72 hours after seal installation to ensure that the cement has had adequate time to set.

S Same

2

Sec. 1. 2.

1.1

N. S. W. S.

1888

10.00

Tano -

114.83

1. 1. S.

1. C. 20

Sec. Sec.

and the second

and the second

All maren

A. L. Martin

Cardina .

197 - AR

Waste Handling and Disposal

Groundwater extracted during development and sampling shall be stored onsite in sealed U.S. DOT H17 55-gallon drums. Each drum shall be labeled with the contents, date of generation, generator identification and consultant contact. If hydrocarbon concentrations in the purged groundwater are below ADEC cleanup levels or the site is in a remote area (pending ADEC approval) groundwater will be discharged to the ground surface, at least 100 feet from the nearest surface water body.

\\DEN-S1\Shared\Denver\Alaska\AK SOP\CRA Alaska SOP\AK Groundwater Monitoring and Sampling SOP - CRA.doc

APPENDIX C

LABORATORY ANALYTICAL REPORT

2.2.

. . . .

20 10

.

GW-175

Subaittal

01/04/11

* printed from electronic

Technical Report for

DCP Midstream, LLC

CRA: Hobbs

Accutest Job Number: T65784

Sampling Date: 12/16/10

Report to:

DCP Midstream, L.P. 370 17th Street Suite 2500 Denver, CO 80202 SWWeathers@dcpmidstream.com; jornelas@craworld.com

ATTN: Mr. Steve Weathers

Total number of pages in report: 26

Paul K Canevaro

Paul Canevaro Laboratory Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Georgia Jones 713-271-4700

Certifications: TX (T104704220-10-3) AR (88-0756) FL (E87628) KS (E-10366) LA (85695/04004) OK (9103) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Gulf Coast • 10165 Harwin Drive • Suite 150 • Houston, TX 77036 • tel: 713-271-4700 • fax: 713-271-4770 • http://www.accutest.com

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: T65784-1: MW-A	5
2.2: T65784-2: MW-B	6
2.3: T65784-3: MW-C	7
2.4: T65784-4: MW-D	8
2.5: T65784-5: MW-E	9
2.6: T65784-6: MW-F	10
2.7: T65784-7: DUPLICATE	11
2.8: T65784-8: TRIP BLANK	12
Section 3: Mise, Forms	13
3.1: Chain of Custody	14
Section 4: GC/MS Volatiles - QC Data Summaries	
4.1: Method Blank Summary	18
4.2: Blank Spike Summary	21
4.3: Matrix Spike/Matrix Spike Duplicate Summary	

Sample Summary

DCP Midstream, LLC

CRA: Hobbs

Job No: T65784

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
T65784-1	12/16/10	13:55	12/21/10	AQ	Ground Water	MW-A
T65784-2	12/16/10	15:00	12/21/10	AQ	Ground Water	MW-B
T65784-3	12/16/10	14:40	12/21/10	AQ	Ground Water	MW-C
T65784-4	12/16/10	13:12	12/21/10	AQ	Ground Water	MW-D
T65784-5	12/16/10	14:10	12/21/10	AQ	Ground Water	MW-E
Т65784-6	12/16/10	13:31	12/21/10	AQ	Ground Water	MW-F
T65784-7	12/16/10	00:00	12/21/10	AQ	Ground Water	DUPLICATE
T65784-8	12/16/10	00:00	12/21/10	AQ	Trip Blank Water	TRIP BLANK

Section 2

Sample Results

Report of Analysis

Accutest Laboratories

460-00-4

			_		-			
Client Sam Lab Sample Matrix: Method: Project:	e ID: T6578 AQ - SW84				Date R	ampled: eceived: t Solids:	12/21/10	
Run #1 Run #2	File ID F030968.D	DF 1	Analyzed 12/24/10	By AK	Prep Da n/a	te	Prep Batch n/a	Analytical Batch VF4097
Run #1 Run #2	Purge Volum 5.0 ml	e						
Purgeable	Aromatics							
CAS No.	Compound		Result	RL	MDL	Units	Q	
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)		ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00050 0.00043 0.00055 0.0017	mg/l		
CAS No.	Surrogate R	ecoveries	Run# 1	Run# 2	Limit	ts		
1868-53-7 17060-07-0 2037-26-5	Dibromofluor 1,2-Dichloro Toluene-D8		88% 85% 91%		79-12 75-12 87-11	21%		

94%

4-Bromofluorobenzene

J = Indicates an estimated value

80-133%

N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

B = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

le ID: T6578 AQ - 0 SW84	4-2 Ground Wate 6 8260B	Date Sampled: 12/16/10 Date Received: 12/21/10 Percent Solids: n/a							
File ID F030970.D	DF 1	Analyzed 12/24/10	By AK	Prep Date n/a	3	Prep Batch n/a	Analytical Batch VF4097		
Purge Volume 5.0 ml	;								
Aromatics									
Compound		Result	RL	MDL U	J nits	Q			
Benzene		0.154	0.0020	0.00050 n	ng/l				
Toluene		0.0146	0.0020						
		0.0528	0.0020	0.00055 n	ng/l				
Xylene (total)		0.239	0.0060	0.0017 n	ng/l				
Surrogate Recoveries			Run# 2 Limits						
Surrogate Re	coveries	Run# 1	Run# 2	Limits					
Surrogate Re Dibromofluor		Run# 1 87%	Run# 2	Limits 79-1229	%				
-	omethane		Run# 2						
	e ID: T6578 AQ - 0 SW84 CRA: File ID F030970.D Purge Volume 5.0 ml Aromatics Compound Benzene Toluene Ethylbenzene	e ID: T65784-2 AQ - Ground Wate SW846 8260B CRA: Hobbs File ID DF F030970.D 1 Purge Volume 5.0 ml Aromatics Compound Benzene Toluene	le ID: T65784-2 AQ - Ground Water SW846 8260B CRA: Hobbs File ID DF Analyzed F030970.D 1 12/24/10 Purge Volume 5.0 ml Aromatics Compound Result Benzene 0.154 Toluene 0.0146 Ethylbenzene 0.0528	le ID: T65784-2 AQ - Ground Water SW846 8260B CRA: Hobbs File ID DF Analyzed By F030970.D 1 12/24/10 AK Purge Volume 5.0 ml Aromatics Compound Result RL Benzene 0.154 0.0020 Toluene 0.0146 0.0020 Ethylbenzene 0.0528 0.0020	le ID: T65784-2 Date Sar AQ - Ground Water Date Rec SW846 8260B Percent & CRA: Hobbs File ID DF Analyzed By Prep Date F030970.D 1 12/24/10 AK n/a Purge Volume 5.0 ml Aromatics Compound Result RL MDL U Benzene 0.154 0.0020 0.00050 r Toluene 0.0146 0.0020 0.00043 r Ethylbenzene 0.0528 0.0020 0.00055 r	le ID: T65784-2 AQ - Ground Water SW846 8260B CRA: Hobbs Date Sampled: Date Received: Percent Solids: File ID DF Analyzed By Prep Date F030970.D 1 12/24/10 AK n/a Purge Volume 5.0 ml	le ID: T65784-2 AQ - Ground Water SW846 8260B CRA: Hobbs Date Sampled: 12/16/10 Date Received: 12/21/10 12/21/10 File ID DF Analyzed By Prep Date Prep Batch F030970.D 1 12/24/10 AK n/a n/a Purge Volume 5.0 ml Aromatics Compound Result RL MDL Units Q Benzene 0.154 0.0020 0.00050 mg/l Toluene 0.0146 0.0020 0.00043 mg/l Kuplenzene 0.0528 0.0020 0.00055 mg/l		

93%

ND = Not detected MDL - Method Detection Limit

4-Bromofluorobenzene

RL = Reporting Limit

460-00-4

J = Indicates an estimated value

80-133%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

E = Indicates value exceeds calibration range

				Repor	t of An	alysis			Page 1 of 1
Client Sample Lab Sample Matrix: Method: Project:		MW-C T65784 AQ - G SW846 CRA: H	round Water 8260B			Date R	ampled: .eceived t Solids	: 12/21/10	
Run #1 Run #2	File ID F03101		DF 1	Analyzed 12/28/10	By AK	Prep Da n/a	ite	Prep Batch n/a	Analytical Batch VF4099
Run #1 Run #2	Purge 5.0 ml	Volume							
Purgeable A	Aromati	cs							
CAS No.	Comp	ound		Result	RL	MDL	Units	Q	
71-43-2 108-88-3 100-41-4 1330-20-7	•			0.0107 0.00059 0.0051 0.0252	0.0020 0.0020 0.0020 0.0060	0.00050 0.00043 0.00055 0.0017	mg/l	J	
CAS No.	Surrog	gate Rec	overies	Run# 1	Run# 2	Limi	ts		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-Di Toluer	mofluoro ichloroetl 1e-D8 nofluoro	ane-D4	89% 87% 97% 88%		79-12 75-12 87-11 80-13	21% 19%		

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis	5
--------------------	---

Client San Lab Samp Matrix: Method: Project:	ole ID: T657 AQ - SW84		ater		Date Sample Date Receive Percent Solie	ed: 12/21/10	
Run #1 Run #2	File ID F031012.D	DF 1	Analyzed 12/28/10	By AK	Prep Date n/a	Prep Batch n/a	Analytical Batch VF4099
Run #1 Run #2	Purge Volum 5.0 ml	e				· ·	
Purgeable	Aromatics						
CAS No.	Compound		Result	RL	MDL Unit	s Q	

	- · · ·			
71-43-2	Benzene	ND	0.0020	0.00050 mg/l
108-88-3	Toluene	ND	0.0020	0.00043 mg/l
100-41-4	Ethylbenzene	ND	0.0020	0.00055 mg/l
1330-20-7	Xylene (total)	ND	0.0060	0.0017 mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	89%		79-122%
17060-07-0	1,2-Dichloroethane-D4	89%		75-121%
2037-26-5	Toluene-D8	98 %		87-119%
100 00 1				00 10001
460-00-4	4-Bromofluorobenzene	90%		80-133%

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

		Repo	rt of An	alysis		Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:		ter		Date Sampled Date Received Percent Solids	: 12/21/10	
Run #1 Run #2	File ID DF F031013.D 1	Analyzed 12/28/10	By AK	Prep Date n/a	Prep Batch n/a	Analytical Batch VF4099
Run #1 Run #2	Purge Volume 5.0 ml					
Purgeable A	Aromatics					
CAS No.	Compound	Result	RL	MDL Units	Q	
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00050 mg/l 0.00043 mg/l 0.00055 mg/l 0.0017 mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	89% 89% 98% 88%		79-122% 75-121% 87-119% 80-133%		

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

 $[\]vec{B}$ = Indicates analyte found in associated method blank

1868-53-7

17060-07-0

2037-26-5

460-00-4

				Repo	rt of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID:	MW-F T65784 AQ - G SW846 CRA: F	round Wates 8260B	r		2	ampled: eceived: t Solids:	12/21/10	
Run #1 Run #2	File ID F031031	.D	DF 1	Analyzed 12/28/10	By AK	Prep Da n/a	te	Prep Batch n/a	Analytical Batch VF4100
Run #1 Run #2	Purge V 5.0 ml	olume							
Purgeable	Aromatic	s							
CAS No.	Compo	und		Result	RL	MDL	Units	Q	
71-43-2 108-88-3 100-41-4 1330-20-7	Benzen Toluene Ethylbe Xylene	e enzene		ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00050 0.00043 0.00055 0.0017	mg/l		
CAS No.	Surrog	ate Rec	overies	Run# 1	Run# 2	Limit	ts		

85%

83%

94%

89%

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

79-122%

75-121%

87-119%

80-133%

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

2.6

			1		<u> </u>			8
Client Samj Lab Sample Matrix: Method: Project:	e ID: T65 AQ SW3	PLICATE 784-7 - Ground Water 846 8260B A: Hobbs			Date Sa Date R Percent	eceived:	12/21/10	
Run #1 Run #2	File ID F031032.D	DF 1	Analyzed 12/28/10	By AK	Prep Da n/a	te	Prep Batch n/a	Analytical Batch VF4100
Run #1 Run #2	Purge Volui 5.0 ml	me						
Purgeable A	Aromatics							
CAS No.	Compound	l	Result	RL	MDL	Units	Q	
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzer Xylene (tot		0.0054 ND 0.0028 0.0126	0.0020 0.0020 0.0020 0.0060	0.00050 0.00043 0.00055 0.0017	mg/l		
CAS No.	Surrogate	Recoveries	Run# 1	Run# 2	Limit	S		
1868-53-7 17060-07-0 2037-26-5 460-00-4	1,2-Dichlor Toluene-D8	oromethane coethane-D4 3 orobenzene	90% 86% 101% 94%		79-12 75-12 87-11 80-13	1% 9%		

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

			Repo	rt of An	alysis		Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	e ID: T657 AQ - SW84	BLANK 84-8 Trip Blank V 16 8260B : Hobbs	Water		Date Sample Date Receiv Percent Soli	ed: 12/21/10	
Run #1 Run #2	File ID F031000.D	DF 1	Analyzed 12/28/10	By AK	Prep Date n/a	Prep Batch n/a	Analytical Batch VF4099
Run #1 Run #2	Purge Volum 5.0 ml	e					
Purgeable	Aromatics						
CAS No.	Compound		Result	RL	MDL Unit	s Q	
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total		ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00050 mg/l 0.00043 mg/l 0.00055 mg/l 0.0017 mg/l	l	

Run# 2

Limits

79-122%

75-121%

87-119%

80-133%

Run#1

90%

87%

90%

100%

ND = Not detectedMDL - Method Detection Limit

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

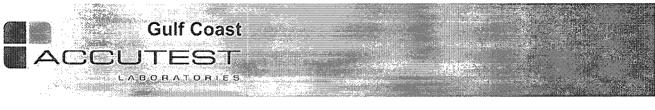
4-Bromofluorobenzene

Toluene-D8

CAS No.

1868-53-7

2037-26-5


460-00-4

17060-07-0

RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Custody Documents and Other Forms Includes the following where applicable: • Chain of Custody	Misc. Forms	на А. Алана - <u>11 - Алан</u>
	Custody Documents and Other Fo	rms
	Includes the following where applicable	
• Cham of Custody		

	n Accutest		1	CHA	٩IN	N C	F	C	CU	S	ГС	D	Y											
	Laberatorius												FED-E	(Trackin	g#				Bottle	Order C	ontrol #	. <u></u>		Page of
	10165 Harwin, Suite 150 - Hous	ston, TX 77	036 - 7	713-271	-470() fax	: 71	3-2	271-	477	70		Accute	st Quele	4				Accutr	t Joly	1	6	5	784
	Client / Reporting Information			P	roject in	formati	on a										Ι	Reque	sted A	nalys	es			Matrix Codes
ompany Name	a		Project Na										7]				1				1	DW - Drinking Water
	Rovers and Associates			lidstream	-Hobb	s GN0							4						1					GW - Ground Water WW - Wastewater
oject Contaci			911 to						e Altn.															SO - Soil
ames Orne Idress	eleas		Address	idstream-	Hobbs		Slev	e vi	Veath	ers_			-	1										SL - Sludge
	Loop 250 W		Ruoreaa												Ì.									OI - Oil
135 SOULD	State	Zip	City				State				2	lp	1							1	i i			LIQ - Liguld
lidland	Texas 70	703											1	1										SOL - Other Split
ione No.		x No.	Phone No							F	ax No.		1						.	1.				ļ
32 686-00	86																							
implers's Nan). PRIMERA		Client Pur	chase Order	Ħ								Ĭ											
Accutest Sample #	Field ID / Point of Collection		Callection			# of			r of pi egge	eser		stiles	8260BT											LAB USE ONL
-	MW-A/	Date 12-10		1353	Matrix GW	bottles 3	3	2	I Y	<u>à</u>	2		X					<u> </u>				+		
2	MW-B	12-16		1500	GW	3	3			-			X							1		+		
3	MW-C	12-16	5-10	1440	GW	3	3						Х											
4	MW-D	12-16		and the second second	GW.	3	3						X									1.		
5	MW-E	12-16		1410	GW.	• 3	3						X		ļ	ļ					<u> </u>			
6	MW-F	12-16		1331	GW	3	3						X		ļ						_			
7	Duplicate	12-16	70		GW	3	3			ļ		_	X					ļ	ļ			<u> </u>		
C	Trip Blank				GW	3	3	_		ļ		_	X	ļ		<u> </u>					4	<u> </u>		
and the second	Turnaround Time (Business days)				GW	3 Deliverab	3					<u> </u>		-	<u> </u>				mments	(Paul		1		
	10 Day STANDARD Approved		LAT		nercial "A			TRR		****	nat ky ni a s	- Public La Calc					<u> </u>	0.0		1 Ngin	aina		1	
	7 Day	aji bit.		X Com					Forma	1														
	4 Day RUSH				ced Tier 1			Othe		·		-		-										
	1 Day EMERGENCY			Full C)ato Pack	400	_					-												
	2 Day EMERGENCY					-																		
	1 Day EMERGENCY			Comm	ercial "A"	'= Resul	ts Only	,																
X	Other 10 calen	dar day		Comm	erciat "B'	* = Resul	ts & St	anda	nd QC					\vdash										
Real tin	ne analytical data available via Lablink			<u> </u>										1										
Real Property in the left		Date Time:	CUMENTÉ	Received B		SAMPLE	\$ CHA	NGE			N, INCI red By:	UDIN	3 COUR	IER DEL	Date 1				Receiv	nel Bur		117	(1.11 1
Bellinguished		12-20-1	DILD	1	•				2	quisi 1	isu ay:	IE	ΓX .	12/2			940	2	2	20	in	y	Lu	latter
Relinquistied	ling:	Date Time;	- / 50	Received B	r:				Rel	Inquís	ied By:		1. 1	19	Date 1				Receiv	ed By:				
3				3					4										4				,	
Relinquished	f by:	Date Time:		Received B	r:				Cut	tody \$	col #			Proser	ved wh	ere appi	cable					100	Coole	Temp. [1 10,

.

T65784: Chain of Custody Page 1 of 3

ŝ

Accutest Job Number: T65784 Client: Conestage Rovers+ Associates Date/Time Received: 12/2//10 0940
of Coolers Received: Chem. Comparison of the Coolers Received: Thermometer #: L Thermometer #: Temperature Adjustment Factor:
Cooler Temperatures (initial/adjusted): #1: 4.6°C #2: #3: #4: #5:
#6: #7: #8: #9: #10 #11 #12
Method of Delivery: FEDEX UPS Accutest Courier Greyhound Delivery Other
COOLER INFORMATION SAMPLE INFORMATION TRIP BLANK INFORMATION Custody seal missing or not intact Sample containers received broken Trip Blank on COC but not received Trip Blank received in cooler VOC vials have headspace Trip Blank received but not on COC Wet ice received in cooler Do n COC does not match label(s) Trip Blank not intact Chain of Custody not received Sample Ibtels missing or requested analysis on COC Sample listels missing or requested analysis Received Soil TB Coc not properly executed Sample received improperly preserved Number of Encores?
TECHNICIAN SIGNATURE/DATE: Dameel Auchletter 12/21/10 INFORMATION AND SAMPLE LABELING VERIFIED BY: 6 (12.21.0 ••••••••••••••••••••••••••••••••••••

SAMPLE INSPECTION FORM

 \sim

T65784: Chain of Custody Page 2 of 3

دی سنہ

SAMPLE RECEIPT LOG

DATE/TIME RECEIVED: 13/21/10 0940

CLIENT: <u>Conestaga Rovers + Associates</u> INITIALS:

INITIALS: DEA

OOLER#	SAMPLE ID	FIELD ID	DATE	MATRIX	VOL	BOTTLE #	LOCATION	PRESERV	PH	1
		mw-A	12-16-10 1355	i W	40m1	1-3	VR	1 (2) 3 4 5 6 7 8	<2	>12
	3	mw-B	150	0]		}		1 (2) 3 4 5 6 7 8	<2	>12
	3	mw-C	141	to				1 2 3 4 5 0 7 8	<2	>12
	4	mw-D	131	2				1 (2) 3 4 5 (4) 7 8	<2	>12
	5	MW-E	141	5 .				1 (2) 3 4 5 8 7 8	<2	>12
	6	mw-F	133					1 (2) 3 4 5 6 7 8	<2	>12
	7	DUPLICATE	¥	- ¥	U	V	V	1 2 3 4 5 6 7 8	<2	>12
	8	TRIP BLANK	12/2 1234	WTB	40 m]	1-2	VR	1 <u>2</u> 3 4 5 6 7 6	<2	>12
								1 2 3 4 5 6 7 8		>12
								1 2 3 4 5 6 7 8		>12
								1 2 3 4 5 6 7 8	<2	>12
								1 2 3 4 5 6 7 8	<2	>12
			.1					1 2 3 4 5 6 7 8	<2	>12
			NA					1 2 3 4 5 6 7 8	<2	>12
		<u></u>	IP					1 2 3 4 5 6 7 8	<2	>12
			12/21/10					1 2 3 4 5 6 7 8	<2	>12
		/	1					1 2 3 4 5 6 7 8	<2	>12
								1 2 3 4 5 6 7 8	<2	>12
					1			1 2 3 4 5 8 7 8	<2	>12
		6						1 2 3 4 5 6 7 8	<2	>12
	~~~~~						·····	1 2 3 4 5 6 7 8	<2	>12
74						1		1 2 3 4	<2	>12

PRESERVATIVES: 1: None 2: HCL 3: HNO3 4: H2SO4 5: NAOH 6: DI 7: MeOH 8: Other

LOCATION: 1: Walk-In #1 (Waters) 2: Walk-In #2 (Soils) VR: Volatile Fridge M: Metals SUB: Subcontract EF: Encore Freezer

Rev 8/13/01 ewp

T65784: Chain of Custody Page 3 of 3





# QC Data Summaries

**Gulf Coast** 

CL

L

÷

JER

LABORATORIES

EST

### Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries



## Method Blank Summary

Job Number Account: Project:	r: T65784 DUKE DCP Midstr CRA: Hobbs	ream, LLC					-
Sample VF4097-ME	File ID DF F030951.D 1	F Analyzed 12/24/10	By AK	Prer n/a	) Date	Prep Batch n/a	Analytical Batch VF4097
The QC rep T65784-1, T	orted here applies to th	ne following sample	es:			Method: SW84	6 8260B
CAS No.	Compound	Result	RL	MDL	Units	Q	
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	2.0 2.0 2.0 6.0	0.50 0.55 0.43 1.7	ug/l ug/l ug/l ug/l		

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	<b>89</b> %	79-122%
17060-07-0	1,2-Dichloroethane-D4	86%	75-121%
2037-26-5	Toluene-D8	91%	87-119%
460-00-4	4-Bromofluorobenzene	93%	80-133%





## Method Blank Summary

Method Bl	lank Summa	ary					Page 1 of 1
Job Number:	T65784						
Account:	DUKE DCP M	idstream	, LLC				
Project:	CRA: Hobbs						
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF4099-MB	F030999.D	1	12/28/10	AK	n/a	n/a	VF4099
					·····	·	
The QC reported here applies to the following samples:					]	Method: SW84	6 8260B
T65784-3, T65	784-4, T65784-5	, T65784	-8				

MDL Units Q

CAS No. Compound Result RL

71-43-2	Benzene	ND	2.0	0.50	ug/l
100-41-4	Ethylbenzene	ND	2.0	0.55	ug/l
108-88-3	Toluene	ND	2.0	0.43	ug/l
1330-20-7	Xylene (total)	ND	6.0	1.7	ug/l
					-

CAS No.	Surrogate Recoveries		Limits
	Dibromofluoromethane	86%	79-122%
17060-07-0	1,2-Dichloroethane-D4	84%	75-121%
2037-26-5	Toluene-D8	<b>96</b> %	87-119%
460-00-4	4-Bromofluorobenzene	86%	80-133%

ACCUTEST T65784 LABONATORIES

4.1.2

# Method Blank Summary

Job Number: Account: Project:	T65784 DUKE DCP M CRA: Hobbs	idstream	, LLC				0
Sample VF4100-MB	File ID F031024.D	DF 1	Analyzed 12/28/10	By AK	Prep Date n/a	Prep Batch n/a	Analytical Batch VF4100
The QC report	ted here applies	to the fo	blowing sample	s:		Method: SW84	6 8260B

T65784-6, T65784-7

CAS No.	Compound	Result	RL	MDL	Units Q
108-88-3	Benzene Ethylbenzene Toluene Xylene (total)	ND	2.0 2.0 2.0 6.0	$0.50 \\ 0.55 \\ 0.43 \\ 1.7$	ug/l ug/l ug/l ug/l

.

CAS No.	Surrogate Recoveries		Limits
17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	83% 82% 95% 89%	79-122% 75-121% 87-119% 80-133%



Page 1 of 1

4.1.3

# Blank Spike Summary

Job Number:	T65784
Account:	DUKE DCP Midstream, LLC
Project:	CRA: Hobbs

The OC reported here applies to the following samples: Method: SW846 8260B	Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	VF4097-BS	F030949.D	1	12/24/10	AK	n/a	n/a	VF4097
	The QC reported here applies to the following samples:						Method: SW84	6 8260B

T65784-1, T65784-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	25 25 25 75	22.6 22.3 23.1 66.5	90 89 92 89	76-118 75-112 77-114 75-111
CAS No.	Surrogate Recoveries	BSP	Lir	nits	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	88% 87% 91% 91%	75-	122% 121% 119% 133%	

Page 1 of 1



# Blank Spike Summary

Job Number:	T65784
Account:	DUKE DCP Midstream, LLC
Project:	CRA: Hobbs

Project:	CRA: Hobbs							4
Sample	File ID	DF	Analyzed	<b>Ву</b>	Prep Date	Prep Batch	Analytical Batch	.2.2
VF4099-BS	F030998.D	1	12/27/10	АК	n/a	n/a	VF4099	

The QC reported here applies to the following samples:

Method: SW846 8260B

T65784-3, T65784-4, T65784-5, T65784-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	22.6	90	76-118
100-41-4	Ethylbenzene	25	21.6	86	75-112
108-88-3	Toluene	25	23.6	94	77-114
1330-20-7	Xylene (total)	75	63.3	84	75-111
CAS No.	Surrogate Recoveries	BSP	Lir	nits	
1868-53-7	Dibromofluoromethane	<b>88</b> %	79-	122%	
17060-07-0	1,2-Dichloroethane-D4	<b>8</b> 5%	75-	121%	
2037-26-5	Toluene-D8	<b>99</b> %	87-	119%	
460-00-4	4-Bromofluorobenzene	88%	80-	133%	

*****

## Blank Spike Summary

Job Number: Account: Project:	T65784 DUKE DCP M CRA: Hobbs	idstream	, LLC				
Sample VF4100-BS	File ID F031022.D	DF 1	Analyzed 12/28/10	By AK	Prep Date n/a	Prep Batch n/a	Analytical Batch VF4100
The QC report	ted here applies	to the fo	llowing sample	s:	]	Method: SW84	6 8260B

Spike BSP BSP CAS No. Compound ug/l % Limits ug/l 71-43-2 Benzene 25 20.9 84 76-118 100-41-4 Ethylbenzene 25 21.0 75-112 84 108-88-3 Toluene 22.7 77-114 25 91 1330-20-7 Xylene (total) 75 62.5 83 75-111 CAS No. Surrogate Recoveries BSP Limits

1868-53-7	Dibromofluoromethane	85%	79-122%
17060-07-0	1,2-Dichloroethane-D4	84%	75-121%
2037-26-5	Toluene-D8	94%	87-119%
460-00-4	4-Bromofluorobenzene	88%	80-133%

23 of 26 23 of 26 265784

4.2.3

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number Account: Project:	T65784 DUKE DCP Midstrean CRA: Hobbs	n, LLC								
Sample	File ID DF	Analy	zed	By	Pre	p Date	Prep	Batch	Analyti	ical Batch
T65518-11M	S F030957.D 1	12/24	/10	AK	n/a	-	n/a		VF4092	
T65518-11M	SD F030958.D 1	12/24	/10	AK	n/a		n/a		VF4092	7
T65518-11 ^a	F030956.D 1	12/24	/10	AK	n/a		n/a		VF4093	7
The QC repo	orted here applies to the f	ollowing sa	mple	es:			Method:	SW846	8260B	
T65784-1, T	65784-2									
		T6551	8-11	Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
71-43-2	Benzene	61.1		25	71.4	41* ^b	73.6	50* ^b	. 3	76-118/16
100-41-4	Ethylbenzene	0.91	J	25	21.9	84	22.6	87	3	75-112/12
108-88-3	Toluene	6.2		25	28.1	88	29.4	93	5	77-114/12
1330-20-7	Xylene (total)	4.7	J	75	68.9	86	70.9	88	3	75-111/12
CAS No.	Surrogate Recoveries	MS		MSD	Т6	5518-11	Limits			
1868-53-7	Dibromofluoromethane	83%		87%	90	%	79-122	%		
17060-07-0	1,2-Dichloroethane-D4	82%		84%	90	%	75-121	%		
2037-26-5	Toluene-D8	86%*	C ·	91%	89	%	87-119	%		

92%

92%

80-133%

(a) Reported for QC purposes only.

4-Bromofluorobenzene

(b) Outside control limits due to high level in sample relative to spike amount.

86%

(c) Outside control limits.

460-00-4

Page 1 of 1

4.3.1 2



# Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	T65784
Account:	DUKE DCP Midstream, LLC
Project:	CRA: Hobbs

Sample T65879-1MS	File ID F031003.D	DF	Analyzed 12/28/10	By AK	Prep Date n/a	Prep Batch	Analytical Batch VF4099
T65879-1MSD	F031003.D	1	12/28/10	AK	n/a	n/a	VF4099
T65879-1	F031002.D	1	12/28/10	AK	n/a	n/a	VF4099

The QC reported here applies to the following samples:

Method: SW846 8260B

T65784-3, T65784-4, T65784-5, T65784-8

CAS No.	Compound	T65879-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	2.0 U	25	24.2	97	24.3	97	0	76-118/16
100-41-4	Ethylbenzene	2.0 U	25	23.0	92	22.8	91	1	75-112/12
108-88-3	Toluene	2.0 U	25	25.3	101	25.4	102	0	77-114/12
1330-20-7	Xylene (total)	6.0 U	75	67.8	90	67.6	90	0	75-111/12
CAS No.	Surrogate Recoveries	MS	MSD	T65	5879-1	Limits			
1868-53-7	Dibromofluoromethane	90%	91%	<u>9</u> 19	6.	<b>79-122</b> %	6		
17060-07-0	1,2-Dichloroethane-D4	89%	89%	<u>9</u> 19	6 .	75-121%	6		
2037-26-5	Toluene-D8	98%	99%	103	%	87-119%	6		
460-00-4	4-Bromofluorobenzene	89%	87%	<b>9</b> 29	6	80-1339	6		

Page 1 of 1

4.3.2 2

## Matrix Spike/Matrix Spike Duplicate Summary Job Number: T65784

Account: Project:	DUKE DCP M CRA: Hobbs	idstream	, LLC				
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
T65973-1MS	F031028.D	1	12/28/10	AK	n/a	n/a	VF4100
T65973-1MSD	F031029.D	1	12/28/10	AK	n/a	n/a	VF4100
T65973-1	F031027.D	1	12/28/10	AK	n/a	n/a	VF4100

ļ

The QC reported here applies to the following samples:

Method: SW846 8260B

T65784-6, T65784-7

CAS No.	Compound	T65973-1 ug/l (	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	0.90 J ND ND ND	25 25 25 75	23.7 22.9 24.9 69.2	91 92 100 92	23.9 22.8 24.7 68.2	92 91 99 91	1 0 1 1	76-118/16 75-112/12 77-114/12 75-111/12
CAS No.	Surrogate Recoveries	MS	MSD	T6	5973-1	Limits			
1868-53-7 17060-07-( 2037-26-5 460-00-4	Dibromofluoromethane ) 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	89% 87% 100% 93%	88% 86% 99% 91%	869 849 969 889	% %	79-122 75-121 87-119 80-133	% %		



Page 1 of 1

4.3.3

6

26 of 26 ACCUTEST T65784