1R-426-279

REPORTS

DATE:

8-26-10

BD Jct. C 23-1 2010

DISCLOSURE

RICE OPERATING COMPANY JUNCTION BOX DISCLOSURE* REPORT

BOX LOCATION

Bineton-Dinkerd ct. C 23+1 C 23 228 37E Lea Leagn Le		SWD SYSTEM	JUNCTION	UNIT	SECTION			COUNT	/ BOX DI	IMENSIONS - FEE	ĒT
Depth to Groundwater 59 feet NMOCD SITE ASSESSMENT RANKING SCORE: 20 Date Started 1/27/2010 Date Completed 3/23/2010 OCD Witness no composition of the composition o		Blinebry-Drinkard (BD) LAND TYPE: BLM STATE FEE LANDOWNER W Depth to Groundwater 59 feet NMOCD SITE Date Started 1/27/2010 Date Completed 3/23/2 Soil Excavated 77.8 cubic yards Excavation Length Soil Disposed 156 cubic yards Offsite Facility STATE Procure 5-point composite sample of bottom and 4-point or NMOCD guideline Procure 5-point composite sample of bottom and 4-point or NMOCD guideline Sample PID (field) GRO DRO Chlc mg/kg mg/			37E Lea		5'				
Depth to Groundwater 59 feet NMOCD SITE ASSESSMENT RANKING SCORE: 20 Date Started 1/27/2010 Date Completed 3/23/2010 OCD Witness no composition of the composition o		!	1		<u> </u>	1	L	_			
Date Started 1/27/2010 Date Completed 3/23/2010 OCD Witness no Soil Excavated 77.8 cubic yards Excavation Largth 35 width 5 Depth 12 feet Soil Excavated 77.8 cubic yards Offsite Facility Sundance Location Eunice, NM Soil Disposed 156 cubic yards Offsite Facility Sundance Location Eunice, NM Procure 5-point composite sample of bottom and 4-point composite sample of sidewalls. TPH and Chloride laboratory test results completed by using an approved lab and testing procedures pursuant to NMOCD guidelines. Sample PID (field) GRO DRO Chlorides mg/kg mg/kg mg/kg mg/kg 4-WALL COMP. 0.1 <10.0 <10.0 794 Mg/kg Mg/k		LAND TYPE:	BLM	STATE	FEE LAI	NDOWNER	Walco	Ranch, LL	COTHER_		
Soil Disposed 156 cubic yards Offsite Facility Sundance Location Eunice, NM FINAL ANALYTICAL RESULTS: Sample Date 2/24/2010 Sample Depth 12 ft. Procure 5-point composite sample of bottom and 4-point composite sample of sidewalls. TPH and Chloride laboratory test results completed by using an approved lab and testing procedures pursuant to NMCCD guidelines. Sample PID (fled) GRO DRO Chlorides to NMCD guidelines. Sample PID (fled) GRO DRO Chlorides mg/kg 4-WALL COMP, 0.1 < 10.0 < 10.0 < 744 4-WALL COMP, 0.3 < 10.0 < 10.0 < 12.200 BOTTOM COMP, 0.3 < 10.0 < 10.0 1.310 Sample Description of Remedial Action: This junction box and line were eliminated furing the pipeline replacement/upgrade program. After the former junction box was amoved, an investigation was conducted using a backheb to collect samples at regular intervals producing a 35-6x12-ft deep excavation. Chloride field tests were performed on gloring the pipeline replacement/upgrade program. After the former junction box was ample which did not rolent with depth. Organic vapors, measured using a PID, 10' 4.129 (surfect) 10' 4.1		Depth to Grou	ndwater	59	_feet	NMO	CD SITE AS	SESSME	NT RANKING S	CORE:2	20
FINAL ANALYTICAL RESULTS: Sample Date 224/2010 Sample Depth 12 ft. Procure 5-point composite sample of bottom and 4-point composite sample of sidewalls. TPH and Chloride laboratory test results completed by using an approved lab and testing procedures pursuant to NMCD guidelines. Sample PID (field) GRO DRO Citorides Manager Manage		Date Started	1/27	2010	_ Date Co	mpleted	3/23/2010	oc	D Witness	no	
Procure 5-point composite sample of bottom and 4-point composite sample of sidewalls. TPH and Chloride laboratory test results completed by using an approved lab and testing procedures pursuant to NMCCD guidelines. Sample PID (field) GRO Chlorides May 1 May		Soil Excavated	77.8	cubic ya	rds Exc	cavation Le	ngth35	<u>. </u>	idth5	Depth12	feet
Procure 5-point composite sample of bottom and 4-point composite sample of sidewells. TPH and Chloride laboratory test results completed by using an approved lab and testing procedures pursuant to NMCCD guidelines. Sample PID (field) GRO DRO Chlorides mg/kg		Soil Disposed	156	cubic ya	irds Of	fsite Facility	S <u>un</u>	dance	Location _	Eunice, N	<u>IM</u>
Procure 5-point composite sample of bottom and 4-point composite sample of sidewells. TPH and Chloride laboratory test results completed by using an approved lab and testing procedures pursuant to NMCCD guidelines. Sample PID (field) GRO DRO Chlorides mg/kg		141 ABIAL V.T	10 A 1 DE	OLU TO.						45	2.5
Chloride laboratory test results completed by using an approved lab and testing procedures pursuant to NMOCD guidelines. Sample	-11	IAL ANALY I	ICAL RE	SUL 15:	Sample	e Date	2/24/2	2010	Sample De	oth12	<u>2 π.</u>
Location ppm mg/kg mg/kg mg/kg Mg/kg 4-Wall COMP. 0.1 <10.0 <10.0 784 4-Wall COMP. 0.3 <10.0 <10.0 1.310 bottom comp. 12' 2532 backfill COMP. 0.0 <10.0 <10.0 1.310 bottom comp. 12' 2532 backfill COMP. 0.0 <10.0 <10.0 1.310 bottom comp. 12' 2532 backfill comp. n/a 1.749 background 6' 211 sackfill comp. n/a 1.749 background 6' 2.391 metrovals producing a 35x5x12-ft deep excavation. Chloride field tests were performed on sackfill comp. n/a 1.749 background 6' 2.391 metrovals producing a 35x5x12-ft deep excavation composite samples were collected from the blended backfill, the bottom of the excavation of producing area. An 12' 4.616 composite samples were collected from the blended backfill the remaining excavation up to 6 ft. below ground surface (BGS). AT 6-5 ft. BGS a 1-ft. hick clay barrier was installed with a compaction test performed on 32/32/2010. The remaining backfill was hauled to an NMOCD approved actific sackfill comp. n/a 1.749 background for composite sackfill comp. n/a 1.749 background for composite sackfill comp. n/a 1.749 backg					sults complet	ted by using	an approved				
4-WALL COMP. 0.1 < 10.0 < 10.0 784 BOTTOM COMP. 0.3 < 10.0 < 10.0 1,310 bottom comp. 12' 2532 BACKFILL COMP. 0.0 < 10.0 1,310 bottom comp. 12' 2532 backfill comp. n/a 1,749 background 6' 211 Seneral Description of Remedial Action: This junction box and line were eliminated luring the pipeline replacement/upgrade program. After the former junction box was emoved, an investigation was conducted using a backhoe to collect samples at regular retrievals producing a 35x5x12-ft deep excavation. Chloride field tests were performed on retrievals producing a 35x5x12-ft deep excavation. Chloride field tests were performed on side and representative samples were collected from the blended backfill, the bottom of the excavation walls. The representative samples were sent to a commercial laboratory for analysis of chloride and TPH. The excavated soil was blended on site and returned to the excavation up to 6 ft. below ground surface (BGS). AT 6-5 ft. BGS a 1-ft. hick clay barrier was installed with a compaction test performed on 3/23/2010. The remaining backfill was hauled to an NMOCD approved backfilly. Clean imported soil was used to backfill the remaining excavation to ground surface and contoured to the surrounding area. An dentification plate was placed on the surface at the former junction box site to mark the presence of clay below. On 3/25/2010, the site was seeded with a blend of native vegetation and is expected to return to a productive capacity at a normal rate. NMOCD was notified of potential groundwater impact on 8/4/2010. ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (flekt) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve (NOPANY RICE OPERATING COMPANY RECE OPERATING COMPANY ASSEMBLED BY Larry Bruce Baker Jr. INITIAL JUBB. FOLICIENT STATES AND COMPANY RICE OPERATING COMPANY RECE OPERATING COMPANY RECE OPERATING COMPANY R				· 1	L.						
BOTTOM COMP. 0.3 <10.0 <10.0 <10.0 1,310 bottom comp. 12' 2532 backfill comp. n/a 1,749 background 6' 211 surp Buce Baker Jr. INITIAL LABLE PRIORITY BOTTOMAL PRIOR PRIORITY BOTTOMAL PRIORITIPE LARGE PRIORITY BOTTOMAL PRIORITY BOTTOMAL PRIORITIPE LARGE PRIORITY BOTTOMAL PRIORITIPE LARGE PRIORITY BOTTOMAL PRIORITIPE LARGE PRIORITY BOTTOMAL PRIORITY BOTTOMAL PRIORITIPE LARGE PRIORITY BOTTOMAL PRIORITIPE LARGE PRIORITY BOTTOMAL PRIORITIPE LARGE PRIORITY BOTTOMAL PRIORITIPE LARGE PRIORITY BOTTOMAL PRIORITIPE	_				9-9-						
BACKFILL COMP. 0.0 <10.0 <10.0 1,310 backfill comp. n/a 1,749 background 6" 211 2" 897 2"											
Seneral Description of Remedial Action: This junction box and line were eliminated ackground 6° 211 background 6° 211 ba											
After the former junction box and line were eliminated through the pipeline replacement/upgrade program. After the former junction box was emoved, an investigation was conducted using a backhoe to collect samples at regular intervals producing a 35x5x12-ft deep excavation. Chloride field tests were performed on the producing a 35x5x12-ft deep excavation. Chloride field tests were performed on the producing a 35x5x12-ft deep excavation. Chloride field tests were performed on the producing a 35x5x12-ft deep excavation. Chloride field tests were performed on the producing a 35x5x12-ft deep excavation. Chloride field tests were performed on the producing a 35x5x12-ft deep excavated soil was blended on site and representative composite samples were collected from the blended backfill, the bottom of the excavation, and the excavation walls. The representative samples were sent to a commercial laboratory for analysis of chloride and TPH. The excavated soil was blended on site and returned to the excavation up to 6 ft. below ground surface (BGS). AT 6-5 ft. BGS a 1-ft. hick clay barrier was installed with a compaction test performed on 3/23/2010. The remaining backfill was hauled to an NMOCD approved acidity. Clean imported soil was used to backfill the remaining excavation to ground surface and contoured to the surrounding area. An dentification plate was placed on the surface at the former junction box site to mark the presence of clay below. On 3/25/2010, the site was seeded with a blend of native vegetation and is expected to return to a productive capacity at a normal rate. NMOCD was notified of potential groundwater impact on 8/4/2010. ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve in the process of the pro		DACKI ILL COMP	. 1 0.0		10.0	10.0	1,510				
turing the pipeline replacement/upgrade program. After the former junction box was seminated and investigation was conducted using a backhoe to collect samples at regular intervals producing a 35x5x12-ft deep excavation. Chloride field tests were performed on sach sample which did not relent with depth. Organic vapors, measured using a PID. Indicated low concentrations. The excavated soil was blended on site and representative and the excavation wills. The representative samples were collected from the blended backfill, the bottom of the excavation, and the excavated soil was blended on site and returned to the excavation up to 6 ft. below ground surface (BGS). AT 6-5 ft. BGS a 1-ft. Thick clay barrier was installed with a compaction test performed on 3/23/2010. The remaining backfill was hauled to an NMOCD approved actility. Clean imported soil was used to backfill the remaining excavation to ground surface and contoured to the surrounding area. An identification plate was placed on the surface at the former junction box site to mark the presence of clay below. On 3/25/2010, the site was seeded with a blend of native vegetation and is expected to return to a productive capacity at a normal rate. NMOCD was notified of potential groundwater impact on 8/4/2010. ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve to the process of	Gen	eral Description	of Remedi	al Action:	This junction	box and line	were eliminat	ted	background		
emoved, an investigation was conducted using a backhoe to collect samples at regular intervals producing a 35x5x12-ft deep excavation. Chloride field tests were performed on each sample which did not relent with depth. Organic vapors, measured using a PID, rielded low concentrations. The excavated soil was blended on site and representative using a PID, rielded low concentrations. The excavated soil was blended on site and representative using a PID, rielded low concentrations. The representative samples were sent to a commercial laboratory for analysis of chloride and TPH. The excavated soil was blended on site and returned to the excavation up to 6 ft. below ground surface (BGS). AT 6-5 ft. BGS a 1-ft. hick clay barrier was installed with a compaction test performed on 3/23/2010. The remaining backfill was hauled to an NMOCD approved actility. Clean imported soil was used to backfill the remaining excavation to ground surface and contoured to the surrounding area. An identification plate was placed on the surface at the former junction box site to mark the presence of clay below. On 3/25/2010, the site was seeded with a blend of native vegetation and is expected to return to a productive capacity at a normal rate. NMOCD was notified in potential groundwater impact on 8/4/2010. **ADDITIONAL EVALUATION IS HIGH PRIORITY** enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve in the productive capacity and an anormal rate. NMOCD was notified an open conductivity proctor, cross-section, chloride curve in the productive capacity and an ormal rate. NMOCD was notified an open capacity of the site of the productive capacity and an ormal rate. NMOCD was notified an open capacity of the productivity, proctor, cross-section, chloride curve in the productivity pro											
Intervals producing a 35x5x12-ft deep excavation. Chloride field tests were performed on each sample which did not relent with depth. Organic vapors, measured using a PID, incleded low concentrations. The excavated soil was blended on site and representative Indicated low concentrations. The excavated soil was blended on site and representative Indicated low concentrations. The excavated soil was blended on site and representative Indicated low concentrations. The excavated soil was blended backfill, the bottom of the excavation, and the excavation walls. The representative samples were sent to a commercial laboratory for analysis of chloride and TPH. Indicated low barrier was installed with a compaction test performed on 3/23/2010. The remaining backfill was hauled to an NMOCD approved actifity. Clean imported soil was used to backfill the remaining excavation to ground surface and contoured to the surrounding area. An dentification plate was placed on the surface at the former junction box site to mark the presence of clay below. On 3/25/2010, the site was seeded with a blend of native vegetation and is expected to return to a productive capacity at a normal rate. NMOCD was notified an potential groundwater impact on 8/4/2010. ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve to the surround process of the											
acid sample which did not relent with depth. Organic vapors, measured using a PID, acid sample which did not relent with depth. Organic vapors, measured using a PID, acid sample which did not relent with depth. Organic vapors, measured using a PID, acid samples were collected from the blended backfill, the bottom of the excavation, and the excavation walls. The representative samples were sent to a commercial laboratory for analysis of chloride and TPH. The excavated soil was blended on site and returned to the excavation up to 6 ft. below ground surface (BGS). AT 6-5 ft. BGS a 1-ft. hick clay barrier was installed with a compaction test performed on 3/23/2010. The remaining backfill was hauled to an NMOCD approved acidity. Clean imported soil was used to backfill the remaining excavation to ground surface and contoured to the surrounding area. An adentification plate was placed on the surface at the former junction box site to mark the presence of clay below. On 3/25/2010, the site was seeded with a blend of native vegetation and is expected to return to a productive capacity at a normal rate. NMOCD was notified an potential groundwater impact on 8/4/2010. ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve in the surface and proceedings and page and			·····								
initial dollow concentrations. The excavated soil was blended on site and representative 12' 4,616 Item proposite samples were collected from the blended backfill, the bottom of the excavation, and the excavation walls. The representative samples were sent to a commercial laboratory for analysis of chloride and TPH. The excavated soil was blended on site and returned to the excavation up to 6 ft. below ground surface (BGS). AT 6-5 ft. BGS a 1-ft. In thick clay barrier was installed with a compaction test performed on 3/23/2010. The remaining backfill was hauled to an NMOCD approved acility. Clean imported soil was used to backfill the remaining excavation to ground surface and contoured to the surrounding area. An identification plate was placed on the surface at the former junction box site to mark the presence of clay below. On 3/25/2010, the site was seeded with a blend of native vegetation and is expected to return to a productive capacity at a normal rate. NMOCD was notified by potential groundwater impact on 8/4/2010. ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve KNOWLEDGE AND BELIEF. IT ESUPERVISOR Robert Egans SIGNATURE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE ABBURGE BALLER COMPANY RICE OPERATING COMPANY REPORT ASSEMBLED BY Larry Bruce Baker Jr. INITIAL ABBURGE BALLER BALLE										·	
In the excavation walls. The representative samples were sent to a commercial laboratory for analysis of chloride and TPH. The excavated soil was blended on site and returned to the excavation up to 6 ft. below ground surface (BGS). AT 6-5 ft. BGS a 1-ft. hick clay barrier was installed with a compaction test performed on 3/23/2010. The remaining backfill was hauled to an NMOCD approved actility. Clean imported soil was used to backfill the remaining excavation to ground surface and contoured to the surrounding area. An identification plate was placed on the surface at the former junction box site to mark the presence of clay below. On 3/25/2010, the site was seeded with a blend of native vegetation and is expected to return to a productive capacity at a normal rate. NMOCD was notified of potential groundwater impact on 8/4/2010. ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve in the process of th					· · · · · · · · · · · · · · · · · · ·	*-t			·		
In the excavation walls. The representative samples were sent to a commercial laboratory for analysis of chloride and TPH. The excavated soil was blended on site and returned to the excavation up to 6 ft. below ground surface (BGS). AT 6-5 ft. BGS a 1-ft. hick clay barrier was installed with a compaction test performed on 3/23/2010. The remaining backfill was hauled to an NMOCD approved actility. Clean imported soil was used to backfill the remaining excavation to ground surface and contoured to the surrounding area. An identification plate was placed on the surface at the former junction box site to mark the presence of clay below. On 3/25/2010, the site was seeded with a blend of native vegetation and is expected to return to a productive capacity at a normal rate. NMOCD was notified of potential groundwater impact on 8/4/2010. ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE AND COMPLETE TO THE BEST OF MY RICE OPERATING COMPANY RICE OPERATING COMPANY REPORT ASSEMBLED BY Larry Bruce Baker Jr. INITIAL ALBBURGED AND COMPLETE TO THE BEST OF MY SEMBLED BY Larry Bruce Baker Jr. SIGNATURE ADAM Bruce Baker Jr. DATE 8 - 26 - 10	_					·····		<u></u> :		12	4,616
The excavated soil was blended on site and returned to the excavation up to 6 ft. below ground surface (BGS). AT 6-5 ft. BGS a 1-ft. hick clay barrier was installed with a compaction test performed on 3/23/2010. The remaining backfill was hauled to an NMOCD approved actility. Clean imported soil was used to backfill the remaining excavation to ground surface and contoured to the surrounding area. An dentification plate was placed on the surface at the former junction box site to mark the presence of clay below. On 3/25/2010, the site was seeded with a blend of native vegetation and is expected to return to a productive capacity at a normal rate. NMOCD was notified of potential groundwater impact on 8/4/2010. ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE WALLY JAMES COMPANY RICE OPERATING COMPANY REPORT ASSEMBLED BY Larry Bruce Baker Jr. INITIAL JABBER BRUCE BALLY Bruce Baker Jr. SIGNATURE WALLY Bruce Baker Jr. SIGNATURE WALLY Bruce Baker Jr. DATE 8 - 26 - 10							····		:E _L	TDU	
inck clay barrier was installed with a compaction test performed on 3/23/2010. The remaining backfill was hauled to an NMOCD approved acility. Clean imported soil was used to backfill the remaining excavation to ground surface and contoured to the surrounding area. An identification plate was placed on the surface at the former junction box site to mark the presence of clay below. On 3/25/2010, the site was seeded with a blend of native vegetation and is expected to return to a productive capacity at a normal rate. NMOCD was notified an potential groundwater impact on 8/4/2010. ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve in the surface and contoured to the surrounding area. An interest and contoured to the surroundinterest and contoured to the surrounding area. An interest and co											
ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE HARD SIGNATURE HARD BALLE											
ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE Larry Bruce Baker Jr. INITIAL LABB PROJECT LEADER Larry Bruce Baker Jr. SIGNATURE Larry Bruce Baker Jr. DATE 8:-26-10											
ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE Larry Bruce Baker Jr. SIGNA											
ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE SIGNATURE SUPERVISOR COMPANY RICE OPERATING COMPANY REPORT ASSEMBLED BY Larry Bruce Baker Jr. INITIAL SUB- PROJECT LEADER Larry Bruce Baker Jr. SIGNATURE SUPPLY Bruce Baker Jr. DATE 8 ~26 ~10	dent	ification plate was p	placed on the	surface at th	ne former junc	tion box site t	o mark the pr	esence of c	lay below. On 3/2	25/2010, the site	
ADDITIONAL EVALUATION IS HIGH PRIORITY enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE HALL THE COMPANY RICE OPERATING COMPANY REPORT ASSEMBLED BY Larry Bruce Baker Jr. INITIAL ABB PROJECT LEADER Larry Bruce Baker Jr. SIGNATURE Harry Bruce Baker Jr. DATE 8 ~26-10	vas	seeded with a blend	d of native ve	getation and	is expected to	return to a p	roductive cap	acity at a n	ormal rate. NMOC	CD was notified	
enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE FAMILY COMPANY RICE OPERATING COMPANY REPORT ASSEMBLED BY Larry Bruce Baker Jr. INITIAL ABB PROJECT LEADER Larry Bruce Baker Jr. SIGNATURE Harry Bruce Baker Jr. DATE 8 -26-10	f po	tential groundwater	impact on 8/	4/2010.							
enclosures: photos, lab results, PID (field) screenings, compaction test, hydraulic conductivity, proctor, cross-section, chloride curve I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE FAMILY COMPANY RICE OPERATING COMPANY REPORT ASSEMBLED BY Larry Bruce Baker Jr. INITIAL ABB PROJECT LEADER Larry Bruce Baker Jr. SIGNATURE Harry Bruce Baker Jr. DATE 8 -26-10					· · · · · · · · · · · · · · · · · · ·	T-W-Th					
I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE LATING COMPANY RICE OPERATING COMPANY REPORT ASSEMBLED BY Larry Bruce Baker Jr. INITIAL LABBER BRUCE BALLA M. DATE 8 -26-10	_										
KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE LATING COMPANY RICE OPERATING COMPANY REPORT ASSEMBLED BY LATING Bruce Baker Jr. INITIAL LATING BRUCE BALLS M. DATE 8-26-10			enclosures	: photos, lab	results, PID (fie	eld) screenings	, compaction to	est, hydrauli	c conductivity, proct	or, cross-section, o	chloride curve
KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE LATING COMPANY RICE OPERATING COMPANY REPORT ASSEMBLED BY LATING Bruce Baker Jr. INITIAL LATING BRUCE BALLS M. DATE 8-26-10											
KNOWLEDGE AND BELIEF. SITE SUPERVISOR Robert Egans SIGNATURE LATING COMPANY RICE OPERATING COMPANY REPORT ASSEMBLED BY LATING Bruce Baker Jr. INITIAL LATING BRUCE BALLS M. DATE 8-26-10											
REPORT ASSEMBLED BY Larry Bruce Baker Jr. INITIAL LBB PROJECT LEADER Larry Bruce Baker Jr. SIGNATURE Kany Bruce Baker Jn. DATE 8-26-10		IHEREE	BY CERTIFY	THAT TH					PLETE TO THE	EBEST OF MY	′
ASSEMBLED BY Larry Bruce Baker Jr. INITIAL ADD PROJECT LEADER Larry Bruce Baker Jr. SIGNATURE Larry Bruce Baker Jn. DATE 8-26-10	SITE	SUPERVISOR	Robert Ega	ns SIC	GNATURE	gale	et Ex	ind	COMPANY_	RICE OPERATING	G COMPANY
	Α		arry Bruce Ba	ker Jr.	INITIAL 6	LBB			•		
	PRO.					Lany a prioritized lis	Buce to the similar sites	Sales post for further of	DATE_consideration.	8-26	-10

3/25/201 2/19/2010 Seeding excavation Unit C, Section 23, T22S, R37E Taking a sample 3/23/2010 112712010 BD Jct. C-23-1 Junction box prior to excavation

Docufilling site above clay liner

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: BRUCE BAKER 122 W. TAYLOR HOBBS, NM 88240

Receiving Date: 02/24/10 Reporting Date: 03/01/10

Project Number: NOT GIVEN

Project Name: BD JCT. C-23-1 (2237) Project Location: BD JCT. C-23-1 (2237) Sampling Date: 02/24/10 Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: JH Analyzed By: AB/HM

GRO

DRO (C_6-C_{10}) (>C₁₀-C₂₈) CI*

LAB NUMBER SAMPLE ID

(mg/kg) (mg/kg) (mg/kg)

ANALYSIS D	PATE	02/26/10	02/26/10	02/26/10
H19336-1	5PT BOTTOM COMP @ 12'	<10.0	<10.0	2,200
H19336-2	4-WALL COMP.	<10.0	<10.0	784
H19336-3	BLENDED BACKFILL	<10.0	<10.0	1,310
		<u> </u>		
Quality Conti	rol	392	476	510
True Value C	OC .	500	500	500
% Recovery		78.4	95.2	102
Relative Per	cent Difference	1.9	4.8	2.0

METHODS: TPH GRO & DRO: EPA SW-846 8015 M; CIT; Std. Methods 4500-CITB

*Analysis performed on a 1:4 w:v aqueous extract.

Reported on wet weight.

H19336 TCL RICE

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

ARDINAL LABORATORIES
101 East Marland, Hobbs, NM 88240 2111 Beechwood, Abilene, TX 78603

505) 393-2326 FAX (505) 393-2476 (325) 673-7001 FAX (325)673-7020

											ξ .	
ï,			_	_	_	<u> </u>		9 .				
4.7	t.			*			_	â.	4			Since No.
	:								-		ž	
	; ;		-	<u> -</u>	2 2 12		1	h				٨
ST	 				\$ 1		L		1	\$,	
REQUEST		-	Area C	ů.	4		(
8			1	10 J	100.000			1 (a de	4	
ANALYSIS		ac Y	8	₩ ₩ ₩.		4	7)	119	6 1 3 1	*
7				ş			§100 4-12-0	ěri Ži	(2)	\$ 100 \$100		
AN				3		de mag	· ·	Ĕij,		1.0°		E in
	WS	109 HdI	7	7	1		line.		475000	**************************************		1344
e i Guer	<u> </u>	108 Hd L	1	7	7							us.
	. 10 3. 1.			14, 14 14 s		partie.		\$35. \$3	Sec.			(1) (1)
	Plane Laren		i e	1 × 11			7.3	1		2		
	ak Menangan Kabupatèn	e Transition				6 · K						
		4	114	Can	Lan	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A Carrie		3	, j	
		TIME	8	0	11.6			<u>.</u>				
0		SAMPLING CALLED	1-24-10 8: 47am	2-24-10 9.20am	2-24-10 11.52am	3.	ja 1	3 3 3 3 1		\$ 1 }		i i
1 7	ZIĎi	SAN DA	17-1	-24	1-24	y			0.7		1	10 m
BILL TO		. З : Я∃НТО		14			*		2	₹		er i
	#: # # # # # # # # # # # # # # # # # # #	ACID/BASE REST	7	1	7		0.	in the second) 30
	P.O. #: Company: Attn: Address: City: State: Phone #:	ACID/BASE: ##					*	-			\$ 70 P	
,		SCUDGE		, .		\$	7	2, 2 gi 3 i i	¥.,.	y e.	14.5 14.5 14.5	2.2.1
₽,	0 K	SOIL SEA	1	χ_	Y	1	3) / · · · · · · · · · · · · · · · · · ·		100	10 m	\$ 12 m
7 7	8240 1-147	WASTEWATER §			a		9 , 1,2	*		150 M	13. 13. 13.	3, 14° g
>	288	RETAWONUORE		3 - E) <u>.</u> -				21 ¥7.	ig e	λ:
200	389	(G)RAB OR (C)OMP.	_	<u>-</u>	し			\$ - T			a .	àir i
į	2. State: WM ZIp: \$18 ax #: 575-39; riglact Owner: C. 23-1 C2	aword ao avaren	J	7	3	3.7				8. 8.	- 2	i e
v	uce Baker 2. Taylor state: NM 1 3-9174 Fax#: 575 Project Owner: 30 50+. C. 23-1		à		_			2. * *	ľ		4.	
5	ate: (#:		9)		11	·						
1+	St. St.	Ž O	A Z		关).	ľ	er T	a si Port
2.ra	30 7 7	<u> </u>	ŝ	\$	g							ž st.
300		Sample I.D.	10%	9	4							
7	2 2	Sal	8	2	2					,		
9	27.2	Roberi Egans Sample I.D.	SpT BO HOM COMPE 12'	3	Blended backfill	-						
8	6 PANE (APAPE) 15 B		3	7	8		ß	-		e •	5 4 - 5 5 7 3	
ame	Manager: 1 122 10065 10075-C	mo:		2	w						ÿ.	
Z	Man # # 12 F	S O O	6	12	1						k 4	
mpa	Project Manager: Address: 12 City: Hobb Phone #: 575 Project Name: Project Location:	Sampler Name: FOR LAB USE ONLY Lab I.D.	1-9%661									,
ပ္ပ	문 B 등 등 등 등	8	三						<u>L.</u>			

Kesuits To I Purvis @ Ric REgans 8 baker Co Yes 7 Yes Received By Time: Sampler JUPS - Bus - Other: Delivered By: (Circle One) Relinquished By

† Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

RICE OPERATING COMPANY

122 West Tayor Hobbs, NM 88240 PHONE: (575) 393-9174 FAX: (575) 397-1471 PID METER CALIBRATION & FIELD REPORT FORM

		Check Mo	odel Number:		
	Model: PGM 7300	Serial No: 590-000183		Model: PGM 7600	Serial No: 110-023920
L	Model: PGM 7300	Serial No: 590-000508		Model: PGM 7600	Serial No: 110-013744
	Model: PGM 7300	Serial No: 590-000504		Model: PGM 7600	Serial No: 110-013676

GAS COMPOSITION: ISOBUTYLENE 100PPM / AIR: BALANCE

LOTNO:	925621	EXPIRATION DATE: 9-27-2012
FILL DATE:	9-28-09	METER READING ACCURACY: 99.8

ACCURACY: +/- 2%

SYSTEM	JUNCTION	UNIT	SECTION	TOWN SHIP	RANGE
BO	C-23-1	C	23	22	37

SAMPLE ID	PID	SAMPLE ID	PID
Bottom 5 pt. Composite	0.3		
Blended Backfill	8		
4-Wall Composite	0.1		
		COPY	

I verify that I have calibrated the above instrument in accordance to the manufacture operation manual.

SIGNATUE: Robert June

DATE: 2-24-2010

*Corrected Copy 8/20/10 LABORATORY TEST REPORT PETTIGREW & ASSOCIATES, P.A.

1110 N. GRIMES

HOBBS, NM 88240 (575) 393-9827

DEBRA P. HICKS, P.E./L.S.I. WILLIAM M. HICKS. III, P.E./P.S.

To:

Rice Operating Company

122 W. Taylor

Hobbs, NM 88240

Material:

Wallach Red Clay

Test Method:

ASTM: D 2922

Project:

BD JCT C-23-1 (22/37)

Project No. 2010.1074

*Date of Test:

March 23, 2010

Depth:

See Below

Depth of Probe:

12"

*Dry Density

% Max Test No. Location % Moisture Depth FSG SG 2 20' S. & 10' W. of NE Corner of Pit 91.3 16.1

Control Density:

ASTM: D 698

Optimum Moisture:

20.3%

Required Compaction: 90-95%

Densometer iD:

5572

Lab No.:

10 2305-2306

PETTIGREW & ASSOCIATES

Copies To:

Rice Operating

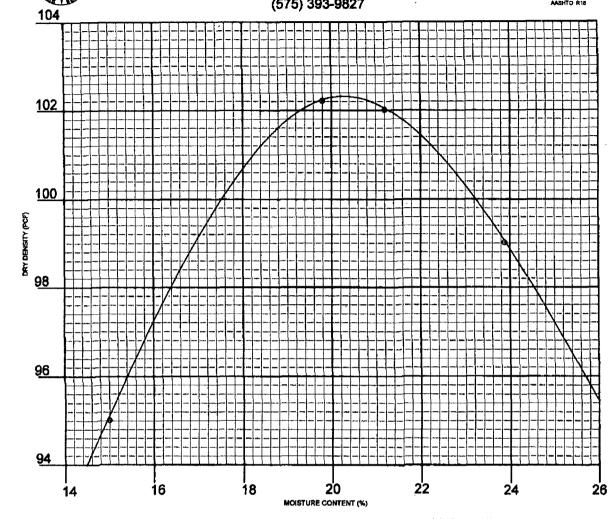
P.E.

ETTL Engineers & Consultants Inc. GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

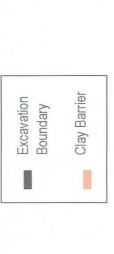
Date	Pettigrew &	associales, i		, NM - Project			Report No: 1-	1201-00000	ý
Date:	2/5/2010			anei Number :		P3; ASTM	D 5084		
Project No.:	C 4635-101	Per	mometer D	ate					
Boring No.:			ap =	0.031418	cm2	But Mercury to	Equilibrium	1.8	cm3
Sample:	8540		88 =	0.767120			Pipet Ro	6.7	cm3
Depth (ft):			M1 =	0.030180	C=	0.000434704	Annulus Ra	1.5	cm3
Other Location:	Wallach Plan	nt Eunice	M2 =	1.040953	Te	0.203790628			
Material Des	cription :	Red Clay (Your Samp	le No 10 1422-	-1424) Com	pacted D 698 a	t 95% of your P	A/D curve (vet side)
				8AMPLI	E DATA			-	
Wet Wf. sam	ple + ring or t	ate :	561.37	9					
Tare or ring			0.0	g		Before	e Test	After	Test
Wet Wit: of S		•	561.37	g		Tare No.:	T 6	Tare No.:	ТЭ
Diameter:	2.77	in	7.05	cm2	-	Wel WL+tare:	731.90	Wet Wt.+tero:	
Length:	2.79	in	7.08	cm .		Dry Wt.+tere:	641.75	Dry Wt.+lare:	690.35
Area:	6.04	in^2	38.99	cm2	•	Tare Wt:	218.78	Tare Wt:	220.69
Volume:	16.84	in^3	276.92	cm3		Dry Wt.:	422.97	Ory WL:	469.66
Unit Wt.(wet):	126.95	pcf	2.03	g/cm^3		Weter Wt.:	90.15	Water W.:	110.16
Unit Wt.(dry):	104.65	pcf	1.68	g/om^3		% molst.:	21.3	% molat.:	23.5
Specific Gravity:		2.77	Max Dry D	ensity(pcf) =	104.6948	OMC =	21,3135683		
opecin ciarry.			mon on o	% of max =		+/- OMC =		•	
Calculated 9	% saturation:	99.58	Vold	ratio (e)	0.65	Parasity (n)=	0.39	•	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			• • •				•	
				TEST RE				بسيدا التهييات	
Z1(Mercury i	Height Differe	nce @ t1):	5.1	_cm	Hydraulic (Gradient =	9.10		
Date	elapsed (Z	ΔΖπ	temp	α	k	k		
Date	(seconds)	(pipet @ t)	(cm)	(deg C)	(temp corr)	• •	(ft./day)	Reset = *	
2/6/2010		6	0.656997	25	0.889	1.17E-08	3.32E-05	110001	
2/5/2010		5.9	0.756997	25	0.889	1.09E-08	3.09E-05	1	
2/5/2010	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	5.8	0.856997	25	0.889	1,08E-08	3,05E-05	t.	
2/5/2010	7800	5.7	0.956997	28	0.889	1.08E-08	3.05E-05	•	
	to a contract to the last limit	Harri 100,000-11, 000-11,111,111							
		ka ≃	1.10E-08	SUMN	IARY	Acceptance cr			
			1,106-00	CHARRED .			Mada	06	0/
		i-i			Ven	receptation of	iteria =	25	%
		<u>ki</u> k1 =	1 17F-08	cmisso	<u>Vm</u>	Ť			
		k1 =	1.17E-08		6.3	%	fteria ≃ Vm ≖	[ka-ki]	
		k1 = k2 =	1.09E-08	спувес	6.3 1.2	% %			
		k1 =	1.09E-08 1.08E-08	cm/sec cm/sec	6.3	%		[ka-ki]	
		k1 = k2 = k3 = k4 =	1.09E-08 1.08E-08 1.08E-08	cm/sec cm/sec cm/sec	6.3 1.2 2.5 2.5	% % % %	Vm≖	[ka-ki]	
i	Hydraulic co	k1 = k2 = k3 = k4 =	1.09E-08 1.08E-08 1.08E-08	cm/sec cm/sec 1.10E-08	6.3 1.2 2.5	% % %		[ka-ki]	
i	Void Retio	k1 = k2 = k3 = k4 =	1.09E-08 1.08E-08 1.08E-08	cm/sec cm/sec cm/sec 1.10E-08 0.88	6.3 1.2 2.5 2.5	% % % %	Vm≖	[ka-ki]	
į	Void Retio Perosity	k1 = k2 = k3 = k4 =	1.09E-08 1.08E-08 1.08E-08	cm/sec cm/sec cm/sec 1.10E-08 0.88 0.39	6.3 1.2 2.5 2.5	% % % % 3.13E-05	Vm ≖ ft/day	[ka-ki]	
i	Void Ratio Porosity Bulk Density	k1 = k2 = k3 = k4 = nductivity	1.09E-08 1.08E-08 1.08E-08	cm/sec cm/sec 1.10E-08 0.88 0.39	6.3 1.2 2.5 2.5 cm/sec	% % % % 3.13E-05	Vm ≖ ft/day	[ka-ki]	
	Void Ratio Porosity Bulk Density Water Conte	k1 = k2 = k3 = k4 = nductivity	1.09E-08 1.08E-08 1.08E-08 k = 0 n = 7 W =	cm/sec cm/sec 1.10E-08 0.88 0.39 2.03 0.36	6.3 1.2 2.5 2.5 2.5 em/sec g/cm3 em3/em3	% % % % 3.13E-D5	Vm ≖ ft/day	[ka-ki]	
	Void Ratio Porosity Bulk Density	k1 = k2 = k3 = k4 = nductivity	1.09E-08 1.08E-08 1.08E-08	cm/sec cm/sec 1.10E-08 0.88 0.39 2.03 0.36	6.3 1.2 2.5 2.5 cm/sec	% % % % 3.13E-05	Vm ≖ ft/day	[ka-ki]	
	Void Retio Porosity Bulk Density Water Conte Intrinsic Peri Uquid Umit	k1 = k2 = k3 = k4 = nductivity int meability	1.09E-08 1.08E-08 1.08E-08 k = 0 n = 7 W =	cm/sec cm/sec 1.10E-08 0.88 0.39 2.03 0.36	6.3 1.2 2.5 2.5 2.5 em/sec g/cm3 em3/em3	% % % % 3.13E-D5	Vm ≖ ft/day	[ka-ki]	
	Void Retio Porosity Bulk Density Water Conte Intrinsic Peri	k1 = k2 = k3 = k4 = nductivity int meability	1.09E-08 1.08E-08 1.08E-08 k = 0 n = 7 W =	cm/sec cm/sec 1.10E-08 0.88 0.39 2.03 0.36	6.3 1.2 2.5 2.5 2.5 em/sec g/cm3 em3/em3	% % % % 3.13E-D5	Vm =	[ka-ki]	
	Void Retio Porosity Bulk Density Water Conte Intrinsic Peri Uquid Umit	k1 = k2 = k3 = k4 = nductivity Interpolation the meability LL PL	1.09E-08 1.08E-08 1.08E-08 k = 0 n = 7 W =	cm/sec cm/sec 1.10E-08 0.88 0.39 2.03 0.36	6.3 1.2 2.5 2.5 2.5 em/sec g/cm3 em3/em3	% % % % 3.13E-D5	Vm ≖ ft/day	[ka-ki]	
	Void Ratio Porosity Bulk Density Water Conte intrinsic Peri Liquid Limit Piastic Limit	k1 = k2 = k3 = k4 = nductivity Interpolation the meability LL PL	1.09E-08 1.08E-08 1.08E-08 k = 0 n = 7 W =	cm/sec cm/sec 1.10E-08 0.88 0.39 2.03 0.36	6.3 1.2 2.5 2.5 2.5 em/sec g/cm3 em3/em3	% % % % 3.13E-D5	Vm =	[ka-ki]	
	Void Ratio Porosity Bulk Density Water Conte Intrinsic Per Uquid Limit Piastic Limit Plasticity inc	k1 = k2 = k3 = k4 = nductivity Interpretation the meability LL PL fex Pl	1.09E-08 1.08E-08 1.08E-08 k = 0 n = 7 W =	cm/sec cm/sec 1.10E-08 0.85 0.39 2.03 0.36 1.13E-13	6.3 1.2 2.5 2.5 2.5 em/sec g/cm3 em3/em3	% % % % 3.13E-D5	Vm =	[ka-ki]	
	Void Ratio Porosity Bulk Density Water Conte intrinsic Peri Liquid Limit Piastic Limit Plasticity inc - 200 Sleve	k1 = k2 = k3 = k4 = nductivity Interpretation to the content of t	1.09E-08 1.08E-08 1.08E-08 k = 0 n = 7 W =	Cm/sec cm/sec 1.10E-08 0.88 0.39 2.03 0.36 1.13E-13	6.3 1.2 2.5 2.5 2.5 em/sec g/cm3 em3/em3	% % % % 3.13E-D5	Vm =	[ka-ki]	

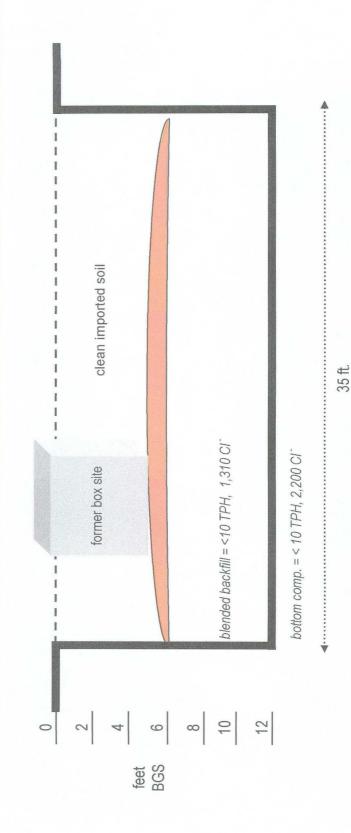
Texarkena, AR 71854 870-772-0013 Phone 870-216-2413 Fax


Tyler, Yexas 76702 903-695-4421 Phone 903-595-6113 Pax www.ettlino.com

707 West Cotton Street Longview, Texas 76604-6505 903-789-0915 Phone 903-769-8245 Fax

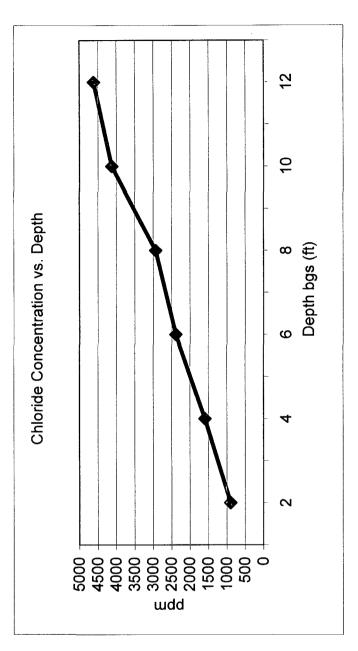
*Corrected Copy 2/17/10 PETTIGREW & ASSOCIATES, P.A.


1110 N. GRIMES ST. HOBBS, NM 88240 (575) 393-9827



	Bion Ones	ations			erai intorn			
CLIENT:	Rice Opera			CT: Proje	ct No. 20	10.1026		
SAMPLE L	OCATION:	Eunice Wallac	h Plant					
SOIL DESC	RIPTION:	Wallach Red C	lay					
	SIFICATION	N: PI	TEST M	METHOD:	ASTM: D		ered 2/8/10	<u> </u>
DATE: 2/	12/10		LAB NO). <u>10 142</u>	22-1424			
DRY WEIG	HT LB/CU. I		MOIS		ONTENT	· %	20.3	
ļ		- 1 - 1	1	1		т		
					PETTIC	REW &	ASSOCIA	res
		C((YY		ву: <u></u>	rica.	mela	4
COPIES	: Rice Ope	erating			ev.			DE

Excavation Cross-Section


S

BD JCT. C-23-1 Unit 'C', Sec. 23, T22S, R37E

Backhoe samples 20 ft. south of the junction (source)

Depth bgs (ft)	[CI] ppm
2	897
4	1,597
9	2,391
8	2,932
10	4,129
12	4,616

Groundwater = 59 ft.