GTHT -___1

P

GW Background & Compliance Report

October 2014

Chavez, Carl J, EMNRD

From:david janney <dwjanney160@gmail.com>Sent:Monday, April 20, 2015 4:31 PMTo:Griswold, Jim, EMNRD; Chavez, Carl J, EMNRDSubject:Alluvial Geothermal Background BTV ReportAttachments:Alluvial Geothermal Groundwater BTVs Addendum 4-20-2015.pdf

Greetings:

Please find attached the above referenced report. A bound hard copy has been sent to you via FedEx.

Please feel free to contact me with any questions you may have after reviewing the report. We would like to resolve, as soon as possible, any questions regarding the fluoride BTV for shallow alluvial geothermal water.

Sincerely,

David W. Janney, PG Agent for Lightning Dock Geothermal HI-01, LLC

April 20, 2015

Mr. Jim Griswold Environmental Bureau Chief New Mexico Oil Conservation Division 1220 South Saint Francis Drive Santa Fe, NM 87505 505-476-3465 Jim.Griswold@state.nm.us

RE: Alluvial geothermal groundwater background concentrations at Lightning Dock Geothermal HI-01, LLC, Animas, New Mexico

Dear Mr. Griswold:

On behalf of Lightning Dock Geothermal HI-01, LLC (LDG), Geo-Science Solutions, LLC and Geochemical, LLC submit this document to establish alluvial geothermal groundwater background concentrations of selected compounds listed in NMAC 20.6.3103 at LDG's geothermal power plant located in Animas, New Mexico. This document is intended to be an addendum to the *Groundwater Background and Compliance Report* that was submitted to the New Mexico Oil Conservation Division (OCD) in September 2014.

The September 2014 report provided background threshold values (BTVs) for the geothermal reservoir prior to commercial power generation which began on December 20, 2013. This addendum provides BTVs with supporting calculations for selected constituents in alluvial geothermal groundwater in the vicinity of LDG's production and injection wells based on data collected prior to December 20, 2013.

BACKGROUND

LDG owns 160 acres of surface upon which are located its power plant, its geothermal production well, and two of its shallow alluvial monitoring wells. Rosette, Inc. owns the adjoining property to the east upon which are located all three of LDG's injection wells and five shallow alluvial monitoring wells in the "greenhouse area".

Geothermal water upwells into the alluvium in the greenhouse area and this area is the zone of mixing for the upwelling geothermal water and alluvial groundwater. The result is alluvial geothermal groundwater in the greenhouse area at approximately 65 feet below ground surface. The LDG monitoring wells used for the alluvial geothermal groundwater BTV calculations are shown on Figure 1.

Naturally occurring fluoride, iron, and total dissolved solids (TDS) in the produced geothermal water may exceed the State of New Mexico water quality criteria stated in NMAC 20.6.2.3103. The geothermal reservoir is essentially a confined aquifer that leaks into and mixes with the alluvial groundwater system in the greenhouse area. Since geothermal water naturally upwells into and mixes with alluvial groundwater, it is logical to expect elevated concentrations of fluoride, iron, and TDS in the mixed or alluvial geothermal groundwater. It is also logical that elevated concentrations of these constituents are spatially related to upwelling geothermal groundwater. Concentrations of these constituents are expected to change with depth due to changes in mixing and the greater influence imparted by the geothermal groundwater. Concentrations of these constituents are also expected to be lower up-gradient and significantly down-gradient of the mixing zone. Alluvial geothermal groundwater extends into Section 6, north of the greenhouse area.

ALLUVIAL GEOTHERMAL GROUNDWATER SAMPLING

Each LDG shallow alluvial geothermal groundwater monitoring well was sampled prior to December 20, 2013. All samples were collected in accordance with LDG's *Water Quality Monitoring Program Work Plan* (December 20, 2013). The samples were submitted for analysis to Hall Environmental Analytical Laboratory in Albuquerque, New Mexico. The laboratory analytical results from LDG's monitoring wells presented in Table 1, were used to develop one set of BTVs for selected constituents in alluvial geothermal groundwater.

Well Name	Well Type	Total Depth	Screened Interval
MW-1	Shallow	85 feet	60-85 feet
MW-1B	Shallow	85 feet	65-85 feet
MW-2	Shallow	80 feet	55-80 feet
MW-3	Shallow	80 feet	55-80 feet
MW-4	Shallow	80 feet	55-80 feet
MW-5	Shallow	78 feet	63-78 feet
MW-6	Shallow	85 feet	60-85 feet

TABLE 1 Alluvial Geothermal Groundwater Monitoring Wells

In addition to the wells listed in Table 1, laboratory analytical results from two other shallow alluvial wells in the greenhouse area were used in the calculation of a second set of BTVs in alluvial geothermal groundwater. Wells G3S and G2SE are shown on Figure 1 and details of these wells are included in Table 2.

TABLE 2 Other Alluvial Geothermal Wells

Well Name	Well Type	Total Depth	Screened Interval
G3S (A00036 AS7)	Shallow Burgett Greenhouse	130 feet	90-130 feet
G2SE (A00036 AS5)	Shallow Burgett Greenhouse	600 feet	440-600 feet

While the exact wells from which these samples were collected could not be confirmed, they are believed to have been collected from wells G2SE and G3S as indicated on Figure 1. Both wells were apparently sampled by flowing from a small valve or hose bib on the well head.

LABORATORY ANALYTICAL RESULTS

The laboratory analytical results for LDG's shallow alluvial geothermal groundwater monitoring wells presented in Table 3 provide a baseline for alluvial geothermal groundwater quality in the project area prior to December 20, 2013. A summary of selected constituents from these alluvial geothermal groundwater wells is presented in Table 4 along with the State MCLs.

Summary of Selected Constituents in Alluvial Geothermal Monitoring Wells										
Constituent	Number of Observations	Minimum (mg/L)	Maximum (mg/L)	State MCL (mg/L)						
Iron (Fe)	7	<0.02	8.5	1.0						
Fluoride (F)	7	1.3	12	1.6						
Sulfate	7	510	1200	600						
TDS	7	1210	3210	1000						

Well G3S was sampled by OCD in 1986 and 1993. Both samples were analyzed by the New Mexico State Scientific Laboratory with a duplicate of the 1993 sample analyzed by Westech Laboratories, Inc. of Phoenix, Arizona. The fluoride concentration detected in the 1986 sample was 12.5 mg/L and the fluoride concentration detected in the 1993 sample was 15.46 mg/L. Well G2SE was sampled by Raser Technologies, Inc. in 2008 and analyzed by TraceAnalysis, Inc. of Lubbock, Texas. The fluoride concentration detected in the 2008 LCD Hot sample was 9.95 mg/L. A summary of selected constituents from these other alluvial geothermal groundwater wells is presented in Table 5 along with the State MCLs. The laboratory analytical sheets for the samples in Table 5 are included in Attachment C.

 TABLE 5

 Summary of Selected Constituents in Other Alluvial Geothermal Wells

Constituent	Number of Observations	Minimum (mg/L)	Maximum (mg/L)	State MCL (mg/L)
Iron	1	<0.01	< 0.01	1.0
Fluoride	3	9.95	15.46	1.6
Sulfate	3	476	675	600
TDS	3	1110	1480	1000

Alluvial geothermal groundwater monitoring well analytical results indicate that TDS is higher than in the deep geothermal reservoir. Alluvial geothermal groundwater monitoring well analytical results also indicate that sulfate exceeds State water quality criteria, however, analytical results indicate that naturally occurring sulfate is higher than in the deep geothermal reservoir. Most iron analyses in the alluvial geothermal groundwater are non-detect. One shallow well (MW-1B) exceeded NMAC 20.6.3103 criteria for iron with an anomalously high value of 8.5 mg/L; far higher than the produced or injected geothermal water. The anomalous value of 8.5 mg/L does not appear to be representative of water quality at this location or in the alluvial geothermal water. Relying on the majority of non-detects for iron, and the concentration of iron in produced geothermal water being below NMAC 20.6.2 standards of 1.0 mg/L, a BTV for iron is unnecessary.

BACKGROUND THRESHOLD VALUES

Since the exceedances of certain regulated constituents in groundwater at LDG are natural in origin, a BTV based on background concentrations is required. The objective of the BTV calculation is to establish an upper percentile limit concentration for each constituent of concern in the Lightning Dock geothermal system. The September 2014 report established BTVs for the geothermal production and injection water and this addendum establishes BTVs for the alluvial geothermal groundwater in the vicinity of the injection wells or greenhouse area.

The expected BTV for dissolved compounds in the Lightning Dock geothermal system can be determined using existing chemical analytical results and EPA-approved procedures. The statistical procedure to calculate BTVs is well documented by the EPA (ProUCL Users Guide, Chapter 1). The appropriate standard for comparison is the 95% Upper Percentile Limit for a Single Observation (UPL95). What is calculated is the value greater than 95% of all expected values if you collected a single sample of alluvial geothermal groundwater in the vicinity of the greenhouse area. There is a 5% probability ($\alpha = 0.05$) that a single sample would have a value higher than the UPL95.

The alluvial geothermal groundwater sample set collected by LDG in December 2013 contains a total of seven samples and one duplicate sample. ProUCL guidance suggests that at least 10 samples are needed to statistically determine a BTV. An insufficient number of samples of alluvial geothermal groundwater was collected by LDG in December 2013. The inclusion of additional historic data from the greenhouse area, however, provides a sufficient number of samples to calculate BTVs for alluvial geothermal groundwater in the vicinity of the injection wells or greenhouse area. The EPA-approved software ProUCL 5.0 was used to calculate the BTVs presented herein. Dr. Gregory Miller of Geochemical, LLC input the data, ran the program, and provided the output results with comments to Geo-Science Solutions, LLC. The data is broken into two groups, monitoring wells (MW's) and monitoring wells combined with three samples from two alluvial geothermally-influenced wells (All). Both groups are carried through the analysis. The raw dataset for this effort is presented in Table 6.

	summary of a	selected Co	nsuluents to	r Alluviai Geothe	
MW F (mg/L)	MW TDS (mg/L)	All F (mg/L)	All TDS (mg/L)	MW Sulfate (mg/L)	All Sulfate (mg/L)
7.7	1780	12.5	1195	670	585
9.3	1520	15.46	1480	540	675
11	1380	9.95	1110	510	476
12	1380	7.7	1780	540	670
4.3	3210	9.3	1520	1200	540
1.3	2010	11	1380	930	510
6.9	1880	12	1380	950	540
		4.3	3210		1200
		1.3	2010		930
		6.9	1880		950

TABLE 6

Summary of Selected Constituents for Alluvial Geothermal Wells

Prior to calculating BTVs, Dixon's tests for outliers were conducted. No outliers for the fluoride or sulfate data were detected. The TDS value of 3210 mg/L was identified as an outlier at the 90% and 95% confidence interval and was removed from the data set. Dixon's test was rerun on the reduced dataset and outliers were not detected. This final reduced dataset is presented in Table 7.

	Summary of Reduced Data for Alluvial Geothermal Wells											
MW F (mg/L)	MW TDS (mg/L)	All F (mg/L)	All TDS (mg/L)	MW Sulfate (mg/L)	All Sulfate (mg/L)							
7.7	1780	12.5	1195	670	585							
9.3	1520	15.46	1480	540	675							
11	1380	9.95	1110	510	476							
12	1380	7.7	1780	540	670							
4.3	2010	9.3	1520	1200	540							
1.3	1880	11	1380	930	510							
6.9		12	1380	950	540							
		4.3	2010		1200							
		1.3	1880		930							
		6.9			950							

TABLE 7 Summary of Reduced Data for Alluvial Geothermal Wells

Distribution testing is necessary to select the proper statistical test for the data. The reduced dataset of Table 7 was tested for its goodness-of-fit to probability distributions (normal, gamma, and lognormal). All of the reduced datasets were normally distributed at the 95% confidence interval, indicating that use of the 95% Upper Prediction Limit (t-statistic) is the appropriate measure of the BTV for fluoride and TDS. Summary statistics for the reduced dataset are presented in Table 8.

TABLE 8 Summary of Reduced Data Statistics for Alluvial Geothermal Wells

Constituent	Number of Observations	Minimum (mg/L)	Maximum (mg/L)	Mean (mg/L)	SD (mg/L)	SEM (mg/L)	CV (mg/L)
MW F	7	1.3	12	7.5	3.76	1.421	0.501
MW TDS	6	1380	2010	1658	269	109.8	0.162
MW Sulfate	7	510	1200	762.9	266.4	100.7	0.349
All F	10	1.3	15.46	9.041	4.156	1.314	0.46
All TDS	9	1110	2010	1526	306.5	102.2	0.201
All Sulfate	10	476	1200	707.6	239.7	75.8	0.339

Notes: SD = standard deviation, SEM = standard error of the mean, CV = coefficient of variation

The BTVs for the two groups (MW's and All) concentrations of fluoride, sulfate, and TDS are presented in Table 9. The ProUCL output sheets are included in Attachment D.

 TABLE 9

 BTVs for Selected Constituents in Alluvial Geothermal Groundwater

Constituent	MWs Only (mg/L)	All wells (mg/L)
Fluoride	15.31	17.03
TDS	2244	2127
Sulfate	1316	1168

CONCLUSIONS

The Lightning Dock geothermal system is dynamic and its flow and chemical characteristics may change over time. Factors effecting fluoride, TDS, and sulfate concentrations in alluvial geothermal groundwater include: upwelling flow from the deep geothermal reservoir, sealing of and development of new upward flow paths by mineral precipitation, snow and rain that recharge the shallow groundwater system, and shallow groundwater use in the basin.

It is unlikely that fluoride concentrations in alluvial geothermal groundwater would ever exceed the maximum fluoride concentration of 15.46 mg/L detected in the greenhouse area. It is possible that the alluvial geothermal groundwater BTVs established herein could be exceeded, however any exceedance is expected to be less than two standard deviations for the "All F" data presented in Table 8. A Fluoride BTV of 17.03 is the most practical approach for this constituent since it utilizes all of the analytical data for alluvial geothermal groundwater samples collected from wells in the greenhouse area.

Thank you very much for your assistance in the development of this important energy project. Should you have questions regarding this document or the ProUCL output, please do not hesitate to contact me by email at <u>dwjanney160@gmail.com</u> or by phone at 505. 508.9187.

Respectfully submitted,

David W. Janne

David W. Janney, PG Principal Geo-Science Solutions, LLC Agent for Lightning Dock Geothermal HI-01, LLC

Cc: Carl Chavez – NMOCD Nick Goodman – Lightning Dock Geothermal HI-01, LLC Michelle Henrie – Lightning Dock Geothermal HI-01, LLC

Attachments

- A: Figure 1
- B: Table 3
- C: Laboratory Analytical Sheets
- D: ProUCL 5.0 Output Files

ATTACHMENT A FIGURE 1

ATTACHMENT B TABLE 3

.

.

-

-- • •

. -

Summary of Alluvial Geothermer Groundwater Analytical Results Lightning Dock Geothermal HI-01, LLC Animas, New Mexico

	(Buyerset	0	1						-	(°	
				Geothermal Well	Oronfored	I CO Hot	LOW 1	14141.10	LON 1	Biller & Oscallanta	Relat 2	AD4/ 4	40045	
⊢	1		5(- 0-+	t log (sagel	7 la (1 ce ai	atestoonal	10002	3000-10	N399+Z	www.z.oopicate	Miles de la companya	N199-44	MW-3	IMAA-0
⊢		Std Dissolved	Sample Date:	1/26/1966	441442	3/32/2008	14/5/2013	12/11/2013	11/25/2013	11/25/2013	11/24/2013	13/24/2013	11/24/2013	11/23/2013
	Analyte	Concentration	Lab ID:	W/562/HM279		153440	1311814-001	1317650.001	1211014-002	1211014.002	1311914.004	1211014 045	1311014 006	1211014 007
	Arsenic (As)	1 mg/l		0.011	c0.05	< 0.005	0.0055	0.011	0.0097	6,0097	0.019	0.013	0,0060	1311814-007
1	Barrum (Ba)	1 mg/l		NA	<01	0.059	0.063	0.14	0.044	0.003	0.015	0.012	0.000	0.020
	Cadmium (Cd)	0.01 mg/		NA	< 0.1	<0.001	<0.007	<0.007	ND	0.043	40.00	0.033	0.041	0.047
1	Chromium (Cs)	0.01 mg/l		NA	< 0.1	<0.001	< 0.002	< 0.002		ND	NU			<u> MU</u>
ا	Cupride (CAI)	0.2 mp/	-	NA	C0.1	(0.001	< 0.006	< 0.008	10	ND	NO	NU	NU	NU
	Eluados (El	16 mm/		125	15.46	0.01	77	0.001	11		12	110	12	NU
	Land (Bb)	0.05 mg/l		12.3 NA	10.40	3.32	10.001	73	11		12	4.3	1.3	6.9
ا	Tetal Margura (Ma)	0.003 mg/l		NA	0.004	< 0.003	0.0001	0.0044		NU	NU	NU	NU	UN
	http://www.comy.com/	0.002 mg/		194	0.004	< 0.0002	0.003/9	0.0016	NU		0.00034	NU	0.0010	0.00077
<u> </u>	Colored (NOS as N)				10.05	4.2	2.6	15	3.1	3.2	2.1	12	42	42
F	Selenium (se)	0.05 mg/l	<u> </u>	< 0.005	< 0.05	0.046	0.0052	NA	0.0035	0.0035	0.0034	0.033	0.028	0.011
	Siver (Ag)	0.03 mg/l	ł	144	< U.1	<0.005	<0.005	< 0 005	ND	NU	NU	NU		ND
<u>۲</u>	Uranum (U)	0.03 mg/		NA	. NA	NA	0.011	0.0037	ND	NU	NU	0.0051	0.014	0.0012
	Radioactivity: Radium 266	30 pCi/l		NA	NA	NA MA	0.265 ± 0.350 (0.571)	2.00 ± 0.722 (0 566)	0.266 ± 0.377 (0.638)	0.183 ± 0.512 (0.550)	0.102 ± 0.375 (0.720)	1.32 ± 0.615 (0.664)	0.305 ± 0.401 (0.667)	0.140 ± 0.305 (0.562)
-14	Regionactivity: Regium 288		ł	NA	NA MA	NA	U.688 2 U.456 (0.799)	0./11 ± 0.402 (0.727)	0.0585 ± 0.308 (0.702)	0.468 ± 0.385 (0.767)	U.156 ± 0.270 (0.590)	U.542 ± 0.396 (0.772)	0.131 ± 0.452 (0.966)	2.53 ± 0.949 (1.39)
1.5	Radionucides: Radion 222	None		NA	NA	NA	238	6/6	580	567	781	1090	197	507
16	benzene	L ug/l		NA	NA	<1	<2	< 2	ND	ND	ND	ND	ND	ND
<u><u> </u></u>	Porychior(nated biphenyls (PCB's)	1 ug/l	<u> </u>	NA	NA	NU	NA	ND	NA	NA NA	NA	NA	NA NA	NA
18		750 ug/l		NA	NA	<1	<2	< 2	ND	ND	ND	ND	ND	ND
19	Carbon Tetrachioride	10 ug/l	ł – – – – –	NA	NA	<1	< 2	<2	ND	ND	ND	ND	ND	ND
20	1,2-aichloroethane (EDC)	10 ug/l	ł	NA	NA	<1	< 2	< 2	ND	ND	ND	ND	ND	ND
21	1,1-dichloroethylene (1,1-DCE)	5 ug/l		NA	NA	<1	< 2	< 2	ND	ND	ND	ND	ND	ND
22	1,1,2,2, tetrachloroethene (PCE)	20 ug/l	ļ	NA	NA	<1	< 2	<2	ND	ND	ND	ND	ND	ND
23	1,1,2-trichloroethylene (TCE)	100 ug/l	<u> </u>	NA	NA	< 1	< 2	< 2	ND	ND	ND	ND	ND	ND -
24	ethylbenzene	750 ug/1		<u>NA</u>	NA	<1	< 2	< 2	ND	ND	ND	ND	ND	ND
25	Total sylenes	620 ug/l		NA	NA	<1	< 3	< 3	ND	ND	NO	DM	ND	ND
26	methylene chloride	100 ug/t		NA	NA	<5	< 6	< 6	ND	NO	ND	ND	ND	ND .
27	chloroform	100 ug/l		NA	NA	<1	28	33	4.9	5.2	21	ND	ND	ND
28	1,1-dichloroethane	25 ug/		NA	NA	< 1	< 2	<2	ND	ND	<u>ND</u>	ND	ND	ND
<u>. 29</u>	ethane dibromide (EDB)	0.1 ug/l		NA	NA	<1	< 2	< 2	ND	ND	ND	ND	ND	ND
30	1,1,1-trichloroethane	660 ug/l		NA	NA	<1	< 2	< 2	ND	ND	ND	ND	ND	ND
31	1,1,2-trichloroethane	10 ug/l		NA	NA	< 1	< 2	< 2	ND	ND	ND	ND	ND	ND
32	1,1.2,2-tetrachloroethane	10 ug/l		NA	NA	< 1	< 2	< 2	ND	ND	NĎ	ND	ND	ND
33	vinyl chloride	1 ug/l		NA	NA	< 1	<2	< 2	ND	ND	ND	ND	ND	ND
34	PAH's; total naphthalene	30 ug/l		NA	NA	NA	ND	ND	DND.	ND	ND	ND	ND	ND
35	benzo-a-pyrene	0.7 ug/l	L	NA	NA	NA	< 10	< 10	ND	ND	ND	ND	ND	ND
36	TPH 418.1	None		NA	NA	NA	<1	1.3	ND	ND	1.1	NA	NA	ND
1	Chloride (Cl)	250 mg/l		94.3	110	77	100	120	96	96	94	710	230	230
2	Copper (Cu)	1 mg/l	I	NA	< 0.1	< 0.005	< 0.006	< 0.006	ND	ND	ND	ND	ND	ND
3	Iron (Fe)	1 mg/i		NA	< 0.1	0.138	< 0.02	8.5	< 0.02	< 0.02	0.24	< 0.02	0.021	0.39
4	Manganese (Mn)	0.2 mg/l		NA	< 0.05	0.012	0 21	0.27	0.041	0.036	0.18	0.15	0 27	0.074
<u>5</u>	Phenol	0 005 mg/l		NA	NA	0.139	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025
<u> </u>	Suirate	600 mg/l	<u> </u>	585	675	476	670	540	510	510	540	1200	930	950
⊢:	LIDIAL DISSOIVED SOIKIS (TUS)	1000 mg/l	<u> </u>	1195	1480	2110	1/80	1520	1380	1210	1380	3210	2010	1880
		10 mg/3		NA	< 0.1	< 9.007	< 0.01	0.015	0.015	ND	ON	0.048	0.023	0.033
<u> </u>	Pr	o-s pH Units				7.91	1.69	7.66	1.0	/.58	ß	81.1	/.62	7.56
⊢.	ahu-inu- (A1)				- 0.1	10.05	0.024	76	0.040					
<u> </u>	Percer (D)	> mg/l		NA	< U.1	< 0.03	0.7	45	0.049	0.024	0.51	ND	ND	0 63
	Boron (B)	0.75 mg/1		. NA	< 0.05	0.369	0.7	0.45	0.37	0.36	0.44	0.22	031	0 39
-	Malubdenum (Ma)	10 mg/l		DIA AIA	< 0.05	- MA	< 0.008	< 0.008	NU 0.027	NU 0.026	NU 0.065	0.014	ND	ND
	Nickal (Ni)	1.0 mg/l		19/A N/A	<0.1	< 0.005	4.001	40.01	0.027	UU28	U.U000	0.014	0.031	0.035
	Promide	∪ 2 mg/l	├ ───┤	NA NA	< U.1	NA	< 0.01	U1	ND	ND	ND	UN 2.2		ND
ا	lithium (ii)	None		644	NA NA	NA	0.000	0.632	0.7	NU 0.7	NU 0.5	1.2	1.2	NU AC
⊢-'	Pubidium (Pb)	ITONE		NA NA	MA		0.0	0.355	0.7	01	0.3	1.7	<u> </u>	0.8
ار	Tunésten	Nore		NA NA	NA NA	NA NA	< 0.00 C	0.103	0.1	ND	0.2	0.4		0.2
<u> </u>		none		Ari	nA			0.0300	nu	υ	עא	nU		C(D)
	Notes:												· · · ·	-
	NA = not analyzed													
	ND = not detected													
	* total metal not dissolved metal													

Notes:

1 Sample collected by OCD and analyized by NM State Health and Environment Dept. Lab

2 Sample collected by OCD and analyized by NM State Health and Environment Dept. Lab and Westech Lab, metals are Total

3 Samples collected by Razer and analyized by Trace Analysis, metals are Total

ATTACHMENT D PROUCL 5.0 OUTPUT FILES

•

	Α	В	С	D	E	F	G
1	MW F (mg	MW TDS (Ali F (mg/l	All TDS (n	MW Sulfat	All Sulfate	(mg/L)
2	7.7	1780	12.5	1195	670	585	
3	9.3	1520	15.46	1480	540	675	
	11	1380	9.95	1110	510	476	
	12	1380	7.7	1780	540	670	
б	4.3	2010	9.3	1520	1200	540	
7	1.3	1880	11	1380	930	510	
8	6.9		12	1380	950	540	
9			4.3	2010		1200	
10			1.3	1880		930	
11			6.9			950	

.

,

	A	в	С	D	F	F	G	н			ĸ		м
1		_		General S	tatistics o	n Uncenso	ored Full D	ata		Ů Ů	.,		,,,,
2	Date/T	ime of Con	putation	3/18/2015	3:10:46 PI	м							
3	Us	er Selecte	d Options										
H	. <u> </u>	F	From File	ProUCL_I	N.xls								
		Full I	Precision	OFF			<u> </u>						
6													
7	From File	: ProUCL_	IN.xls										<u> </u>
8													
9				G	eneral Sta	tistics for	Uncensore	ed Data Se	ts				
10													
11	Var	able	NumObs	# Missing	Minimum	Maximum	Mean	SD	SEM	MAD/0.67	Skewness	Kurtosis	CV
12	M۱	V F (mg/L)	7	0	1.3	12	7.5	3.76	1.421	4.893	-0.577	-0.372	0.501
13	MW T	DS (mg/L)	6	0	1380	2010	1658	269	109.8	370.6	0.161	-2.197	0.162
14	٨	JIF (mg/L)	10	0	1.3	15.46	9.041	4.156	1.314	3.781	-0.469	0.0899	0.46
15	All T	DS (mg/L)	9	0	1110	2010	1526	306.5	102.2	422.5	0.331	-1.002	0.201
16	MW Sulf	ate (mg/L)	7	0	510	1200	762.9	266.4	100.7	237.2	0.687	-0.99	0.349
17	All Sulf	ate (mg/L)	10	0	476	1200	707.6	239.7	75.8	152	1.141	0.349	0.339
18						· · · · · ·				·			
19					Percenti	les for Und	censored [Data Sets					
20													
21	Vari	able	NumObs	# Missing	10%ile	20%ile	25%ile(Q1	50%ile(Q2	75%ile(Q3	80%ile	90%ile	95%ile	99%ile
22	M\	V F (mg/L)	7	0	3.1	4.82	5.6	7.7	10.15	10.66	11.4	11.7	11.94
23	MW T	DS (mg/L)	6	0	1380	1380	1415	1650	1855	1880	1945	1978	2004
24	Α	ll F (mg/L)	10	0	4	6.38	7.1	9.625	11.75	12.1	12.8	14.13	15.19
25	All T	DS (mg/L)	9	0	1178	1306	1380	1480	1780	1820	1906	1958	2000
26	MW Sult	ate (mg/L)	7	0	528	540	540	670	940	946	1050	1125	1185
	All Sulf	ate (mg/L)	10	0	506.6	534	540	627.5	866.3	934	975	1088	1178

•

	A	В	С	D	E	F	G	Н		J	К	L	
433			Shap	iro Wilk Te	est Statistic	0.898		Shapir	o Wilk Log	normal G	OF Test		
434			5% Shap	iro Wilk Cr	itical Value	0.842	Da	ita appear	Lognormal	at 5% Sigr	ificance Le	vel	
435			Ĺ	lliefors Te	est Statistic	0.201		Lillie	fors Logn	ormal GOF	Test		
			5% L	illiefors Cr	itical Value	0.28	Da	ita appear i	Lognormal	at 5% Sigr	ificance Le	vel	
				Dat	a appear L	ognormal	at 5% Sigi	nificance L	evel				
438		_											
439				Backg	round Stati	stics assu	ming Logn	ormal Dist	tribution				
440			95% UTL	with 95%	Coverage	1672		_		90% Pe	rcentile (z)	1007	
441				9	5% UPL (t)	1229			•	95% Pe	rcentile (z)	1127	
442					95% USL	1330				99% Pe	rcentile (z)	1394	
443						·	_						
444	Nonparametric Distribution Free Background Statistics												
445				D	ata appear	Normal at	5% Signil	icance Le	vel				
446													
447				Nonparam	etric Uppe	r Limits fo	r Backgrou	und Thresh	nold Value	s			
448				Order of	f Statistic, r	10			95% UTL	with 95%	Coverage	1200	
449				Ap	proximate f	0.526	Co	nfidence C	oefficient (CC) achiev	ed by UTL	0.401	
450	95% Per	centile Boo	otstrap UTL	with 95%	o Coverage	1200	959	% BCA Boo	otstrap UTL	with 95%	Coverage	1200	
451					95% UPL	1200				90%	Percentile	975	
452				90% Cheb	yshev UPL	1462				95%	Percentile	1088	
453				95% Cheb	yshev UPL	1803				99%	Percentile	1178	
454					95% USL	1200							
455									ï				
456		Note: The	e use of US	L to estima	ate a BTV is	recomme	nded only v	when the da	ata set repi	resents a b	ackground		
457		data	a set free of	outliers ar	d consists	of observa	tions collec	ted from c	lean unimp	acted loca	tions.		
458		The use	of USL tend	ds to provid	de a balanc	e between	false posit	ives and fa	lse negativ	es provide	d the data		
P 4		represent	ts a backgro	ound data	set and whe	en many or	isite obser	vations nee	ed to be co	mpared wit	h the BTV.		

GROUNDWATER BACKGROUND AND COMPLIANCE REPORT FOR THE DALE BURGETT GEOTHERMAL POWER PLANT HIDALGO COUNTY, NEW MEXICO

Owned and Operated by

LIGHTNING DOCK GEOTHERMAL HI-01, LLC HIDALGO COUNTY, NEW MEXICO

Submitted To:

The New Mexico Oil Conservation Division 1220 South Saint Francis Drive Santa Fe, New Mexico 87505

Prepared By:

AMEC Environment & Infrastructure, Inc. 8519 Jefferson N.E. Albuquerque, New Mexico 87113

John Shomaker and Associates, Inc. 2611 Broadbent Parkway N.E. Albuquerque, New Mexico 87107 개 윤 드 91 123 NUL

Geochemical, LLC P.O. Box 1468 Socorro, NM 87801

October 2014

Table of Contents

List o	of Acronyms	
1.0	INTRODUCTION	1
1.1	Site Location and Description	1
1.2	Background	1
2.0	SCOPE OF REPORT	2
3.0	METHODS	3
3.1	Production, Injection, and Monitoring Wells	3
3.2	Other Wells	3
3.3	Background Concentration Calculations	3
4.0	RESULTS	4
4.1	Laboratory Analytical Results	4
4.2	Background Concentration Calculations	5
4.3	Groundwater Flow Direction and Hydraulic Gradient	6
5.0	CONCLUSIONS	7
6.0	REFERENCES	8

List of Figures

Figure 1	Project Location
Figure 2	Well Locations
Figure 3	Water-level elevations in shallow wells between 12/09/2013 - 12/11/2013
Figure 4	Pumping and injection rates for 01/2013 through 06/2014
Figure 5	Water-level elevations in shallow wells on 12/28/2013
Figure 6	Water-level elevations in shallow wells on 01/27/2014
Figure 7	Water-level elevations in shallow wells on 02/22/2014
Figure 8	Water-level elevations in shallow wells on 03/17/2014
Figure 9	Water-level elevations in shallow wells on 04/17/2014
Figure 10	Water-level elevations in shallow wells on 05/11/2014
Figure 11	Water-level elevations in shallow wells on 06/19/2014
Figure 12	Water-level elevation change in shallow wells between 12/09/2013 – 12/11/2013
F :	
Figure 13	and 02/22/2014
Figure 14	Water-level elevation change in shallow wells between 12/09/2013 - 12/11/2013
	and 03/17/2014
Figure 15	Water-level elevation change in shallow wells between 12/09/2013 - 12/11/2013
	and 04/17/2014
Figure 16	Water-level elevation change in shallow wells between 12/09/2013 - 12/11/2013
	and 05/11/2014
Figure 17	Water-level elevation change in shallow wells between 12/09/2013 - 12/11/2013 and 06/19/2014

Figure 18 Hydrograph of MW-1A and INW-1 -- 11/25/2013 - 06/19/2014

Figure 19 Hydrograph of MW-1B, MW-2, MW-3, MW-4, and MW-5 -- 11/24/2013 - 06/19/2014

Figure 20 Hydrograph of LDG 53-7 and LDG 63-7 -- 12/13/2013 - 06/25/2014

List of Tables

- Table 1
 Production and Injection Wells
- Table 2
 Groundwater Monitoring Wells
- Table 3 Other Wells
- Table 4
 Summary of Geothermal Acquifer Analytical Results Prior to 2014
- Table 5 Summary of Geothermal Acquifer Analytical Results for 2014
- Table 6
 Summary of Alluvial System Analytical Results
- Table 7 Selected Constituients in LDG 45-7 and Spent Geothermal Water
- Table 8 Summary of Selected Constituients in Shallow Monitoring Wells
- Table 9
 Summary of ProUCL Alternate Concentration Limits
- Table 10 Hydraulic Gradients December 2013 through June 2014

Appendices

Appendix A Laboratory Analytical Sheets for Other Wells

- Appendix B Laboratory Analytical Sheets for Geothermal System Wells
- Appendix C ProUCL Output Sheets

LIST OF ACRONYMS

ACL	Alternate Concentration Limits		
BTV	Background Threshold Values		
LDG	Lightning Dock Geothermal HI-01, LLC		
MCL	Maximum Concentration Limit		
mg/L	Milligrams per liter		
OCD	New Mexico Oil Conservation Division		
ppm	parts per million		
TDS	Total Dissolved Solids		
TG	Temperature Gradient		

1.0 INTRODUCTION

Lightning Dock Geothermal HI-01, LLC (LDG), a wholly owned subsidiary of Cyrq Energy, has prepared this report to provide background water quality and discharge permit compliance data for the Lightning Dock Geothermal Project (the "LDG Project" or "Project") located in Hidalgo County, New Mexico. The LDG Project is located on private surface with Federal Geothermal leases NM-34790 and NM-108801 which encompass approximately 3,140 acres. This report is required by the New Mexico Oil Conservation Division (OCD) to satisfy the requirements of the Lightning Dock Geothermal No.1 (HI-01) Discharge Permit GTHT-001, dated July 1, 2009.

The objectives of this document are to provide background threshold values (BTVs) for selected elements prior to commercial power generation which began on December 20, 2013 and to provide water quality, groundwater flow direction, and hydraulic gradient data reflecting the first six months of power plant operation. This document meets the requirements of Sections 20.8.ii and 20.8.v of Discharge Permit GTHT-001. The LDG Project is not using a water-cooling tower to cool its working fluid as anticipated in Discharge Permit GTHT-001; therefore, this report excludes cooling tower-blow-down samples.

1.1 Site Location and Description

The LDG Project is located in Section 7, Township 25 South, Range 19 West of Hidalgo County, New Mexico. The LDG Project is located along the east side of the Animas Valley approximately 13 miles north of Animas, New Mexico, and approximately 18 miles southwest of Lordsburg, New Mexico. LDG owns 160 acres of surface upon which its power plant, some of its geothermal wells, and some of its monitoring wells are located. Rosette, Inc. owns the adjoining property to the east upon which three of LDG's geothermal wells and some monitoring wells are located ("greenhouse area"). The LDG Project location is depicted in Figure 1 and the wells used for the background concentration calculations are shown on Figure 2.

1.2 Background

The Lightning Dock geothermal system is a blind system with no surface manifestations. It was discovered in 1948. Since 1948 a number of investigators have conducted geochemical sampling of fluids, electrical and gravity geophysical surveys, temperature gradient drilling, shallow production well drilling of the resource for direct-use heating for green-housing and aquaculture, and deep geothermal exploratory drilling.

Naturally occurring arsenic, boron, fluoride, sulfate, total dissolved solids (TDS) and pH in the geothermal system may exceed State of New Mexico water quality criteria stated at NMAC 20.6.2.3103. Multiple isolated fresh water aquifers do not exist in the LDG Project area, all waters contain less than 10,000 parts per million (ppm) TDS.

The highest concentrations of fluoride are, therefore, expected to be spatially related to the upwelling geothermal system and will change with depth due to changes in mixing and the greater influence imparted by the geothermal system. These concentrations are expected to be lower up gradient of the greenhouse area and at a significant distance down gradient of the greenhouse area. Higher concentrations of fluoride than detected in the alluvial monitoring well network are reported in shallow alluvial wells (Elston et al. 1983). TDS and sulfate

concentrations are generally higher in the alluvial groundwater throughout the Animas Valley (Elston et al. 1983).

2.0 SCOPE OF REPORT

LDG's Discharge Permit GTHT-001 required LDG to collect and analyze groundwater samples from its production, injection, and groundwater monitoring wells. This report was intended to be submitted to OCD by the end of June 2014 but was delayed at OCD's request in order to include additional laboratory analytical results for samples collected from wells LDG 47-7 and LDG 63-7 in September 2014.

LDG's water quality monitoring program describes the protocol for the collection and analysis of these samples. The LDG wells used to develop the background threshold values (BTVs) for selected constituents in the geothermal system are presented in Tables 1 and 2.

In addition to the wells indicated in Tables 1 and 2, other wells with laboratory analytical reports were used in the calculation of BTVs for the geothermal system. This includes temperature gradient well TG-52-7 located approximately 1,600 feet northeast of LDG 55-7. Details of this well are included in Table 3.

Production and injection wells						
Well Name Well Type Total Depths I Liner Interval						
LDG 45-7	Production	2,900 Feet	1,689-2,900 Feet			
LDG 53-7	Injection	4,491 Feet	1,500-4,441 Feet			
LDG 55-7	Injection	2,349 Feet	1,030-1,649 Feet			
LDG 63-7	Injection	3,400 Feet	1,500-3,400 Feet			

TABLE 1 Production and Injection Wells

Well Name	Well Type	Total Depth	Screened Interval		
MW-1	Shallow	80 Feet	60-80 Feet		
MW-1B	Shallow	80 Feet	60-80 Feet		
MW-2	Shallow	80 Feet	60-80 Feet		
MW-3	Shallow	80 Feet	60-80 Feet		
MW-4	Shallow	80 Feet	60-80 Feet		
<u>MW-5</u>	Shallow	80 Feet	60-80 Feet		
MW-6	Shallow	80 Feet	60-80 Feet		
INW-1	Intermediate	600 Feet	580-600 Feet		
LDG 47-7	Deep	3,623 Feet	Cased to 1,589 and open hole to TD		

TABLE 2 Groundwater Monitoring Wells

TABLE 3 Other Wells

Well Name	WellType	Total Bepth	Max Pasing Details
TG 52-7	Thermal Gradient	2,900 Feet	Cased to 2,220 and
			open hole to TD

3.0 METHODS

This section describes the methods used to collect and analyze the groundwater samples. It also describes the methods utilized to calculate BTVs.

3.1 Production, Injection, and Monitoring Wells

Production, injection, and monitoring wells were all sampled prior to start-up of the geothermal power plant. At least three casing volumes were removed from the production well with the production pump prior to sampling. The injection wells were sampled with a low-flow bladder pump or a Kuster flow-through sampling device. Deep monitoring well LDG 47-7 was also sampled using the Kuster flow-through sampling device. The remaining monitoring wells were sampled with a disposable bailer. All samples from these wells were collected in accordance with LDG's *Water Quality Monitoring Program Work Plan (December 20, 2013)*. These samples were submitted for analysis to Hall Environmental Analytical Laboratory (HEAL) in Albuquerque, New Mexico.

3.2 Other Wells

Laboratory analytical results from temperature gradient well TG 52-7 were used in the BTV analysis of the geothermal water. Well TG-52-7 was sampled by Roy Cunniff in 2003 using airlifting and the sample was analyzed by the New Mexico State Air, Water, and Soil Testing Laboratory at New Mexico State University. The laboratory analytical sheets for this sample are included in Appendix A. This laboratory has subsequently closed and no other information about this sample was available.

3.3 Background Threshold Value Calculations

The geothermal water at LDG has been shown to naturally exceed several State of New Mexico water quality criteria as published in NMAC 20.6.2.3103. Because the exceedances are natural in origin, a BTV based on background concentrations is allowed.

The objective of the BTV calculation is to establish an upper percentile limit concentration for each constituent of concern in the Lightning Dock geothermal system for the formation of production and injection. Due to the nature of the Lightning Dock geothermal system, this threshold limit may be exceeded; however, any exceedance is expected to be less than three times the BTVs developed herein and would likely be no more than 20 percent greater than these BTVs.

The expected BTV for dissolved compounds in the Lightning Dock geothermal system can be determined using existing chemical analytical results and EPA-approved procedures. The statistical procedure to calculate BTVs is well documented by the EPA (ProUCL Users Guide, Chapter 1). The appropriate standard for comparison is the 95% Upper Percentile Limit for a Single Observation (UPL95). What is calculated is the value greater than 95% of all expected values if you took a single sample of Lightning Dock geothermal fluid before injection. There is a 5% probability ($\alpha = 0.05$) that a single sample would have a value higher than the UPL95. The EPA-approved software ProUCL 5.0 was used to calculate the BTVs presented herein.

4.0 RESULTS

This section presents the laboratory analytical results for shallow groundwater and geothermal system water, describes the results of the BTVs derived by ProUCL, and provides a description of shallow alluvial groundwater flow direction and gradient. Where the BTV exceeds the NMAC 20.6.2.3103 water quality criteria the BTV is used as the criteria. This switch from the lower water quality criteria to the BTV is commonly referred to as an alternative concentration limit (ACL).

4.1 Laboratory Analytical Results

A summary of laboratory analytical results for the geothermal system wells for samples collected prior to the startup of geothermal power plant operations are presented in Table 4; a summary of laboratory analytical results for the geothermal system wells for samples collected after the startup of the geothermal power plant are presented in Table 5; and a summary of laboratory analytical results for the shallow groundwater monitoring wells collected prior to the startup of geothermal power plant operations are presented in Table 6. A summary of selected constituents in the geothermal production well LDG 45-7 and spent geothermal water prior to injection into LDG 55-7 is presented in Table 7 so that they may be compared for potential changes due to the heat extraction process in the power plant. The laboratory analytical sheets for compliance samples collected in 2013 were submitted to OCD in LDG's Annual Geothermal Well Report dated January 31, 2014 and are excluded from this report.

The second s					
Well	Constituent	Number of			State MCL
Name		Observations	(mard)	(mg/L)	
LDG 45-7	Arsenic	7	0.0031	0.015	1.0
·	Boron	7	0.14	0.51	0.75
	Fluoride	7	3.6	13	1.6
	Sulfate	7	140	540	600
	TDS	7	378	1310	1000
			这是自己的情况		
LDG 55-7	Arsenic	7	0.011	0.015	1.0
-	Boron	7	0.44	0.49	0.75
	Fluoride	7	12	14	1.6
	Sulfate	7	500	530	600
	TDS	7	1280	1320	1000

TABLE 7 Selected Constituents in LDG 45-7 and Spent Geothermal Water

Note: All samples collected after December 20, 2013

The low concentration of 1,1,2,2 tetrachloroethylene detected in well LDG 63-7 and the low concentrations of phenols detected in wells LDG 47-7 and LDG 63-7 in the samples collected in December 2013 and the low concentrations of total phenolics detected in the samples collected from wells LDG 47-7 and LDG 63-7 in September 2014 are related to the Welaco sampling tool used to collect the samples. Welaco indicated to LDG that diesel fuel or solvents were commonly used to wash sampling tools and that the sampling tool was not steam cleaned prior to use at LDG.

The laboratory analytical results presented in Table 6 provide a baseline for shallow groundwater quality in the project area prior to commercial power generation. A summary of selected constituents in the shallow groundwater prior to commercial power generation is presented in Table 8 along with the State MCLs. The shallow alluvial groundwater sample set contains a total of seven samples and one duplicate sample. ProUCL guidance suggests that at least 10 samples are needed to statistically determine a BTV. In lieu of an insufficient number of samples of shallow groundwater for BTV calculations using ProUCL, the BTVs for the constituents of concern in the shallow alluvial groundwater are preliminarily set to the maximum detected value as shown in Table 8. The use of additional historic data from the greenhouse would provide a sufficient number of samples to calculate BTVs for the shallow alluvial groundwater.

			en nennenng	
Constituent	A Nimbertof	Milninum?	Marthure	Sammer
Arsenic	7	0.0055	0.019	1.0
Boron	7	0.22	0.7	0.75
Fluoride	7	1.3	12	1.6
Sulfate	7	510	1200	600
TDS	7	1210	3210	1000

TABLE 8 Summary of Selected Constituents in Shallow Monitoring Wells

Laboratory analytical sheets for results in Table 5 that were collected prior to December 2013 and were not submitted to OCD as part of the 2013 annual geothermal well report are included in Appendix A. The laboratory analytical sheets for the samples collected from the geothermal system after December 2013 are included in Appendix B.

4.2 Background Threshold Values

BTV calculations were conducted using EPA guidance documents and software. This process includes the following steps:

- Group groundwater sampling data by the formation of interest.
- Examine the data for outliers and adjust the data set if appropriate.
- Determine summary statistics (i.e. maximum, median).
- Determine the best distribution fitting the data for calculation of a BTV (e.g. Normal, Lognormal, or Nonparametric).

The results of the UPL95 analysis for geothermal samples, and sampling to date for the alluvial monitoring wells are in Table 9. LDG believes that it is appropriate to use the BTVs presented herein to establish ACLs in the geothermal system for the production and operation of the power plant.

Naturally occurring arsenic, boron, fluoride, sulfate, TDS, and pH in the geothermal system exceed State of New Mexico water quality criteria as published in NMAC 20.6.2.3103. The BTVs derived by Pro UCL for these naturally occurring constituents are presented in Table 9 along with the State MCLs. The complete set of ProUCL output is included in Appendix C.

				001111 01101		
Constituent	Number of Observations		Maximum (mg/L)		SETTEMON MULTIN	
Arsenic	14	0.0074	0.42	0.42	0.1	0.42
Boron	14	0.12	2.6	2.6	0.75	2.6
Fluoride	15	1.4	17	15.43 ¹	1.6	17
Sulfate	16	120	630	630	600	630
TDS	16	321	1572	1572	1000	1572

TABLE 9 Summary of ProUCL Alternate Concentration Limits

Note: 1 Normal distribution including outliers

4.3 Groundwater Flow Direction and Hydraulic Gradient

The water-level contour map for the shallow monitoring wells presented in Figure 3 is based on measurements in mid-December of 2013, just prior to the beginning of commercial geothermal power production. These measurements suggest that the water table takes the form of a low ridge sloping from east-northeast to west-southwest across the project area. Presumably the water-table ridge, which may simply be the western part of a water-table mound that would be evident if data were available for locations east of the project area, is the expression of natural upward groundwater flow from the geothermal system into the shallow aquifer.

Monthly pumping and injection amounts for January through June, shown as Figure 4, increased from 119 acre-feet in January to 138 acre-feet in March, then declined in April and were significantly less in May because pumping was suspended during the installation of a new submersible pump in well 45-7 between May 12 and 18. Pumping and injection in June were nearly at the levels of February and March. The water table generally rose after commercial power production began. The orientation of the crest of the water-table ridge appears to have shifted slightly from east-northeast toward the northeast between the pre-operation condition and the June 19, 2014 measurements (Figures 5 through 11), and the difference in elevation across the ridge became somewhat greater as indicated by the water-level change maps (Figures 12 through 17). These maps show that between the pre-operation condition in mid-December 2013, and the configuration of the water table on June 19, 2014, the water table rose by 4 to 6 feet along the crest of the ridge between wells MW-1A and MW-3, but considerably less in the outlying wells MW-4, MW-5 and MW-6. The hydraulic gradients for these time periods are presented in Table 10.

Date	Gradient	Flow Direction Ranges
December 9-11, 2013	0.005	South to West-Northwest
December 28, 2013	0.005	South to West-Northwest
January 27, 2014	0.005	South to West-Northwest
February 22, 2014	0.004	South to West-Northwest
March 17, 2014	0.004	South to West-Northwest
April 17, 2014	0.005	South to West-Northwest
May 11, 2014	0.005	South to West-Northwest
June 19, 2014	0.005	South to West-Northwest

TABLE 10 Hydraulic Gradients December 2013 through June 2014

Water-level hydrographs of the shallow monitoring wells (Figures 18 and 19) show that the rate of water-level rise was nearly uniform over time in the wells farthest from the principal injection well (MW-4 and MW-5), but that the rate of rise appears to have become less after the January measurements in the closer monitoring wells MW-1A, MW-1B, MW-2, and MW-4 even though the February and March injection amounts were greater than the January amount. A decline was seen in all of the shallow monitor wells during and after the non-pumping period in mid-May. The rates of rise between late January and early May for the more distant wells, MW-4 and MW-5, are about 2.2 and 1.6 feet per year, respectively and for the wells closer to the injection well ranged up to about 5.7 feet per year. The record is probably too short to assess whether these rates would now be linear for an extended period, or are actually continuing to decrease. None of these changes have been compared with water-level measurements in shallow wells outside the project area to assess the extent to which they are related to causes other than the geothermal operation, such as seasonal irrigation.

The hydrograph for the intermediate-depth monitoring well, well INW-1 (Figure 18) shows that the water level rose at about the same rate as in the nearby water-table well MW-1A until about the end of January 2014, then declined abruptly and now appears to be declining such that by April 17 the level was nearly 3 feet below the position on December 28. The water level in well INW-1 declined by a little more than 5 feet during the non-pumping period in mid-May, then rose again and appeared to follow the earlier trend after pumping began again.

Water levels in injection wells 53-7 and 63-7, which have received only very small amounts of water, declined during January (Figure 20). The record for well 53-7 shows a decline of roughly 10 feet between the pre-operation measurement in mid-December 2013 and measurements in late January. The water level in well 63-7 declined somewhat less than 2 feet during the second half of January. No measurements were recorded for these wells between mid-December 2013 and June because the wells were on injection. A number of measurements in each well during June showed erratic variation, both above and below the January measurements, over a range of around 30 feet.

5.0 CONCLUSIONS

Fluoride in groundwater at the LDG project is spatially related to natural upward flow from the geothermal system. Based on the single pre-commercial power generation sample from each of the shallow monitoring wells it is not appropriate to apply a statistical analysis using ProUCL or any other method without consideration of all samples collected from shallow groundwater.

It would be appropriate to calculate BTVs for each monitoring well if at least 10 samples had been collected from each well prior to commercial power generation. Any calculations or conclusions drawn about water quality must incorporate the entire body of laboratory analytical results available from reputable sources, with or without laboratory quality assurance/quality control backup.

Groundwater samples were collected by previous investigators from two shallow alluvial wells in the greenhouse area. While the exact wells from which these samples were collected could not be confirmed, they are believed to have been collected from wells G2SE and G3S as indicated on Figure 2. Well G2SE is believed to be 440 feet deep and well G3S is believed to be 250 feet deep.

Both wells were apparently sampled by flowing from a hose bib on the well head. G2SE was sampled by Raser Technologies, Inc. in 2008 and analyzed by TraceAnalysis, Inc. of Lubbock, Texas. Well G3S was sampled by OCD in 1986 and analyzed by the New Mexico State Scientific Laboratory with a duplicate sample analyzed by Westech Laboratories, Inc. of Phoenix, Arizona. The fluoride concentration detected in G2SE was 9.95 ppm and the fluoride concentration detected in G2SE was 9.95 ppm and the fluoride concentration detected in sull G3S was 15.46 ppm. This further illustrates the variability and high fluoride concentrations in shallow groundwater with respect to spatial relationship to upwelling geothermal water. The laboratory analytical sheets for these samples are also included in Appendix A.

Based on the laboratory analytical data for wells LDG 45-7 and LDG 55-7 presented in Table 5, the extraction of geothermal water has not caused changes to the quality of the geothermal water. The analytical results for the samples collected from LDG 45-7 on 1/7/2014 and 1/28/2014 appear to indicate that the samples were contaminated by de-ionized water during the equipment decontamination process. The analytical results for the sample collected on 2/25/2014 appear to indicate that the sample was largely de-ionized water from the equipment decontamination process.

Based on the comparison of laboratory analytical data in wells LDG 45-7 and LDG 55-7 presented in Table 7, the extraction of heat from the geothermal water by the geothermal power plant causes no changes to the guality of the spent geothermal water.

Going forward, it is most appropriate to sample the shallow monitoring wells for the constituents of concern that are higher in the geothermal system and use the concentrations reported in the samples collected prior to commercial power production as the baseline for comparison.

6.0 REFERENCES

Elston, E., Deal, E., Logsdon, M., Geology and geothermal waters of Lightning Dock region, Animas Valley and Pyramid Mountains, Hidalgo County, New Mexico, 1983, New Mexico Bureau of Mines and Mineral Resources, Circular 177.

EPA ProUCL, Version 5.0, September 2013

.

FIGURES

.

,

`

JOHN SHOMAKER & ASSOCIATES, INC. -

For 1% significance level, 120 is not an outlier.

Dixon's Outlier Test for TDS

Number of Observations = 16 10% critical value: 0.454 5% critical value: 0.507 1% critical value: 0.595

1. Observation Value 1572 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.277

For 10% significance level, 1572 is not an outlier. For 5% significance level, 1572 is not an outlier. For 1% significance level, 1572 is not an outlier.

2. Observation Value 321 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.497

For 10% significance level, 321 is an outlier. For 5% significance level, 321 is not an outlier. For 1% significance level, 321 is not an outlier.

Dixon's Outlier Test for pH

Number of Observations = 13 10% critical value: 0.467 5% critical value: 0.521 1% critical value: 0.615

1. Observation Value 9.51 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.087

For 10% significance level, 9.51 is not an outlier. For 5% significance level, 9.51 is not an outlier. For 1% significance level, 9.51 is not an outlier.

2. Observation Value 6.6 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.035

For 10% significance level, 6.6 is not an outlier. For 5% significance level, 6.6 is not an outlier. For 1% significance level, 6.6 is not an outlier.

Dixon's Outlier Test for Zinc

Number of Observations = 4 10% critical value: 0.879 5% critical value: 0.765 1% critical value: 0.889

1. Observation Value 0.3 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.903

For 10% significance level, 0.3 is an outlier. For 5% significance level, 0.3 is an outlier. For 1% significance level, 0.3 is an outlier.

2. Observation Value 0.022 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.018

For 10% significance level, 0.022 is not an outlier. For 5% significance level, 0.022 is not an outlier. For 1% significance level, 0.022 is not an outlier.

.

.

- -

TABLES

.

.

Summary of Geothermal Aquiter Analytical Results Prior to 2014 Lightning Dock Geothermal HL01, LLC - Hidelgo County, New Maxico TABLE 4

The second se		Discourse.					and the second second		and the second	A DESCRIPTION OF	And Street	1 100.00.0	1000	1	1. Carlo	And Personnel Name	- Locales -	CONTRACT.
the state of the second state of the		200.00	Sign Plana			Single Phase											Single Phase	Congles Whenan
	The second second	1																
	IMAC 20-6-2	and the second																
Analyte	Olssolved	2.000	and the second second	A CONTRACTOR	1.11.22.27	the second second	Contraction of the	10000000		Contraction of the		Contraction of the		12.000				
4	Concentration				1000		Contraction of the local division of the loc				1000						-	
1 Arsenic (As)	0.1 mg/	1	0.012	0.018	0.015	0.0098	0.014	0.43	0.07	ND	0.016	0.0074	0.02	0.019	0.018	0.017	3.2	0.056*
2 Barium (Ba)	1.0 mg/	1	0.065	0.076	0.061	0.054	0.05861	0.13	55.7	0.038	0.042	0.094	0.071	0.071	0.068	0.05	0.051	0.014*
Cadmium (Cd)	0.01 mg/	1	ND	NA	NA	ND	NA	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND	NA
Chromium (Cr)	0.05 mg/	1	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA	NA
5 Cyanide (CN)	0.2 mg/	1	ND	NA	NA	ND	NA	ND	NA	ND	NA	NA	NA	NA	NA	NA	ND	NA
B Fluoride (F)	1.6 mg/	1	34	11.1	11.6	10	33.	12	\$1.82	1.4	11.6	9.5	10.8	10.8	9.37	8.93	17	14.2
7 Lead (Pb)	0.05 mg/	1	ND	NA	NA	ND	NA	ND	ND	ND	NA	ND	NA	NA	NA	NA	0.0011	NA
# Total Mercury (Hg)	0.002 mg/	1	ND	NA	NA	ND	NA	ND	5.2	ND	NA	NO	NA	NA	NA	NA	ND	NA
B Nitrate (NO, as N)	30.0 mg/	-	NO	NA	NA	ND	NA	ND	NA	ND	NA	ND	NA	NA	NA.	NA	ND	<0.500
10 Selenium (Se)	0.05 mg/		0.0017	NA	NA	0.0034	NA	ND	ND	NA	NA	0.0038	NA	NA	NA	NA	0.0021	NA
III Silver (Ag)	0.05 mg/		ND	NA	NA	ND	NA	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND	NA
J2 (Uranium (U)	0.03 mg/		ND	NA	NA	ND	NA	ND	1.77	ND	NA	ND	NA	NA	NA	NA	ND	NA
23 Radioactivity: Radium (Ra 225)	30 pC//		6.49 ± 1.35 (0.367)	NA	NA	NA	NA	(0.981)	NA	0.166 ± 0.380 (0.225)	NA	NA	NA	NA	NA	NA	-0.220 ± 0.306 (0.775)	NA
34 Radioactivity: Radium (Ra 228)	30 pCi/l		0 522 ± 0.331 (0.614)	NA	NA	NA	NA	0.878 (0.924)	NA	0.414 ± 0.460 (0.931)	NA	NA	NA	NA	NA	NA	0.0300 ± 0.365 (0.847)	NA
25 Radionuclides: Radon 222	None		2560	NA	NA	NA	NA	-35.4 LH	MA	-67.8 U	NA	NA	NA	NA	NA	NA	78.6 U	NA
16 Benzene	1.0 ug/		ND	NA	NA	NA	NA	1000	NA	ND	NA		NA	NA	NA	NA	-40	NA
17 Polychlorinated biphenyls (PCB's)	1 ug/		ND	NA	NA	NA	NA	ND	NA	ND	NA	ND	NA.	NA	NA	NA	ND	NA
18 Toluene	750 ug/		ND	NA	NA	NA	NA	- 45	ND	ND	NA	3.4	NA	NA	NA	NA	2	NA
19 Carbon Tetradilonde	10 ug/1		NO	NA	NA	NA	NA	ND	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA
20 1,2-dichlorothane (EUC)	10 mg/1		ND	NA.	NA	NA	NA	MD	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA
22 (1,1-dichoroethene (1,1-0,1)	5 ug/	-	ND	NA	NA	NA	NA	ND	NA	ND	NA	ND	NA	NA	NA	NA	NO	NA
22 1.1.2.2-tetrachicroethytene (FCE)	20 Mg/1		NO	NA	NA	NA	NA	ND	NA	ND	NA	ND	NA	NA	NA	NA	370	NA
23 ALL-Unchargement (ICL)	100 Mg/1		NO	NA	NA	NA	NA	NO	MA	NO	NA	ND	NA	NA	NA	NA	1	NA
25. Intal wienes	630 ug/		NO	NA	NA.	NA	NA	1.5	NA	ND	NA	NO	NA	NA	NA	NA	ND	NA
26 methylene chloride	100 ug/		ND	NA	NA	NA	NA.	19	NA	NO	NA	ND	NA	NA	NA NA		ND	NA.
27 chiproform	100 un/		ND	NA	NA	NA	-	10	NA	ND	PEA.	ND	NA NA	NA NA	NA	NA.	ND	NA
28 1.1-dichloroethane	25 ug/		ND	NA	NA	NA	NA	ND	NA NA	ND	NA	ND	NA	NA	NA	100	NO	NA NA
29 Jethlene dibromide (EDB)	0.1 us/		ND	NA	NA	NA	NA	ND	NA	ND	NA	NO	NA	NA	NA	NA	ND	NA
1.1.1-trichloroethane	60 ug/l		ND	NA	NA	NA	NA	ND	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA
III 1,1,2-trichloroethane	10 ug/		ND	NA	NA	NA	NA	NO	NA	ND	NA	ND	NA	NA	NA	NA	ND	No
37 1,1,2,2-tetrachloroethane	10 ug/l		ND	NA	NA	NA	NA	ND	NA	ND	NA	ND	MA	NA	NA	NA	ND	NA
33 vinyt chloride	1 ug/l		ND	NA	NA	NA	NA	ND	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA
16 PAH's: total naphthalene + monomethylnaphthalenes	30 ug/l		ND	NA	NA	NA	NA	ND 7	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA
35 benzo-a-pyrene	0.7 ug/1		NO	NA	NA	ND	NA	ND	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA
TPH 418.1	None		52	NA	NA	NA	NA	ND	NA	ND	NA	ND	NA.	NA	NA	NA	2.8	NA
		10000			-		Series and series and							1.102.0	-			1000000000
2 Chioride (CI)	250.0 mg/1	-	97	86.9	90.1	86	85.8	190	313	33	79	140	90.2	86	89.8	85.6	67	78.1
Copper (Cu)	1.0 mg/l		ND	NA	NA	ND	NA	ND	ND	ND	NA	ND	NA	NA	NA	NA	0.029	0.006*
a Iron (Fe)	10 mg/1		ND	0.025	0.021	ND	<0.005	0.82	NA	NO	0.04	0.4	ND	ND	ND	ND	0.29	3.91*
R Manganese (Min)	0.2 mg/1		0.018	0.027	0.0082	ND	0.0078	0.14	100000	0.067	0.002	0.13	0.016	0.015	0.0069	0.0066	0.028	0.183*
E Sulfate (SO.)	1/gm 200.9	-	NU	NA NA	RA	NO	RA COL	2.6	NA	ND	NA	ND	NA	NA	NA	NA	3.8	NA
P Tetal Distributed Selicity (TDS)	1000.0 mg/		1220	1130	1985	530	301	290	545	120	453	630	531	305	526	301	250	303
The Dal	1000.0 mg/	-	MO.	8370	1394	100	1324	1199	1572	323	2200	842	1970	1508	1.990	1299	800	3070
R att	hetween 6.9		6.82	6.64	8.17	67	NA.	7.13	0.00	1.049	8.53	6.40	6.07	110	6.6	100	0.02	R.A.
2		-			8-31	9.7	100	1.35	10	1.31	8.34	9.87	0.97				0.41	249
I Aluminum (Al)	5.0 mg/l		0.21	0.177	0.175	ND	0.167	0.05	0.78	ND	0.209	0.08	NA	NA	NA	NA	0.04	NA
3 Boron (8)	0.75 mg/l		0.46	0.441	0.432	0.46	0.411	2.6	10.10	0.12	0.482	0.65	0.469	0.447	0.467	NA	and the second	2.08*
Cobalt (Co)	0.05 mg/l		ND	NA	NA	ND	NA	ND	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA.
# Molybdenum (Mo)	1.0 mg/l		0.026	NA	NA	0.03	NA	0.038	NA	ND	NA	0.046	NA	NA	NA	NA	0.094	NA
S Nickel (NI)	0.2 mg/l		ND	NA	NA	ND	NA	0.081	0.01	ND	NA	ND	NA	NA	NA	NA	0.049	NA
6 Bromide	None		ND	NA	NA	NA	NA	0.82	NA	NA	NA	0.46	NA	NA	NA	NA	ND	NA
Z Uthium (U)	None		0.9	NA	NA	NA	NA	1	NA	0.0887	NA	0.8	NA	NA	NA	NA	0.6	NA
Rubidium (Rb)	None		0.25	NA	NA	NA	NA	0.24	NA	0.0127	NA	0.3	NA	NA	NA	NA	0.07	NA
9 Tungsten	None		ND	NA	NA	NA	NA	ND	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA
MOTES							1000						1915-1-5	-	-			
NA = Not Analyzed	-							-			-			-	-			
NA = Not Detected														-				
* Total metal not dissolved metal	_																	
U = Not detected at minimum detectable concentration		-			-						-							
H = Anaylsis performed past recommended holding time	•																	

Background Concentration Report, July 2014 Project 11-517-00102

0

0

0

							Lightniv	ummary of Geothern ng Dock Geotherma	nel Aguiler Analytical Rei II HL-01, LLC - Hidalgo Co TABLE 5	suits for 2014 junity, New Mexico								
		-		PREST ROM	LINE WALF Wages	The ser playe	(100 45 3 Stephen	LDG at / Ships	LOD-45-7 Grige Parent ELS	49 472	LOT 15.7 Single	Hoga Photo	wast. when	LOS SS 774	ing st. y Sauda Phata	Libri 92-7	124 SL-7	100 10-1
																		Anona /a
	Renac 20 6.2	San ala	-4/25/2014	(FRITED'S						8/11/70-16	al sel min		5796/2014					6/28/3811
Analyte	Concentration				-	-		PARTICIPACITY OF THE PARTY				-	The second second				Warshall and	
Arsenic (As)	0.1 mg/l	-	0.013	0.015	0.013	0.012	ND	0,004	0.0031	. NA	0.013	0.013	0.015	0.017	0.013	0.013	0.011	NA
Barium (Ba)	1.0 mg/l		0.064	0.061	0.06	0.066	ND	0.022	0.018	NA	0.065	0.059	0.061	0.062	0.015	0.065	0.063	NA
Cadmium (Cil)	0.01 mg/l		ND	ND	NO	ND	ND	ND	ND	NA	NO	NO	NO	ND	ND	ND	NO	NA
Cyanide (CN)	0.2 mg/s		ND	NA	ND	ND	ND	ND	NO	NA	NO	ND	NA	ND	ND	NO	ND	NA
Fluoride (F)	1.6 mg/t		12	11	12	33	ND	3.9	1.6	NA	12	12	12	12	12	12	14	NA
Lead (Pb)	0.05 mg/1		ND	ND	ND	NO	ND	ND	ND	NA	NO	ND	ND	NO	ND	ND	NO	NA
Total Mencury (Hg)	0.001 mg/l		ND	NO	ND	ND	0.00045	0,00033	0.0003	NA	ND	0.0005	ND	ND	NO	ND	ND	NA
Selenium (Se)	0.05 mg/l		0.0014	0.0016	0.0010	NA	NO	NA	NO	NA	0.0027	0.0011	0.0021	NO	0.0018	0.0014	0.0014	NA
Silver (Ag)	0.05 mg/1		ND	ND	ND	ND	ND	ND	ND	NA	ND	NO	NO	NO	NO	NO	ND	NA
Uranium (U)	figm £0.0		ND	NO	ND	ND	ND	ND	ND	NA	NO	ND	ND	ND	NO	ND	NO	NA
Radioactivity: Radium (Ra 126)	30 pGA		5.14 ± 1.13 (0.782)	3,23 ± 1.03 (0.639)	4.33 ± 1.43 (0.995)	6.22 = 1.62 (0.770)	0.224 ± 0.270 (0.412)	1.95 ± 0.862 (0.757)	4.67 ± 1.50 (0.901)	MA.	5.35 + 1.06 (0.577)	5.14 8 1.32 (0.968)	4.34 ± 1.22 (0.650)	4.17 = 1.22 (0.054)	4.18 ± 3.17 (0.692)	3.58 ± 1.04 (0.764)	6.94 ± 1.66 (0.708)	NA
Radioactivity: Radium (Ra 228)	30 pCl/L		4.298 ± 0.365 (0.785)	0.478 ± 1.03 (0.635)	0.441 ± 0.432 (0.893)	0.410 ± 0.419 (0.996)	0.369 ± 0.263 (0.507)	0.264 ± 0.349 (0.737)	-0.0117 ± 0.990 (0.913)	NA	0.783 ± 0.409 (0.790)	0.185 ± 0.355 (0.782)	0.615 ± 0.382 (0.713)	(0.647)	(0.791)	0.448 ± 0.352 (5.450)	0.467 ± 0.349 (0.580)	NA
Senzene	1.0 ug/1		NO	ND	ND	NO	3490	8.0	6520	Align Tabler	2313 1 244 (112) ND	ND	ND ND	ND	NO	ND	NO	ND
Polychiorinated biphenyis (POB's)	1 485		NO	NO	ND	ND	ND	ND	ND	NA	ND	ND	ND	NO	NO	ND	NO	NA
Toluene	750 ug/l		ND	ND	ND	ND	ND	15	1.2	19	ND	ND	ND	ND	ND	ND	ND	ND
Cartson Tetrachloride	10 ug/t		NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	NO	ND
1.1-dichiomethene (L1-DCE)	10 ug/t		NO	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	NO	ND	ND
1, 1, 2, 2-tetrachioroethylene (PCE)	20 ug/1		ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	NO	ND	ND	ND
1,1,2-trichloroethylene (TCE)	100 ug/t		ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND
ethylbenzenie	750 ug/1		ND	ND	ND	ND	ND	ND	NO	ND	NO	NO	NO	ND	NO	NO	ND	ND
Cotal rylenos	620 ug/t		NO	NO	ND	ND	ND	ND	ND	7	ND	NO	ND	ND	NO	NO	ND	ND
chioroform	100 ug/1		ND	ND	ND	NO	ND	ND	NO	ND	ND	ND	MD	ND	NO	NO	ND	ND
1, 1-dichloroethane	25 ug/l		NO	ND	ND	NO	ND	NO	ND	ND	ND	ND	ND	NO	ND	NO	NO	ND
athlene dibromide (EDB)	0.1 ug/7		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-trichloroethene	50 ug/1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	NO	ND	NO	NO	NO
1.1.2.2-tetrachioroethane	10 ug/i		NO	ND	ND	NO	ND	ND	ND	ND	NO	DN ND	NO	ND	NO	ND	ND	CIN
winyi chioride	1 ug/1		NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	NC	ND	NO	ND	ND	ND
PAH's: total naphthalene +				Contraction of the	1.	CONTRACTOR OF	1.500	0		and the state of the	A Property of the second			S.E. 125	17.77.25.65	NO	ND	
monomelhyinaphihalenes	90 mg/1		NO	ND	ND	ND	ND	ND	ND	NA	ND	ND	NC	ND	ND	AUD	ND	NA
TPH 418.1	None		13	NO	1.2	1.9	2.7	9	6.1	NEA	ND	4.6	5.7	6	1.6	15.0	3	NA
In load to low	100.0			The local division in which the			and the second se					and the second second	and a set of the set	CALL COLUMN TO A COLUMN		and the second second	44	
Copper (Cu)	1.0 mg/l		NC	ND	ND	NO	ND	ND	ND	NA	ND	ND	NO	ND	ND	ND	ND	NA
Iron (Fe)	3.0 mg/1		0.041	0.038	0.023	0.032	0.04	ND	0.052	NA	0.085	0.072	0.32	0.074	0.13	0.17	0.22	NA
Manganese (Mn)	0.2 mg/l		0.02	0.026	0.026	0.025	ND	0.0079	0.011	NA	0.023	0.025	0.027	0.026	0.029	0.026	0.029	NA
Phenols Guillate (2011)	0.005 mg/l		ND	ND	NO	NO	NO	ND	ND	28	NO	ND	ND	HD	ND	ND	ND	27
Total Dissolved Solids (TDS)	1005.0 mg/l		1300	570	1100	1910	NO	384	140	NA	510	130	1,500	018	1320	310	1910	NA NA
Zins (2n)	10.0 mg/1		NO	ND	ND	ND	ND	NA	ND	NA	HIC	ND	ND	ND	ND	ND	ND	RA
pH	between 6-9		6.8	6.8	7	7.01	4.62	5.67	5.67	NA	6.99	6.96	6.25	3	6.72	7.00	6.77	NA
Aluminum (Al)	5.0 mg/1	-	0.21	0.21	0.22	0.23	ND	0.076	0.089	NA	0.23	0.23	0.22	0.23	0.23	0.24	0.22	NA
Boron (8)	0.75 mg/l		0.47	0.46	0.64	0.51	ND	0.16	0.34	NA	0.44	0.64	0.45	0.46	0.47	0.49	0.45	NA
Cobeit [Cn]	0.05 mg/l		ND	NO	ND	HD	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	NA
Molybdenum (Mo)	1.0 mg/l		0.028	0.027	0.027	0.091	ND	NO	ND	NA	0.026	0.024	0.026	0.028	0.029	0.093	0.026	NA
Hechnide	0.2 mg/l		0.30	0.26	0.27	ND 0.27	ND	NA	0.14	NA	ND 0.27	No	0.24	0.26	NA	NA	0.29	NA NA
Lithiom (Li)	None		0.653	0.688	0.672	0.661	ND	0.259	605.0	NA	0.663	0.678	0.669	0.661	0.737	0.747	0.721	NA
Rubidium (Rb)	None		0.355	0.362	0.366	0.345	ND	0.123	0.0985	NA	0.35	0.346	0.365	0.354	0.361	0.356	0.356	NA
Tungsten	None		0.0867	0.0983	0.0785	0.0823	ND	0.0438	0.03	NA	0.0823	0.0791	0.302	0.081	0.0792	0.0683	0.0799	NA
NOTES	and the second se	State of the local division in which the local division in the loc	and the second second	and the second s		and the second second	the state of the state of the state	and the second second	the second second second second	and the second division of the second divisio	and the second second second	and the second distance of the second distanc	Statement Comments	-		and the second se	and the second distance of the second distanc	Station of the local division in
NA = Not Analyzed				1						10000				1000		1.		
ND = Not Detected			-						12						200			
* Total metal not dissolved metal				-		-						-		1				
H = Anaylsis performed past recommended h	olding time																	

D

3

D

10/10/2014

Summary of Alluvial System Analytical Results Prior to 2014 Lightning Dock Geothermal HL-91, LLC - Hidaigo County, New Mexico TABLE 6

		Marrie and							ALL	ANN A
Final and the state of the second second second second	NORAC 20.6.2	Selfe and	LAISED-CAL	THE PERSONNELLE	AND ALEUTER					
and the second	Std. Dissolved	Martin State			A Company and a second		and the second second second	I State State	State of the state	States and
Analyte	Concentration	Sample Date	31/252013	12/11/2013	11/25/2013	11/25/2013	11/24/2013	11/24/2013	11/24/2013	11/23/2013
1 Arsenic (As)	1 mg/		0.0055	0.011	0.0082	0.0083	0.019	0.012	0.0060	0.020
2 Barium (Ba)	1 mg/		0.063	0.14	0.044	0.043	0.06	0.059	0.041	0.047
S[Ladmium (Cd)	U.UI mg/		ND	ND	ND	ND	ND	ND	ND	MD
Alchromium (Cr)	0.5 mg/	4	ND	ND	NO	ND	ND	ND	NO	ND
6 Describe (CN)	0.2 mg/	4	73	NU	NU	NO	ND	ND	ND	ND
Thered (Db)	0.05 mail		ND	0.0044	11	11	1/	4.3	1.3	6.9
R Total Marcury (He)	0.002 mg/		0.00079	0.0016	ND	ND	NU	NU	ND	ND
9 Nitrate(NO3 as N)	10 mg/	1	26	15	3.1	3.3	0.00034	NO	0.0010	0.00077
10 Selenium (Se)	0.05 me/		0.0052	NA	0.0035	0.0035	0.0034	0.032	0.018	46
11 Silver (Ad)	0.05 mg/	N.	ND	ND	ND	ND	ND	NO	0.026 ND	NO
12 Uranium (U)	0.03 me/	1	0.011	0.0037	ND	ND	ND	0.0051	0.014	0.0013
13 Radioactivity: Radium 266	30 pCi/	1	0.285 ± 0.350 (0.571)	2.00 ± 0.722 (0.566)	0.266 ± 0.377 (0.638)	0.183 ± 0.312 (0.550)	0 102 + 0 375 (0 720)	1.32 + 0.615 (0.664)	0.004	0.140 + 0.300 10 6671
14 Radioactivity: Radium 288	30 pCi/		0.888 ± 0.456 (0.799)	0.711 ± 0.402 (0.727)	0.0585 ± 0.308 (0.702)	0.468 ± 0.385 (0.767)	0.156 ± 0.270 (0.590)	0.542 + 0.396 /0.772)	0.333 + 0.452 (0.966)	2 53 + 0 949 (1 30)
15 Radionuclides: Radon 222	None		238	676	580	567	781	1090	197	667
16 Benzene	1 48/	1	ND	ND	ND	ND	ND	ND	ND	ND
17 Polychlorinated biphenyls (PCB's)	1 ug/	Y	NA	ND	NA	NA	NA	NA	NA	NA
18 Toluene	750 ug/	1	ND	ND	ND	ND	ND	ND	ND	ND
19 Carbon Tetrachloride	10 ug/		ND	ND	ND	ND	ND	ND	ND	ND
20 1,2-dichloroethane (EDC)	10 ug/		ND	ND	ND	ND	ND	ND	ND	ND
21 1,1-dichloroethylene (1,1-DCE)	5 ug/		ND	ND	ND	ND	ND	ND	ND	ND
22 1,1,2,2,-tetrachioroethene (PCE)	20 ug/		ND	ND	ND	ND	ND	ND	ND	ND
23 1,1,2-trichloroethylene (TCE)	100 ug/	Ĩ	ND	ND	ND	ND	ND	ND	ND	ND
24 ethylbenzene	750 ug/	1	ND	ND	ND	ND	ND	ND	ND	ND
25 Total xylenes	620 ug/	1	ND	ND	ND	ND	ND	ND	ND	ND
26 methylene chloride	100 ug/	1	ND	ND	ND	ND	ND	ND	ND	ND
27 chloroform	100 ug/		28	33	4.9	5.2	21	ND	ND	ND
28 1,1-dichloroethane	25 ug/		ND	ND	ND	ND	ND	ND	ND	ND
29 ethlene dibromide (EDB)	0.1 ug/	1	ND	ND	ND	ND	ND	ND	ND	ND
30 1,1,1-trichloroethane	660 ug/	1	ND	ND	ND	ND	ND	ND	ND	ND
31 1,1,2-trichloroethane	10 ug/		ND	ND	ND	ND	ND	ND	ND	ND
32 1, 1, 2, 2-tetrachloroethane	10 ug/		ND	ND	ND	ND	ND	ND	ND	ND
33 vinyi chioride	1 ug/		ND	ND	ND	ND	ND	ND	ND	ND
34 PAR S, total naphtnaiene + naphtnaienes	30 ug/		NU	ND	ND	ND	ND	ND	ND	ND
acitou ate t	0.7 027	-	ND	1.2	NU	ND	ND	ND	ND	ND
30 177 410.4	inches	-	NO	1.3	NU	NU	1.1	NA	NA	ND
1 Chloride (CI)	250 mg/		100	120	96	96	94	710	230	130
2 Copper (Cu)	1 mg/l		ND	ND	ND	ND	ND	ND	ND	ND
3 (Iron (Fe)	1 mg/		ND	8.5	ND	ND	0.24	ND	0.021	0.39
S Phenol	0.2 mg/		ND.	NO. AT	0.041	0.036	0.18	0.15	0.27	0.074
6 Sulfate	600 mg/		620	540	510	510	ND	UN	ND	NO
7 Total Dissolved Solids (TDS)	1000 mg/		1780	1520	1380	1210	1280	2210	930	750
8 Zinc (Zn)	10 mg/		ND	0.015	0.015	ND	ND	0.048	0.023	0.033
9 pH	6-9 pH Units		7.69	7.66	7.6	7.58	8	7.38	7.62	7.56
d bhumbeum (All)			0.034			Section of the sectio	CONTRACTOR OF THE OWNER		AND COLOR OF STREET, ST	
2 Brown (B)	2 892/1	-	0.034	0.45	0.049	0.024	0.31	NO	ND	0.63
3 Cobalt (Co)	0.05 mg/		ND ND	ND ND	0.37	0.30	0.44	0.22	0.31	0.39
4 Molybdenum (Mo)	1.0 mg/		0.058	0.029	0.027	0.026	0.065	0.014	0.021	0.035
S Nickel (Ni)	0.2 mg/l		ND	ND	ND	ND	ND	NO	ND	ND
6 Bromide	None		ND	NA	NO	ND	ND	2.2	1.2	ND
7 Lithium (Li)	None		0.8	0.533	0.7	0.7	0.5	1.7	0.4	0.8
8 Rubidium (Rb)	None		0.2	0.189	0.1	0.1	0.2	0.4	0.1	0.1
9 Tungsten	None	-	ND	0.0386	ND	ND	ND	ND	ND	ND
Notes										
NA = not analyzed										
ND = not detected										
* total metal not dissolved metal										

Background Concentration Report, June 2014

Project 11-517-00102

0

0

0

B/7/2014

Appendix C

ProUCL Output Results

na a la companya de l

Production and Injection Formation	NMAC 20.6.2 Std. (mg/L)	Number of Observations	Maximum (mg/L)	Mininimum (mg/L)	Median (mg/L)	BTV	Method	Distribution
Arsenic	0.1	14	0.42	0.0074	0.0175	0.42	95% UPL	Nonparametric
Boron	0.75	14	2.6	0.12	0.464	2.6	95% UPL	Nonparametric
Barium	1	15	0.13	0.014	3.378	0.111	95% UPL (t)	Normal
Chloride	250	15	140	67	86.9	140	95% UPL	Nonparametric
Fluoride	1.6	15	17	8.93	11.1	15.43	95% UPL (t)	Normal
Iron	1	6	0.4	0.021	0.165	0.558	95% UPL (t)	Lognormal
Manganese	0.2	14	0.183	0.002	0.017	0.249	95% UPL (t)	Lognormal
Selenium	0.05	4	0.0038	0.0017	0.00275	0.0054	95% UPL (t)	Normal
Sulfate	600	16	630	120	506.5	630	95% UPL	Nonparametric
Zinc	10	4	0.3	0.022	0.0995	0.411	95% Percentile	Gamma
TDS	1000	16	1572	321	1177	1572	95% UPL	Nonparametric
рН	6-9 pH units	13	9.51	6.6	7.33	9.809	95% UPL (t)	Normal

Notes: At leaset 9 samples are recommended BTV = Background Threshold Value

.

Location	Date	Arsenic	Boron	Barium	Chloride	Fluoride	Iron	Manganese	Selenium	Sulfate	TOS	рН	Zinc
LDG 45-7 Single Phase	12/19/2013	0.012	0.46	0.065	97	14		0.018	0.0017	540	1270	6.82	
LDG 45-7 Single Phase Fluid	1/26/2012	0.018	0.441	0.076	86.9	11.1	0.025	0.027		507	1370	6.64	
LDG 45-7 Flashed Fluid	1/26/2012	0.015	0.432	0.061	90.1	11.6	0.021	0.0082		526	1390	8.37	f
LDG 45-7 Single Phase Fluid	12/8/2011	0.0098	0.46	0.054	86	10			0.0034	510	1200	6.7	
LDG 45-7 Total Fluid	1/26/2012	0.014	0.411	0.05861	85.8	11		0.0078		501	1324		
LDG 53-7 Single Phase Fluid	12/13/2013		0.12	0.038	33	1.4		0.067		120	321	7.53	0.049
LDG 53-7 Single Phase Fluid	1/26/2012	0.016	0.482	0.042	79	11.6	0.04	0.002		453	1200	9,51	
LDG 55-7 Single Phase Fluid	11/27/2013	0.0074	0.65	0.094	140	9.5	0.4	0.13	0.0038	630	842	6.89	[
LDG 55-7 Flashed Fluid	8/5/2010	0.02	0.469	0.071	90.2	10.8		0.016		531	1370	6.97	
LDG 55-7 Total Fluid	8/5/2010	0.019	0.447	0.071	86	10.3		0.015		506	1306		
LDG 55-7 Flashed Fluid	8/5/2010	0.018	0.467	0.068	89.8	9.37		0.0069		526	1360	6.6	
LDG 55-7 Total Fluid	8/5/2010	0.017		0.05	85.6	8.93		0.0066		501	1296		
LDG 63-7 Single Phase Fluid	12/20/2013	3.2	2	0.051	67	17	0.29	0.028	0.0021	250	800	8.41	0.027
LDG 63-7 Single Phase Fluid	8/28/2012	0.056	2.09	0.014	78.1	14.2	3.91	0.183		303	1020	9.45	
LDG 52-7 Single Phase	11/5/2003	0.07	10.10	53.1	111	11,82		0.474		545	1572	9.26	0.30
LDG 47-7	12/21/2013	0.42	2.6	0.13	130	12	0.32	0.14		250	1190	7.33	0.022

-

.

	- IData	1	10	1	Chinada	Tel 14	T.	1	.	1			
Location	Date	Arsenic	Rolou	Barium	Chloride	Huoride	Iron	Manganese	Selenium	Sulfate	TDS	рН	Zinc
LDG 45-7	12/19/2013							1			1		
Single Phase		0.012	0.46	0.065	97	14		0.018	0.0017	\$40	1270	6.82	
LDG 45-7	1/26/2012	0.018	0.441	0.076	96.0	1111	0.026	0.027		607	1220		1
Single Phase Fluid	1/20/2012	0.010	0.771	0.070		11.1	0.020	0.017		507	13/0	0.04	
LDG 45-7 Flashed Fluid	1/26/2012	0.015	0.432	0.061	90.1	11.6	0.021	0.0082		526	1390	8.37	1
LDG 45-7	12/8/2011	0.0000	0.46	0.054	96	10			0.000.0		4000		
Single Phase Fluid	12/0/2011	0.0038	0.40	0.054	0 0				0.0034	510	1200	6.7	
LDG 45-7	1/26/2012	0.014	0.111	0.05051	00.0			0.0000			1		1
Total Fluid	1/20/2012	0.014	0.411	0.03001	65.6	1		0.0078		501	1324		
LDG 53-7			· · · ·								1	<u> </u>	+
Single Phase Fluid	12/13/2013		0.12	0.038	}			0.067		120	321	7.53	0.049
LDG 53-7							1	1			+		+
Single Phase Fluid	1/26/2012	0.016	0.482	0.042	79	11.6	0.04	0.002		453	1200	9.51	
106 55-7		1	+	1				<u> </u>		<u> </u>	+		+
Single Phase Fluid	11/27/2013	0.0074	0.65	0.094	140	9.5	0.4	0.13	0.0038	630	842	6.89	
LDG 55-7			1	1 -	1					<u> </u>	1		
Flashed Fluid	8/5/2010	0.02	0.469	0.071	90.2	10.8		0.016		531	1370	6.97	
LDG 55-7		0.010		0.074		1						·	
Total Fluid	8/5/2010	0.019	0.447	0.071	86	10.3		0.015		506	1306		
LDG 55-7	e/s/2010	0.010	0.467	0.000	00.0	0.27		0.0000					
Flashed Fluid	8/5/2010	0.018	0.467	0.088	89.8	9.37		0.0069		526	1350	6.6	
LDG 55-7	B/5/2010	0.017		0.05	85.6	0.02		0.0005			1	·/-··	
Total Fluid	8/5/2010	0.017		0.05	85.0	8.93		0.0066		501	1296		
LDG 63-7	47/10/2002			0.051	67	47	0.00	0.000		T		1	
Single Phase Fluid	12/19/2013		2	0.051	67	1/	0.29	0.028	0.0021	250	800	8.41	0.027
LDG 63-7	0/20/2012	0.050	2.00	0.016	70.1	1.1.2		0.102				1	†
Single Phase Fluid	8/28/2012	0.056	2.09	0.014	/8.1	14.2		0.183		303	1020	9.45	
LDG 52-7 Single Phase	11/5/2003	0.07			111	11.82		T		545	1572	9.26	1
LDG 47-7	12/21/2013	0.42	2,6	0.13	130	12	0.32	0.14		250	1190	7.33	0.022

			13日1日2月1日 1月1日日 - 18月1日 1月1日日 - 18月1日			法的律师 法的	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -
		General Background S	statistics for	Data Sets with I	ion-Detects		
	User Selected Options						
I	From File	C:\Users\Riplee\Deskto	p\LD1.wst				
	Full Precision	ON					
	Confidence Coefficient	95%					
	Coverage	90%					
ł	Different or Future K Values	1					
	Number of Bootstrap Operations	2000					
ł							
	Fluoride						
			0	n a - 11 - 11 - 1			
	Tatal		General	Statistics	N h	1 Ob	-
	lotal l	Number of Observations	7.0000000		Number of Dist	Inct Observations	7.0000000
		I olerance hactor	2.7550000				
	Denne	itatietice			log.Toneformed 6	tatiotics	
	C Wen	tiloim	0.3600000		rod- i usustormed 2	NGU3UCS	0 0001150
		Manimum	9.300000			Minimum	2.2304453
		Maximum Second Lessent	19.200000			Maximum	2.6532420
		Second Largest	13.90000			Second Largest	2.6318888
		First Quartie	10.400000			First Quartile	2.3410656
		Median	11.100000			Median	2.4069451
ł		i niro Quartie	12.750000			Third Quartile	2.5414470
I		Mean	11.565714			Mean	2.4373796
		Geometric Mean	11.443017			SD	0.1567542
		SD Conflicient of Meriotics	1.8488452				
ł		Coemcient or variation	0.1598557				
		Skewness	0.5863223				
ł							
	Waming: A sample size of '	n' = 7 may not adequate	e encuals to	comoute mesni	nativi and reliable test (tatistics and acti	mateci
Í	warning. At sample size of 1		o oscougii w	computer mean			110031
	lt is suo	cested to collect at leas	it 8 to 10 ob	servations using	these statistical metho	ids!	
ł	If possible compu	its and collect Data Qua	lity Objecth	res (DQO) base	d sample size and anal	vtical results.	
				,		,	
Ì							
		Waming: T	here are on	ly 7 Values in th	is data		
	Note: It should	ld be noted that even th	ough boots	trap methods ma	y be performed on this	data set,	
	th	e resulting calculations	may not be	reliable enough	to draw conclusions		
	The literature su	uggests to use bootstrap	p methods o	on data sets hav	ing more than 10-15 ot	servations.	
			Backgroun	d Statistics			
	Normal Dis	tribution Test			Lognormal Distribut	tion Test	
ļ	St	napiro Wilk Test Statistic	0.9061331		Shapiro	Wilk Test Statistic	: 0.9266260
	Sh	apiro Wilk Critical Value	0.8030000		Shapiro	Wilk Critical Value	e 0.8030000
1	Data appear Normal a	t 5% Significance Level		Data a	ppear Lognormal at 5%	Significance Lev	vel
,							
	Assuming Nor	mal Distribution			Assuming Lognormal	Distribution	
	95% U	ITL with 90% Coverage	16.659283		95% UTL wit	h 90% Coverage	e 17.623572
		95% UPL (t)	15.406407			95% UPL (t) 15.847511

90% Percentile (z) 13.935105

95% UPL (t) 15.847511 90% Percentile (z) 13.988956

,

	95% Percentile (z) 14.606794	95% Percentile (z) 14.808736
	99% Percentile (z) 15.866771	99% Percentile (z) 16.478299
i	Gamma Distribution Test	Data Distribution Test
	k star 26.979007	Data appear Normal at 5% Significance Level
	Theta Star 0.4286931	
	MLE of Mean 11.565714	
	MLE of Standard Deviation 2.2266886	
	nu star 377.70610	
	A-D Test Statistic 0.3486671	Nonparametric Statistics
	5% A-D Critical Value 0.7075725	90% Percentile 14.020000
	K-S Test Statistic 0.1969974	95% Percentile 14.110000
Ì	5% K-S Critical Value 0.3114059	99% Percentile 14.182000
	Data appear Gamma Distributed at 5% Significance Level	
	Assuming Gamma Distribution	95% UTL with 90% Coverage 14.200000
	90% Percentile 14.495313	95% Percentile Bootstrap UTL with 90% Coverage 14.200000
	95% Percentile 15.455362	95% BCA Bootstrap UTL with 90% Coverage 14.200000
	99% Percentile 17.365792	95% UPL 14.200000
i		95% Chebyshev UPL 20.181072
	95% WH Approx. Gamma UPL 15.676631	Upper Threshold Limit Based upon IQR 16.275000
	95% HW Approx. Gamma UPL 15.716728	
	95% WH Approx. Gamma UTL with 90% Coverage 17.237738	
1	95% HW Approx. Gamma UTL with 90% Coverage 17.326761	
	Iron	
	General Sta	tistics
	Number of Valid Data 7,0000000	Number of Detected Data 4.0000000
	Number of Distinct Detected Data 4.0000000	Number of Non-Detect Data 3.0000000
	Tolerance Factor 2.7550000	Percent Non-Detects 42.86%
	Raw Statistics	Log-transformed Statistics
	Minimum Detected 0.0260000	Minimum Detected -3.649659
	Maximum Detected 11.200000	Maximum Detected 2.4159138
	Mean of Detected 3.8210000	Mean of Detected -0.445188

Mean of Detected -0.445188 SD of Detected 2.8209507 Minimum Non-Detect -2.995732 Maximum Non-Detect -2.995732

Warning: There are only 4 Distinct Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

SD of Detected 5.2392912

Minimum Non-Detect 0.0500000

Maximum Non-Detect 0.0500000

- It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Background Statistics

Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only
Shapiro Wilk Test Statistic 0.8384945	Shapiro Wilk Test Statistic 0.9321360
5% Shapiro Wilk Critical Value 0.7480000	5% Shapiro Wilk Critical Value 0.7480000
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level
Assuming Normal Distribution	Assuming Lognormal Distribution
DL/2 Substitution Method	DL/2 Substitution Method
Mean 2.1941429	Mean (Log Scale) -1.835341
SD 4.2239933	SD (Log Scale) 2.6429216
95% UTL 90% Coverage 13.831244	95% UTL 90% Coverage 231.80763
95% UPL (t) 10.968843	95% UPL (t) 38.664594
90% Percentile (z) 7.6074080	90% Percentile (z) 4.7194821
95% Percentile (z) 9.1419935	95% Percentile (z) 12.328060
99% Percentile (z) 12.020621	99% Percentile (z) 74.665180
Maximum Likelihood Estimate(MLE) Method	Log ROS Method
Mean -1.486487	Mean In Original Scale 2.1955848
SD 7.3585540	SD in Original Scale 4.2231712
95% UTL with 90% Coverage 18.786329	95% UTL with 90% Coverage 452.99489
	95% BCA UTL with 90% Coverage 11.200000
	95% Bootstrap (%) UTL with 90% Coverage 11.200000
95% UPL (t) 13.799784	95% UPL (t) 60.714723
90% Percentile (z) 7.9438793	90% Percentile (z) 5.7323161
95% Percentile (z) 10.617257	95% Percentile (z) 16.836574
99% Percentile (z) 15.632069	99% Percentile (z) 127.05757
Gamma Distribution Test with Detected Values Only	Data Distribution Test with Detected Values Only
k star (bias corrected) 0.2598504	Data appear Normal at 5% Significance Level
Theta Star 14.704617	
nu star 2.0788028	
A-D Test Statistic 0.3018501	Nonparametric Statistics
5% A-D Critical Value 0.6956855	Kaplan-Meier (KM) Method
K-S Test Statistic 0.2691496	Mean 2.1945714
5% K-S Critical Value 0.4152297	SD 3.9104202
Data appear Gamma Distributed at 5% Significance Level	SE of Mean 1.7066473
	95% KM UTL with 90% Coverage 12.967779
Assuming Gamma Distribution	95% KM Chebyshev UPL 20.416578
Gamma ROS Statistics with Extrapolated Data	95% KM UPL (I) 10.317871
Mean 2.1834290	90% Percentile (z) 7.2059765
Median 0.0260000	95% Percentile (z) 8.6266402
SD 4.2304284	99% Percentile (z) 11.291569
k star 0.1607778	
Theta star 13.580413	Gamma ROS Limits with Extrapolated Data
Nu star 2.2508893	95% Wilson Hilferty (WH) Approx. Gamma UPL 15.884740

99% Percentile 27.074879

 95% Percentile of Chisquare (2k)
 1.7449966
 95% Hawkins Wixley (HW) Approx. Gamma UPL 20.621257

 95% WH Approx. Gamma UTL with
 90% Coverage 30.262303

 90% Percentile 6.5288908
 95% HW Approx. Gamma UTL with
 90% Coverage 47.358089

 95% Percentile 11.848887
 95% HW Approx. Gamma UTL with
 90% Coverage 47.358089

5-00 (E). 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 191

General Statusoc	8
Total Number of Observations 7.0000000	Number of Distinct Observations 7.000
Tolerance Factor 2.7550000	
Raw Statistics	Log-Transformed Statistics
Minimum 1020.0000	Minimum 6.927
Maximum 1450.0000	Maximum 7.2793
Second Largest 1440.0000	Second Largest 7.272
First Quartile 1263.5000	First Quartile 7.1403
Median 1360.0000	Median 7.2152
Third Quartile 1405.0000	Third Quartile 7.2474
Mean 1309.5714	Mean 7.171
Geometric Mean 1301.3001	SD 0.1243
SD 152.25402	
Coefficient of Variation 0.1162625	
Skewness -1 330010	

servations using If possible compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Warning: There are only 7 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

Background Statistics

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.8384204 Shapiro Wilk Critical Value 0.8030000 Data appear Lognormal at 5% Significance Level

7.000000

6.9275579 7.2793188 7.2723984 7.1403764 7.2152400 7.2474822 7.1711191 0.1243855

Assuming Lognormal Distribution 95% UTL with 90% Coverage 1833.1685 95% UPL (t) 1684.9834 90% Percentile (z) 1526.1837 95% Percentile (z) 1596.7332 99% Percentile (z) 1737.9874

Data Distribution Test Data appear Normal at 5% Significance Level

Normal Distribution Test Shapiro Wilk Test Statistic 0.8646445 Shapiro Wilk Critical Value 0.8030000 Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% UTL with 90% Coverage 1729.0312 95% UPL (t) 1625.8559 90% Percentile (z) 1504.6928 95% Percentile (z) 1560.0070 99% Percentile (z) 1663.7672

Gamma Distribution Test

k star 45.283601 Theta Star 28.919330 MLE of Mean 1309.5714 MLE of Standard Deviation 194.60711

Nonperametric Statistics

90% Percentile 1444.0000 95% Percentile 1447.0000 99% Percentile 1449.4000

 95% UTL with
 90% Coverage
 1450.0000

 95% Percentile Bootstrap UTL with
 90% Coverage
 1450.0000

 95% BCA Bootstrap UTL with
 90% Coverage
 1450.0000

 95% UPL
 1450.0000
 95% UPL
 1450.0000

 95% Chebyshev UPL
 2019.0537

Upper Threshold Limit Based upon IQR 1617.2500

A-D Test Statistic 0.5458228 5% A-D Critical Value 0.7076584 K-S Test Statistic 0.2759863 5% K-S Critical Value 0.3113535 Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

90% Percentile 1564.3404 95% Percentile 1645.2510 99% Percentile 1804.3037

95% WH Approx. Gamma UPL 1662.1736 95% HW Approx. Gamma UPL 1667.5334 95% WH Approx. Gamma UTL with 90% Coverage 1791.7591 95% HW Approx. Gamma UTL with 90% Coverage 1801.3405

Number of Distinct Observations 7.0000000

Log-Transformed Statistics

Minimum 1.8870696 Maximum 2.2460147 Second Largest 2.2353763 First Quartile 1.8976097 Median 1.9154509 Third Quartile 2.1987746 Mean 2.0344720 SD 0.1706931

General Statistics

Total Number of Observations 7.0000000 Tolerance Factor 2.7550000

Raw Statistics

Minimum 6.6000000 Maximum 9.4500000 Second Largest 9.3500000 First Quartile 6.6700000 Median 6.7900000 Third Quartile 9.0200000 Mean 7.7457143 Geometric Mean 7.6482129 SD 1.3485901 Coefficient of Variation 0.1741079 Skewness 0.4803344

Warning: A sample size of 'n' = 7 may not adequate enough to compute meaningful and reliable test statistics and estimates!

It is suggested to collect at least 8 to 10 observations using these statistical methods! If possible compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Warning: There are only 7 Values in this date

Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

pН

Beckground Statistics

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.7575215 Shapiro Wilk Critical Value 0.8030000 Data not Lognormal at 5% Significance Level

> Assuming Lognormal Distribution 95% UTL with 90% Coverage 12.240274 95% UPL (t) 10.903250 90% Percentile (z) 9.5183744 95% Percentile (z) 10.127325 99% Percentile (z) 11.376657

Data Distribution Test Data do not follow a Discemable Distribution (0.05)

Gemma Distribution Test k star 22.744658 Dat Theta Star 0.3405509 MLE of Mean 7.7457143 MLE of Standard Deviation 1.6241337

nu star 318.42521 A-D Test Statistic 0.9145497 5% A-D Critical Value 0.7073280 K-S Test Statistic 0.3471232 5% K-S Critical Value 0.3114207

Data not Gamma Distributed at 5% Significance Level

Normal Distribution Test

Data not Normal at 5% Significance Level

Assuming Normal Distribution

Shapiro Wilk Test Statistic 0.7583144

Shapiro Wilk Critical Value 0.8030000

95% UTL with 90% Coverage 11.461080

95% UPL (t) 10.547204

90% Percentile (z) 9.4740020

95% Percentile (z) 9.9639476

99% Percentile (z) 10.883004

Assuming Gamma Distribution

90% Percentile 9.8863602 95% Percentile 10.596349 99% Percentile 12.015685

95% WH Approx. Gamma UPL 10.766722 95% HW Approx. Gamma UPL 10.798894 95% WH Approx. Gamma UTL with 90% Coverage 11.928229 95% HW Approx. Gamma UTL with 90% Coverage 12.000155

Nonparametric Statistics

90% Percentile 9.3900000 95% Percentile 9.4200000 99% Percentile 9.4440000

95% UTL with 90% Coverage 9.4500000 95% Percentile Bootstrap UTL with 90% Coverage 9.4500000 95% BCA Bootstrap UTL with 90% Coverage 9.4500000 95% UPL 9.4500000 95% Chebyshev UPL 14.029954 Upper Threshold Limit Based upon IQR 12.545000

-t	A	вТ	C	D	Ë	F	G	н	1	J	K	Ĺ
11	<u> </u>				Outlier Tests for Select	ed Uncensored Va	nables		4	• <u></u>		
2		Us	er Selecte	ed Options	······		· · · · · · · · · · · · · · · · · · ·					
늵	Date/Time	of Com	putation	6/19/2014	2:58:10 PM							
'∤				From File	WorkSheet xis			····				
				Precision	OFF							·
<u>, I</u>							_					
t							1	•	·		ŋ	
7								 _		<u> </u>		
8				uuler lest i	IOF AISONIC		ļ	·	ļ			
9							ļ			I		
10 ⁱ	Number of OI	oservatio	ons = 15						ļ			
11	10% critical v	alue: 0.4	472									
12	5% critical va	lue: 0.52	25						-			
13	1% critical va	lue: 0.6'	16						1			
14								[<u> </u>		
15	1. Observatio	on Value	3.2 is a l	Potential O	utlier (Upper Tail)?		·	i 	+			
10						<u> </u>						
10	Tect Statistic	0.092			··· -·· · <u>-</u>					┼─────		
<u>1/</u>		. 0.962					·	+	<u>↓</u>		<u> </u>	<u> </u>
	For 100 -in	ifiaa	loual 2.2	lie on euti-					<u> </u>		 	
19		mcance	ievel, 3.2				<u> </u>		<u> </u>			·
20	FOI 3% SIGNI	icance li	evel, J.Z i	s an outlier	• 			ļ		<u> </u>	 	·
21	ror 1% signif	icance l	evel, 3.2 i	is an outlier	·		<u> </u>		<u> </u>		<u> </u>	ļ
22					· <u> </u>				L	<u> </u>	L	<u> </u>
23	2. Observatio	n Value	0.0074 is	a Potentia	I Outlier (Lower Tail)?							
24												L
25	Test Statistic	0.073						[
26							1	<u> </u>	1			<u> </u>
27	For 10% sign	ificance	level, 0.0	074 is not a	an outlier.	· .	1		<u>i</u>		<u> </u>	1
2,01	For 5% signif	icance l	evel, 0.00	74 is not a	n outlier.		<u> </u>	1	-	· ·		
	For 1% signif	icance l	evel. 0.00)74 is not a	n outlier.		<u> </u>	 -				1
7						<u>-</u>	<u>}</u>	<u> </u>	·{·		l	
I	<u> </u>					·	<u> </u>		- <u> </u>	+		<u> </u>
<u>.</u>			Divon's (Cuttine Tort	for Borno		+	┝───	+	- 		<u> </u>
왹			200120						·		 	
53	Number - 600	h						<u> </u>	<u> </u>			
4	Trumber of U	USELVAU	0113 - 10 470					ļ	.			
35	10% cntical v	alue: 0.4	q/∠ =				<u> </u>		ļ	<u> </u>		<u> </u>
6	5% critical va	lue: 0.52	25					l	ļ	 _		L
17	1% critical va	lue: 0.6	16									
38					······································					1		
39	1. Observati	on Value	10.1 is a	Potential (Outlier (Upper Tail)?		1		1			
40							<u> </u>	1		1		
1	Test Statistic	0.829					†— –		<u> </u>		<u> </u>	
$\frac{1}{2}$							1	 -	<u> </u>	+	<u> </u>	
13	For 10% sign	ificance	level, 10.	1 is an out	ier.				†		<u> </u>	1
ă l	For 5% signif	icance li	evel, 10.1	is an outlie			†	!	+			+
,	For 1% signif	icance l	evel. 10.1	is an outli	er.	— · —	<u> </u>	{——		-{	<u> </u>	<u> </u>
							¦	-	<u> </u>		<u> </u>	<u> </u>
쒸	2 Observation	n Value	0.12 19 2	Potential C	htlier (Lower Tail)?		+	<u> </u>				
<u>"</u>]									<u> </u>	-		<u> </u>
ιăΪ	Tort Statist	0 150						 	<u> </u>		 	
<u> </u>	THEFT STOTICTIC	. 0. 158					. <u> </u>		<u> </u>		ļ	ļ
9									<u> </u>	<u> </u>	<u> </u>	
9								1			1	1
9 0 1	For 10% sign	ificance	level, 0.1	2 is not an	outlier.							
9 0 1 2	For 10% signif	ificance icance l	level, 0.1 evel, 0.12	2 is not an I is not an o	outlier. outlier.							
19 50 51 52	For 10% sign For 5% signif For 1% signif	ificance icance li icance li	jevel, 0.1 evel, 0.12 evel, 0.12	2 is not an is not an o is not an o	outlier.						<u></u> -	
19 50 51 52 53	For 10% sign For 5% signif For 1% signif	ificance icance l icance l	level, 0.1 evel, 0.12 evel, 0.12	2 is not an I is not an o I is not an o	outlier. outlier. outlier.							
49 50 51 52 53 54	For 10% sign For 5% signif For 1% signif	ificance icance li icance li	level, 0.1 evel, 0.12 evel, 0.12	2 is not an I is not an o I is not an o	outlier. outlier. outlier.							
i9 i0 i1 i2 i3 i4	For 10% sign For 5% signif For 1% signif	ificance icance l icance l	level, 0.1 evel, 0.12 evel, 0.12	2 is not an I is not an o I is not an o	outlier. outlier. outlier.							
49 50 51 52 53 54 75	For 10% sign For 5% signif For 1% signif	ificance icance li icance li	level, 0.1 evel, 0.12 evel, 0.12 Dixon's O	2 is not an I is not an o I is not an o Dutlier Test	outlier. outlier. nutlier. for Barium.							
49 50 51 52 53 54 -5	For 10% signif For 5% signif	ificance icance l icance l	level, 0.12 evel, 0.12 evel, 0.12 (Dixon's O	2 is not an 1 is not an o 2 is not an o 2 is not an o Dutlier Test	outlier. outlier. outlier. for Barlum.							
49 50 51 52 53 54 54 58	For 10% sign For 5% signif For 1% signif	ificance icance l icance l bservati	level, 0.12 evel, 0.12 evel, 0.12 Dixon's O ons = 16	2 is not an I is not an o I is not an o Uttier Test	outlier. outlier. outlier. for Barlum							
49 50 51 52 53 54 59 59	For 10% sign For 5% signif For 1% signif	ificance icance l icance l bservati alue: 0.	level, 0.1 evel, 0.12 evel, 0.12 Dixon's O ons = 16 454	2 is not an I is not an o I is not an o Dutlier Test	outlier. outlier. nutlier. for Barlum							
49 50 51 52 53 54 55 58 59 60	For 10% sign For 5% signif For 1% signif Number of O 10% critical v 5% critical va	ificance icance l icance l bservati alue: 0.4	level, 0.1 evel, 0.12 evel, 0.12 (Dixon's O ons = 16 454 07	2 is not an is not an o is not an o utiler Test	outlier. nutlier. nutlier. for Banium							

	A B C D E	F	G	Н		J	к	Ļ
62	1. Observation Value 53.1 is a Potential Outlier (Linner Tail)?	·			· · ·			
03					<u> </u>	<u> </u>		
64								
1.75	Test Statistic: 0.999							
						•		
	For 10% significance level 53 1 is an outlier				[
6'	r 5% significance level, 53.1 is an outlier.							
69	ur 1% significance level, 53.1 is an outlier.							
70								<u> </u>
./0								
71	2. Observation Value 0.014 is a Potential Outlier (Lower Tall)?						_	
72								
72	Test Statistic: 0.350			·				
73								
74								
75	For 10% significance level, 0.014 is not an outlier.				[]			
76	For 5% significance level, 0.014 is not an outlier.							
70	For 1% significance level 0.014 is not an outline							
]						
78								
79	· · · · · · · · · · · · · · · · · · ·							
	Divon's Outline Tast for Oblasida	!						
180		ļ,	ļ		ļ. <u> </u>			
81								
82	Number of Observations = 16							
00	10% critical value: 0.454			· ·				
1 <u>83</u>								
. 84	5% crucal value: 0.507							
85	1% critical value: 0.595							
86		<u>i</u>	·	⊢				
100	1 Observation Value 140 is a Detection Outline (Linner Tail)2			<u> </u>				
87	1. Observation value 140 is a Potential Outlier (Opper Tall)?							
88			1	,			ĺ	
89	Test Statistic: 0.468		·					
00								
.90								
' 11_	For 10% significance level, 140 is an outlier.							
	For 5% significance level, 140 is not an outlier.							
	r 1% significance level 140 is not an outlier							
г								
94								
95	2. Observation Value 33 is a Potential Outlier (Lower Tail)?	{			1			
96								
30	Tart Statistics 0 579							
97								
98								
99	For 10% significance level, 33 is an outlier.							
100	For 5% significance level 33 is an outlier							
100					<u> </u>			<u> </u>
101	For 1% significance level, 33 is not an outlier.							
102								
102		 	(-	i —		<u> </u>		
103	Diversia Outling Tort for Elizada	<u> </u>	l			<u>-</u>		
104		ļ	<u></u>	<u> </u>	 `	<u> </u>	ļ	
105		<u> </u>						
106	Number of Observations = 16	[ι					
107	10% critical value: 0.454	<u> </u>	1		†	·		
107	5% critical value: 0.507	┼───	[
108		L	ļ		<u> </u>	<u> </u>	<u>_</u>	
109	1% cnucal Value: 0.595		ļ	<u> </u>			ļ	
110								
111	1. Observation Value 17 is a Potential Outlier (Unner Tail)?	<u>†</u>	ł	<u> </u>				
111					`		<u> </u>	
112		<u> </u>	i				<u> </u>	
113	Test Statistic: 0.393		1	1				
114	htt aan 			<u> </u>	l			·
14	For 10% ciga:George level 17 in net an autilian				<u> </u>	····		
115		<u>ì</u>					l	
116	For 5% significance level, 17 is not an outlier.							
1.1 <u>0</u>	For 1% significance level, 17 is not an outlier	<u> </u>		ł	j			
.,			ļ	<u> </u>				
	·				ļ		<u> </u>	
115	Observation Value 1.4 is a Potential Outlier (Lower Tail)?			1	1	1		
120		<u> </u>	i	<u> </u> -	· · · ·			
120	Toet Statistics 0.622			<u> </u>	├ ──-		<u>}</u> −	<u>├──</u> ─
121	1031 3101130(C) U.0.3.3	.l	 _		L	L		
122			1	Ι.				
127	For 10% significance level, 1.4 is an outlier.		T]	
123	For 5% significance level 1.4 is an outlier				<u>├</u> ───-	<u> </u>		¦
117/	n or viv significance rever, 1.4 is an outlier.	1	1	I	1	I	Ł	I

	A	В	C		E		F	G	Н	1	J	K	L
125	For 1% si	gnificance	level, 1.4	is an outlier.									
126							ł						
107	<u> </u>					_	ł				<u> </u>		
			0	0. # T.				<u> </u>					
	<u> </u>		Dixon's	Outlier less	t for Iron								
_3													
1.	imber o	f Observati	ions = 7								-		
12.	J% critic	al value: 0.	434										
131	5% critica		07	·									···
132												<u> </u>	
133	1% cntica	I value: 0.6	37										
134												[
135	1. Obser	vation Valu	e 3.91 is a	Potential C	Outlier (Upper Tail)?	i							
100				<u> </u>									·
130	Test Stati				······································								
137		SIIC: 0.903											
138													
139	For 10% s	significance	elevel, 3.9)1 is an outli	er.								-
140	For 5% si	qnificance	level, 3.91	l is an outlie	т.								
	For 1% -	anificance	ovel 2.01	is an outlin									
141	1011/05	grancarice	1070I, J.3	is an oune	···						ļ		
142													
143	2. Observ	ation Value	e 0.021 is	a Potential (Outlier (Lower Tail)?		1						
144													
145	Test Stati	stic: 0.001			· · · · · · · · · · · · · · · · · · ·						' '	i	
143										 			
146													
147	ror 10% s	significance	e level, 0.(21 is not an	outlier.			<u> </u>	. <u> </u>				<u> </u>
148	For 5% si	gnificance	level, 0.02	21 is not an e	outlier.	1							
149	For 1% si	gnificance	level, 0.02	21 is not an e	outlier.		†						
150					· · · ·								
130	<u> </u>							-		<u> </u>	····		-
151									. <u> </u>	j		1	
152		D	DON'S OU	ther Test for	Manganese								
153													
-	Number o	of Observat	ions = 15										
	% critic	al value: 0	472										
<u> </u>	A antion		-77E				—				I	ļ	
156	J76 CHUCA	ii value: 0.5	25										-
157	1% critica	il value: 0.6	16				[
158]			
159	1. Observ	vation Valu	e 0.474 is	a Potential	Outlier (Upper Tail)?								
100	·												
100	Tool Stati	otio: 0 715		<u> </u>	·····								
161	Test oldu	SIIC. 0.715								ļ			·
162				_							_		
163	For 10% s	significance	e level, 0.4	174 is an out	tlier.								
164	For 5% si	gnificance	level, 0.47	4 is an outli	er.								
165	For 1% si	onificance	level 0.47	4 is an outli	er.							i	
103		a								<u> </u>			ļ
100	2 0	ntion 1/-1-	0.000	- Deterrited	Outline (Lawren 7-100		[ļ	¦	├ ───-	
167	2. UDS8/V		3 V.UU2 IS	a rotential (Outlier (Lower Tall)?					ļ			
168												ļ	
169	Test Stati	stic: 0.036											
170			· · · · ·					·		<u> </u>			- · <u>- ·</u> · ·
171	For 10% s	significance	e level. 0.0	02 is not an	outlier.					i	<u> </u>		·
1.70	For 5% et	onificance	level 0.00	2 is not an	outlier		[¦	L
1/2	Ear 10/	anificance i											<u> </u>
173	r or 1% \$1	gninicance	ievel, 0.00	∠ is not an o	outlier,					<u> </u>			
174		_		_					-		[
175										<u> </u>			
170			Dimon'e O	utiler Test fo	r Selenium			<u> </u>		<u> </u>	<u> </u>	<u> </u>	— ——
1/0											<u> </u>		
177													
178	Number o	of Observat	ions = 4										
179	10% critic	al value: 0.	679					-		1]]	
2	"S critica	value: 0.7	65						_	<u> </u>	{───	<u> </u>	
	/ critica	Luolue: 0.7	90							┝────			}·
101	le chiica	i value: 0.6	-03				[l t	Ļ	ļ	
182													
183	1. Obser	vation Valu	e 0.0038	is a Potentia	al Outlier (Upper Tail)?							1	
194					·····								
104	Test Stati	stic: 0 100							<u></u>	<u> </u>			
185	TEAL OLDER	300. 0. 190				ł		. <u> </u>	ļ	<u> </u>		<u> </u>	
1186	l					I			Ì	I	1	I	I

	A B C D E	F	G	H	I	J	K	<u> </u>
187	For 10% significance level, 0.0038 is not an outlier.							
100	For 5% significance level 0.0038 is not an outlier							
100	For 1% cignificance level 0.0038 is not an outline				·			
1	2. Observation Value 0.0017 is a Potential Outlier (Lower Tail)?							
11								
19	ast Statistic: 0.190							
104								
194	For 10% significance level 0.0017 is not an outlier	l				- <u></u>		
195								
196	For 5% significance level, 0.0017 is not an outlief.							
197	For 1% significance level, 0.0017 is not an outlier.							
198								-
100								
200	Divon's Outlier Test for Sulfate					·		
200								
201		·						
202	Number of Observations = 16							
203	10% critical value: 0.454							[
204	5% critical value: 0.507							
205	1% critical value: 0.595				[
200			·					
206	1 Observation Volue 620 is a Datastick O dilas (11 Talia)	├						
207	I. Observation value 030 is a Potential Outlier (Upper Tall)?	<u> </u>						
208								
209	Test Statistic: 0.237							
210		· · · · · ·			i			
210	For 10% significance level, 630 is not an outlier							
211	For FW significance level, 620 is not an outlier		·					
212								
213	For 1% significance level, 630 is not an outlier.							
214								
h15	2. Observation Value 120 is a Potential Outlier (Lower Tail)?			1				
٦								
	st Statistic: 0.310							
L		1			<u> </u>			
218		·						
219								
220	For 5% significance level, 120 is not an outlier.							
221	For 1% significance level, 120 is not an outlier.							
222								
222								
223	Divon's Outling Tast for TDS							
224			·					
225					ļ			
226	Number of Observations = 16							
227	10% critical value: 0.454		ł	ļ				
228	5% critical value: 0.507				1			
229	1% critical value: 0.595				1			
220		· · · · ·			<u> </u>			
204	1. Observation Value 1572 is a Potential Outlier (Unner Tail)?	<u> </u>	i				<u> </u>	
231			<u> </u>					
232							·	
233		ļ	L		ļ. <u></u>			
234								
235	For 10% significance level, 1572 is not an outlier.]					
236	For 5% significance level, 1572 is not an outlier.	1						
227	For 1% significance level, 1572 is not an outlier	1			<u>├</u>		i	·
23/		+		Į	·	·	 	[
238					1 		<u> </u>	
239	2. Observation Value 321 is a Potential Outlier (Lower Tall)?						L	
240		<u> </u>		ļ			1	
~11	Test Statistic: 0.497]				
:			** _ · · ·		-			<u> </u>
	or 10% significance level 321 is an outlier	+				<u> -</u>		<u> </u>
-4-		<u>↓</u>	 	\ 	 		- <u></u>	<u></u>
244				ļ	<u> </u>	<u> </u>	<u> </u>	
245	For 1% significance level, 321 is not an outlier.	ļ	·	L			 	L
246							<u> </u>	<u> </u>
247	· · · · · · · · · · · · · · · ·							
240	Dixon's Outlier Test for pH	1	<u> </u>	···	1	<u> </u>		
	•							. .

٠

	A	В	С	D		E	F	G	Н	1	1	ĸ	
249													
250	Number o	of Observat	ions = 13										
1	10% critic	al value: 0	.467										
	5% critica	I value: 0.5	521										
ار ا	1% critica	l value: 0.6	615										
25					_								
255	Obser	vation Valu	ю 9.51 is a	Potential C	Jutlier (Upper T	ail)?							
256									l				
257	Test Stati	stic: 0.087								<u> </u>			
258													
259	For 10% :	significanc	e level, 9.5	t is not an	outlier.]						
260	For 5% si	gnificance	level, 9.51	is not an o	utlier.								
261	For 1% si	gnificance	level, 9.51	is not an o	utlier.								
262					· · · ·								
263	2. Observ	ration Valu	e 6.6 is a P	otential Ou	tlier (Lower Tai	i)?							
264							1						
265	Test Stati	stic: 0.035											
266				· · · · · · · · · · · · · · · · · · ·									
267	For 10%	significanc	e level, 6.6	is not an o	utlier.		i	Í					· · · · · · · · · · · · · · · · · · ·
268	For 5% si	gnificance	level, 6.6 is	s not an out	llier.					Γ			
269	For 1% si	gnificance	level, 6.6 is	s not an ou	llier.		1	1					
270										1			
271									1				
272			Dixon's	Outlier Tes	t for Zinc			1					
273													
274	Number o	of Observat	tions = 4					[
275	10% critic	al value: 0	.679	·				_	1				
276	5% critica	al value: 0.1	765	· · ·	·			· · ·					
77	1% critica	al value: 0.1	889				1						
1													
	Obser	vation Valu	.e 0.3 is a f	Potential O	utiler (Upper Ta	il)?						[
280													
281	Test Stati	istic: 0.903											
282										1			
283	For 10% :	significanc	e level, 0.3	is an outlie	r								
284	For 5% si	gnificance	level, 0.3 is	s an outlier									
285	For 1% si	gnificance	level, 0.3 is	s an outlier									
286													
287	2. Obsen	ation Valu	e 0.022 is a	a Potential	Outlier (Lower	Tail)?							
288													
289	Test Stati	istic: 0.018											
290													
291	For 10%	significanc	e level, 0.0	22 is not ar	outlier.								
292	For 5% s	ignificance	level, 0.02	2 is not an	outlier.								
293	For 1% s	ignificance	level, 0.02	2 is not an	outlier.								
294								1	ļ				

,

-

- -

Outlier Tests for Selected Uncensored Variables

User Selected Options Date/Time of Computation From File Full Precision

6/19/2014 14:58 WorkSheet.xls OFF

Dixon's Outlier Test for Arsenic

Number of Observations = 15 10% critical value: 0.472 5% critical value: 0.525 1% critical value: 0.616

1. Observation Value 3.2 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.982

For 10% significance level, 3.2 is an outlier. For 5% significance level, 3.2 is an outlier. For 1% significance level, 3.2 is an outlier.

2. Observation Value 0.0074 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.073

For 10% significance level, 0.0074 is not an outlier. For 5% significance level, 0.0074 is not an outlier. For 1% significance level, 0.0074 is not an outlier.

Dixon's Outlier Test for Boron

Number of Observations = 15 10% critical value: 0.472 5% critical value: 0.525 1% critical value: 0.616

1. Observation Value 10.1 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.829

For 10% significance level, 10.1 is an outlier. For 5% significance level, 10.1 is an outlier. For 1% significance level, 10.1 is an outlier.

2. Observation Value 0.12 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.158

For 10% significance level, 0.12 is not an outlier. For 5% significance level, 0.12 is not an outlier. For 1% significance level, 0.12 is not an outlier. Dixon's Outlier Test for Barium

Number of Observations = 16 10% critical value: 0.454 5% critical value: 0.507 1% critical value: 0.595

1. Observation Value 53.1 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.999

For 10% significance level, 53.1 is an outlier. For 5% significance level, 53.1 is an outlier. For 1% significance level, 53.1 is an outlier.

2. Observation Value 0.014 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.350

For 10% significance level, 0.014 is not an outlier. For 5% significance level, 0.014 is not an outlier. For 1% significance level, 0.014 is not an outlier.

Dixon's Outlier Test for Chloride

Number of Observations = 16 10% critical value: 0.454 5% critical value: 0.507 1% critical value: 0.595

1. Observation Value 140 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.468

For 10% significance level, 140 is an outlier. For 5% significance level, 140 is not an outlier. For 1% significance level, 140 is not an outlier.

2. Observation Value 33 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.578

For 10% significance level, 33 is an outlier. For 5% significance level, 33 is an outlier. For 1% significance level, 33 is not an outlier.

Dixon's Outlier Test for Fluoride

Number of Observations = 16 10% critical value: 0.454 5% critical value: 0.507 1% critical value: 0.595
1. Observation Value 17 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.393

For 10% significance level, 17 is not an outlier. For 5% significance level, 17 is not an outlier. For 1% significance level, 17 is not an outlier.

2. Observation Value 1.4 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.633

For 10% significance level, 1.4 is an outlier. For 5% significance level, 1.4 is an outlier. For 1% significance level, 1.4 is an outlier.

Dixon's Outlier Test for Iron

Number of Observations = 7 10% critical value: 0.434 5% critical value: 0.507 1% critical value: 0.637

1. Observation Value 3.91 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.903

For 10% significance level, 3.91 is an outlier. For 5% significance level, 3.91 is an outlier. For 1% significance level, 3.91 is an outlier.

2. Observation Value 0.021 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.001

For 10% significance level, 0.021 is not an outlier. For 5% significance level, 0.021 is not an outlier. For 1% significance level, 0.021 is not an outlier.

Dixon's Outlier Test for Manganese

Number of Observations = 15 10% critical value: 0.472 5% critical value: 0.525 1% critical value: 0.616

1. Observation Value 0.474 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.715

For 10% significance level, 0.474 is an outlier. For 5% significance level, 0.474 is an outlier. For 1% significance level, 0.474 is an outlier. 2. Observation Value 0.002 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.036

For 10% significance level, 0.002 is not an outlier. For 5% significance level, 0.002 is not an outlier. For 1% significance level, 0.002 is not an outlier.

Dixon's Outlier Test for Selenium

Number of Observations = 4 10% critical value: 0.679 5% critical value: 0.765 1% critical value: 0.889

1. Observation Value 0.0038 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.190

For 10% significance level, 0.0038 is not an outlier. For 5% significance level, 0.0038 is not an outlier. For 1% significance level, 0.0038 is not an outlier.

2. Observation Value 0.0017 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.190

For 10% significance level, 0.0017 is not an outlier. For 5% significance level, 0.0017 is not an outlier. For 1% significance level, 0.0017 is not an outlier.

Dixon's Outlier Test for Sulfate

Number of Observations = 16 10% critical value: 0.454 5% critical value: 0.507 1% critical value: 0.595

1. Observation Value 630 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.237

For 10% significance level, 630 is not an outlier. For 5% significance level, 630 is not an outlier. For 1% significance level, 630 is not an outlier.

2. Observation Value 120 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.310

For 10% significance level, 120 is not an outlier. For 5% significance level, 120 is not an outlier.