BEFORE THE

NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES

OIL CONSERVATION COMMISSION

IN THE MATTER OF THE APPLICATION OF PUBLIC SERVICE COMPANY OF NEW MEXICO FOR REVIEW OF OIL CONSERVATION DIVISION DIRECTIVE DATED MARCH 13, 1998 DIRECTING APPLICANT TO PERFORM ADDITIONAL REMEDIATION FOR HYDROCARBON CONTAMINATION, SAN JUAN BASIN, NEW MEXICO CASE NO. 12033

DIRECT TESTIMONY OF

TONI K. RISTAU

MARUEEN GANNON

RODNEY HEATH

MARK SIKELIANOS

VALDA I. TERAUDS

SUBMITTED ON BEHALF OF

PUBLIC SERVICE COMPANY OF NEW MEXICO

APPLICANT

JULY 9, 1999

7

j.

BEFORE THE

NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES

OIL CONSERVATION COMMISSION

IN THE MATTER OF THE APPLICATION OF **PUBLIC SERVICE COMPANY OF NEW MEXICO** FOR REVIEW OF OIL CONSERVATION DIVISION **DIRECTIVE DATED MARCH 13, 1998 DIRECTING APPLICANT TO PERFORM ADDITIONAL REMEDIATION FOR** HYDROCARBON CONTAMINATION, SAN JUAN BASIN, NEW MEXICO **CASE NO. 12033**

:

DIRECT TESTIMONY OF

TONI K. RISTAU

SUBMITTED ON BEHALF OF

PUBLIC SERVICE COMPANY OF NEW MEXICO

APPLICANT

JULY 9, 1999

1	Q.	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
2	A.	My name is Toni K. Ristau. My business address is Public Service Company of
3		New Mexico ("PNM"), Alvarado Square, MS-0408, Albuquerque, New Mexico,
4		87158.
5	Q.	UPON WHOSE BEHALF ARE YOU SUBMITTING TESTIMONY?
6	A.	I am submitting this testimony on behalf of PNM. For clarification on the
7		record, some exhibits may refer to PNM Gas Services and Gas Company of New
8		Mexico. PNM Gas Services is an unincorporated division of PNM. Gas
9		Company of New Mexico was the name of the same division prior to its name
10		change.
11	Q.	WHAT IS YOUR POSITION WITH PNM, AND WHAT ARE YOUR
12		PRIMARY JOB RESPONSIBILITIES?
13	A.	In August 1993, I accepted employment with PNM as Director of Environmental
14		Services. My duties include overall management of PNM's environmental
15		programs, including remediation and corrective action at sites in New Mexico. I
16		supervise a staff of 21 environmental science and engineering professionals and
17		support personnel.
18	Q.	WHAT DOES THIS APPEAL INVOLVE?

A. This appeal involves a determination by the New Mexico Oil Conservation
Division ("OCD") that PNM is responsible for the investigation and clean-up of

11111111

1		free product underlying the Hampton 4M well which is located in the San Juan
2		Basin. The OCD has erroneously determined that certain free product and
3		associated dissolved phase hydrocarbons in the ground water are the result of
4		discharges from a dehydrator to a former unlined pit on the Hampton 4M well
5		pad.
6	Q.	CAN YOU TELL US THE PURPOSE OF YOUR TESTIMONY?
7	A.	First, I will introduce the other witnesses presenting testimony in this proceeding
8		on behalf of PNM and will provide a brief description of their testimony in this
9		case. Second, I will provide the historical and regulatory background for this
10		appeal Third I will state the basis for PNM's appeal and the relief sought.
11		Fourth, I will discuss PNM's obligation as a public utility to provide reliable
12		service to its customers. Fifth, I will address the contractual provisions relating
13		to PNM's purchase of gas from Burlington and the ownership of the free
14		product. Sixth I will address the OCD's practice with regard to the allocation of
15		responsibility for investigation and clean up of contamination at other similar
16		sites.
17	Q.	CAN YOU PLEASE TELL THE COMMISSION ABOUT YOUR
18		EDUCATIONAL BACKGROUND AND EXPERIENCE IN THE
19		ENVIRONMENTAL FIELD.
20	A.	I hold an undergraduate degree (bachelor of arts) from the University of

and the second second

1		Minnesota, in architecture, with an emphasis in historic preservation, granted in
2		1971. I also have a masters of science degree in environmental health
3		engineering, conferred by Northwestern University in 1979. I have a juris
4		doctorate degree from University of Denver Law School, granted in 1984.
5	Q.	DO YOU HAVE SPECIFIC EXPERIENCE WITH RESPECT TO
6		ENVIRONMENTAL INVESTIGATIONS AND REMEDIATION?
7	A.	Yes. I have 28 years of experience in various environmental and conservation
8		fields overall, and about 15 years of experience specifically related to
9		remediation and environmental-contamination issues. My first in-depth
10		familiarity with environmental site investigations and remediation was during
11		my tenure as acting director for the CERCLA (or Superfund) Bureau for the
12		State of Utah Division of Environmental Health. The Division was a part of the
13		Utah Department of Health, a state agency, and we worked mainly with site
14		investigations or remedial investigation/feasibility studies at Superfund sites.
15		The major environmental issues at these sites were usually related to
16		groundwater contamination.
17		My next position was with an architectural/engineering consulting firm,
18		EBASCO, on remediation investigations and projects. The client base was
19		largely Department of Defense installations, and my remediation investigation

work and corrective action/permitting work (under the authorities of the 20

000232

1 Resource Conservation and Recovery Act, or RCRA) was at the Rocky 2 Mountain Arsenal in Denver, Colorado, Dugway Proving Ground in Utah, and 3 several Army depots and ammunition production plants located across the 4 country.

I also worked for a consulting company, Geosciences Consultants Ltd., in 5 Albuquerque, New Mexico, as their southwest regional director. My duties 6 included supervision and oversight of the work of about 60 geosciences 7 professionals (geologists. hydrologists. hydrogeologists. environmental 8 scientists, and engineers), particularly for remediation activities related to 9 groundwater contamination in New Mexico and the southwestern part of the 10 U.S. I also provided consulting services to clients on permitting, remediation, 11 and other regulatory compliance issues, including specifically natural gas 12 operations in the state of New Mexico. 13

14I then took a position with a small start-up consulting firm in Denver, Colorado,15AGEISS Environmental, as their director of environmental services. The bulk16of the technical work of the office was, at that time, related to groundwater,17soils, surface water, and biota contamination issues at the Rocky Mountain18Arsenal and Dugway Proving Ground. I worked with AGEISS until I accepted19my current position with PNM in 1993.

20 Q. DO YOU HAVE DAY-TO-DAY INVOLVEMENT IN THE VARIOUS

ENVIRONMENTAL PROJECTS THAT ARE BEING UNDERTAKEN BY PNM?

A. Yes. PNM is very active on both the remediation and compliance fronts, and I work with our staff, as a team, on our strategies, with particular emphasis on assuring that we meet regulatory requirements and maintain high quality in our environmental compliance and remediation efforts. Our aim is to have the best possible approach from both an environmental science and regulatory compliance standpoint.

9 Q. HAVE YOU HAD ANY EXPERIENCE WITH REGARD TO 10 REMEDIATION ACTIVITIES, PARTICULARLY THOSE RELATED 11 TO THE OIL AND GAS INDUSTRY?

A. Yes, I have, both as an outside consultant and with PNM. One of my first assignments after accepting employment with PNM was to evaluate the OCD and BLM cease-discharge orders and to develop an approach for evaluating and remediating the unlined surface impoundments located within the designated vulnerable areas in the San Juan basin.

Q. HAVE YOU TESTIFIED BEFORE THE OIL CONSERVATION
 COMMISSION ("OCC" OR "COMMISSION") PREVIOUSLY?

A. Yes. I provided informal testimony or comments at hearings on two or three
 occasions, and I also provided formal testimony in support of the adoption of the

•

1		OCC abatement regulations. I also provided testimony in the previous hearing
2		related to the Hampton 4M groundwater contamination issues, though that
3		testimony was provided before a hearing examiner and not before the
4		Commission. During that testimony, I was accepted as an expert witness in
5		ground water contamination and remediation matters.
6	Q.	CAN YOU PLEASE INTRODUCE THE OTHER WITNESSES
7		PRESENTING TESTIMONY ON BEHALF OF PNM AND GIVE THE
8		COMMISSION A BRIEF DESCRIPTION OF THEIR TESTIMONY?
9	A.	Yes. The next witness to present testimony on behalf of PNM is PNM Witness
10		Maureen Gannon. Ms. Gannon is Project Manager for PNM's pit remediation
11		project. Her testimony will discuss the history of PNM's investigation and
12		remediation efforts at the Hampton 4M well site and PNM's experience at other
13		former pit sites.
14		PNM Witness Rodney Heath will then address the operational aspects of the oil
15		field surface equipment at the Hampton 4M well, including PNM's former
16		dehydrator and Burlington's equipment. Mr. Heath will address the likelihood
17		of whether large volumes of free product could have been discharged to ground
18		water from PNM's former dehydration pit. Mr. Heath also notes an apparent
19		and unexplained anomaly relating to Burlington's gas and oil production ratios.

20 PNM Witness Mark Sikelianos is a senior technician in PNM's Environmental

- Services Department. He will testify concerning his personal observations at the
 Hampton 4M well site and Burlington's remediation efforts.
- Finally, PNM Witness Valda Terauds, an outside consultant with Mission Research Corporation, will provide testimony that demonstrates that the free product at the Hampton 4M site originated upgradient from PNM's former dehydration pit, that the volumes of free product underlying the site are far in excess of what could have come from PNM's former pit and that Burlington's remediation efforts have not been effective.
- 9 Q. CAN YOU PLEASE PROVIDE SOME HISTORICAL BACKGROUND
 10 AND THE REGULATORY FRAMEWORK LEADING UP TO THE
 11 ISSUES IN THIS PROCEEDING?
- A. Yes. As I am sure the Commission knows, the production of natural gas generally results in the generation of certain by-products. These by-products can include such things as produced water as well as free product. Until just a few years ago, it was very common for entities involved in oil field operations to discharge certain amounts of these by-products to unlined earthen pits at or near the well pad. Generally, the producers tried to capture the free product in tanks because it can be sold and has monetary value.
- PNM had operations at a number of wells, including the Hampton 4M well site,
 where it operated dehydrators. These dehydrators were intended to remove

moisture from the gas. The moisture removed from the gas was discharged for a
time to unlined earthen pits at the well pad.

3 Q. DID ANYTHING HAPPEN TO CHANGE THE PRACTICE OF

4 **DISCHARGING TO UNLINED PITS?**

A. Yes. The oil and gas industry has generally enjoyed significant exemptions
from environmental statutes. However, as environmental awareness has
increased over the years, concern about discharges into unlined pits from oil
field operations also increased. This concern culminated in the issuance of OCC
Order R-7940-C on January 14, 1993 ("OCC Order").

10 Q. ARE YOU FAMILIAR WITH THE REQUIREMENTS OF THE OCC 11 ORDER?

A. Yes. The OCC Order requires operators to cease discharge and to submit plans for obtaining closure of the unlined surface impoundments to the OCD and the Bureau of Land Management ("BLM") for approval, and establishes guidelines for determining whether levels of hydrocarbon contamination in soils have been reduced sufficiently to close the pit.

Q. DOES THE OCC ORDER ESTABLISH SPECIFIC DEADLINES FOR PIT CLOSURE OR FOR REMEDIATION OF SOILS OR GROUNDWATER?

20 A. The OCC Order established specific deadlines for cessation of discharge into

1		unlined pits. The OCC Order generally allows operators to make their own
2		determination on when to close a pit at an operating well, but requires the
3		operator at the site to evaluate and close pits within 45 days of plugging and
4		abandonment of the well. The "operator" referred to in the OCC Order is the
5		producer, or the operator of the oil and gas well. The deadline for closure of any
6		pits at a site is tied to the cessation of production at a site, not the cessation of
7		discharge.
8	Q.	WITH REGARD TO THE HAMPTON 4M SITE, DO YOU HAVE AN
9		UNDERSTANDING AS TO THE CURRENT OWNERSHIP OF THE
10		WELL?
11	A.	I believe that Burlington is the lessee and operator at the Hampton 4M well. The
12		Hampton 4M is located on a federal lease on land managed by the BLM. I
13		understand from records relating to the Hampton 4M well that Burlington is a
14		successor in interest to Meridian and Southland Royalty Company
15	Q.	DOES PNM HOLD ANY LANDS, LEASES OR RIGHTS-OF-WAY AT
16		THE HAMPTON 4M SITE?
17	A.	PNM has never been the lessee, nor has PNM ever held a working or royalty
18		interest in the well or lease. PNM did have an easement or license to allow
19		PNM access to the property to gather the gas. However, PNM has never
20		operated the well or any equipment associated with the production of natural gas

and the second sec

1		or hydrocarbon liquids from the well. PNM has, in the past, only owned and
2		operated dehydrators and maintained metering equipment at the site.
3	Q.	SINCE PNM IS NOT THE "OPERATOR" AT ANY SITE, INCLUDING
4		THE HAMPTON 4M SITE, WHY IS PNM EVALUATING,
5		REMEDIATING, AND CLOSING PITS AT THIS TIME?
6	A.	Unlike many of the operators in the San Juan basin, PNM has elected to take a
7		pro-active approach and to evaluate and close pits before such activity is
8		absolutely required by the regulatory authorities. Also, as a part of PNM's sale
9		of its gas gathering and processing operations in the San Juan Basin to Williams
10		Gas Processing - Blanco, Inc. ("Williams"), PNM agreed to continue its
11		activities related to pit evaluation and remediation, which were initiated prior to
12		the sale of the gathering and processing assets in 1995.
13	Q.	PLEASE PROVIDE MORE DETAIL REGARDING THE
14		CONTRACTUAL RELATIONSHIP BETWEEN PNM AND WILLIAMS
15		REGARDING REMEDIATION OR CLEANUP OF PIT
16		CONTAMINATION.
17	A.	As a part of the sale of these gas gathering assets to Williams June 30, 1995,
18		PNM agreed to continue with the pit closure activities that had been initiated
19		prior to the sale. PNM, as part of this contractual arrangement with Williams,
20		agreed to comply with OCC Order R-7940-C regarding cessation of discharge.

1		PNM also, as part of a closing agreement, agreed to close pits within the OCC-
2		designated vulnerable areas, including remediation of contaminated soils and
3		groundwater as required by applicable regulations, and that may have occurred
4		as a result of PNM's operations at a site prior to June 30, 1995.
5	Q.	HAS PNM OPERATED THE DEVHDRATOR OR ANY SURFACE
6		EQUIPMENT AT THE HAMPTON 4M WELL SITE SINCE JUNE 30,
7		1995?
8	A.	PNM has not.
9	Q.	DID PNM'S AGREEMENT WITH WILLIAMS REQUIRE PNM TO
10		PROVIDE INDEMNIFICATION WITHOUT REGARD TO WHETHER
11		PNM WAS RESPONSIBLE IN SOME WAY FOR THE
11 12		PNM WAS RESPONSIBLE IN SOME WAY FOR THE CONTAMINATION IN THE FIRST PLACE?
	A.	
12	A.	CONTAMINATION IN THE FIRST PLACE?
12 13	Α.	CONTAMINATION IN THE FIRST PLACE? No. PNM only agreed to take care of contamination resulting from PNM's
12 13 14	A .	CONTAMINATION IN THE FIRST PLACE? No. PNM only agreed to take care of contamination resulting from PNM's operations prior to June 30, 1995. Anything that happened after that date is
12 13 14 15	Α.	CONTAMINATION IN THE FIRST PLACE? No. PNM only agreed to take care of contamination resulting from PNM's operations prior to June 30, 1995. Anything that happened after that date is Williams' responsibility. PNM did not indemnify Williams for continuing
12 13 14 15 16	Α.	CONTAMINATION IN THE FIRST PLACE? No. PNM only agreed to take care of contamination resulting from PNM's operations prior to June 30, 1995. Anything that happened after that date is Williams' responsibility. PNM did not indemnify Williams for continuing compliance, but only for matters directly related to PNM's past operations. In
12 13 14 15 16 17	А. Q.	CONTAMINATION IN THE FIRST PLACE? No. PNM only agreed to take care of contamination resulting from PNM's operations prior to June 30, 1995. Anything that happened after that date is Williams' responsibility. PNM did not indemnify Williams for continuing compliance, but only for matters directly related to PNM's past operations. In addition, PNM did not agree to indemnify anyone other than Williams; i.e., the

C. W. C. Statistics

1	А.	The PNM cease-discharge and pit evaluation and closure program has been
2		ongoing since the OCC Order was issued. It was initiated by PNM staff prior to
3		my arrival at PNM in late 1993, and has been ongoing since that time.
4	Q.	IF, STRICTLY SPEAKING, SOILS AND GROUNDWATER CLEANUP
5		IS NOT REQUIRED OF OPERATORS SUCH AS PNM BY THE OCC
6		ORDER, WHAT REQUIREMENTS ARE IN PLACE THAT REQUIRE
7		SUCH CLEANUP?
8	A.	There are no regulatory authorities requiring cleanup of contaminated soils,
9		unless the soils may release contamination to ground and surface waters. At
10		most sites in the San Juan Basin, the major water contamination issues
11		associated with the operation of dehydration equipment are related to
12		groundwater contamination, not surface water contamination. In these instances,

there are abatement regulations that establish cleanup requirements for 13 contaminated soils in the vadose zone and for the contaminated groundwater 14 itself. 15

12

HAS ANY REGULATORY BODY OR AUTHORITY PROMULGATED 16 **O**. ABATEMENT REGULATIONS THAT APPLY TO OIL AND GAS 17 **ACTIVITIES?** 18

Initially, abatement regulations were promulgated by the New Mexico Water 19 A. Quality Control Commission ("WQCC"), and the OCD was, as a constituent 20

1		agency, responsible for enforcing the regulatory requirements. Subsequently,
2		the OCC promulgated abatement regulations that are similar to the WQCC
3		regulations, but that are tailored to the special considerations of the oil and gas
4		industry in New Mexico.
5	Q.	WHAT INVOLVEMENT HAVE YOU HAD IN THE DEVELOPMENT
6		OF AND COMPLIANCE WITH THE WQCC ABATEMENT
7		REGULATIONS?
8	A.	For the development of the WQCC abatement regulations, I drafted written
9		comments and provided both oral and written testimony on the regulations
10		during the promulgation process.
11	Q.	DID YOU HAVE ANY INVOLVEMENT IN THE DEVELOPMENT OF
12		THE OCC ABATEMENT REGULATIONS THAT HAVE NOW
13		SUPERSEDED, IN PART, THE APPLICATION OF THE WQCC
14		REGULATIONS FOR GROUNDWATER CONTAMINATION
15		RESULTING FROM OIL AND GAS OPERATIONS AND ACTIVITIES?
16	А.	Yes. I served on the OCC rulemaking committee that was charged with the task
17		of drafting the OCC abatement regulations, which are modeled on the WQCC
18		abatement regulations but are tailored to address the special needs and
19		considerations of the oil and gas industry in this state.
20	Q.	UNDER THE STATE OF NEW MEXICO REGULATIONS, WHO IS

1		RESPONSIBLE FOR CLEANUP OR ABATEMENT OF
2		GROUNDWATER CONTAMINATION?
3	A.	My understanding is that the person responsible for the cleanup or abatement of
4		contamination is the person who released the materials to the environment.
5	Q.	IS IT YOUR UNDERSTANDING, THEN, THAT IF YOU ARE OWNER
6		OR OPERATOR AT A SITE AND YOU DISCOVER CONTAMINATION
7		BENEATH THAT SITE, YOU ARE IN ALL CASES RESPONSIBLE FOR
8		THE CLEANUP OF THOSE CONTAMINANTS?
9	Α.	No. My understanding is that the person or operator who discharged or released
10		the contaminants is responsible for the cleanup.
11	Q.	IS IT YOUR UNDERSTANDING THAT THE GROUNDWATER
11 12	Q.	IS IT YOUR UNDERSTANDING THAT THE GROUNDWATER CLEANUP REGULATIONS ARE MODELED ON THE SUPERFUND
	Q.	
12	Q.	CLEANUP REGULATIONS ARE MODELED ON THE SUPERFUND
12 13	Q.	CLEANUP REGULATIONS ARE MODELED ON THE SUPERFUND LIABILITY SCHEME, WHICH IMPOSES STRICT, JOINT AND
12 13 14	Q.	CLEANUP REGULATIONS ARE MODELED ON THE SUPERFUND LIABILITY SCHEME, WHICH IMPOSES STRICT, JOINT AND SEVERAL LIABILITY UPON FOUR CLASSES OF
12 13 14 15		CLEANUP REGULATIONS ARE MODELED ON THE SUPERFUND LIABILITY SCHEME, WHICH IMPOSES STRICT, JOINT AND SEVERAL LIABILITY UPON FOUR CLASSES OF OWNER/OPERATORS AT A SITE?
12 13 14 15 16		CLEANUP REGULATIONS ARE MODELED ON THE SUPERFUND LIABILITY SCHEME, WHICH IMPOSES STRICT, JOINT AND SEVERAL LIABILITY UPON FOUR CLASSES OF OWNER/OPERATORS AT A SITE? No. From my participation in the development of both the WQCC and OCC
12 13 14 15 16 17		CLEANUP REGULATIONS ARE MODELED ON THE SUPERFUND LIABILITY SCHEME, WHICH IMPOSES STRICT, JOINT AND SEVERAL LIABILITY UPON FOUR CLASSES OF OWNER/OPERATORS AT A SITE? No. From my participation in the development of both the WQCC and OCC regulations, my understanding is that the Superfund scheme of strict liability, as

000233

1 up.

Q. WHY ARE THE CURRENT ACTIVITIES AT THE HAMPTON 4M SITE NOT PROCEEDING UNDER THE ABATEMENT REGULATIONS?

Both the WQCC and the OCC abatement regulations provide for 4 Α. 5 "grandfathering" of remediation or abatement activities that were initiated prior to the effective date of the regulations, provided those activities are conducted 6 pursuant to a plan approved by the OCD and the entity responsible for 7 implementing the plan is continuing to make progress in remediation. PNM is 8 conducting its remediation activities pursuant to a "grandfathered" plan. In the 9 case of soils remediation, the written plan is the work plan that was submitted to 10 and approved by the OCD and the BLM related to compliance with the OCC 11 Order. In the case of groundwater remediation, PNM conducts its activities 12 pursuant to PNM's Groundwater Management Plan, which was submitted to and 13 14 approved by the OCD prior to the initiation by PNM of groundwater remediation activities in the San Juan Basin. 15

16 Q. WHY DID PNM SUPPLEMENT ITS GROUNDWATER MANAGEMENT

17

PLAN WITH A SITE-SPECIFIC PLAN AT THE HAMPTON 4M SITE?

A. The PNM Groundwater Management Plan deals with the vast majority of sites
 that are typical sites, but indicates that, in atypical cases, site-specific plans will
 be submitted as appropriate.

1 Q. DO YOU CONSIDER THE HAMPTON 4M SITE AS "ATYPICAL"?

- A. Yes. Unlike all other sites that PNM has remediated where the dehydrator was
 the only source of contamination, we are seeing large volumes of free phase
 product, and we are seeing an increase in dissolved phase contamination over
- 5 time, even after the PNM pit has been remediated.

6 Q. WHAT DO ALL OF THE FACTORS YOU HAVE MENTIONED

7 **INDICATE TO YOU?**

These factors, taken as a whole, indicate to me that there are substantial, Α. 8 continuing sources or releases of free product at this site that have not yet been 9 characterized and addressed, and that these source areas or release points are not 10 associated with PNM's former operations or discharge pit at the site. As these 11 factors are quite complex, and interplay strongly with each other to lead to this 12 conclusion, we have prepared an exhibit that summarizes them (see PNM 13 Exhibit 1). The individual factors will be addressed in greater detail by PNM's 14 other technical witnesses, Maureen Gannon, Mark Sikelianos, Rodney Heath, 15 and Valda Terauds. 16

17

Q. DOES BURLINGTON HAVE A GROUNDWATER MANAGEMENT

18 PLAN IN PLACE?

A. Yes, Burlington has a Groundwater Management Plan that is modeled on
 PNM's groundwater management plan.

A Second Second Second

1	Q.	WHEN WAS BURLINGTON'S PLAN SUBMITTED TO THE OCD?
2	A.	Burlington's plan was submitted to the OCD in August 1998.
3	Q.	WHAT WAS THE EFFECTIVE DATE OF THE OCC ABATEMENT
4		REGULATIONS?
5	A.	The effective date of the OCC abatement regulations was March 15, 1997.
6	Q.	WAS BURLINGTON'S PLAN SUBMITTED SUBSEQUENT TO THAT
7		DATE?
8	A.	Yes.
9	Q.	WHAT IS THE EFFECT OF NOT HAVING A GRANDFATHERED
10		PLAN?
11	A.	Investigation and remediation should then be carried out under the OCC
12		abatement regulations as opposed to a plan.
13	Q.	DOES BURLINGTON'S GROUNDWATER MANAGEMENT PLAN
14		ALSO HAVE PROVISIONS FOR SITE-SPECIFIC PLANS FOR
15		"ATYPICAL" SITES?
16	A.	Yes. In fact, in Ed Hasely's (Burlington's) letter to the OCD transmitting
17		Burlington's Groundwater Investigation and Remediation Plan for the San Juan
18		Basin to the OCD dated August 6, 1998, a true and correct copy of which is
19		attached as PNM Exhibit 2, states: " Sites falling outside the scope of this
20		plan due to complexity or associated risk will be handled on an individual basis

with site specific plans approved by the New Mexico Oil Conservation
 Division."

Q. WOULD YOU CONSIDER THE HAMPTON 4M SITE TO BE ONE THAT WOULD FALL OUTSIDE THE "GENERIC" PLAN DUE TO COMPLEXITY OR ASSOCIATED RISK?

A. Yes. There is a risk of offsite contamination at the Hampton 4M site. This is 6 evidenced by the OCD Letter of March 11, 1998 to Dr. Everett Burton. A true 7 8 and correct copy of the letter is attached as PNM Exhibit 3. The risk of off site contamination is greater at this site than at the typical San Juan Basin site. Also, 9 the Hampton 4M site is more complex than the typical site, as there is free-phase 10 product present, the dissolved phase contamination is not trending downward 11 over time, and there is a source or sources that have yet to be characterized and 12 addressed at the site. 13

DID BURLINGTON **SUBMIT** WRITTEN SITE-SPECIFIC Α **Q**. 1 14 REMEDIATION WORKPLAN TO THE OCD FOR APPROVAL 15 TO SUBMITTAL OF THEIR GROUNDWATER SUBSEQUENT 16 MANAGEMENT PLAN AND PRIOR TO COMMENCING REMEDIAL 17 **ACTIVITIES AT THE HAMPTON 4M SITE?** 18

19 A. Not to my knowledge, no.

20 Q. HAVE YOU EVER BEEN TO THE HAMPTON 4M SITE, AND VIEWED

0.00.07

- **1 THE AREA YOURSELF?**
- 2 A. Yes, I have been there a number of times.

3 Q. DO YOU HAVE ANY EXHIBITS WHICH DEPICT THE LAYOUTS OF

4 THE HAMPTON 4M WELL PAD AT VARIOUS POINTS IN TIME?

Yes. PNM Exhibit 4 shows the basic layout of the site prior to 1998 when the Α. 5 well was a dual completion well. The equipment visible on the well pad shows 6 that at the time this photo was taken, the well was still a dual-completion well 7 and had not been commingled. PNM's former unlined pit was at the northern 8 edge of the well pad. This exhibit shows that the cease-discharge tank was set 9 slightly to the south and west of where the former pit was located, near the 10 northern edge of the well pad. At the time this photograph was taken, the 11 dehydrator discharge from Williams' operations went to the cease-discharge 12 tank that was set by PNM. Burlington's cease-discharge tank was located to the 13 south of their separators at the time this photograph was taken. Burlington's 14 product tanks, which were moved when the well was commingled, are located to 15 the east of their separators, near the southern end of the well pad. 16

17

Q. CAN YOU PLEASE TELL US WHAT PNM EXHIBIT 5 SHOWS?

A. PNM Exhibit 5 shows the layout of the well pad after the well was commingled
 in early 1998. After the commingling of the well, there was only one separator
 and only one dehydrator on site. In addition, after the well was converted to a

 $\lambda \in [n]$

dual completion well, Burlington maintained only one product tank for storage
 of free product from the well. This tank was located to the west of Burlington's
 separator. The Burlington's discharge tank remained to the south of its
 separator.

Q. HAVE THERE BEEN MODIFICATIONS TO THE WELL PAD SINCE PNM EXHIBIT 5 WAS PREPARED?

7 Α. Yes. During November 1998 through February of 1999, Burlington undertook a massive excavation in and around the area of PNM's former pit on the northern 8 end of the well pad. This excavation resulted in the destruction of PNM's 9 recovery well at MW-2 and most of PNM's other monitoring wells on the well 10 pad. PNM Exhibit 6 shows the general area of Burlington's excavation. This 11 exhibit shows that PNM's former dehydrator and meter house have been 12 displaced from their former locations by the excavation. PNM Exhibit 6 also 13 shows the current location of Burlington's surface equipment. 14

15 Q. CAN YOU PLEASE SUMMARIZE THE FACTS LEADING UP TO

16 **PNM'S PRESENT APPEAL BEFORE THE COMMISSION?**

A. Yes. PNM conducted its initial site assessment at the Hampton 4M well in April of 1996. That is the same time when cease discharge at this site was achieved by shutting in the dehydrator, and then setting a tank. PNM initiated pit remediation at this site by excavation of the soils in PNM's former dehydration

1	pit. Because of physical constraints at the well pad, PNM was not able to
2	remove all known contaminated soils. In instances where contaminated soils
3	cannot be removed for some reason, vertical drilling in the former pit location is
4	required to ascertain the vertical extent of the contamination. PNM performed
5	the vertical drilling at the Hampton 4M site in December of 1996. Ground water
6	was encountered at approximately 28 feet below surface. Approximately two
7	inches of free product was observed in the well bailer. PNM completed this
8	vertical drilling as monitoring well MW-2. PNM provided written notice of the
9	presence of the free product to the OCD and Burlington by letter dated January
10	13, 1997, a true and correct copy of which is attached as PNM Exhibit 7. Test
11	results for MW-2 taken on January 29, 1997 showed more than four feet of free
12	product on the ground water.

13 Q. WHAT IS THE SIGNIFICANCE OF THIS FINDING?

A. It shows that there was a considerable amount of free product on the water table under the Hampton 4M well pad. In accordance with its approved Ground Water Management Plan and in consultation with the OCD, PNM initiated further investigation and remediation measures at this site. PNM installed additional monitoring wells, both on the Hampton 4M well pad and in areas off the well pad. PNM also initiated recovery of free product from the ground water through MW-6, a product recovery well. The specific details of these measures

000000

are addressed in the testimony of PNM Witnesses Maureen Gannon and Valda
 Terauds.

WHAT DID THE DATA DEVELOPED FROM THE ADDITIONAL MONITORING WELLS SHOW ABOUT THE POSSIBLE SOURCE OF THE FREE PRODUCT IN THE GROUND WATER AT THE SITE?

- A. The specific details of the findings from the monitoring wells are found in the 6 testimony of PNM Witness Gannon and the significance of those findings are 7 addressed by PNM Witness Valda Terauds. However, to summarize the results 8 of the additional work, it became clear that the free product underlying PNM's 9 former dehydration pit originated from some source or sources upgradient of 10 PNM's former dehydration pit. Through the installation of the additional 11 monitoring wells, PNM was able to clearly establish that the ground water 12 gradient under the well pad flowed in a northerly or northwesterly direction from 13 the area of Burlington's operations to the area of PNM's former dehydration pit. 14 The ground water gradient flow is shown in PNM Exhibit 8. 15
- 16 Q. WERE YOU ABLE TO DRAW ANY CONCLUSIONS ABOUT THE
- **VOLUME OF THE FREE PRODUCT UNDER THE WELL PAD SITE?**
- A. Yes. PNM initiated free product recovery through MW-6 in January of 1998. In
 other words, PNM pumped the free product from the top of the water table to the
 surface where it was collected in a drum. Burlington in turn collected, as its

1		own, the free product recovered by PNM. PNM continued to measure product
2		thickness in the area of its former pit through MW-2. After an initial reduction
3		in product thickness by about two feet, the product thickness remained relatively
4		constant at about two feet. This shows either a continuing source or sources of
5		free product, or a very large volume of free product, or both.
6	Q.	DID PNM APPRISE THE OCD OF THE RESULTS OF ITS
7		MONITORING WELLS AND PRODUCT RECOVERY ACTIVITIES?
8	А.	Yes. PNN provided quarterly reports to both the OCD and Burlington about the
9		results of PNM's investigation and remediation work. PNM also provided
10		correspondence detailing its activities and findings to the OCD and Burlington.
11		These documents are exhibits to the testimony of PNM Witness Gannon. PNM
12		also had meetings with OCD and Burlington representatives where these matters
13		were discussed.
14	Q.	WHAT WAS BURLINGTON DOING AT THE HAMPTON 4M SITE
15		DURING THIS TIME FRAME?
16	A.	In April 1997 Burlington discovered a water seep just off the northwestern part
17		of the well pad. The seep had evidence of free product. Burlington installed a
18		trench to catch water from the seep. Burlington also conducted a partial
19		excavation near the area of its former tank discharge pit. A few soil borings
20		were also installed and a few temporary and monitoring wells were installed.

Many of these wells and borings were positive for contamination. The details of
 these activities are addressed in the testimony of PNM Witnesses Gannon and
 Sikelianos.

4 Q. WHAT WAS THE RULING OR FINDING OF THE OCD THAT PNM 5 INITIALLY APPEALED?

In August of 1997 the OCD drew an imaginary "line in the sand" on the well 6 Α. pad between PNM's former operations and Burlington's operations. This line in 7 the sand roughly corresponds with a line just to the north of the locations of 8 TPW-1, TPW-2 and TPW-3 depicted in PNM Exhibit 9. The OCD ruled that 9 Burlington was responsible for soil and ground water contamination on the well 10 pad south (upgradient) of the line. PNM was ruled responsible for soil and 11 groundwater contamination for the area north (downgradient) of the imaginary 12 line, including all free product and all off-site dissolved phase product in the 13 ground water. By letter dated March 13, 1998, a copy of which is found at PNM 14 Exhibit 10, the OCD directed PNM to "take additional remedial action with 30 15 days to remove the remaining source areas with free phase hydrocarbons [free 16 product] in the vicinity of and immediately downgradient of the dehy pit." It is 17 this letter that prompted the initial appeal. 18

Q. DID THE OCD'S "LINE IN THE SAND" HAVE THE EFFECT OF APPORTIONING LIABILITY FOR INVESTIGATION AND

0.00203

REMEDIATION A	T THE HAMPTON 4M SITE?
----------------------	------------------------

- A. Yes. The OCD's "line in the sand" was a clear apportionment of liability as between PNM and Burlington. The OCD directed Burlington to investigate the areas to the south (upgradient) of that line, and PNM to investigate the areas to the north (downgradient) of the line. This ruling apportioned a very small area to Burlington to investigate and/or remediate, and left the rest of the well pad and an undetermined amount of area upgradient from the well pad for PNM to investigate and remediate.
- 9 Q. HAS BURLINGTON CONDUCTED AN INVESTIGATION OF THEIR
 10 PORTION OF THE SITE, SIMILAR TO THE INVESTIGATIONS
 11 PERFORMED BY PNM?
- A. Not really. Burlington has continued to focus its investigative and remediation efforts on the portion of the site that was designated by the OCD as PNM's responsibility, and has yet to conduct an investigation or remediation efforts similar to the intensity with which the PNM portion of the site has been investigated on their own portion of the site, i.e., the portion of the site that was designated as Burlington's responsibility by the OCD.
- Q. ON THE ISSUE OF APPORTIONMENT, DID YOU CONSIDER THE
 OCD'S APPORTIONMENT TO BE A REASONABLE
 APPORTIONMENT OF RESPONSIBILITY BASED UPON THE

000254

1 INVESTIGATIVE EFFORTS CONDUCTED AT THIS SITE?

A. We did not consider this to be a reasonable apportionment, especially as we performed more investigations and developed more data indicating that there was either a massive volume of free product located in the subsurface upgradient of PNM's former operations, or a continuing or intermittent upgradient release of free product, or both. The physical location of the surface equipment does not necessarily have any relationship to the source of ground water contamination.

8 The contamination moves with the flow of the ground water. Therefore, 9 contamination may originate at some point upgradient and travel to another 10 location down gradient. This is what has happened at the Hampton 4M site.

As we developed this additional data, it became apparent that the only effective way to eliminate the free phase contamination was to identify the upgradient release point or points, and cut them off. PNM had no rights of access to Burlington's operations and was precluded from interfering with ongoing operations at the site by Burlington and Williams.

16 Q. WHAT FACTORS WOULD LEAD YOU TO BELIEVE THAT THERE

WAS MORE THAN ONE RELEASE POINT OF CONTAMINATION OF
 GROUNDWATER AT A SITE, THAT THE RELEASE DID NOT
 ORIGINATE FROM PNM OPERATIONS, OR THAT THERE IS AN
 ONGOING RELEASE PROBLEM?

5.41.5

23.12.3

1	A.	First, if free product is present on the groundwater at a site, it is highly likely
2		that the dehydrator pit was not the source or release point of contamination at a
3		site. PNM's former operations at the site involved dehydration. Dehydrators
4		remove and discharge wastewater with small amounts of hydrocarbon
5		contamination in the wastewater to the soil; they do not discharge liquid
6		hydrocarbons to groundwater. If large amounts of liquid hydrocarbons are sent
7		to a dehydrator, it causes the dehydrator to malfunction and to shut down. If
8		there are any significant amounts of liquid hydrocarbons in the discharge pit or
9		tank from a dehydrator, it is because the producer's equipment upstream has
10		malfunctioned and has sent liquid hydrocarbons to/through the dehydrator, or
11		the liquid hydrocarbons have bypassed the dehydrator and have been discharged
12		to the dehydrator pit or tank by the producer's upstream equipment.
13		Second, if free product appears at a site after the commencement of monitoring
14		following the second remediation of the area of PNM's former pit, or if the
15		thickness of free product does not diminish substantially over time, this
16		constitutes strong evidence of a continuing or intermittent release of liquid
17		hydrocarbons to the subsurface by operations or entities other than PNM.
18		Similarly, if the BTEX ratios shift, with benzene as a proportionally higher
19		percentage over time, there is likely a new source or release at the site that
20		cannot possibly be attributable to PNM.

S 18 5 8

1	Finally, with regard to dissolved phase contamination, as was noted above, if
2	there is free product present on the groundwater, the concentrations of dissolved
3	phase hydrocarbon constituents (particularly benzene) will always be
4	substantially above standards. If there is only one release point or source of
5	dissolved phase contamination at a site (such as contaminated soils in a pit), if
6	that suspected source is removed or remediated to below the OCD guidelines,
7	the concentrations of dissolved phase hydrocarbon contaminants, particularly
8	benzene, will drop over time. Thus, if the concentrations do not drop or actually
9	rise, there is very likely another source of contamination at or near the site that is
10	causing groundwater contamination.

Q. WHICH OF THESE FACTORS ARE PRESENT THAT WOULD LEAD
 YOU TO BELIEVE THAT THE SOURCE OF FREE PRODUCT AND
 DISSOLVED PHASE CONTAMINATION IS OTHER THAN THE
 DEHYDRATOR PIT AT THE HAMPTON 4M SITE?

15 A. All of them.

16 Q. WHY DID PNM DECIDE TO APPEAL THE INITIAL
 17 APPORTIONMENT DETERMINATION BY THE OCD?

A. PNM has a very strong policy of complying with OCD orders and undertaking
 activities that we think are most likely to achieve a maximum positive result for
 the environment as quickly as possible. However, the OCD's apportionment

decision was not well-grounded in either science or the law, and left PNM in the
 position of having to abate a release that PNM had not caused and over which
 PNM had no control.

4 Q. WHAT WAS THE OUTCOME OF THE INITIAL APPEAL TO THE 5 OCD AS TO THE APPORTIONMENT ISSUE?

After the hearing in November 1998, the hearing examiner recognized that 6 Α. Burlington was a source of free product underlying the Hampton 4M well pad. 7 However, the hearing examiner once again apportioned responsibility for 8 investigation and clean-up of the free product and dissolved phase in the ground 9 water. Rather than consider the evidence that PNM introduced concerning the 10 fact that it was highly improbable that PNM could have contributed to the free 11 product, the hearing examiner simply ruled that both PNM and Burlington were 12 equally responsible for investigation and remediation of the ground water. 13 Again, there is simply no scientific evidence or legal basis to sustain such an 14 apportionment. Thus, PNM had no choice but to seek a de novo appeal of this 15 determination to the Commission. 16

Q. WHAT ARE THE GROUNDS FOR PNM'S PRESENT APPEAL TO THE COMMISSION?

A. The grounds for PNM's appeal are set forth in PNM's Application and Request for *De Novo* Appeal on Order No. R-11134 which is PNM Exhibit 11. The

1 basic grounds for PNM's appeal are that: 1) PNM's former unlined pit is not the source for any free phase product in the groundwater under the site; 2) the data 2 show that the free phase product underlying the Hampton 4M well pad 3 originated at a release point or points upgradient of PNM's former dehydration 4 pit; 3) PNM is not the owner of any free product under the site; 4) to the extent 5 6 that free product may have been discharged into PNM's former unlined pit it was the result of operational or mechanical failure of Burlington's upgradient 7 equipment and operations; 5) PNM has already recovered more free product 8 from the ground water than could have possibly been discharged through its 9 former unlined pit under any reasonable scenario; 6) all soil contamination 10 underlying PNM's former unlined pit that was potentially a result of discharges 11 from PNM operations was removed, and any additional contamination that has 12 occurred in the area has been conveyed there from upgradient release 13 points/sources and/or from discharges from equipment that is not owned, 14 operated, or controlled by PNM; and 7) the OCD has no authority to require 15 PNM to submit a remediation plan as PNM has already submitted and received 16 approval of its Closure Plan and Groundwater Management Program, and has 17 been in compliance with the provisions of those plans. 18

Q. WHAT RELIEF IS PNM REQUESTING FROM THE COMMISSION IN THIS HEARING?

A. PNM is seeking the following relief: 1) A ruling by the OCC that all soil contamination in the area of PNM's former pit has been remediated and that

1

Î

1

1

.

1		PNM shall have no further responsibility for soil contamination at the site; 2) a
2		ruling that PNM is not a responsible party for any free product underlying the
3		Hampton 4M site or for the associated dissolved phase product in the vicinity of
4		the site; 3) a ruling granting PNM closure for it former unlined pit at the
5		Hampton 4M site and relief from any further responsibility for investigation and
6		remediation at this site
7	Q.	YOU PREVIOUSLY INDICATED THAT THE HEARING EXAMINER'S
8		DECISION IS NOT BASED ON SCIENCE OR THE LAW. WHAT
9		FACTS DO YOU HAVE THAT THE DECISION IS NOT BASED ON
10		SCIENCE?
11	A.	This aspect of our case is addressed in more detail by PNM Witness Valda
12		Terauds. However, as discussed above, the evidence clearly shows that the free
13		product originated from a source/release point upgradient of PNM's former pit
14		and had migrated to the vicinity of PNM's former pit, where it was initially
15		discovered by PNM. Moreover, the volume of free product is much greater
16		than could possibly have come through PNM's former pit. The allocation does
17		not take any of these factors into account. Finally, the evidence also
18		demonstrates the presence of a continuing sources or sources at the site. Unless
19		and until the source or sources of the free product are identified and addressed,
20		PNM's remediation efforts would be of no effect. PNM would be relegated to

1		very expensive and potentially unending liability for remediation of free product
2		which it did not release and which it is not releasing to the environment.
3	Q.	HOW IS THE HEARING EXAMINER'S RULING LEGALLY
4		ERRONEOUS?
5	A.	The hearing examiner's ruling is legally erroneous in several respects. First,
6		PNM does not even own the free product which is under the well pad site. As
7		discussed later in my testimony, the product is owned by Burlington. Second,
8		the ruling ignores the fact that PNM had no control over free product reaching
9		its former dehydrator. Burlington and it predecessors were the entities in control
10		of the free product. This is addressed in detail by PNM Witness Rodney Heath.
11		Third, the applicable environmental statutes do not impose strict liability or joint
12		and several liability for contamination at sites. Rather, liability is to be based on
13		whether a party caused the subject contamination. PNM did not cause the free
14	•	product contamination and resultant dissolved phase contamination in this
15		instance. Fourth, OCD practice and policy has been to impose liability on
16		current operators rather than past operators. In this case, Burlington and
17		Williams are the current operators at the Hampton 4M well site. Therefore, the
18		OCD's directives should be aimed at these parties and not against PNM.
19	Q.	WHY DOES PNM CONTEND THAT IT IS NOT THE OWNER OF THE

20

FREE PRODUCT?

I

l

I

ľ

Î

1

Î

1

I

1

1

1

Į

B

1	А.	PNM has been a gas utility since January 1985, when PNM purchased what is
2		now PNM Gas Services operations from Southern Union Company. PNM
3		contracted to purchase natural gas free of deleterious liquids or commercially
4		free of liquids (sometimes this is expressed as a qualitative statement, and
5		sometimes a gas quality specification is included). The point is that PNM
6		purchased the natural gas, not the liquids.
7	Q.	WAS PNM IN THE BUSINESS OF PURCHASING FREE PRODUCT OR
8		HYDROCARBON LIQUIDS AT THIS SITE?
9	A.	No, not to my knowledge.
10	Q.	AT WHAT POINT DOES TITLE TO THE GAS PASS FROM THE
11		PRODUCER TO PNM?
12	A.	My understanding is that under the gas purchase contracts that were in effect at
12 13	A.	My understanding is that under the gas purchase contracts that were in effect at the time that PNM owned and operated dehydration equipment at the site, PNM
	A.	
13	A.	the time that PNM owned and operated dehydration equipment at the site, PNM
13 14	А. Q .	the time that PNM owned and operated dehydration equipment at the site, PNM took title and control of the gas at the meter orifice, downstream of the
13 14 15		the time that PNM owned and operated dehydration equipment at the site, PNM took title and control of the gas at the meter orifice, downstream of the dehydrator, upstream of the gathering system.
13 14 15 16		the time that PNM owned and operated dehydration equipment at the site, PNM took title and control of the gas at the meter orifice, downstream of the dehydrator, upstream of the gathering system. DO YOU HAVE AN UNDERSTANDING AS TO WHO IT IS THAT
13 14 15 16 17		the time that PNM owned and operated dehydration equipment at the site, PNM took title and control of the gas at the meter orifice, downstream of the dehydrator, upstream of the gathering system. DO YOU HAVE AN UNDERSTANDING AS TO WHO IT IS THAT CLAIMS OWNERSHIP OF FREE-PRODUCT HYDROCARBONS WITH

33

1 ownership of those fluids.

2 Q. DOES THE PRODUCER RECEIVE AN ECONOMIC BENEFIT FROM 3 THESE FLUIDS?

4 A. Yes, they do.

5 Q. DOES PNM RECEIVE AN ECONOMIC BENEFIT FROM THESE 6 FLUIDS?

A. No, it did not. In fact, under the contracts in effect when PNM still owned
and/or operated the gathering system and associated dehydration equipment, my
understanding is that PNM was precluded by the contract from recovering any
substantial amount of hydrocarbon liquids and from selling any such liquids that
it might recover.

12 Q. HAS PNM EVER CLAIMED ANY OWNERSHIP IN THE FREE

- 13 **PRODUCT AT THE HAMPTON 4M SITE?**
- A. Not to my knowledge. For example, the free product that PNM was recovering during remediation was turned over to Burlington, as the producer has the ownership of and the right to hydrocarbon liquids produced from a gas well, absent any agreement to the contrary.

18 Q. DOES PNM, AS A PUBLIC UTILITY, HAVE TO MEET ANY SPECIAL

- **OBLIGATIONS REGARDING THE DELIVERY OF THE GAS?**
- A. Yes. Because PNM has a duty to serve as a public utility, the gas that PNM

1		receives to transport to its customers must be free of deleterious liquids so that
2		we won't have operational difficulties that could impair our ability to serve our
3		customers. This obligation to serve is absolute; PNM cannot simply say "sorry
4		- the quality of the gas we are receiving today is such that it can not be delivered
5		to you, the customer."
6	Q.	DOES PNM TAKE ANY STEPS TO ASSURE THAT IT CAN MEET THE
7		OBLIGATION TO SERVE THAT IS IMPOSED UPON IT AND OTHER
8		PUBLIC UTILITIES?
9	A.	Yes. PNM imposes a gas quality specification upon the producers. Further, in
10		order to protect our gas gathering and transportation system and to make sure
11		that operations continue during the time of year when delivery of the gas was
12		most crucial to our customers, PNM installed dehydration equipment ahead of
13		the meter at this site to remove water vapor and trace amounts of hydrocarbons.
14	Q. .	PLEASE IDENTIFY PNM EXHIBIT 12.
15	А.	Exhibit 12 is entitled "Gas Purchase Agreement between Southland Royalty and
16		Gas Company of New Mexico".
17	Q.	IS THIS A TRUE AND CORRECT COPY OF THE GAS PURCHASE
18		AGREEMENT BETWEEN SOUTHLAND ROYALTY AND GAS
19		COMPANY OF NEW MEXICO WHICH RELATES TO GAS
20		PURCHASES BY PNM FROM THE HAMPTON 4M WELL?

35

Conservation (1997)

1 A. To the best of my knowledge, yes.

2 Q. FOR WHAT PURPOSE IS THIS CONTRACT BEING OFFERED?

A. This contract (PNM Exhibit 12) addresses the specifications of the quality of the gas that was purchased by PNM and delineates the condition or standards that gas was required to meet at the delivery point (i.e., the delivery of the gas to the gatherer from the producer). The quality specification states that the gas is to be free of objectionable liquids. It also addresses the ownership and operation of the dehydration units at the Hampton 4M site.

9 Q. DOES THE CONTRACT (PNM EXHIBIT 12) ADDRESS WHO OWNS 10 THE DEHYDRATOR UNIT AND WHO OPERATES IT?

Yes. Please see page 20, Section XI, which is entitled "Quality", and the A. 11 specifications deal specifically with liquids. It says, "The gas shall be free of 12 objectionable liquids." It also states that gas from new subject wells "...shall 13 contain not more than seven pounds of water vapor per million cubic feet." It 14 also contains a provision stating: "If in Buyer's sole judgment the gas deliverable 15 from any Subject Well other than a New Subject Well contains sufficient 16 moisture to require installation of dehydration equipment, such equipment shall 17 be installed, maintained and operated by Buyer..." [which would have been Gas 18 Company of New Mexico at this point in time] "...at Buyer's sole expense, 19 except that all gas required as fuel for such equipment shall be taken upstream at 20

Buyer's meter, shall not be metered to Buyer hereunder and shall be free of cost
 to Buyer."

Q. WHY IS THE GAS QUALITY SPECIFICATION, AND THE OWNERSHIP OF THE LIQUIDS, IMPORTANT IN DETERMINING WHO IS RESPONSIBLE FOR THE FREE PRODUCT RELEASES AND GROUNDWATER CONTAMINATION AT THE HAMPTON 4M SITE?

A. PNM was purchasing gas only, and had no ownership in or control over the
substances that were released to and contaminated the groundwater at the
Hampton 4M site.

Q. WHY WOULD PNM INSTALL AND OPERATE DEHYDRATORS AT THIS SITE?

A. PNM installed dehydration units to remove moisture from the gas and to help assure gas quality. As discussed in more detail in PNM Witness Heath's testimony, moisture can cause operational problems and cause damage to systems or their safe operation. As also noted by PNM Witness Heath, the dehydrators are intended to address moisture, not free product.

17Q.WHAT IS YOUR UNDERSTANDING OF THE NATURE OF LIABILITY18IMPOSED UNDER THE NEW MEXICO STATUTES RELATING TO19LIABILITY FOR INVESTIGATION AND REMEDIATION OF20GROUND WATER CONTAMINATION AT OIL FIELD SITES?

37

and the second s

1	A.	As note above, I was very involved in the development and promulgation of
2		both the WQCC and OCC abatement regulations. As a result of my
3		participation in this process, I know that the New Mexico water quality
4		protection requirements are not strict liability statutes. Unlike, for example, the
5		federal CERCLA, or Superfund law, the New Mexico statutes and rules do not
6		make every person who is associated with a site jointly and severally liable for
7		any and all of the contamination, whether or not they released the substances.
8		The statutes are intended to impose liability on the entity causing the
9		contamination.
10	Q.	IS THERE ANY REQUIREMENT UNDER PNM'S PIT-CLOSURE PLAN
11		THAT PNM PROCEED WITH CLEANUP, REGARDLESS OF THE
11 12		THAT PNM PROCEED WITH CLEANUP, REGARDLESS OF THE SOURCE OF THE CONTAMINATION?
	A.	
12	А. Q.	SOURCE OF THE CONTAMINATION?
12 13		SOURCE OF THE CONTAMINATION? No.
12 13 14		SOURCE OF THE CONTAMINATION? No. ARE YOU FAMILIAR WITH HOW THE OCD HAS ASSIGNED
12 13 14 15		SOURCE OF THE CONTAMINATION? No. ARE YOU FAMILIAR WITH HOW THE OCD HAS ASSIGNED PRIMARY RESPONSIBILITY FOR GROUND
12 13 14 15 16	Q.	SOURCE OF THE CONTAMINATION? No. ARE YOU FAMILIAR WITH HOW THE OCD HAS ASSIGNED PRIMARY RESPONSIBILITY FOR GROUND WATER INVESTIGATION AND CLEAN UP AT OTHER SITES?
12 13 14 15 16 17	Q.	SOURCE OF THE CONTAMINATION? No. ARE YOU FAMILIAR WITH HOW THE OCD HAS ASSIGNED PRIMARY RESPONSIBILITY FOR GROUND WATER INVESTIGATION AND CLEAN UP AT OTHER SITES? Yes, I have had this issue investigated. In instances where PNM is not involved,

000207

_

the second

10000

1 the current operators at the site, not PNM.

Q. GIVEN YOUR EXPERIENCE AT CONTAMINATED SITES, DO YOU BELIEVE THAT PNM CAN EFFECTIVELY CONTINUE TO REMEDIATE THIS SITE?

At this point in time, Burlington has completely removed any remaining soil Α. 5 materials from PNM's former pit down to and into the water table in the vicinity 6 of PNM's former pit. Because PNM has had no active gas gathering operations 7 at the Hampton 4M site since June 30, 1995, any remaining free product (or 8 other) contamination at the site could not possibly be as a result of PNM 9 discharges. PNM has no ability or authority to go onto other operators' sites or 10 interfere in any way with other operators' operations, absent an explicit 11 invitation or approval from such entities. Thus, PNM has no way of 12 investigating or locating, let alone addressing, the other source areas and 13 continuing releases at the Hampton 4M site. Thus, PNM cannot effectively 14 remediate the obvious contamination originating upgradient of its former pit. 15 However, it is important to note that PNM has reinstalled a monitoring well in 16 the vicinity of its former dehydration pit and is monitoring the ground water 17 quality in accordance with its groundwater management plan to help ensure that 18 the environment is protected to the maximum extent possible. However, as any 19 future issues at the site cannot possibly be associated with PNM's activities at 20

.

1.		this site, and as PNM no longer has active operations and has completely
2		remediated any increment of pollution or contamination that its operations (and,
3		in fact, the entire area surrounding PNM's former pit has been completely
4		removed), PNM can no longer effectively remediate the site.
5	Q.	HAVE YOU REVIEWED THE DOCUMENTATION AND DATA
6		PRESENTED BY PNM AS EXHIBITS RELATING TO PRESENCE OF
7		FREE PRODUCT CONTAMINATION IN THE GROUND WATER
8		UNDERLYING THE HAMPTON 4M WELL?
9	A.	Yes I have.
10	Q.	HAVE YOU REVIEWED THE TESTIMONY AND OPINIONS
11		PRESENTED BY PNM WITNESS VALDA TERAUDS IN THIS
12		PROCEEDING?
13	A.	Yes I have.
14	Q.	DO YOU AGREE WITH HER OPINIONS CONCERNING THE
15		SOURCE OF FREE PRODUCT CONTAMINATION AT THE
16		HAMPTON 4M SITE?
17	A.	Yes I do.
18	Q.	DO YOU AGREE WITH HER OPINIONS CONCERNING THE
19		PRESENCE OF A CONTINUING SOURCE OR SOURCES AT THE
20		HAMPTON 4M SITE?

660209

化化学学 化化学

1	Α.	Again, I agree with PNM Witness Terauds on this point.
2	Q.	HAVE THE OPINIONS THAT YOU HAVE STATED IN YOUR
3		TESTIMONY BEEN BASED UPON A REASONABLE SCIENTIFIC
4		CERTAINTY?
5	А.	Yes they have.
6	Q.	DOES THIS CONCLUDE YOUR TESTIMONY?

7 A. Yes.

000270

. وک

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION COMMISSION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION FOR THE PURPOSE OF CONSIDERING:

APPLICATION OF PUBLIC SERVICE COMPANY OF NEW MEXICO FOR *DE NOVO* HEARING ON ORDER NO. R-11134 ISSUED BY THE NEW MEXICO OIL CONSERVATION DIVISION IN CASE NO. 12,033

<u>AFFIDAVIT</u>

))SS.

STATE OF NEW MEXICO COUNTY OF BERNALILLO

I, Toni K. Ristau, upon being first duly sworn according to law, under oath, depose and state: That I am Director of Environmental Services for Public Service Company of New Mexico, and that I have read the foregoing Direct Testimony, including exhibits. I further affirmatively state that I know the contents thereof and that they are true and correct to the best of my knowledge and belief.

SIGNED this B-day of July, 1999.

TONI K. RISTAU

SUBSCRIBED AND SWORN to before me this $\mathcal{E}^{\frac{4}{2}}$ day of July, 1999.

Notary Public

[My Commission Expires: Oct. 22, 1999]

DAM0257

(Seal, if any)

· ·

BEFORE THE

NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES

OIL CONSERVATION COMMISSION

IN THE MATTER OF THE APPLICATION OF PUBLIC SERVICE COMPANY OF NEW MEXICO FOR REVIEW OF OIL CONSERVATION DIVISION DIRECTIVE DATED MARCH 13, 1998 DIRECTING APPLICANT TO PERFORM ADDITIONAL REMEDIATION FOR HYDROCARBON CONTAMINATION, SAN JUAN BASIN, NEW MEXICO CASE NO. 12033

DIRECT TESTIMONY OF

MAUREEN GANNON

SUBMITTED ON BEHALF OF

PUBLIC SERVICE COMPANY OF NEW MEXICO

APPLICANT

JULY 9, 1999

Q. CAN YOU PLEASE STATE YOUR NAME AND YOUR PLACE OF 2 EMPLOYMENT?

A. My name is Maureen D. Gannon and I am employed by Public Service Company
of New Mexico ("PNM"), Alvarado Square, Albuquerque, New Mexico, in the
Environmental Services Department. I am presenting this testimony on behalf of
PNM.

7 Q. WHAT IS YOUR CURRENT POSITION WITH PNM AND WHAT ARE 8 YOUR JOB DUTIES IN THAT POSITION?

Α. My current position is project manager of PNM's Pit Remediation Project. As 9 project manager, I control the resources (i.e., people, materials, equipment, 10 contractors, and day-to-day budget) to complete the excavation and remediation of 11 over 1,200 unlined surface impoundments in the San Juan Basin and the 12 investigation and remediation of any associated contaminated groundwater 13 locations. I am responsible for managing the day-to-day operations, preparing 14 reports and documentation to the regulators, and serving as liaison between PNM 15 and operators, producers and other stakeholders. 16

17 Q. HOW LONG HAVE YOU SERVED AS PROJECT MANAGER AT PNM?

A. I served as technical project manager from 1995 until January 1998. From
 January 1998 to present, I have assumed the role of overall project manager.

1 Q. CAN YOU PLEASE BRIEFLY SUMMARIZE YOUR TESTIMONY?

Α. Yes. My testimony provides a summary chronology of the investigation and 2 remediation efforts taken with respect to contamination at the Hampton 4M well 3 I also address how the data developed through this investigation site. 4 5 demonstrates that the free product contamination at this site must have originated from some source or sources upgradient of PNM's former unlined dehydrator pit. 6 My testimony also discusses how the free product situation at the Hampton 4M 7 site is unprecedented in PNM's experience with similar sites. I discuss the fact 8 9 that Burlington's remediation efforts at the site have guaranteed that PNM's former pit cannot possibly be the source for any continuing contamination at this 10 11 site. Finally, I sponsor a number of exhibits documenting the investigation and 12 remediation efforts at the Hampton 4M site.

13 Q. PLEASE STATE YOUR EDUCATIONAL AND PROFESSIONAL 14 EXPERIENCE.

A. I have a Bachelor's of Science degree in Chemical Engineering granted in 1983
from New Mexico State University. I have a Masters degree in Business
Administration/Technology Management from the University of Phoenix. From
1983 to 1987, I was employed as a process engineer at Rocky Flats in Golden,
Colorado. In 1987, I moved to Albuquerque and worked for Geoscience

.'

660274

Consultants, Ltd., an environmental consulting firm, as an environmental engineer
 until 1997 when I became an employee of PNM.

3 Q. WHAT TYPES OF ENVIRONMENTALLY-RELATED PROJECTS HAVE 4 YOU WORKED ON?

5 Α. In addition to the Gas Assets Pit Remediation Project, I served as technical project manager of a remediation system for cleanup of contaminated soil and 6 7 groundwater at a natural gas processing plant in southern New Mexico. I was also the project manager of a storm water, sewer, air and hazardous waste compliance 8 and sampling program at a major aircraft manufacturing facility. I served as task 9 leader for a comprehensive Best Management Practice(s)/Best Available 10 Treatment (BMP/BAT) study to identify potential chemical oxygen demand 11 (COD) sources and management technologies for minimizing COD in storm water 12 runoff. I did an extensive amount of permitting and compliance work related to 13 SPCC plans, waste discharge plans and compressor air permits at various facilities 14 throughout New Mexico and the United States. In addition, I have performed 15 numerous environmental due diligence facility audits as well as Phase I 16 environmental audits. 17

1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

R. WHAT ARE YOUR RESPONSIBILITIES WITH PNM RELATED TO SITES HAVING CONTAMINATED GROUNDWATER?

Α. Since 1995, I have served as the technical project manager of 37 groundwater sites 3 discovered in conjunction with the Gas Assets Pit Remediation Program. My 4 5 duties include overseeing the investigative and remediation phases at each of these I manage the groundwater scientists, technicians, and groundwater sites. 6 subcontractors in their efforts, including well installations, groundwater sampling, 7 8 secondary remediation related to soil excavation or installation and monitoring of advanced remediation systems. I also prepare and/or review all documentation 9 associated with these groundwater sites. Prior to the Pit Remediation Project, I 10 managed other contaminated groundwater sites at various facilities including gas 11 plants and UST sites and performed similar duties. 12

13 Q. WHAT ARE YOUR RESPONSIBILITIES WITH RESPECT TO THE 14 HAMPTON 4M WELL SITE?

A. I serve as the project manager for all activity related to pit and groundwater clean up at the site. To date, I have supervised the site assessment and excavation
 activities, drilling to define vertical extent of contamination, installation of
 groundwater monitoring wells, installation of the free-product recovery system,
 and ongoing monitoring activities.

Q. IS THE HAMPTON 4M BEING HANDLED PURSUANT TO PNM'S PIT REMEDIATION PROGRAM?

Α. Yes. The site is being handled pursuant to PNM's Unlined Surface Impoundment 3 4 Closure Plan and the Groundwater Management Program Unlined Surface Impoundment Closure Plan. These plans were written in accordance with OCC 5 Order R-7940-C relating to the elimination of discharges into unlined pits ("OCC 6 7 Order"). The Unlined Surface Impoundment Closure Plan was submitted to and 8 approved by the OCD in 1993. The Groundwater Management Program Plan was submitted to and approved by the OCD in 1996. The OCC Order calls for the 9 cessation of discharge into unlined surface impoundments ("pits") within 10 11 environmentally-sensitive areas near rivers, major tributaries and washes within the San Juan Basin. To cease discharge means to stop the discharge of produced 12 waters from the separator and dehydration units associated with gas wellhead 13 production into on-site unlined surface impoundments or "pits." 14

Q. WITHIN THE AREAS UNDER OCD JURISDICTION, IS THERE ANY TYPE OF RELATIVE PRIORITY GIVEN TO PARTICULAR SITES?

A. For sites that fall under the OCC Order, the Order established a three-tiered
 approach, with different deadlines for cessation of discharge depending upon
 whether the site fell into the original, expanded, or extended vulnerable areas.
 The OCC Order explicitly addresses cessation of discharge to unlined surface

000277

impoundments only; there is no deadline established in the Order for the cleanup 1 2 and closure of pits. The guidance provided by OCD for compliance with the 3 Order establishes that operators should submit closure or remediation plans to the OCD by a certain date, but does not establish a deadline for closure that is tied in 4 any way to the deadline for cessation of discharge. The only deadline for closure 5 6 is that all pits must be closed within 45 days after production ceases and the well is plugged and abandoned. Thus, the closure deadline is tied to cessation of 7 production, not cessation of discharge. 8 IF CLEANUP OF A PIT WITHIN A VULNERABLE AREA IS 9 **Q**.

9 Q. IF CLEANUP OF A PIT WITHIN A VULNERABLE AREA IS
10 UNDERTAKEN, ARE THERE ANY GUIDELINES FOR DETERMINING
11 WHETHER CONTAMINATION LEVELS TRIGGER A NEED FOR
12 REMEDIATION OR FOR WHEN REMEDIATION IS COMPLETE?

A. The contamination assessment and cleanup guidelines for soils differ, depending
 on the ranking of the site with respect to depth to groundwater, distance to
 protected wellheads and distance to surface water.

16

Q. DO THE SAME GUIDELINES APPLY TO GROUNDWATER SITES?

17 A. No. A groundwater site is considered contaminated when certain hydrocarbon 18 constituent concentrations in the impacted groundwater exceed the WQCC 19 standards (for benzene, the most common/sensitive contaminant of concern at 20 these sites, the standard is 10 ppb). Groundwater remediation is considered to be

and the second second

1		complete, and the site can be closed, once the concentrations of benzene (and
2		potentially, other constituents) are reduced below the WQCC standard.
3	Q.	IN WHICH DESIGNATED VULNERABLE AREA IS THE HAMPTON
4		4M?
5	A.	The OCD takes the position that once you discover groundwater, you are within a
6		vulnerable area whether or not the site appears to be within a designated
7		vulnerable area on the map.
8		In the case of the Hampton 4M, based upon the map designation, it was borderline
9		whether the site fell within a designated vulnerable area at all. If the site was
10		within a vulnerable area, it would be the extended vulnerable area.
11	Q.	WHAT ARE THE DIFFERENCES IN REQUIREMENTS FOR
12		
		CESSATION OF DISCHARGE VERSUS PIT CLOSURE UNDER THE
13		
13 14	A.	CESSATION OF DISCHARGE VERSUS PIT CLOSURE UNDER THE
	A.	CESSATION OF DISCHARGE VERSUS PIT CLOSURE UNDER THE OCC ORDER?
14	A.	CESSATION OF DISCHARGE VERSUS PIT CLOSURE UNDER THE OCC ORDER? Strictly speaking, the OCC Order only requires cessation of discharge, but does
14 15	A.	CESSATION OF DISCHARGE VERSUS PIT CLOSURE UNDER THE OCC ORDER? Strictly speaking, the OCC Order only requires cessation of discharge, but does not require that any pits that received the discharge be remediated or closed within
14 15 16	A.	CESSATION OF DISCHARGE VERSUS PIT CLOSURE UNDER THE OCC ORDER? Strictly speaking, the OCC Order only requires cessation of discharge, but does not require that any pits that received the discharge be remediated or closed within any specified period of time following cessation of discharge. But, as a practical

.

USC:10

1	At the sites where PNM has undertaken remediation, depending on the vulnerable
2	area time-frame trigger, cessation of discharge was often accomplished some
3	period of time before the actual remediation. Sometimes cease-discharge
4	occurred just shortly before actual remediation was initiated. This was the case at
5	the Hampton 4M.

6 Q. PLEASE DISCUSS THE INITIAL ACTIONS UNDERTAKEN BY PNM AT 7 THE HAMPTON 4M TO COMPLY WITH OCD'S DISCHARGE ORDER .

A. A chronology of PNM activities at the site appears as PNM Exhibit 13. This exhibit was prepared under my direction and provides an accurate summarized chronological description of the investigation and remediation activities to date at the site. It is based upon site visits, field activities and reports that have flowed between PNM, Burlington and the OCD. The data used to compile PNM Exhibit 13 as well as the other exhibits prepared by PNM were based upon data collected and analyzed by PNM.

PNM conducted a routine site assessment at the Hampton 4M well on April 23, 16 1996. The site assessment form is included as PNM Exhibit 14. The assessment 17 was performed to determine the need for cease discharge and whether or not pit 18 remediation was required at the site. During the assessment, a visual observation 19 of the site was made. Field personnel provided pit dimensions of 20'L X 20'W X 20 3' D. Well pad dimensions were noted as 250' X 150'. It is important to note

060.30

that the total surface area of PNM's pit was approximately 1% of the entire well 1 2 pad surface area. PNM also made detailed notes of general site and surrounding 3 vicinity features including distances to water courses, type and location of 4 equipment and pits, and conditions within the pit. A physical assessment of the pit is normally conducted using a hand auger. However, in the case of the 5 Hampton 4M, PNM found that the pit depression had standing liquid in it and 6 7 emanated a hydrocarbon odor. Therefore, we did not collect a sample for field or laboratory analysis since we knew that the pit was sufficiently contaminated to 8 9 require remediation. This is also documented in PNM Exhibit 14.

Q. ARE THESE INITIAL OBSERVATIONS THAT WERE RECORDED FOR THE HAMPTON 4M SITE FAIRLY TYPICAL OF WHAT PNM SEES AT OTHER UNLINED SURFACE IMPOUNDMENTS?

- 13 A. Yes. PNM has remediated over 1,200 pits and we often see free-standing liquid 14 in the pit depression prior to remediation. However, the presence of fluids or 15 stained soil does not usually mean that there is free product contamination of 16 groundwater beneath the site.
- 17 Q. HOW WAS CEASE DISCHARGE ACCOMPLISHED AT THE SITE?

18 A. Williams shut the flow off on the dehydrator units prior to PNM conducting 19 excavation. That, in essence, constituted cease discharge. Our on site field 20 technician indicates that the dehydrator was re-activated during the week after 21 excavation. A 45 bbl above ground, below-grade tank was placed next to the

dehydrator and a dehydrator discharge line was piped into the new tank prior to
 re-activation.

3 Q. ONCE THE TANK WAS PLACED AT THE SITE, WERE THERE ANY 4 OTHER DISCHARGES ONTO THE SOIL FROM THE DEHYDRATORS?

- 5 A. No. The purpose of the tank is to catch the discharge from the dehydrators. 6 When cease discharge is achieved, there are no further releases of hydrocarbon-7 contaminated fluids to ground surface and any source of hydrocarbon 8 contamination to soil.
- 9 Q. WHAT WAS THE PROCESS USED TO CONDUCT PIT REMEDIATION
 10 AT THE HAMPTON 4M AND TO WHAT EXTENT WAS THE PIT
 11 CLEANED UP?

Once we conducted our site assessment and determined that the pit soils required 12 Α. 13 remediation, we returned to the site the following day, April 24, 1996, to begin our excavation. PNM's contractor used a trackhoe to excavate the pit. During pit 14 excavation, the contaminated soil was removed to a width and depth determined 15 by the PNM Field Coordinator. Field notes indicate that approximately 300 cubic 16 vards of soil was removed from the pit and landfarmed on location. The field 17 notes indicate that our technicians were able to dig to approximately 11.5 to 12 18 feet across the bottom of the excavation. However, several factors prevented us 19 from further excavation. There was a 15-foot drop off on the northwest end of the 20 well pad and the existence of equipment on the south end of the excavation. This 21

 $a + \gamma_{\mathcal{F}}$

1	created difficulty in maneuvering heavy earth-moving equipment around the
2	excavation. In addition, the side walls of the excavation were very unstable and
3	three cave-ins of soil occurred during digging. All of these factors prompted our
4	on-site field technician to cease excavation at 12 feet in depth.

5 Q. HOW DOES PNM CONDUCT SCREENING OF FIELD TESTING TO 6 DETERMINE IS A PIT HAS BEEN REMEDIATED?

Α. PNM uses a photoionization detector (PID) to conduct a profile of the sidewalls 7 and bottom of the excavation as digging occurs. The PID we use is a portable 8 field-screening device that measures the concentration of organic vapors emitted 9 10 from soil. This device uses ultraviolet light to ionize compounds. When 11 compounds are present that have a lower ionization potential than that of the irradiation energy (10.2 electron volts with standard lamp), they are ionized. The 12 ions formed are collected in an electrical field, producing an ion current that is 13 proportional to the compound concentration. The constituent of concern we are 14 15 looking for is primarily benzene. Our PID's are calibrated using a benzene response factor so that the concentration the PID records gives us a relative 16 indication of benzene contamination in soil. Field PIDs are not scientifically 17 accurate and really only serve as a means for field screening to help in 18 determining when to cease excavation and/or collect a laboratory sample. In our 19 experience, the PID predominantly overstates actual laboratory-measured BTEX 20 concentrations. 21

1 Q. HOW CLEAN WAS THE PIT WHEN YOU COMPLETED2EXCAVATION?

As documented in our field notes, the south, west and east walls at 10 to 12 feet 3 Α. 4 were below 100 ppm on the PID. In fact, according to OCD/BLM guidelines, the 5 walls were under the guideline standard for BTEX in soil and were considered clean. At the Hampton 4M, the field notes indicate that the north wall (on the 6 7 edge of the well pad towards the wash) still registered approximately 800 ppm at 12 feet. In the bottom of the pit, PNM documented PID readings of between 900 8 9 and 1200 ppm. As noted previously, we often see high PID readings and laboratory analysis later shows BTEX to be at lower concentrations. On April 25, 10 1996, we collected a laboratory sample from the pit bottom; analysis provided a 11 ppm benzene concentration of 16 ppb (slightly above the OCD guideline of 10 ppb); sathe 12 than benzene, toluene, ethylbenzene and xylenes (BTEX) concentration of 622 ppb 13 ppb (above OCD guideline of 50 ppb); and total petroleum hydrocarbons (TPH) for both 14 BTER concentration of 1301 ppm (above OCD guideline of 100 ppm). Based upon these 15 CCA results, we recognized that the pit excavation bottom was still contaminated. It is 16 rated soil quideline as per testimon 8/20/99 important to note, though, that the field technician did not denote saturated soil 17 conditions in the pit bottom. 18

Q.

1

WHICH ONE OF THE EXCAVATION WALLS WERE PNM FORMER

2		DEHYDRATORS POSITIONED ABOVE?
3	A.	The dehydrators were positioned directly over the south wall of the excavation.
4		The field notes indicate that at 12 feet, near the bottom of the excavation, the PID
5		reading was 50 ppm.
6	Q.	WHAT IS THE SIGNIFICANCE OF "CONTAMINATED" VERSUS
7		"SATURATED" WITH REGARD TO SOILS?
8	А.	Saturated soil is often dark gray to black in color and emits an extremely strong
9		hydrocarbon odor. The soil is wet and oily to the touch. As the soil was not
10		saturated in the bottom of the pit excavation at the Hampton 4M, we found no
11		indication that free product had entered our former pit and had traveled to
12		groundwater through the pit.
13	Q.	WITH REGARD TO THE WORK THAT WAS DONE AT THIS SITE,
14		HOW WOULD YOU CHARACTERIZE THE EXTENT OF THE
15		REMOVAL OF THE CONTAMINATED SOIL?
16	A.	PNM removed approximately 300 cubic yards of contaminated soil; based upon

the number of pits we have remediated in the past four years (over 1,200 pits), this is an average amount for sites with soil contamination due to dehydrator discharges only. At the time of excavation, this site seemed fairly straight forward. Our goal during pit remediation is to remove grossly contaminated soil and define the vertical extent of contamination. Often, we do leave "hot"

sidewalls (above OCD guidelines) and still receive closure from the OCD on pits
 as long as the vertical extent of contamination is properly addressed and the gross
 contamination removed.

4 Q. DID THIS PARTICULAR WELLPAD CONFIGURATION AFFECT

5 PNM'S ACTIVITIES AT THE HAMPTON 4M SITE?

A. Yes. As previously noted, because of the constraints imposed by the limited
amount of space and the steep slope, PNM was unable to excavate sufficient
material to "clean close" the pit. Thus, under direction by OCD, PNM returned to
perform vertical profiling after the pit was excavated and backfilled with clean fill
material.

11 Q. WHAT IS "VERTICAL PROFILING?"

At the direction of the OCD, PNM has been performing vertical profiling 12 Α. whenever a situation exists where PNM has been unable to excavate or remove 13 sufficient source (contaminated) soils to reach BTEX and TPH concentrations 14 below OCD guidelines in the bottom of the pit excavation. The vertical extent 15 profiling is conducted to ensure that any contaminated soils left in place do not 16 pose a threat to underlying groundwater. Vertical profiling is accomplished by 17 using a drill rig to auger down to determine the vertical depth of how far 18 contamination has traveled. Profiling is completed when the drill rig encounters 19 one of the following in the borehole: (1) clean soil; (2) groundwater; or (3) 20

1	impervious sandstone or bedrock. In all instances, vertical profiling provides the
2	status of the soil column beneath the pit and above the bottom of the borehole at
3	termination. The data collected aids in determining whether the residual
4	contamination has contributed to groundwater contamination.

5 Q. WHAT IS THE DIFFERENCE BETWEEN "FREE PRODUCT" AND 6 "DISSOLVED PHASE HYDROCARBONS"?

Liquid hydrocarbons, such as those produced in large quantities by Burlington at 7 Α. the Hampton 4M site, do not naturally mix well with water, including 8 groundwater. The "free product" or "free phase" is largely liquid hydrocarbon, 9 10 with trace amounts of water and other substances, and as its specific gravity is less than that of water, it tends to float on the surface of water, including the water 11 table. It is detectable as a distinct layer. It moves with the groundwater, following 12 generally the same flow paths as the groundwater itself, but it is distinguishable by 13 visual inspection, by phase-detecting meters, and by laboratory analysis as being a 14 separate and distinct layer with its own physical and chemical characteristics. 15 "Dissolved phase" hydrocarbons are, by contrast, small concentrations of 16 hydrocarbons that are miscible and moving with the groundwater. In the case of 17 dissolved phase hydrocarbons, the mixture is mostly water, with trace amounts of 18 hydrocarbons; with free phase, the mixture is mostly liquid hydrocarbon, with 19

1		trace amounts of water. In technical terms, the free-phase hydrocarbon such as is
2		present at the Hampton 4M site is a light non-aqueous phase liquid, or LNAPL.
3	Q.	WHAT ARE THE IMPLICATIONS FOR REMEDIATION OF A SITE IF
4		FREE-PHASE HYDROCARBONS, OR LNAPL, ARE PRESENT?
5	A.	Given the physical-chemical characteristics of the liquid hydrocarbons, if they are
6		present as a free phase on the groundwater, there will always be dissolved phase
7		hydrocarbon constituent contamination that is above WQCC and drinking water
8		standards.
9		The goal of remediation of groundwater at a site such as the Hampton 4M is to
10		meet the WQCC or drinking water standards for particular dissolved phase
11		contaminants that are part of the hydrocarbon plume. The goal is unattainable
12		unless and until you can determine how and where the liquid hydrocarbons are
13		being or have been released to the environment. Once that determination is made,
14		the most effective remediation technique is to stop the release, remove as much
15		free phase hydrocarbon as possible to eliminate the secondary source of dissolved
16		phase contamination of groundwater, and to allow the dissolved phase
17		contamination to attenuate naturally until concentrations are below applicable
18		standards.

۰.

: 18 ¹¹¹

TESTIMO MAUREEN I

Q. **ONCE THE EXCAVATION WAS COMPLETED AT THE HAMPTON 4M** 1 SITE, WHAT HAPPENED WITH REGARD TO PNM'S FORMER PIT? 2 A. The pit was backfilled with clean soil the same day the excavation occurred. 3 4 PNM had determined that since a "clean" pit bottom was not achieved at the site, we would be required by OCD to return at some future date and conduct vertical 5 6 extent drilling to ascertain the vertical depth to which contamination was present. In cases of vertical extent delineation, the OCD will approve a pit closure if a 7 8 clean bottom hole sample is retrieved in the boring or bedrock is encountered. If groundwater is reached, a water sample is collected for analysis of BTEX. If the 9 10 water is contaminated, the OCD is notified and the site becomes an OCD-listed groundwater site. 11

12 Q. PLEASE EXPLAIN THE PIT REMEDIATION AND CLOSURE REPORT 13 ATTACHED AS PART OF PNM EXHIBIT 14.

A. Upon completion of our assessment and/or excavation and source removal work,
PNM fills out a "draft" Pit Remediation and Closure Report. This form is a
working document and assists us with record keeping. When all work is
completed at the site, a final version of the report is prepared with signature and
submitted to the OCD for closure approval.

Q. WHEN DID PNM RETURN TO THE SITE TO PERFORM VERTICAL EXTENT DRILLING AND WHAT WAS THE RESULT OF THAT ACTIVITY?

0.0213

1	А.	PNM returned in December of 1996 to perform vertical extent drilling. PNM
2		Exhibit 15 includes a copy of the field boring log for MW-2, along with all other
3		boring logs relating to the Hampton 4M investigation. The drilling crew bored to
4		approximately 27.8 feet and encountered water. Between 0 and 10 feet, light
5		brown silty sand was encountered with no detectable hydrocarbon odor. This was
6		consistent with the clean backfill placed in the pit excavation by PNM during soils
7		remediation. At 10 feet, the on site geologist noted a strong hydrocarbon odor
8		(similar soil characteristics) and, at 12 feet, a dark brown streak of silt to clayey
9		sand was observed. At 16 feet, another streak of dark brown silty sand was noted
10		and a strong hydrocarbon odor was detected. At 21 and 22 feet, the soil began to
11		change to a light gray to greenish gray silty to clayey sand. The soil was wet but
12		hard to the touch and a strong hydrocarbon odor emanated from the cuttings. The
13		geologist noted in the boring that the soil could be saturated with product. At 27.8
14		feet, groundwater was first encountered. The crew then proceeded to bail water
15		from the hole. When the bailer became visible, the geologist noted in the bailer
16		the presence of approximately 2 inches of free phase product on the water surface.
17		In other words, there was free-phase, non-aqueous "oil" floating on top of the
18		water in the bailer. PNM's field technician collected a sample for laboratory
19		analysis of BTEX. We then installed a groundwater monitoring well in the
20		borehole using 2-inch PVC pipe. This well was labeled MW-2.

There is a strength of the second

Q. PLEASE EXPLAIN THE SIGNIFICANCE OF ENCOUNTERING
 "SOIL...SATURATED WITH PRODUCT" AT 21 AND 22 FEET.

3 Α. Saturated soil conditions at this depth are consistent with the discovery of "first water" in the borehole at 27.8 feet and free phase product on the water surface. 4 5 During drilling, the boring becomes smeared at the auger moves down the hole and the water table is artificially depressed. In the case of the Hampton 4M site, 6 7 the water eventually sought a steady-state level at approximately 22 feet below ground surface. Fluctuations in water levels are normal in aquifers. 8 The 9 groundwater's natural fluctuations move overlying free phase product 10 contamination up and down through the capillary fringe above the water table. Therefore, it was not surprising to see that the saturated conditions were noted at 11 the 21 to 22 foot interval in the original borehole during vertical extent drilling. 12 13 The presence of free product saturation in the capillary fringe and the lack of saturated conditions from the pit excavation bottom down to the water table is 14 15 consistent with the findings that free product did not travel through our pit down to the water table. 16

17

18

Q. PLEASE REFER TO PNM EXHIBIT 4 AND IDENTIFY WHERE MW-2 WAS INSTALLED.

A. As mentioned previously, this is the very first well PNM installed and was the result of the vertical extent drilling. MW-2 was installed in the center of PNM's former pit. At all contaminated groundwater sites, we attempt to select what we

and the second sec

1		believe is the worst location in terms of contamination in the pit. Often, that
2		location is the center of the former pit. Contaminated fluids tend to follow a bell
3		shape from the pit bottom downwards and out. The center of the pit typically
4		contains the highest contaminant concentrations.
5	Q.	PLEASE REFER TO PNM EXHIBIT 7. CAN YOU TELL US WHAT THIS
6		IS?
7	Α.	This is the letter I wrote to Mr. Bill Olson at OCD on January 13, 1997, indicating
8		that we had sampled groundwater 28 feet below surface at the Hampton 4M in the
9		area of our former pit and had discovered hydrocarbon contamination in the form
10		of dissolved-phase BTEX. We are required by law to submit such notification.
11		This letter served as official notification to the OCD that the groundwater at the
12		Hampton 4M was contaminated. A copy of the letter was also provided to
13		Burlington.
14	Q.	WHAT WAS PNM'S NEXT STEP AT THE SITE?

A. On January 31, 1997, we returned to the site to install additional monitoring wells. The monitoring well network serves to delineate and monitor the contaminant plume and also assists us in determining the gradient and direction of groundwater flow. At least three of the monitoring wells are placed in triangulation so that we have varying elevations and physical coordinates to establish groundwater contours across the site.

.

1 · 2 · 6. ·

In January, PNM installed groundwater monitoring wells MW-3 and MW-4. 1 MW-3 was located along the western edge of the well pad and upgradient from 2 PNM's former operations. MW-4 was located in the northern half of the well pad 3 and upgradient of PNM's former operations in the vicinity of Burlington's 4 activities. Groundwater samples taken from these wells indicated that BTEX was 5 not present in MW-3 and was 800 ppb in MW-4. At that time, we saw no 6 evidence of a hydrocarbon sheen or free phase floating product on the water 7 surface in MW-4. Based upon these two additional wells at the site, we were able 8 to preliminarily determine groundwater flow to be northwesterly in direction 9 beneath the site. This is depicted on PNM Exhibit 8 by a large blue arrow. 10

11 Q. AFTER THE TWO ADDITIONAL WELLS WERE INSTALLED, WHAT 12 DID PNM DO NEXT?

A. With the initial sampling of MW-4, we discovered groundwater contamination upgradient of PNM's former pit. Because Burlington's operations are upgradient of the location of PNM's former activities at the site, we called Burlington in February of 1997 and informed them that the groundwater problem at the site was more widespread than originally thought.

Q. AT THIS POINT IN TIME, HAD BURLINGTON CONDUCTED ANY
 INVESTIGATION OR REMEDIAL ACTIVITY AT THE SITE?

20 A. PNM was not aware of anything that Burlington might have done related to 21 investigation or remediation. When we informed Burlington of the upgradient

- contamination, they did not indicate that they had undertaken pit remediation or
 other similar work at the site at any time.
- 3

Q. WHAT HAPPENED AFTER YOUR NOTIFICATION OF BURLINGTON?

A. PNM wished to conduct more investigation. Burlington was uncertain, at that
time, what really needed to be done. While there was cooperative discussion
between the parties, nothing was actually resolved.

7 Q. WHAT WAS THE NEXT ACTIVITY AT THE SITE?

A. PNM and Burlington met in April 1997 to discuss strategies at the site. We talked about installing additional monitoring wells and conducting further excavation. On April 14, 1997, Burlington notified PNM that they had discovered a hydrocarbon seep to the north of the well pad that was just at the top of an arroyo that traveled northerly from the site. This seep and the arroyo are identified in PNM Exhibit 8. PNM's observations of the seep were that the discharge was water and oil with a strong hydrocarbon odor, and the soil was visibly stained.

15 Q. WHAT EXACTLY IS THE "HYDROCARBON SEEP" AT THIS SITE?

- 16 A. The hydrocarbon seep is an area where free product mixed with water has
- 17 surfaced at the toe of embankment off the northwest edge of the well pad. The
- 18 origin of the fluids is somewhere upgradient of this location.

19 Q. IS THE HYDROCARBON SEEP DIRECTLY DOWNGRADIENT OF THE 20 LOCATION OF PNM'S FORMER PIT, AND IS IT ATTRIBUTABLE TO 21 PNM'S FORMER OPERATIONS?

A. The seep is downgradient from the area where the thickest layer of free product
was initially found at the site, and from the area where PNM's free product
recovery well (MW-6) was located. It is directly downgradient from Burlington's
operations at the site. Now that Burlington has completely excavated the entire
area where PNM's former pit and equipment were located, the ongoing
appearance of free product at the seep cannot possibly be attributed to PNM's
former operations.

8 Q. ARE YOU AWARE OF THE CURRENT STATUS OF THE SEEP?

9 Α. Yes. When we visited the site on March 1, 1999 after Burlington had completely 10 excavated the area in the vicinity of PNM's former operations and had partially backfilled that area with clean fill, we looked at the hydrocarbon seep and took 11 photographs of it. These photographs are PNM Exhibits 16 and 17. The free 12 13 phase hydrocarbons are visible as a sheen or "rainbow" on the water. This fluid had collected in the seep, which is in a small depression within the wash below 14 the well pad. In addition, Mr. William Olson of the OCD also visited the site on 15 April 14, 1999. Groundwater results indicated a benzene concentration of 40 ppb. 16 Mr. Olson provided copies of the analytical results which are found in PNM 17 18 Exhibit 18.

19 Q. WHAT DO THE ANALYTICAL RESULTS SHOW, AND WHAT IS THE 20 SIGNIFICANCE OF THESE RESULTS?

1 A.	The analytical results show that benzene at 40 ppb is above the WQCC
2	groundwater standard of 10 ppb. As benzene is quite volatile, it vaporizes off
3	water very quickly if the water is exposed to the open air. Unless there has been a
4	recent release to the water, we would expect the benzene concentration in the seep
5	to be well below the standards. Therefore, the presence of benzene in the
6	dissolved phase at concentrations approximately four times the WQCC
7	groundwater standard, and eight times the drinking water standard, are indicative
8	of a recent or continuing release of liquid hydrocarbons to the water.

9 Q. WHAT HAPPENED AFTER THE INITIAL DISCOVERY OF THE 10 HYDROCARBON SEEP BACK IN APRIL 1997?

Α. After the initial discovery of the hydrocarbon seep, Burlington notified both OCD 11 and PNM. We then held a meeting at the site with all parties (Burlington, OCD 12 and PNM) and at that time, the OCD requested that immediate action be taken 13 with regards to the seep area. On April 17, 1997, Burlington responded to this 14 request by conducting excavations around the northwestern perimeter of the well 15 pad and opening up a trench in this area to collect the seep discharges. Burlington 16 then commenced with excavation in the location of their 300-barrel fluids tank 17 using a backhoe. They were unsuccessful in penetrating the sandstone layers that 18 exist at varying depths in the southeastern portion of the well pad. 19

1	After Burlington's excavation attempt, PNM and Burlington met on June 4, 1997
2	and decided that a drill rig would probably be more successful in boring through
3	the sandstone in order to identify the sources of contamination on the site.
4	Burlington conducted borings on June 5 and 6, 1997. The borings were installed
5	as TPW-1 through -7 as depicted in PNM Exhibit 6.

6 Q. WHAT WERE THE RESULTS OF THE BORINGS?

- A. The borings were left in place for only four to five days. Groundwater was
 encountered in TPW-1, -2, -5, -6 and -7. There was some dissolved phase in
 TPW-1 and TPW-5. There was measurable free phase floating product in TPW-2.
 TPW-6 and -7 had very high concentrations of BTEX in the 30,000 ppb range.
 All of these borings were located upgradient of PNM's former pit and operations
 and were at or down gradient of Burlington's operations.
- 13 Q. ARE THERE ANY ISSUES THAT ARE ASSOCIATED WITH THE
- 14 LENGTH OF TIME THE BORINGS WERE LEFT IN PLACE?
- 15 A. Yes. In our experience at almost 40 groundwater sites in the San Juan Basin, it 16 may take several days, even weeks, for equilibrium to be re-established in the 17 subsurface. These borings were not left in place long enough to obtain a true 18 representation of steady-state conditions in these borings.

19 Q. WHAT WAS THE NEXT ACTIVITY WITH REGARD TO THIS SITE?

20 A. On August 25th, PNM was informed of a landowner's well located to the 21 northeast of the well site. The well was not in use but there was concern that

contamination from the site might have impacted the well. Therefore, PNM
collected a groundwater sample for analysis for BTEX from the well after purging
the well of the necessary volume of water and ensuring the required parameters
were stabilized. The results of the sampling indicated the well was clean and
contamination had not reached this well.

6 Q. WHAT WAS THE NEXT ACTIVITY CONDUCTED AT THE SITE?

A. On October 29th, PNM installed additional groundwater monitoring wells. PNM
Exhibit 8 provides a view of the new wells, MW-1 and MW-5. MW-1 is the
furthest upgradient well and provides "background" water quality information for
the entire well pad. MW-5 is located in the wash, immediately downgradient or to
the northwest from the site.

MW-1 showed BTEX concentrations to be below WQCC standards and confirmed that there was no additional source upgradient of the well pad that might be contributing to contamination. MW-5 showed some dissolved-phase hydrocarbons in the 6000 ppb range for benzene. This, of course, indicated that contamination had moved off site.

17

Q. WHAT WAS THE PURPOSE OF INSTALLING MW-5?

A. PNM was following its groundwater management plan. When we construct a
 monitoring network at a groundwater site, we first establish a source well. Then,
 we move upgradient to put in a background well and then downgradient of the

source to install additional wells for the purpose of groundwater contouring,
 determination of the downgradient extent of contamination, and monitoring.

3 Since MW-5 was contaminated, PNM performed additional soil borings to the north of the well pad and downgradient of MW-5 on November 11, 1997. Again, 4 we were attempting to define the leading edge of the contaminant plume. From 5 MW-5, we moved down the wash in the northwest direction several feet and 6 installed one temporary well, TMP-1. PVC pipe was dropped into the well with 7 screening across the water table. A groundwater sample indicated that there was 8 dissolved phase contamination above WQCC standards. We conducted several 9 more borings the length of the wash until we reached a Williams pipeline 10 approximately 1000 feet from the well pad that traversed the wash 11 perpendicularly. We chose not to cross the pipeline because of concern in 12 possibly encountering additional hydrocarbon sources. 13

14 Q. PLEASE DESCRIBE WHAT HAPPENED NEXT AT THE SITE.

- A. On November 12, 1997, PNM installed MW-6, a 4-inch monitoring well for the
 purpose of recovering free product in the vicinity of PNM's former pit. Refer to
 PNM Exhibit 8 for MW-6's location. The well was situated about 10 to 15 feet to
 the west of MW-2. PNM gauged 4.8 feet of free product in the well.
- 19 Q. WHY DID PNM UNDERTAKE THIS ACTION?

- A. The OCD put PNM on notice requesting that we address the contamination in the
 area of our former pit. This letter is dated August 27, 1997 and is provided as
 PNM Exhibit 19.
- 4

Q. WHAT WAS THE NEXT ACTIVITY AT THE SITE?

PNM returned to the site in December of 1997 and installed MW-7. At that time, Α. 5 MW-7 was the furthest downgradient well located just a few feet south of 6 Williams' pipeline and approximately 900 feet in the northwest direction from the 7 well pad. As I indicated previously, we had traveled down the wash conducting 8 soil borings and had not found a clean borehole. We decided to install a well at 9 this location because our concern was that if we stepped over the pipeline, we 10 could, in fact, possibly encounter another contaminant source. This might further 11 12 confuse the issue of adequate characterization of the contamination at the Hampton 4M. Therefore, we stopped at the pipeline and installed a well. At the 13 same time, we also installed MW-8 located along the eastern perimeter of the 14 Both wells showed dissolved phase BTEX contamination above 15 location. WQCC standards. 16

17

18

Q. WHAT OTHER ACTIVITIES WERE TAKEN BY PNM WITH RESPECT TO THE SITE?

A. On January 12, 1998, PNM commenced product recovery out of MW-6. MW-6
is a four-inch product-recovery well with the product-recovery pump installed.
The pump is a nitrogen-displacement pump. The product is extracted through a

hydrophobic filter that only allows product (oil) to flow in, no water. It operated
cyclically and pumped approximately three times per day. Once sufficient
drawdown had occurred, the pump would shut off until recharge took place. I+
would then cycle and begin pumping again.

5 The discharge was emptied into a 55-gallon drum located next to the above-6 ground condensate tank now owned by Williams. When the drum was full, its 7 contents were pumped into the condensate tank receiving discharge from the 8 dehydrator. This tank is owned by Williams. Burlington periodically pumps out 9 the condensate tank and transports the fluids off site for sale to an oil recycler.

Q. WHY DID PNM CEASE OPERATION OF THE PRODUCT RECOVERY PUMP IN EARLY NOVEMBER 1998?

12 A. In a phone conversation with Ed Hasely of Burlington, Mr. Hasely indicated that 13 Burlington was commencing their site wide excavation. He stated that at some 14 point Burlington would be removing PNM's monitoring wells and we would need 15 to remove our product recovery system. After that phone conversation, we were 16 informed a few days later that the pump had been removed by Williams without 17 our knowledge or consent. PNM was no longer able to continue product recovery 18 at that point.

Q. WHAT WAS THE NEXT ACTIVITY AT THE SITE AFTER THE FREE PRODUCT PUMP WAS STARTED IN JANUARY 1998?

29

8/26/99

A. PNM conducted normal quarterly monitoring in January of 1998. The results of
the monitoring showed MW-2 and MW-6 to contain free product. Benzene levels
in MW-4 had increased to 1200 ppm. This indicated that a fresh source of
hydrocarbons upgradient of MW-4 was probably causing an increase in benzene
concentrations in this well.

6 Q. WHAT EVENT FOLLOWED?

A. On April 14,1998, PNM again conducted quarterly groundwater sampling at the
site. We measured 0.37 feet of free product in MW-8. This confirmed that there
was a free-product source or release point upgradient of PNM's former pit in the
area of MW-8. It was not surprising that free product found its way to MW-8
after several months. As I discussed previously, it often takes weeks for the
subsurface to equilibrate after a boring or well is installed.

13 Q. WHAT WAS THE NEXT ACTIVITY ON SITE?

On May 11, 1998 Burlington installed wells MW-9, in the approximate location Α. 14 of the old TPW-1, and MW-10, which is in the approximate location of the old 15 MW-9 had dissolved phase BTEX concentrations above WQCC TPW-2. 16 standards and MW-10 had measurable free product. Within 24 hours, 1.5 feet of 17 free product was measured in MW-10. Please refer to PNM Exhibit 20 for a 18 photograph of MW-10. The photograph shows PNM field personnel extracting a 19 bailer of fluids from MW-10. Straw-colored free product is visible in the top 20 layer of the bailer with water in the lower layer. 21

1 Q. PLEASE DISCUSS THE NEXT EVENT AT THE SITE?

A. On July 1, 1998, PNM conducted quarterly sampling at the site. Sample results 2 were consistent with what we had been seeing. Free product was still measurable 3 in MW-2, MW-8 and MW-10. We did not measure product levels in MW-6 4 because of the pump but we were still removing product at a steady rate. We saw 5 6 an increase in the benzene concentration in MW-4 which lead us to believe that there was some grossly contaminated, saturated soil that had not been remediated 7 upgradient of that well. PNM also contracted with a surveyor to perform a land 8 survey of all wells at the site. 9

During this time, PNM also collected soil samples just above the water table in 10 the northeast corner of Burlington's initial excavation on the southeast part of the 11 well pad. The excavation is located just south of MW-13 depicted in PNM 12 Exhibit 5 and appears as a large dark circle on the exhibit. The dark part is the 13 water in the bottom of the excavation. PNM collected a sample at the soil-water 14 interface in the northeastern corner of the hole. Laboratory analysis indicated 36 15 ppm benzene and 2000 ppm total BTEX in the soil. These results are above 16 closure guidelines for soil as recommended by the OCD. The benzene guideline 17 standard is 10 ppm and the BTEX standard is 50 ppm. Burlington's 300-barrel 18 fluids tanks were located in this vicinity as was their pit. 19

Q. WHAT OTHER TESTING OR INVESTIGATION TOOK PLACE OUT AT THIS SITE?

Α. PNM returned to conduct quarterly sampling on October 5, 1998. For the first 3 time, we detected measurable free phase floating product in MW-4. The depth 4 was 0.63 feet. As discussed previously, MW-4 is located upgradient of PNM's 5 6 former operations. PNM's discovery of free product confirmed earlier observations that the increase in dissolved phase benzene concentration that 7 occurred on January of 1998 was a forerunner indication of the appearance of free 8 product. This confirmed that a source area or release point of contamination 9 10 continued to persist in the south to southeastern edge of the well pad.

11 Q. WHEN WAS THE NEXT WORK THAT WAS DONE?

12 A. PNM was on site to review the installation of Burlington's SB-1 and SB-2. This 13 took place on October 8, 1998. Free phase product was detected in SB-2 located 14 in the area of our former pit. Dissolved phase BTEX was discovered in SB-1 15 located just north of Burlington's excavation.

16 Q. WHAT OTHER WORK HAS BEEN PERFORMED AT THE HAMPTON 17 4M SITE SINCE THAT TIME?

A. Burlington conducted an excavation in the area of PNM's former pit and
 additional investigations in areas upgradient of PNM's pit. This occurred between
 November 1998 and February 1999. From personal observations, Burlington's
 recent excavation work has included the excavation and removal of several

1 thousand cubic yards of soil with a bulldozer and trackhoe on the north end of the 2 well pad. The soil excavated by Burlington was a mixture of both clean and contaminated soil so the precise volumes of contaminated soil could not be 3 measured. In the area of PNM's former dehydration pit, Burlington excavated to 4 14 feet with a bulldozer. Clean fill was encountered throughout. Beyond that 5 there was soil contamination in the range of 800 to 1500 ppm. These are not 6 saturated soil conditions and corroborate previous borings (i.e. SB-2 in PNM 7 Exhibit 15) that indicate that soil underneath our former pit to the groundwater 8 9 surface was not saturated with free product. From 14 to 23 feet to when groundwater was discovered, Burlington encountered sandstone layering. During 10 their remediation efforts, it appears that Burlington also conducted investigations 11 12 and excavations upgradient of PNM's operations but at a much lesser intensity 13 than in the area of PNM's former pit. The results of these investigations are largely unknown because of Burlington's limited sampling in this area and 14 15 minimal documentation with regards to field notes and reports. Burlington's old excavation located in the southeastern end of the well pad was eventually 16 17 backfilled. Burlington also backfilled much of the excavation in the vicinity of PNM's former operations. 18

19 Q. HAS PNM DONE OTHER WORK AT THE SITE SINCE BURLINGTON'S 20 MASS EXCAVATION AND REMOVAL OF PNM'S RECOVERY AND 21 MONITORING WELLS?

On May 5, 1999, PNM installed MW-12 in the center of PNM's former pit A. 1 location. Benzene in groundwater was detected at 800 ppb. The well was 2 sampled immediately following construction and groundwater results may not be 3 indicative of the true groundwater conditions. PNM returned to the site and 4 resampled the well on May 26, 1999. Laboratory results provided a benzene 5 concentration of 1900 ppb. On May 19,1999, Burlington installed a new well, 6 MW-13 near the former MW-4. Initial results indicated benzene was present at 7 1800 ppb. 8

During and subsequent to Burlington's remediation activities, PNM continued 9 quarterly sampling at the site but was limited by the number of wells available for 10 sampling. During their remediation activities, Burlington had removed six wells, 11 MW-2, -3, -4, -8 and -10 (MW-2, -3, -4 and -8 were installed by PNM). PNM's 12 quarterly sampling events occurred on January 27 and May 5, 1999. MW-1 was 13 14 not sampled during either event because it had been clean for four calendar quarters. MW-5, -7 and -9 showed dissolved phase BTEX contamination above 15 WQCC standards. MW-12 and MW-13 were also sampled and results were as 16 indicated above. Another PNM quarterly sampling event is scheduled for July 17 1999. 18

19

Q. AND PNM EXHIBIT 21, CAN YOU TELL US WHAT THAT IS?

20 A. This is a letter dated April 8, 1997. that OCD wrote to Burlington – after the 21 February 1997 visit between PNM, Burlington and NMOCD, instructing

1 Burlington to address contamination in the area of their tank-drain pit and 2 production pit.

3 Q. PLEASE EXPLAIN THE PURPOSE OF PNM EXHIBIT 22.

A. This is a progress report of remediation activities at the site, dated March 31,
1998, from PNM to the OCD. PNM wrote this report in place of our annual
groundwater report because this was a unique site, and so it was submitted under
separate cover to the OCD rather than in our annual groundwater report.

8 Q. CAN YOU TELL US WHAT PNM EXHIBIT 23 IS?

9 A. This is a letter to Mr. Ed Hasely from the OCD dated April 7, 1998, but the 10 greeting indicates "Dear Ms. Gannon". This letter was actually written to 11 Burlington. The letter was issued subsequent to Burlington's excavation in the 12 southeast corner of the well pad. It asks that two additional wells be installed in 13 the location of their former temporary boreholes, TPW-1 and TPW-2, and that 14 those wells be analyzed for BTEX and water-quality constituents. They were also 15 to submit a report on their findings based on the new wells.

16 Q. HAD YOU HAD ANY DISCUSSIONS WITH OCD ABOUT THE
 17 SITUATION INVOLVING BURLINGTON'S STATUS OF THEIR WORK
 18 AT THE SITE VERSUS PNM'S?

A. Yes. I had talked extensively with Bill Olson of the OCD about the fact that we
 were very confused about what's going on with this site. We had determined that
 there were upgradient release points. We felt it was imperative to identify these

35

1.597.37

- sources in order to properly address the site wide contamination and off site
 migration of contaminants.
- 3

Q. PLEASE REFER TO PNM EXHIBIT 24 AND IDENTIFY THIS LETTER.

- A. This letter dated April 10, 1998 is PNM's response to the March 13th directive by
 OCD to remediate, conduct further remedial actions in the area and downgradient
 of our pit to address free-phase hydrocarbons.
- PNM indicated to the OCD that we would be appealing that directive, but we
 would continue to operate our free-product recovery system and perform
 sampling.
- Q. WHY WAS IT THAT DESPITE THE FACT THAT PNM WAS GOING TO
 APPEAL THE OCD'S DIRECTIVE, PNM STILL CONTINUED TO
 RECOVER THIS FREE-PHASE PRODUCT?
- A. Again, PNM had been asked to address contamination under their former pit. With free-product recovery and monitoring, we were attempting to control the ongoing source of groundwater contamination and minimize the overall environmental impact, regardless of who may have caused the release of free product to the environment.
- Q. AS SOMEONE WITH SUBSTANTIAL EXPERTISE IN THE FIELD OF
 ENVIRONMENTAL REMEDIATION, WAS THIS YOUR PREFERRED
 OR RECOMMENDED APPROACH AT THIS SITE?

1	Α.	No. My recommended approach would be to locate the upgradient release point
2		or points for the free product, assure that the releases were not still occurring, and
3		have the person or entity who actually released the material recapture it.
4	Q.	BY JUST RECOVERING FREE PRODUCT IN THE VICINITY OF
5		PNM'S OPERATIONS, WERE YOU ADDRESSING THE RELEASE
6		POINT OR THE ULTIMATE SOURCE OF THE PROBLEM?
7	Α.	No. As PNM does not have any control over the operator or the operations that
8		had released, and might be continuing to release free product, PNM could not
9		completely remediate the groundwater contamination at the site. PNM could only
10		contain the problem and slow its further migration downgradient and offsite.
11	Q.	IN YOUR WORK ON THIS SITE, HAS PNM, IN YOUR OPINION, IN
12		ANY WAY SOUGHT TO EVADE OR SHIRK ITS RESPONSIBILITIES
13		WITH REGARD TO CLEANUP AT THIS SITE?
14	A.	No. Our approach has been aggressive. We conducted pit remediation, an
15		extensive soil and groundwater investigation, established a monitoring well
16		network and commenced with free phase product removal. However, we
17		determined that our remediation efforts would be until the unidentified sources $\frac{1}{8/26}$
18		upgradient of our activities were located, ceased and remediated.
19	Q.	ABOUT HOW MUCH HAS PNM SPENT TO DATE AT THIS SITE FOR
20		REMEDIATION AND INVESTIGATION?

21 A. Over \$200,000.

37

Q. THIS SITE HAS BEEN ACTIVE IN TERMS OF PIT AND 1 **GROUNDWATER REMEDIATION SINCE APRIL OF 1996. WHAT IS** 2 LENGTH OF THE TYPICAL TIME BETWEEN THE SITE 3 **ASSESSMENT AND CLOSURE OF A PIT?** 4

At typical sites, once we have removed grossly contaminated soil and are 5 Α. 6 managing dissolved phase contamination only in groundwater, it usually takes between 18 to 24 months to conduct quarterly sampling and demonstrate that 7 through natural attenuation, groundwater contamination has been abated to below 8 WOCC standards. The Hampton 4M well site is highly unusual because of the 9 10 massive amounts of free product at the site. In our experience, discharges to dehydration pits do not result in free product on the water table. In those cases 11 where we have free product, another source or release point has been identified 12 upgradient of our operations. 13

14 Q. HOW MANY DEHYDRATOR PITS HAS PNM REMEDIATED TO 15 DATE?

A. As of June 30, 1999, PNM has remediated approximately 1,200 pits on both the Jicarilla Reservation and within the OCD-designated vulnerable areas. Within the OCD areas, we completed the remediation of 773 pits. Of these pits, 296 received discharges from PNM dehydrators, 233 received discharges from PNM separators, and 176 pits were related to pipeline drips.

Q. PLEASE ELABORATE ON THE CONDITIONS THAT PNM TYPICALLY ENCOUNTERS AT SITES WITH DEHYDRATOR PITS.

A. Dehydrator pits typically have soil contamination only, and do not involve groundwater contamination. Of the 296 dehydrator pits PNM has remediated on in the OCD areas, we have detected potential or actual groundwater contamination at only 29 of the sites. That is, we have detected potential or actual groundwater contamination at about 10% percent of the total sites we have remediated due to the presence of contaminated soils.

9 Q. AT HOW MANY SITES WHERE PNM HAS HAD DEHYDRATORS 10 OPERATING IN THE PAST HAS PNM ENCOUNTERED FREE 11 PRODUCT?

12 Α. We have not discovered free product on the groundwater table at any site where we have completed the source and groundwater investigation and determined that 13 discharge from the dehydrator is the only potential source of contamination to 14 groundwater. We have seven other dehydrator pit sites where free product has 15 16 been detected in the area of our former pit. At all of these sites, an upgradient source or release point has been identified. Of all the free product sites PNM has 17 encountered to date, the Hampton 4M is the only site where we have seen this 18 19 volume of free product present.

Q. HAVE YOU PREPARED AN EXHIBIT WHICH COMPARES THE SITUATION AT THE HAMPTON 4M SITE WITH OTHER PNM GROUND WATER SITES?

Α. Yes. PNM Exhibit 25 compares the situation at the Hampton 4M site with other 4 PNM dehydrator pit sites and specifically those having free product. As you can 5 see, the Hampton 4M site is considered atypical in terms of the extent of 6 contamination and the length of time to achieve remediation. The contaminant 7 plume length at sites where only dissolved phase contamination exists in 8 9 groundwater usually extends no more than 50 feet beyond the source area. And as 10 discussed previously, clean up and closure of these sites occur within 18 months to two years. At sites where free product has impacted groundwater, the plume 11 length averages 100 to 300 feet beyond the well pad. The Hampton 4M plume 12 length is at least 1,000 feet from the well pad location. 13

To date, PNM has reached closure on only one free product site. At this location, the OCD ruled that free product was not the result of PNM's former pit and allowed PNM to close the pit. However, the operator on site is still managing hydrocarbon contamination in groundwater in the area of its production fluids tank and downgradient of its operations. The remaining free product sites PNM is currently managing were discovered (on average) two to three years ago and have shown no attenuation over time.

Q. PLEASE SUMMARIZE THE FREE PRODUCT SITUATION AT THE HAMPTON 4M SITE?

- A. At the Hampton 4M site, we found a four-to-five-foot thick layer of free-phase liquid hydrocarbon product at the top of the water table. This was detected during PNM's remediation efforts because PNM was, at the time, the only entity performing any pit characterization or cleanup activities at the site.
- We did not discover groundwater contamination when we remediated the former
 PNM pit, which was the discharge pit for the wastewater from the dehydrator. The
 dehydrator was operated by Williams at the time of the initiation of PNM's
 remediation activities in April 1996 but had been owned and operated by PNM or
 its predecessors until June 30, 1995.
- 12 Q. IS THERE ANYTHING UNUSUAL ABOUT THE LAYOUT OF THE
 13 HAMPTON 4M SITE AS COMPARED TO MOST SITES WHERE PNM
 14 HAS CONDUCTED SOILS REMEDIATION ACTIVITIES?
- A. As mentioned previously, the configuration of the well pad at the Hampton 4M is quite constrained, since it is on the edge of a wash and the well pad is fill material on a relatively steep slope. The pit associated with PNM's former dehydrator discharges was in fill material, near the steeply sloped edge of the well pad. See Exhibit 4 for a depiction of the well pad layout as a dual completion well at the time that PNM initiated its pit closure activities at the site.

1 Q. PLEASE IDENTIFY PNM EXHIBIT 26.

A. This was another progress report to OCD submitted August 11, 1998. Since this
was an atypical site, PNM was concerned about keeping OCD up to date on what
was going on. The progress report discusses our activities to date and relates our
concerns about upgradient sources at the site. This is a status report indicating
compliance with our groundwater management plan.

7 Q. PLEASE EXPLAIN EXHIBIT 27. as put test mory 8/26/49

A. This is the letter from OCD dated August 27, 1998, directing PNM and
Burlington to conduct a downgradient investigation. The letter also requested that
PNM and Burlington work together to accomplish this. A similar letter of the
same date was sent to Burlington and is attached as PNM Exhibit 28.

12 Q. DID YOU HAVE ANY DISCUSSIONS WITH ANYONE AT OCD ABOUT

13 THE LETTER WHICH IS FOUND AT PNM EXHIBIT 27? as perfect. 8/20/20

A. PNM received a letter indicating that OCD was directing PNM to conduct a
downgradient investigation. I called Bill Olson and told him that we did not agree
with the letter. We believed that other sources on site were contributing to
downgradient contamination and that both Burlington and PNM needed to be
involved in any additional investigation.

19 Q. PLEASE REFER TO PNM EXHIBIT 6. WHAT WAS THE LINE OF
 20 DEMARCATION THAT THE OCD DREW GEOGRAPHICALLY TO
 21 SEPARATE THE RESPONSIBILITY OF BURLINGTON FROM PNM?

A. The line was drawn between PNM's former dehydrators and Burlington's
 previous test wells, TPW-1 and TPW-2. This "line in the sand" was based on the
 physical location of surface equipment and the results of all of the borings and
 wells to that point in time.

5 Q. IS THERE NECESSARILY ANY CORRELATION BETWEEN THE 6 LOCATION OF SURFACE EQUIPMENT AND THE ORIGINAL 7 SOURCE OR RELEASE POINT FOR CONTAMINATION?

Α. No. Typically, on site surface equipment is moved several times throughout the 8 9 operating life of a gas well head. Producers and pipeline companies often rework 10 the sites; thus, surface equipment cannot be accurately used as a point of reference for defining source areas. In addition, because ground water flows with the 11 gradient, contamination flows from its release point. The physical location of 12 equipment or operations is not a valid indicator of the source or release point(s) of 13 14 contamination where you have ground water flow. We have fairly active ground water flow at the Hampton 4M site which travels from Burlington's side of the 15 16 pad to PNM's former side of the pad. Throughout the time we have been at Hampton 4M site, we have noted the movement and relocation of Burlington's 17 equipment on more than one occasion on the south side of the well pad. These 18 potential source areas have never been fully characterized by Burlington through 19 adequate investigation that should involve a sufficient number and strategic 20 placement of groundwater monitoring wells and soil borings. 21

Q. WHAT ARE PNM'S IMMEDIATE FUTURE PLANS WITH REGARD TO THE HAMPTON 4M SITE?

A. PNM will continue to implement the approach in our groundwater management plan that has already been approved by the OCD. However, since the release point or source of the free product contamination at the Hampton 4M has yet to be identified, PNM is limited in our options at the site. We have re-established our former source well (now MW-12) and continue to monitor it and other remaining wells. The monitoring of MW- 12 is crucial in assisting to assist in determining the present and future conditions at the site.

10 Q. WHY WILL THIS WELL BE CRUCIAL TO THAT DETERMINATION?

Burlington has represented to PNM that they have determined definitively that the 11 A. 12 former PNM pit was a release point and a source of free product contamination at the Hampton 4M. Burlington has also indicated that their remediation efforts late 13 in 1998 and early in 1999, which concentrated on removing all materials in and 14 near the location of PNM's former pit, down to and into the groundwater, have 15 successfully addressed the free product contamination at this site. MW-12 will 16 serve as a critical data source to determine the conditions upgradient of our former 17 pit which has now been completely removed during two separate remediation 18 efforts. 19

Ĩ.

1

Î

Ĵ

1	Q.	DOES PNM AGREE WITH BURLINGTON'S POSITION REGARDING
2		THE SOURCE OF THE FREE PRODUCT PRESENTLY FLOATING ON
3		THE GROUNDWATER AT THE SITE AND REGARDING THE
4		EFFECTIVENESS OF BURLINGTON'S REMEDIATION EFFORTS?
5	A.	No. PNM had already identified significant amounts of free product
6		contamination substantially upgradient of PNM's former pit prior to Burlington's
7		remediation efforts. PNM has also identified significant shortages in the reported
8		volumes of hydrocarbon fluids reported by Burlington to the OCD, and Burlington
9		has yet to investigate these suspected free product releases.
10		Thus, PNM disputes whether Burlington's remediation efforts have in fact been
11		effective, since there is likely either a continuing release of free product at the site
12		or a large volume of free product still residing in the vadose zone at the site
13		upgradient from PNM's former operations, or both.
14	Q.	WHAT WOULD BE AN INDICATION THAT PNM'S THEORY
15		REGARDING THE RELEASE POINT OR SOURCE OF FREE PRODUCT
16		AT THE SITE IS CORRECT?
17	A.	There are three key indicators that, should they occur, will support PNM's theory:
18		(1) The appearance of free product in either PNM's source well or the monitoring
19		wells that are upgradient of PNM's former operations at the site; (2) An upward
20		trend in dissolved-phase contamination over time in those wells, or (3) A shift in

1		the benzene-toluene-ethylbenzene-xylenes (BTEX) ratios where the ratio of
2		benzene to other constituents is increasing.
3	Q.	WHAT IS THE PROBABILITY THAT SOMEHOW, THE OCCURRENCE
4		OF THESE INDICATORS COULD HAVE RESULTED FROM
5		DISCHARGES BY PNM TO PNM'S PIT PRIOR TO JUNE 30, 1995?
6	Α.	The probability that any remaining free product at this site as well as the free
7		product detected and removed by PNM during earlier remediation efforts resulted
8		from discharges to PNM's pit is vanishingly small.
9	Q.	HAS PNM SUBMITTED A REQUEST TO THE OCD TO HAVE THE
10		FORMER DEHYDRATION PIT AT THE HAMPTON 4M SITE CLOSED?
10 11	A.	FORMER DEHYDRATION PIT AT THE HAMPTON 4M SITE CLOSED? Yes we have. A copy of PNM's closure report dated November 12, 1998 is
	A.	
11	A.	Yes we have. A copy of PNM's closure report dated November 12, 1998 is
11 12	A.	Yes we have. A copy of PNM's closure report dated November 12, 1998 is presented in PNM Exhibit 29. This report was hand delivered to Bill Olson at the
11 12 13	Α.	Yes we have. A copy of PNM's closure report dated November 12, 1998 is presented in PNM Exhibit 29. This report was hand delivered to Bill Olson at the Hampton 4M site in November 1998. For the purpose of pit closure, PNM
11 12 13 14	A.	Yes we have. A copy of PNM's closure report dated November 12, 1998 is presented in PNM Exhibit 29. This report was hand delivered to Bill Olson at the Hampton 4M site in November 1998. For the purpose of pit closure, PNM referenced upgradient well concentrations as remediation clean-up levels for
11 12 13 14 15	A.	Yes we have. A copy of PNM's closure report dated November 12, 1998 is presented in PNM Exhibit 29. This report was hand delivered to Bill Olson at the Hampton 4M site in November 1998. For the purpose of pit closure, PNM referenced upgradient well concentrations as remediation clean-up levels for groundwater at the site. PNM had successfully remediated soil and groundwater

Ĵ

Î

Ĵ

Ĵ

1

۰.

1		In support of our request for pit closure, Burlington, as a result of its mass
2		excavation from November 1998 through February 1999, has completely removed
3		any potential sources of contamination from PNM's former pit.
4	Q.	OTHER THAN THE EXHIBITS YOU HAVE ALREADY ADDRESSED,
5		ARE THERE OTHER EXHIBITS YOU WISH TO SPONSOR?
6	A.	Yes. As indicated previously, a number of exhibits have been developed in the
7		course of the investigation and remediation efforts at the Hampton 4M site. PNM,
8		Burlington and the OCD have correspondence and reports relating to this site.
9		The Commission should have the opportunity to review these materials in its
10		deliberations in this matter. Therefore, I am identifying and confirming the
11		enuineness of the following PNM Exhibits: PAM EX 37 OCD Letter to TAM G/1/48 3 as per troth mony PNM EXHIBIT 30- Burlington Letter of 4-15-98 to OCD 1/47 8/22/49
12		• PNM EXHIBIT 30- Burlington Letter of 4-15-98 to OCD //1/17 8/22/49
13		PNM EXHIBIT 31- Burlington Report of August 1997
14		• PNM EXHIBIT 32- OCD Letter of 8-27-97 to Burlington
15		• PNM EXHIBIT 33- Burlington Letter of 9-9-97 to OCD
16		• PNM EXHIBIT 34- Burlington Letter Report of 9-19-97 to OCD
17		• PNM EXHIBIT 35- OCD Letter of 11-24-97 to Burlington
18		• PNM EXHIBIT 36- Burlington Letter Report of 1-30-98 to OCD
19		• PNM EXHIBIT 37- Burlington Letter Report of 5-28-98 to OCD

1	·	• PNM EXHIBIT 38- PNM letter of 6-25-98 to OCD
2		• PNM EXHIBIT 39- PNM Letter of 6-25-98 to Burlington
3	Q.	MS. GANNON, HAVE THE OPINIONS YOU HAVE PROVIDED IN THIS
4		TESTIMONY BEEN BASED UPON YOU EDUCATION, TRAINING AND
5		EXPERIENCE IN THE ENVIRONMENTAL FIELD?
6	Α.	Yes they have.
7	Q.	AND ARE YOU OPINIONS BASED ON A REASONABLE SCIENTIFIC
8		CERTAINTY?
9	A.	Yes they are.
10	Q.	DOES THIS CONCLUDE YOUR TESTIMONY?
11	A.	Yes.

12

Mr. Bill Merhege Acting Assistant Field Manager Bureau of Land Management 1800 Marquess Las Cruces, NM 88005-3371

Extraneorus inadvertantly included by PAM as per testimony 8/26/99

RE: Right-Of Way NMNM-86760 (Chamberino M/L Project)

Dear Mr. Merhege:

Reclamation activities within the above-referenced right-of-way have been completed. As recommended in the Reclamation/Reseeding Guidelines for Mimbres Resource Area the reseeding was performed during the month of June. Reseeding was started on June 9, 1999 and concluded June 17, 1999. Flynt Energy Construction Co. from Odessa, Texas, Public Service Company of New Mexico-Gas Services' prime contractor, performed the reseeding work.

Prior to seeding the right-of-way surface was disced to provide a rough surface. Next, the area was seeded using a rangeland type seed drill to insure proper seed placement to promote establishment. Mulching was not applied.

The seed mixture applied is consistent with the guidelines for Mimbres Resource Area. Attached is a copy of the seed bag label. Also attached are copies of four (4) photographs that show the equipment utilized and typical final surface/grade.

If you need additional information about this project call me at (505)241-4873 or Douglas Campbell at (505)241-2025

Cordially,

Wilford B. Nez

Sr. Engineering Tech

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION COMMISSION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION FOR THE PURPOSE OF CONSIDERING:

APPLICATION OF PUBLIC SERVICE COMPANY CASE NO. 12,033 OF NEW MEXICO FOR *DE NOVO* HEARING ON ORDER NO. R-11134 ISSUED BY THE NEW MEXICO OIL CONSERVATION DIVISION IN

AFFIDAVIT

STATE OF NEW MEXICO))SS. COUNTY OF BERNALILLO)

I, Maureen Gannon, upon being first duly sworn according to law, under oath, depose and state: That I am Manager of Pit Media Program for Public Service Company of New Mexico, and that I have read the foregoing Direct Testimony, including exhibits. I further affirmatively state that I know the contents thereof and that they are true and correct to the best of my knowledge and belief.

SIGNED this <u>9</u> day of July, 1999.

Maurus Aarnon

SUBSCRIBED AND SWORN to before me this $\frac{9^{+4}}{2}$ day of July, 1999.

Shitte C. Blackler Notary Public

[My Commission Expires: $0ct \cdot 2a_{1999}$]

(Seal, if any)

DAM0258

BEFORE THE

NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES

OIL CONSERVATION COMMISSION

IN THE MATTER OF THE APPLICATION OF PUBLIC SERVICE COMPANY OF NEW MEXICO FOR REVIEW OF OIL CONSERVATION DIVISION DIRECTIVE DATED MARCH 13, 1998 DIRECTING APPLICANT TO PERFORM ADDITIONAL REMEDIATION FOR HYDROCARBON CONTAMINATION, SAN JUAN BASIN, NEW MEXICO CASE NO. 12033

DIRECT TESTIMONY OF

RODNEY HEATH

SUBMITTED ON BEHALF OF

PUBLIC SERVICE COMPANY OF NEW MEXICO

APPLICANT

JULY 9, 1999

- Q. PLEASE STATE YOUR NAME AND PLACE OF EMPLOYMENT FOR
 THE RECORD?
- A. Rodney Thomas Heath. I'm the president of Petro Energy, Incorporated, P.O.
 Box 701, Farmington, New Mexico.
- 5 Q. AND ON WHOSE BEHALF ARE YOU PROVIDING TESTIMONY IN
 6 THIS PROCEEDING?
- 7 A. I am providing testimony on behalf of Public Service Company of New Mexico
 8 ("PNM").
- 9 Q. CAN YOU PLEASE BRIEFLY SUMMARIZE YOUR TESTIMONY IN
 10 THIS CASE?
- My testimony addresses the general history of natural gas production 11 Α. Yes. 12 surface equipment in the San Juan Basin. I also discuss the operational aspects of 13 the surface equipment at the Hampton 4M well site and provide the conclusion that very little free product could have originated from PNM's former dehydrators 14 at this site. I further confirm that any free product that might have flowed to 15 16 PNM's former dehydration pit could have only been the result of problems with 17 the operation of Burlington's equipment and that this free product is owned by Burlington or its predecessor. Finally, I explore an apparent anomaly in the gas-18 oil ratio production history relating to Burlington's production from the Hampton 19 20 4M well.
- 21 Q. CAN YOU TELL US WHAT KIND OF BUSINESS PETRO ENERGY IS?

1 1 1 1 2

	1	A.	PetroEnergy is a small production company. We have our own production wells,
	2		with some partners. We are also involved in developing certain patents.
	3	Q.	WHAT ARE YOUR JOB DUTIES AS PRESIDENT OF PETRO ENERGY?
	4	A.	I am in charge of the day-to-day management of the company.
	5	Q.	PLEASE TELL THE COMMISSION ABOUT YOUR EDUCATIONAL
	6		BACKGROUND.
	7	A.	I have a Bachelor of Science in mechanical engineering from Texas A&M
	8		University. I graduated in June of 1954.
	9	Q.	FOLLOWING GRADUATION IN 1954 FROM TEXAS A&M, WHAT DID
]	10		YOU DO?
]	11	A.	I immediately went to work for Southern Union Gas Company in Farmington,
1	12		New Mexico.
]	13	Q.	WHAT POSTIONS DID YOU HOLD WITH SOUTHERN UNION?
]	14	A.	I was with Southern Union from June of 1954 through June of 1961 and held a
+	15		number of different positions. I started as a measurement superintendent.
	16	Q.	WHAT ARE THE JOB DUTIES OF A MEASURMENT
	17		SUPERINTENDENT?
	18	A.	They include a number of things including measuring the gas, determining the
	19		specific gravity of the gas and supervising and auditing the related charts.
	20	Q.	WHAT OTHER POSTIONS DID YOU HOLD WITH SOUTHERN
,	21		UNION?

.

A. I was prorationing superintendent for a period. This was when prorationing first
started in this area. I had the job of controlling the production of the wells,
including determining which wells were to remain on and which wells were to
remain off. I also developed a system for estimating the amount of days the wells
had to produce to comply with prorationing requirements. I was in on the ground
floor in developing the prorationing system.

7 The last job I had with Southern Union was as production superintendent. While 8 in this position, I was responsible for all of the Southern Union gathering systems. 9 I oversaw the operation of Southern Union's wells, as well as the operation of all 10 of equipment and the measurement of product produced from the wells. I also 11 specified the sizing of all equipment required to connect the wells. This included 12 equipment layout, installation and location at the well pad.

Q. AS PRODUCTION SUPERINTENDENT WERE YOU THE PERSON
RESPONSIBLE FOR SETTING UP THE WELL PAD SITE AND THE
SURFACE EQUIPMENT AT THE WELL PAD?

16 A. Yes.

17 Q WHERE DID YOU DO YOUR WORK FOR SOUTHERN UNION?

18 A. All my work for Southern Union was in the San Juan Basin.

Q. IS THIS THE SAME SAN JUAN BASIN WHERE THE HAMPTON 4M
WELL IS LOCATED?

21 A. Yes it is.

Q. AFTER YOU LEFT EMPLOYMENT WITH SOUTHERN UNION IN 1961, WHAT DID YOU DO?

3 A. I became president of Olman Heath Company.

4 Q. WHAT KIND OF BUSINESS WAS OLMAN HEATH?

A. Olman Heath was specifically organized to manufacture and sell the combination
production unit that I had patented. It eventually grew into a full-blown
production-equipment company as well. I became president of Olman Heath in
June of 1961. I was part of management for Olman Heath and its successor
companies until February of 1995.

Q. YOU INDICATED THAT YOU DEVELOPED A PATENT FOR A PIECE
 OF EQUIPMENT CALLED A COMBINATION PRODUCTION UNIT. IS
 THAT SOMETHING THAT'S COMMONLY REFERRED TO IN
 OILFIELD PARLANCE AS A "SEPARATOR?"

A. Yes, but it is important to note that a combination production unit includes more
components than just a separator and performs more functions than just separating
liquids from gas. A combination production unit also provides the heat to turn the
well on, controls the pressures, and generally processes the liquid in some way.
It's more than just a separator, although that's what many folks commonly call it.

Q. THROUGHOUT THE TESTIMONY IN THIS CASE, A NUMBER OF PNM WITNESSES AND PNM EXHIBITS REFER TO A "SEPEARATOR" ON BURLINGTON'S PART OF THE WELL PAD. DO YOU

1		UNDERSTAND THESE AS REFERENCES AS REFERRING TO A
2		COMBINATION PRODUCTION UNIT AS YOU DESCRIBED IT?
3	A.	Yes, but I prefer to call it a combination production unit because it performs many
4		different functions as I have just described.
5	Q.	IS THE COMBINATION PRODUCTION UNIT THAT WAS USED AT
6		THE HAMPTON 4M WELL PAD SITE SIMILAR TO THE ONE YOU
7		DEVELOPED?
8	A.	The combination production unit at the Hampton 4M well is one that I designed
9		and patented.
10	Q.	THERE HAS ALSO BEEN DISCUSSION IN THE TESTIMONY IN THIS
11		CASE CONCERNING A PIECE OF EQUIPMENT AT THE HAMPTON
12		4M WELL SITE CALLED A DEHYDRATOR. DID YOU HAVE ANY
13		INVOLVEMENT IN THE DEVELOPMENT OF THAT EQUIPMENT?
14	Α.	Yes, I designed that dehydrator as well.
15	Q.	ARE THERE OTHER PIECES OF OILFIELD-RELATED EQUIPMENT
16		THAT YOU HAVE DESIGNED?
17	Α.	Yes. I hold in excess of 20 patents on different pieces of equipment.
18	Q.	DID OLMAN HEATH MANUFACTURE OILFIELD EQUIPMENT?
19	А	Yes it did. Olman Heath manufactured several pieces of oil field equipment
20		including combination production units, separators, scrubbers, heaters, treaters
21		and dehydrators.

1	Q.	WHAT IS THE BRAND NAME ASSOCIATED WITH THE
2		COMBINATION PRODUCTION UNIT AT THE HAMPTON 4M WELL?
3	A.	It has the Weatherford brand name on it, but it is an Olman Heath design. In
4		December 1981, Weatherford US acquired Olman Heath Company. At that time I
5		became the vice president and operating manager for Weatherford. In January of
6		1986 the company was reorganized and became U.S. Enertek and continued as
7		U.S. Enertek through February 1995.
8	Q.	DO YOU KNOW THE BRAND NAME THAT'S ASSOCIATED WITH
9		THE GAS DEHYDRATOR?
10	А.	It's also a Weatherford and is also a Olman Heath design.
11	Q.	IS IT CORRECT THAT YOUR COMPANY WAS THE
12		MANUFACTURER FOR BOTH THE COMBINATION PRODUCTION
13		UNIT AND THE DEHYDRATOR AT THE HAMPTON 4M WELL SITE?
14	Α.	Yes.
15	Q	MR. HEATH, YOU TESTIFIED THAT YOU STARTED IN THE OIL
16		BUSINESS IN THE SAN JUAN BASIN IN 1954. HAVE YOU BEEN
17		CONTIUOUSLY INVOLVED IN THE BUSINESS SINCE THAT TIME?
18	A.	Yes I have.
19	Q.	AND AS I UNDERSTAND IT, YOU HAVE BEEN INVOLVED IN THE
20		OIL FIELD PRODUCTION EQUIPMENT BUSINESS SINCE 1961, IS
21		THAT ALSO CORRECT?

1 A. Yes it is.

2 Q. BASED ON THIS EXPERIENCE, CAN YOU GIVE US SOME OF THE 3 HISTORY OF HOW THINGS DEVELOPED OUT IN THE SAN JUAN 4 BASIN WITH RESPECT TO OILFIELD PRODUCTION EQUIPMENT?

A. Yes. The history in the San Juan Basin is actually very relevant to the issues in
this case. When I first went to work for Southern Union in the mid 1950s,
production from the Dakota formation was not fully under way. We were not
hooking up many Dakota wells at that time. Production was primarily from the
Mesaverde and the Pictured Cliff formations.

10 The production contracts that were used at that time specified that Southern Union 11 would install all of the surface equipment at the well pad, including tanks for 12 storage of liquids, which is also commonly called free product. Southern Union 13 would collect the free product and share it on a 50-50 basis with the operator.

14 Q. DID THINGS CHANGE WHEN PRODUCTION FROM THE DAKOTA

15

FORMATION BECAME MORE COMMON?

A. Yes. When the Dakota production increased, we started dealing with higher
pressures. In addition, the wells produced large volumes of free product. In fact,
production of several hundred barrels a day was not uncommon.

Because of the large volumes of free product produced from the Dakota
formation, the producers became reluctant to share the free product with Southern

1		Union. The producers wanted to install their own equipment to capture the free
2		product and keep the profits from the sale of the product themselves.
3	Q.	WHAT IMPACT DID THIS HAVE ON THE PROVISIONS OF THE
4		PRODUCTION CONTRACTS COMMONLY USED IN THE SAN JUAN
5		BASIN?
6	Α.	We began drawing up contracts that provided that the producer would install its
7		own equipment to recover the free product. The producers retained all rights to
8		the free product and got to keep the proceeds from the sale of the free product.
9		However, the contracts were also changed so that producers were now required to
10		provide gas basically free of any free product.

11 Q. HOW DID THIS ARRANGEMENT WORK OUT?

A. There were problems initially. One problem was that the equipment used by the
producers would not really remove all of the free product. In many cases, large
slugs of free product would still get through the operators' production units and
would flow through to the dehydrators.

Initially, in order to protect our dehydration equipment, Southern Union installed dehydrators that were equipped with elaborate separators. Southern Union's equipment would then discharge the liquids into a tank owned by the producers. Southern Union was actually equipping the wells with the equipment necessary to remove the free product, but wasn't getting any of the revenue from the sale of the product. It was a good deal for the producers, but not for Southern Union.

1 Q. WHY DID SOUTHERN UNION INSTALL THIS EQUIPMENT?

A. Because you have to remove the free product to dehydrate the gas. Hydrocarbons
entering a dehydrator system will cause an upset though loss of glycol. A
dehydrator simply won't tolerate large volumes of free product. Dehydrators can
tolerate only very small amounts of free product before you get foaming glycol
which causes a loss of glycol.

7 Q. WHY IS THIS LOSS OF GLYCOL A PROBLEM?

- 8 A. For one thing, glycol is very expensive. And secondly, if you lose your glycol
 9 you lose your ability to dehydrate the gas. Keeping your glycol clean and not
 10 losing it is a major operational concern.
- 11

Q. WHY IS IT NECESSARY TO DEHYDRATE GAS?

- A. To remove the water vapor from the gas so it won't cause operational problems. Water vapor can cause hydrates to form in the pipeline. This can cause the lines to freeze and gas can't pass through the lines. In order to get the hydrates out of the pipeline, you generally have to "blow down" the system. When you do this, you lose all the gas that's contained in that pipeline. Dehydrators are installed to minimize these problems.
- Q. YOU'VE BROUGHT US UP TO THE POINT IN HISTORY WHERE
 SOUTHERN UNION HAD INSTALLED SOME FAIRLY
 SOPHISTICATED DEHYDRATION EQUIPMENT ON ITS FACILITIES.
 TELL US WHAT HAPPENED AFTER THAT.

A. When the Southern Union management began to discover how much it was
 costing to hook these wells up and how much money the company was spending
 on equipment, they decided they wanted a different solution for preventing
 excessive free product from hitting the dehydrators.

5

0.

WHAT WAS DONE TO TRY A DIFFERENT SOLUTION?

6 A. I arrived at the idea of installing a sensing element on the dehydrators. The 7 sensing element measured the amount of free product that hit the dehydrator. If 8 excess free product hit the dehydrator, the sensing element would activate a 9 switch and shut in the well. The well would remain shut in until the problem 10 causing the excess free product was corrected.

11 Q. I'D LIKE TO HAVE YOU LOOK AT WHAT WE'VE MARKED AS PNM

12 EXHIBIT 40. CAN YOU TELL US WHAT WE HAVE DEPICTED ON 13 EXHIBIT 40?

14 A. It's photograph of the actual combination production unit that was installed on the
15 Hampton 4M when I went to inspect the well pad equipment. It also shows a
16 schematic of the combination production unit.

17 Q. CAN YOU TELL US THE FUNCTION OF THIS PIECE OF EQUIPMENT

18

IN THE WHOLE PROCESS OF NATURAL GAS PRODUCTION?

A. As discussed, although this piece of equipment is commonly referred to as a
separator, it performs a variety of functions. This piece of equipment provides

1 heat for operating and turning on the well. It also controls any overpressure and 2 separates the free product coming into the unit. WHAT ARE THE EFFICIENCY RATES OF SEPARATORS IN 3 Q. 4 **REMOVING FREE PRODUCT FROM THE GAS?** 5 Α. A separator will remove in excess of ninety-nine percent of the free product from 6 the gas. 7 **Q**. IS NINTY-NINE PERCENT REMOVAL THE LOWEST ACCEPTABLE 8 LEVEL OF PERFORMANCE FOR A SEPARATOR? 9 Actually, you would not be satisfied with only a ninety-nine percent removal rate. Α. 10 The efficiency rate is very close to one-hundred percent on a properly functioning 11 unit. 12 IF THE COMBINATION PRODUCTION UNIT, OR SEPARATOR AS WE **Q**. 13 SOEMTIMES CALL IT, IS OPERATED PROPERLY, WOULD YOU EXPECT TO GET MUCH IN THE WAY OF FREE PRODUCT 14 **DOWNLINE IN THE DEHYDRATORS?** 15 No. There would be very little free product reaching the dehydrators. As I 16 A. 17 indicated before, almost one hundred percent of the free product is removed by 18 the combination production unit (separator) under normal circumstances. PLEASE REFER TO PNM EXHIBIT 41 AND TELL US WHAT IS 19 0. SHOWN IN THIS EXHIBIT. 20

A. PNM Exhibit 41 is a picture of the dehydrator that was installed on the Hampton
 4 when I visited the site. It too provides a schematic of a typical dehydrator.

3 Q PLEASE TELL US THE PURPOSE OF THE DEHYDRATOR.

A. As discussed previously, it is designed to remove water vapor from the gas. I
want to emphasize, it is designed to deal with water vapor only. It is not intended
to remove free product from the gas. The producer has the responsibility for and
control over removal of free product before the gas reaches the dehydrator.
Almost all of the free product should be removed by the combination production
unit before the gas reaches the dehydrator.

10 Q. HOW DOES THE DEHYDRATOR WORK?

A. The dehydrator itself is composed of an absorber, a reboiler, a heat exchanger and
some type of a pump to lift the glycol up against the pressure. It also has a
contact system to remove the water vapor.

14 Q. IS THERE ALSO A SMALL SEPARATOR ASSOCIATED WITH THE 15 DEHYDRATOR THAT'S SHOWN IN PNM EXHIBIT 41?

16 A. Yes. There is a small separator on the dehydrator with a sensing-element. I'd like 17 to point out that this is not a full separator as used in the combination production 18 unit. This separator is designed to handle only very minimal amounts of free 19 product. Indeed, this sensing element separator is designed to shut in the well if 20 too much free product hits the dehydrator

0607.34

Q. CAN YOU PLEASE TAKE US THROUGH THE PROCESS FROM THE
 POINT THAT THE GAS COMES OUT OF THE WELLHEAD AND THEN
 RUNS THROUGH THE SURFACE EQUIPMENT TO THE METER
 HOUSE.

5 Α. Yes. The easiest way to do this is to refer to the schematic in PNM Exhibit 42, 6 The wellhead is shown in the schematic and the slashed line is the gas flow. The 7 gas flows from the well head to the combination production unit, or separator. 8 The combination production unit has a method of controlling the gas temperature. 9 It also has a device to control pressure. The gas flows through this equipment and 10 then up into a high-pressure two-phase separator, where the total liquids, 11 including free product, are knocked out, collected, and then dumped back into this 12 low-pressure vessel. The liquids are then collected in a tank. The gas flows out 13 of this vessel on the combination production unit and, in the case of the Hampton 14 4M, flows into what we call the sensing element separator on the dehydrator. 15 Provided there is not too much free product in the gas, the gas passes through the sensing element separator into the absorber. In the absorber the gas is contacted 16 with glycol where any moisture is removed and flows to a tank. The gas then 17 passes through the meter run and on down to the pipeline. 18

19 Q. IN THE SITUATION AS WE HAVE OUT AT THE HAMPTON 4M 20 WELL, AT WHAT POINT DOES TITLE OF THE GAS PASS FROM THE 21 PRODUCER TO THE PIPELINE COMPANY?

1	A.	The title to the gas passes when it flows through the orifice in the meter run.
2	Q.	IN THE EVENT THERE IS A SUBSTANTIAL AMOUNT OF FREE
3		PRODUCT THAT SOMEHOW WASN'T CAPTURED BY THE
4		SEPARATOR AND HEADS DOWN THE LINE TO THE DEHYDRATOR,
5		PLEASE TELL US WHAT WOULD HAPPEN?
6	A.	If any substantial amount of free product hits the dehydrator, the output pressure
7		of the liquid level control builds in the sensing element separator. If the pressure
8		builds too much, there is a three-way switch that is tripped and sends a signal to a
9		valve to shut the well in.
10	Q.	WHAT DOES THAT MEAN IN TERMS OF THE VOLUMES OF FREE
11		PRODUCT THAT WOULD LIKELY RUN THROUGH A DEHYDRATOR
11 12		PRODUCT THAT WOULD LIKELY RUN THROUGH A DEHYDRATOR AND BE DISCHARGED?
	А.	
12	A.	AND BE DISCHARGED?
12 13	Α.	AND BE DISCHARGED? As noted before, there would only be relatively small amounts of free product that
12 13 14	A. Q.	AND BE DISCHARGED? As noted before, there would only be relatively small amounts of free product that would hit the dehydrator. If the amount were too great, the well would be shut in.
12 13 14 15		AND BE DISCHARGED? As noted before, there would only be relatively small amounts of free product that would hit the dehydrator. If the amount were too great, the well would be shut in. This would in turn would stop production of the free product.
12 13 14 15 16		AND BE DISCHARGED? As noted before, there would only be relatively small amounts of free product that would hit the dehydrator. If the amount were too great, the well would be shut in. This would in turn would stop production of the free product. ARE YOU SUGGESTING THAT NO FREE PRODUCT WOULD EVER
12 13 14 15 16 17	Q.	AND BE DISCHARGED? As noted before, there would only be relatively small amounts of free product that would hit the dehydrator. If the amount were too great, the well would be shut in. This would in turn would stop production of the free product. ARE YOU SUGGESTING THAT NO FREE PRODUCT WOULD EVER BE DISCHARGED FROM THE DEHYDRATOR?
12 13 14 15 16 17 18	Q.	 AND BE DISCHARGED? As noted before, there would only be relatively small amounts of free product that would hit the dehydrator. If the amount were too great, the well would be shut in. This would in turn would stop production of the free product. ARE YOU SUGGESTING THAT NO FREE PRODUCT WOULD EVER BE DISCHARGED FROM THE DEHYDRATOR? No. However, the amount that would be discharged would be very small. In

1 **Q**. CAN YOU EXPLAIN WHAT YOU MEAN WHEN YOU SAY THAT THE AMOUNT OF FREE PRODUCT FROM THE DEHYDRATOR THAT 2 3 WOULD ACTUALLY HIT THE GROUND AND BE ABSORBED IN THE 4 SOIL WOULD BE EVEN SMALLER? 5 This is a key point actually. Any discharge from the dehydrator would be under Α. 6 pressure. This is particularly true with respect to Dakota production, which is a 7 very high vapor pressure product. When you have an elevated line pressure, the 8 function of reducing that pressure from the flowing line pressure down to 9 atmospheric pressure, creates a flash of the product. WHAT DO YOU MEAN BY "FLASH OF THE PRODUCT"? 10 **Q**. 11 It means that much of the free product is "flashed off", or volatilized, into the Α. 12 atmosphere. It never even hits the ground.

Q. DO YOU HAVE AN ESTIMATE OF HOW MUCH FREE PRODUCT DISCHARGED THROUGH THE DEHYDRATOR WOULD HAVE BEEN EXPOSED TO THE SOIL?

Yes. I have performed modeling on wells where we took the product from the high-pressure separator down to the product tank. The modeling results show that 50 to 60 percent of what is contained in the high-pressure separator at the time it is dumped to the low pressure tank is flashed into the atmosphere. In addition, much of any product that actually makes it to a pit would also flash off to the atmosphere as it weathered in the pit. Free product is volatile and will evaporate

		KODNET HEATH
1		rather quickly before it is absorbed in the ground. So even if free product was
2		discharged, a substantial portion of the free product would never enter the soil, let
3		alone reach the ground water in a free phase state.
4	Q.	YOU INDICATED THAT THERE WOULD BE SOME DISCHARGE OF
5		FREE PRODUCT FROM THE DEHYDRATOR IN EVEN NORMAL
6		OPERATIONS. HOWEVER, WOULD YOU EXPECT THE DUMPING
7		OF FREE PRODUCT TO OCCUR WITH MUCH FREQUENCY?
8	A.	No, not unless there was some type of mechanical failure upstream in
9		Burlington's combination production unit.
10	Q.	IF BURLINGTON'S COMBINATION PRODUCTION UNIT IS
11		OPERATING PROPERLY, WOULD YOU EXPECT TO SEE MUCH
12		FREE PRODUCT REACH THE DEHYDRATOR?
13	Α.	No. Again, nearly one hundred percent of the free product would have been
14		removed before the gas reached the dehydrator.
15	Q.	WHAT DOES THAT MEAN WITH REGARD TO THE POTENTIAL
16		VOLUMES THAT COULD HAVE BEEN DISCHARGED BY PNM'S
17		FORMER DEHYDRATION UNIT?
18	А.	The volumes would be very small, because during normal operations there should
19		have been very little free product carrying over. In addition, even if Burlington
20		experienced any type of mechanical failure resulting in large amounts of free
		product, the sensing element would shut the well in.

Q. CAN YOU TELL US WHO CONTROLS THE COMBINATION PRODUCTION UNIT?

A. Burlington, as the producer, has control over this equipment and the recovery of
the free product from the gas. PNM would have had no control over the operation
of this equipment at all.

6 Q. HAVE YOU DONE ANY INVESTIGATION INTO THE OPERATIONAL 7 HISTORY OF THE EQUIPMENT AT THIS SITE?

A. Yes. I wanted to find out what experience they had had with operating, not only dehydrators, but the experiences they had with the whole system. I actually interviewed the field men for the Hampton 4M well to get an idea of the operational history of the equipment. One of the field men that had operated the equipment prior to 1995 told me that on occasion he found the well shut in from the sensing elements.

14 Q. WHAT DOES THAT INDICATE TO YOU ABOUT THE OPERATION OF 15 THE EQUIPMENT?

16 A. Well, it means two things. First, it would indicate that something had 17 malfunctioned on Burlington's equipment to cause excessive free product to hit 18 the dehydrator. Second it would also suggest that the sensing element on the 19 dehydrator was working properly and shutting in the well when too much free 20 product was flowing. This would stop the discharge of free product to the pit.

Q. DID YOU ALSO ASK ABOUT HOW THE DEHYDRATOR WAS OPERATING?

3 A. Yes. The field man said that he had no operating problems at all with the
dehydrator. There was no excessive glycol loss or anything like that.

5 Q. WHY IS THAT SIGNIFICANT, THIS EXCESSIVE GLYCOL LOSS?

6 A As I said before, glycol loss occurs when there is excessive free product hitting 7 the dehydrator. The fact that there was no significant glycol loss shows two 8 things. First, there probably were not too many instances where large volumes of 9 free product hit the dehydrator. Second, on those occasions when free product did 10 hit the dehydrator, the sensing element did a good job of shutting in the well.

11 Q. WHAT DOES THAT MEAN WITH REGARD TO THE AMOUNTS OF

12 FREE PRODUCT THAT MIGHT HAVE BEEN DISCHARGED
 13 THROUGH THE DEHYDRATORS?

A. If you had large amounts of free product running through the dehydrator, you
would expect to have large glycol loss. There was no large glycol loss, so we can
conclude that there were no large free product discharges from the dehydrator.
None of the three field men I talked two -- two of them had operated after 1995
and one of them prior to 1995 -- had any problems with the dehydrators. One of
the field men testified it was the best unit he had on the ground.

20 Q. BASED UPON YOUR INSPECTION OF THE EQUIPMENT AND THE 21 DISCUSSIONS YOU HAD WITH THE FIELD MEN, WAS THERE

ANYTHING TO INDICATE THAT THE COMBINATION UNIT WASN'T 1 2 **OPERATING AS IT WAS INTENDED AT A VERY HIGH EFFICIENCY OF 99 PERCENT OR MORE?** 3 4 Α. The only indication that there were any problems at all with any of the equipment, 5 as far as what the field men knew, was that one of them testified that he found the 6 well shut in on occasion. The other field men said that after 1995 they did not 7 experience any problems with the well being shut in, nor did they observe free 8 product in the pit during that time frame. 9 CAN YOU DRAW ANY CONCLUSIONS BASED UPON THAT IN TERMS **O**. 10 THE RELATIVE VOLUMES THAT MIGHT HAVE COME OF 11 **THROUGH PNM'S DEHYDRATOR?** 12 The conclusions I can draw are that PNM's former unit was operating the way it Α. was designed and there was no significant discharge of free product from the 13 dehydrator. 14 Q. IF THERE WERE A PROBLEM WITH THE EFFICIENCY OF THE 15 16 COMBINATION PRODUCTION UNIT, WHOSE RESPONSIBILITY WOULD THAT BE? 17 It would be Burlington's responsibility, as the operator of the equipment. 18 Α. **IS FREE PRODUCT SOMETHING THAT A PIPELINE COMPANY** 19 0. WANTS THROUGH ITS DEHYDRATOR? 20

Absolutely not. The dehydrator is not designed to deal with excessive amounts of
 free product. Any free product that comes over creates a problem for the pipeline
 company.

4

5

Q.

DID YOU DO ANY OTHER INVESTIGATION WITH RESPECT TO THE HISTORY OF THE HAMPTON 4M WELL?

- A. Yes. I looked at the production history of the well for both gas and free product.
 The production history for this well shows a significant anomaly in terms of the
 production ratio between gas and free product.
- 9 Q. DID YOU PREPARE ANY EXHIBITS TO ILLUSTRATE THIS?
- A. Yes, I prepared PNM Exhibit 43. This exhibit is a comparison of the gas-oil ratio
 on both the Mesaverde formation and the Dakota formation. This exhibit is based
 on actual production figures for the Hampton 4M well. The actual production
 figures for the well are shown on PNM Exhibit 44.

14 Q. PLEASE EXPLAIN WHAT IS MEANT BY A GAS AND OIL RATIO?

- A. That is simply the ratio between the amount of gas produced compared to the
 amount of free product produced over the same period of time. What I did was
 just divide the volume of gas that had been produced for a given year, according
 to the production records, by the volume of oil that had been produced, so we
 determined the amount of gas per barrel of oil.
- 20 Q. WHY WAS IT THAT YOU CREATED THIS OIL-AND-GAS RATIO 21 COMPARISON?

- A. Well in looking particularly at the Mesaverde side, it looked like there were some
 very strange results. Burlington had some years where there was zero recovery of
 free product.
- 4

Q. WHEN YOU SAY "ZERO RECOVERY", WHAT DO YOU MEAN?

- 5 A. There was no reported recovery of any oil, liquid hydrocarbons, during two 6 particular years. That is very strange because we still had gas production. It is 7 even more strange because free product production resumed at levels close to 8 what it was prior the period of non-production.
- 9 Q. IN YOUR EXPERIENCE, IS SOMETHING LIKE THIS FAIRLY
 10 COMMON WITH REGARD TO PRODUCTION RATIOS?
- A. No. If you look at the production ratio for the Dakota formation on PNM Exhibit
 43, it looks pretty typical. The ratio is fairly constant, except for two years, 1990
 and 1995, which are anomalies.

14 Q. WHAT TYPE OF PRODUCTION RATIO WOULD YOU NORMALLY 15 EXPECT?

A. Normally, you expect the ratio to be fairly level. Although gas-oil ratios do change, you shouldn't get dramatic swings from year to year, which is what happened at the Hampton 4M well for the Mesaverde production. You didn't really experience that on the Dakota production except in two years where it seemed like there was an anomaly. PNM Exhibit 45 is a graphic depiction of this anomaly. From 1992 to 1994, the oil/gas ratio was 6.48. In 1995, it dropped to

only 1.99. In 1996, it jumped back up to 7.04. Burlington has not provided any
 explanation for this production anomaly.

3 Q. WHAT THINGS CAN HAPPEN THAT MIGHT CAUSE THAT GAS-OIL 4 RATIO TO DEVIATE SO MUCH?

5 A. Several things could have created this. One possibility is a leak in the Mesaverde 6 tank. Alternatively, Burlington could have also changed the way they were 7 operating the well somehow. It could have been having to blow oil into the 8 atmosphere and wasting most of the product. Burlington could have failed to 9 keep proper records for the production of the oil. This would seem unlikely 10 because of the impact to royalty owners.

I can't give a probable cause for this anomaly. I can only list possibilities. However, this is an anomaly that Burlington should explain. It raises the question of whether the lost free product production shown in the gas oil ratios is somehow related to the free product that was discovered under the well pad.

Q. HAVE YOU TRIED TO FIND OUT WHAT CAUSED THIS APPARENT ANOMOLY IN THE GAS AND OIL PRODUCTION RATIO?

A. Only to a limited extent. I have reviewed the records we have relating to
production from the Hampton 4M well. We really don't have enough information
to make any probable determination on this point. However, the apparent lost
production should raise a red flag for the regulators and they should require
Burlington to explain this anomaly.

1 Q. DOES FREE PRODUCT HAVE ANY VALUE?

A. Yes. Free product is typically sold to oil purchasers as a hydrocarbon product
such as an oil or as light ends. It can be very valuable, particularly the light ends.

4 Q. AS BETWEEN THE PIPELINE COMPANY AND THE PRODUCER, 5 WHEN THE PIPELINE COMPANY IS BUYING NATURAL GAS, WHO 6 CLAIMS OWNERSHIP IN THE FREE PRODUCT?

- A. The contracts now generally provide that the producer installs their equipment
 and that it's their free product. The producer puts the combination production unit
 and related storage tanks on to recover the free product. They then sell it.
- 10Q.DOYOU HAVE AN UNDERSTANDING AS TO HOW THE OIL11CONSERVATION DIVISION ("OCD" or "DIVISION") ALLOCATED12RESPONSIBILITY FOR THE INVESTIGATION AND CLEAN-UP OF13FREE PRODUCT IN THE GROUND WATER AT THE HAMPTON 4 M14SITE?

A. Yes. I was present at the hearing before the OCD hearing examiner where it was explained by the Division witness that the allocation was based on the physical location of the surface equipment and pits. An imaginary line was drawn on the well pad and PNM was responsible for everything north of the line and Burlington was responsible for everything south of the line. I am also aware that this original ruling was modified somewhat after the hearing before the OCD hearing examiner. The hearing examiner ruled that PNM and Burlington now

share responsibility equally for the free product and related dissolved phase
 product in the ground water.

3 Q. BASED UPON YOUR EXPERIENCE WITH OIL FIELD OPERATIONS 4 AND EQUIPMENT, DO YOU BELIEVE THAT THESE ALLOCATIONS 5 OF RESPONSIBILITY ARE BASED UPON SOUND OIL FIELD 6 ENGINEERING?

7 No I don't. First, as noted above, the free product is owned by and is the A. 8 responsibility of the producer. PNM does not own this free product, Burlington 9 does. Secondly, if large amounts of free product got to PNM's former dehydrator, 10 it could have only gotten there as a result of operational problems or equipment malfunctions in Burlington's equipment. Free product should never have reached 11 12 the dehydrator in the first place and Burlington should not be allowed to escape the consequences of its poor operations. Third, based upon calculations 13 concerning the amount of free product on the ground water provided by PNM 14 shoor witness Valda Terauds, the shear volume of free product on the ground water at 15 this site is far in excess of what you could reasonably expect to see from a 16 17 dehydrator.

Q. MR HEATH, HAVE THE OPINIONS GIVEN IN YOUR TESTIMONY
BEEN BASED UPON YOUR EDUCATION, TRAINING AND
EXPERIENCE IN OIL FIELD OPERATIONS AND OIL FIELD
EQUIPMENT?

0:00016

1 A. Yes they have.

2	Q.	HAVE YOUR OPINONS CONCERNING THE POTENTIAL VOLUMES
3		OF FREE PRODUCT THAT MIGHT HAVE BEEN DISCHARGED FROM
4		PNM'S FORMER DEHYDRATION UNIT BEEN BASED UPON A
5		REASONABLE ENGINEERING CERTAINTY?
6	Α.	Yes they have.
7	Q.	MR. HEATH, DOES THIS CONCLUDE YOUR DIRECT TESTIMONY?

8 A. Yes it does.

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION COMMISSION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION FOR THE PURPOSE OF CONSIDERING:

APPLICATION OF PUBLIC SERVICE COMPANYCASE NO. 12,033OF NEW MEXICO FOR DE NOVO HEARING ONORDER NO. R-11134 ISSUED BY THE NEWMEXICO OIL CONSERVATION DIVISION IN

AFFIDAVIT

STATE OF NEW MEXICO) COUNTY OF SAN JUAN)

I, Rodney Thomas Heath, upon being first duly sworn according to law, under oath, depose and state: That I am President of Petro Energy, Inc., and that I have read the foregoing Direct Testimony, including exhibits. I further affirmatively state that I know the contents

thereof and that they are true and correct to the best of my knowledge and belief.

SIGNED this $2^{+\mu}$ day of July, 1999.

Jen T

ODNEY THOMAS HEATH

SUBSCRIBED AND SWORN to before me this 7th day of July, 1999. (Seal, if any)

Notary Public

[My Commission Expires: <u>12 - 11 200</u>

(680/8

BEFORE THE

· · · · ·

NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES

OIL CONSERVATION COMMISSION

IN THE MATTER OF THE APPLICATION OF PUBLIC SERVICE COMPANY OF NEW MEXICO FOR REVIEW OF OIL CONSERVATION DIVISION DIRECTIVE DATED MARCH 13, 1998 DIRECTING APPLICANT TO PERFORM ADDITIONAL REMEDIATION FOR HYDROCARBON CONTAMINATION, SAN JUAN BASIN, NEW MEXICO CASE NO. 12033

DIRECT TESTIMONY OF

MARK SIKELIANOS

SUBMITTED ON BEHALF OF

PUBLIC SERVICE COMPANY OF NEW MEXICO

APPLICANT

JULY 9, 1999

6603;9

1 Q. CAN YOU PLEASE STATE YOUR NAME AND YOUR PLACE OF

2 **EMPLOYMENT?**

A. My name is Mark J. Sikelianos and I am employed by Public Service Company of
New Mexico ("PNM"), in its Environmental Services Department.

5 Q. WHAT ARE YOUR CURRENT POSITION AND JOB DUTIES WITH 6 PNM?

A. I am a Senior Technician. I have been in this position almost four years. My job
duties include overseeing all of our groundwater sites, installing monitor wells,
coordinating the quarterly monitoring, collecting data, sampling wells, preparing
data reports. I also oversee some of the pit excavation work that is on going and
provide quality assurance to the overall project.

12 Q. CAN YOU TELL THE COMMISSION ABOUT YOUR EDUCATIONAL

13

BACKGROUND AND WORK EXPERIENCE?

I have an Associate's Degree in petroleum production technology from Eastern Α. 14 New Mexico University. I just recently received my bachelor's degree in business 15 administration from the University of Phoenix. I am a Certified Scientist with the 16 New Mexico Environment Department ("NMED") Underground Storage Tank 17 Bureau. I have a GS-29 technical specialty with the state for installation of 18 groundwater remediation systems. I have attended numerous short courses on 19 environmental remediation. Prior to coming to PNM, I worked for Geoscience 20 Consultants for seven years performing similar environmental and groundwater 21 work. I also have about four years of experience working for geotechnical 22

and the specific test of a

1		engineering firms such as Fox and Associates, Vineyard and Associates and the			
2		State Highway Department, working in soils labs and performing soils testing.			
3	Q.	YOU TALKED ABOUT CERTIFICATION FROM THE NMEDWITH			
4		REGARD TO UNDERGROUND STORAGE TANKS (USTS). WHAT			
5		DOES THAT CERTIFICATION ENTAIL?			
6	Α.	The NMED UST Bureau requires certification for the person responsible for the			
7		direct control, and/or supervision of investigation and reclamation activities to			
8		assure that the work is performed in accordance with appropriate industry and			
9		regulatory quality standards. This individual is certified by the department to			
10		engage in the design, performance, and interpretation of investigations of vadose			
11		or saturated zone contamination caused by releases from UST's and/or the			
12		application, design, implementation, and operation of systems to remediate vadose			
13		or saturated zone contamination caused by releases from UST's.			
14	Q.	YOU HAVE THIS CERTIFICATION?			
15	A.	Yes.			
16	Q.	AND DOES THE CERTIFICATION DEAL WITH GROUND WATER			
17		REMEDIATION?			
18	A.	Yes, among other things.			
19	Q.	HAVE YOU BEEN INVOLVED IN GROUNDWATER REMEDIATION			
20		WITH REGARD TO LEAKING UNDERGROUND STORAGE TANKS?			

A. Yes, I have. I provided oversight serving as the task leader on a large leaking
underground storage tank site in Belen, New Mexico. This site consisted of three

a the second states of the

1		different gas stations all of which had leaking underground storage tanks. We
2		installed the wells and the remediation system. I have worked on remediation
3		systems at the Diamond Shamrock terminal in Albuquerque and I have worked on
4		a remediation system at the Lea Plant in Hobbs, New Mexico. I have also worked
5		on different large-scale remediation systems at oil facilities all over the state.
6	Q.	WHEN WE TALK ABOUT LEAKING USTS ARE WE GENERALLY
7		TALKING ABOUT GASOLINE?
8	A.	Yes.
9	Q.	HOW SIMILAR OR DISSIMILAR IS GASOLINE TO WHAT WE ARE
10		TALKING ABOUT WHEN WE TALK ABOUT FREE PRODUCT IN THIS
11		CASE?
12	Α.	I would consider them the same or very similar. Drip or condensate, as it is
13		known in the oil field, is free product that contains the same contaminants of
14		concern as gasoline. Specifically, benzene, toluene, ethylbenzene and xylene,
15		commonly known as BTEX.
16	Q.	IN TERMS OF THE WAY THE MATERIALS MOVE IN THE SOILS AND
17		IN THE GROUNDWATER, IS THERE ANY DIFFERENCE?
18	A.	No, I wouldn't think so. There may be some more paraffinics in the natural oil
19		production, which might slow migration of the free product, but other than that,
20		no.
21	Q.	IN TERMS OF HOW YOU MIGHT DESIGN A REMEDIATION PLAN TO
22		ADDRESS CONTAMINATION IN SOIL AND GROUNDWATER

الالالالالالالي والمتعاد المراجد

BETWEEN THE TWO SUBSTANCES, IS THERE REALLY MUCH DIFFERENCE?

A. No, the main objective is to get rid of that free-phase product. This would be a
source control measure which normally leads to clean up through natural
attenuation.

6 Q. CAN YOU TELL ME WHAT INVOLVEMENT YOU HAVE HAD ON THE 7 HAMPTON 4M SITE?

Α. I believe it was December of 1996 when I first became aware of this site. One of 8 the technicians called me up and informed me that while he had been performing 9 vertical-extent drilling in the center of our former dehydrator pit at the Hampton 10 4M, he observed what he thought to be product on top of the water table. 11 Vertical-extent drilling is performed to try and determine the extent of 12 contamination downward within the soil column or vadose zone. This helps to 13 determine if there is any risk of the contamination making it to groundwater. I 14 was surprised that product was on top of the water table. Later in December we 15 verified the presence of product, using the clear disposable bailer, there was a lot 16 of free product. This well has been labeled as monitor well MW-2. We came 17 back to the site in January 1997 and gauged the well with an interphase probe to 18 determine the amount of free product. There was 4.7 feet of free product. We 19 were very surprised and concerned because this was not normal and we had not 20 observed this at any other site. 21

22 Q. HOW MANY TIMES HAVE YOU BEEN TO THE HAMPTON 4M SITE?

- A. I have been to the site at least 25 to 30 times. I have performed quarterly
 monitoring there five or six times. Whenever there was some type of major site
 activity, I tried to be present.
- 4

Q. WHAT TYPES OF THINGS HAVE YOU BEEN DOING AT THIS SITE?

5 A. I have performed a number of functions at this site. I have performed hand 6 augurings of the soil along the wash, installed most of the wells that are at the site 7 and gauged all of the wells. I installed and maintained the product recovery 8 system in MW-6. I have also looked over all of the production equipment at the 9 site to try and determine how it operates and possible sources of the free product.

Q. LOOKING AT PNM EXHIBIT 4, CAN YOU DESCRIBE THE GENERAL LAYOUT OF THE HAMPTON 4M SITE IN TERMS OF THE LOCATION OF THE EQUIPMENT AT THE SITE PRIOR TO 1998?

The original equipment was set up for a dual completion well as shown in PNM Α. 13 Exhibit 4. The formations being produced were the Mesa Verde and Dakota. 14 This meant that there was two of each type of equipment. There were two 15 separators, two condensate tanks, two dehydrators and two meter houses. 16 Burlington's equipment (separators, condensate tanks, and well head) were on the 17 south side of the well pad as shown in PNM Exhibit 46 and PNM's equipment 18 (dehydrators and meter houses) were on the north side of the well pad as shown in 19 PNM Exhibit 47. PNM's dehydrator pit was located on the northern edge of the 20 well pad. Burlington had a small pit for water removal from the tank batteries just 21 northeast of the 300 bbl. tank. The past history of this pit is unknown to me. The 22

ct ""

pit inside of the impoundment had a very small 500 gallon above ground, below
 grade stock tank.

3 Q. DID YOU EVER OBSERVE ANY LEAKS OR RELEASES AT THE 4 HAMPTON 4M WELL SITE?

5 A. Yes. Burlington's 300 bbl. condensate tank located on the southeast portion of 6 the well pad had a slow-dripping, leaking valve in the area of the former 7 impoundment. The tank was also very small and did not appear to be adequate for 8 the fluids.

9 On the southernmost side of the well pad in the area of Burlington's production 10 separator pit, there was a fiberglass tank above ground, but below grade. There 11 was visual evidence of contaminated soil, at least on the soil surface, from when 12 the separator blew down the fluids. The force of the blow down would spray the 13 fluids out of the tank onto the soil impoundment.

Contamination was visible and I recall we had a meeting on site shortly after discovering the contamination. Denny Foust from the OCD, Craig Bock from Burlington and I were present. Mr. Foust criticized Burlington about this situation. I believe that there was a letter written in April of 1997 by the OCD to Burlington because of this incident. The OCD asked Burlington to address the cause and extent of groundwater impacts related to the tank drain pit and production pit located on the Southeast corner of the well pad.

Q. WERE YOU PRESENT WHEN BURLINGTON WAS PERFORMING THE EXCAVATION IN THE SOUTHEAST PORTION OF THE WELL PAD IN

000005

8/21/99

THE AREA OF IT'S 300 BBL MESA VERDE TANK AS DEPICTED ON EXHIBIT 4 ?

Yes, I was present. In December 1997, I observed as a bulldozer cut through the 3 Α. sandstone on the southeast corner of the well pad. Early reports from a 4 5 preliminary investigation performed by Burlington indicated that they had not 6 detected visible soil contamination in this area. However, the investigation was 7 conducted at a very shallow depth above the sandstone layer at this location. I observed hydrocarbon contamination visually, and I also observed as Philip, 8 9 Burlington's contractor, took PID readings of the contamination in the sandstone at approximately 12 feet below surface. Again, Denny Foust with the OCD was 10 present and also observed this. 11

12 Q. DID THIS EXCAVATION REMAIN OPEN FOR A PERIOD OF TIME?

13 A. Yes, it remained open approximately one year, plus or minus.

1

2

14 Q. DID YOU SEE ANY CONTAMINATION IN THIS EXCAVATION?

15 A. Yes, I saw hydrocarbon contamination. Occasionally at this site, which I visit frequently, I have observed a sheen or rainbow moving across the water in the 16 northeast corner of the excavation. In July 1998 I collected a sample from the soil 17 in the northeast corner of the excavation just above the water level and the results 18 were above the OCD guidelines for pit closure. The results were 36 ppm for 19 benzene and 2126 ppm for total BTEX as listed in PNM Exhibit 48. The closure 20 guidelines require benzene to be below 10 ppm and total BTEX to be below 50 21 ppm. 22

total a site of the

1	Q.	WHAT DOES RAINBOWING SUGGEST WITH REGARD TO				
2		WHETHER THERE IS A CONTINUING SOURCE?				
3	A.	It suggests that there is still some type petroleum contamination at this site.				
4	Q.	DURING THE TIMES YOU HAVE BEEN OUT TO THE SITE, HAS				
5		THERE ALWAYS BEEN WATER IN THE BOTTOM OF				
6		BURLINGTON'S INITIAL EXCAVATION?				
7	A.	Yes.				
8	Q.	WHAT IS YOUR OPINION AS TO WHETHER THAT EXCAVATION				
9		HAS REACHED THE GROUND WATER?				
10	Α.	Every time that I have been to the site, there has always been water in the				
11		excavation. This suggests that this excavation reached the ground water table.				
12		The water table fluctuates. When the water level rises and falls through the soil at				
13		the vadose zone, the petroleum disperses into the water causing this rainbow or				
14		sheen.				
15	Q.	HAVE THE SAMPLES OF THE WATER THAT IS IN BURLINGTON'S				
16		INITIAL EXCAVATION REMAINED ABOVE STANDARDS?				
17	Α.	I have sampled the water on three different occasions during quarterly sampling.				
18		The first two water samples provided results above WQCC standards. However,				
19		tests in the fall of 1998 indicate that the dissolved-phase contamination was below				
20		standards.				
21	Q.	DOES THIS SUGGEST THAT BURLINGTON IS CLEANING UP THIS				
22		SITE?				

1	A.	No. The excavation was open and exposed to the atmosphere. The hydrocarbon					
2		contamination will aerate and volatilize. There is also some degradation from UV					
3		sunlight and through natural attenuation. The water is also stagnant. If you were					
4		to purge the stagnant water and collect some of the recharge water, the results					
5		would likely be quite different and would reflect the contamination in the soil. A					
6		more representative sample should be collected from a monitor well if it were					
7		available. It is not surprising the standing water could be below standards.					
8	Q.	IN YOUR OPINION, IS THIS INITIAL BURLINGTON EXCAVATION , A					
9		COMPLETE REMEDIATION AT THIS PORTION OF THE SITE?					
10	Α.	No. There is still free product and soil contamination on the south side of the well					
11		pad. The thing that concerned me is that the excavation area, especially at the					
12		saturated zone, was quite small. The excavation never went far enough to the					
13		north where Burlington's tank pit was. The excavation also did not extend far					
14		enough to the south to address contamination documented by Burlington's earlier					
15		soil borings at TPW-5 and 6. The excavation only addressed a very limited area in					
16		the vicinity of TPW-07. Without more data, such as permanent wells, it is very					
17		hard to accurately characterize the groundwater in this area. Permanent monitor					
18		wells sampled over time would give a better indication of the magnitude of the					
19		contamination. The sudden appearance of free product in monitor well MW-4					
20		confirms that free product exists in this area as indicated by the high dissolved					
21		phase concentrations in TPW-5 and TPW-7. Until you get the free product out of					

•.

(a) S11.4 (1)

2.1.6.1

there and off of the water table or figure out it's source, remediating soil or 1 anything downgradient makes absolutely no sense. 2 **Q**. LOOKING AT THE LOCATION OF BURLINGTON'S OPERATIONS, IN 3 YOUR OPINION, WHERE ARE THE POTENTIAL SOURCES OF 4 **CONTAMINATION?** 5 6 Α. I believe the contamination is coming from the former tank battery area, or it could be coming from the wellhead or surface activities related to discharges from 7 the well head. 8 9 Q. LOOKING AT PNM EXHIBIT 49, WHAT IS YOUR UNDERSTANDING **OF WHERE THIS DIAGRAM CAME FROM?** 10 Α. It was provided by Burlington in response to a letter request for information. The 11 12 diagram shows where all of the dehydrators, meter houses, separator units, and pits were originally located. It also shows the location of the original equipment 13 and impoundments at the site prior to the removal of the tank batteries and the 14 dehydrators. There is also an apparent unlined pit in the actual southern part of 15 the diagram which appears toward the upper left hand corner of the diagram. This 16 pit is a potential source for contamination. 17 WAS THERE WAS SOME TESTING DONE AT TPW-5 AND 6, IN THE 18 **Q**. **VERY SOUTHEAST PORTION IN THE VICINITY OF WHERE THE PIT** 19 **IS SHOWN ON PNM EXHIBIT 49?** 20

- 1 Α. Yes there was. The testing showed all the BTEX compounds were very, very 2 high. The water in TPW-5 was basically saturated with hydrocarbon. TPW-5 and 3 TPW-6 are shown in PNM Exhibit 6. **Q**. IS THAT CONSISTENT WITH THERE HAVING BEEN AN UNLINED 4 5 **PIT IN THAT AREA?** Yes it is. 6 Α. AS I UNDERSTAND IT, YOU WERE ON SITE FOR PART OF THE TIME 7 0. 8 WHEN BURLINGTON PERFORMED ITS REMEDIATION ACTIVITES 9 IN LATE 1998 AND EARLY 1999. CAN YOU TELL US WHAT YOU 10 **OBSERVED WITH REGARD TO BURLINGTON'S REMEDIATION ACTIVITIES ON THE SITE?** 11
- A. In November 1998, Ed Hasely notified me that Burlington was going to come in with a bulldozer and excavate in the area of our former pit location. They were going to just blade it away. Burlington, through its contractor Philips, brought in a bulldozer and basically moved northwesterly across the site just cutting and pushing the soil out of the way, right on top of where MW-6, our product recovery system, and MW-2, were.
- 18 Q. DID YOU HAVE AN OPPORTUNITY TO OBSERVE WHAT TYPE OF
- 19

MARKING OR LANDMARKING PROCEDURES THEY WERE USING?

20 A. Yes. We lost our landmarks early on when Burlington removed them without 21 providing alternate markers. The Williams above-ground lined tank, the 22 dehydrator, and the meter house were all removed. The lines between the

1		dehydrators and the separators were removed. The only marker we had was the				
2		cathodic protection next to MW-9. During the course of this work, Philip was				
3		trying to take elevations. I would say they were within plus or minus one or two				
4		feet, with regard to the accuracy of the level being measured in the bottom of the				
5		excavation. Horizontally or laterally it was also hard to determine the source of				
6		soil with respect to the previous locations of the surface equipment.				
7	Q.	WAS THE BOTTOM OF PNM'S FORMER DEHYDRATION PIT				
8		LOCATED DURING THE COURSE OF BURLINGTON'S MOST				
9		RECENT EXCAVATION?				
10	Α.	Yes. We found what I believe was the bottom of our former pit at approximately				
11		13 to 14 feet.				
12	Q.	WHY DO YOU SAY THAT IT WAS THE BOTTOM OF PNM'S FORMER				
13		PIT?				
14	Α.	Because there was a black band of contaminated soil about one to two feet thick				
15		that was slightly waxy or paraffinic. This is a good indication of where the				
16		bottom of the pit was. Visually, this band is quite easy to distinguish from the				
17		natural color of the soil. PNM Exhibit 50 shows the excavated bottom of the pit.				
18		It is the black soil shown in the foreground of the photograph.				
19	Q.	DID THE SOILS BELOW WHAT YOU BELIEVE WAS THE PIT				
19 20	Q.					

.

:

1	Q.	IS SATURATED SOIL SOMETHING THAT YOU WOULD					
2		ORDINARILY SEE IF THE SOURCE FOR THE FREE PRODUCT WAS					
3		COMING FROM ABOVE THAT POINT?					
4	A.	Yes.					
5	Q.	WHAT DID YOU OBSERVE IN THE SOILS UNDERNEATH THE					
6		BOTTOM OF THE PIT?					
7	A.	Since a dozer was being used to excavate the soil, it was very hard to differentiate					
8		clean soils from contaminated soils. A large percentage of clean soils were mixed					
9		with the contaminated soils and they could not easily be segregated. I would say					
10		that concentrations from readings taken with a PID were in the order of magnitude					
11		from 700 parts per million to 1500 parts per million, at the 14 foot level.					
12	Q.	CAN YOU DESCRIBE WHAT THE SOIL LOOKED LIKE BELOW THE					
13		BOTTOM OF THE PIT?					
14	A.	There was hard layer of sandstone at about sixteen feet below the ground surface.					
15		The soil appeared to be contaminated, but it was definitely not saturated. PNM					
16		Exhibit 51 shows the bulldozer attempting to rip through the sandstone.					
17	Q.	IS A PID A RELIABLE INDICATOR OF LEVELS IN THE SOIL?					
18	Α.	I wouldn't say it is accurate quantitatively. It is just a tool that gives you a guide.					
19		A more reliable representation of the concentrations would have been a laboratory					
20		analysis.					

.

、 1	1	Q.	WOULD A BETTER INDICATOR OF THE LEVELS OF
2	2		CONTAMINATION BE THE SOIL BORINGS THAT HAVE BEEN DONE
2	3		IN THAT AREA?
4	4	A.	Yes. It was much easier to accurately determine the exact depth at which the
:	5		sample was collected. It also allowed discrete samples to be taken. One sample
	6		was also taken for laboratory analysis. The results of the soil borings in PNM's
	7		former pit are included in PNM Exhibit 15.
:	8	Q.	DID BURLINGTON EVER STRIKE WATER WHERE IT WAS
ł	9		PERFORMING ITS LATEST EXCAVATION?
1	0	A.	When Burlington reached a level it had noted as 27 feet it reached free product on
1	1		top of the water.
1	2	Q.	WHERE WAS THE WATER COMING FROM?
1	3	A.	It was bubbling up from the area where MW-6 was. This indicates that there was
l	4		upward pressure behind the ground water.
1	5	Q.	DID YOU OBSERVE PRODUCT IN THAT WATER?
1	6	А.	Yes, on top of it.
1	7	Q.	WERE THERE ANY SAFETY CONCERNS THAT AROSE BECAUSE OF
1	8		THE VAPORS THAT WERE IN THE AREA?
1	9	A.	Definitely. The hydrocarbon concentrations in the atmosphere were very, very
2	20		high and the dozer operator said that he was getting dizzy. We used a personal
2	21		monitor to detect unsafe levels of benzene and within thirty minutes of being
2	22		down in the hole, the concentrations were about seven times higher than the

- permissible exposure level or time-weighted average under OSHA or NIOSH
 guidelines.
- **3 Q. DID YOU EVER OBSERVE OPERATIONS BEING CURTAILED**
- 4 **BECAUSE OF THE HEALTH OR SAFETY ISSUES?**
- A. I believe that on the third day of excavation, the hydrocarbon concentrations were
 so bad that Burlington ceased activities for that day.

7 Q. WAS THERE EVER ACHANGE OF PERSONNEL AT THE SITE DUE

TO A LACK OF SAFETY TRAINING?

- 9 A. Yes. Ed Hasley shut down the site and called out his site health and safety 10 supervisor to determine what to do. Burlington decided that they would have a 11 health and safety meeting and also determined that they needed an operator that 12 was 40-hour health and safety trained.
- . .

8

13 Q. WHAT IS THIS 40-HOUR HEALTH AND SAFETY TRAINING?

- 14 A. It is OSHA training that provides a basic overview of awareness of the hazards
 15 that are out in the field.
- Q. WAS THAT TRAINING SOMETHING THAT THE OPERATORS
 SHOULD HAVE HAD BEFORE THEY STARTED WORKING OUT
 THERE?
- 19 A. Yes.
- Q. IN YOUR EXPERIENCE, ARE THE FINDINGS AT THE HAMPTON 4M
 SITE UNUSUAL WITH RESPECT TO THE PRESENCE OF FREE
 PRODUCT

A. Very unusual. We do not encounter free product at sites with just dehydration.

Q. IF THERE IS A CONTINUING SOURCE UPGRADIENT OF PNM'S
FORMER PIT, IS BURLINGTON'S REMEDIATION IN PNM'S FORMER
PIT AREA GOING TO BE EFFECTIVE?

5 A. No. You need to attack the contamination at the source. Burlington needs to 6 address and investigate the contamination on the portions of the well pad 7 underlying its present and former pits and equipment. There has never been a 8 thorough investigation to determine the magnitude or the source of the 9 contamination. Temporary monitor wells that are removed do not provide 10 ongoing data to determine whether or not the contamination has been remediated.

Q. HAVE YOU OBSERVED ANY RECENT ACTIVITIES THAT WOULD
 LEAD YOU TO BELIEVE THAT THERE IS STILL FREE PRODUCT
 UPGRADIENT OF PNM'S FORMER PIT?

A. Yes, PNM Exhibit 52 shows a picture of the excavated area southeast of PNM's former pit. The photograph shows the presence of free product accumulating along the eastern wall of the excavation far above and to the east of our former pit.
PNM Exhibit 53 also depicts a picture of the product as it is accumulating on the eastern edge.

19 Q. IN YOUR OPINION, WOULD BURLINGTON'S REMEDIATION
20 EFFORTS BE MORE EFFECTIVE ON ITS OWN PORTION OF THE
21 WELL PAD?

22 A. Yes, they would.

Q. JUST BECAUSE THERE IS FREE PRODUCT UNDER PNM'S FORMER PIT, DOES THAT MEAN THAT FREE PRODUCT ORIGINATED FROM PNM'S PIT?

No. Essentially when we are recovering product we are making a path, pulling it 4 Α. 5 in; we are giving it a conduit. Also, the nature of the well pad, the slope, geology, 6 and the hydraulic gradient all contribute to the fact that water and product flow down hill and PNM's former pit is on the low end of the hill. The reason we put 7 the recovery system there is because that was the location of the highest known 8 WHAT EFFECT DOES A RECOVERY WELL, 9 volume of free product.O. SUCH AS MW-6, HAVE ON FREE PRODUCT CONTAMINION IN THE 10 **GROUND WATER?** 11

12 A. In very simple terms, it acts as a big straw which draws in free product from other 13 areas. The process occurs somewhat slowly, but it does draw contamination in 14 from other areas. Because PNM's product recovery system was in the area of its 15 former pit, this would tend to concentrate the free product under the pit.

Q. TO YOUR KNOWLEDGE HAS ALL OF THE FREE PRODUCT BEEN
 REMOVED FROM THE AREA OF BURLINGTON'S MOST RECENT
 EXCAVATION?

A. No. I believe that some of the product was pumped out (approximately one bbl.)
 and removed as the water and free product accumulated. However, to my
 knowledge the seepage of product into the excavation never ceased completely.
 PNM Exhibit 54 taken in early December of 1998 shows the excavation being

CASE NO. 12033 DIRECT TESTIMONY OF MARK J. SIKELIANOS

backfilled with clean soil while the water in the excavation still contained free
 product.

3 Q. WOULD THAT CAUSE FUTURE GROUNDWATER PROBLEMS 4 DOWNGRADIENT?

5 A. Yes, it would. The free product is still there. That will cause continuing
6 dissolved phase contamination.

7 Q. WERE YOU PRESENT FOR THE ENTIRE DURATION OF 8 BURLINGTON'S REMEDIATION EFFORTS?

A. No. I was only present during the first week of remediation. I stopped by the site
on another occasion, but I did not observe any of the remediation efforts on the
southern edge of the well pad. I have reviewed the report for the work performed
by Philip dated March 3, 1999, and it is very unclear as to the extent, depth and
success of the soil remediation efforts on the southern edge of the well pad.

14 Q. WHAT IS THE CURRENT STATUS OF THE HAMPTON 4M WELL 15 SITE?

- A. The well is currently producing. Williams equipment (dehydrator, tank and meter house) has been moved just north of the well head. There remains a large hole on the northeastern edge of the well pad where the excavation was never backfilled.
 PNM Exhibit 55 taken in February of 1999 shows the present well pad configuration.
- Q. IS PNM CONTINUING TO SAMPLE THE REMAINING AND NEWLY
 INSTALLED MONITORING WELLS AT THE HAMPTON 4M SITE?

CASE NO. 12033 DIRECT TESTIMONY OF MARK J. SIKELIANOS

1	Α.	Yes. We will supplement our testimony in this proceeding as additional sampling
2		results are gathered.
3	Q.	HAVE THE OPINIONS YOU HAVE GIVEN IN YOUR TESTIMONY
4		ABOUT THE LOCATION AND SOURCE OF CONTAMINATION AND
5		ADEQUACY OF THE REMEDIATION AT THIS SITE BEEN BASED
6		UPON YOUR EDUCATION, TRAINING AND EXPERIENCE IN THE
7		AREA OF HYDROCARBON REMEDIATION?
8	Α.	Yes they have.
9	Q.	AND ARE YOUR OPINIONS BASED ON A REASONABLE SCIENTIFIC
10		CERTAINTY?
11	A.	Yes they are.

12 Q. DOES THIS CONCLUDE YOUR TESTIMONY?

13 A. Yes it does.

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT **OIL CONSERVATION COMMISSION**

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION FOR THE PURPOSE OF CONSIDERING:

APPLICATION OF PUBLIC SERVICE COMPANY OF NEW MEXICO FOR DE NOVO HEARING ON ORDER NO. R-11134 ISSUED BY THE NEW MEXICO OIL CONSERVATION DIVISION IN

CASE NO. 12,033

AFFIDAVIT

STATE OF NEW MEXICO)SS. **COUNTY OF BERNALILLO**

I, Mark Sikelianos, upon being first duly sworn according to law, under oath, depose and state: That I am Senior Technician in the Environmental Department for Public Service Company of New Mexico, and that I have read the foregoing Direct Testimony, including exhibits. I further affirmatively state that I know the contents thereof and that they are true and correct to the best of my knowledge and belief.

SIGNED this 9th day of July, 1999.

SUBSCRIBED AND SWORN to before me this _____day of July, 1999.

Notary Public

[My Commission Expires: Mute C. Blacker]

(Seal, if any)

DAM0259

ι

• •

BEFORE THE

NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES

OIL CONSERVATION COMMISSION

IN THE MATTER OF THE APPLICATION OF PUBLIC SERVICE COMPANY OF NEW MEXICO FOR REVIEW OF OIL CONSERVATION DIVISION DIRECTIVE DATED MARCH 13, 1998 DIRECTING APPLICANT TO PERFORM ADDITIONAL REMEDIATION FOR HYDROCARBON CONTAMINATION, SAN JUAN BASIN, NEW MEXICO CASE NO. 12033

DIRECT TESTIMONY OF

VALDA I. TERAUDS

SUBMITTED ON BEHALF OF

PUBLIC SERVICE COMPANY OF NEW MEXICO

APPLICANT

JULY 9, 1999

Q. CAN YOU PLEASE STATE YOUR NAME AND YOUR PLACE OF
 EMPLOYMENT?

3 A. My name is Valda I. Terauds and I am employed by Mission Research
4 Corporation ("MRC") in Albuquerque, New Mexico.

5 Q. WHAT IS YOUR CURRENT POSITION WITH MRC AND WHAT ARE 6 YOUR JOB DUTIES IN THAT POSITION?

A. I am a Senior Scientist - Hydrologist. My job duties include managing projects to
investigate and remediate contaminated sites under a variety of federal and state
programs, expanding environmental business through marketing and proposals,
and providing senior level expertise for projects requiring technical review and
expert testimony.

12 Q. CAN YOU TELL US ABOUT YOUR EDUCATIONAL BACKGROUND,

13

STARTING WITH COLLEGE?

14 A. I received a bachelor of science degree in biochemistry from Catholic University
 15 in 1982. In 1985, I received a master of science degree in hydrology from the
 16 New Mexico Institute of Mining and Technology.

Q. CAN YOU TELL THE COMMISSION ABOUT YOUR EXPERIENCE
WITH RESPECT TO ENVIRONMENTAL INVESTIGATION AND
REMEDIATION?

A. I am presently working for EPA Region 6 as a contractor for the Highway 71/72
 Refinery CERCLA site in Bossier City, Louisiana. The focus at this site is the
 characterization and remediation of free phase hydrocarbons, the remediation of

1

2

3

4

5

6

benzene and other volatile organics in indoor air, and the remediation of lead and other hydrocarbons in surficial soils. I provide technical assistance to other projects under RCRA and state programs, as needed.

I was a staff-augmentation contractor to PNM over a three-year period (1996 to 1998), where work responsibilities included evaluating contaminant behavior and distribution in soil and groundwater for the Hampton 4M Site. In addition, I 7 assisted with groundwater remediation projects at the Santa Fe Generating Station 8 and Person Generating Station sites. I maintain a consulting relationship with 9 PNM on an as needed basis, including support for this hearing. In 1998, I worked 10 as a hydrologist for Environmental Sciences, Inc. I owned and managed my own 11 environmental consulting business, Enhanced Solutions, for a two-year period 12 from 1996 to 1997.

Prior to that time I was employed by Geoscience Consultants (1990 - 1996), 13 Jacobs Engineering Group (1987-1990), and Woodward-Clyde Consultants 14 15 (1986-1987).

16 The focus of my work has involved soil and groundwater contamination assessment, contaminant fate and transport analysis, soil and groundwater 17 18 remediation, free product recovery, and natural attenuation. Roughly 80 percent of the more than 170 sites that I have worked on have dealt with groundwater 19 contamination. My prior experience in the San Juan basin of New Mexico 20 21 includes site characterization and remediation work at the Bloomfield Refinery

1 Site, underground storage tank sites in Farmington and Aztec, and the 2 groundwater sites identified under the PNM Gas Assets Remediation Program. 3 I have provided depositions in several cases, including AT&SF versus multiple insurance companies regarding free phase and dissolved phase hydrocarbons at 4 5 the Belen Main Line Fueling facility in Belen, New Mexico; on behalf of Texaco, 6 Inc. at the TuTu CERCLA Site in St. Thomas, Virgin Islands regarding 7 hydrocarbon and chlorinated solvent fate and transport; and prior to that, for 8 Cotton Butane versus Ranger Insurance concerning an underground storage tank 9 release in Tatum, New Mexico. In addition, I was qualified as an expert in the 10 field of groundwater contamination and remediation in the testimony I rendered 11 before the OCD hearing examiner in this case.

12 Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

13 The purpose of my testimony is to provide expert testimony to support PNM's A. 14 position that: (1) PNM's former unlined pit is not the source of free phase 15 hydrocarbons in groundwater at the site; (2) the free phase product underlying the 16 Hampton 4M well pad originated at a release point or points upgradient of PNM's 17 former unlined pit; (3) PNM has already recovered more free product from the 18 groundwater than could possibly have been discharged into its former unlined pit 19 under any conceivable scenario; and (4) Burlington's remedial efforts have not been successful in removing the upgradient sources of free product. 20

21

Q. WHAT WILL BE THE FOCUS OF YOUR TESTIMONY?

A. My testimony will focus on the contributions of hydrocarbon contamination to the
 subsurface, the fate and migration of the hydrocarbon materials, the effectiveness
 of remediation techniques, and the apportionment of responsibility for resulting
 contamination.

5 Q. WHAT WAS YOUR FIRST INVOLVEMENT WITH THE HAMPTON 4M 6 SITE?

A. Once groundwater contamination was identified, I became aware that the
Hampton 4M Site was a groundwater contamination site within the PNM pit
program, but I was not actively involved with this site until the hydrocarbon seep
was discovered by Burlington and identified to the OCD in April of 1997. The
presence of free phase hydrocarbon and the hydrocarbon seep raised a concern
about migration of groundwater contamination.

13 Q. WHAT WERE YOUR RESPONSIBILITIES CONCERNING THE 14 HAMPTON 4M SITE?

15 I have been involved with site data analysis, evaluation of the groundwater flow A. regime, evaluating the distribution of soil, free product, and dissolved phase 16 17 contamination in the subsurface, evaluation of free product recovery operations, and cursory evaluation of Hampton 4M well production history. Specific records 18 19 reviewed included data generated by PNM during the course of investigation work such as: soil boring logs, monitoring well installation records, soil and 20 groundwater testing results, photographs, and video. I have also visited the site at 21 least three times and have prepared many of the diagrams regarding groundwater 22

flow and contaminant distribution used by both PNM and Burlington in reporting to NMOCD. I have also provided technical review of reports and correspondence prepared by Burlington and submitted to NMOCD and PNM. I also prepared many of the exhibits presented at the OCD hearing in November 1998 and included with the present testimony submitted on behalf of PNM.

1

2

3

4

5

Q. WHAT IS YOUR UNDERSTANDING OF THE OCCURRENCE OF FREE PHASE HYDROCARBONS BENEATH THE FORMER PNM UNLINED PIT?

9 Free phase hydrocarbons occur on top of the water table beneath the former PNM A. 10 unlined pit as well as in areas significant distances upgradient from the pit. 11 However, there is no evidence of any free phase hydrocarbon residual between 12 the base of PNM's former unlined pit and the water table. This shows that the 13 former PNM dehydration pit is not the source of free phase hydrocarbons 14 underlying the well pad. Examination of excavation records and soil boring logs 15 for activities performed both by PNM and Burlington in the area of the former 16 PNM unlined pit demonstrate that free phase hydrocarbons were not present in the 17 former pit, nor were they present in the soil column beneath the base of the pit to the capillary fringe of the water table. It was only upon reaching the capillary 18 fringe in the soils and water table that soil saturated with free phase hydrocarbons 19 was encountered. This lack of a continuous, highly contaminated hydrocarbon 20 zone from the base of PNM's former unlined pit to the water table is direct field 21 evidence that PNMs former unlined pit is not the source of free phase 22

1 hydrocarbons floating on the water table. PNM Exhibit 15 includes boring logs 2 for MW-2, MW-6, SB-2, and MW-12, to substantiate that there is no 3 hydrocarbon-saturated soil present beneath in the soils beneath the base of the 4 former PNM pit extending to groundwater. Hydrocarbon-saturated soils are 5 encountered only in the immediate vicinity of groundwater. On Burlington's 6 excavation of this area, an active free product seep was discovered upgradient and 7 to the southeast of PNM's former pit, as shown on PNM Exhibit 6. This clearly 8 demonstrates that ongoing hydrocarbon contamination is coming from locations 9 upgradient and at locations remote from PNM's former pit. This is further 10 corroborated in a videotape and photographs of Burlington's remediation efforts 11 introduced by PNM Witness Sikelianos.

12 Q. AT WHAT DEPTH BENEATH PNM'S FORMER PIT WERE FREE 13 PHASE HYDROCARBONS, OR FREE PRODUCT ENCOUNTERED?

14 Α. Free phase hydrocarbons were encountered at depths of over 22 feet in the 15 borings for MW-2 and MW-6 which show that free product is moving along the 16 top of the water table in response to the hydraulic gradient and capillary forces. The free product has migrated to the area beneath PNM's former pit from 17 18 upgradient sources. This was further corroborated by Burlington's boring SB-2 19 installed at a location between PNM's MW-2 and MW-6 within the former PNM pit. The reports relating to SB-2 are set forth in PNM Exhibit 15. As shown in 20 21 the reports, Burlington did not observe free product and highly stained soils until the water table was encountered. In fact, under NMOCD guidelines, PNM could 22

have clean closed their pit based on PID data presented in PNM Exhibit 15
 relating to SB-2.

3 Q. WHAT IS YOUR UNDERSTANDING OF SUBSURFACE CONDITIONS 4 BENEATH PNM'S FORMER PIT PRIOR TO REMEDIATION?

5 Α. PNM performed a vertical extent assessment by the installation of a soil boring 6 later converted to monitoring well MW-2. This boring is documented in PNM 7 Exhibit 15. The boring log indicates that silty fill sands were encountered in the 8 upper 11 feet, with a dark brown streak of silty to clayey sands and hydrocarbon 9 odor encountered at 12 feet. This presumably represented the base of PNM's 10 former pit. Additional drilling showed progressively stronger hydrocarbon odors, 11 but soil color did not change until the water table was encountered. Soil color 12 changed from brown to light gray to green gray. Soil color can be a visual indicator of relative degree of hydrocarbon contamination. 13 Hydrocarbonsaturated soils would be expected to change color to a gray to black stained soil. 14 15 Soils beneath the base of PNM's pit and the water table were recorded as primarily brown colored sands which is inconsistent with hydrocarbon-saturated 16 soil. About 2 inches of free product was detected in a sample bailed from MW-2. 17 Depth to groundwater at the time of drilling was 27.8 feet from ground surface, 18 and later rose to 21.58 feet at the time of well completion. 19

20

21

0.

DID PNM PERFORM ADDITIONAL BORINGS IN THE AREA OF ITS FORMER PIT?

A. Yes, PNM installed a free product recovery well, MW-6, and later MW-12, the
 replacement well for both MW-2 and MW-6, which was installed after
 Burlington's massive excavation work.

4

Q.

5

WERE THESE BORINGS CONSISTENT WITH PRIOR FINDINGS BENEATH PNM's PIT?

6 A. Yes. PNM free product recovery well boring MW-6, as shown in PNM Exhibit 15. depicts fill to approximately 11 feet, changing to a weathered sandstone, sand 7 8 brown-red in color. At approximately 20 feet, a color change occurs and you 9 have a light brown, grading to gray colored sandstone or sand. The boring is 10 noted as saturated with hydrocarbons at a depth of 24 feet. The interval between 11 the base of PNM's pit (11 feet), and the depth at which free product is -12 encountered (24 feet) is again noted as light brown, with no indications of 13 hydrocarbon-saturated soil until the free product is encountered. The boring for MW-12 was sampled at a depth interval of approximately 24 feet. Benzene 14 15 concentrations were 1.2 ppm, less than the 10 ppm NMOCD requires for closure.

16 Q. DID BURLINGTON PERFORM ANY ACTIVITIES TO SAMPLE THE 17 SUBSURFACE BENEATH PNM's FORMER PIT?

A. Yes, Burlington installed soil boring SB-2, which is included in PNM Exhibit 15,
prior to performing their excavation activities in the area of PNM's pit. Boring
SB-2 again indicated a relatively clean vadose zone between the base of PNM's
pit and the water table. A sample obtained from the 15-foot interval in SB-2 also

showed benzene concentrations at 1.95 ppm, less than the 10 ppm NMOCD
 requires for closure.

3 Q. DO YOU HAVE ANALYTICAL LABORATORY DATA THAT 4 DEMONSTRATE SOILS BENEATH PNM'S FORMER PIT ARE 5 RELATIVELY CLEAN BENEATH THE BASE OF THE PIT AND 6 GROUNDWATER?

7 Α. Yes, as shown on PNM Exhibits 56 and 48, a number of samples have been 8 obtained by both PNM and Burlington in the vicinity of the former PNM pit. 9 PNM Exhibit 48 is a table showing all of the analytical laboratory sampling 10 results for the site. Exhibit 48 shows trends in concentration with time. Exhibit 11 56 is a cross-section of the area of PNM's former pit and the soils underlying the 12 pit to the groundwater. This is also the area excavated by Burlington in late 1998. 13 As shown on PNM Exhibit 56, the size of PNM's former pit is fairly small relative to the area excavated. This is shown to scale on PNM Exhibit 4, where 14 15 the footprint of the former PNM pit represents less than one percent of the square 16 footage of the well pad. The PNM pit and pit base are shown in the top center of 17 the illustration in PNM Exhibit 56, with a PNM sample obtained at the base of the pit in April 1996 showing benzene, BTEX, and total petroleum hydrocarbon 18 concentrations above NMOCD guidelines. Burlington boring SB-2 was sampled 19 at approximately 15 feet - three feet below the base of PNM's pit, and 20 demonstrated that benzene, BTEX, and TPH concentrations were below NMOCD 21 closure guidelines. Therefore, PNM could have submitted for clean closure based 22

0.00279

1 on the results reported for boring SB-2. As shown in PNM Exhibit 56, it is not 2 until the water table, that contamination is encountered in the form of free phase 3 hydrocarbons and soil concentrations again exceed closure guidelines. These 4 samples clearly show that PNM was not the source of free phase hydrocarbons at 5 this site.

6

O.

WHAT IS THE SIGNIFICANCE OF THESE FINDINGS?

7 This is clear evidence of an eight to ten-foot thick column of relatively clean soil A. 8 between the base of PNM's former pit and the water table. This again 9 demonstrates that free product has migrated to locations beneath PNM's former 10 pit, not as discharge vertically through the vadose zone, but as a result of product migrating from upgradient locations along the water table. Examination of site 11 12 hydrogeology in the cross-section shown in PNM Exhibit 62 reveals the presence 13 of a progressively thickening sand zone originating upgradient of PNM's former unlined pit and in the vicinity of the Burlington's operations. This sand zone 14 15 increases in thickness downgradient in the direction of PNM's former unlined pit. 16 Free phase hydrocarbons in the subsurface will move preferentially in the coarsest layers encountered. At the Hampton 4M site, this layer was the sand layer. 17 Unfortunately for PNM, the thickest zone of sand, and hence free phase 18 19 hydrocarbon accumulation, occurred beneath PNM's former unlined pit. Monitoring wells installed and/or sampled subsequent to OCD's "line in the sand" 20 north of MW-10 indicated the presence of free phase hydrocarbons in at least 21 three upgradient wells, revealing that the true source of free phase hydrocarbons 22

lies upgradient of PNM's former unlined pit, in the vicinity of equipment, former
 tank batteries, and other handling and storage equipment managed and operated
 by Burlington.

4

Q. DID PNM NOTIFY THE OCD OF THESE FINDINGS?

A. Yes. PNM notified OCD of the presence of significant upgradient sources of free
phase hydrocarbons and continued to update OCD as additional free product was
discovered in upgradient monitoring wells. PNM indicated to OCD that any free
phase hydrocarbon remediation efforts undertaken by PNM in the vicinity of the
PNM former pit would be ineffective until the real and ongoing sources of free
phase hydrocarbons were identified, curtailed, and remediated.

Q. WAS THE OCD'S DIRECTIVE REQUIRING PNM TO UNDERTAKE
REMEDIATION OF THE DISSOLVED PHASE PRODUCT UNDER THE
HAMPTON 4M WELL SITE A SOUND APPOACH IN ADDRESSING
THIS CONTAMINATION PROBLEM AT THE SITE?

A. No. Undertaking dissolved phase groundwater remediation in the absence of
removing the free phase hydrocarbons causing dissolved-phase contamination is
not technically rational, nor is it a cost-effective expenditure of limited
remediation dollars. Unless the free phase is removed first, there will be a
continuing problem with dissolved phase contamination at this site.

20 Q. ADDRESSING PNM ISSUE #1, IN YOUR OPINION, DID PNM 21 CONTRIBUTE FREE PHASE HYDROCARBONS TO GROUNDWATER?

1 Α. No. There is no field evidence that shows a discharge of free phase hydrocarbons 2 from the base of PNM's pit to the water table. Free phase hydrocarbons, also 3 referred to as free product, are encountered only upon reaching the water table, 4 suggesting other upgradient sources are responsible. The amount of free phase 5 potentially released via PNM's former dehydrator and into the unlined pit would 6 not typically be discharged from the dehydrator in the form of free phase 7 hydrocarbons. The typical discharge would be dissolved phase. Where an upset 8 condition might have occurred in Burlington's upstream equipment, the volume 9 of free phase hydrocarbons discharged through PNM's equipment would not be 10 sufficient to exceed the absorption capacity of the underlying soil column and 11 reach groundwater as a separate and free-floating hydrocarbon layer.

12 Q. ADDRESSING PNM ISSUE #2, WHAT IS YOUR UNDERSTANDING OF

13

THE OCCURRENCE OF FREE PRODUCT BENEATH THE WELL PAD?

A. Free product is distributed across most of the well pad area, as shown on PNM
Exhibit 57. This free product plume included wells MW-2, -4, -6, -8, and -10, as
well as temporary boring TPW-2. Wells with free product located progressively
upgradient from PNM's former pit include TPW-2, MW-10, MW-8, and MW-4 –
all located either in the vicinity of or immediately downgradient of Burlington's
operations and former tank batteries.

20 Q. WHAT IS YOUR UNDERSTANDING OF THE RELATIVE AMOUNTS
21 OF PRODUCT HANDLED AT THE SITE BY BURLINGTON AND BY
22 PNM?

6.001.80

1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

A. Burlington managed all of the hydrocarbon fluids produced from the Hampton
 4M wellhead. Burlington had 22,000 gallons of liquid storage capacity for free
 phase liquid hydrocarbons at this Site compared to 2,000 gallons of liquid storage
 capacity for dissolved phase hydrocarbons managed by PNM. Burlington
 managed and sold free product on the site.

Q. IN YOUR OPINION, HOW LIKELY IS IT THAT BURLINGTON HAD A 7 RELEASE OF FREE PRODUCT FROM ITS OPERATIONS AT THE 8 HAMPTON 4M SITE?

9 The data show that it is highly probable that Burlington released the free phase Α. 10 hydrocarbons at this site. As testified by PNM Witness Sikelianos, Burlington 11 has been cited by OCD for a leaking valve on the 300 barrel above ground storage 12 tank and inadequate tankage at this site. Free product has been detected in three 13 monitoring wells underlying and/or downgradient of Burlington's equipment, and 14 at locations significantly upgradient from PNM's former pit location. These 15 locations include MW-4, MW-8, and MW-10. In addition, two temporary wells 16 installed by Burlington, TPW-5 and TPW-7, showed extremely high dissolved 17 phase concentrations, suggesting that these wells also would have showed free 18 product contamination if they had been left in place for a sufficient period of time to allow product to break through sidewall smears that are typical on drilling and 19 placement of wells. 20

21

22

Q. AS A GENERAL PROPOSITION, HOW RELIABLE ARE TEMPORARY WELLS IN DETECTING GROUNDWATER CONTAMINATION?

1 A. Temporary wells are not always reliable indicators of the presence of free product 2 as the drilling process disturbs the formation and temporary wells are not 3 developed to try and mitigate the smearing that can prohibit free product entry 4 into the temporary well.

5 Q. HOW DO YOU RESPOND TO THE BURLINGTON REPORT FOUND AT 6 PNM EXHIBIT 37 SUGGESTING THAT THE GROUNDWATER 7 GRADIENT UNDER PNM'S FORMER PIT IS TOWARDS 8 BURLINGTON'S OPERATIONS?

9 Burlington asserted in a cross section, contained in Attachment 5 to PNM Exhibit A. 10 37, that free product is flowing from MW-2 to MW-10. This is incorrect. Burlington's cross-section is merely a non-technical drawing or cartoon that did 11 12 use field-measured elevations for the top of the well, ground surface, free product elevation, or groundwater elevation. Burlington's cross-section is based on 13 erroneous assumptions and not hard data. PNM has examined the free product 14 elevations between MW-2, MW-6, and MW-10 based on survey data obtained to 15 the nearest 0.01 foot. At no time was the elevation of free product at MW-2 16 higher than MW-10. The free product in MW-10 is always at least 0.4 feet higher 17 than MW-2, indicating that free product is moving downgradient in a direction 18 If anything, PNM accelerated the consistent with groundwater flow. 19 downgradient migration of product in the immediate vicinity of its former pit by 20 recovering free product from MW-6. 21

Q. WHAT IS YOUR UNDERSTANDING OF THE OCCURRENCE AND FLOW OF GROUNDWATER AT THIS SITE?

3 A. Groundwater occurs beneath the Hampton 4M well pad and is hydraulically 4 connected and continuous with groundwater identified by monitoring wells drilled 5 at offsite locations, as shown in PNM Exhibits 61 and 62. Groundwater beneath 6 the site is part of the regional aquifer system, and is not a perched or isolated lens 7 of water. Groundwater elevations were obtained from existing monitoring wells 8 MW-1 through MW-10 by measuring depth to groundwater to the nearest 0.01 9 foot and subtracting this number from the surveyed top of casing elevation for 10 each monitoring well. Groundwater elevations were mapped to evaluate areas of 11 relatively high and low groundwater elevation. Groundwater flows from high to 12 low elevation. Groundwater flow also follows topographic gradient, flowing from 13 southeast (from the direction of MW-1) to northwest (the direction of MW-7) at a 14 fairly steep hydraulic gradient of 0.1 feet/feet. Groundwater flow direction from MW-7 appears to be northward based on more recent data obtained using MW-11 15 16 and the EB well to establish the hydraulic gradient. The hydraulic gradient on the well pad is slightly less steep than that occurring to the northwest, downgradient 17 of the Hampton 4M site, as shown on PNM Exhibit 8 and PNM Exhibit 62 18 19 (cross-section).

20 21

Q. HOW WOULD YOU CHARACTERIZE THE GRADIENT OF THE GROUNDWATER UNDER THE HAMPTON 4M WELL PAD?

A. At an average value of 0.10 feet/feet; this is a high hydraulic gradient, that
 combined with hydraulic conductivity estimates, yields an average groundwater
 flow velocity ranging from 50 feet/year (on the well pad) to 500 (downgradient
 along the arroyo) feet /year. Both free phase and dissolved phase hydrocarbons
 are detected in groundwater.

Q. WHAT IS YOUR UNDERSTANDING OF GROUNDWATER FLOW BETWEEN BURLINGTON'S FACILITIES AND THE FORMER PNM FACILITIES LOCATED ON THE HAMPTON 4M WELL PAD?

9 As stated previously, groundwater flows from high elevation to low elevation. In Α. 10 this case, MW-1 located in the southeast corner, and off the well pad, is the 11 highest groundwater elevation measured at the site. Burlington equipment and 12 operations, including the Hampton 4M wellhead, are immediately downgradient 13 of MW-1. Monitoring wells MW-4, MW-8, and MW-10 were immediately 14 downgradient of Burlington's equipment and operations. All of these features are 15 located upgradient of PNM's former equipment and former unlined pit. 16 Monitoring well MW-2 and recovery well MW-6 were within the location of The northwest corner of the well pad is in a 17 PNM's former unlined pit. 18 downgradient direction from all facilities on the well pad site. Groundwater flows 19 from offsite in the vicinity of MW-1 proceeding in a northwesterly direction 20 beneath Burlington's operations, beneath the Hampton 4M wellhead, beneath PNM's former equipment, and off the well pad down the arroyo, as shown in 21 cross-section on PNM Exhibit 62. 22

Q. WHAT ARE THE IMPLICATIONS OF GRADIENT FLOW AS YOU HAVE JUST DESCRIBED?

3 A. The location of PNM's former equipment and facilities will always receive 4 groundwater and contaminants from upgradient locations because of the hydraulic 5 gradient in this area. Thus, it is impossible to draw an arbitrary fixed line in the 6 sand, apply that line to contaminants that will move with time, and say that the 7 site has been equitably divided as to responsibility for cleaning up mobile 8 contamination. PNM, due to the downgradient location of its former equipment 9 and pit, will always receive inputs from upgradient sources, when present. In this 10 case, a significant source of free phase hydrocarbons is present upgradient in the 11 vicinity of Burlington's operations.

12 Q. IS THERE ANYTHING ABOUT THE SOILS UNDERLYING THE WELL 13 PAD THAT MIGHT IMPACT THE MIGRATION OF FREE PRODUCT?

14 Yes. Movement of hydrocarbons from Burlington's operations downgradient to Α. 15 areas beneath PNM's former pit is facilitated by the presence of a coarser sand lens that increases in thickness as one moves downgradient. 16 This is an unfortunate geology for PNM, as hydrocarbons move and accumulate in coarser 17 18 materials, which happen to underlie PNM's former equipment. However, the progressive accumulation of free product in three upgradient wells demonstrates 19 that the source of free product at this site is located upgradient of PNM's 20 equipment. Free product is merely flowing downhill in response to gradient and 21 22 geology, as does groundwater.

3 A. Groundwater flows from the well pad, with some discharge at ground surface 4 occurring at the "hydrocarbon seep" at the northwest corner and base of the well 5 pad. This hydrocarbon seep is believed to be a contact spring that is created 6 because of the sharp decrease in surface elevation from the well pad to the arroyo. 7 as shown on PNM Exhibit 62, a cross-section of the site. In effect, the well pad 8 cut intersects the water table allowing for the seep to discharge water to the 9 surface. This water is currently being collected in a trench, where it infiltrates 10 back into the subsurface and/or evaporates. Groundwater beneath the well pad 11 also flows downgradient along the arroyo to the north. The hydraulic gradient off 12 the well pad is steeper, as is the change in surface topographic gradient, and is 13 greater than 0.10 feet/feet. Groundwater flow velocities are more in the range of 14 500 feet per year offsite and downgradient of the well pad.

15 Q. HOW MUCH CONDENSATE OR FREE PRODUCT DID THE HAMPTON 16 4M WELL PRODUCE?

A. PNM Exhibit 58 provides our estimate of the amount of free product produced and managed at the Hampton 4M site. Production records show that the Hampton 4M wellhead produced 248,000 gallons of liquid hydrocarbons from 1985 to 1997 as shown on PNM Exhibit 44. As noted in the testimony of PNM Witness Rodney Heath, the combined production unit efficiency for liquid/gas separation operated by Burlington would have removed at least 99 percent of liquid

hydrocarbons recovered from the Hampton 4M wellhead. That means that 248,000-plus gallons would have been recovered, stored on site, or sold by Burlington in that time period.

4

5

1

2

3

Q. HAVE YOU REVIEWED THE GAS AND OIL PRODUCTION RECORDS REFERRED TO BY PNM WITNESS RODNEY HEATH?

6 A. Yes. Gas production from both the Dakota and Mesaverde was fairly constant, 7 except for a few anomalies. There is a period during the 1995 time frame where 8 zero oil barrels are reported to OCD. As PNM Witness Heath notes, this raises a 9 question about where this apparent lost production went. Did the formation 10 simply stop producing oil? Was the oil not stored in tanks? Was it blown to the 11 atmosphere or to the ground? This leaves approximately 13,440 gallons 12 unaccounted for in 1995. The absence of oil production for an eighteen-month period with nearly constant gas production is an anomaly that has not been 13 14 explained by Burlington. The Hampton 4M well averaged approximately 430 15 barrels of oil per year – the anomaly period is short approximately 320 barrels of 16 oil as compared to this average. A fraction of this product could easily have Burlington's on-site storage and processing equipment, 17 leaked from contaminating the subsurface beneath the well pad. The approximately 13,440 18 19 gallons of condensate production unaccounted for in 1995 is similar in volume to the upper estimate of free phase hydrocarbons floating on groundwater beneath 20 the well pad. This may be coincidence, but it merits further investigation by the 21 OCD and Burlington. 22

Q. WHAT AMOUNT OF PRODUCT DO YOU ESTIMATE HAS PASSED THROUGH BURLINGTON'S EQUIPMENT OVER TO THE DEHYDRATORS FORMERLY OWNED AND OPERATED BY PNM?

4 A. As summarized in PNM Exhibit 58, the Hampton 4M wellhead production was 5 248,000 gallons. Assuming the combined production unit was operating at a 6 better than 99 percent separation efficiency, as testified by Mr. Heath, the 7 maximum volume of free phase hydrocarbons passing through to PNM and 8 Williams Field Services equipment, the dehydrator, would be 2480 gallons over a 9 12-year period. PNM had 2,000 gallons of liquid storage capacity on site 10 designed to handle water with dissolved phase hydrocarbons, the typical 11 byproduct associated with normal operation of the dehydration equipment. This 12 means that Burlington would have stored, handled, and managed over 248,000 gallons of liquid hydrocarbons at this site, not including the approximate 13,000 13 14 gallon shortage in the period around 1995. Using the relative percentages of 15 condensate produced from the Dakota (73 percent) and the Mesaverde (27 percent) formations, the API gravities for each condensate, and flashing 16 percentages provided by Mr. Heath, it was assumed that about half of the free 17 18 phase product would have evaporated prior to discharge into the pit and that between zero to 1126 gallons of free product might have passed through the 19 dehvdrator into PNM's former pit from 1985 through 1997. This corresponds to 20 21 less than 100 gallons per year of free phase hydrocarbons potentially discharging into PNM's former unlined pit. 22

Corran

1 Q. HOW WOULD THIS DISCHARGE HAVE OCCURRED?

2 Α. As testified by PNM witness Mr. Heath, free product carryover was not common 3 and would occur only if Burlington's equipment were malfunctioning. This free 4 phase hydrocarbon carryover to the dehydrator did not discharge all at once. It 5 would discharge sporadically, in quantities of a quart or two of hydrocarbons over 6 a period of several days over a 12-year duration. Some of the material would 7 flash to the atmosphere, leaving less than 50 percent of the carryover discharging 8 to the former pit. In the event that free phase hydrocarbons were discharged from 9 PNM's former equipment, the volume of free phase hydrocarbons released into 10 PNM's former unlined pit was low and would not exceed the soil absorption 11 capacity of the 12 feet of soil between the base of PNM's former pit and 12 groundwater as shown on PNM Exhibit 56. In addition, soil sorption would trap 13 any free phase hydrocarbons in residual saturation and would not allow the direct migration of free phase hydrocarbons to groundwater. As noted above, the typical 14 15 discharge from a dehydrator is water containing dissolved hydrocarbons and not free phase hydrocarbons. PNM's only potential contribution to groundwater 16 contamination at this site is in small quantities in the form of dissolved-phase 17 18 hydrocarbon constituents.

19 Q. HOW MUCH FREE PRODUCT UNDERLIES THE HAMPTON 4M 20 WELLPAD SITE?

A. The total volume of free phase hydrocarbons residing in the subsurface beneath
the Hampton 4M well pad is conservatively estimated at between 7,700 to 13,000

21 of 47

1 gallons. This is calculated assuming a 15 to 25 percent saturation of 2 hydrocarbons above the water table; free phase hydrocarbon thickness measured 3 in monitoring wells is three times the aquifer thickness; and the internal 4 hydrocarbon plume shape is consistent with the external hydrocarbon plume 5 shape, and maximum free product thicknesses measured over the period of record 6 are considered. The southernmost extent of free phase contamination shown on 7 PNM Exhibit 57 was based on data from MW-4. However, our estimate is highly 8 conservative in that it does not include free product likely present in the 9 subsurface near temporary wells TPW-5 and TPW-7, which underlie Burlington's 10 former equipment. These temporary wells had the highest dissolved phase 11 concentrations measured at the site and, if completed as permanent wells, would -12 likely have shown free product accumulation over time. These large volumes of 13 free phase hydrocarbons would not have passed through PNM's former equipment. As Burlington solely managed the liquid free phase hydrocarbon 14 15 condensate coming from the wellhead, it is more likely than not that Burlington is 16 the principal source of free phase hydrocarbons beneath the Hampton 4M well site. 17

18 Q. HOW DOES YOUR CALCULATON OF THE MAXIMUM AMOUNT OF 19 FREE PRODUCT THAT COULD HAVE REACHED PNM'S FORMER 20 PIT COMPARE TO THE ESTIMATED VOLUME OF FREE PRODUCT 21 ON THE WATER TABLE?

22 of 47

A. The free product in groundwater is 7 to 13 times greater than the maximum
 volume of free product that could potentially have discharged through PNM's
 former dehydrator as shown in PNM Exhibit 58.

4

Q.

5

REMEDIATION ACTIVITIES AT THIS SITE?

WITH REGARD TO ISSUE NO. 3, DID PNM INITIATE ANY

- A. Yes. PNM responded to indications that there was soil contamination present at
 the former unlined pit by initiating pit remediation as described in PNM's unlined
 surface impoundment management plan. When groundwater contamination was
 detected in the monitoring well emplaced in the former pit location, PNM
 initiated remediation in accordance with its groundwater management plan.
- 11 Remediation activities included excavation of the former pit; vertical profiling to 12 assess the vertical extent of contamination; installation of a monitoring well 13 network; and operation of a free product recovery system.

14 Q. WHAT EFFECT DID PNM'S FREE PRODUCT RECOVERY SYSTEM 15 HAVE ON THE THICKNESS OF FREE PRODUCT IN THE VICINITY 16 OF THE FORMER PIT?

A. PNM's product recovery system removed over 1050 gallons of free phase
hydrocarbons from the groundwater, prior to the system being destroyed by
Burlington's excavation activities at the site in October 1998. As shown on PNM
Exhibit 59, despite the recovery of over 1050 gallons of free phase hydrocarbons,
free product levels in MW-2 were not decreasing substantially, suggesting an
areally extensive free product or liquid hydrocarbon source was continuing to

distribute itself across the site. PNM Exhibit 59 shows that product thickness
 decreased from over four feet to two feet. However, despite continued removal of
 free product, the free product thickness on the groundwater remained relatively
 constant at the two-foot level.

5

6

Q. HOW MUCH FREE PRODUCT DID BURLINGTON REMOVE DURING ITS MOST RECENT EXCAVATION ACTIVITIES?

A. As reported to PNM Witness Sikelianos, Burlington recovered approximately 50
gallons of free product in the course of its remediation activities in October 1998
through February 1999

10Q.WHY DID PNM UNDERTAKE HYDROCARBON RECOVERY IF IT11WAS NOT THE PARTY RESPONSIBLE FOR SUCH12CONTAMINATION?

13 PNM was complying with an OCD directive to initiate remedial action. Initiating Α. remedial action is not an admission of responsibility for the release and PNM had 14 15 raised concerns to OCD, from the initial recovery of free product at this site, that PNM did not release free product at this site. Further data collected by PNM 16 demonstrated that the free phase hydrocarbons were part of a large volume, 17 areally extensive free phase hydrocarbon plume that originated at locations 18 upgradient from PNM operations. PNM notified OCD of these findings and 19 subsequently appealed the OCD directive of March 13, 1998 requesting further 20 action regarding free phase contamination. PNM Exhibit 10 shows that the OCD 21 22 was highly specific in that it requested PNM to "remove the remaining source

areas with free hydrocarbons in the vicinity of and immediately downgradient of the pit". PNM appealed this directive on the basis that PNM did not discharge free phase hydrocarbons into the subsurface and therefore does not have any additional source areas with free hydrocarbons. Pending the November 1998 OCD hearing, PNM continued to operate the existing free phase hydrocarbon recovery system in MW-6 until such time as Burlington pulled it from the ground in October 1998.

8 Q. HAVE THE POTENTIAL SOURCES OF CONTAMINATION IN THE 9 VICINITY OF PNM'S FORMER OPERATIONS BEEN COMPLETELY 10 REMEDIATED?

11 Yes. PNM previously removed almost all of the contaminated soils from its Α. 12 former pit location. In late 1998 and early 1999, Burlington removed soils 13 between the base of the former pit location extending several feet into the water table in November 1998 as shown in PNM Exhibit 56. PNM also removed over 14 15 1,050 gallons of free product from the groundwater, as shown on PNM Exhibit 59. Because of this work, PNM has no existing source of contamination in place 16 and remediation of the former PNM pit has been completed. There are no PNM 17 sources of hydrocarbon contamination remaining that could pose a threat to 18 19 groundwater.

Q. TO YOUR KNOWLEDGE, HAS BURLINGTON UNDERTAKEN ANY REMEDIAL ACTIVITIES ASSOCIATED WITH HYDROCARBONS BENEATH THEIR OPERATIONS?

1 A. Burlington has submitted several reports describing rather limited investigation 2 and remedial action to OCD (PNM Exhibits 30, 31, 34, and 36), which I have 3 reviewed. Until October 1998, Burlington remediation activities included only 4 an incomplete excavation in the vicinity of their former above ground storage tank 5 battery, the installation and sampling of temporary wells, and trenching and 6 netting installed in the vicinity of the hydrocarbon seep at the northwest corner of 7 the well pad. Burlington later installed monitoring wells MW-9, -10, -11, and -8 13. In November 1998 through February 1999, Burlington performed a phased 9 excavation of portions of the Hampton 4M well site.

10 Q. WHAT HAVE BURLINGTON'S INVESTIGATIONS REVEALED, AS 11 REPORTED TO OCD?

A. First, it is noteworthy that Burlington used the groundwater contour maps and well installation and analytical data prepared and paid for by PNM in its submittals to OCD for the Hampton 4M site. Therefore, Burlington must agree with PNM's conclusions drawn from this data. Specifically, PNM installed and performed much of the sampling associated with MW-1, MW-4, and MW-8, as well as measuring groundwater elevations for all wells at the site.

18 Second, the Burlington Report, which is PNM Exhibit 31, suggests that no 19 hydrocarbon-contaminated areas were found in test holes. This claim is 20 unsupported because only visual and PID readings were taken. No soil sample 21 analytical data was provided. PID readings can be misleading as indicators of the 22 presence of soil contamination. The PID measures non-specific organic vapors.

1

2

3

4

5

6

7

8

9

10

11

12

13

Vapors are mobile and are not necessarily indicators of hydrocarbons sorbed to a soil sample. For example, clean soils overlying free product contamination will give high vapor readings on a PID - readings that are well above OCD guidelines. However, an analytical laboratory sample of the soil will reveal low BTEX and total hydrocarbon concentrations because the soil itself is not contaminated. This is the case for the soil sample obtained from Burlington boring SB-2 installed through PNM's former pit (PNM Exhibit 15). A soil sample with a PID reading in excess of 2,000 ppm was clean relative to OCD closure guidelines, demonstrating that soils beneath PNM's former pit were clean and not the source of free phase hydrocarbons (PNM Exhibit 48). The PID readings were likely the result of organic vapors volatilizing from underlying free product. PNM submits that PID readings should not be used to close sites or make remedial decisions concerning the full extent of excavation in the absence of confirmatory soil 14 sampling performed by an analytical laboratory.

15 Third, Burlington identifies two sources of contamination – the former PNM pit and a second source located "upgradient of monitoring well MW-4 supplying a 16 dissolved-phase component" (PNM Exhibit 34). MW-4 has free product in it and 17 18 lies directly downgradient of the Burlington excavation. Wells installed subsequent to MW-4, MW-8 and MW-10, also show significant free product. It is 19 clear that significant free product contamination resides in the vicinity of 20 21 Burlington's operations, including in the area of Burlington's former above

1 ground storage tanks, at locations substantially upgradient from PNM's former 2 pit.

Fourth, at one time, Burlington speculated that an off-site source was the cause of contamination beneath their operations (PNM Exhibit 34). Installation of MW-1 indicated that this was not the case and that the source of contamination upgradient of MW-4 lies on the well pad, beneath equipment owned and operated by Burlington.

8 Sources of hydrocarbon contamination remain in place, as documented by 9 Burlington's own data, as developed by their consultant Philip Services, and data 10 from monitoring wells MW-12 and MW-13 installed and sampled subsequent to 11 this excavation.

12 Q. IN YOUR OPINION, HAS BURLINGTON ADEQUATELY COMPLETED

13 INVESTIGATION AND REMEDIATION OBLIGATIONS AT THIS SITE?

A. In my opinion, Burlington's work at the site is incomplete and in many ways has
been inadequate. PNM Exhibit 30, an April 15, 1997 report from Burlington to
OCD, describes that a source monitoring well will be placed in the center of their
excavation and sampled for BTEX and TPH. This well has never been installed.
Additionally, PNM is not aware of any assessment performed by Burlington in
the vicinity of their separator pit prior to the start of excavation in that area.

20 PNM Exhibit 31, an August 1997 report from Burlington to OCD, documents a
21 chronology. The April 30, 1997 entry discusses excavation of a tank discharge
22 pit, but does not provide any tabulation of PID results or other data to back up the

stated conclusion that no hydrocarbon-contaminated areas were found in test holes. Temporary wells installed by Burlington showed free product (TPW-2) and high dissolved phase BTEX concentrations (TPW-5 and -7). PNM believes TPW-5 and TPW-7 may also have revealed the presence of free product had these wells been left in place as permanent monitoring points.

1

2

3

4

5

6 In PNM Exhibit 34, Burlington's report of September 19, 1997 to OCD. 7 Burlington states that if no upgradient sources are found, Burlington will conclude 8 the source is on the well pad and that Burlington will aggressively locate sources 9 using a PID and will excavate these sources. We presume this is the excavation 10 undertaken by Burlington in December 1997 described in PNM Exhibit 36. 11 PNM's resampling of soils at the water table exposed in Burlington's excavation 12 (PNM Exhibit 48) reveal that soils still remaining at this location are above OCD 13 closure guidelines and, therefore, contamination remains in place. Burlington 14 further stated that their source removal activities were complete and that 15 decreasing concentrations in MW-4 would soon bear this out. Contrary to this 16 assertion by Burlington, concentrations in MW-4 continued to increase over time, 17 with benzene increasing first relative to overall BTEX, and the subsequent 18 appearance of free product (PNM Exhibit 48). Remediation was obviously not 19 successful in removing hydrocarbon sources that were contributing free phase and 20 dissolved phase hydrocarbons to this well.

In PNM Exhibit 37, Burlington's report to OCD of January 30, 1998, Burlington
describes further sampling and well installation. Again, contrary to Burlington's

29 of 47

statement that BTEX levels drop in MW-4, benzene concentrations in MW-4
 increase over time and eventually lead to the appearance of free product as shown
 in PNM Exhibit 48. Nor do free product levels in MW-8 substantially decrease or
 disappear. Burlington's Attachment 5 to PNM Exhibit 37 depicts the fictional
 cross-section discussed in greater detail previously.

6 Burlington hired Philips to conduct its mass excavation performed in October 7 1998 through February 1999. According to the Philip Report dated March 3, 8 1999 which is PNM Exhibit 60, Burlington did not undertake direct free phase 9 hydrocarbon remediation or groundwater remediation, other than by pumping 10 liquids accumulated in the only areas excavated to the water table. These areas were in the vicinity of PNM's former pit. Significantly, Burlington did not open 11 excavations to the water table in the vicinity of their current or former operations 12 13 and has, therefore, not performed free product or groundwater remediation in the 14 vicinity of their own operations.

15 Q. IN YOUR OPINION, HAS BURLINGTON COMPLETED THE
 16 NECESSARY REMEDIATION ACTIVITIES IN THE AREA OF ITS
 17 FORMER PIT?

A. No. In the Burlington Report included as PNM Exhibit 30, Burlington
 erroneously concludes they reached the vertical extent of contamination
 underlying their former storage tank battery and focused subsequent efforts on the
 horizontal extent of contaminated soil. I don't believe the vertical extent of
 contamination in this area was adequately defined. A sample obtained by PNM

1 from Burlington's open excavation at the water level still showed soil 2 contamination in excess of OCD guidelines. Monitoring wells downgradient of 3 Burlington's excavation have increasing concentrations and/or free product 4 present, thus the horizontal extent of contamination has also not been addressed. I believe that the horizontal extent related to Burlington's contamination extends 5 6 fully offsite and downgradient as dissolved phase groundwater contamination 7 caused by the continued presence of tens of thousands of gallons of free product. 8 In PNM Exhibit 31, Burlington states that if off-site contamination were not 9 proven, it would undertake further investigation on site. I am not aware that 10 Burlington performed additional investigation in the vicinity of their present 11 excavation of a scope similar to their October and November 1998 excavations in 12 the vicinity of PNM's former pit. Burlington did not perform extensive 13 excavations to and beneath the water table in the vicinity of their own operations.

14 Q. WERE BURLINGTON'S REMEDIATION EFFORTS IN THE VICINITY 15 OF ITS FORMER TANK BATTERY COMPLETE?

A. No. Burlington performed excavation to a depth of 15 feet in the vicinity of their
former storage tank battery. Burlington's own data from soil borings drilled prior
to the excavation indicate soil samples in the interval of 15 to 16 feet are
contaminated at concentrations above OCD guidelines indicating contaminated
soils were left in place. PNM notified OCD of this fact and expressed its opinions
to OCD in a letter dated March 31, 1998, included as PNM Exhibit 22.

Q. WHAT IS YOUR OPINION OF THE DOCUMENTATION BURLINGTON HAS PROVIDED TO DOCUMENT ITS INVESTIGATION AND REMEDIATION ACTIVITIES AT THE HAMPTON 4M SITE?

4 Burlington, in the past, has relied largely on data collected by PNM including A. 5 groundwater contour maps, well installation, surveying, sampling, etc. and has 6 included such work in their reports to OCD. In past reports, Burlington has 7 installed temporary wells to monitor for free product, when such wells are 8 inadequate in design to detect free product – specific examples being TPW-5 and 9 TPW-7. PNM's work has been misrepresented to OCD as work performed by 10 Burlington. Burlington's own work at this site has been poorly documented, with 11 the most recent excavation activity being a prime example (PNM Exhibit 60, Philip Report of March 1999). The Phillip report fails to document total cubic 12 13 yards of soils removed, the management and disposal of such soils, the health and safety protections used, sampling locations do not have any type of survey 14 15 control, very few soil analytical samples are collected relative to the large 16 quantities of soils removed, and there are no confirmation soil samples collected 17 to demonstrate that Burlington removed contamination to closure guidelines.

18 Q. WHAT DO DATA IN THE PHILIP REPORT, PNM EXHIBIT 60,
19 INDICATE ABOUT WHETHER BURLINGTON SUCCESSFULLY
20 REMOVED CONTAMINATION FROM ITS OWN PIT AREA?

1	A.	As shown on PNM Exhibit 63, PID readings in the excavations performed near
2		Burlington's pit increase consistently with depth, demonstrating that
3		contamination is in fact left in place at depth.
4		
5	Q.	WHAT DOES THE PRELIMINARY DATA SHOW ABOUT THE
6		SUCCESS OF BURLINGTON'S REMEDIATION EFFORTS?
7	A.	The remedial actions of November 1998 through February 1999 were
8		unsuccessful in removing hydrocarbon contaminant sources as indicated by
9		increasing groundwater concentrations and/or indications of product sheen in
10		newly installed wells MW-12 and MW-13. These increased concentrations are
11		shown on PNM Exhibit 48. These wells indicate that sources of groundwater
12		contamination remain in the subsurface.
13	Q.	WHAT WAS SHOWN AS A RESULT OF BURLINGTON'S REMEDIAL
14		ACTIONS IN THE AREA OF PNM'S FORMER PIT IN NOVEMBER
15		1998?
16	A.	As described in the Philip Services report to Burlington (PNM Exhibit 60) and the
17		photographs described by PNM witness Sikelianos, Burlington undertook a
18		massive excavation in the vicinity of the former PNM pit only to discover, upon
19		removing all soil from beneath the PNM pit, that free product continued to seep in
20		from upgradient sidewalls of the excavation. This source is continuing to
21		contaminate groundwater, and will continue to move in response to the hydraulic
22		gradient, allowing recontamination of soils beneath the former PNM pit on

I

33 of 47

backfilling. It is this continuing source that should be addressed and PNM is asking the OCC to rule that it should be Burlington's responsibility to address both the free phase hydrocarbons and their overwhelming contribution to the dissolved phase contamination in groundwater.

1

2

3

4

5 Q. DID BURLINGTON EXTEND THIS EXCAVATION ACTIVITY TO 6 INCLUDE THEIR FORMER ABOVE GROUND STORAGE TANK 7 BATTERY AND CURRENT EQUIPMENT AT THE HAMPTON 4M 8 WELL SITE?

9 Only partially. In addition, it does not appear that Burlington uniformly A. 10 excavated to depths below the water table as they did in the area of PNM's former 11 pit (PNM Exhibit 60). Hydrocarbon contamination near the former PNM unlined 12 pit was found primarily at the water table and below. Burlington focused its 13 efforts on completely removing PNM's former unlined pit. In the course of this 14 effort, Burlington discovered that groundwater is not simply perched and that it 15 was not simple to dewater the area. Burlington also found that an ongoing free 16 product source was continuing to contaminate groundwater in the vicinity of PNM's former pit from upgradient sources. Instead of pursuing these upgradient 17 sources by extending excavations to the water table and below, Burlington simply 18 19 performed additional soil removal at shallower depths and ceased further 20 activities that might have lead to hydrocarbon source removal.

Q. WHAT IS PNM'S POSITION WITH RESPECT TO WHETHER ITS FORMER OPERATIONS MIGHT HAVE CONTRIBUTED TO DISSOLVED PHASE PRODUCT AT THE HAMPTON 4M WELL?

4 A. We acknowledge that PNM is a potential source of dissolved phase
5 contamination. However, the magnitude of PNM's contribution to dissolved
6 phase contamination is dwarfed by the magnitude of free phase and dissolved
7 phase contamination released from Burlington's operations that has now overrun
8 any dissolved phase contamination contributed by PNM.

9 Q. WHAT INDICATORS WOULD SHOW SUCCESSFUL REMEDIATION 10 WAS ACHIEVED BY BURLINGTON?

11 If Burlington's excavation activities were truly successful in removing A. 12 hydrocarbon sources for groundwater contamination, one would expect to see 13 decreasing dissolved phase concentrations with time. Instead, dissolved phase 14 concentrations are fairly high in BTEX and are increasing with time in newly 15 installed wells MW-12 and MW-13 (PNM Exhibit 48). While obtaining 16 groundwater samples for analysis in May 1999, PNM staff observed a sheen on the water obtained from MW-12. Based on this observation, we expect that free 17 18 product may yet arrive and recontaminate the location near MW-12. Three 19 indicators suggest that remediation was not successful: dissolved phase concentrations are increasing with time, the benzene concentrations are increasing 20 21 more quickly than other constituents, and based on sheen noted in the latest round 22 of sampling in MW-12, there is evidence that free product will recontaminate

areas that were excavated. Therefore, one must conclude that upgradient sources 2 of hydrocarbon contamination remain in place in areas beneath Burlington's equipment and operations, as all soils associated with PNM's former pit were 4 removed by Burlington in November 1998 through February 1999.

1

3

5 HOW EFFECTIVE HAVE BURLINGTON'S REMEDIATION ACTIVITIES **Q**. ADDRESSING DISSOLVED PHASE GROUNDWATER 6 BEEN AT 7 CONTAMINATION ORIGINATING AT THE HAMPTON 4M WELL 8 SITE?

9 Burlington has not undertaken any remedial actions to address dissolved phase A. 10 groundwater contamination at this site. Burlington did install a downgradient 11 well near the access road to the Hampton 4M well site, MW-11. Groundwater 12 quality data indicate that water in this well is below WOCC standards; however, 13 benzene was detected at 0.8 ppb in the May 1999 sampling event, as summarized 14 in PNM Exhibit 48. The hydrocarbon seep was sampled by OCD in April 1999. 15 Results from this sampling show that the seep is still actively contributing benzene at 40 ppb, a concentration in excess of WQCC standards as reflected in 16 17 the OCD letter to Burlington date May 5, 1999 which is PNM Exhibit 18. Monitoring wells MW-12 and MW-13, installed since the completion of 18 Burlington's excavation activities show high (greater than 1,000 ppb benzene) 19 20 and increasing dissolved phase concentrations on the well pad. Again, this 21 suggests that Burlington's remediation activities have not effectively removed the

sources of hydrocarbons contributing to dissolved-phase groundwater
 contamination.

3 Q. WHAT ARE THE POSSIBLE SOURCES OF DISSOLVED PHASE 4 HYDROCARBONS IN GROUNDWATER RELATED TO THE 5 HAMPTON 4M WELL SITE?

Possible sources of dissolved phase hydrocarbons associated with the Hampton 6 A. 4M well site can include: free phase hydrocarbons on the water table that are 7 8 dissolving into groundwater, releasing benzene, toluene, ethylbenzene, and 9 xylenes (BTEX), among other soluble constituents; soil contamination leached by 10 rainfall; dilute hydrocarbon contaminants discharged into the soil and percolating 11 to the groundwater. The release mechanisms vary. As shown on PNM Exhibit 4, multiple release points may be responsible for free phase hydrocarbons at this site 12 13 including: above ground storage tank leaks and improper equipment cleaning or 14 management practices; pipeline leaks; blowdown to the soil and/or atmosphere 15 resulting in soil contamination; casing leaks at the Hampton 4M wellhead; 16 discharges of dissolved phase hydrocarbons to unlined pits; and other discharges 17 of hydrocarbons resulting in soil contamination, and free and dissolved phase 18 hydrocarbons in groundwater.

19

Q.

20

IN YOUR OPINION, WHAT IS THE PRINCIPAL CONTRIBUTOR OF DISSOLVED PHASE HYDROCARBONS AT THIS SITE?

A. Unquestionably it is the large volume of free phase hydrocarbons on the
groundwater and soils contaminated with hydrocarbons beneath the water table at

the Hampton 4M well pad. This is a large volume of concentrated hydrocarbons
 continuously dissolving BTEX and other constituents to the groundwater.

3 Q. WHAT IS YOUR UNDERSTANDING OF THE MAGNITUDE AND

4 EXTENT OF DISSOLVED PHASE HYDROCARBONS?

5 Α. The magnitude and extent of dissolved phase hydrocarbons are illustrated by 6 benzene concentration contours as shown on PNM Exhibits 57 and 62. These exhibits illustrate the free phase and dissolved phase hydrocarbon distribution in 7 the subsurface. Free phase hydrocarbons essentially underlie the entire well pad. 8 9 extending from MW-4 to the northwest passing through MW-2 and terminating at 10 the foot of the well pad, at the hydrocarbon seep. Almost 5 feet of free product 11 had initially been detected on groundwater. The extent of free phase 12 contamination is actually underrepresented on the exhibits, as data from 13 Burlington TPW-5 and -7 could also have been included as representative of areas 14 with free phase hydrocarbons based on the high dissolved-phase concentrations 15 detected in these wells. The dissolved phase contamination associated with this 16 free phase hydrocarbon source is also shown. Dissolved-phase contamination extends off-site to the locations of wells MW-5 and MW-7. The 1,000 part per 17 18 billion benzene contour extends to the farthest downgradient monitoring well 19 installed by PNM, MW-7. The groundwater standard for benzene in a nondrinking water source is 10 parts per billion. The full downgradient, vertical, and 20 lateral extent of the dissolved phase plume in groundwater is not known at this 21 22 time. PNM sampled the Everett-Burton supply well shown as the "EB" well on

PNM Exhibit 57 and did not find evidence of contamination above laboratory 1 2 detection limits. The furthest downgradient well is a new well (MW-11) located 3 at a distance of approximately 1800 feet from MW-1, installed by Burlington. Recent sampling of MW-11 by Burlington indicated the presence of BTEX 4 constituents at concentrations below WOCC groundwater standards as indicated 5 in PNM Exhibit 48. However, the presence of benzene at a concentration of 0.8 6 7 ppb merits additional monitoring to assess whether or not benzene levels are 8 increasing. At present, the dissolved phase plume, as defined by benzene 9 concentrations greater than 10 parts per billion, extends between 800 (MW-7) and 1800 (MW-11) feet downgradient from MW-1. This is a highly unusual 10 11 dissolved-phase migration distance for typical PNM dehydrator sites, as summarized in PNM Exhibit 25. Sites with no free product are typically less than 12 50 feet in migration distance and 72% attenuate naturally with no active 13 remediation required. At other sites where free product has been identified, there 14 15 are always other sources of free phase hydrocarbons, usually attributable to the producer. PNM believes the producer, Burlington, is the source of free phase 16 hydrocarbons at the Hampton 4M site. PNM has no history of free product 17 18 releases at dehydrator sites in the absence of releases caused by others.

19Q.WHAT WOULD BE THE PRIMARY SOURCE FOR ANY20CONTRIBUTION TO DISSOLVED PHASE CONTAMINATION BY21PNM?

000/09

A. PNM's contributions to dissolved phase would have come primarily from rainfall
 leaching through soils with some hydrocarbons. PNM did not contribute free
 phase contamination to the subsurface. Based on the relative magnitude of free
 phase hydrocarbon contributions at this Site, the arbitrary line of demarcation
 drawn by OCD gave PNM a highly disproportionate share of contamination.

6 Q. DID PNM PERFORM ANY OFF-SITE REMEDIATION ACTIVITIES TO 7 ADDRESS DISSOLVED GROUNDWATER CONTAMINATION?

8 PNM installed several offsite monitoring wells (MW-5 and MW-7) and conducted A. 9 a soil boring/temporary monitoring well installation program along the arroyo to determine the offsite extent of dissolved groundwater contamination. 10 PNM 11 stopped its offsite characterization upon reaching the Williams pipeline at MW-7. 12 PNM also sampled a private well in the area, the Everett-Burton supply well. The 13 private well appears to be slightly cross-gradient to groundwater flow. PNM continued to monitor groundwater quality as outlined in its groundwater 14 15 management plan, even while waiting resolution on this matter from OCD and now OCC. PNM did not take any other actions at offsite locations to address 16 17 dissolved phase groundwater contamination. However, PNM removed over 1,050 18 gallons of free product thereby removing significant hydrocarbon mass from the 19 subsurface that represents a continuing source of dissolved-phase contamination. Prior to the November 1998 OCD hearing, PNM was the only party actively 20 addressing free phase hydrocarbon contamination at the Hampton 4M site. 21 Unless the true source of free phase hydrocarbons is identified and removed, 22

actions to mitigate dissolved groundwater contamination in a cost-effective
 manner are unlikely. PNM believes that Burlington is the responsible party for
 free phase hydrocarbon contamination and, therefore, the ongoing dissolved phase
 contamination.

Q. WHAT IS YOUR UNDERSTANDING REGARDING THE ORIGIN OF THE OCD "LINE OF DEMARCATION" DRAWN IN THE FIELD TO APPORTION RESPONSIBILITY AT THIS SITE?

A. At the original hearing in this matter Mr. Bill Olsen of NMOCD drew a line in the
sand on the north side of TPW-1, -2, and 3 (PNM Exhibit 9) and used this line to
divide responsibility for contamination cleanup between PNM and Burlington.
PNM was allotted cleanup responsibility for all contamination north of the line,
Burlington was allotted cleanup responsibility for all contamination south of the
line.

14 Q. IN YOUR OPINION, DID THIS LINE TAKE INTO ACCOUNT WHO

15 HAD RELEASED CONTAMINANTS INTO THE SUBSURFACE?

16 Perhaps, only as the line pertained to soil contamination. However, the arbitrary A. 17 line in the sand did not take into account which party contributed to groundwater contamination and gave PNM a highly disproportionate share of responsibility for 18 19 the groundwater contamination. PNM's former equipment and operations were downslope and downgradient of Burlington's operations. 20 Therefore. contamination released by Burlington at locations upgradient of PNM would 21 22 migrate underneath PNM's equipment and on past the well pad and downgradient

1 offsite. This arbitrary line automatically placed all downgradient cleanup 2 responsibility on PNM, including significant contamination contributed from 3 Burlington that migrated beyond the line in response to natural hydraulic 4 gradients. This fixed line does not take into account the fact that hydrocarbons in 5 groundwater move with time. Over time, PNM is accorded a highly 6 disproportionate share of groundwater contamination by allocating on the basis of 7 an arbitrary line that does not account for the continual movement of 8 contaminants from upgradient sources to locations beneath and downgradient of 9 PNM's former unlined pit.

10Q.IS A "LINE IN THE SAND" A REASONABLE MEANS OF11ALLOCATING GROUNDWATER REMEDIATION RESPONSIBILITY?

12 Α. No, groundwater is not a stationary matrix. At this site, the rate of groundwater 13 flow is fairly fast at 50 to 500 feet per year. As shown in cross-section (PNM 14 Exhibit 62), contaminants released by Burlington at upgradient locations would quickly move through the subsurface, downgradient, underflowing beneath 15 16 PNM's area of former operations, and would then continue to flow offsite. An 17 indicator of this offsite migration is the hydrocarbon seep located at the northwest 18 corner of the well pad. The offsite migration of contaminants will continue until 19 the source of contamination is stopped and remediated, and/or the natural 20 attenuation processes remove as much hydrocarbon as the source is releasing. In 21 either case, the degree of downgradient contamination will be extensive due to the 22 relatively fast movement of groundwater at this site. Thus, a fixed line in the sand

puts a progressively disproportionate share of contamination on the downgradient
 party, in this case, PNM.

Q. IN YOUR OPINION, DID THIS LINE OF DEMARCATION TAKE INTO ACCOUNT WHO HAD RELEASED FREE PHASE HYDROCARBONS AS THE MAJOR SOURCE OF CONTAMINANTS INTO THE SUBSURFACE?

7 A. No, because the majority of free phase hydrocarbons were produced, managed, 8 stored, and disposed of by Burlington. PNM equipment was not designed to 9 handle free phase hydrocarbons and the PNM former unlined pit did not show 10 evidence of a free phase hydrocarbon release from the pit, through the soil 11 column, onto underlying groundwater. Free phase liquid hydrocarbons recovered 12 from the subsurface belong to Burlington by contract. Even the free phase 13 Burlington took liquid hydrocarbons recovered during PNM's free phase 14 hydrocarbon remediation for sale or disposal. The continuing presence of free 15 phase hydrocarbons in the subsurface provides a continuous source of dissolved 16 phase contamination. Dissolved phase contamination was not considered in a 17 reasonable manner – that is, by considering each party's contribution and the 18 types of releases, the fact that contaminant sources are not created equal – free 19 phase hydrocarbons constitute a long-term continuous source of contamination to 20 groundwater as opposed to dissolved phase releases, and the line of demarcation 21 did not consider contaminant behavior and movement in the subsurface.

1Q.HOW WOULD YOU ALLOCATE RESPONSIBILITY FOR2CONTAMINATION THAT MOVES?

3 I would look at who discharged the types of contaminants causing the A. 4 contamination, the types of contaminant sources - in this case free product 5 released by Burlington and potential dissolved phase released by PNM, and the 6 relative magnitudes of impact that those sources have on the environment. 7 Continuing sources contribute to greater overall contamination than one-time, 8 pulsing sources, or sources that have been removed. Burlington has a continuing 9 source of free phase hydrocarbons at this site because they have not addressed 10 contaminated soil present at or below the water table. PNM did not release free 11 phase hydrocarbons to groundwater at this site. PNM sources of dissolved phase .12 groundwater contamination have all been physically removed as of the winter of 13 1998. Dissolved phase groundwater impacts caused by PNM's former 14 dehydrator pit would typically extend less than 50 feet and be remediated by natural attenuation in about 8 quarters, as testified by PNM Witness Gannon and 15 16 shown on PNM Exhibit 25. The fact that Burlington's releases have overridden 17 any dissolved phase plume contributed by PNM's former pit is what complicates 18 this site. Understanding that free product is a continuing source of dissolved 19 phase contamination, one must look to remediating the free phase first. In this 20 case, Burlington is the party that released and continues to release free phase 21 hydrocarbons and should therefore be responsible for remediating all of the free 22 phase and dissolved phase groundwater contamination at this site.

1Q.CAN YOU SUMMARIZE THE MAJOR ISSUES ASSOCIATED WITH2THIS SITE?

3 A. Yes. PNM Exhibit 1 shows a comparison between PNM and Burlington 4 addressing major site issues. PNM is not a current operator, owner, or producer; 5 PNM does not control site access; it does not produce or own the liquids; and did 6 not manage or release free phase hydrocarbons at this site. PNM's former 7 dehydrator discharges were limited to residual and dissolved phase hydrocarbons. 8 except possibly in cases of system upset due to Burlington's equipment 9 malfunctions. All hydrocarbon sources attributable to PNM have been physically 10 removed and PNM has recovered more free phase hydrocarbons than it could 11 reasonably have released. PNM has completed all reasonable remediation 12 activities at this site related to discharges caused by PNM's former equipment.

13 By contrast, Burlington is the current operator/owner/producer at this site. Burlington produced, managed, discharged, and owns the free phase 14 15 Subsurface soils in the vicinity of Burlington's former tank hydrocarbons. 16 batteries and other equipment have documented contamination remaining in place 17 that continues to act as a source of free phase and dissolved phase hydrocarbons. 18 Burlington, as the current owner/operator and the party that owned, managed, and 19 discharged free phase hydrocarbons, should be the party responsible for all further 20 investigation and remediation at this site.

21 Q. BASED ON YOUR ASSESSMENT OF THE TECHNICAL DATA 22 REGARDING RELEASES AT THIS SITE AND REMEDIAL ACTIVITIES

45 of 47

Call (1 at a nor

PERFORMED TO DATE, WHAT IS YOUR RECOMMENDATION TO THE COMMISSION REGARDING DISPOSITION OF THIS CASE?

3 A. Based on site data, parties responsible for the bulk of contaminant release, and 4 remediation work accomplished to date, I would apportion as follows: (1) PNM 5 would be responsible for remediating soil contamination in the vicinity of their 6 former pit – this has been accomplished by both PNM and Burlington activities, PNM has no ongoing sources of contamination to groundwater at this time, 7 8 therefore, PNM should be finished with the pit remediation portion of the site and 9 be granted pit closure by NMOCD; (2) PNM would not be responsible for any 10 further investigation or remediation of free phase or any associated dissolved 11 phase contamination based on the amount of free phase hydrocarbons recovered 12 by PNM to date relative to maximum possible discharges via the former PNM pit, 13 and the complete removal of any ongoing hydrocarbon sources attributable to PNM; (3) Burlington would be responsible for remediating all soil, free phase, 14 15 and dissolved phase contamination remaining at the site and moving 16 downgradient.

Q. ARE THE OPINIONS IN YOUR TESTIMONY BASED UPON YOUR
EDUCATION, TRAINING, AND EXPERIENCE IN THE
ENVIRONMENTAL FIELD?

20 A. Yes.

21 Q. ARE YOUR OPINIONS BASED UPON REASONABLE SCIENTIFIC
22 CERTAINTY?

1 A. Yes.

2 Q. DOES THIS CONCLUDE YOUR TESTIMONY?

3 A. Yes.

1

STATE OF NEW MEXICO **ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION COMMISSION**

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION FOR THE PURPOSE OF CONSIDERING:

APPLICATION OF PUBLIC SERVICE COMPANY CASE NO. 12,033 OF NEW MEXICO FOR DE NOVO HEARING ON ORDER NO. R-11134 ISSUED BY THE NEW MEXICO OIL CONSERVATION DIVISION IN

>))SS.

)

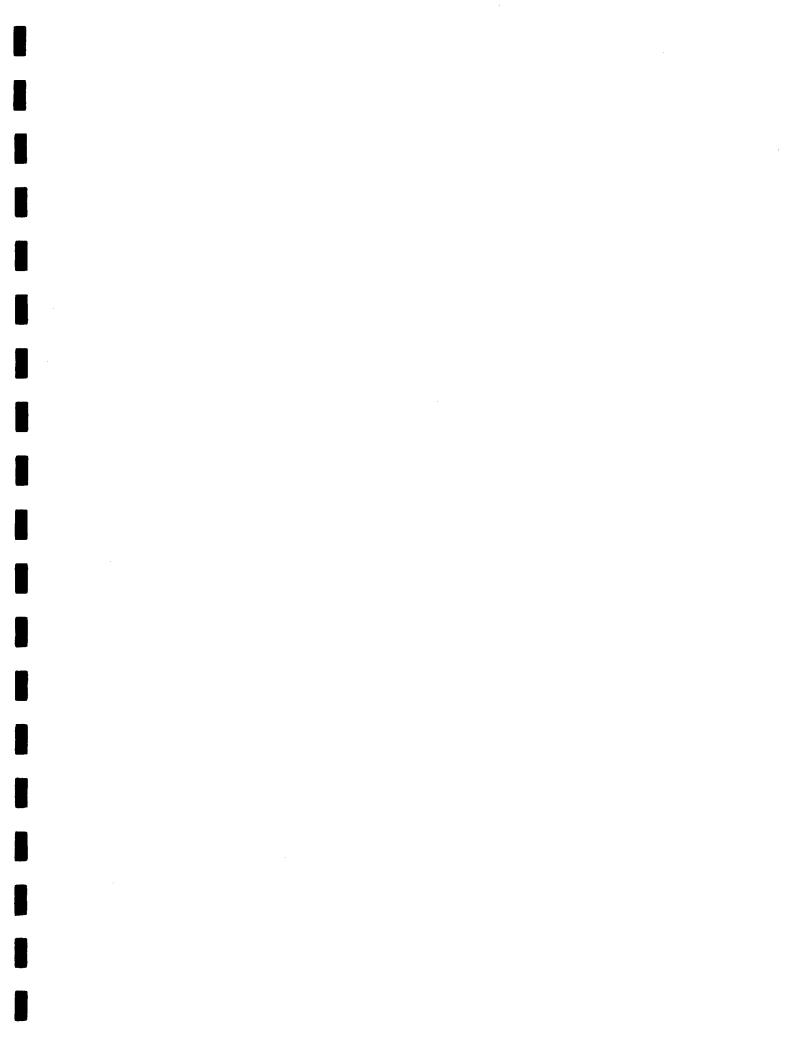
AFFIDAVIT

STATE OF NEW MEXICO **COUNTY OF BERNALILLO**

I, Valda I. Terauds, upon being first duly sworn according to law, under oath, depose and state: That I am Senior Scientist - Hydrologist for Mission Research Corporation, and that I have read the foregoing Direct Testimony, including exhibits. I further affirmatively state that I know the contents thereof and that they are true and correct to the best of my knowledge and belief.

SIGNED this day of July, 1999.

Valda J. Travels VALDA I. TERAUDS


SUBSCRIBED AND SWORN to before me this $\underline{q+k}$ day of July, 1999.

(Seal, if any)

Noter Public

[My Commission Expires: Oct. 22, 1999]

DAM0256

