Page 1

STATE OF NEW MEXICO

ENERGY, MINERALS, AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

IN THE MATTTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

CASE NO. 21567

Application of EOG Resources, Inc., for a Gas Capture Pilot Project Involving the Occasional Injection of Produced Gas into the Bone Spring Formation, Lea County, New Mexico

REPORTER'S TRANSCRIPT OF PROCEEDINGS

EXAMINER HEARING

THURSDAY, 2020

This matter came on for hearing before the New Mexico Oil Conservation Division, William Brancard, Hearing Examiner, Dylan Rose-Coss, Technical Examiner, Dean McClure, Technical Examiner, via Webex Virtual Meeting Platform

Reported by:

by: Mary Therese Macfarlane New Mexico CCR No. 122 PAUL BACA PROFESSIONAL COURT REPORTERS 500 Fourth Street NW, Suite 105 Albuquerque, New Mexico 87102

Page 2 A P P E A R A N C E S. For the Applicant: Kaitlyn luck, Esq. Holland & Hart 110 North Guadalupe, Suite 1 Santa Fe, New Mexico 87501 (505) 954-7286 kaluck@hollandhart.com FOR NGL Energy: Matthias Sayer, Esq. б

		Page 3
1	CONTENTS	
2	CASE NUMBER 21567	PAGE
3	CASE CALLED:	5
4	DAVIS LUNSFORD QUALIFIED:	8
5	MATT SMITH QUALIFIED:	52
6	BRICE LETCHER QUALIFIED:	60
7	JENNA HESSERT QUALIFIED:	96
8 9	CARLOS SONKA QUALIFIED:	112
10	APPLICANT WITNESSES:	
11	DAVIS LUNSFORD	
12	DIRECT EXAMINATION BY MS. LUCK:	8
13	CROSS EXAMINATION BY EXAMINER ROSE COSS: CROSS EXAMINATION BY EXAMINER McCLURE: REDIRECT EXAMINATION BY MS LUCK:	31 47
14	MATT CMITH	Ξ/
15	MAII SMIIN	50
16	CROSS EXAMINATION BY MS. LUCK: CROSS EXAMINATION BY EXAMINER McCLURE:	50 57
17	BRICE LETCHER	
18	DIRECT EXAMINATION BY MS. LUCK:	59 70 00
19	CROSS EXAMINATION BY EXAMINER McCLURE:	78, 98 81
20	JENNA HESSERT	
21	DIRECT EXAMINATION BY MS. LUCK: CROSS EXAMINATION BY EXAMINER ROSE-COSS:	95 106
22	CARLOS SONKA	100
23	DIDECT FYAMINATION BY MS INCV.	111
24	CROSS EXAMINATION BY EXAMINER MCCLURE:	125
25		

		I	Page 4
1		INDEX OF EXHIBITS	
2	APPL	ICANT EOG RESOURCES, INC. EXHIBITS ADM	IITTED
3	1	Project Locator Map	21
4	2	Pilot Project Facilities Diagram	21
5	3	Pilot Project Alternate Facility Diagram	21
6	4	10/24/19 Lettter from OCD Director	21
7	5	Notice Maps	56
8	6	Notice Affidavit	56
9	7	Affidavit of Publication	56
10	8	Well Bore Diagrams	
11	9	Drilling Reports	78
12	10	Cement Bond Logs	78
13	11	AOR Maps	78
14	12	AOR Data	78
15	13	Well Bore Diagrams for P&A wells in AOR 78	
16	14	Gas Samples	78
17	15	Black Bear and Brown Bear Geology	105
18	16	Ophelia Geology	105
19	17	Hawk Geology	105
20	18	Completion Reports	124
21	19	Reservoir Modeling	124
22	20	Gas Capture Simulations	124
23			
24			
25			

Page 5 1 (Time Noted 11:10 a.m.) 2 HEARING EXAMINER Brancard: So I'm calling Case 3 21567, EOG Resources. Holland & Hart, I believe. 4 5 Do we have anyone there? Ms. Luck, I think б you're speaking, and you're muted. 7 MS. LUCK: Okay. There we go. Good morning, Mr. Examiner. Kaitlyn Luck 8 with the Santa Fe office of Holland & Hart on behalf of 9 the Applicant in this case, EOG Resources, Inc. 10 HEARING EXAMINER BRANCARD: Okay. And do we 11 12 have any other entries of appearance or interested persons for this event here, Case 21567? 13 14 MR. SAYER: Mr. Examiner, this is Matthias Sayer 15 entering an appearance on behalf of NGL Energy. 16 HEARING EXAMINER BRANCARD: Are you entering it 17 here today or have you entered it before? MR. SAYER: Entering it just today. We just 18 19 received Notice two days ago, and so we are a little bit behind the ball. 20 21 Just today. 22 HEARING EXAMINER BRANCARD: Okay. Do you have any witnesses or anything to put on today or are you --23 24 MR. SAYER: No. Apology. 25 Mr. Examiner, no intention to present any

Page 6 testimony of any kind, just entering an appearance 1 2 HEARING EXAMINER BRANCARD: Okay. Excellent. 3 All right. We'll accept that entry of 4 appearance, and you're excused for being late. 5 So where are we on this case? Ms. Luck? б 7 MS. LUCK: Thank you. And so EOG submitted exhibits on Tuesday and we are prepared to proceed with 8 the testimony of our first witness. 9 Reporter inquiry re audio quality.) 10 (Note: 11 HEARING EXAMINER BRANCARD: I would agree. 12 Thank you, Ms. Macfarlane. 13 (Note: Discussion off the record.) 14 HEARING EXAMINER BRANCARD: All right. 15 Ms. Luck, tell us how you want to proceed 16 today. 17 MS. LUCK: Thank you. We have five witnesses to present today, and so I would like to start by calling the 18 first witness, Davis Lunsford, who would need to sworn at 19 this point, although we can also have all of our witnesses 20 21 sworn at once, if that's what the court reporter would 22 prefer. 23 HEARING EXAMINER BRANCARD: Could you list your 24 witnesses, please. 25 MS. LUCK: Yes. So we have Davis Lunsford,

Page 7 Carlos Sonka, Jenna Hessler (sic), Brice Letcher, and Matt 1 2 Smith. 3 HEARING EXAMINER BRANCARD: Okay. We'll get the 4 proper spellings when they first step up to the stand. 5 Are they all available for being sworn in б right now? 7 MS. LUCK: Yes. And they can all stand. (Note: Whereupon the above-mentioned witnesses 8 were duly sworn. 9 HEARING EXAMINER BRANCARD: I don't know, Ms. 10 Luck, if you want to summarize your case today before you 11 12 start or how you want to do this. 13 MS. LUCK: I had not planned on giving an 14 opening statement. I would defer to the witnesses 15 providing their testimony about what EOG's requests are in 16 this case, and then I'd like to summarize at the end EOG's 17 requests in this case. And we would offer to provide a written summary if the Division would like it, but I would 18 prefer to do a closing just wrapping everything up at the 19 20 end. 21 HEARING EXAMINER BRANCARD: Is that okay? 22 EXAMINER ROSE-COSS: That's fine. 23 EXAMINER McCLURE: Good for me. HEARING EXAMINER BRANCARD: Please proceed. 24 25 MS. LUCK: Thank you.

Page 8 So with that I would call the first 1 2 witness, Davis Lunsford. 3 DAVIS LUNSFORD, 4 having been duly sworn, testified as follows: 5 DIRECT EXAMINATION BY MS. LUCK: б 7 Q. Please state your name for the record. Davis Lunsford. 8 Α. 9 By whom are you employed and in what capacity? Q. I'm a senior facilities engineer for EOG 10 Α. 11 Resources. 12 Have you also previously testified before this Q. Division? 13 14 Α. I have. 15 Can you previously state your education and Q. 16 experience. I have a Bachelor's of Science in 17 Α. Yes. mechanical engineering from Baylor University, and since 18 graduation I have worked for EOG Resources in a variety of 19 technical engineering roles, primarily in the facility & 20 21 Pipeline Department. Are you familiar with the Application filed in 22 Q. 23 this case? 24 Α. I am. 25 MS. LUCK: So that with that I would tender Mr.

Page 9 Lunsford as an expert witness in facilities engineering. 1 2 HEARING EXAMINER BRANCARD: Are there any 3 comments or objections? 4 (Note: No response.) 5 Okay. Mr. Lunsford is qualified as an б expert. 7 Please proceed. And again, speak clearly and loudly. Thank you. 8 MS. LUCK: Thanks. 9 Just to start off with an introduction, EOG 10 previously sought approval for a gas capture pilot project 11 12 targeting the Avalon-Leonard Shale interval of the Bone Spring Formation in Case No. 20965, and that was back on 13 December 12th of 2019. 14 And then the Division entered Order No. 15 16 R-21061 on January 31st, 2020 approving that original 17 case, and so we will talk about the Caballo pilot project 18 in this case. 19 Q. Mr. Lunsford are you familiar with that case? 20 Α. Yes, I am. 21 Q. Did you testify in that case, as well? 22 Α. Yes. So could you start off by explaining to us how 23 Q. 24 the Caballo project went. 25 Yes, ma'am. The Caballo project, the purpose of Α.

Page 10 that was to pilot this closed loop gas capture before we 1 2 expanded it fieldwide on more wells. And so that pilot 3 project consisted of injecting various rates and volumes of gas to determine the injectivity of the well and at 4 5 what pressures -- what pressures would be required to inject those rates and volumes, and also reproducing the 6 7 well; and determining the recovery of the injected gas and 8 the effect on that well and any neighboring wells. So I think that the shortest conclusion of 9 that test is it was a fantastic pilot. We achieved the 10 volumes and rates that we hoped to during the injection. 11 12 We saw minimal impact either to the parent well or to any 13 offset, and fantastic gas recovery, uhm, when we reproduced the well. 14 And then in addition to the technical 15 16 aspect of the project that we were piloting, it helped us to define the information flow and the production 17 accounting, as well. 18 19 Q. Okay. And then in the Caballo case, that was the model applied to the Application in this case? 20 21 Α. That's right. So as we discussed, I believe 22 last hearing, the purpose of that was to define the project so that we could go in on a wider basis, and 23 24 that's what we're here today discussing. 25 Okay. And so in this case EOG is seeking Q.

Page 11 approval of injection into five wells; is that right? 1 2 Α. That's right. 3 0. So let's turn to EOG Exhibit 1 and let me know 4 what this exhibit shows. Yes. So this exhibit shows the location of the 5 Α. five wells, the sections that they are located in. Those 6 7 five wells are in the southern part of --EXAMINER ROSE-COSS: One second, Davis. 8 I'm sorry. I believe I've made you a presenter, Ms. Luck. Do 9 you have the ability to share your screen? 10 MS. LUCK: Yeah, I can share the exhibits. 11 12 EXAMINER ROSE-COSS: That might help everyone 13 out. 14 Here we go. Thank you, Ms. Luck. 15 MS. LUCK: Yeah. 16 And I have... okay. 17 EXAMINER ROSE-COSS: Go ahead, Mr. Lunsford. MS. LUCK: Sorry. This is Exhibit 1. 18 Okay. Exhibit 1 shows the location of the 19 Α. section for the wells in question in the southern part of 20 21 Lea County. Those wells are the Black Bear 36 State 04, the Brown Bear 36 State No. 1, the Ophelia 27 No. 1 and 22 23 the Hawk 25 Fed No. 1 and No. 2. 24 And I'll take this opportunity to point out 25 that these wells were selected according to the same

criteria that we used for the Caballo Pilot Project, and 1 2 so these wells are all similar in terms of the reservoir 3 and geologic criteria. They are all actually from the 4 same producing interval as the original Caballo, and they all have similar production rates, production pressures, 5 and they are all of approximately the same vintage. б 7 ο. And so what is EOG's goal with this project? The goal of the project is to temporarily inject 8 Α. into these wells during periods of market interruptions, 9 and then when those market interruptions are over to 10 reproduce the gas through the existing production 11 12 facilities.

Q. And you mentioned that these wells have analogous geologic and reservoir properties to the Caballo project. Is that correct?

A. That's correct.

16

Q. And so what is EOG seeking differently in this
 application from the original application?

A. Well, I believe that the original application was really focused on defining the project from a pilot perspective, and our intent with these wells is to make the project operational so that in the event of a market interruption we would be ready to inject gas into these wells to prevent either flaring or the shutting in of wells in the area.

Page 12

Page 13 And this project, like you said, is based on the 1 Q. 2 results of the Caballo and how all that turned out? 3 Α. That's right. 4 So at this point EOG's plan is to only inject 0. 5 small volumes for short periods of time in these wells? That's right. If these wells are ready to 6 Α. 7 inject during periods of market interruption, those interruptions are usually brief, on the order of hours to 8 a maximum of a few days, and they are a minimum amount of 9 time in the life of the well. 10 11 ο. Now, turning to EOG Exhibit 2, can you explain 12 what this exhibit shows? This exhibit shows EOG's infrastructure 13 Α. I can. 14 And I'll walk through the exhibit beginning with systems. 15 what's really in the middle of the page, I quess the top 16 left portion of the diagram, but that would be the 17 production facilities that are shown and EOG's gas gathering system. 18 So their upfield production facilities 19 supply gas to EOG, to an EOG-owned, gas-gathering system, 20 and that gas-gathering system is shown in red. 21 22 Gas to issue (phonetic) in the gas-gathering system to a compressor station which is 23 24 shown on the right side of the exhibit, and that 25 compressor station exists to supply to third-party

1 purchasers.

2 In terms -- any interruption on this system 3 or further downstream blocks the flow of gas and requires EOG to either flare or shut in wells, and so the answer to 4 5 those market interruptions, what we call closed loop gas capture, is shown beginning with the blue-grey pipeline б 7 leaving the compressor station. 8 So in the event of a third-party interruption, gas would be supplied through the blue-grey 9 pipeline to a nearby well. It would be injected into that 10 nearby well while the well is shut in, and then when the 11 12 third-party interruption is over the gas would be 13 reproduced through the existing production facility and 14 introduced back into the gathering system and then on to 15 market from there. 16 So I'll also point out that for all the 17 wells in question in this hearing, they share a gas-gathering system. And so that's important. 18 For instance, the gas composition that would be injected into 19 any one of these wells will be fairly common across all of 20 21 them. 22 Q. Okav. And so again I think you mentioned it, but why does EOG want to inject gas? 23 24 Α. Right. Because an interruption on any part of 25 this system requires us to flare or shut in wells, we've

Page 15 improved the reliability of the EOG-owned portions, the 1 2 EOG gas-gathering system, the compressor station to the 3 point that the largest source of interruptions is now 4 third-party market. So the goal with this project is 5 reduce our dependence on their run time and have another option so that we can increase our gas capture rate. б 7 EOG's gas capture is currently above 99 percent, and that's a fact that we're proud of. And so as 8 we look to how do we increase it still further, this 9 project is in response to the third-party interruptions, 10 and we think it will be a big part of how we continue to 11 12 increase that gas capture rate. 13 Okay. So now we will turn to Exhibit 3, and can 0. 14 you explain what this exhibit shows? 15 Yes. This exhibit is very similar to Exhibit 2, Α. 16 but it does highlight that EOG has two different types of compressor stations. The first which I mentioned earlier 17 exists to supply gas to a third-party market. 18 In addition, EOG has what we call localized gas lift stations 19 or LGLs, and that localized gas lift station or LGL is 20 21 shown here. And those compressor stations, they exist to 22 supply gas to nearby wells for the purpose of gas lift. 23 So I wanted to highlight that distinction, 24 because in the original Caballo pilot we used a localized 25 gas lift station to supply gas to the well, and in the

Page 16 future that would also be a potential for us to supply gas 1 2 for the purpose of closed loop gas capture from an LGL in 3 addition to sales (phonetic) station. 4 Okay. So initially before the original Caballo 0. 5 Pilot Project did EOG meet with and discuss the concept б with the Division? 7 Α. That's right. We discussed the concept really because this project didn't fall within existing 8 regulations for existing types of injection. 9 10 And as a result of that meeting did the Division Q. 11 Director provide EOG a letter outlining conditions that 12 the Division wanted EOG to meet in order to consider 13 approving a pilot project like in the original case? 14 Α. That's correct. 15 Is that exhibit marked as Exhibit 4 in the 0. 16 packet? 17 Α. It is. 18 So we will turn to that letter now. 0. 19 So I believe you stated at the hearing on 20 the original application if the pilot project was viable 21 that EOG would seek similar projects at other wells in New 22 Mexico. So based on the results of the initial pilot 23 project, like we mentioned EOG is seeking approval of a 24 second expanded project within the same interval? 25 That's correct. Α.

Page 17 And so you mentioned previously that this 1 Q. 2 project will be comprised of one injection well? The five wells that I reviewed: The Black Bear 3 Α. 36, 04; the Brown Bear 36 No. 1; the Ophelia 27, No. 1; 4 the Hawk 25 Fed No. 1 and 2. 5 6 And there were two other wells originally 0. 7 included in this Application? Α. That's correct. 8 9 And since this Application was filed EOG has Q. 10 decided to not seek approval of those two wells at this 11 time? 12 Α. That's correct. 13 And later witnesses will discuss that. 0. 14 Α. Yes. 15 Okay. So what is EOG's proposed timeline to 0. 16 implement this project? 17 Α. Our timeline for implementation is that as soon as possible upon regulatory approval we are ready to 18 19 install the necessary equipment and implement the project 20 upon approval. 21 Q. And will EOG report the findings of the project 22 as required by the Division. 23 We will. We will periodically report all Α. 24 relevant data. 25 And did EOG also meet with other interested Q.

Page 18 agencies? 1 2 Α. We met with the State Land Office, as well Yes. 3 as the BLM, concerning the wells where there was federal 4 interests, and the project has their endorsement. 5 So now turn back to Exhibit 4. 0. 6 Your area of expertise includes oversight 7 and management of these facilities? 8 That's right. Α. 9 So you have already addressed what is under Q. 10 Bullet Point 1, Project Description, and so you're also 11 going to provide information about monitoring and 12 reporting, corrective action and reporting, right? 13 Α. Yes. 14 0. And then EOG has other witnesses here today to 15 address the other conditions in Exhibit 4. 16 That's right. Α. 17 So let's discuss EOG's plans for monitoring 0. 18 injection. How does EOG's plan propose to monitor these wells? 19 Similar to the pilot project, all relevant data 20 Α. 21 is already being brought into EOG's data system, which exists to transmit data from devices in the field for the 22 purposes of storage and monitoring that information. 23 24 Q. And will there be equipment like an automatic 25 shut-off or shut-down valve that prevents the surface

Page 19 pressure from exceeding the maximum allowable? 1 There will. There will be multiple layers of 2 Α. 3 protection. 4 And I'd like to just briefly turn back to 0. 5 Exhibit 2 and see if you can point out on this map where 6 the locations would be. 7 Α. Okay. Yes. So as I mentioned, we will bring in relevant data, but just to explain what that data is and 8 where that data is, from the compressor station we'll be 9 collecting both pressures, temperatures and rates, as well 10 as gas composition. And then of course from the injection 11 12 meter we'll get injection rates and pressure. 13 We'll also collect casing and tubing 14 pressures on the subject well during and after injection, 15 as well as on the offset wells. 16 And from the production facility we will 17 collect production rates, oil, gas and water, and we will also be, of course, collecting production rates on offset 18 wells, as well. 19 20 Thank you. And so in terms of this data that Q. 21 you're collecting, will EOG also submit a C-115 Form 22 reporting the total production injection volume, pressures, and dates of operations? 23 24 Α. Yes. 25 Q. And then turning to Corrective Action, what

plans did EOG have in place to respond to potential
 environmental problems that might arise?

3 Α. So we don't expect engineering or environmental 4 problems associated with this project, we have multiple levels of safeguards, but for all of EOG's operations, we 5 have Standard Operating Procedures that direct how we 6 7 respond to environmental or engineering emergencies, and 8 those procedures are reinforced through safety training throughout the year, and they can be implemented either 9 from the field level for folks in the field or from EOG's 10 24/7 control room. 11 12 Okay. And then turning to the Project Q. 13 Reporting, uhm, the letter indicates a project report. So 14 what is EOG requesting in this case? 15 After the Caballo pilot project we submitted all Α. our findings for the pilot, and in the future, as we 16 17 expose this wells across the field, it would be more appropriate to submit periodic reporting, as we discussed. 18 19 Q. And so I think that that looks like what I have 20 for you.

Were Exhibits 1 through 3 prepared by you
and compiled under your direction and supervision and do
they consist of EOG's business records?
A. Yes.
MS. LUCK: So with that I would move the

Page 21 admission of Exhibits 1 through 4, and then pass this 1 2 witness for any questions from the examiners. 3 EXAMINER ROSE-COSS: You're muted, Bill, if 4 you're trying to talk. 5 HEARING EXAMINER BRANCARD: Okay. Is there any objections to the exhibits? б 7 Hearing none, those exhibits that were offered, 1 through 4, are admitted. 8 Ouestions from the examiners? 9 EXAMINER ROSE-COSS: Uhm, I can begin. 10 I know Dean will have some questions for you, Mr. Lunsford, but 11 12 nice to see you again. 13 THE WITNESS: You, as well. 14 EXAMINER ROSE-COSS: It's been the whole 15 pandemic since I've last seen you all. 16 We have reviewed and made comments on the 17 Caballo Pilot Project as it's been called. Unfortunately, you know, we haven't been able to speak with you much or 18 at all about that, so that's a regrettable situation. 19 20 But good to see you again here for this. 21 CROSS EXAMINATION 22 BY EXAMINER ROSE-COSS: I suppose one of my questions is: So you-all 23 Q. 24 are envisioning it's going to be similar parameters for 25 the wells that you're proposing today that occurred in the

Page 22 Caballo, but this is expected to be live. 1 2 What kind of time scale were you hoping 3 that this pilot project would be issued for, this project 4 would be authorized for? As far as before implementation or what the 5 Α. duration of the Order would be? б 7 ο. Duration of the Order. We seek your guidance there, but we see this as 8 Α. a continuing project. So as long as there are third-party 9 interruptions we'll want the option of responding to them 10 using closed loop gas CAPTURE. 11 12 So whatever the duration is there, it might be something that we would review, you know, as needed. 13 14 Q. Sure. No, of course. 15 And, you know, the Division does appreciate EOG's efforts towards projects like this, that's for 16 17 certain. 18 Could you describe for me again the 19 difference in terms of how the gas will be captured and 20 routed in this project versus the Caballo project? Yes. If you will pull up Exhibit 3. 21 Α. 22 Okay. So for the purposes of the pilot project our goal is to approve it and define it from a 23 technical standpoint, a regulatory standpoint, so we used 24 25 what we call a localized gas lift station, because that

Page 23 localized the gas lift station already had a pipeline to 1 2 the Caballo well for the purposes of gas lift, so we could 3 use that existing pipeline, existing infrastructure to 4 supply the gas from a compressor station to the subject well. 5 In the future we will primarily move gas 6 7 from a sealed compressor station to the subject wells, 8 which will require the installation of a new pipeline. So that's really the key distinction 9 between a pilot test and the wider implementation that we 10 are discussing today is we will lay a pipeline from a 11 12 sales compressor station to the subject well, and that would be new infrastructure costs that we wanted to avoid 13 14 on the Caballo. 15 The reason that we will primarily use that 16 sales station instead of an LGL station is, again, they 17 exist for different purposes. So to throw numbers into an example, if both a sales station and an LGL station are 18 moving a rate of 50 million and we have a market 19 disruption to the tune of, say, 30 million so that the 20 21 market can no longer take our gas, the 50 million that the LGL was moving is really still needed to support the 22 23 production of the wells through gas lift, but the sales 24 compressor station now has excess compression; it was 25 capable of moving 50 million, the markets are only taking

Page 24 30. So we'll use that delta to keep those compressors 1 2 running at the sales station and inject in the nearby 3 wells. 4 So that was a lengthy explanation but the 5 key is we will be installing the pipeline from the sales compressor station to the subject wells, and that will be б 7 the primary way we inject for closed loop gas capture. Does that make sense? 8 9 Q. Yes, I believe I'm following you. 10 So when -- I heard that you-all were ready 11 to go, but by "ready" you mean you're ready to begin 12 constructing a pipeline. 13 Α. We're ready to begin construction, that's 14 correct. 15 Okay. And I guess I'm not following, in terms 0. 16 of the documents submitted as exhibits here, where the 17 compression stations are in relationship to the wells, and 18 whether or not all of the wells are on a similar pipeline. 19 Like, how far are these wells from the compressor station? So on a single gas-gathering pipeline we have 20 Α. 21 multiple compressor stations. And each of the wells in 22 question is as near as we could get them to a sales compressor station. 23 24 So for each of those wells the distance 25 between the sales compressor station and the well in

Page 25 question is -- I -- it varies, but it's less than a mile 1 2 on average, and the entire gas-gathering system stretches 3 out over several miles. 4 So on a single gas-gathering station or gas-gathering system there's multiple compressor stations 5 feeding these wells that we have. б 7 ο. Okay. Would EOG be able to provide some plans 8 and diagrams and explanations of --That probably would be a simpler way to 9 Α. communicate it. 10 11 Q. Okay. Perfect. I think that would help us out. 12 I mean, how far would you say away these wells are from one another? It doesn't seem like they 13 14 might be that proximal. 15 THE WITNESS: Maybe Exhibit 1 could give us a 16 reference. 17 MS. LUCK: Yeah. Okay. 18 Α. Yes. So you can see that the sections in 19 question here -- I mean, you can see the section blocks on there -- to determine how far away from each other they 20 21 are, approximately. And the two Hawk wells and the two bear 22 Wells, the Brown Bear and the Black Bear, are close 23 24 to each other. And we've done that really just for 25 operational simplicity and redundancy so that a single

1 compressor station could deliver gas to either of the Hawk 2 wells or either of the Bear wells, if needed, although I 3 anticipate that we will inject primarily into one or the 4 other.

Page 26

5 Q. So am I mistaken in thinking that those are 6 probably more or less seven miles apart? How much area 7 would one compressor station cover?

8 A. One compressor station would cover an area of9 several square miles.

10 So is it my understanding then from looking at Q. 11 this that -- or what you're telling me is the Hawk and the 12 Bear, you know the two Hawk wells and the two Bear wells 13 would serve one compressor station and be in between them? 14 The Hawk, the two Hawk wells would serve one Α. 15 compressor station, and the two Bear wells will serve one 16 compressor station.

And we have some exhibits later on that other witnesses will cover that will show you where those wellbores are at a little bit more accurately.

20 EXAMINER ROSE-COSS: Okay. And then I feel like21 I'm stepping on Dean's toes here a lit bit.

22 EXAMINER McCLURE: That's okay. Keep going,
23 man.
24 EXAMINER ROSE-COSS: He might have a similar

25 line of questions for you.

Page 27 So are these all considered one field or these 1 0. 2 are different fields? 3 Α. This would be considered one field, all in one 4 qas-qathering system. 5 Oh, okay. Well, I suppose I need to be 0. 6 refreshed on how to define a field that's based on a 7 gas-gathering system, because I would think maybe that's 8 not my conception of it. We -- so all of these are in what we call our 9 Α. Red Hills area, our Red Hills fields. 10 11 Q. Okay. And all of the -- all of the wells across 12 that expanse are kind of Avalon Bone Spring? 13 Α. Uhm, they are -- we do have pretty consistent 14 development across the Avalon Bone Spring in this field, 15 and we also have lower development in the Wolfcamp. 16 Okay. And is there going to be a witness coming 0. 17 up that's going to be speaking about kind of the 18 anticipated volumes and durations and frequencies that we 19 should expect? I can speak to that a little bit. 20 Α. 21 So the way that we've identified the expected volumes and durations are we look at what kind of 22 23 third-party interruptions we see commonly. And so those 24 occur -- of course it's unpredictable, so I usually just 25 say a minority of the time in the life of the well. We

Page 28 may go weeks without interruptions, we may go months 1 2 without interruptions, or we may have a spell where maybe 3 we may have two in a series of a couple of days. But we it on a wide-enough time scale and look at an average. 4 It's a pretty small minority of the time that we are 5 actually trying to respond to a market interruption. б 7 When those market interruptions happen they usually last anywhere from a few hours to a maximum of a 8 few days. So a maximum of two or three days would be the 9 duration of injection, and more commonly it would be on 10 11 the time scale of hours. 12 The rates that we typically would need to inject because we don't have another home for 'em, they 13 14 were going to a third party and now that third party has 15 gone down, those rates are usually anywhere from a few 16 million standard cubic feet a day to a maximum of 10 to 15 17 million standard cubic feet per day. 18 So if you look at the total volume injected during an interruption, it's usually a few million to a 19 maximum of 15 or 20 million would be the volume of 20 21 injection during a typical market outage. 22 EXAMINER ROSE-COSS: Okay. Well, thanks for those answers, then. 23 24 And I feel like what I'm going to, uh --25 what would help me -- I know that will be in the record

now, but will help Dean and I writing the Order going 1 2 forward, I think that I'll ask that you could submit a 3 more detailed map of these well locations, and have displayed their relationship to the pipeline. Like, have, 4 you know, "the fields" that -- you know, EOG's wells. 5 You know, these wells kind of highlighted within those fields, 6 7 the pipelines running through the fields, the compressor stations marked, the proposed pipelines that EOG would 8 like to build from the compressor stations to these wells. 9 Uh, some sort of description of the overall pipeline, so 10 that -- and I guess I could ask, while I'm going through 11 12 this: Has EOG received the updated guidance letter that the OCD made for projects like this? 13 14 Α. Yes. 15 Q. Okay.

Page 29

MS. LUCK: Excuse me. Sorry to interrupt, but it's our understanding at this point that that guidance document is still a draft. Is that correct, or is there a more final version that's been reviewed?

20 EXAMINER ROSE-COSS: Well, I believe it's a 21 draft, and that's kind of the way we would like to move --22 the information that we would like to move forward with 23 but it's a draft in the sense that we would like maybe 24 some feedback from EOG, and other operators potentially, 25 and that we would like to be able to continue to amend it

Page 30 going forward. But as it stands now it's kind of still 1 2 that guidance document OCD would like to be acting from. 3 So... 4 MS. LUCK: It's (inaudible). 5 EXAMINER ROSE-COSS: Sure. Sure. We hadn't spoken about it until we are live on the record now. б 7 So one of the requests within that is to -that all of the pipelines, all the wells are within like a 8 similar gas-gathering line. So, uh -- hopefully I'm 9 saying that right, Dean. 10 So this figure could include some 11 12 description or verification that they are all kind of 13 interrelated. 14 And I believe that's all I would like to 15 see from that figure. 16 I'd like additional kind of graphs or 17 charts or summary of the volumes that these wells might be expecting to see, sort of a definition of what low, 18 medium, high might be, and the kind of volumes to be 19 20 expected. 21 On a -- you know, I know it said it in the 22 earlier document, your gas capture kind of summary, you 23 know, this was low, medium. Maybe some analysis of what 24 those volumes might be on a week or month or a year. 25 And, uhm, what else did I want to say?

Page 31 1 Yeah. And, uh, that's it. 2 So --and I believe the Caballo exhibits 3 touch on some of that, but if I could -- if we could have 4 that again within these exhibits. 5 THE WITNESS: We can provide that. EXAMINER ROSE-COSS: Thank you. 6 7 And that's all the questions I have, or requests, and I'll pass it to Dean at this point. 8 CROSS EXAMINATION 9 BY EXAMINER McCLURE: 10 11 Okay. I guess my first and foremost question is Q. 12 you did answer in the affirmative that you have seen this 13 draft of the guidance document that I believe was emailed 14 to EOG on the 17th of last month, I believe. Is that 15 correct, and you have had a chance to review that? 16 Α. That's correct. 17 Okay. I guess is there anything on that in Q. 18 regards to reporting that you see problematic --19 Α. No. 20 -- that EOG would not be able to provide, or Q. 21 what are your thoughts in regards to that. 22 MS. LUCK: Sorry to interrupt, but I would like to say that EOG has provided comments on that Draft 23 24 Letter, and we would like for additional comments that 25 were submitted on the letter to stand.

Page 32 1 But I'll let Mr. Lunsford answer any 2 questions that the Division might have about the letter 3 or, anything about the (inaudible) in the letter. 4 No, I'd echo that statement, especially because Α. EOG took the approach of having a real multidisciplinary 5 team reading that letter, from reservoir to geology to 6 7 production accounting to myself as facilities engineering. 8 So I'm probably not equipped to speak, to, all of our comments, but we have reviewed it thoroughly. 9 10 And unfortunately I haven't actually, I guess, Q. 11 seen your response email, myself personally, in regard to 12 that, so this is probably discussion that's better had not 13 in the middle of the hearing, I suppose, and not directly 14 related to this particular case, then. 15 I guess the only thing that I may add is 16 that the initial letter that you are referencing within 17 this case, it actually expired 60 days after being 18 originally sent to EOG, and as such the only real 19 guidance, I guess, that we have out there is that Draft 20 Letter, even if it is in a draft status at this particular 21 juncture. It is the relatively novel approach of these projects, we don't have anything finalized as far as what 22 we're looking at. 23 24 Uhm, I guess something that I was kind of, 25 like, wondering -- and it almost seemed like, based of

your responses to Examiner Coss earlier, that your actual 1 2 intention for this project isn't so much in regards to 3 conducting tests on these wells but more along the lines 4 of having these wells available to be used for their 5 intended purposes, but yet you still intend to gather data on it as if it was having tests conducted on it? 6 Is that 7 a correct statement? I think so, yes, sir. Of course, we want these 8 Α.

9 operational to respond to third-party market 10 interruptions. That doesn't mean that we'll stop 11 collecting all relevant data to the project, you know as 12 far as injection rates, pressures, production, after we 13 inject.

And so I think the level of monitoring will continue to be extremely high, as it would be during the pilot project, and we want these to actually be operational.

18 Okay. Now, as far as having data, then, prior 0. 19 to injection, you're consistently going to be maintaining 20 your data so you will be able to present us with data 21 prior to and after a test, under the understanding that 22 these tests may occur not dependent upon your own schedule 23 but just whenever your mainstream goes down. Correct. 24 Α. 25 Okay. Okay. Additionally to that, in regards Q.

Page 33

Page 34 to something that we would like to see that we did not 1 2 require as much in the prior pilot project, the Caballo, I 3 believe -- I'm probably mispronouncing, so forgive me if I 4 am -- is more data related to the neighboring wells. Uhm, I guess -- and in particular I 5 6 believe -- and if this is a better question for one of 7 your other witnesses, please put it off on them and I'll 8 ask it again. But I believe one of the wells, maybe it ws 9 the Brown Bear 36 State, uhm, 50 over -- Black Bear 36 10 State 4H, I think might be the one. Let me actually bring 11 it up. 12 Oh, excuse me. I apologize. It's Brown 13 Bear 36 State 1H has a lease that is owned by an operator 14 that's not EOG. 15 That is -- do you perceive being able to gather data off of that well to see how their production 16 17 is affected when you're injecting into the 1H? 18 Α. Another witness will be more appropriate to 19 answer that question. 20 Okay. Sounds good. Q. 21 You know, I wasn't really sure. A lot of 22 this stuff isn't really in the exhibits you already 23 presented. Some of them's kind of overlapping between 24 like production engineer, landman, and facilities engineer, so I wasn't sure. 25

Page 35

A. Okay.

1

2 Q. A question that I did have: On your original 3 pilot project then on this one you're asking for maximum 4 allowable surface pressure of 3500 psi.

5 Can you explain more what your reasoning is 6 for such a high value when you never even needed it in the 7 initial pilot project.

A. Great question, and subsequent witnesses will 9 really dive into that, and I think will explain our 10 justification there. And we've actually lowered our 11 requested maximum allowable surface pressure down from 12 that 3500.

13 So I think we will allow for a review of 14 that in depth in the production and reservoir section.

Q. Okay. Sounds good. I guess from the facilities standpoint, one of your new proposed maximum allowable surface pressure on is your proposed infrastructure that you're planning to build for approval. Is that going to handle whatever your MASP is as planned?

20 A. It is adequate --

21 **Q. Okay.**

22

23

A. -- for all the standard facilities --

(Note: Reporter interruption.)

A. (Continued) So in answer to the most recent question, yes, all of the surface equipment will be rated

Page 36 to the maximum allowable surface pressure. 1 2 0. Okay. Sounds good. 3 Now, you've referenced conversation with 4 the State Land Office and the BLM in regards to these 5 wells. I guess was there any discussion in regards to the б allocation of the gas as being reinjected back into these 7 wells, or is that a question better for another witness? I can speak to it briefly. 8 Α. 9 Q. Okay. The allocation on the lease level doesn't change 10 Α. whether or not we're injecting for the purposes of closed 11 12 loop gas capture or not. Across the field the gas on a 13 given lease gets allocated as it leaves the lease, and 14 this closed loop gas capture happens after that point. After it leaves the lease. Is that what you're 15 0. 16 saying? 17 Α. Right. After it leaves the lease, yes. 18 Okay. So then what you're reporting to the BLM, 0. 19 then, is essentially going to be what is going down the 20 sales pipeline, and that is also how you're allocating it 21 back to the individual well, then, as well. Is that kind 22 of correct then? 23 Α. Let me clarify. 24 So for wells that are not being injected 25 into for the purposes of closed loop gas capture, the
production allocation method won't change. So maybe would we could pull up Exhibit 2. I want to make sure I'm clear on this point.

The production facility is not involved with this process, so the two that are represented there in the middle of the stream. The production allocation methodology won't change on those leases.

8 For the wells involved in this closed loop 9 gas capture process, we will allocate, uhm, native 10 production that came from the native lease that the well 11 would produce anyway, versus injective production.

12 And to give a brief overview of our method 13 for determining that split, it's because when the gas 14 comes out of the well we get a single number. We know how 15 much gas came out of that well that day. And then the 16 task is to divide it between, okay, what is native 17 production that the well would have made and what's 18 injection recovery.

And so we do that with a couple of methods that we use to confirm each other. The first is just decline curve analysis on the subject well. At this stage in these wells' life their production is fairly constant, so we can determine with a real high degree of accuracy what the gas production for a given day will be. And so when we reproduce this well, that's one indicator of what

1 the native production is. The other is liquid production, 2 because the gas/liquid ratio on these wells is also fairly 3 constant.

So we use both those methods to confirm each other, and arrive at a production allocation for the native production, and then only anything in excess of that native production is recorded as recovered injection gas.

9 So I hope I made that clear and I hope that 10 answers your question.

11 Yes, it does. But it does sound like a -- I Q. 12 mean, obviously it is as accurate as we could probably 13 make it be. My question to you, though, is: As more and 14 more of these wells are added on, is this something you plan on running these decline curve analysis and going 15 16 from there for each and every month when we go to 17 allocate? I guess -- let me back up a second. 18 19 I guess what my concern is, is if -- making 20 sure that 100 percent of the gas being injected is not 21 being reported, I guess, as beneficial use or as just native gas lift operations is what my concern is, because 22 we may not see full recovery of the gas. 23 24 Α. Right. 25 And if we disposition 100 percent of that gas Q.

PAUL BACA PROFESSIONAL COURT REPORTERS 500 FOURTH STREET NW - SUITE 105, ALBUQUERQUE, NM 87102

and only we recover 90 percent, you know then essentially 1 2 this well, understanding that your actual sales line, your 3 testing (phonetic) transfer point or field measurement 4 point, depending what agency we're talking about here, is 5 going to remain constant, what leaves the lease anyway. 6 It may change the allocation to the individual wells, or 7 potentially even leases, if you have a service commingling 8 agreement in place -- or permit, excuse me.

9 A. Yeah.

Yeah.

10 **Q.**

11 A. So we need to be fair to the leaseholders in the 12 subject well, and so we prioritize that native production. 13 So anything that the well makes that day, it's first 14 counted as native production, and only anything on top of 15 that, any excess production do we register as the 16 recovered injection volume.

And it's -- as far as doing the calculation on multiple wells, the Caballo pilot allowed us, you know, not only to test, you know, technically and physically how this project works but also how the numbers flow through our production accounting system.

22 So that was a reliable method. We were 23 able to automatically calculate and verify the native gas 24 production, and we can -- we'll be happy to share further 25 information. And sometimes the calculation can be

Page 40 helpful, you know, a sample calculation. 1 2 I was thinking that probably won't be necessary. 0. 3 I'm pretty sure I have a pretty good idea of what you're 4 looking at. 5 I guess my only other question is: If some 6 of this injection gas is being recovered out of 7 neighboring wells, are you accounting all the additional 8 gas to the neighboring wells as native production from 9 those wells, regardless of what you would presume it to 10 be, I guess. I'm going to defer that question to our 11 Α. 12 reservoir engineer --13 Q. Okay. 14 -- who will explain that we don't anticipate any Α. 15 gas migration to neighboring wells. And our pilot project 16 confirmed that, as did our reservoir modeling. 17 0. Okay. Okay. We -- I'll discuss that, I guess, 18 with your later witness in regards to that topic. 19 I guess, how long ago did you talk to the State Land Office and the BLM? Was that recently and 20 21 directly related to these specific wells? 22 Α. Yes. Yes. 23 Sounds good. They were both in the affirmative Q. 24 to this particular case, then? 25 That's correct. Α.

Page 41 Okay. Sounds good. 1 Q. 2 Would EOG be opposed if the OCD requested a 3 certain test to be conducted in this particular pilot 4 project, uh, that we may perhaps have liked to have seen 5 after reviewing the prior pilot project's data? б Let me rephrase that. 7 Would EOG be opposed to conducting tests at 8 OCD's request for these wells once your infrastructure 9 is in place. 10 Yes, we would be open to talking about tests on Α. each of these wells. 11 12 Q. Okay. And then I'll also note that as a facilities 13 Α. 14 engineer I'm anxious, of course, to get a project on line, 15 but we will be transparent with all data so that you guys 16 have high confidence that these wells are performing as 17 expected. 18 0. Sounds real good. 19 I think the only other line of questioning I had was kind of touching back a little bit more on what 20 21 Examiner Coss had referenced, and that is the all being 22 linked to the same gas-gathering system. 23 I guess my question to you is: These are 24 multiple leases, and it doesn't seem like you have a 25 commingling permit in place for these wells, so is it

Page 42 actually accurate to say that you have the same source gas 1 2 for all these wells, or is that source gas isolated to 3 these specific pressure stations, I guess, rather than 4 being able to go to all three of these? 5 Yes. So my comment about the same source gas, I Α. should have phrased it "similar source gas." The 6 7 composition of gas across the field is fairly consistent. 8 Q. Uh-huh. Okay. I guess my question then would go to how many sets of same source of gas do we actually 9 10 have within this application? Speculation is that you probably have one for each of those wells, so essentially 11 12 three of them. Is that correct? 13 Uhm, the source gas that's drawn off of the EOG Α. 14 gas-gathering system that moves through the compressor 15 station and into these injected wells will be a blended gas analysis from all the wells producing into that 16 17 gas-gathering system. So as far as the -- when I reference the 18 19 source gas, I'm referencing really the blended gas from

Q. So then that's after it went through custody
transfer, or is it still in EOG's custody at that point?
A. It's in EOG's custody at that point.
Q. So I guess what my question then extends, is:
Do you know why there isn't a commingling permit for those

the EOG gas-gathering system.

20

1 wells if your gas is being commingled prior to custody 2 transfer?

A. I am not familiar with the production allocation on that level, so I'd probably defer that question. Uhm, but we can investigate that further and discuss it with you.

Q. I guess to better make sure I understand exactly what we are looking at, though, essentially would it be correct that the -- from the same delivery point you could then inject into all three of these wells? Or is that not correct, I guess.

12 A. From a single compressor station we will inject13 into one of these wells.

Q. Okay. I guess but as far as the gas that sources that compressor, does that come -- let's just say how many compressor stations there are, whether it's three, five, whatever, the same wells, are they producing into that same system and would it be fair then to say that gas from any of these wells could then be injected into any of the compressors, I guess.

A. Yes. The gas, just because of the pipeline hydraulics, will likely stay local to a given compressor station, but because the gathering system is connected, there is a possibility for blending across compressor stations.

Page 44 Okay. I think I'm having a better 1 Q. 2 understanding, yeah. 3 So what we would be looking at -- I think 4 what we will need to see is probably -- and this is in a 5 later exhibit so it's probably to be discussed later, as б well, but I believe we may only have one gas analysis that 7 comes from like a compressor station. I think what we will also need -- well, I guess I'm not (inaudible). 8 9 What we'll also require is a gas analysis 10 from each of your -- I don't want to call them injection 11 facilities, but from each of the points that would be 12 going into one of these wells. 13 Does that make sense to you? 14 Brice, our production engineer, has further gas Α. 15 analyses as part of this hearing that he'll review. 16 0. Okay. 17 Α. And we can get a gas analysis from each 18 compresssor station. 19 EXAMINER McCLURE: Okay. Sounds real good. Sounds real good. 20 21 And if we don't have that as part of it, 22 we'll probably -- we'll just need to see that prior to 23 approval. 24 And I think that there was the main thing I 25 was wanting to touch back on. I'm not sure if there's any

Page 45 more facility-related questions that comes to mind, off 1 2 the top of my head, anyway. 3 So thanks a lot for your testimony. 4 THE witness: Thank you. 5 HEARING EXAMINER BRANCARD: Okay. Any further 6 questions for this witness? Or Ms. Luck do you have any 7 redirect? 8 MS. LUCK: Yeah, I just have a quick redirect question about Exhibit 4. 9 10 HEARING EXAMINER BRANCARD: Okay. 11 REDIRECT EXAMINATION 12 BY MS. LUCK: So Mr. Lunsford, do you know did the Division 13 Q. Director advise EOG to follow what has been marked as 14 Exhibit 4 for this project, the October, 2019 letter? 15 For the purposes of the Caballo pilot project, 16 Α. 17 yes. But then also for the --18 Q. 19 Α. Also to reference that guidance for this project, as well. 20 21 Q. As the Director of the Division addressed. 22 Α. Yes. So that's why we went ahead and included this 23 Q. Exhibit 4, because the Director had advised us to follow 24 25 this guidance.

Page 46 Α. 1 Yes. 2 MS. LUCK: Thank you. So with that I think 3 that's all of my questions for this witness. 4 Could we take like a brief break for just a moment to get the next witness in? 5 HEARING EXAMINER BRANCARD: Sure. б 7 (Note: Timing discussion held off the record.) EXAMINER ROSE-COSS: I would suggest a lunch 8 break, too, and maybe some clarification or validation of 9 the Director's approval of using the October 24, 2019, 10 letter for these cases. 11 12 MR. McCLURE: We need that on our end, I would think, right? 13 14 HEARING EXAMINER BRANCARD: Mr. Coss, you're 15 proposing... EXAMINER ROSE-COSS: Well, if the Director --16 17 that's news to us that the Director approved the use of the October 24, '19 letter to proceed as guidance for 18 19 these cases. HEARING EXAMINER BRANCARD: Okay. Well, I think 20 you need to resolve that within the Division, then. 21 22 EXAMINER ROSE-COSS: Very well, then. 23 HEARING EXAMINER BRANCARD: Unless, Ms. Luck, 24 you have some communication. 25 MS. LUCK: I don't know if we have anything in

Page 47 writing. I think it might be better for the Division to 1 2 confirm internally. 3 HEARING EXAMINER BRANCARD: Okay. All right. 4 EXAMINER ROSE-COSS: We will go ahead and do that. 5 Okay. 6 HEARING EXAMINER BRANCARD: 7 (Note: In recess from 12:15 p.m. to 1:00 p.m.) HEARING EXAMINER BRANCARD: Okay. Ms. Luck, 8 whenever you're ready to start resuming, we are on Case 9 21567. It is January 7, 2021. 10 MS. LUCK: Thank you. And just momentarily, if 11 12 I may, I would like to recall our first witness David Lunsford to ask some questions that Examiner McClure had 13 for him. 14 15 HEARING EXAMINER BRANCARD: Okay. How long do 16 you think you're going to go with the rest of your 17 witnesses today? MS. LUCK: I'm not sure exactly how long it's 18 19 going to go, but I would say the question that I have for Mr. Lunsford is brief, and he should be able to address 20 21 that pretty quickly. 22 HEARING EXAMINER BRANCARD: Okay. 23 REDIRECT EXAMINATION 24 BY Ms. LUCK: 25 Mr. Lunsford, I just want to return to Examiner Q.

Page 48 McClure's questions about commingling. 1 2 Can you explain EOG's process for measuring 3 production from each of well on lease. I think that some of the confusion may 4 Α. Yes. have been on my part in regard just to the language I was 5 using in response to Examiner McClure's questions. б 7 So to clarify: The point of valuation for royalties is on lease for all of the leases that are 8 providing gas to the gas-gathering system. 9 So we have on-lease measurements before any 10 gas enters the gas-gathering system. That means that any 11 12 gas in the gas-gathering system is not actually commingled. 13 14 But I think I may have confused the point 15 when I talked about our custody transfer meter at the compressor station. I was referencing that meter as 16 17 custody transfer between EOG and the parties who are purchasing our gas, but it may have been confusing and it 18 may have seemed like I was referencing that meter as the 19 point of measurement for valuation on the lift level. 20 But 21 the valuation on lease level occurs on lease. It's 22 on-lease measurement before it hits the gas-gathering 23 system. 24 And a helpful analogy is gas lift. So for 25 our gas lift operations the valuation occurs on lease and

Page 49 then, you know, gas lift, we take that off of the 1 2 gas-gathering system after that point. 3 I hope that clarifies the point. 4 And so just one more question. That means that 0. 5 surface commingling is not required between these five б wells. 7 (Note: Reporter inquiry.) (Continued) Okay. I just want to confirm that 8 Q. this means that there's no surface commingling required 9 for these five wells. 10 That's right, yes. 11 Α. 12 MS. LUCK: And so that was my last question for 13 this witness. 14 HEARING EXAMINER BRANCARD: Okay. Mr. McClure, 15 did you have any follow-up questions for that? 16 EXAMINER McCLURE: Not within the confines of 17 this hearing, anyway. I have no more questions at this 18 point on the topic. 19 HEARING EXAMINER BRANCARD: Okay. Mr. Coss? 20 EXAMINER ROSE-COSS: No more questions from me. 21 HEARING EXAMINER BRANCARD: Thank you. 22 Ms. Luck, you may proceed with your next 23 witness. 24 MS. LUCK: Thank you. So I call Matt Smith, who 25 is the land testimony -- the land witness. Sorry.

Page 50 1 MATT SMITH, 2 having been previously sworn, testified as follows: 3 DIRECT EXAMINATION 4 BY MS. LUCK: 5 Please state your name. 0. Α. Matt Smith, M-a-t-t, S-m-i-t-h. 6 7 By whom are you employed, and in what capacity? ο. I work for EOG Resources, and I'm the division 8 Α. land manager here in Midland. 9 10 Q. Have you previously testified before the 11 **Division?** 12 Α. I have not. 13 Please state for the examiners your education 0. 14 and work experience. 15 I graduated in 1996 with a psychology degree Α. 16 from Texas Tech University. I've got 23 years of land experience, 16 of which were with EOG. I started with 17 EOG in Fort Worth and spent seven years there, five years 18 in San Antonio as Division Land manager, the last three 19 years as Division Land Manager in Denver, and now I've 20 21 been recently transferred to Midland as the Division Land 22 Manager. 23 Are you familiar with the application filed in Q. 24 this case? 25 Α. I am.

Page 51 I'm sorry. I cut you off. Do you have anything 1 Q. 2 else to say about your education and experience? 3 Α. No. 4 So you're familiar with the status of the lands 0. 5 in this area? 6 Α. Yes. 7 MS. LUCK: So with that I would tender Mr. Smith 8 as an expert witness in petroleum land matters. 9 HEARING EXAMINER BRANCARD: Are there any other comments or objections? 10 Hearing none, Mr. Smith is accepted as an 11 12 expert in petroleum land matters. 13 MS. LUCK: Thank you. And I will again share my 14 screen so that everyone can see the exhibits again. 15 Turning back to Exhibit 1. And again we 0. reviewed this exhibit a little earlier, and this shows the 16 17 project area. Uhm, can you again remind us about the land 18 in this area and the three project areas. 19 Α. You can see right there on the map the three areas that we're talking about today are called the Hawk, 20 21 Bear and Ophelia areas. They are depicted on the map in 22 Lea County, New Mexico. 23 And EOG is no long seeking approval of the Q. 24 Diamond wells originally included in the application? 25 That is correct. Α.

Page 52 Could you tell us a little bit more about why 1 0. 2 those wells were removed? 3 Α. We have some work to do with our working 4 interest partners and we didn't want to submit that application today or work on those wells today because we 5 need to work with our working interest partners. We will б 7 be back with those wells very shortly. 8 Q. Okay. And so for the working interest partners and the remainder of the wells, has EOG any other 9 10 concerns? 11 Α. None whatsoever. 12 Okay. And so now we'll turn to, uh, Exhibit 4 Q. 13 from the Division, and that requires notifications to the 14 affected parties within a half-mile Area of Review 15 surrounding the injection wells. 16 Did EOG provide Notice of the hearing to 17 each of the parties in the half-mile Area of Review around 18 each of the injection wells? 19 Α. Yes. 20 Did you prepare an exhibit identifying the Q. 21 affected persons entitled to Notice of the Application and 22 hearings? 23 Α. Yes. 24 Q. And so is that Exhibit marked as Exhibit 5? 25 Α. Yes.

Page 53 I'm sorry. Let me see if I can minimize this. 1 Q. 2 If you could please explain to us what this 3 exhibit shows. 4 This is a map showing the wells that we're Α. applying for, a half-mile halo around them depicting the 5 notified parties. They're all listed there. You can see б 7 there's quite a list: Endeavor, WBA Resources, et cetera. So we've notified all these people around, 8 9 and those people own in those purple-hatched tracts. 10 Q. And let's review this map in a little more 11 detail. What does the yellow shading mean? 12 Α. The yellow shading is the EOG leaseholds, and white is just unknown, or we didn't put the ownership 13 there because it doesn't affect what we're doing here; and 14 15 then the hatched purple and then I quess pink, is the affected parties' tracts that were notified here. 16 17 Q. Okay. And does this map show EOG's 100 percent 18 working interest in these wells? 19 Α. That's correct. 20 Q. Okay. We will turn to the next map. What does 21 this map show? 22 Α. This same thing here shows the half-mile halo around the Ophelia well. It depicts the offset owners 23 24 that we needed to notify. The list is much shorter here, 25 just Conoco Phillips and the Estate of Ralph D.

Page 54 Williamson. And it shows our well in the middle there. 1 2 We have 100 percent working interest in this well, as 3 well. 4 Okay. And then now turning to the last map, 0. 5 what does this map show? It shows the wells with a half-mile halo around 6 Α. 7 each of them. The yellow is EOG, the pink and purple hatched is offsetters that we notified. Again much 8 smaller lifts than the first one, but again we have 100 9 percent working interest here. And -- there we go. 10 11 Q. Okay. Thank you. 12 And so you provided Notice of this 13 Application and hearing to each of those affected parties 14 for each of these wells? 15 That is correct. Α. 16 And did you also, or EOG also identified the 0. 17 owner of the surface on which each of the wells are 18 located? 19 Α. That's correct. 20 Did EOG also provide notice to each of the Q. 21 surface owners? 22 Α. Yes. 23 And then can you just tell us generally what a Q. 24 surface ownership was that tends to (inaudible). 25 All three. BLM, Fee and State. And we notified Α.

Page 55 everyone involved. 1 2 And all parties that were entitled to Notice 0. 3 were identified based on the interests that were recorded at the time the Application was filed? 4 5 Α. That's correct. In your opinion did EOG undertake a good faith 6 0. 7 effort to locate and identify the correct parties 8 (inaudible) as required for notice in the half-mile Notice 9 area? 10 Α. Yes. 11 So to the best of your knowledge are the Q. 12 addresses that you identified valid and correct? 13 Α. Yes. 14 Q. Did you provide a list of those parties and 15 their addresses to my office to issue Notice by Certified 16 Mail? 17 Α. Yes. 18 Is Exhibit 6 -- let me turn back -- an affidavit 0. from me with the attached letter providing Notice of this 19 20 Application and hearing to the affected parties, including 21 the affected agencies? 22 Α. Yes. 23 Q. And then there's the letter and the parties. 24 And then finally is Exhibit 7 an Affidavit 25 of Publication reflecting that Notice of the Application

Page 56 was published in a newspaper of general circulation 1 2 identifying all parties by name? 3 Α. Yes. 4 Just to clarify, this exhibit was received from 0. 5 the newspaper scanned like this, and it just was an error 6 with the scanning. So I think if the examiners have some 7 questions about it we've requested a new copy of this NOP that will show that all five wells were published to all 8 of the affected parties by name. 9 10 Α. Okay. 11 So was Exhibit 5 prepared by you or compiled Q. 12 under your direction and supervision, or do they constitute EOG business records? 13 14 Α. Yes. 15 MS. LUCK: With that I would move the admission 16 of EOG Exhibits 5 through 7, which includes my affidavit and the Notice of Publication. 17 And then I would pass the witness for any 18 19 other questions. HEARING EXAMINER BRANCARD: Thank you. Are 20 21 there any comments or questions about the exhibits? 22 Hearing none, Exhibits 5 through 7 are 23 admitted. 24 Let's start with Mr. Coss. Do you have any 25 questions?

Page 57 EXAMINER ROSE-COSS: I'll go ahead and pass my 1 2 opportunity for questions to Mr. McClure. 3 HEARING EXAMINER BRANCARD: Thank you. 4 Mr. McClure? 5 EXAMINER McCLURE: Yeah, I was going to say that I think that most of my questions weren't so much landman б 7 based, other than just the question on the Public Notice, which Ms. Luck had already addressed. 8 We will just need that, uhm, the -- we'll 9 just need the new updated public notice submitted to us 10 when you do receive that, demonstrating that all five 11 wells was in fact noticed. 12 13 Beyond that the only other question I guess 14 I have is: 15 CROSS EXAMINATION 16 BY EXAMINER McCLURE: 17 On the exhibits that was given to us on Monday 0. 18 afternoon, when was the -- uhm, when was that check as far 19 as status with the United States Postal Service? Because 20 I know it has a status here on all these lists. Do you 21 know when that was actually updated? Was that on Monday 22 or was it earlier than that? 23 MS. LUCK: So as of right now we're using a 24 third-party mail service, and so I can't tell you the 25 exact date it was updated. But we can request an updated

Page 58 tracking status from that company and I can submit that to 1 2 the Division that shows all of the updated tracking 3 information. 4 EXAMINER McCLURE: Yes, please. My only concern is, like for instance we had NGL decide to put an 5 Entry of Appearance, and they just got Notice just prior, б 7 so my concern would be if somebody had not. But in theory 8 the Public Notice should be good once we see that. But I was just curious, I guess, as to what 9 we were looking on that. 10 So yes, please do submit that one to get an 11 12 updated version of that. 13 I believe that's all I had land-related, I 14 believe, unless you think that you would be the correct 15 one to ask, Mr. Smith, in regard to any of the other 16 questions that I previously asked and was postponed to another witness. 17 18 MS. LUCK: I don't think so. EXAMINER McCLURE: Yeah, I didn't think so 19 either, but I was just checking. 20 21 Okay. Thank you for your testimony. 22 THE WITNESS: Thank you. 23 MS. LUCK: I'm sorry. Any other questions from 24 the examiners? 25 HEARING EXAMINER BRANCARD: No. Any other

Page 59 questions from the other party? 1 2 Okay. Hearing none, Ms. Luck, you may 3 present your next witness. 4 MS. LUCK: Thank you. So next I will call Brice 5 Letcher. б BRICE LETCHER, 7 having been previously sworn, testified as 8 follows: 9 DIRECT EXAMINATION BY Ms. LUCK: 10 11 Will you state your name for the record. Q. 12 Α. Brice Letcher. Brice is B-r-i-c-e, and Letcher, 13 L-e-t-c-h-e-r. 14 By whom are you employed and in what capacity? 0. 15 EOG Resources as a Production Engineering Α. 16 Specialist in our Midland division. 17 Q. Have you previously testified before the 18 Division? I have. 19 Α. Could you briefly state your education and work 20 Q. 21 experience for the examiners. 22 Α. I graduated from Texas Tech University with a Bachelor's in Civil Engineering. I have 10 years 23 24 experience as a production engineer in the Permian Basin. 25 I'm a Certified Professional Engineer in the State of New

Page 60 1 Mexico. 2 Are you familiar with the application filed in 0. 3 this case? 4 Α. Yes. 5 And have you evaluated the integrity and 0. stability of the subject wells for this project, as well 6 7 as the integrity of the surrounding wells? 8 Α. Yes. MS. Luck: So with that I would tender Mr. 9 Letcher as an expert witness in production engineering. 10 HEARING EXAMINER BRANCARD: Okay. Any comments 11 12 or objections? 13 Hearing none, Mr. Letcher is accepted as an 14 expert witness. 15 MS. LUCK: Thank you. 16 What aspect of this project falls within your 0. 17 supervision? Primarily reviewing the well construction and 18 Α. overseeing operations of the well. 19 And you'll be providing testimony that the wells 20 Q. 21 proposed for this project meet the Division's criteria and conditions contained in Exhibit 4? 22 23 Α. Yes. 24 Q. And so turning back to the technical letter, 25 Exhibit 4, it says under Technical Information and

Page 61 Standards for Installation/Operation, your testimony will 1 2 cover those Roman Numerals IV through IX, which are parts 3 of the technical testimony. 4 Yes. Α. 5 0. And let's go to Item IV. Turning to Exhibit 8, can you explain with 6 7 this exhibit shows. Exhibit 8 is a wellbore diagram for each of the 8 Α. five proposed wells. 9 Looking at this first wellbore diagram for 10 the Black Bear No. 4H, you can see that each wellbore 11 12 diagram is, uh, a depiction of the well construction where the taking strings are set, and listing detail of how they 13 14 were cemented. 15 So walking through the exhibit, can you just go 0. from left to right at the top and just explain like what 16 17 each column shows and then we can walk through each of 18 these wellbore diagrams. 19 Α. Sure. We can kind of -- the wellbore diagram that show the Black Bear No. 4H. You know, starting with 20 the surface casing is shown to be set at 994 feet. Uhm, 21 it was cemented with 800 sacks and was cemented to 22 23 surface. 24 Our intermediate casing for this well was 25 set at 5050 feet. Uhm, that is 9 and 5/8, uh, and is also

1 cemented to surface.

2 5 and 1/2 17-pound HCL production casing 3 was set at 14,343 feet. The top was cemented at the 4 production casing was calculated to be at 4600. 5 Going down, going to the next wellbore diagram for the Brown Bear 36 State NO. 1H, the surface б 7 casing here was set at 1102 feet, and was cemented to 8 surface. Our 9 and 5/8 intermediate casing was set 9 at 5,075 feet and was cemented to surface. 10 11 The 5 and 1/2 inch 17-pound production 12 casing was set at 14,282 feet with the top of cement being at 4300 feet, (inaudible) by a CBL run. 13 For the next wellbore diagram, Hawk 25 No. 14 15 1H, our 13 and 3/8 surface casing was set at 1350 feet, 16 and that was cemented to surface. 17 The intermediate casing, uh, 9 and 5/8, was set at 5,154 feet and cemented to surface. 18 19 Our production casing 5 and 1/2 inch 17-pound set at 14,180 feet, and our top of cement is 20 21 found to be at 30,900 feet by CBL. And by CBl I mean cement bond mark. 22 23 For the Hawk 25 Fed Com No. 2H, our surface 24 casing 13 and 3/8 is set at 1,350 feet and was cemented to 25 surface.

Page 63 Our 9 and 5/8 intermediate casing was set 1 2 at 5,160 feet and cemented to surface; 3 And our 5 and 1/2 inch 17-pound production 4 casing set at 14,457 feet, with the top of cement being found at 2,650 feet by CBL. 5 And last is the Ophelia 27 No. 1H. Surface б 7 casings 13 and 3/8 set at 904 feet and was cemented 8 surface. The 9 and 5/8 intermediate casing was set at 5,014 feet and was cemented to surface. 9 The 5 and 1/2-inch 17-pound production 10 casing is set at 14,470 feet with the top of cement being 11 12 found at 3,950 feet by CBL. 13 Thank you. And remind us again if these are all Q. 14 targeted within intervals? So all five of these wells are drilled into the 15 Α. 16 Avalon Formation. 17 0. Okay. Do any of these wellbore diagrams show 18 tubing? 19 Α. No, none of these wellbore diagrams show our current end of tubing set depths. Uhm, what -- for how we 20 21 will set those up for closed loop gas capture operations, our tubing string will either be 2 and 3/8 or 2 and 7/8, 22 and we will set our inner tubing at 30 to 60 degrees in 23 24 the curve. And that will be opening tubing, just meaning 25 that we will not have a packer, which is, you know --

Page 64 which is our typical set-up for gas well operations. 1 2 Since these wells will still primarily be 3 producing wells, it would be ideal for us to set our 4 tubing as deep as we can in the curve. We can work below, uh, reduce our volume of pressure as much as possible and 5 produce the wells as efficiently as possible. б 7 And also having opening in the tubing for purposes of the gas capture project, also enables us to be 8 able to inject gas down the anulus as well as down the 9 That way we can reduce the frictional back 10 tubing. pressure that we observe while we are injecting into the 11 well, which would help us, you know, achieve higher 12 13 injection rates and volumes as we need. 14 0. Okay. And this set-up is typical for all of the 15 gas wells that EOG operates in the Basin? 16 Α. Yes. 17 And is it your opinion that each of these wells 0. 18 are effectively sealed off from the shallower fresh water 19 reservoirs? 20 Α. Yes. 21 ο. Turning to Exhibit 9 -- let me move in a little 22 bit. 23 What is Exhibit 9? 24 Α. Exhibit 9 is just a summary table summarizing 25 the casing set depths, the basic, you know, well

Page 65 construction for each well. 1 2 So it is, you know, a depiction of looking 3 down in the drilling bores, and also indicating, you know, 4 the completion interval for each well. 5 Okay. And does this explain when each well was 0. 6 originally drilled? 7 Α. Yes. So all five of these wells were drilled within the last ten years, so these are fairly new wells. 8 They're not circa 1980 or anything. 9 So that's kind of the important takeaway from 10 Q. 11 these reports, that these wells are fairly new vintage and 12 in good shape? 13 Α. Yes. Yes. 14 So what is Exhibit 10? 0. 15 Exhibit 10. Α. 16 Let me get there. See if you can turn that so 0. 17 it's right side up. 18 Α. Okay. 19 Q. No. Oh, no. You just went --20 Α. 21 Q. Oh, yeah, that's the log. 22 Α. Exhibit 10 is the cement bond logs for each of 23 the wells that... 24 And so to show, for example, the first one 25 we are looking at is for the Brown Bear State 1H, and then

Page 66 for each CBL has a couple of different logs shown here. 1 2 So on the far left is a Gamma Ray and it's 3 a color locator log. So that just basically serves as a 4 reference point in the wellbore. 5 That center of the log is your amplitude reading, which is reading the amplitude of the wave form 6 7 as it returns to the encasement (inaudible), with higher amplitude, uh, higher reading indicating that there's more 8 free pipe and a lower amplitude reading, uh, indicating 9 that there's a continuation or resistance behind the pipe, 10 which would indicate cement. 11 12 The far-right surface log is a density log 13 which is actually just showing the entire acoustic wave 14 form, and that is the reading. And that serves as an 15 indicator of cement quality and cement bond to the pipe. 16 And so the way to interpret these logs: As 17 you go down -- let's see. I think for the Brown Bear we may need to go down to about 4300 feet. 18 19 Q. There it is. And so off of the amplitude reading you can see 20 Α. 21 at 4300 the amplitude reading begins to shift more to the right, which would be higher value, indicating that 22 there's more free pipe above that point in the wellbore. 23 24 And also the, uh, (inaudible) validity log 25 would indicate a similar observation where you see, uhm,

Page 67 that there's more variation. You know, that the reading 1 2 uh, is indicating that there is cement there. As you move 3 further up the log there's lots of variation in the wave 4 forms. 5 Q. Okay. For each CBL that we've submitted here, you know 6 Α. 7 the similar interpretation can be made, and that's just verifying the top of cement that we have shown on wellbore 8 diagrams. 9 10 Okay. And so do these CBL, the cement bond Q. 11 logs, reflect complete cement coverage for the entire 12 vertical length of these wells, in your opinion? 13 Α. Yes. 14 0. And I think that covers everything under Item IV 15 in the October, 2019 letter. 16 So turning to Item V, this deals with the 17 MASP. So if you can explain what EOG is requesting as far 18 as maximum allowable surface pressure, and what we will call the MASP here. 19 Okay. Maximum allowable surface pressure, MASP, 20 Α. 21 for these five wells we are proposing a MASP of 2,250 22 pounds. 23 And we determined that by evaluating these 24 wells and what we believe -- what pressure we need to 25 inject into these wells, as well as evaluating the

available pressure that we will be seeing from the
 compressor stations that would be sending gas to these
 wells.

4 Uhm, and also keeping in mind, you know, 5 the potential on these for a further (phonetic) compressor to further increase our capability to inject into the 6 7 wells, if necessary, to achieve the injection rates and 8 volumes that we would need, but also to be in mind that the MASP that we are proposing, uh, is well beneath our 9 rated casing burst pressures, and gives confidence that, 10 you know, there would be no mechanical-integrity issues 11 12 with injecting gas at those pressures.

Q. And so will the casing burst pressure be at least 120 percent of the maximum allowable surface pressure plus the hydrostatic pressure from a full column of reservoir fluid?

17 Α. Yes. So just as an example, our 17-pound cement casing, which all five of these wells are 5 and 1/2 inch, 18 17-pound fuel (inaudible) casing, the casing burst 19 pressure rating is 10,640 psi. Uhm, a full hydrostatic 20 21 column of fluid for the proposed MASP would be 22 -- would 22 be 2,250 psi plus. Just for an example, using 9,500 foot 23 to the -- of the wells by your fluid gradient gives you 24 around 6,500 psi.

Uhm, and so this is just a case of taking

PAUL BACA PROFESSIONAL COURT REPORTERS 500 FOURTH STREET NW - SUITE 105, ALBUQUERQUE, NM 87102

25

1 burst pressure rating is around 160 percent higher than 2 the maximum allowable surface pressure for the full 3 hydrostatic column of fluid.

Q. Okay. And just to clarify for the examiners,
this injection rate that EOG is requesting is specific to
the Avalon or the Leonard targeted interval for this
project.

A. Correct. You have the pressure that we are proposing here is specific to these wells, the Formation that we will be injecting into, and the available equipment and facilities that we have in place for this project.

13 Uhm, and for other projects, this, you
14 know, MASP has greater value than may be necessary for
15 evaluating on other projects.

Q. Exactly. So EOG took what it learned from the Caballo project targeting this interval and suggested the pressure to be appropriate for this interval.

19 A. Sure.

So just to skip over VI, we will turn 20 Okay. Q. 21 to VII: Division lawyers ask EOG demonstrate --I'll start over. 22 Sorry. 23 Item VII states: The Division asks EOG 24 demonstrate the mechanical integrity of the well complies 25 comply with 19-15-26-11(A)(1) NMAC to a minimum pressure

PAUL BACA PROFESSIONAL COURT REPORTERS 500 FOURTH STREET NW - SUITE 105, ALBUQUERQUE, NM 87102

Page 70 of 110 percent of the maximum allowable surface pressure. 1 2 So has EOG conducted MITs on these wells? 3 Α. We have not conducted MITs on these wells yet. 4 Upon approval, you know, looking forward, I quess, we will 5 go ahead and conduct those MITs and certify to NMOCD, you know, prior to conducting those tests and pressure test to 6 7 110 percent of our proposed MASP. 8 So to do that we will have to do a workover radial on each of the wells, pull the current production 9 equipment, do the running of the of the RVP, set probably 10 just above our takeoff point, flood the casing with water, 11 12 and pressure up to 2500 pounds and hold that pressure for 30 minutes, and record that on a chart so that we could 13 14 report that back to the NMOCD. 15 Okay. And so EOG is willing to demonstrate that 0. 16 each of the proposed injection wells can meet the 17 condition of -- that's listed as Item vii in the letter? 18 Α. Yes. 19 Q. Okay. So turning to Item VI it says that EOG 20 needs to perform an assessment of the surrounding wells to 21 ensure they meet the requirements of Subsection 5. 22 Have you undertaken a review of the wells within the half-mile Area of Review? 23 24 Α. Yes. 25 And turning to Exhibit 11 if you can let us know Q.

Page 71 what this exhibit shows. It will take me a while to get 1 2 there. Hold on just a minute. 3 Α. This is 11, the map of the 12 Area of Review. 4 Sorry. Hold on just a moment, please. (Note: 0. 5 Pause.) Yes. Okay. So Exhibit 11 is a map of each of б Α. 7 the proposed wells showing the half-mile radius around the wellbore, with all, you know, wells within the Area of 8 Review being shown on that map. 9 It's -- with numbers that would, uhm, be 10 referenced on, uh, the table that's Exhibit 12. 11 12 Okay. So this first map just deals with the Q. 13 Black Bear Area of Review. 14 Α. Correct. 15 And then the next one, start to walk through 0. 16 that. Which one is that? 17 Α. Looks this is Brown Bear No. 1H. 18 And same thing with this map, it shows all of 0. 19 the wells producing in the Bone Spring Formation in the Area of Review? 20 21 Α. We are showing all the wells within the Area of 22 Review. 23 I'm sorry, not just producing but also drilled. Q. 24 Α. Yes. 25 Q. And then this map?

Page 72 This map is for the Hawk 25 Fed No. 1H, showing 1 Α. 2 similar, uhm -- showing the same thing, half-mile radius, uh, half-mile Area of Review, with all the wells within --3 I'm not sure what. Looks kind of -- okay, yeah. I see 4 5 why. 6 And again each of the wells are numbered and 0. 7 they correspond with the wells listed on Exhibit 12? 8 Yes. Α. 9 And then there is two more maps. So this one is Q. for the next well? 10 This is for the Hawk 25 Fed No. 2H. 11 Α. 12 And this map also shows each of those wells in Q. the half-mile Area of Review? 13 14 Α. Yes. 15 Then finally this last map. 0. 16 The last map is Ophelia 27 No. 1H, showing all Α. the wells within the half-mile Area of Review. 17 18 0. And is it correct that some of these wells in 19 the half-mile area are operated by EOG but some of them are operated by other operators? 20 21 Α. Yes. So turning to Exhibit 12, is that a list of all 22 Q. 23 of the wells? 24 Α. Yes. 25 And explain what this shows. Q.
Page 73 So Exhibit 12 is a table where we have tabulated 1 Α. 2 data for each of the wells that fall within the Area of 3 Review for each proposed well, showing locations, 4 operator, also showing the casing trim designs, and, uh -- you know. And, uh, reporting anything. Essentially 5 the well construction for each of these wells. б 7 ο. And how did EOG compile this data? Uhm, we compiled this data by reviewing, you 8 Α. know, available public information, uh, off of the MSU 9 website, and then for, you know, for all our wells of 10 course we have internal data. 11 12 Can you explain the distinction between what Q. 13 information you have on EOG wells versus wells operated by 14 other operators or drilled by other operators? 15 Uh, how do you mean, I quess. Α. 16 Well, I guess -- le me rephrase. 0. Sorry. 17 Does EOG have access to all information 18 about these other wells? We don't have access to all information, no. 19 Α. We were only able to review what is available publicly. 20 21 Q. Okay. And so that's typical that EOG doesn't 22 have access as to all of the frac data for wells in a surrounding area? 23 24 Α. Correct. 25 So on this Exhibit 12, are any of these wells Q.

	Page 74
1	plugged and abandoned?
2	A. Yes, I believe there are there are several
3	plugged and abandoned wells, which is in the table we
4	included five wellbore diagrams for plugged and abandoned
5	wells that penetrated our proposed injection zone.
6	Q. Okay. So turning sorry. (Note: Pause.)
7	So turning to Exhibit 13, what is this?
8	A. Exhibit 13 is the five wellbore diagrams for
9	plugged and abandoned wells that fall within that Area of
10	Review for the proposed wells.
11	Q. So just to clarify, all five of these plugged
12	and abandoned wells were operated by EOG?
13	A. Yes.
14	Q. And so there is a wellbore diagram for each of
15	the five plugged and abandoned wells?
16	A. Yes.
17	Q. So we won't go through them one by one, but they
18	have been provided here for the examiners to review.
19	Have you formed an opinion as to the
20	integrity of the wells within the Area of Review and
21	whether they meet the Division's requirements?
22	A. Yes. Which I believe that all the wells within
23	the Area of Review have adequate cementing of, uh, of
24	casing strings; uh, that there should be no risk of
25	communication between wells or communication to fresh

Page 75 water reservoir, or any sort of wellbore integrity that I 1 2 could see. 3 0. Okay. Okay. So turning back to that letter, it says that the in Item No. VII that EOG should demonstrate 4 5 that the injected gas does contain corrosive gas such as б H2s or Co2 that may damage the casing. 7 Have you conducted a gas composition 8 analysis of the gas that EOG proposes to reinject in the 9 project? 10 Α. Yes. 11 ο. Is that included in Exhibit 14? 12 Α. Yes. So Exhibit 14, we are providing gas 13 analysis for the five proposed wells as well as, I 14 believe, the last one or two pages of the gas analysis 15 would be representative of our source gas. 16 This one here, if you can scroll through, 17 is the gas analysis from our Red Hills Aladdin compressor 18 station, the original compressor station that, uh, is 19 drawing our gas-gathering system. This would be one of the sources, uh, for gas injected into -- uh, to -- you 20 21 know, one of the proposed -- uh, one of those wells that 22 we are proposing here. 23 And the gas -- you know, looking at the gas 24 analysis here in the bottom left there, you see a 25 breakdown of gas composition. You know, comparing that to

Page 76 the gas composition of gas produced from the wells, this 1 2 gas is actually, uh, much -- of much better quality, 3 really, so both in Co2 content and in H2s. So this gas 4 would be much better quality than those wells were actually producing. 5 6 Okay. So you were saying the well is better 0. 7 quality. Is it your opinion there's no --Gas from the compressor station is better 8 Α. 9 quality. 10 Right. So there's risk of acidification or Q. 11 corrosivity as a result of injection based on those 12 values? 13 Α. No. 14 I think that Mr. Lunsford testified that Q. Okay. 15 the well would be equipped with a device to prevent the 16 surface injection pressure from exceeding the proposed 17 maximum allowable, so explain how unlikely it is that high 18 pressure would be of concern here, and how EOG's alarm 19 systems work. That's correct. So, you know, a couple of 20 Α. 21 things here. 22 Since we are only injecting gas having a full column of gas in the wells we're injecting, our 23 24 normal pressure that we will be seeing as we are injecting 25 gas is quite a bit lower than what we were -- you know,

Page 77 hydrotest our casing tubes. So it will be far under 1 2 pressures, uh, that will be required to burst our casing, 3 and far under the pressure that would be required to 4 initiate a fracture in the level. But as this talks about earlier, each well 5 б will be equipped with emergency equipment. We have all 7 these wells, uhm, on a casing system where we are constantly monitoring, uh, casing pressures, tubing 8 pressures, uh, flow rates; and our control room would be, 9 you know, notified instantly via alarms that we set up if 10 anything -- if any of the operating parameters fall out 11 12 of, uh, our -- uh, out of our set -- uh, out of our set parameters, really. 13 14 0. Okay. So in your opinion will the granting of 15 this application be in the best interests of prevention of 16 waste and the protection of correlative rights? 17 Α. Yes. Each of these wells will provide us an outlook, uh, to ability to prevent flaring and prevent 18 19 waste. 20 So can this project be operated safely and Q. 21 without preventing -- presenting a risk to human health or 22 the environment, including from fresh and drinking water? 23 Yes. Α. 24 Were Exhibits 9 through 14 prepared by you or Q. 25 compiled under your direction and supervision or do they

Page 78 constitute EOG's business records? 1 2 Α. Yes. So with that I would move the admission of 3 0. 4 Exhibits 9 through 14 and pass this witness. 5 HEARING EXAMINER BRANCARD: Okay. Any comments on these exhibits? 6 7 Hearing none, Exhibits 9 through 14 are admitted. 8 9 And are there questions for this witness? Mr. Coss. 10 11 CROSS EXAMINATION 12 BY EXAMINER ROSE-COSS: 13 Hi. Good afternoon, Mr. Letcher. Q. 14 (Note: Reporter request for mic adjustment.) 15 Hi. Α. 16 (Continued) So my one question: I understand 0. 17 that the maximum allowable surface pressure request has 18 been modified from the Caballo project. 19 Where? What exhibit is that explained in? Uhm, I'm not sure that we have an exhibit 20 Α. 21 explaining the MASP, uh, specifically. 22 Again, that was more -- not so much of a calculation, more of an evaluation of what pressure would 23 24 be necessary, uhm, to inject into the well, as well as 25 looking at our facility and equipment constraints.

Page 79 And so what -- I guess aside from the 1 0. 2 calculation, where was that stated in the exhibits? 3 Α. Uhm, I'm not sure that we have that stated 4 specifically. 5 How -- were we supposed to gather that 0. Okay. б information from the hearing, then, today? 7 MR. LUCK: Yes. Yes. We are offering the testimony of the maximal level surface pressure from 8 Mr. Letcher, and his testimony as what would be 9 appropriate in this case and the reasons why. 10 And also Mr. Sonka, who is our reservoir 11 12 engineer, will later testify as to the appropriate 13 pressures, given the reservoir characteristics. 14 ROSE-COSS: Okay. Well, thank you, Ms. MR. 15 Luck. 16 And the only other question I have -- thank you 0. 17 for your explanation of these mud logs, and this is mostly 18 a point of clarification for me. 19 I'm scrolling to the correct spot in my 20 notes, or in my exhibits. I'm getting there. 21 On page -- it's going to be roughly page 4. 22 Sorry. I should have been there already. 23 It's the very last cement bond log. I'm 24 trying to determine what well that is so we can all be on 25 the same page.

Page 80 MS. LUCK: Okay. 1 2 EXAMINER ROSE-COSS: I'm going to wear out my 3 finger here. It's track ball. 4 THE WITNESS: Yeah. 5 Okay. It's for well Ophelia 27 01H. 0. It begins б on page 120 of 229 in the exhibit packet. 7 Α. Okay. Could you describe for me the furthest -- I see 8 Q. it's described in the key as a cement map with a scale 9 10 beginning at 1 in black and ending at 8 in white. 11 How is one to interpret this? 12 Α. Sure. No problem. I think -- yeah, this may be, of the three 13 14 CBLs that we have, this may be the only one with the 15 cement map. 16 But the cement map essentially is, uh, is 17 showing what the tool is reading radially, and so it's giving you a look at how the cement looks around the pipe. 18 19 And so the way to interpret that is the warmer or the darker colors will indicate, uh, you know, 20 21 cement bond on the pipe, and the lighter, you know -- you know you can call it cooler or lighter colors would 22 indicate free pipe. 23 24 So that's kind of a nice way to look at 25 this and it's an easier way to quickly look at the log.

Page 81 So am I safe in assuming for our purposes here 1 0. 2 that black is good and the light is bad for our purposes? 3 Α. Yes, sir. 4 And in your expert opinion, scrolling through 0. 5 this, we shouldn't have anything to worry about here? б Α. No, sir. I think this one, as you scroll down 7 through the log, you'll find the top of cement around 8 3,950. 9 Okay. Thank you. That explanation helped. Q. Ι 10 just hadn't seen this one before. 11 And with that I've exhausted all of the 12 questions I have, and I pass the witness to Dean, Mr. 13 McClure. 14 (Note: Pause.) 15 HEARING EXAMINER BRANCARD: Mr. McClure, do you 16 have any questions? 17 EXAMINER McCLURE: Yes, I do. I'm sorry. I had to change out my headset, 18 19 the battery ran out. 20 Can you hear me? 21 THE WITNESS: Yes. 22 CROSS EXAMINATION 23 BY EXAMINER McCLURE: 24 Q. I could have maybe missed a little bit of Mr. 25 Coss's last question. It was still only related to the

Page 82 three CBLs; is that correct? 1 2 Α. Yes, sir. 3 0. Okay. Sounds good. Okay. I was just making sure I'm not going to re-ask a question or anything. 4 5 I guess very first of all, I guess I have 6 some questions in regard to the CBLs, as well. 7 It looks like on your Black Bear 36 State 8 4H, was that top of cement only calculated rather than a CBL ran? 9 10 Α. Yes, sir. And I forgot to mention that. But when we go to run the MIT for that well we will go ahead 11 12 and run a CBL to confirm that top of cement. 13 Q. That was actually -- you saw exactly where I was 14 going with that. 15 Then the only other question I have Okay. on the CBLs, on your Brown Bear 36 State 1H, do you know 16 17 if there was a DV tool ran on your production casing in 18 that well? 19 Let me clarify the reason I ask. 20 I was wondering about the cement coverage 21 from about 5,000 feet to 5500 feet. About 5,000 feet to 5500 feet? 22 Α. 23 Q. Correct. 24 I would maybe need to review the detail, uh, Α. 25 casing, but to my memory I don't believe there was a DV.

Page 83 Okay. I guess on what we have here available on 1 Q. 2 that, well it's slide 25, but that's the big long one that 3 has the CBLs like halfway down. It looks like we lose a lot of amplitude and a lot of Formation noise. 4 5 You testified that you think we do have б good cement coverage on that well. I just wanted to 7 confirm, I guess, that you had reviewed that specific 8 area. That was the only area on the CBLs, I guess, that 9 made me pause as to the cement coverage, I guess. 10 Α. I think we have adequate cement coverage here. It looks like we -- uh, you know, we did circulate cement 11 12 (inaudible) in the casing. 13 So yeah. And it clearly looks like it, because 0. 14 they, like, definitely did. That was the only reason I was wondering about the DV tool, because it seemed like 15 16 there was a pocket there, I don't know if it fell back 17 in the... 18 I'm not sure what went on. Anyway, I just 19 wanted to make sure you had reviewed that in that area and 20 were under the opinion that it is good. And I believe you 21 have already answered that question. 22 So I guess, moving on, are you the 23 appropriate witness to touch base on regarding 24 communication on that well that's adjacent to the Brown 25 Bear 36 State 502H that's not operated by EOG? I was

Page 84 wondering in regards to how hard it would be to have the 1 2 production data from that at times of injection tests. 3 Α. For which well is that again? 4 I believe it's the Brown Bear 36 State 502H. 0. Т 5 believe -- I am not -- I apologize. I didn't have enough time to go into the very details, I guess, of the 6 7 exhibits. I don't know for sure who the operator is of 8 that well off the top of my head. 9 Α. Okay. 10 There was one to the west of it, though. Q. So, you know, what we do to maintain good 11 Α. 12 communications with the operators that are around us, we don't share their production information off of each 13 14 other's wells. But I guess also Carlos may be able to 15 comment on this further. 16 But based on our testing of the Caballo, we 17 believe -- you know, we believe it would be almost -- you know, highly unlikely that we would ever communicate 18 19 directly to any offset wells. For a few reasons, really. I mean, just considering the amount of production from 20 21 each of these wells, uhm, with our depleted well, I think most of these have produced over, you know, 400,000 22 barrels of water, or barrels of fluid, you know, along 23 24 with -- you know, but the bcf I think for the Hawk well I 25 think actually it produced over 2 bcf of gas. And, uh, so

Page 85 the depth that we are injecting, you know, certainly 1 2 staying near wellbore, any variations in production, uh, 3 you know offset wells, you know during injection 4 operations, would more likely be related to, uhm, just pressure transient changes in the reservoir that come with 5 the change in flow boundaries. б 7 And I guess typically pressure waves move faster through the reservoir than the actual fluid that's 8 conveying them, and so, you know, those effects can even 9 be realized just by shutting the well in. 10 Does that help answer your question? 11 12 Yep. Pretty much what we're looking at is we do Q. 13 have four other wells in which to continue to gather data 14 Our concerns are, obviously, as to the magnitude of on. 15 how -- where the balance, I guess -- what it is your 16 balance of -- or where your midpoint is and which 17 direction the flow is going in the reservoir is shifting 18 towards the neighboring well, essentially. 19 So what you are saying is -- yes, I 20 absolutely agree. Having said that, though, the upward 21 shift in production for the neighboring wells during your 22 extended tests in a previous pilot project most definitely 23 was in a continuing slope upward. So the balance was 24 definitely shifting more and more towards them. 25 So our concern is just making sure we have

Page 86 additional data points to try to establish how much we are 1 2 actually looking at, I guess, and that may actually occur, 3 and at what point there could actually be breakthrough, I guess of fluid, between the two. 4 5 But regardless, I guess that's neither here 6 nor there. My thought was if we were going to be able to 7 get the data, then we would like to, but before the wells, 8 it probably won't be necessary in this case, would be my initial take of the situation, I guess. 9 10 But I thought I would put it out there and 11 ask what the possibility was of that. 12 I guess, moving along -- oh, well, go 13 Unless you had another thought process on that. ahead. 14 Just one other thought. Α. 15 I do think that the nearest offset wells 16 for each of these are operated by us, by EOG; and I think 17 those, you know, they are wells that are near and 18 operating that are nearest wellbores. 19 (Note: Reporter interruption.) I was just commenting that the breach of 20 21 these wells, the nearest offset wells are operated by EOG, and so those wells would be the best candidates for 22 monitoring what (inaudible) would be able to provide. 23 24 Q. Okay. Sounds good. I'm thinking that in nearly 25 all the cases I think that is exactly right, from what I

Page 87 saw, just that one may be close to the boundary release 1 2 line. 3 But I'll -- I'll -- it's fine. I'm with 4 you. 5 Α. Okay. 6 0. Let me move on. 7 In regards to the gas analysis -- oh, looks 8 like your page is reasonably close to that now. 9 But it looks like there's only one data 10 point or one source point that you've drawn from like a 11 compressor station. It sounded like maybe there might be 12 multiple points based off earlier testimony that may be 13 slightly different. 14 If you -- are you going to be able to 15 provide us with a gas analysis from each of the separate 16 points so we have a full picture of what we're looking at? 17 Α. Sure. That would be no problem. We just wanted 18 to include this as an example. You know, this is pretty 19 representative of gas composition that is on the system. I think there is another last page there, 20 21 also. 22 MS. LUCK: Yeah. So this is a screenshot off our data system 23 Α. 24 where we have an analyzer that, you know, we have readouts 25 of our gas composition at this compressor station. This

Page 88 one's for Archer (inaudible) Compressor Station which is 1 2 also on, you know, the gas (inaudible). 3 Q. Yes, sir. I -- oh, go ahead. I thought you were still going. 4 Sorry. We can certainly provide, you know, more 5 Α. gas analysis from each compressor station that would be 6 7 relative to this project. 8 Q. Okay. Sounds good. 9 And we don't have any guidelines 10 established in regards to at what point the concentration 11 of Co2 is going to be I guess corrosive and damaging to 12 the casing, and then how long it's going to take for 13 corrosion to occur, and such. 14 I guess at what percent do you think that's 15 going to occur, and when would you need to put a 16 corrosion-preventive plan in place, I guess. 17 Α. Yeah, we do have a corrosion plan in place on most if not all of these wells. These wells are 18 19 producing, or gas looking wells that -- you know, they're typically injecting a corrosion inhibitor along with our 20 21 gas flow injection stream. 22 So there would be some protection provided by that in the production phase. 23 24 With that, you know we don't anticipate 25 needing any further kind of inhibitor treatment. In other

1 words, we don't think we would need to be injecting 2 corrosion inhibitor chemical with gas during the temporary 3 closed loop gas capture injection.

Q. Now, as far as dehydrating your gas stream prior
to injection, you're not having to do that, then, at this
point and you don't predict that you would have to?
A. So with the gas coming from one of our

8 compressor stations, you know, much of the liquid will 9 have been -- gas is run through scrubbers at the 10 compressor station, and so, you know, we don't anticipate 11 having, having, uh, having (inaudible) being put back down 12 the well near the gas streams.

13 Okay. That's almost what I was wondering. 0. Ι 14 guess what my concern comes from is if we've got 15 open-ended -- well, an open-ended anulus, whatever you 16 want to say. Without a cubing packer are you concerned 17 about liquids -- well, water specifically-- being 18 introduced to the casing where you have some Co2 going 19 past it and then the possibility of carbonic acid being 20 formed from that? What is your thoughts in regards to 21 that? 22 How much of a -- I'll let you answer the 23 first question first. Go ahead, please. 24 Α. Sir, I need you to -- can you say that again? 25 I'm sorry.

PAUL BACA PROFESSIONAL COURT REPORTERS 500 FOURTH STREET NW - SUITE 105, ALBUQUERQUE, NM 87102

Q. Oh, I apologize.

1

2 Since we do not have tubing packers planned 3 to be put on these strings, are you concerned at all about 4 water from the Formation causing carbonic acid to form on 5 your casing and causing corrosion issues? Uhm, no, sir. You know, based on normal 6 Α. 7 operations and -- these are typical installations on how we normally gas up these wells -- we haven't seen any 8 major issues with corrosion, uh, although, in these types 9 of wells in the Avalon Formation, if it comes to a, uh --10 well, depending on pressures with Co2 on the wellbore. 11 And so that's one of the factors for corrosion rates in 12 13 this type of well. 14 But a closed type of well, depleted as it 15 is, you know, we don't foresee any issues with corrosion. 16 Yeah. My only concern, of course, would just be 0. 17 once we start injecting a bunch of gas, if it --18 contingent upon the duration of it would be if at that 19 point maybe you start seeing an elevated, I guess, 20 pressure. 21 I was going to say at this particular point 22 I think this is something we need more data on, so I'm not 23 going to -- obviously I'm not going to take a hard path, I 24 guess at this point, of course. 25 But my next question for you would be:

Just how restrictive do you think it actually would be to your operations to have a tubing packer installed on these wells?

4 So the -- the main benefit -- a couple of Α. reasons that we don't like to run packers. One of the 5 main reasons is it will have a future fishing job, right? 6 7 So the packer becomes stuck in the wellbore, it could destroy the future value of the well, just if we are 8 unable to fish the packer out. And that's just, you know, 9 part of life in the Permian Basin. You know, we do 10 produce these Formation things, uh, and you can, uh -- you 11 12 can get solids that they fall on top of your packer and, 13 uh, could cause you to get stuck in the future. That's probably, really the main reason we 14 15 don't like to run packers on gas --16 (Note: Reporter inquiry.) 17 The main reason we don't like to run packers in our wells that were producing, producing wells 18 that are set up with gas lifts, the main reason is that we 19 don't want that packer to become stuck in the future. 20 And 21 so in the Permian Basin -- you know, a lot of these wells 22 will be producing, and, uh -- and those solids can fall 23 out on top of your packer and cause you to get stuck. 24 And so that could, you know, destroy the 25 future value of your well, really.

Page 92 So that how's I was just saying that's one 1 of the main reasons that we don't like to install packers. 2 3 You know, for the purpose of this project 4 one of the main reasons that we do not want to pack at all is so we have the capability to inject gas, both down the 5 anulus and down the tubing, which would reduce our 6 7 frictional back pressure on our injection gas, which allows us to inject at higher rates and higher volumes, to 8 achieve our goal of eliminating flaring off of our gas 9 10 systems. 11 Q. Do we have like a projected value of just how 12 much -- we don't have any estimated value of how much 13 additional back pressure you're actually talking about 14 from that, and how much that would reduce the rate, do we? 15 I don't have that off the top of my head, I'm Α. 16 afraid. 17 Yeah, that there is fine. That's fine. 0. 18 I'm just trying to follow that line of 19 reasoning all the way down, but it's fine if we don't have 20 any answer today for that. 21 Let's see. Sorry. I'm looking through my 22 notes to see if there's anything else I should be asking 23 of you before I turn you back, I guess. 24 I'm not seeing any other questions that 25 I have -- at this time, anyway. Thanks a lot for

Page 93 1 your testimony. 2 THE WITNESS: Yes, sir. Thank you. 3 EXAMINER ROSE-COSS: And I had -- another 4 question came to mind, if I can interrupt again, Mr. 5 Letcher. 6 FURTHER CROSS EXAMINATION 7 BY MR. ROSE COSS: 8 Q. I was curious again. 9 You said that you-all were not going to run MITs until a later date. Could I hear a little bit more 10 11 about the logic of that? 12 Do you think that these MITs are going to 13 be run before an Order might be issued; and should an 14 Order be issued and then the MIT come back. You know. In a core direction, how might 15 16 EOG handle that? 17 Α. Yes, sir. No, I think we just -- we wanted to get through the hearing today, but we are ready to begin 18 19 running those MITs as early as next week, actually. So we have plans to go ahead and begin with 20 21 MITs. We -- I guess we didn't want to go run MITs and 22 then have any other questions come up that would have had us have to go back to address, I guess. 23 24 MR. ROSE-COSS: I see. Those will be run, 25 hypothetically, before an Order is issued.

Page 94 1 Dean, you did have any questions or 2 suggestions about the MITs before they run them? 3 EXAMINER McCLURE: Oh, I'm -- I'm sorry if I 4 was being too expressive with my face. 5 The only other thing is I personally would be opposed to the Division issuing an Order contingent б 7 upon MITs being run prior to injection but post the Order 8 being issued. Assuming that you're in agreement, Dylan. EXAMINER ROSE-COSS: Yeah, that makes sense. 9 That exhausts my questions, so I'll pass the witness. 10 11 HEARING EXAMINER BRANCARD: Thank you. 12 Ms. Luck, did you have any redirect 13 questions? 14 MS. LUCK: No further questions for this 15 witness. Thank you. 16 HEARING EXAMINER BRANCARD: Okay. How many more 17 witnesses do you have, Ms. Luck? 18 MS. LUCK: I just have two more. 19 HEARING EXAMINER BRANCARD: Okay. Ms. Macfarlane, do you want to take a break about this point, 20 21 or how are you doing? (Note: Discussion off the record.) 22 23 HEARING EXAMINER BRANCARD: Okay. Please 24 proceed. We will do one more witness and then take a 25 break.

Page 95 1 JENNA HESSERT, 2 having been previously sworn, testified as follows: 3 DIRECT EXAMINATION 4 BY MS. LUCK: 5 If you will please state your name for the 0. 6 record. Sorry if I mispronounced it earlier. 7 Α. Jenna Hessert. Jenna is J-e-n-n-a, Hessert is 8 H-e-s-s-e-r-t. 9 And by whom are you employed and in what Q. 10 capacity? 11 Α. I am employed by EOG resources. I'm a 12 geologist. 13 0. Have you previously testified before the 14 Division? 15 Α. Yes. 16 Can you briefly state your education and 0. 17 relevant work experience. Yes. I received my Bachelor of Science in 18 Α. Geology and Geophysics from Yale University and my 19 Master's in Geoscience from Texas Tech University. 20 Those were in 2014 and 2016. And I've worked for EOG in Midland 21 Division in the Permian Basin for the last four and a half 22 years, and as a project geologist for them I oversee 23 24 planning and development of wells in Lea County, as well 25 as conducting exploration.

Page 96 Are you familiar with the application in this 1 Q. 2 case? 3 Α. Yes. 4 Have you conducted a geologic study of the lands Q. 5 in the project areas? б Α. Yes. 7 MS. LUCK: And with that I would tender Ms. 8 Hessert as an expert witness in petroleum geology. 9 HEARING EXAMINER BRANCARD: Any comments or 10 concerns? Hearing none, she is accepted as an expert 11 12 in petroleum geology. 13 MS. LUCK: Thank you. 14 To turn back to Exhibit 4, it requires EOG to Q. 15 conduct geologic analysis, uhm, that address conditions 1 and 2, so have you prepared a series of slides outlining 16 17 your analysis for each of the five wells? Α. 18 Yes. 19 So turning to what's been marked as your Q. 20 Exhibit 15, can you go ahead and explain what these 21 exhibits show? Yes. So all of these exhibits from the Bear 22 Α. leases to the Ophelia and Hawk are going to consist of 23 24 cross sections and maps referencing the wells in question. 25 I'm first going to say all five of these

1 wells were drilled in the Avalon Shale. That is the same 2 target that the Caballo was drilled in and injected into 3 for our pilot test well.

The Avalon Shale itself is a mud rock with 4 5 very low porosity and permeability, and you're going to notice throughout all these cross sections and maps the 6 7 similarity of this geologic unit across all five of these 8 wells, and this helps us have a better and more robust reservoir model. As Mr. Sonka will show, he's used all 9 of these geologic characteristics that I'm going to go 10 over to construct his reservoir models for this project. 11 12 So this first map is of the Brown Bear/Black Bear lease. Our lease section, the Bear 13 14 section, is shown in yellow with the two wells in red. 15 There's surface holes and bottomholes identified and a 16 cross section A to A prime, a three-well cross section 17 roughly north to south across the area with all nearby wells shown. 18

19 The next two slides are the same cross section. This one is zoomed out. It goes from the 20 21 Rustler all the way down to the Wolfcamp. The well tracts 22 shown here are the gamma ray in the first tract, depth, 23 then resistivity and porosity. The Avalon target is at 9,450 feet. 24 This 25 is roughly 8,200 feet below the Rustler and any

PAUL BACA PROFESSIONAL COURT REPORTERS 500 FOURTH STREET NW - SUITE 105, ALBUQUERQUE, NM 87102

1 shallow-water hazard.

2	One more thing: This is a structural cross
3	section, meaning it is not flattened on anything, so the
4	fact that the depths are very consistent across all three
5	wells, the lithology is consistent across all three wells,
6	there's no structural or stratigraphic changes, and no
7	structural hazards across this area.
8	On the next cross section, it's the same
9	three wells. Now we are focused in to our target of
10	interest.
11	Again the Avalon Shale target is a
12	siliceous mud rock, so you can see at roughly 9,450 feet
13	across all three wells it has a very high gamma signature,
14	meaning it has a lot of clay in it, so it's going to be a
15	very tight rock, has high resistivity, and then the
16	neutron and density porosity response is to that high
17	clay. So this results in a very low-porosity,
18	low-permeability rock that will keep the gas injected very
19	close to the wellbore.
20	Above this interval is the Bonespring Lime.
21	That signature is a very low gamma ray, high resistivity
22	and low porosity. This a very tight carbonate which will
23	keep the gas confined to the Avalon and prevent it from
24	migrating up into the Brushy above that.
25	Below the Upper Avalon is the Lower Avalon.

This is also a very tight carbonate, has low gamma ray,
 high resistivity, and very low porosity and will prevent
 the gas from migrating down into the First Bone Spring
 Sands.

5 And again, these target and characteristics 6 are consistent across this entire area.

Q. And the cross section demonstrates that there is
likely no communication or ability for the gas to migrate
(inaudible).

It's -- for example, if we were looking 10 Α. Yes. for something with ultimate storage capacity, we would 11 12 actually want the opposite, we'd want a very high 13 porosity, high perm rock. So in this case we're targeting 14 the exact opposite, we're targeting a formation that's low 15 perm, low porosity, and will prevent the gas from 16 migrating.

And also these geologic properties I've just discussed, Mr. Sonka has used them in his reservoir model to further showcase that the gas is staying near the wellbore and can easily be reproduced.

The next three are maps. This first one is a structure map of the Bone Spring Lime. That's the top marker of our interval. You can see it's generally dipping towards the southeast. These contours are at 100-foot intervals and there's is no drastic change in the

contours across this section, showing that there are no
 faults in the area and the structure is continuous across
 this area.

The next map is an isopach from the top of the Bone Spring Lime to the top of the First Bone, so the entire Avalon Interval, but both the upper and the lower. And you can see it's very consistent across this area, 950 to 1000 feet all throughout this area.

So again not only is the geologic 9 characteristic consistent stratigraphically but also the 10 thickness and structure is consistent across this area, 11 12 further adding to the robustness of our reservoir models. 13 And then finally this is a thickness map 14 from the top of the Rustler to the top of the Bone Spring 15 Lime. So as I mentioned, you have about 8200 feet or 16 greater in between our injection interval and any shallow 17 water zone. And again that's consistent thickness, or the thickness is consistent across this area, showing that 18 19 there are no faults linking up our injection intervals to any shallow-water zone. 20

Q. So moving on to -- if you're ready, to Exhibit
16, what do these slides show and how do they
differentiate from the slides we just reviewed?
A. Yes. So these next few slides in Exhibit 16 are
of the Ophelia area map. They will go through the same

Page 101 process and order as the previous ones. They are going to 1 2 confirm the Ophelia well and the surrounding geologic area 3 for that well. 4 So it's going to have the same acreage, the well is in red, the surface hole and bottomhole noted, and 5 then three-well cross section A to A-prime that is roughly 6 7 north to south. 8 I won't walk through all of it exactly again, but it's the same log track as the previous one. 9 Again, in this case our target interval was drilled at 10 9,400 feet in the Avalon. You have 8,300 feet or greater 11 12 between our target interval and any shallow-water hazard. 13 And again you can see that the log 14 signatures are very consistent across this entire area 15 with no major changes in the depth, showing there are no 16 structural concerns in this area. 17 Again this second cross section is the same cross section but zoomed in to our target interval. You 18 can see that again we have very similar signatures with 19 high gamma, high resistivity, and then that moderate 20 21 porosity which is in response to the clay and water in the 22 system, the clays and water in the system. But again this 23 is a very tight, low-permeability and low-porosity mudrock 24 with good barriers that are tight above and below with 25 high-carbonate content that will prevent the injected gas

from migrating away from the wellbore or into other
 wellbore zones nearby.

In this case, same thing with the structure map. It's the Top Bone Spring Lime structure. This is gently dipping to the east/southeast, and again in a very consistent manner, showing there are no faults and no drastic changes in structure, so no geologic concerns in this area.

9 The thickness of the Avalon again here is 10 about 950 to about 1,000 feet thick and is consistent 11 across this entire area.

12 Then the thickness maps or isopach maps 13 from the top of the Rustler to the top of the Bone Spring 14 Lime, again you're about 8,300 feet or greater separating 15 our injection interval to any shallow-water hazards, and 16 there are no drastic changes in this thickness across that 17 area, again showing that this area is structurally benign.

18 And finally Exhibit 17, what does this show? 0. 19 Α. This is the Hawk area lease map. So again our acreage that is specific to this lease is shown in yellow, 20 21 our two Hawk wells are in red with surface hole and bottomhole locations denoted, and then three well cross 22 sections A to A-prime, across the area. 23 24 This is the larger cross section that goes

25 from the Rustler down to the Wolfcamp Interval. In this

PAUL BACA PROFESSIONAL COURT REPORTERS 500 FOURTH STREET NW - SUITE 105, ALBUQUERQUE, NM 87102

case our target again was at 9,400 fee in that Upper 1 2 Avalon. We have 8,000 feet or greater between our 3 injected interval and the Rustler and any shallow-water hazards. Again this, like the others, is a structural 4 5 cross section, so it's not flattened on anything. Again there's no major changes in the depths across these wells, 6 7 and integrity is consistent across the area.

8 Zooming in and looking at our target of interest, again we are very consistent in the gamma 9 signature, the resistivity and the porosity, with those 10 barriers above you and below you that are extremely tight, 11 12 further showing that also in the Hawk well the gas will 13 stay in your wellbore due to that low-porosity and 14 -perm and will not migrate up or down to other sections 15 due to the tight barriers in the rock above and below you. 16 The structure, the subsea lime structure is 17 dipping gently to the southeast, again with no major 18 changes in the structure contour across the area, showing 19 that there are no faults to create any geologic hazard for these wells. 20 21 The isopach in this area is also very 22 consistent. It changes very little across the area. It's almost exactly 1,000 feet within our injection interval, 23

24 again showing that there are no drastic geologic changes 25 that would give any concern throughout this area.

Then finally the top of Rustler to the Top 1 2 of the Bone Spring Lime shows that consistent 3 8,000-feet-or-greater thickness across the wells that's 4 going to separate our injection interval from any shallow-water hazard, and the fact that there are no 5 offsets or major changes in these structure contours shows 6 7 that there are no faults connecting us up a shallow-water 8 hazard.

9 Q. So to summarize, and the reason that you are 10 presenting these slides, could you explain to the 11 examiners what these show in terms of the project area. 12 Α. Yes. So in summary we have barriers above and 13 below the Avalon to prevent gas migration (inaudible) both 14 above and below us, and then the low porosity and 15 permeability of the Avalon Shale will contain gas near the 16 injective wellbore and allow it to be produced back over 17 time.

From the maps and cross sections shown here 18 19 the area is structurally benign with the no geologic fault conduits by which the injected gas may migrate out of the 20 21 zone, so there's no geologic concerns throughout this 22 area. 23 In addition to that, the fact that the area 24 is structurally and stratigraphically consistent allows us 25 to make very good, accurate reservoir models throughout

PAUL BACA PROFESSIONAL COURT REPORTERS 500 FOURTH STREET NW - SUITE 105, ALBUQUERQUE, NM 87102

this area that we can use for the project. 1 2 And for these reasons our temporary and 3 infrequent injection of this gas will have no negative 4 impacts on any nearby wells or any future well production. 5 So in your opinion will the granting of this 0. б application be in the best interests of the prevention of 7 waste and the protection of correlative rights? Yes. 8 Α. 9 And can this project be operated safely without Q. 10 presenting a risk to human health or the environment, 11 including sources of fresh water and drinking water? 12 Α. Yes. Were Exhibits 15 through 17 prepared by you or 13 0. 14 compiled under your direction and supervision? 15 Α. Yes. 16 MS. LUCK: With that I move the admission of 17 Exhibits 15 through 17 and I would pass this witness. 18 HEARING EXAMINER BRANCARD: Thank you. 19 Any comments or concerns about the exhibits? 20 21 Hearing none, Exhibits 15 through 17 are admitted. 22 23 Mr. Coss, do you have any questions? 24 (Note: No response.) 25 EXAMINER McCLURE: You're muted, Dylan.

Page 106 EXAMINER ROSE-COSS: Thanks. Rambling to myself 1 2 over here in my garage. 3 All I had said was, Thank you, Ms. Hessert, 4 and nice to see you again, even if remotely here. 5 I would say I don't know how many questions б I have as many as comments. 7 CROSS EXAMINATION 8 BY EXAMINER ROSE-COSS: 9 So you attest to the low porosity and Q. 10 permeability of the Avalon Shale, the injection interval. 11 What are the values that are low, and where --12 Α. Yes. So our petrophysics model that we run off 13 of the log curves, that is a proprietary petrophysics 14 model, but we are in the nanodarcy perm and very well 15 percentaged in terms of porosity. 16 Okay. I understand that the model is, uh, 0. 17 proprietary and you acquired that. I think something I 18 would like to see in this is just the values that you 19 extract from the logs and then subsequently are used in 20 the models. 21 Α. I can -- if it helps, I can give -- uh, I think it's on there but I'm not sure how clear it is. I can put 22 a scale on those log tracks. And again I think it's on 23 24 there but I think it's just very small. But I can further 25 show -- yeah, we are in like the single-digit percent.

Page 107 1 So... 2 Sure. And I think maybe something that would 0. 3 help me out, or out of my curiosity as a geologist, I 4 don't see on these cross sections where exactly the 5 injection interval is. And I know it's the Avalon, and б I'm just taking a guess that 452 EVNL is the top of that 7 Avalon. 8 So I might request going forward that these log ticks be identified by more common names than maybe 9 10 was used inhouse for EOG, just so, you know, on the more 11 spread-out, zoomed-out cross sections that I can kind 12 of -- I can take a guess and know more or less what you're 13 talking about. 14 Yes, sir. We --Α. 15 The sub- -- what? 0. 16 These are the generic tops that we've used for Α. 17 all of our submissions in previous, but we can give like more detailed ones. But these are generic GDS tops, so 18 19 they are actually not our EOG inhouse ones. But if you would prefer more clarification on them, we can definitely 20 21 tell them to fill out those shorthand versions. We can do 22 that. 23 Q. Yeah. Yeah. 24 Α. Yeah. 25 Just for, you know, in the future for the Q. Yeah.

Page 108 public record if someone is going to be scanning through 1 2 all of the exhibits, it would help me out, at least, I 3 know, so speaking for the general public, too. Captions. More captions than the little --4 5 just a few more things spelled out about what is trying to 6 be presented in each of the figures. 7 And I think in these cross sections what would help he out, too, is something that's even -- you 8 9 know, identify what the injection interval is and have 10 something -- like an especially zoomed-in log interval of just the injection interval, if you know what I'm talking 11 12 about. 13 Because I can surmise from what you've 14 presented how thick the injection interval is but it would 15 be helpful if you provided just, you know, the 200 feet that you think is the injection interval, or however much 16 17 it may be, for my own and the public's edification on 18 these. 19 And then something that we could actually 20 gather the information from, you know, so somewhere I 21 could actually interpret values of resistivity and 22 porosity and permeability. If that makes sense. It does, and I'm sorry if I wasn't clear on 23 Α. 24 mentioning the target TVD on each of those, but I can go 25 back through them, if you would like.
Page 109 I might have missed that, but I believe I 1 2 did mention on each of those the target TVD for each well. 3 0. Okay. Well, I believe it's in there and 4 identifiable, and I know you provided, yeah, the well arc 5 So we should be fine. diagrams. It helps me to understand it if I can see 6 7 little details like that and kind of figure captions. You 8 know? 9 And beyond that I don't have any other 10 questions. Thank you for your testimony. 11 THE WITNESS: Thank you. 12 EXAMINER McCLURE: I was gonna say I'm thinking 13 you hit pretty much everything that would have been my hot-topic items. The only thing I might expand on Mr. 14 15 Coss's discussion point, I'm almost wondering if maybe it 16 would be advantageous, and maybe what he's getting at, may 17 be indication not necessarily of where the Total Vertical Depth is going to be but kind of from the first take point 18 to the last take point what is the vertical depth. Maybe 19 even beyond that where you're actually at within the 20 21 target formation. Because we might have dip on the 22 target formation as the lateral goes, so that may not be quite as indicative as where the lateral is resting on. 23 24 But having said that, Mr. Coss, do you want 25 them to submit anything in this application in addition,

Page 110 or what are you thinking there? 1 2 EXAMINER ROSE-COSS: Well, uhm --3 EXAMINER McCLURE: Or am I incorrect in my 4 thought processes of what you're looking for. 5 EXAMINER ROSE-COSS: I think I would like to see what you're describing, and I think a table describing the б 7 other values I've asked for. THE WITNESS: So I believe our directional 8 survey for wells are proprietary, but we could -- and I 9 can double check, but we could give you like at least a 10 range of depths, and we can mark that -- that could be 11 12 easily marked on the cross section; and then, you know, 13 give you average on what isn't proprietary with our log 14 and petrophysical model. 15 So I would have to check that, but we can 16 give you, you know, as much information as we're able to. 17 EXAMINER ROSE-COSS: That will suffice. Thank 18 you. 19 EXAMINER McCLURE: I have no further questions. 20 As long as Mr. Coss is happy, I'm happy. 21 EXAMINER ROSE-COSS: I'm happy. You've covered 22 the salient points with regards to the geology project. 23 EXAMINER BRANCARD: Well, we're happy, so what 24 I'm wondering -- first, Ms. Luck, do you have any redirect 25 questions?

Page 111 MS. LUCK: I have no redirect questions. 1 Thank 2 you. 3 HEARING EXAMINER BRANCARD: And somebody we 4 really need to keep happy. 5 Ms. Macfarlane, are you ready for a break, 6 or how are you doing? 7 (Note: Discussion off the record.) (Note: In recess from 2:45 p.m. to 2:57 p.m.) 8 HEARING EXAMINER BRANCARD: Okay. Do we have 9 10 everyone who's anything back on? MR. McCLURE: I just changed headsets. Are you 11 12 guys able to hear me on this one? 13 EXAMINER ROSE-COSS: Yeah. EXAMINER McCLURE: Sounds good. 14 15 HEARING EXAMINER BRANCARD: Okay, where were we? 16 Ms. Luck? 17 MS. LUCK: I think we are ready to call our final witness, Mr. Carlos Sonka. 18 19 HEARING EXAMINER BRANCARD: Let's proceed. 20 CARLOS SONKA, 21 having been previously sworn, testified as follows: DIRECT EXAMINATION 22 23 BY MS. LUCK: 24 Q. Will you please state your name for the record. 25 Carlos C-a-r-l-o-s, Sonka, S-o-n-k-a. Α.

Page 112 By whom are you employed, and in what capacity? 1 Q. 2 Α. I'm employed by EOG Resources as a reservoir 3 engineer. 4 Have you previously testified before the 0. Division? 5 6 Α. I have. 7 Were your credentials as an expert in reservoir Q. 8 engineering accepted by the Division and made a matter of record? 9 10 Α. They were. 11 Q. Can you state your education and experience in 12 engineering. I graduated from Texas A&M with a Bachelor of 13 Α. Science in petroleum engineering in 2016, and since then I 14 15 have been supporting petroleum engineering oil and gas 16 projects in Lea County, New Mexico. So for about 4 1/2 17 years. 18 Are you familiar with the application filed in 0. this case? 19 20 Α. I am. 21 Have you conducted an engineering study of the Q. 22 lands within the project areas? 23 Α. Yes. 24 MS. LUCK: With that I would tender Mr. Sonka as 25 an expert witness in reservoir engineering.

Page 113 HEARING EXAMINER BRANCARD: Okay. Are there any 1 2 comments or concerns? 3 Hearing none, I will accept Mr. Sonka as an 4 expert in reservoir engineering. 5 MS. LUCK: Thank you. So we just heard EOG's geologist testify 6 7 about why the targeted Avalon Interval will serve as an effective container to hold and temporarily store the 8 injected gas. Have you built an engineering analysis off 9 the geologic study that reflects the suitability of the 10 Avalon for temporary reinjection? 11 12 Α. Yes. 13 And your testimony will address the requirements 0. 14 of Exhibit 4 which deal with the reservoir 15 characterization and justification for the reservoir 16 suitability, including the reservoir modeling? 17 Α. Yes. 18 And you have also considered the proposed 0. maximum allowable surface pressure that's safe for this 19 20 project? 21 Α. Yes. 22 Q. So let's start with maximum allowable surface 23 pressure. Could you go ahead and remind us what is the 24 maximum allowable surface pressure that EOG is proposing. 25 For this application we are proposing 2250 Α.

Page 114 pounds as the maximum allowable surface pressure. 1 2 And again I will share my screen so we can look 0. 3 at Exhibit 18. 4 Please state for the examiners and explain 5 what this exhibit shows. Exhibit 18 is a report that's generated based on 6 Α. the frac simulation of this well. And so in the table is 7 the average pressure when the pumps were turned on 8 required to fracture the rock. 9 The next cell is the maximum pressure that 10 was required. 11 The third cell is the initial shut-in 12 13 pressure. 14 And the final cell is the frac gradient, which is based on the final shut-in pressure. 15 16 And below that there's a summary of the 17 property (phonetic) used in the simulation. So basically what this says is that in 18 order to break the rock under virgin conditions, a frac 19 gradient of .7 was required. And so that's the lowest 20 21 pressure that will ever be required to fracture the rock 22 because that's the core pressure deplete (phonetic), and the effect of stress increases, and the amount of pressure 23 24 required to break rocks in a depleted scenario is higher. 25 So these wells have been on since 2012 and

2014, depending on which set of wells we're talking about,
 and so the frac gradient at .7 is the lowest it can be
 under current conditions.

4 So based on the true vertical depth of the laterals of these wells and the maximum well surface 5 pressure, what we are applying for is a frac gradient as б 7 about, you know, .22 to .23, which is -- leaves a pretty sizeable buffer of pressure between the maximum we would 8 experience in this project and the minimum that would be 9 required to fracture any of the rocks that make up these 10 reservoirs. 11

12 Q. And so far we have been discussing the frac
13 related to the Black Bear 4H. Such information is similar
14 to each of the wells; is that correct?

15 Right. So on the subsequent exhibit, the same Α. 16 data is compiled for each of the wells that are subject to 17 this application, and so you can observe that the frac gradient ranges from the lowest value of .69 to the 18 highest value of .76, but all of those leave a sizeable 19 buffer between the maximum allowable surface pressure we 20 21 are applying for and that minimum pressure it would take a break the rock. 22

In fact there won't be equipment, uh, of sufficient pressure rating to generate surface pressures that would cause the rock to break down as a part of our

PAUL BACA PROFESSIONAL COURT REPORTERS 500 FOURTH STREET NW - SUITE 105, ALBUQUERQUE, NM 87102

Page 115

Page 116 design, so we feel very comfortable with the maximum 1 2 allowable surface pressures that we are proposing. 3 0. And just to review the qualifications in the letter, the proposed maximum allowable surface pressure of 4 5 2250 exceeds the gradient of .14 psi per foot. б Α. It does. 7 And it's EOG's opinion, or your opinion that the 0. 8 2250 psi is a safe maximum allowable surface pressure for 9 the project and won't damage the reservoir? 10 Α. Correct. And it's also your opinion there is a 11 Q. 12 substantial gap between the formation's structure point 13 and the MASP? Yes. 14 Α. 15 So based on this data, it's your opinion that 0. the 2250 psi, which is greater than the gradient of .14 is 16 17 justified? 18 Α. Yes. 19 Q. So let's talk about the characteristics of this 20 reservoir and how you came to that conclusion. 21 Have you prepared reservoir models to 22 evaluate the potential for injected gas to migrate out of 23 the formation and interfere with the producers or impact 24 underground sources of drinking water? 25 Yes, I have. Α.

Page 117 Let's turn to what has been marked as Exhibit 1 0. 2 19, and explain what these models show. 3 Α. Exhibit 19 starts with a photograph of a couple 4 of slices of the model. And this is just to illustrate in a basic sense what the model looks like. 5 So these different shades of blue are 6 7 different layers within the model that have different geologic properties assigned based on the log response 8 that was testified to by Ms. Hessert. 9 And then you can see one of the wells 10 traversing through the target layer, which is that 11 12 lightest blue, all the way from heel to toe. 13 So the next slide, this is just, without 14 any injection or closed loop gas capture operations, what 15 the model looks, as well, uh, at current times. This is 16 one of the Caballo wells that came on in 2012, and through 17 the life of this well as it's produced, it has drawn down the pressure in the reservoir. So the red and orange 18 colors are the initial virgin pressure, and then the blue 19 region near the wellbore is a region where the pressure's 20 21 been reduced below the virgin pressure associated with the production of this well. 22 23 And the extent of that blue region is 24 limited by the low permeability of this reservoir. 25 So that's what that slide shows.

1 The next slide is a plot just 2 illustrating -- it says that the well has actual 3 production and pressure, and so what we've done is we've 4 taken the log responses to build the initial model and 5 then we fine-tuned certain reservoir (inaudible), to match 6 the actual history of the well.

7 So once we match the history we feel better 8 about the forecast associated with this model. And, uh, 9 that maps all the times to the left of the red line, and 10 then the at red line we begin simulated injection in the 11 model.

12 And so we've matched the maximum volumes 13 that will be associated with the project, and then 14 alternatively injected and produced the well. And so 15 what's really notable about this is that on a net basis 16 the bottomhole pressure is continuing to deplete, which 17 indicates that this well is a net producer, and that's confirmed by the oil and gas rates continuing to fall 18 through time, as well. 19

The next slide is just a yearly oil and gas net production rate. And so what is of note here is that the trend is not significantly impacted by the intermittent injection, and actually to evaluate whether or not the intermittent injection would have any negative consequences on the wellbores and the recovery, it

Page 118

Page 119 indicates where we never injected and ran up the casing 1 2 until we could determine what the forecasted ultimate 3 recovery would be, and then made an identical case where we changed the injection to be at the volumes and rates 4 5 that will be associated with gas capture operation, and ran that case out. And what we found is that the recovery 6 7 was the same in terms of oil and gas, leading us to conclude that they wouldn't have any detrimental effect on 8 the ultimate production. 9 The next slide is a little bit more 10 complicated in terms of the size of the model and how many 11 12 wells are present. 13 So this we were trying to determine whether 14 closed loop gas capture operations would impact any 15 neighboring wells, and so we assigned three wells to this 16 pink layer, which is our Leonard-A target. 17 The middle one has simulated closed loop gas capture operations, and the other two are just 18 standard producing wells which we are monitoring for any 19 impact. Uh, so... 20 21 The next slide shows -- this is without any 22 injection or prior to any simulated injection. So this shows that same region of drawn-down matrix pressure that 23 24 matches the actual production of the well, and just with 25 multiple wells overlaid. And so what's notable here is

Page 120 that the draw-down is confined near the wellbores, and 1 2 because of the simulation technology that was employed, 3 the wells actually don't drain effectively in the matrix 4 very far out, and so within the matrix there's regions of unaffected pressure due to the really low permeability. 5 And so between the wells there's actually areas where the 6 7 pressure is still close to 5,000 pounds, and so that's why 8 we don't think that a surface pressure of 2250, even with a gas gradient on top of that, there's no way to flow the 9 gas in the region that are at 5,000 pounds of pressure. 10 So we think the model and then the cross 11 check of the model versus the Caballo test actual results 12 13 indicate that the gas is staying very close to the actual 14 wellbore and then being reproduced as soon as the well is 15 turned back into production operations. 16 The next slide is a similar slide, but this 17 is just showing on one day where we're injecting and then one day when we're producing. 18 So this is a Gas Per Unit area. 19 In regions where the Gas Per Unit area is zero that's because the 20 21 pressure's high enough it's at over-the-bubble point and so any gas is in trend in liquid form still. And then as 22 you reduce the pressures some of the gas starts to evolve. 23 24 But what's notable here is that a massive 25 quantity of gas has really been removed, such that when

Page 121 you cycle injection or production it doesn't really change 1 2 what's going on in the reservoir because we're injecting a 3 tiny percentage of the in situ reservoir quality that's 4 been removed through the production life of these wells. And so once we have this model built we 5 would need to create additional models, which we just made 6 7 to check if the geologic properties varied significantly or if the spacing varied significantly, how would that 8 affect the behavior suitability of the closed loop gas 9 capture well. And what was determined from all this 10 modeling work is that all the wells in this application 11 12 are suitable closed loop gas capture candidates. 13 The next slide is just an example of one of 14 those, which is the Caballo. You see four wells in the legend. 15 Two of 16 these wells are overlaid. It's an artifact of how the 17 computer program treats injector wells. But there's really three entities. So the red line is the closed loop 18 gas capture wells, and then on either side, east and west, 19 you have the green line and the pink line which are the 20 21 offset wells. 22 And so this is just the pressure, the average pressure of all the well blocks with the well 23 24 perforations. So basically the bottomhole pressure of the 25 well. And you can see that the offset wells, even though

Page 122 you're injecting with a closed loop capture well, there's 1 2 no response in those well blocks and those continue to 3 deplete on trend. 4 And then the actual injection well, as you 5 inject it built a little bit of pressure, you know on the order of 200 pounds or so, and then as you produce it it 6 7 depletes that back, and then through a longer time scale it continues to deplete the reservoir and produce the 8 natural resources associated with that. 9 So that's all I have on that slide. 10 11 Q. Let me just be clear it's Exhibit 20 now, so... 12 Α. Okay. Sorry. 13 That's okay. And the next slide. Q. So the second slide on Exhibit 20 is the -- so 14 Α. 15 before we looked at the pressure to see if there would be 16 any impact. This is the cumulative production. And so 17 the red well is the closed loop gas capture well, and then to each side you have the two offsets. And the trend of 18 the production is unaffected by the start of the 19 injection. 20 21 And in this case with the multiple wells we also ran a case where we didn't inject and a case where we 22 23 injected, and compared the ultimate recovery, and that's 24 what leads me to my determination that this intermittent 25 closed loop gas capture injection won't have any negative

Page 123 impact on the ultimate recovery of these reservoirs. 1 2 Okay. And so just to summarize, your analysis 0. 3 indicates that the injected gas will have a net positive 4 impact on the ultimate recovery? 5 It should be neutral. There was no positive Α. impact at this (inaudible). 6 7 ο. So the reservoir modeling indicates that the gas 8 will be confined to the targeted interval and will not migrate from the Formations. 9 10 Α. Correct. 11 Q. And it's your opinion that it's also not going 12 to impact the offset wells. 13 Α. Correct. 14 And again could you -- I think you covered this, 0. 15 but just confirm that the models are built on a 16 formation-wide basis because the area character and 17 geologic properties with the Caballo wells? All the wells that are subject to the 18 Α. application target the Leonard A, and so we built multiple 19 models with different geologic parameters within the range 20 21 that the logs indicate, and then varied them just to understand the low case, high case, kind of intermediate 22 23 case within the Leonard A. 24 So we feel like these models encompass the 25 areas where these candidate wells are located.

Page 124 Okay. And then, uhm, I think that might cover 1 Q. 2 everything with my questions, except for these last few 3 questions. 4 And so in your opinion will the granting of 5 this application be in the best interests of the б prevention of waste and the protection of correlative 7 rights? 8 Α. Yes. 9 And can this project be operated safely without Q. 10 presenting a risk to human health or the environment, and 11 will it be protective of fresh water and drinking water? 12 Α. Yes. 13 So were Exhibits 18 through 20 prepared by you 0. 14 or compiled under your direction and supervision? 15 Α. Yes. 16 MS. LUCK: And with that I would move the 17 admission of Exhibits 18 through 20 and pass the witness. 18 HEARING EXAMINER BRANCARD: Thank you. Are 19 there any comment on Exhibits 18 through 20? Hearing none, we will admit Exhibits 18 20 21 through 20 and pass the witness. 22 Mr. Coss. 23 MR. ROSE-COSS: Thank you. Good afternoon, 24 Mr. Sanko. Nice to see you again. Thanks for your 25 presentation.

Page 125 I'm scrolling ing through the exhibits on 1 2 my screen. 3 I do not have any questions and I pass the 4 witness. 5 EXAMINER McCLURE: Yep, I do have a few questions. I guess the very first one is the proposed 6 MASP of 2250. 7 8 CROSS EXAMINATION BY EXAMINER McCLURE: 9 10 Am I correct, then, in the assumption that we do Q. 11 not actually have that in writing anywhere, wherein we do have 3500 within the original application? 12 13 Is that correct? 14 Α. Uh --15 MS. LUCK: I'm not sure that the 3500 was 16 included in the original application, but I can confirm. But I don't think that we have the 2250 in any of our 17 18 exhibits now. 19 EXAMINER McCLURE: Okay. Mr. Brancard, do you think we need that in writing or can verbal testimony take 20 21 the place of having the change in MASP in writing? Within the original application it had 3500 22 psi stated, but do you think we actually need that 23 24 supplemental documentation submitted or we go to verbal? 25 HEARING EXAMINER BRANCARD: So the applicant is

Page 126 okay with that number? Or... 1 2 MS. LUCK: I'm sorry. I'll let the witness 3 speak. 4 THE WITNESS: Based on our test at Caballo we 5 feel like this is enough pressure to do the project successfully, and so that's why we lowered it a little б 7 bit. 8 HEARING EXAMINER BRANCARD: Well, I think we have that on the record, Mr. McClure, so I think we are 9 fine. 10 Mr. McClure: Sounds goods. That was all I was 11 12 touching base on so far as the MASP goes, the 2250. 13 The only question I guess I have somewhat 0. 14 related to that: When you could determine the hydrostatic 15 pressure from the fluid column, did you take into account 16 the MASP at surface, uh, where I'm assuming you did a 17 nodule (phonetic) analysis or something to determine the 18 actual density of the gas throughout the column. Or am I incorrect in that statement? 19 Yes, that was incorporated into our 20 Α. 21 determination of this revised MASP. We don't have it 22 quite in as much detail as we did on the Caballo pilot when we actually went through the density of the gas and, 23 24 like you said, the nodular analysis in the pressure and 25 density iteration. But that was incorporated into this

Page 127

1 determination, certainly.

2 0. So that it's pretty safe to say that we have 3 plenty of safety factored if we consider a fracture 4 gradient of 0.65 instead of estimated fracturE gradients 5 based off of the frac program. б Is that correct to say, then? 7 Α. Yes. 8 Q. Okay. That there was kind of what I was, uhm, 9 confirming, I guess. Based of earlier testimony it 10 sounded like that was the case. 11 I guess the question I have on your models 12 that you ran here: Did you change the model much from the 13 prior model you had run for the Caballo or is it pretty 14 much the same parameters, the same setup? 15 So for the Caballo we actually matched the Α. production of the Caballo well, so we had really specific 16 17 parameters. So this one we had that model as one of our models, but we had additional models with what we thought 18 were reasonable numbers of what we thought the properties 19 could be, just to determine, you know, if maybe our --20 21 with the geologic uncertainty between models, just wanted 22 to capture that and make sure that we'd be good in all 23 those scenarios. 24 So it's different in the sense that there's 25 more models for this hearing than there were for the

Page 128 previous one. 1 2 It sounds good. Sounds good. 0. 3 I guess the question I have for a follow-up 4 is: Did your results from the previous pilot project 5 relatively match what your prediction was from your 6 models? 7 Α. Yeah, that's a great question. So the main difference -- so generally they 8 did. The main difference was that we recovered the 9 injected gas a little bit more quickly than the model 10 suggested we would. And I think there's a couple of 11 12 reasons for that. 13 The main reason is that within the model 14 the simulated reservoir volume is static, and then in 15 reality as the pressure depletes some of the fractures are 16 closing or compressing, and so the fractures you don't 17 close, their conductivity is reduced. And so the gas is probably traveling less 18 far in reality than it is in the model, which leads to a 19 faster recovery of that injected gas. 20 21 But other than that the pressure responses, 22 the ability of the reservoir to, you know, store the gas, 23 everything like that was in line with what the models 24 predicted. 25 Q. It sounds good.

Page 129 1 I think I asked you this question like a 2 year ago now, around about, but I do not remember what 3 your response was at that time. Do we have an estimate or any sort of 4 5 projection as to what the vertical height is of the б fractures, a typical fracture in this formation in this 7 geographic area? Yes. So there's a couple of indications of 8 Α. that. We don't have any exhibits to support that, but we 9 collect a lot microseismic data. We monitor our frac pipe 10 load. Definitely you can interpret it from the 11 12 performance of packages where you have staggered vertical development, co-development. 13 14 And then we have, you know, some profit 15 models. 16 The height in this model of the fracture for the simulated reservoir volume is 75 feet above and 17 below the well. And so that's, like I said, probably the 18 original simulated reservoir volume, and then through time 19 that volume is decreasing as the pressure in the matrix of 20 21 fractures increases and fractures begin to close and lose 22 conductivity. 23 I don't know if -- did that make sense? 24 Q. Oh, yeah, yeah, yeah. I apologize. I was 25 looking at the earlier exhibit, geographical exhibit, just

Page 130 to try to see what the height was of our target formation, 1 2 and it looks like it is well, well -- uh, well more than 3 75 foot each way. So I guess my question would be: So then 4 5 all speculation is that the fracture heights are well б within the target formation and do not extend out of it, 7 essentially. Is that correct? That's the way I think about it. The 8 Α. geomechanical contrasts between vertical formations tend 9 to arrest the fractite (phonetic) growth vertically more 10 so than laterally, just because there's more contrast 11 12 vertically. 13 0. I guess in your model that you ran that you have 14 the two neighboring wells, you don't have it depicted 15 there, but how long of fracture half-length did you have 16 in those models there? 17 And I guess I didn't see a scale as to how 18 much distance there was between those wells. I apologize 19 if you mentioned it and I didn't catch that. 20 I think you have a model there, there's 21 like three of them. Yeah, that one. 22 Α. Yeah. So the spacing on these was varied, uhm, just so we could understand if there was any sensitivity 23 24 and suitability for closed loop gas capture as a function 25 of spacing.

Page 131 So this particular string shot, these wells 1 2 are 800 feet apart, and so the fracture is, you know, 3 about 150 to 200 feet total, so 100 feet or 75 feet each 4 way from the wellbore. 5 I don't know if that's what you mean by fracture half-length. б 7 Uh, yeah, correct. The fracture half-length 0. would be how far it extends in each direction from the 8 wellbore, essentially, is what I'm trying to ask. Not 9 10 vertically. Horizontally is what I'm wondering now. 11 Α. Yes. 12 Q. And the answer to that is 75 feet, you're 13 thinking? 14 It's 100 -- so in the middle it's 175 and 100 on Α. 15 the outer ones. 16 You know, we start with the completion 17 design was, and we understand what our initial SRV assumption should be in these models, but then to match 18 the history of the wells, in some cases you end up 19 modifying the simulated reservoir volume -- if that makes 20 21 sense. 22 Q. Now, in your actual results from the prior pilot 23 project, you've seen, during your long injection test, 24 increased production rates of, say, 200 mcf, if I remember 25 correctly -- you can correct me if I'm incorrect on

Page 132 that -- uhm, in the neighboring wells that were 1 2 approximately a quarter mile away. Your explanat- --3 well, what was your thoughts in regards to that? 4 Α. Uhm, so that's a -- so we see similar responses when we shut in a well that's between two wells, and so 5 some of that, you know, could be related to the different 6 7 flow boundaries. So when you have two wells, mathematically with the pressure transient you have what 8 we call a no-flow boundary between them where a molecule 9 on one side of that will flow to one well and a molecule 10 on the other will flow to the other. It's like the 11 12 Continental Divide, or something, for rivers. 13 And then when you shut in a well you lose 14 that image well that produces the no-flow boundary, and so 15 the change in geometry of the drainage region can affect, 16 you know, the instantaneous production. It's just a 17 response that see we when we shut in wells, too. So, uhm, I don't think -- you know, anyone 18 on the technical team, I can't speak for them, but I'm not 19 too concerned that that's an indication that gas is 20 21 traveling through a fracture network in the nearby 22 wellbore. I think it's just a function of the pressure 23 waves in the reservoir. 24 Q. I guess what my question to you would be is 25 where you had an upward slope of the flow rate continuing

Page 133 to increase as time had went on, do you feel that that 1 2 would eventually stabilized out or do you think it would 3 have continued onward until you were producing all of your 4 injected gas out of your neighboring wells instead of 5 retaining any in the reservoir? Are you referring to Exhibit 20 or are you б Α. 7 referring to the results of the Caballo test? I'm referring to the results of the Caballo 8 Q. 9 test, because I felt they were very much relevant, I 10 guess, to continue the pilot projects. Oh, yes, definitely. 11 Α. 12 So I think that if you were to continue to inject and produce out of your other wells, your injection 13 pressure would continue to rise, as we saw, which 14 15 indicates that you have defined volume into which you are 16 injecting. And then the other wells definitely would turn 17 a corner and start to produce less and less fluids. So the pressure build that we observed on 18 19 our injection pressure for the injection well, to me indicates that you have a defined volume that is filling 20 21 up, and that's why the pressure's increasing. 22 So I don't think you were draining that volume with your offset wells. 23 24 So to answer your question: No, I don't 25 think you would produce all your injected gas off the

1 offsets.

2 Q. So then your thought process is: Moving this 3 no-flow boundary closer -- I guess the no-flow boundary is 4 moving closer to your injection well might be the thought 5 process? I don't know how accurate the thought process 6 would be there.

7 Uhm, your thought process is that it's 8 eventually going to stabilize and that the neighboring well isn't drawing from a larger area than what it 9 10 normally would be while you're injecting within the 11 injection zone -- or the injection well, excuse me. 12 Α. No, it's possible that your pressure support is 13 coming from a larger region if you shut in your middle 14 well, but the actual molecules of hydrocarbons aren't 15 coming from that region, they're coming from nearer to the 16 wellbore. 17 I don't know if I'm thinking about your

18 question correctly.

Q. You're thinking -- you're thinking about my question correctly. I believe so. I'm only looking at the magnitude of the increase of flow that we saw, and that it's perhaps the drawing -- that draw-down area is further from the wellbore than what you're picturing, I guess, within your models, considering that we see, you know, the 200 mcf within a day of increase of production.

Page 135 HEARING EXAMINER BRANCARD: Sorry, everyone. I 1 2 need to simply interrupt for one moment. I know we are in 3 the middle of a stream of thought, but one moment here. I see a new call-in user, and I wanted to verify -- I've 4 unmuted you now, call-in user. 5 I have a Mr. Samaniego on the phone, on the б 7 call? 8 MR. SAMANIEGO: Yes, sir. 9 HEARING EXAMINER BRANCARD: Mr. Samaniego, I'm aware of the email exchanges that have gone on, and we 10 would like to take up any issues you might have after we 11 12 quit this case. I'll leave you on mute until then. 13 MR. SAMDIEGO: Yes, sir. Thank you. 14 HEARING EXAMINER BRANCARD: You're welcome. 15 MS. LUCK: I'm sorry, could you clarify who that 16 person is and if it relate to this case? 17 HEARING EXAMINER BRANCARD: No. It's a member of the public who has called in respect to Cases -1605, 18 -1606 and 21607. 19 20 MS. LUCK: Okay. Thank you. 21 HEARING EXAMINER BRANCARD: Yes. Pardon the 22 interruption. You may proceed. 23 EXAMINER McCLURE: Do you want me to restate my 24 last question, I guess. 25 THE WITNESS: Yes, if you don't mind, sir.

Page 136

EXAMINER McCLURE: Yes, sir.

1

2 0. I guess what my question is, is: Taking into 3 account the magnitude of the 200 mcf increase in each of the neighboring wells, do you think that the draw-down 4 5 that you're taking your hydrocarbons from within the 6 reservoir extends further than your 100-foot fracture 7 half-length? 8 Because I mean we've seen the immediate 9 effect from the injection into your closed loop gas 10 capture well. Right. So the simulated volume is one thing, 11 Α. 12 and then, you know, there are natural fractures present in all these reservoirs. So it's possible that you can 13 14 communicate that quickly through a natural fracture, but

15 it's the -- the aperture of that frac, you know, is not 16 going to lead to significant communication, uh, more so 17 than just the pressure, uh, type of pressure waves moving 18 through there.

19The response that we observed in the offset20well was something that we observed whenever we just shut21in a well, the offset wells will pick up a little22production, as well.23So I always go back to the injection

24 pressure build as indicating that there is a defined tank 25 where the gas is going.

Page 137 I guess what my next question, then, is: With 1 0. 2 the understanding that we did see an increase of 3 production from the offset wells in the prior pilot 4 project that was of greater magnitude than when you shut 5 in the wells, I guess is EOG opposed to the increased 6 reporting of wells within a quarter mile of their 7 requested closed loop gas capture wells for this pilot 8 project? 9 MS. LUCK: I -- sorry. 10 EXAMINER McCLURE: Do you want me make it a little simpler, or maybe say the question in a better way, 11 12 or what do you want? 13 MS. LUCK: Yeah. Can you (inaudible) the 14 question a little more (inaudible). Okay. Yes. 15 EXAMINER McCLURE: 16 I guess what I'm asking is: Is EOG opposed to 0. 17 presenting us with the data that we were requesting within 18 that draft letter that we had sent on December 17th, I 19 believe, for all wells within a quarter mile that EOG owns 20 of the gas capture injection well. 21 Hopefully that was simpler. 22 MS. LUCK: Yes. I think that we might need a clarification. Are you speaking to only wells that EOG 23 24 owns or wells operated by other operators? 25 EXAMINER McCLURE: I'm thinking with the

Page 138

inclusion of the number of wells we're talking about.
 Then I think we can limit the scope to the wells that EOG
 owns.

4 MS. LUCK: I think that EOG is willing to accommodate the request of the Division in terms of 5 providing the information, uhm, if we can have like some б 7 clarification about exactly what the Division wants to see. I'm not sure if we can have just like something that 8 states exactly what needs to be provided in terms of these 9 other wells or what the Division's requesting, and then we 10 can see what we can provide based on that request. 11

EXAMINER McCLURE: Essentially it is the oil and gas production rates and the casing pressure -- production casing pressure, excuse me, for each of the wells within one quarter mile -- have a lateral, within one quarter mile of the lateral of the injection well.

17 MS. LUCK: I think that's something that we 18 would be able to provide, and so that would have to be 19 submitted after the hearing.

20 EXAMINER McCLURE: Okay. Sounds good.
21 Q. Moving on, I think I actually asked this
22 question as well like a year ago.

23 So was consideration made for effect to the 24 reservoir from injecting a lighter gas than what you're 25 producing?

Uhm, yes. So EOG, the company has a lot of 1 Α. 2 experience injecting lighter gas in this as part of the 3 EOR, Enhanced Oil Recovery, kind of a secondary recovery program. And so in this case the pressure is so low that 4 5 in terms of shifting the phase envelope or changing admissibility of any fluids, the pressure is too low for б 7 anything like that. 8 So, for example, we're talking about like

9 7- or 8,000 pounds surface pressures in some of our EOR
10 projects, whereas here we're talking about 2200. And we
11 just have a little bit different fluid mix, anyway.

So we don't think that there's going to be any type of EOR effect, and with how clean and dry the gas is, we don't think there will be any corrosive effect. The gas is, you know, all compatible with the reservoir fluid, so there shouldn't be any type of relative permeability or chemical effect to reduce the permeability of the well -- or the reservoir, I should say.

MR. McCLURE: Sounds good. I just wanted to confirm that you had taken that into account in your considerations. Sounds like your results come out in the affirmative.

Let me see if there's anything else, if I
have any notes here, before I actually pass you back.
Yeah, I'm thinking that that kind of

PAUL BACA PROFESSIONAL COURT REPORTERS 500 FOURTH STREET NW - SUITE 105, ALBUQUERQUE, NM 87102

Page 139

Page 140 covered everything I had in my notes. Thanks a lot for 1 2 your testimony. 3 THE WITNESS: Absolutely. Thank you. MS. LUCK: I don't have any other questions of 4 5 this witness. I just want to confirm there isn't any questions of this witness before he's excused. б 7 HEARING EXAMINER BRANCARD: Do you have any redirect, Ms. Luck? 8 MS. LUCK: I don't have any redirect, no. 9 HEARING EXAMINER BRANCARD: Okay. I don't hear 10 any other desires to question the witness, so I think 11 12 we're done. Okay. And if I may, I'd like to just 13 MS. LUCK: revisit the quidance from the Division Director. In terms 14 15 of the (inaudible), I want to just be sure that everybody 16 understands what EOG's direction was from the Director, 17 and then I'll just make a brief closing statement. 18 HEARING EXAMINER BRANCARD: Sure. Go ahead. MS. LUCK: Yeah. So as far as the October, 2019 19 letter, it's our understanding that EOG met with the 20 Director in November of 2020, like through a series of 21 phone calls with the Director and (inaudible) Powell, and 22 23 they were the individuals at the Division who advised EOG to follow the October, 2019 letter, rather than, uh, new 24 25 quidance that's still in the draft form and under comment.

Page 141 1 And I'm not sure if you-all have had a 2 chance to discuss internally. That's just our 3 understanding at this point. 4 Uhm, and then just to summarize really briefly, I'll make a closing statement. 5 Uh, in this case EOG is requesting to start 6 7 this project upon Division approval and not go through a pilot process. EOG is willing to provide the data that's 8 been discussed during the hearing today for the Division's 9 review, but we would request that an Order be issued as 10 soon as possible so that EOG can commence the injection 11 12 operations on these five wells. 13 And EOG is making this request based on the 14 testimony that was presented today, as well as the 15 exhibits and the results of the Caballo well that has been 16 provided to the Division. 17 Uhm, and then also, as I mentioned, EOG would like to have an Order with an open-ended duration so 18 that the Order would last as long as these wells are 19 capable of injection and production, as contemplated by 20 21 EOG, and if there's any kind of renewal that's required it 22 would be through the administrative process rather than 23 another hearing. 24 And I think with that, that sums up the 25 primary request that EOG is making in this case, and if

Page 142 the Division would prefer, we could submit something in 1 2 writing, if necessary. 3 Thank you all for your time today. 4 HEARING EXAMINER BRANCARD: Okav. There were a number of discussions about items the examiners may have 5 wanted. Was there an agreement on any additional 6 7 submittals that need to be made after the hearing? MS. LUCK: I think we have a list of the items 8 that were brought up during the hearing, and we intend to 9 submit those to the Division as soon possible. 10 I'm sorry, I have discussed several with 11 12 the staff with (inaudible) and still need to use the 13 forms, so all of these things would be provided as they 14 are available to EOG. 15 HEARING EXAMINER BRANCARD: Okay. I just wanted 16 to confirm because I know, you know, items were brought up whether there was sort of an understanding about what 17 18 needs to be provided -- and when would be helpful. 19 EXAMINER McCLURE: I was going to say the main -- go ahead. I'm sorry. 20 21 MS. LUCK: No, go ahead. 22 EXAMINER McCLURE: The only thing I was going to say: I don't know if, Mr. Brancard, you were directing it 23 24 at us to say what we were looking for, or what do you want 25 there.

HEARING EXAMINER BRANCARD: I was hoping
 somebody kept track.

3 EXAMINER McCLURE: I'm going to say the primary 4 things that I was wanting to see, considering we are going with the verbal for the 2250 MASP, an infrastructure map 5 showing how the infrastructure is interconnected, and then 6 7 actually what may not have been mentioned is also a list of the wells which are supplying gas to that 8 infrastructure and could be, in theory, injected into 9 these wells. 10 11 In addition to that, a gas sample, analysis 12 of a gas sample for each of the compressor sites. 13 HEARING EXAMINER BRANCARD: Mr. Coss, do you --EXAMINER ROSE-COSS: That about summarizes it. 14 15 The only thing I would add is a kind of a table of 16 reservoir properties used in the model and a zoomed-in 17 version of the logs specifically across the target 18 interval. 19 Oh, it came to me. And then we had mentioned it also, a summary or analysis of the expected, 20 21 uhm, kind of injectate volumes and a definition of what kind of duration, volume, frequency; and a definition of 22 what low, medium and high volumes are kind of -- the 23 24 ranges, a definition of the ranges, volumes expected. 25 EXAMINER McCLURE: And I apologize, I almost

PAUL BACA PROFESSIONAL COURT REPORTERS 500 FOURTH STREET NW - SUITE 105, ALBUQUERQUE, NM 87102

Page 143

Page 144 forgot the actual most important thing that we need, and 1 2 that is a submittal of the complete Affidavit of 3 Publication demonstrating that Public Notice was presented for all five wells. 4 5 I'm sorry, I missed that in my notes, but that's the most important thing we need to see. б 7 MS. LUCK: And I actually received that from the newspaper during the hearing, so I will submit it after 8 the hearing. 9 EXAMINER McCLURE: Good to hear. 10 HEARING EXAMINER BRANCARD: Okay. So you have a 11 12 list of chores, Ms. Luck, to do here. 13 Anything else the examiners want to bring up at this point with this matter before we take it under 14 15 advisement subject to further submittals? 16 EXAMINER ROSE-COSS: No. I thank everyone for 17 their time and testimony. EXAMINER McCLURE: And I'll say I'll just save 18 it for the testimony. I don't there's anything else we 19 need to discuss, at this particular point anyway. Thank 20 21 you. 22 MS. LUCK: Thank you all for your time. We really appreciate your consideration of the case and the 23 24 interest you have taken in all of our exhibits and asking 25 thoughtful questions. And of course if there's is any
Page 145 other questions the Division has for EOG, please let us know. HEARING EXAMINER BRANCARD: Okay. So Case 21567 is taken under advisement subject to the further submittals that were discussed briefly here. Great. Thank you, Ms. Luck. б MS. LUCK: Thank you. And you all have a good weekend. EXAMINER ROSE-COSS: Likewise. HEARING EXAMINER BRANCARD: Thank you. (Note: Time noted 3:47 p.m.)

	Page 146
1	REPORTER'S CERTIFICATE
2	I, MARY THERESE MACFARLANE, New Mexico Reporter
3	CCR No. 122, DO HEREBY CERTIFY that on Thursday,
4	January 7, 2021, the proceedings in the above-captioned
5	matter were taken before me; that I did report in
б	stenographic shorthand the proceedings set forth herein,
7	and the foregoing pages are a true and correct
8	transcription to the best of my ability and control.
9	I FURTHER CERTIFY that I am neither employed by
10	nor related to nor contracted with (unless excepted by the
11	rules) any of the parties or attorneys in this case, and
12	that I have no interest whatsoever in the final
13	disposition of this case in any court.
14	/s/ Marv Macfarlane
15	
16	Mary Therese Macfarlane, CCR NM Certified Court Reporter No. 122
17	License Expires: 12/31/2021
18	
19	
20	
21	
22	
23	
24	
25	