

OCD CASE NOS. 14784 AND 14785

IPANM Petition to amend Title 19, Chapter 15, part 17 (The PIT Rule)

May 14 - 18, 2012

IPANM exhibit 6 Slide presentation by Mullins

- Ten (10) pages -

Pit Release Modeling

Temporary Drilling Reserve Pit Risk Assessment Modeling for New Mexico Rule 17 Modifications

Case # 14784 (NMOGA) Case # 14785 (IPANM)

Prepared by Thomas E. Mullins, P.E. May 2, 2012

Prepared for the Independent Petroleum Association of New Mexico

Risk Assessment

Saturated Flow of water is different from Unsaturated Flow. Focus is on diffuse natural recharge.

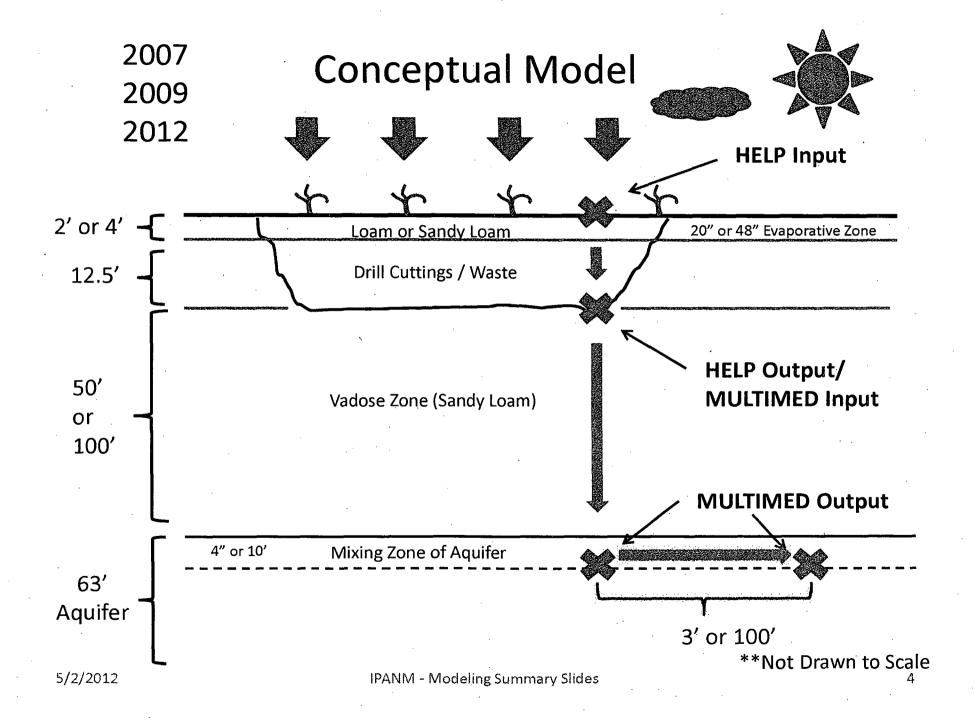
Utilized similar assumptions and conservative modeling parameters used by the NMOCD during the 2007 and 2009 Pit Rule Hearings

Existing presence of "Salt Bulge" in current soil profile verifies little salt migration through the Vadose zone over the past 10,000 to 16,000 years.

Infiltration rates can be as low as 0.03 mm/yr to 0.1 mm/yr (Walvoord and Scanlon, 2004)

Modeling includes horizontal transport (100 feet) in the aquifer.

Model drives flux down, does not support negative flux.


Predictive Models

Hydrologic Evaluation of Landfill Performance (HELP) Model

- US Army Corp of Engineers for the EPA
- Water balance model that includes: Surface Storage, Snowmelt, Runoff, infiltration, Evapotranspiration, Vegetative Growth, Soil Moisture Storage, Lateral Subsurface Drainage, Unsaturated Vertical Drainage,
- Leakage through Soil, Geo-membrane or Composite Liners
- Used by many States and within Industry

Multimedia Exposure Assessment (MULTIMED) Model

- 2-Dimensional EPA Model
- Vadose Zone and Aquifer Transport
- Determines release concentrations over time at bottom of Vadose Zone and in the Aquifer

HELP Model

Model Input Parameters

Weather Data

Daily Precipitation & Wind Speed

Daily Temperature & Humidity

Daily Solar Radiation Indexes

Daily Evaporation Indexes

Soils Data

Number of Layers

Layer Thickness

Soil Porosity

Soil Wilting Point

Hydraulic Conductivity

Type of Cover Material

Evaporative Zone Depth

Type of Layer

Soil Types

Soil Field Capacity

Initial Soil Moisture

Quality of Liner Installation

Slope of Cover Material

MULTIMED Model

Model Input Parameters

Vadose Zone Variable

Thickness

Saturated hydraulic conductivity

Effective porosity

Residual Water Content

Long. Dispersivity

Percent Organic Matter

Bulk Density of Soil

Biological Decay coefficient

Source specific variables

Infiltration Rate (HELP)

Area of waste disposal

Duration of Pulse

Initial Concentration (100,000 mg/l)

Aquifer specific variables

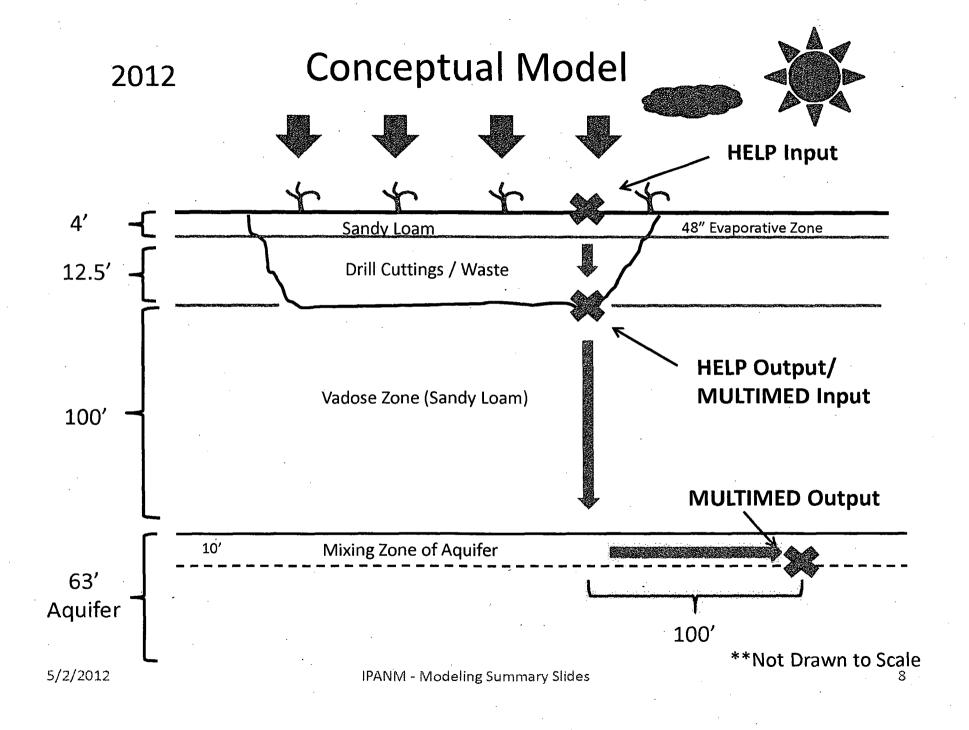
Effective Porosity

Bulk Density

Thickness

Conductivity

Gradient


Dispersivities

Well Distance from site

HELP Conceptual Model

Model Input Parameters

- Evaporative Zone Depth limited to top (48 inches) IPANM
- Precipitation Values utilized for Hobbs, Maljamar, Roswell, Carlsbad, & Artesia.
- NMOCD utilized 50 years of data from Hobbs, NM & Dulce, NM in prior Hearings (1951 to 2000) to create synthetic forecasts.
- IPANM utilized 50 year synthetic models based upon Roswell, NM temperature and solar profile with actual monthly average precipitation for multiple locations in Southeast New Mexico, adjusted solar effect for Latitude.
- Utilized 4' of Soil Cover in all instances, with Liner on bottom of Pit.

Southeast New Mexico Focus

48" Evaporative Depth	Carlsbad	Roswell	Artesia	Maljama	r Hobbs
Annual Average Precipitation:	14.1"	13.4"	13.4"	16.1"	18.2"
Elevation (m):	950	1,106	1,035	1,266	1,115
HELP Model Infiltration Rates Liner (mm/yr):	1.53	1.17	1.06	0.51	1.42
Years until reaching 100' Lateral @ 100' depth:	3,100	4,050	4,400	9,200	3,300
Years until max Cl:	4,500	5,750	6,200	12,800	4,800
Max Cl (mg/l) @ 100' lateral distance:	68	40	33	8	58

Conclusions

4' of Soil Cover protective in all instances.

No liner necessary on top of pit.

100' Siting Requirement is protective of public health & environment

Precipitation and Evaporative zone depths drive Infiltration Rates

Based upon HELP modeling and MULTIMED modeling of Chloride most mobile source, there is negligible risk to human health, the environment, the public, or accessible groundwater from 10 percent chloride leachate.

No testing of pit contents is necessary where GW is greater than 100'.