Appendix G: Coring and Core Analyses DCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO U.S.A. File: MD-01061

CORE ANALYSIS PROCEDURES

FOR

DCP MIDSTREAM

AGI#1

LEA COUNTY, NEW MEXICO

The Rotary Sidewalls were delivered to OMNI Laboratories, Inc.

Gases from the Sidewalls were measured by Hot Wire Chromatography and reported in the Gas Units.

A brief Lithological Description of the Sidewalls was recorded.

A description of the Fluorescence of the Sidewalls was recorded.

Ultraviolet Light Photographs were taken of the Sidewalls for a permanent record.

Natural Light Photographs were taken of the Sidewalls for a permanent record.

Composite Photographs of the Sidewall End Trims were taken under Natural and Ultraviolet Light.

The Sidewalls were extracted utilizing the Dean Stark method.

The fluids were measured by the Dean Stark method.

Porosities were measured in a Boyle's Law Porosimeter utilizing Helium.

Permeabilities were measured in a Hassler Sleeve Permeameter utilizing Nitrogen at 300 psi confining pressure.

Test samples of a known permeability were measured before and after the Sidewall permeabilities were measured.

DCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO U.S.A.

File: MD-01061

November 24, 2007

DCP MIDSTREAM

Attn: RUSSELL E. BENTLEY 11221 Richmond Avenue Suite 107C Houston, TX 77082

Attn: RUSSELL E. BENTLEY

RE: AGI#1

Rotary Sidewall Core Analysis

Mr. BENTLEY:

The core analysis data from the above referenced well is enclosed in the following pages.

All quality control data is enclosed in a separate section of the report. The data, results, and photographic negatives will be maintained in our files for your future reference. If you have any questions regarding our results or procedures, please do not hesitate to contact us. We appreciate the opportunity to analyze the core from the above referenced well and look forward to working with you again in the future.

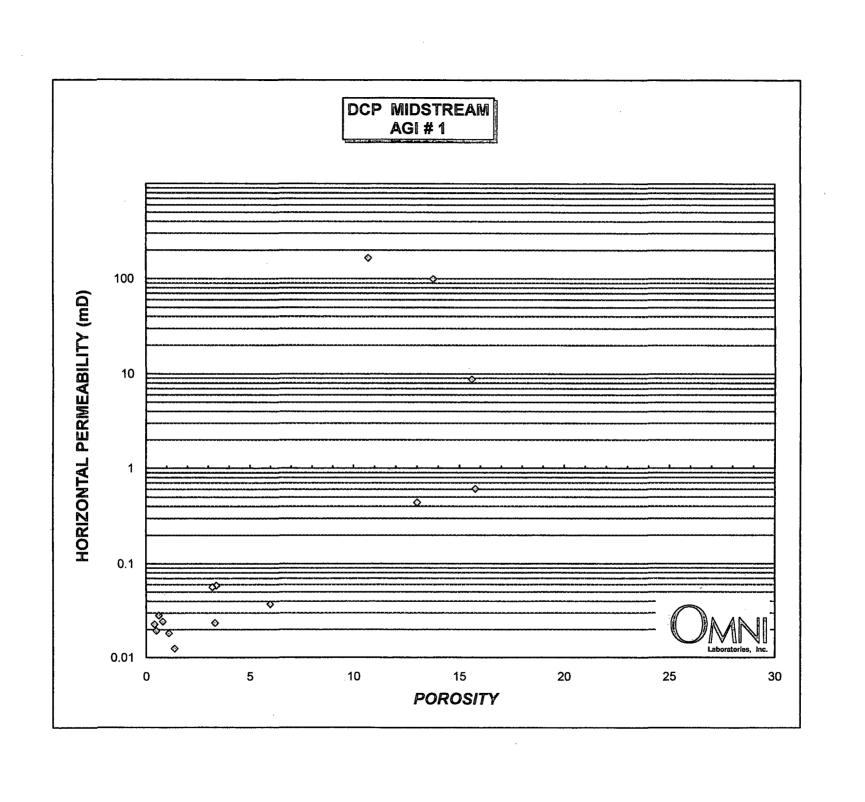
DISTRIBUTION:

DCP MIDSTREAM

Attn: RUSSELL E. BENTLEY
11221 Richmond Avenue
Suite 107C
Houston, TX 77082
1 Copy of the report with photographs and 1 CD-ROM

GEOLEX, INC.

Attn: ALBERTO GUTIERREZ
500 Marquette Ave., NW, Suite 1350
Albuquerque, NM 87102
1 Copy of the report and 1 CD-ROM


DCP MIDSTREAM

Attn: LOU MAZZULLO
11221 Richmond Avenue
Suite 107C
Houston, TX 77082
1 Copy of the report and 1 CD-ROM

Sincerely,

Wayne Helms, General Manager OMNI Laboratories, Inc.

ROTARY SIDEWALL JORE ANALYSIS

DCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO A.P.I. NUMBER:

FIELD:

LOCATION:

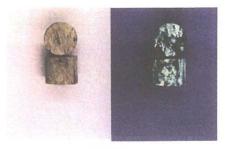
FILE NO.: MD-01061

DATE: November 24, 2007 ANALYSTS: WH, SB, PK, JR

DEAN STARK EXTRACTION

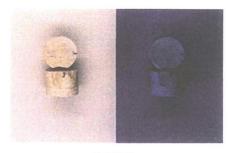
SAMPLE	DEPTH	LENGTH	GRAIN	POR	PERM	SATURA			FLUO	RESCENCE	
NO.	ft	cm	DENSITY	<u>%</u>	mD	Sw	So	UNITS	<u>%</u>		LITHOLOGY
1	5,125.0	1.867	2.69	16.5	tbfa	74.4	0.0	0	0		Ss opaq-gy vf-fgr sbrnd-sbang mod-sslty sc slty lam
2	5,192.0	_ 1.868	2.68	15.8	0.606	63.2	13.3	0	60	DI yl-gld	Ss opaq-gy vf-fgr sbrnd-sbang sslty
3	8,210.0	1.689	2.85	3.4	0.059	62.8	0.0	0	0		Dol crm-tn sslty sc anhy incl frac
4	8,278.0	1.816	2.86	3.3	0.024	67.7	0.0	0	0		Dol crm-tn sslty sc anhy incl frac
5	8,408.0	1.226	2.70	13.0	0.438	41.6	25.0 .	10	80	Brt yl-dl yl	Ss opaq-gy vf-fgr sbrnd-sbang mod slty sc slty lam
6	8,418.0	2.057	2.85	6.0	0.037	58.1	0.0	0	0		Dol tn-brn sslty sc ppp-sml vug sc anhy incl
7	8,435.0	1.156	2.84	3.3	tbfa	64.5	0.0	0	0		Dol gy-brn sslty tr anhy tr foss frac
8	8,450.0	1.798	2.71	0.5	0.019	54.0	0.0	0	0		Ls dk brn-dk gy dns ssity foss sc cht nod
9	8,482.0	1.855	2.84	15.6	8.750	74.4	0.0	0	0		Dol tn-brn sslty abd ppp-vug
10	8,520.0	1.033	2.84	3.2	0.056	67.7	0.0	0	0		Dol tn-gy sslty tr pyr sty
11	8,718.0	1.171	2.72	1.4	tbfa	45.2	0.0	0	0		Ls tn-brn-pnk dns ssity foss frac sty
12	8,746.0	1.510	2.71	2.1	tbfa	89.1	0.0	0	0		Ls gy-dk gy dns sli-vslty sshy foss
13	8,777.0	1.452	2.74	0.6	0.028	26.9	0.0	0	0	Mf	Ls tn-brn dns ssity foss
14	8,816.0	0.547	2.84	4.8	tbfa	40.5	0.0	0	0	Mf	Dol gy-wht sslty tr sml vug frac
15	8,840.0	1.778	2.86	. 13.8	99.437	61.5	0.0	0	0	Mf	Dol gy-wht ssity ppp-sml vug foss
16	8,900.0	1.439	2.85	6.0	tbfa	50.3	0.0	0	0		Dol gy-wht sslty sc ppp-sml vug foss frac
17	8,955.0	1.383	2.86	10.7	165.855	54.5	0.0	0	0	Mf	Dol gy-wht ssity ppp-sml vug foss frac
18	8,985.0	2.020	2.70	1.1	0.018	54.5	0.0	0	0		Ls dk brn-dk gy sli-vslty foss sc slty lam
19	8,995.0	1.848	2.70	8.0	0.024	65.7	0.0	0	0		Ls dk brn-dk gy cgl dns sli-vslty foss sc slty lam

LITHOLOGICAL AB EVIATIONS


Anhydrite (-ic)	anhy, anhyd	Filled	fd	Poor	pr
Anhydrite inclusion	Α⁄Ι	Fine (-ly)	f, fnly	Pyrite	pyr
Bentonite (-ic)	bent	Fluorescence	flu	Quartz (-itic)	qtz
Black (-ish)	blk, blksh	Fossil (-iferous)	foss	Red	rd
Bleeding Oil	B/O	Fracture	frac	Round	rnd
Brecciated	brec	Fragments	frag	Residual Oil	So
Bright	brt	Friable	fri	Residual Water	Sw
Brittle	brit	Fusulinid	fus	Sample	Spl
Broken	brkn	Gilsonite	gil	Sandstone	Ss
Brown	brn	Gold	gld	Sandy	sdy
Buff	bf	Good	gd	Scattered	sc
Calcite (-ic)	calc, calctc	Grain (-s)	gr	Shaley	shy
Calcareous	calc	Granular	gran	Shale	sh
Carbonaceous	carb	Gray	gy	Shale parting	s/p
Cement	cmt	Gypsum	gyp	Silt (-y)	slt, slty
Chalk (-y)	chk, chky	Hair line(frac)	hl	Slight (-ly)	sli, s
Chert	cht	Halite	hal	Small	sml
Clay	cl	Inclusion	incl	Spotted (-y)	sp
Coal	С	Laminations (ated)	lam	Stringer	strgr
Coarse	crs	Large	Irg	Stylolite (-itic)	sty, styl
Conglemerate	cgl	Light	It	Sucrosic	suc
Consolidated	consol	Limestone	ls	Sulphur	su
Contaminated	contam	Limey	lmy	Tan	tn
Crinoid (-al)	crin, crinal	Lithology	lith	Too broken	tbfa
Cross-bedded	x-bd	Medium	m	(for Analysis)	
Crystal (-line)	XI, xIn	Mineral Fluorescence	mf	Thin	thn
Dark	dk	Moderate	mod	Trace	Tr
Dense	dns	Mudcake	m/c	Very	V
Diameter	dia	No Show	N/S	Vertical	vert, vt
Dolomite (ic)	dol, dolm	Oolite (-itic)	ool	Vug (-gy)	vug
Dull	dl	Pale	pl		
Faint	fnt	Permeability	Perm, K		JMN
Fair	fr	Pin-Point Porosity	ppp		Laboratories, Inc.

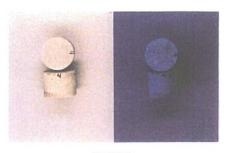
BCP MIDSTREAM AGI # 1 I.EA COUNTY, NEW MEXICO

Sample	Donth	Gruin	Porosity	Permeability	Saturations		Gas	Flu %
No	(ft)	Donnity	74	mD	Sw	60	Unite	- %
1	5,125.0	2.69	16.5	tbfo	74 4	0.0	0	0
		I lithology :	Se onen-my	ul. for abrod. sh	ann mor	d-selly s	e sity Lan	


01-5125.jpg

BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

Sample	Deptn	Grain	Porosity	Permeability	Satur	aligna	Gua	Flu
No.	(fl)	Density	%	mD	Sw	So	Unite	%
2	5,192.0	2.88	16.8	0.61	n3.2	13.3	0	0 y-grd
		Lithology	Ss opaq-gy	vf-fgr sbrnd-sb	ong ssk	4		- / 4-


02-5192.jpg

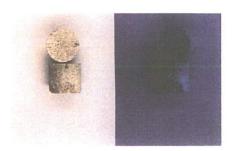
BCP MIDSTREAM AGI # 1

Sample	Depth	Grain	Porosity	Permeability	Satur	ations	Gas	Flu
No.	(ft)	Density	%	mD	Sw	So	Units	%
3	8,210.0	2.85	3.4	0.08	62.8	0.0	0	0

03-8210.jpg

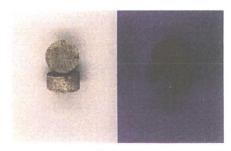
BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

Sample No.	Depth (ft)	Grain	Parosity %	Permeability mD	Satur	atlons	Gas	Flu
4	8,278.0	2 88	3.3	0.02	67.7	0.0	0	0
		Lithology : Length cm =	Dal crm-tn s	nalty so anhy Inc	ol frac			


04-8278.jpg

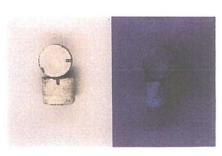
BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

Sample	Depth	Grain	Porosity	Permeability		ations	Gns	Pho
No.	(ft)	Density	%	mD	Sw	So	Units	%
5	8,408.0	2.70	13.0	0.44	41,6	25.0	10	80 bry-dlyl
		Lithology:	Se opeg-ov	vf-fgr sbmd-sbi	ang mo	d silv so	sity lan	100


05-8408.jpg

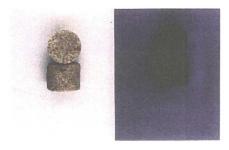
BCP MIDSTREAM AGI#1

Sample	Depth	Grain	Porosity	Permeability	Satur	ations	Gas	Flu
No.	(It)	Density	%	mD	Sw	So	Units	%
6	8,418.0	2 85	6.0	0.04	58 1	0.0	D	0
		Lithology	Doll Inshen a	ally sc non-emi	MAN TO	onby in	d	


06-8418.jpg

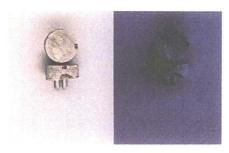
BCP MIDSTREAM AGI # 1

			LA GOOITIT,	HETT MEXICO					
Sample	Depth	Grain	Porosity	Permeubility			Gus	Flu	
No.	(fl)	Density		mD	Sw	So	Units	72	_
7	8,435.0	2.84	3.3	tbfa	64.5	0.0	0	0	
		Lithology:	Dol gy-bm s	salty ir anhy tr fo	es frac				


07-8435.jpg

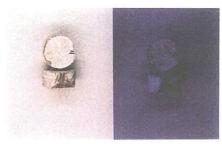
BCP MIDSTREAM AGI # 1 LFA COUNTY, NEW MEXICO

Sample	Depth	Grain	Porosity	Permeability		ations	Gas	Flu
No.	(ft)	Density	%	mD	Sw	So	Units	%
8	8,450.0	2.71	0.5	0.02	54.0	0.0	0	0
		Lithology:	Ls dk brn-di	k gy dns sslty fo	es sc d	ht nod		


08-8450.jpg

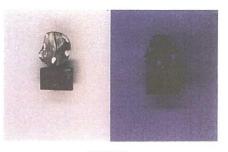
BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

Sample	Depth	Grain	Porosity	Permeability	Permeability Saturat		Gas	Flu
No.	(ft)	Density	%	m()	Sw	Sn	Units	%
9	B,482.0	2.84	15.G	8.75	74.4	0.0	0	0
		Lithelany :	Dol to hm s	sity and non-yu	n			


09-8482.jpg

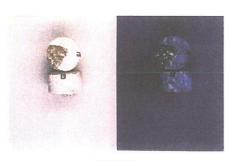
BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

Sample:	Depth	Grain	Parasity	Pormoability	Satur	ations	Gas	Flu
No.	(ft)	Density	%	mU	Sw	So	Units	%
10	8,520.0	2.84	3.2	0.08	67.7	0.0	0	0
		Lithology:	Dol In-gy sa	ity to pyr sty				


10-8520.jpg

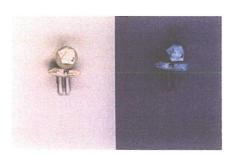
BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

Sample	Depth	Grain	Porosity	Pormoablity		atlons	Gas	Flu
No.	(f1)	Donsity	7/4	mD_	SW	So	Units	- %
11	8,718.0	2./2	1.4	tbfa	45 2	0.0	0	0
		Lithology:	Ls tn-brn-pr	k dns ssily fos	trac st			


11-8718.jpg

BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

Sample	Dopth	Grain	Porosity	Permeability	Sulur	utions	Gas	Flu
No.	(ft)	Density	%	mD	Sw	So	Units	55
12	8,746.0	2.71	2.1	tbln	89 1	0.0	0	0
		Lithology:		dns sil-vally sa	ny foss			


12-8746.jpg

BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

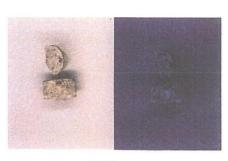
Sample	Depth	Grain	Porosity	Pormoability	Satur	ntions	Gas	Flu
No.	(n)	Density	%	mD	Sw	So	Units	%
13	8,777.0	2.74	0.6	0.03	26.9	0.0	0	0
		Lithology:	Ls tn-brn dr	s salty foss				1.11
		Lithology :		s salty foss				

13-8777.jpg

BCP MIDSTREAM

AGI # 1
LEA COUNTY, NEW MEXICO

Sample	Depth	Grain	Porosity	Permeability	Satur	ations	Gas	Flu
No.	(ft)	Density	%	mD	Sw	So	Units	%
14	8,818.0	2.84	4.8	tbfa	40.5	0.0	0	O Mr
14	0,010,0	Lithology '		saity tr sml vug		0.0	Ü	


14-8810.jpg

BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

Sample	Depth	Grain	Porosity	Permeability	Satur	ations	Gas	Flu
No.	(ft)	Density	%	mD	Sw	So	Units	96
15	8,840.0	2.86	13.8	99.44	61.5	00	0	O
		Lithology:	Dol gy-whi s	ssity ppp-sml vu	g foss			1.5

15-8840.jpg

BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

Sample	Depth	Grain	Porosity	Permeability	Salur	ations	Gas	Flu	
No.	(ft)	Density	- 34	mD	Sw	So	Units	%	
16	8,900.0	2.85	8.0	lbfa	50.3	0.0	0	0	
		Lithology:	Dol gy-whi a	salty sc ppp-sm	I vug for	s frac			


16-8900.jpg

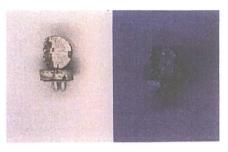
AGI # 1

	rapptn	Grain	Porosity	Pomoability	Salur	ations	Gms	Γlu
No.	(11)	Density		mD	Sw	So	Units	1/4
17	8,955.0	2.86	10.7	165 66	54.5	0,0	0	0

17-8955.jpg

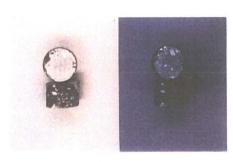
BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

Sample	Depth	Grain	Porosity	Permeability	Satur	ations	Gan	Flu
No.	(ft)	Density	74	mD	Sw	So	Units	56
18	8,985.0	2.70	1.1	0.02	54.5	0.0	0	0
		Lithology:		k gy sil-vsity for	is sc sity	tam		


18-8985.jpg

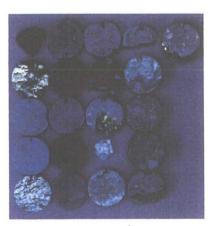
BCP MIDSTREAM ACI # 1

Sample	(Depth	Grain	Porosily	Pompability	Satura	at-ons.	Cas	Flu
No	(ft)	Dunsily	7/4	inD	Sw	So	Unhs	1/2
19	3.995.0	2.70	08	0 02	65 7	00	0	0


19-8995.jpg

BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

Sample	Depth	Grein	Porosity	Pennesbility	Satur		Gas	Flu
No	(ft)	Density	15	mD	Sw	So	Units	%
20	9.050.0	2.70	0.4	0 02	70.5	0.0	0	0
		Lithology:	Ls dk brn-d	k gy dns salty fo	555			


20-9050.jpg

BCP MIDSTREAM AGI # 1 LEA COUNTY, NEW MEXICO

Sample	Dopth	Grain	Porosity	Permeability	Satur	ations	Gas	Flu
No.	(ft)	Density	%	mD	Sw	So	Units	%
21	9,055.0	2 71	1.4	0.01	64.1	0.0	0	0
		Lithology:	La dk brn-di	k ov dns sil-valo	v foss s	elty le	m	

21-9055.jpg

comp-uv.jpg

comp-wl.jpg

ANALYTICAL RESULTS FOR **DCP MIDSTREAM** ATTN: RUSSELL BENTLEY 11221 RICHMOND AVE., SUITE 107C HOUSTON, TX 77082 FAX TO:

Receiving Date: 12/26/07 Reporting Date: 01/16/08 Project Number: NOT GIVEN

Project Name: LINAM

Project Location: LINAM RANCH AG1

Sampling Date: NOT GIVEN Sample Type: GROUNDWATER Sample Condition: INTACT Sample Received By: ML

Analyzed By: HM

		Ва	Fe	Sr	Zn
LAB NUMBER	SAMPLE ID	(ppm)	(ppm)	(ppm)	(ppm)

ANALYSIS DATE		01/11/08	01/11/08	01/11/08	01/11/08
H13978-1	FLOWBACK	< 10.0 *	240 *	203 *	1.37 *
H13978-2	DOWNHOLE	< 1.00	67.0	93.0	0.157
Quality Control		23.3	2.04	1.97	0.503
True Value QC	And the first the second secon	25.0	2.00	2.00	0.500
% Accuracy		93.2	102	98.5	101
Relative Percent Difference		1.3	0.4	1.7	1.2

METHODS:	EPA 600/4-79-020	208.1	236.1	SW846-7780	289.1
*Note: Analys	is performed on 1:10 v:v a	aqueous extract.	Result shoul	d therefore be o	considered an

approximation.

ANALYTICAL RESULTS FOR DCP MIDSTREAM ATTN: RUSSELL BENTLEY 11221 RICHMOND AVE., SUITE 107C HOUSTON, TX 77082 FAX TO:

Ca

Mq

K

Receiving Date: 12/26/07 Reporting Date: 01/07/08 Project Owner: LINAM

Project Name: LINAM RANCH AG1
Project Location: NOT GIVEN

Sampling Date: NOT GIVEN
Sample Type: GROUNDWATER
Sample Condition: INTACT
Sample Received By: ML
Analyzed By: HM/KS

Conductivity

T-Alkalinity

		IVCI	Oa	14/9	,,	Conductivity	1 - 7 uncominty
LAB NUMBER	R SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(u S/cm)	(mgCaCO ₃ /L)
ANALYSIS D	ATE:	01/02/08	01/02/08	01/02/08	01/02/08	12/27/07	12/27/07
H13978-1	FLOWBACK	23,854	1,360*	363°	3,670*	98,500	160 ⁴
H13978-2	DOWNHOLE	24,909	1,760°	424*	535*	94,800	324
							- Andrewson - Andr
Quality Contro		NR NR	49.2	54.0	3.19	1,424	· NR
True Value Q	C	NR NR	50.0	50.0	3.00	1,413	NF
% Recovery	Market a race of the sample gape as a stable life of particular stable and a state of the	NR	98.5	108	106	101	NR
Relative Perc	ent Difference	NR	< 0.1	6.1	10.2	0.9	NR
METHODS:		SM:	3500-Ca-D	3500-Mg E	8049	120.1	310.1
		CI ⁻	SO ₄	CO ₃	HCO ₃	рН	TDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS D		12/31/07	12/31/07	12/27/07	12/27/07	12/27/07	01/07/08
H13978-1	FLOWBACK	41,500*	2,720*	0	195*	6.46	72,480
H13978-2	DOWNHOLE	40,000*	4,145	0	395	6.73	73,412
Quality Contro		500	27.8	NR	1000	7.06	NF
True Value Q	<u>C</u>	500	25.0	NR	1000	7.00	NR
% Recovery		100	111	NR	100	101	NF
Relative Perc	ent Difference	< 0.1	17.4	NR	< 0.1	< 0.1	NR
METHODS:		SM4500-CI-B	375.4	310.1	310.1	150.1	160.1
				1			

Na

Chemist Marent

01-07-0

Date

^{*} Note: Analyses performed on 1:10 v:v aqueous extracts. Results should therefore be considered approximate.

ANALYTICAL RESULTS FOR DCP MIDSTREAM ATTN: RUSSELL BENTLEY 11221 RICHMOND AVE., SUITE 107C HOUSTON, TX 77082 FAX TO:

Receiving Date: 12/26/07 Reporting Date: 01/11/08 Project Number: NOT GIVEN

Project Name: LINAM

Project Location: LINAM RANCH AG1

Sampling Date: NOT GIVEN
Sample Type: GROUNDWATER
Sample Condition: INTACT
Sample Received By: ML

Analyzed By: HM

LAB NUMBER SAMPLE ID (mg/L) (mg/L)

Analysis Date:		12/28/07	01/11/08
H13978-1	FLOWBACK	15.25	4.40 *
H13978-2 DOWNHOLE		0.62	6.63
Quality Contro		2.11	1.05
True Value QC		2.00	1.00
% Recovery		106	105
Relative Percent Difference		14.2	4.9

METHOD: EPA 600/4-79	-020	353.3	Hach8029

^{*}Note: Analysis performed on 1:10 v:v aqueous extract. Result should therefore be considered an approximation.

Chémist

Date

RDINAL LABORATORIES

101 East Mariand, Hobbs, NM 88240 2111 Beechwood, Abilene, TX 79603

(505) 393-2326 FAX (505) 393-2476 (325) 673-7001 FAX (325)673-7020 Company Name: BILL TO ANALYSIS REQUEST P.O. #: Project Manager: Address: 1/221 Richmonie Ave 107C Company: city: Houston State:Tx ZIp: 17082 Phone #: Fax #: Address: **Project Owner:** Project #: inour City: _i nalm Zip: Project Name: State: Phone #: Project Location: Fax #: Sampler Name: PRESERV. SAMPLING FOR LAB USE ONLY MATRIX (G)RAB OR (C)OMP GROUNDWATER MASTEWATER Lab I.D. Sample I.D. ACID/BASE CE / COOL SLUDGE OTHER: OTHER SOIL DATE TIME 13978-1 Flowback

analyses. All claims including those for neglitience and any other cause whatsoever shall be deemed waked unless made in writing and received by Cerdinal within 30 days after completion of the applicable

service. In no event shall Cardinal de labele for incoental of consequental damages, including without immation, dutiness interruptions, itsis of use, or loss of promis encurred by client, as substituted by client, as substituted by client, as substituted by client.			
affiliates or suggestors arising out of or related to the performance of services	hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated r	easons or otherwise,	
Relinquished By:		Phone Result:	
11.1	2-26-01	Fax Result:	
Time		REMARKS:	
The fellion 8	: Sam Mary Meller	Ernail to a age geolex.com	
Relinquished By: Date	Received By: //	100	
<u> </u>	i	a scalle as la bontle anni	
- Time	: <u>!</u>	russell@ gayla bentley.com	
Delivered By: (Circle One)	Sample Condition CHECKED BY:	dbreeding @ newtecheng com	
	Cool Intact / ((initials)/)		
Sampler - UPS - Bus - Other:	☐ Yes ☐ Yes / // (///	281-496-2922	
	□ No □ No □ V/ JA)	1 281 - 170 C-16 C	

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST