Permit Application

Lea County, New Mexico C.K. Disposal E & P Landfill and Processing Facility Permit No. TBD

Attachment F Geosynthetic and Pipe Document

PARKHILLSMITH&COOPER

Interface Friction Test Report

Client: PSI Project: City of El Paso, Clint Landfill Test Date: 10/14/11-10/17/11 TRI Log#: E2357-60-01 Test Method: ASTM D 6243 John M. Allen, P.E., 10/17/2011 Quality Review/Date

Tested Interface: BentoLiner NSL GCL (502193561) vs. GSE 60 mil HDPE Textured Geomembrane (102162724)

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

Interface Friction Test Report

Client: PSI Project: City of El Paso, Clint Landfill Test Date: 10/14/11-10/17/11

Corrected Large Displacement Shear Stress (psf)

Large Displacement Secant Angle (degrees)

Peak Secant Angle (degrees)

TRI Log#: E2357-60-01 Test Method: ASTM D 6243 John M. Allen, P.E., 10/17/2011 Quality Review/Date

Tested Interface: Internal Shear of BentoLiner NSL GCL (502193561)

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

963

302

78.3

56.5

1535

771

72.0

57.0

2134

268

64.9

15.0

Interface Friction Test Report

Client: PSI Project: City of El Paso, Clint Landfill Test Date: 11/03/11-11/07/11 TRI Log#: E2357-60-01 Test Method: ASTM D 6243 John M. Allen, P.E., 11/07/2011 Quality Review/Date

Tested Interface: Soil mixed with Ash vs. BentoLiner NSL GCL (502193561)

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material.

GSE BentoLiner EC Geosynthetic Clay Liner

GSE BentoLiner "EC" is a lightly needle-punched reinforced composite geosynthetic clay liner (GCL) comprised of a uniform layer of granular sodium bentonite encapsulated between a woven and a nonwoven geotextile. The product is intended for use on relatively flat slope surfaces and low load applications where minimal internal shear strength is required.

[*]

AT THE CORE:

This composite clay liner is intended for use on relatively flat slope surfaces and low load applications where minimal internal shear strength is required.

Product Specifications

Tested Property	Test Method	Frequency	Value
Geotextile Property			
Cap Nonwoven, Mass/Unit Area	ASTM D 5261	1/200,000 ft ²	3.0 oz/yd² MARV()
Carrier Woven, Mass/Unit Area	ASTM D 5261	1/200,000 ft ²	3.1 oz/yd² MARV
Bentonite Property			
Swell Index	ASTM D 5890	1/100,000 lb	24 ml/2 g min
Moisture Content	ASTM D 4643	1/100,000 lb	12% max
Fluid Loss	ASTM D 5891	1/100,000 lb	18 ml max
Finished GCL Property			
Bentonite, Mass/Unit Area ⁽²⁾	ASTM D 5993	1/40,000 ft ²	0.75 lb/ft ² MARV
Tensile Strength ⁽³⁾	ASTM D 6768	1/40,000 ft ²	30 lb/in MARV
Peel Strength	ASTM D 6496 ASTM D 4632(4)	1/40,000 ft²	1 lb/in MARV 6 lb MARV
Hydraulic Conductivity ⁽⁵⁾	ASTM D 5887	1/Week	5 x 10 ^{.9} cm/sec max
Index Flux ⁽⁵⁾	ASTM D 5887	1/Week	1 x 10 ⁸ m ³ /m ² /sec max
Internal Shear Strength ⁽⁶⁾	ASTM D 6243	Periodically	150 psf Typical
	TYPICAL ROLI	DIMENSIONS	
Width x Length ⁽⁷⁾	Typical	Every Roll	15.5 ft x 150 ft
Area per Roll	Typical	Every Roll	2,325 ft ²
Packaged Weight	Typical	Every Roll	2,600 lb

NOTES:

^OMinimum Average Roll Value

· ⁽²⁾At 0% moisture content

⁽³⁾Tested in machine direction

• (4)Modified ASTM D 4632 to use a 4 in wide grip. The maximum peak of five specimens averaged in machine direction

⁽⁵⁾Deaired, deionized water @ 5 psi maximum effective confining stress and 2 psi head pressure

• (6)Typical peak value for specimen hydrated for 24 hours and sheared under a 200 psf normal stress

- $^{(\prime)}\text{Roll}$ widths and lengths have a tolerance of $\pm1\%$

GSE is a leading manufacturer and marketer of geosynthetic lining products and services. We've built a reputation of reliability through our dedication to providing consistency of product, price and protection to our global customers.

Our commitment to innovation, our focus on quality and our industry expertise allow us the flexibility to collaborate with our clients to develop a custom, purpose-fit solution.

DURABILITY RUNS DEEP]

For more information on this product and others, please visit us at GSEworld.com, call 800.435.2008 or contact your local sales office.

This Information is provided for reference purposes only and is not intended as a warranty or guarantee. GSE assumes no liability in connection with the use of this information. Specifications subject to change without notice. GSE and other trademarks in this document are registered trademarks of GSE Lining Technology, LLC in the United States and certain foreign countries. REV 13JUN2012

GSE FabriNet 200 mil Geocomposite

GSE FabriNet geocomposite consists of a 200 mil thick GSE HyperNet geonet heatlaminated on one or both sides with a GSE nonwoven needle-punched geotextile. The geotextile is available in mass per unit area range of 6 oz/yd² to 16 oz/yd². The geocomposite is designed and formulated to perform drainage function under a range of anticipated site loads, gradients and boundary conditions.

[*]

AT THE CORE:

A 200 mil thick HyperNet geonet heat-laminated on one or both sides with a nonwoven needlepunched geotextile.

Product Specifications

Tested Property	Test Method Frequency		Minimum Average Roll Value®					
Geocomposite	Section Sector		6 oz/yd²	8 oz/yd²	10 oz/yd²			
Transmissivity ⁽²⁾ , gal/min/ft, (m²/sec) Double-Sided Composite Single-Sided Composite	ASTM D 4716	1/540,000 ft ²	0.5 (1x10 ⁻⁴) 4.8 (1x10 ⁻³)	0.5 (1x10-4) 4.8 (1x10-3)	0.4 (9x10 ⁻⁵) 4.3 (9x10 ⁻⁴)			
Ply Adhesion, Ib/in	ASTM D 7005	1/50,000 ft ²	1.0	1.0	1.0			
Geonet Core ^(1,3) - GSE HyperNet								
Geonet Core Thickness, mil	ASTM D 5199	1/50,000 ft ²	200	200	200			
Transmissivity ⁽²⁾ , gal/min/ft (m²/sec)	ASTM D 4716		9.6 (2 x 10 ⁻³)	9.6 (2 x 10 3)	9.6 (2 x 10 3)			
Density, g/cm ³	ASTM D 1505	1/50,000 ft ²	0.94	0.94	0.94			
Tensile Strength (MD), lb/in	ASTM D 7179	1/50,000 ft²	45	45	45			
Carbon Black Content, %	ASTM D 4218	1/50,000 ft ²	2.0	2.0	2.0			
Geotextile ^(1,3)								
Mass per Unit Area, oz/yd²	ASTM D 5261	1/90,000 ft ²	6	8	10			
Grab Tensile Strength, Ib	ASTM D 4632	1/90,000 ft ²	160	220	260			
Grab Elongation	ASTM D 4632	1/90,000 ft ²	50%	50%	50%			
CBR Puncture Strength, Ib	ASTM D 6241	1/540,000 ft ²	435	575	725			
Trapezoidal Tear Strength, Ib	ASTM D 4533	1/90,000 ft2	65	90	100			
AOS, US sieve(), (mm)	ASTM D 4751	1/540,000 ft ²	70 (0.212)	80 (0.180)	100 (0.150)			
Permittivity, sec ¹	ASTM D 4491	1/540,000 ft ²	1.5	1.3	1.0			
Water Flow Rate, gpm/ft ²	ASTM D 4491	1/540,000 ft ²	110	95	75			
UV Resistance, % retained	ASTM D 4355 (after 500 hours)	per formulation	70	70	70			
	NOMINAL RO	OLL DIMENSIONS(4)						
Roll Width, ft			14.75	14.75	14.75			
Roll Length, ft	Double-Sided Cor Single-Sided Com	nposite posite	270 300	260 300	230 290			
Roll Area, ft ²	Double-Sided Cor Single-Sided Com	nposite posite	3,982 4,425	3,835 4,425	3,392 4,277			

NOTES:

 O All geotextile properties are minimum average roll values except AOS which is maximum average roll value and UV resistance is typical value. Geonet core thickness is nominal value.

• ⁽²⁾ Gradient of 0.1, normal load of 10,000 psf, water at 70°F between steel plates for 15 minutes. Contact GSE for

performance transmissivity value for use in design

• ⁽³⁾ Component properties prior to lamination

• ⁽⁴⁾ Roll widths and lengths have a tolerance of ±1%.

GSE is a leading manufacturer and marketer of geosynthetic lining products and services. We've built a reputation of reliability through our dedication to providing consistency of product, price and protection to our global customers.

commitment to innovation, our focus on quality and our industry expertise allow e flexibility to collaborate with our clients to develop a custom, purpose-fit solution. DURABILITY RUNS DEEP For more information on this product and others, please visit us at GSEworld.com, call 800.435.2008 or contact your local sales office.

This information is provided for reference purposes only and is not intended as a warranty or guarantee. GSE assumes no liability in connection with the use of this information. Specifications subject to change without notice. GSE and other trademarks in this document are registered trademarks of GSE Environmental, LLC in the United States and certain foreign countries. REV 04JUN2014

GSE HyperNet Geonet 175 - 225 mil

GSE HyperNet geonet is a synthetic drainage material manufactured from a premium grade high density polyethylene (HDPE) resin. The structure of the GSE HyperNet geonet is formed specifically to transmit fluids uniformly under a variety of field conditions. The geonet is formulated to be resistant to ultraviolet light for a period of time necessary to complete the installation.

(*)

AT THE CORE:

A synthetic geonet engineered specifically to transmit fluids consistently under a variety of field conditions.

Product Specifications

Tested Property	Test Method Frequency		Minimum Average Roll Value				
			175 mil	200 mil	225 mil		
Geonet Thickness, mil ⁽¹⁾	ASTM D 5199	1/50,000 ft ²	175	200	225		
Transmissivity ⁽²⁾ , gal/min/ft (m²/sec)	ASTM D 4716	1/540,000 ft²	4.8 (1.0 x 10 ⁻³)	9.6 (2 x 10 ⁻³)	12 (2.5x10 ³)		
Density, g/cm ³	ASTM D 1505	1/50,000 ft ²	0.94	0.94	0.94		
Tensile Strength (MD), lb/in	ASTM D 7179	1/50,000 ft ²	40	45	50		
Carbon Black Content, %	ASTM D 4218	1/50,000 ft ²	2.0	2.0	2.0		
	NOM	INAL ROLL DIMENSIONS					
Roll Width, ft			15	15	15		
Roll Length, ft			350	330	330		
Roll Area, ft ²			5,250	4,950	4,950		

NOTES:

· ^(I)Geonet thickness is nominal value

 ⁽²⁾Gradient of 01, normal load of 10,000 psf, water at 70° F, between steel plates for 15 minutes. Contact GSE for performance transmissivity value for use in design.

- $^{\rm (I)}{\rm Rol}$ widths and lengths have a tolerance of $\pm1\%$

GSE is a leading manufacturer and marketer of geosynthetic lining products and services. We've built a reputation of reliability through our dedication to providing consistency of product, price and protection to our global customers.

Our commitment to innovation, our focus on quality and our industry expertise allow us the flexibility to collaborate with our clients to develop a custom, purpose-fit solution.

For more information on this product and others, please visit us at GSEworld.com, call 800.435.2008 or contact your local sales office.

This Information is provided for reference purposes only and is not intended as a warranty or guarantee GSE assumes no lability in connection with the use of this information Specifications subject to change without notice GSE and other trademarks in this document are registered trademarks of GSE Lining Technology, LLC in the United States and certain foreign countries REV 21MAR2014

GSE HD Smooth Geomembrane

GSE HD is a smooth high density polyethylene (HDPE) geomembrane manufactured with the highest quality resin specifically formulated for flexible geomembranes. This product is used in applications that require excellent chemical resistance and endurance properties.

[*]

AT THE CORE: An HDPE geomembrane used in applications that require excellent chemical resistance and endurance properties.

These product specifications meet GRI GM 13

Product Specifications

Tested Property	Test Method	Frequency	Minimum Average Value							
			30 mil	40 mil	60 mil	80 mil	100 mil			
Thickness, mil Lowest individual reading	ASTM D 5199	every roll	30 27	40 36	60 54	80 72	100 90			
Density, g/cm ³	ASTM D 1505	200,000 lb	0.940	0.940	0.940	0.940	0.94			
Tensile Properties (each direction) Strength at Break, Ib/in-width Strength at Yield, Ib/in-width Elongation at Break, % Elongation at Yield, %	ASTM D 6693, Type IV Dumbbell, 2 ipm G.L. 2.0 in G.L. 1.3 in	20,000 lb	114 63 700 12	152 84 700 12	228 126 700 12	304 168 700 12	380 210 700 12			
Tear Resistance, Ib	ASTM D 1004	45,000 lb	21	28	42	56	70			
Puncture Resistance, Ib	ASTM D 4833	45,000 lb	54	72	108	144	180			
Carbon Black Content, % (Range)	ASTM D 1603*/4218	20,000 lb	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0			
Carbon Black Dispersion	ASTM D 5596	45,000 lb	Note ⁽¹⁾	Note	Note ⁽¹⁾	Note	Note			
Notched Constant Tensile Load, hr	ASTM D 5397, Appendix	200,000 lb	500	500	500	500	500			
Oxidative Induction Time, mins	ASTM D 3895, 200°C; O ₂ , 1 atm	200,000 lb	>100	>100	>100	>100	>100			
		TYPICAL ROLL	DIMENSIONS							
Roll Length ⁽²⁾ , ft			1,120	870	560	430	340			
Roll Width ⁽²⁾ , ft			22.5	22.5	22.5	22.5	22.5			
Roll Area, ft ²			25,200	19.575	12 600	9.675	7650			

NOTES:

• "Dispersion only applies to mean spherical agglomerates. 9 of 10 views shall be Category 1 or 2. No more than 1 view from Category 3

- $^{\rm (2)} Roll lengths and widths have a tolerance of <math display="inline">\pm 1\%$

GSE HD is available in rolls weighing approximately 3,900 lb

• All GSE geomembranes have dimensional stability of ±2% when tested according to ASTM D.1204 and LTB of <-77 C when tested according to ASTM D.746. Modified

and protection to our global customers. Our commitment to innovation, our focus on quality and our industry expertise allow us the flexibility to collaborate with our clients to develop a custom, purpose-fit solution.

GSE is a leading manufacturer and marketer of geosynthetic lining products and services. We've built a reputation of reliability through our dedication to providing consistency of product, price

DURABILITY RUNS DEEP

For more information on this product and others, please visit us at GSEworld.com, call 800.435.2008 or contact your local sales office.

This Information is provided for reference purposes only and is not intended as a warranty or guarantee. GSE assumes no liability in connection with the use of this Information Specifications subject to change without notice GSE and other trademarks in this document are registered trademarks of GSE lining Technology, LIC in the United States and certain foreign countries REV 10DEC2014

GSE HD Textured Geomembrane

GSE HD Textured is a co-extruded textured high density polyethylene (HDPE) geomembrane available on one or both sides. It is manufactured from the highest quality resin specifically formulated for flexible geomembranes. This product is used in applications that require increased frictional resistance, excellent chemical resistance and endurance properties.

[*]

AT THE CORE: An HDPE geomembrane used in applications that require increased frictional resistance, excellent chemical resistance and endurance properties.

These product specifications meet GRI GM13

Product Specifications

Tested Property	Test Method	Frequency	Minimum A	verage Value			
			30 mil	40 mil	60 mil	80 mil	100 mil
Thickness, mil Lowest individual reading	ASTM D 5994	every roll	30 27	40 36	60 54	80 72	100 90
Density, g/cm ³	ASTM D 1505	200,000 lb	0.940	0.940	0.940	0.940	0.940
Tensile Properties (each direction Strength at Break, lb/in-width Strength at Yield, lb/in-width Elongation at Break, % Elongation at Yield, %	ASTM D 6693, Type IV Dumbell, 2 ipm G.L. 2.0 in G.L. 1.3 in	20,000 lb	45 63 100 12	60 84 100 12	90 126 100 12	120 168 100 12	150 210 100 12
Tear Resistance, Ib	ASTM D 1004	45,000 lb	21	28	42	56	70
Puncture Resistance, Ib	ASTM D 4833	45,000 lb	45	60	90	120	150
Carbon Black Content, % (Range)	ASTM D 1603*/4218	20,000 lb	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0
Carbon Black Dispersion	ASTM D 5596	45,000 lb	Note ⁽¹⁾	Note	Note	Note	Note
Asperity Height, mil	ASTM D 7466	second roll	16	18	18	18	18
Notched Constant Tensile Load ⁽²⁾ , hr	ASTM D 5397, Appendix	200,000 lb	500	500	500	500	500
Oxidative Induction Time, mins	ASTM D 3895, 200°C; O ₂ , 1 atm	200,000 lb	>100	>100	>100	>100	>100
		TYPICAL ROLL	DIMENSIONS				
Roll Length ⁽³⁾ , ft	Double-Sided Texture Single-Sided Textured	d	830 1,010	700 780	520 540	400 410	330 330
Roll Width(3), ft			22.5	22.5	22.5	22.5	22.5
Roll Area, ft ²	Double-Sided Texture Single-Sided Textured	d	18,675 22,725	15,750 17,550	11,700 12,150	9,000 9,225	7,425 7,425

NOTES:

• (*Dispersion only applies to near spherical agglomerates 9 of 10 views shall be Category 1 or 2. No more than 1 view from Category 3

• ⁽²⁾NCTL for GSE HD Textured is conducted on representative smooth membrane samples

(5)Roll lengths and widths have a tolerance of ±1%

GSE HD Textured is available in rolls weighing approximately 4,000 lb.

All GSE geomembranes have dimensional stability of ±2% when tested according to ASTM D 1204 and LTB of <-77°C when tested according to ASTM D 746.
 *Modified

GSE is a leading manufacturer and marketer of geosynthetic lining products and services. We've built a reputation of reliability through our dedication to providing consistency of product, price and protection to our global customers.

Our commitment to innovation, our focus on quality and our industry expertise allow us the flexibility to collaborate with our clients to develop a custom, purpose-fit solution.

[DURABILITY RUNS DEEP]

For more information on this product and others, please visit us at GSEworld.com, call 800.435.2008 or contact your local sales office.

This Information is provided for reference purposes only and is not intended as a warranty or guarantee GSE assumes no liability in connection with the use of this Information Specifications subject to change without notice GSE and other trademarks in this document are registered trademarks of GSE lining Technology, LLC in the United States and certain foreign countries. REV 10DEC2014

Chemical Resistance Chart

GSE is the world's leading supplier of high quality, polyethylene geomembranes and geonets. GSE polyethylene geomembranes and geonets are resistant to a great number and combinations of chemicals. Note that the effect of chemicals on any material is influenced by a number of variable factors such as temperature, concentration, exposed area and duration. Many tests have been performed that use geomembranes and geonets and certain specific chemical mixtures. Naturally, however, every mixture of chemicals cannot be tested for, and various criteria may be used to judge performance. Reported performance ratings may not apply to all applications of a given material in the same chemical. Therefore, these ratings are offered as a guide only.

Medium Concentration Apr C (68 * 7) Caper choiride (Coper nitrate Concentration (Coper nitrate Sat sol S S Acetic acid 100% S L Coper nitrate sat sol S S Actic acid 100% S L Cresyle acid sat sol S S Aluminum fluoride sat sol S S Dextrine 100% S L Aluminum fluoride sat sol S S Dextrine 100% S L Ammonia, agueous adi sol S S Ethylene 100% S L Ammonia, flaud 100% S S Ethylene trichivride 100% S L Ammonia, flautous 100% S L Ferric sulfate 100% S L	A Construction of the		Resis	tance at:		Resist	tance at:	
A GeP G40*P C40*P A cetic acid 100% S L Copper nitrate sat. soil S A cetic acid 100% S L Copper nitrate sat. soil S S Acetic acid 100% S L Cresylic acid sat. soil L - Acetic acid ast. soil S Cyclohexanone 100% S L Aljuraicohol 96% S Decatydronaphthalene 100% S L Aluminum chioride sat. soil S Decatydronaphthalene 100% S L Aumonia, queuos dil soil S S Dioctylphhalace 100% S L Armonia, queuos dil soil S S Ethanedioi 100% S S Armonia, queuos dil soil S S Ethanedioi 100% S S Armonia, queuos dil soil S S Ethanedioi 100%	Medium	Concentration	20° C	60° C	Medium	Concentration	20° C	60° C
A Copper chloride sat sol S S Acetic acid 100% S L Copper sulfate sat sol S S Acetic acid anhydride 100% S L Crespil acid sat sol S S Acetic acid anhydride 100% L L Crespil acid sat sol S S Acetic acid anhydride 100% L L Crespil acid sat sol S S Aluminum fuoride sat sol S S Dechydronaphthalene 100% S L Aluminum fuoride sat sol S S Dicktylphthalate 100% S L Aluminum fuoride sat sol S S Dicktylphthalate 100% S L Ammonia, adueous dil sol S S Ethanoil 100% S L Ammonia, adueous S S Ethylene trichioride tat sol S S Ammonia, adueous		and the state of the	(68° F)	(140° F)		A LAN ALE PAR	(68° F)	(140° F)
Acetic acid 100% S L Copper sulfate sat. soil S S Acetic acid anhydride 100% S L Cresyle acid sat. soil L - Acetic acid 100% S L Cresyle acid 100% S L Actine acid 100% S L Cyclohexanone 100% S L Aluminum fluoride sat. soil S Dextrine 100% L - Aluminum sulfate sat. soil S S Diextrine 100% L - Ammonia, gaseous dry 100% S S Ethanediol 100% S L Ammonia, gaseous dry 100% S S Ethanediol 100% S L Ammonia, gaseous dry 100% S S Ethanediol 100% S L Ammonia, gaseous dry 100% S L Ferric nitrate sat. soil S Ammoniu	A				Copper chloride	sat. sol.	S	S
Acetic acid 10% S S Copper sulfate sat. sol. S S Acetic acid anhydride 100% L Cyclohexanol 100% S L Acetic acid anhydride 100% S L Cyclohexanol 100% S L Alipic acid sat. sol. S S Cyclohexanol 100% S L Alimicanolic ride 96% S S Dehydromaphthalene 100% S S Aluminum fluoride sat. sol. S S Dickriphthalate 100% S L Ammonia, agueous dil sol. S S Ethanol 40% S L Ammonia, flaud 100% S S Ethyle trichroide 100% S L Ammonia, flaud 100% S L Ferric choride sat. sol. S S Ammonia, flaud 100% S L Ferric choride sat. sol. S S	Acetic acid	100%	S	L	Copper nitrate	sat. sol.	S	S
Acetica acid annydride 100% S L Cresylic acid sat.sol. L	Acetic acid	10%	S	S	Copper sulfate	sat. sol.	S	S
Acetone 100% L L Cyclohexanol 100% S S Alipic acid 96% S S Decahydronaphthalene 100% S L Aliminum fuoride sat. sol. S S Decahydronaphthalene 100% S L Aluminum fuoride sat. sol. S S Decahydronaphthalene 100% S L Aluminum fuoride sat. sol. S S Dioxane 100% S L Ammonia, agueous di sol. S S Ethanediol 100% S S Ammonium fuoride sat. sol. S S Ethanediol 100% S L Ammonium sulfate sat.sol. S S Ferric choride sat.sol. S S Ammola, aduede sat.sol. S Ferric schoride sat.sol. S S Ammonium sulfate sat.sol. S Ferric choride sat.sol. S S	Acetic acid anhydride	100%	S	L	Cresylic acid	sat. sol.	L	-
Adipic acid st. sol. S S Cyclohexanone 100% S L Aluminum fuoride sat. sol. S S Decahydronaphthalene 100% S L Aluminum fluoride sat. sol. S S Decahydronaphthalene 100% S L Aluminum fluoride sat. sol. S S Decahydronaphthalene 100% S L Ammonia, agaeous dry 100% S S Decahydronaphthalene 100% S L Ammonia, agaeous dry 100% S S Ethanediol 100% S L Ammonium sulfate sol. S S Ethylene trichioride sat. sol. S S Amyl acetate 100% S L Ferric hirtate sol. S S Amyl acetate 100% S L Ferric hirtate sol. S S Amyl acetate 100% S L Ferric hirtate sol.S	Acetone	100%	L	L	Cyclohexanol	100%	S	S
Allyl alcohol 96% 5 S D Aluminum fluoride sat sol. S S Dextrine 100% L - Aluminum fluoride sat sol. S S Dextrine 100% L - Alum sol. S S Diocty/pthhalate 100% S L Alum sol. S S Diocty/pthhalate 100% S L Ammonia, gaseoud offy 100% S S Ethanediol 100% S L Ammonium fluoride sat. sol. S S Ethanediol 100% S L Ammonium sulfate sat. sol. S S Ferric chioride sat. sol S S Amy lacehate 100% S L Ferric sulfate sat. sol S S Barium sulfate sat. sol. S S Ferric sulfate sat. sol. S S Barium sulfate sat. sol.	Adipic acid	sat. sol.	S	S	Cyclohexanone	100%	S	L
Aluminum Choride sat. sol. S S Decahydronaphthalene 100% S L Aluminum Sulfate sat. sol. S S Diethylether 100% L Aluminum Sulfate sol. S S Diethylether 100% S L Ammonia, gaeous dry 100% S S Dioxane 100% S S Ammonia, Gaeous dry 100% S S Ethanediol 40% S L Ammonia, Baeous dry 100% S S Ethanediol 40% S L Ammonium flutrineers sol. S S Ethanediol 40% S L Ammonium sulfate sat. sol. S S Ferric chirate sat. sol. S S Amyl acetate sat. sol. S S Ferric sulfate sat. sol. S S Barium carbonate sat. sol. S S Ferrous chioride sat. sol. S	Allyl alcohol	96%	S	S	D			
Aluminum fluoride sat sol. S S Dextrine sol. S S Alum sol. S S Dictyliphthalate 100% S L Alum sol. S S Dictyliphthalate 100% S L Ammonia, gaueous dry 100% S S E Dictyliphthalate 100% S L Ammonia, gaueous dry 100% S S E E Dictyliphthalate Dictyliph	Aluminum chloride	sat. sol.	S	S	Decahydronaphthalene	100%	S	L
Aluminum sulfate sat. sol. S S Dieftylip ither 100% L	Aluminum fluoride	sat. sol.	S	S	Dextrine	sol.	S	S
Alum sol. S S Dioctylphthalate 100% S L Ammonia, gazeous dry 100% S S E	Aluminum sulfate	sat. sol.	S	S	Diethyl ether	100%	L	
Ammonia, aqueous dil sol. S S Dioxane 100% S S mmonia, liquid 100% S S Ethanedioi 100% S S monium choride sol. S S Ethanedioi 100% S L Ammonium nutratesat.sol. S S Ethylen trichoiride 100% S U Ammonium sulfate sat.sol. S S Ferric nitrate sol. S S Ammonium sulfate sat.sol. S S Ferric schoride sat.sol. S S Ammy lacobat sat.sol. S S Ferricus chioride sat.sol. S S Barium chioride sat.sol. S S Ferricus chioride sat.sol. S S Barium sulfate sat.sol. S S Formicacid 40% S S Barium sulfate sat.sol. S S Formicacid 98100% S S	Alum	sol.	S	S	Dioctylphthalate	100%	S	L
Ammonia, gaseous dry 100% S S E mmonia, flouid 100% S S Ethanol 40% S L mmonium, chioride sat. sol. S S Ethyl acetate 100% U U Ammonium sulfate sat. sol. S S Ethyl acetate 100% U U Ammonium sulfate sol. S S Ferric chioride sat. sol. S S Amyl acetate 100% S L Ferric sulfate sat. sol. S S Barum achonate sat. sol. S S Fluorine, gaseous 100% S S Barum sulfate sat. sol. S S Fluorine, gaseous 100% S S Barum sulfate sat. sol. S S Formic acid 40% S S Barum sulfate sat. sol. S S Formic acid 40% S S Barum sulfate <t< td=""><td>Ammonia, aqueous</td><td>dil. sol.</td><td>S</td><td>5</td><td>Dioxane</td><td>100%</td><td>S</td><td>S</td></t<>	Ammonia, aqueous	dil. sol.	S	5	Dioxane	100%	S	S
mmonium.liquid 100% S S Ethanoli 100% S S mmonium.fluoride sol. S S Ethylacetate 100% S U Ammonium.sulfate sat.sol. S S Ethylacetate 100% S U Ammonium.sulfate sat.sol. S S Ferric hitrate sol. S S Ammonium.sulfate sat.sol. S S Ferric schoride sat.sol. S S Amyl alcohol 100% S L Ferricus chloride sat.sol. S S Barium chloride sat.sol. S S Ferrous chloride sat.sol. S S Barium sulfate sat.sol. S S Fluorositic acid 40% S S Barium sulfate sat.sol. S S Formic acid 98:100% S S Barium sulfate sat.sol. S Gasoline - S Barium sulfate<	Ammonia, gaseous dry	100%	S	5	E			
Immonium chloride sat sol. S S Ethnol 40% S L Ammonium nitratesta sol. S S Ethylacetate 100% U U Ammonium sulfate sat sol. S S Ferric chloride sat. sol. S S Ammonium sulfate sol. S S Ferric sulfate sol. S S Amyl acetate 100% S L Ferrous sulfate sat. sol. S S Barium carbonate sat. sol. S S Ferrous sulfate sat. sol. S S Barium carbonate sat. sol. S S Ferrous sulfate sat. sol. S S Barium sulfide sat. sol. S S Formic acid 98-100% S S Barium sulfide sol. S Gazolicacid 98-100% S L Barium sulfide sol. S Gazolicacid 98-100% S L <t< td=""><td>mmonia, liquid</td><td>100%</td><td>S</td><td>S</td><td>Ethanediol</td><td>100%</td><td>S</td><td>S</td></t<>	mmonia, liquid	100%	S	S	Ethanediol	100%	S	S
Immonium fluoride sol. S S Ethyl acetate 100% U Ammonium sulfate sat sol. S S F Ammonium sulfate sat sol. S S F Ammonium sulfate sat sol. S S F Ammonium sulfate 100% S L Ferric chloride sat sol. S S Amyl alcohol 100% S L Ferric sulfate sat sol. S S Barium chloride sat sol. S S Ferrous chloride sat sol. S S Barium sulfate sat sol. S S Formaldehyde 40% S S Barium sulfate sat sol. S S Formic acid 98:100% S L Barium sulfate sat sol. S Gasoline - S L Barium sulfate sat sol. S Gasoline - S L Barium sulfate <td< td=""><td>hmonium chloride</td><td>sat. sol.</td><td>S</td><td>S</td><td>Ethanol</td><td>40%</td><td>S</td><td>L</td></td<>	hmonium chloride	sat. sol.	S	S	Ethanol	40%	S	L
Ammonium nitratesta sol. S Ethylene trichloride 100% U U Ammonium sulfate sat sol. S S Ferric chloride sat sol. S S Ammonium sulfate 100% S L Ferric intrate sol. S S Amyl acetate 100% S L Ferrous sulfate sat sol. S S Barium carbonate sat sol. S S Ferrous sulfate sat sol. S S Barium carbonate sat sol. S S Ferrous sulfate sat sol. S S Barium bildred sat sol. S S Formic acid 40% S S Barium sulfate sat sol. S S Formic acid 98-100% S S Barium sulfate sat sol. S Gazolia Gazolia S S Barium sulfate sat sol. S Gazolia S S S Barium sulfate	mmonium fluoride	sol.	S	S	Ethyl acetate	100%	S	U
Ammonium sulfate sat. sol. S S F Ammonium sulfate sol. S S Ferric choride sat. sol. S S Amyl acetate 100% S L Ferric sulfate sat. sol. S S B	Ammonium nitratesat. sol.	S	S		Ethylene trichloride	100%	U	U
Ammonium sulfide sol. S S Ferric chloride sat. sol. S S Amyl acetate 100% S L Ferric sulfate sol. S S Barium carbonate sat. sol. S S Ferrous sulfate sat. sol. S S Barium choride sat. sol. S S Fluorositicic acid 40% S S Barium bindroide sat. sol. S S Fluorositicic acid 40% S S Barium sulfide sat. sol. S S Formic acid 50% S S Benzaldehyde 100% S L Formic acid 50% S L Benzalcacid sat. sol. S Gasoline	Ammonium sulfate	sat. sol.	S	S	F			
Amyl acetate 100% S L Ferric sulfate sol. S S B	Ammonium sulfide	sol.	S	S	Ferric chloride	sat. sol.	S	S
Amyl alcohol 100% S L Ferrics suffate sat. sol. S S Barium carbonate sat. sol. S S Ferrous chloride sat. sol. S S Barium chloride sat. sol. S S Fluorosilicic acid 40% S S Barium chloride sat. sol. S S Fluorosilicic acid 40% S S Barium sulfide sat. sol. S S Formic acid 98:100% S S Benzaledhyde 100% S L Formic acid 98:100% S L Benzole caid sat. sol. S S Gazoline - S L Berzole caid sat. sol. S S Glacoline - S L Boric acid sat. sol. S S Glazoline - S L Boric acid sat. sol. S S Glazoline - S S	Amyl acetate	100%	S	L	Ferric nitrate	sol.	S	S
B Ferrous sulfate sat. sol. S S Barium chloride sat. sol. S S Ferrous sulfate sat. sol. S S Barium chloride sat. sol. S S Fluorine, gaseous 100% U U Barium sulfate sat. sol. S S Fluorine, gaseous 100% S S Barium sulfate sat. sol. S S Formic acid 98:100% S S Benzaledehyde 100% S L Formic acid 98:100% S L Berzole acid sat. sol. S G Gasoline - S L Bora (sodium tetraborate) sat. sol. S S Gasoline - S S Bromine, gaseous dry 100% U U Glycerine 100% S S Butane, gaseous 100% S S Heptane 100% S S Calcian acita	Amyl alcohol	100%	S	L	Ferric sulfate	sat. sol.	S	S
Barium carbonate sat. sol. S S Ferrous sulfate sat. sol. S S Barium hydroxide sat. sol. S S Fluorsine, gaseous 100% U U Barium sulfide sat. sol. S S Fluorsine, gaseous 100% S S Barium sulfide sat. sol. S S Formic acid 40% S S Benzole - L L Formic acid 98:100% S L Benzoic acid sat. sol. S S Gasoline - S L Borax (sodium tetraborate) sat. sol. S S Gasoline - S S Bromine, gaseous dry 100% U U Glycorle sol S S Butane, gaseous dry 100% S S Heptane 100% S S Calcium carbonate sat. sol. S S Hydrochoronic acid 100% S	В				Ferrous chloride	sat. sol.	S	S
Barium chloride sat sol. S S Fluorine, gaseous 100% U U Barium sulfate sat sol. S S Fluorosilicic acid 40% S S Barium sulfate sat sol. S S Formic acid 50% S S Barium sulfate sol. S S Formic acid 98:100% S L Benzoic acid sat sol. S G - S L Beer - L L Furfury ialcohol 96% S L Boric acid sat sol. S G - S L Boric acid sat sol. S S Giucose sat sol. S S Bromine, gaseous dry 100% U U Giycol sol S S Butyric acid 100% S L Hydrobromic acid 100% S S Butyric acid 100% S	Barium carbonate	sat. sol.	S	S	Ferrous sulfate	sat. sol.	S	S
Barlum hydroxide sat sol. S S Fluorosilicic acid 40% S S Barium sulfide sol. S S Formic acid 50% S S Barium sulfide sol. S S Formic acid 98-100% S S Benzalehyde 00% S L Furfuryl alcohol 100% S L Benzalehyde S Gasoline S L Berzone S Gasoline S L Borax (sodium tetraborate) sat sol. S S Gasoline S L Borax (sodium tetraborate) sat sol. S S Gasoline S L Borax (sodium tetraborate) sat sol. S S Haran 100% S S Bromine, igaseous dry 100% S S Heptane 100% S S Butyric acid 100%<	Barium chloride	sat. sol.	S	S	Fluorine, gaseous	100%	U	U
Barium sulfate sat. sol. S S Formic acid 40% S S Bernzaldehyde 100% S L Formic acid 98-100% S S Benzene - L L Furfuryi alcohol 100% S L Benzene - L L Furfuryi alcohol 100% S L Berz sat. sol. S Gasoline - S L Berz sat. sol. S S Glacial acetic acid 96% S L Boric acid sat. sol. S S Glacial acetic acid 96% S L Borine, iquid 100% U U Glycol sol S S Bromine, gaseous 100% S S Heptane 100% S S Butane, gaseous 100% S S Hydrobromic acid 10% S S Caticum chlorate sat. sol.	Barium hydroxide	sat. sol.	S	S	Fluorosilicic acid	40%	S	S
Baring sulfide sol S S Formic acid 50% S S Benzalehyde 100% S L Furfuryl alcohol 100% S L Benzale hyde sat. sol. S S Gasoline - S L Berz dick yddium tetraborate) sat. sol. S S Gasoline - S L Borax (sodium tetraborate) sat. sol. S S Gasoline - S L Borax (sodium tetraborate) sat. sol. S S Gasoline - S L Borax (sodium tetraborate) sat. sol. S S Glucose sat. sol. S S Bromine, gaseous 100% U U Glycol sol S S Butyric acid 100% S L Hydrobromic acid 100% S S Calcium carbonate sat. sol. S S Hydrobromic acid 100% S <t< td=""><td>Barium sulfate</td><td>sat. sol.</td><td>S</td><td>S</td><td>Formaldehyde</td><td>40%</td><td>S</td><td>S</td></t<>	Barium sulfate	sat. sol.	S	S	Formaldehyde	40%	S	S
Benzaldehyde 100% S L Furfuryi alcohol 98-100% S S Benzene - L L Furfuryi alcohol 100% S L Benzene - S S Gasoline - S L Beer - S S Glacial acetic acid 96% S L Borax (sodium tetraborate) sat sol. S S Glacial acetic acid 96% S L Bornine, gaseous 100% U U Glycerine 100% S S Butane, gaseous 100% S S Heptane 100% S U Butyric acid 100% S L Hydrobromic acid 10% S S C	Barium sulfide	sol	S	S	Formic acid	50%	S	S
Benzoic acid Sat sol. S S G Berroic acid sat sol. S S Galcial acetic acid 96% S L Borax (sodium tetraborate) sat sol. S S Glacial acetic acid 96% S L Borax (sodium tetraborate) sat sol. S S Glacial acetic acid 96% S L Borax (sodium tetraborate) sat sol. S Glacial acetic acid 96% S L Borta acid sat sol. S S Glucose sat sol. S S Bromine, iguid 100% U U Glycoin sol S S Butyric acid 100% S L Hydrobromic acid 100% S S Calcium carbonate sat sol. S S Hydrochioric acid 10% S S Calcium sulfate sat sol. S S Hydrofluoric acid 10% S S Carbon monox	Benzaldehyde	100%	S	L	ormic acid 98-100%		S	S
Benzoic acid Sat. sol. S G G Borax (sodium tetraborate) sat. sol. S S Gascial acetic acid 96% S L Borax (sodium tetraborate) sat. sol. S S Glucose sat. sol. S S Bromine, gaseous dry 100% U U Glycerine 100% S S Bramine, gaseous dry 100% U U Glycerine 100% S S Butane, gaseous 100% S L Hydrobromic acid 50% S S Butyric acid 100% S L Hydrobromic acid 10% S S C	Benzene		L	L.	Furfuryl alcohol 100%		S	L
Beer	Benzoic acid	sat sol.	5	5	G			
Boric acidSat sol.SSGlacial acetic acid96%SLBoric acidsat sol.SSGlucosesat sol.SSBromine, jagaous dry100%UUGlycerine100%SSButane, gaseous100%SSH	Beer	-	5	5	Gasoline	The	S	L
Bornice, gaseous dry 100% U U Glucose sat.sol. S S Bromine, liquid 100% U U Glycol sol S S Butane, gaseous 100% S S H	Borax (sodium tetraborate)	sat sol.	5	5	Glacial acetic acid	96%	S	L
Bromine, gaseous dry100%UUGlycerine100%SSBromine, liquid100%VUGlycolsolSSButane, gaseous100%SSH100%SU1-Butanol100%SSHeptane100%SUButyric acid100%SLHydrobromic acid100%SSCalcium carbonatesat. sol.SSHydrochoric acid10%SSCalcium chloridesat. sol.SSHydrochoric acid10%SSCalcium chloridesat. sol.SSHydrochoric acid10%SSCalcium sulfatesat. sol.SSHydrofluoric acid4%SSCarbon dioxide, gaseous dry100%SSHydrogen100%SSLCarbon monoxide100%SSHydrogen peroxide90%SULCarbon nonoxide100%SSHydrogen sulfide, gaseous100%SSSCarbon nonoxide100%SSLactic acid100%SSSChloracetic acidsol.SSHydrogen sulfide, gaseous100%SSSChloracetic acidsol.SSLactic acid100%SSSChloracetic acidsol.SSLactic acid100%SSS	Boric acid	sat. sol.	5	5	Glucose	sat. sol.	S	5
Bromme, Iduid100%00 <td>Bromine, gaseous dry</td> <td>100%</td> <td>0</td> <td>U</td> <td>Glycerine</td> <td>100%</td> <td>S</td> <td>S</td>	Bromine, gaseous dry	100%	0	U	Glycerine	100%	S	S
Butane, gaseous100%SSSH1-Butanol100%SSLHydrobromic acid50%SUButyric acid100%SSLHydrobromic acid100%SSSC	Bromme, inquia	100%	0	0 c	Glycol	501	5	5
Potiation100%SSNeptate100%SUButyric acid100%SLHydrobromic acid50%SSCHydrobromic acid100%SSSCalcium carbonatesat. sol.SSHydrochloric acid10%SSCalcium chloratesat. sol.SSHydrochloric acid10%SSSCalcium chloratesat. sol.SSHydrochloric acid10%SSSCalcium chloratesat. sol.SSHydrofluoric acid60%SLCalcium sulfatesat. sol.SSHydrogen100%SSLCarbon dioxide, gaseous dry100%LLHydrogen peroxide30%SUCarbon monoxide100%SSHydrogen peroxide90%SUCarbon tetrachloride100%LUHydrogen peroxide90%SUChloracetic acidsol.SSLactic acid100%SSChlorine, aqueous solutionsat. sol.SSLactic acid100%SSChlorine, gaseous dry100%LUMagnesium carbonatesat. sol.SSChlorine, gaseous dry100%LUMagnesium carbonatesat. sol.SSChlorine, gaseous dry100%LUMagnesium carbonatesat. sol.SS </td <td>Butanel</td> <td>100%</td> <td>5</td> <td>5</td> <td>H</td> <td>10.00/</td> <td>c .</td> <td></td>	Butanel	100%	5	5	H	10.00/	c .	
Dutyne actionDotyne	Puturic acid	100%	5	5	Heptane	100%	5	0
Calcium carbonatesat. sol.SSHydrobromic acid100%SSCalcium chloratesat. sol.SSHydrochloric acid10%SSCalcium chloratesat. sol.SSHydrocyanic acid10%SSCalcium nitratesat. sol.SSHydrocyanic acid10%SSCalcium sulfatesat. sol.SSHydrofluoric acid60%SLCalcium sulfatesat. sol.SSHydrogen100%SSCarbon dioxide, gaseous dry100%LLHydrogen peroxide30%SLCarbon dioxide, gaseous dry100%SSHydrogen peroxide90%SUCarbon dioxide100%LUHydrogen sulfide, gaseous100%SSCarbon dioxide100%LUHydrogen sulfide, gaseous100%SSCarbon tetrachloride100%LULead acetatesat. sol.SSChlorine, aqueous solutionsat. sol.LUMagnesium chloridesat. sol.SSChlorine, gaseous dry100%LUMagnesium chloridesat. sol.SSChlorine, agaseous dry100%LUMagnesium chloridesat. sol.SSChlorine, gaseous dry100%LUMagnesium chloridesat. sol.SSChlorine, acid20%S<	Sutyric acid	100%	5		Hydrobromic acid	50%	5	5
Calcium chiorate sat. sol. S S Hydrochioric acid 35% S S Calcium chiorate sat. sol. S S Hydrocyanic acid 35% S S Calcium chioride sat. sol. S S Hydrofluoric acid 4% S S Calcium sulfate sat. sol. S S Hydrofluoric acid 4% S S Calcium sulfate ast. sol. S S Hydrofluoric acid 60% S L Calcium sulfate dil. sol. L L Hydrogen peroxide 30% S L Carbon dioxide, gaseous dry 100% S S Hydrogen peroxide 90% S U Carbon monoxide 100% L U Hydrogen peroxide 90% S U Carbon monoxide 100% S S Hydrogen peroxide 90% S S Chloracetic acid 50 S S Hydrogen peroxide 90% S S Carbon tetrachloride 100% L U Hydrogen sulfide, gaseous 100% S S Carbon tetrachloride 100% L U Lead acetate 5 Chlorine, gueous solution 5 Chlorine, gaseous dry 100% L U Magnesium carbonate 5 Chlorine di 20% S L Magnesium chloride 5 Chlorine di 20% S L Magnesium hydroxide 5 Chlorine acid 20% S L Magnesium nitrate 5 Chromic acid 50% S L Magnesium nitrate 5 Mercuric cyanide 5 S S Mercuric cyanide 5 S S Mercuric cyanide 5 S S S S S S S S S S S S S S S S S S S	Calcium carbonate	sat sol	c .	c	Hydrochloric acid	100%	5	5
Calcium chloridesat. sol.SSHydrochlorideSSASCalcium chloridesat. sol.SSHydrocyanic acid10%SSCalcium nitratesat. sol.SSHydrofluoric acid4%SSCalcium sulfatesat. sol.SSHydrofluoric acid60%SLCalcium sulfidedil. sol.LLHydrogen100%SSLCarbon disulfide100%SSHydrogen peroxide90%SUCarbon monoxide100%SSHydrogen peroxide90%SUCarbon monoxide100%SSHydrogen peroxide90%SUCarbon monoxide100%SSLactic acid100%SSChloracetic acidsol.SSLactic acid100%SSChlorine, aqueous solutionsat. sol.LUMagnesium carbonatesat. sol.SSChlorine, gaseous dry100%LUMagnesium chloridesat. sol.SSChlorine, acid20%SLMagnesium nitratesat. sol.SSChromic acid20%SLMagnesium nitratesat. sol.SSChromic acid50%SLMaleic acidsat. sol.SSChromic acid50%SLMaleic acidsat. sol.SSChromi	Calcium chlorate	sat sol	5	5	Hydrochloric acid	759/	5	5
Calcium nitratesatisol.SSNydrofunctacid10%SSCalcium nitratesatisol.SSHydrofluoric acid4%SSCalcium sulfatedil.sol.LLHydrofluoric acid60%SLCalcium sulfatedil.sol.LLHydrogen100%SSCarbon disulfide100%SSHydrogen peroxide30%SLCarbon disulfide100%LUHydrogen peroxide90%SUCarbon monoxide100%SSHydrogen sulfide, gaseous100%SSChloriacetic acidsol.SSLactic acid100%SSChlorine, aqueous solutionsat. sol.LUMagnesium carbonatesat. sol.SSChlorine, gaseous dry100%LUMagnesium chloridesat. sol.SSChloroform100%UUMagnesium hydroxidesat. sol.SSChromic acid20%SLMaleic acidsat. sol.SSChromic acid50%SLMaleic acidsat. sol.SSChromic acid50%SLMaleic acidsat. sol.SSChromic acidsat. sol.SSMercuric chloridesat. sol.SSChromic acidsat. sol.SSMercuric chloridesat. sol.SS <td>Calcium chloride</td> <td>sat sol</td> <td>5</td> <td>5</td> <td>Hydrocuppic acid</td> <td>30%</td> <td>5</td> <td>5</td>	Calcium chloride	sat sol	5	5	Hydrocuppic acid	30%	5	5
Calcium sulfatesat. sol.SSHydrofluoric acid4%SSCalcium sulfatesat. sol.SSHydrofluoric acid60%SLCalcium sulfatedil sol.LLHydrogen peroxide30%SLCarbon dioxide, gaseous dry100%SSHydrogen peroxide30%SLCarbon dioxide, gaseous dry100%LUHydrogen peroxide90%SUCarbon monoxide100%LUHydrogen sulfide, gaseous100%SSChoracetic acidsol.SSLactic acid100%SSChorine, aqueous solutionsat. sol.LULead acetatesat. sol.SSChlorine, gaseous dry100%LUMagnesium carbonatesat. sol.SSChlorine, gaseous dry100%LUMagnesium chloridesat. sol.SSChlorine acid20%SLMagnesium nitratesat. sol.SSChromic acid20%SLMaleic acidsat. sol.SSChromic acidsat. sol.SSLMaleic acidsat. sol.SSChromic acidsat. sol.SSLMaleic acidsat. sol.SSChromic acidsat. sol.SSLMaleic acidsat. sol.SSChromic acidsat. sol.SS<	Calcium nitrate	sat sol	5	5	Hydrofluoric acid	10 %	5	2
Calcium sulfidedil. sol.LLHydrogen100%SSCarbon dioxide, gaseous dry100%SSHydrogen peroxide30%SLCarbon monoxide100%LUHydrogen peroxide90%SUCarbon monoxide100%SSHydrogen peroxide90%SUCarbon monoxide100%SSHydrogen peroxide90%SUCarbon monoxide100%SSLactic acid100%SSChloracetic acidsol.SSLactic acid100%SSChlorine, aqueous solutionsat. sol.LUMagnesium carbonatesat. sol.SSChlorine, gaseous dry100%LUMagnesium chloridesat. sol.SSChloroform100%UUMagnesium nitratesat. sol.SSChromic acid20%SLMaleic acidsat. sol.SSChromic acid50%SLMaleic acidsat. sol.SSTric acidsat. sol.SSSMercuric chloridesat. sol.SSTric acidsat. sol.SSMercuric cyanidesat. sol.SS	Calcium sulfate	sat sol	5	5	Hydrofluoric acid	60%	5	5
Carbon dioxide, gaseous dry100%SSHydrogen peroxide30%SLCarbon dioxide, gaseous dry100%SSHydrogen peroxide90%SUCarbon monoxide100%SSHydrogen peroxide90%SUCarbon monoxide100%SSHydrogen sulfide, gaseous100%SSChloracetic acidsol.SSLactic acid100%SSCarbon tetrachloride100%LULead acetatesat. sol.SSChlorine, gaseous olutionsat. sol.LUMagnesium carbonatesat. sol.SSChloroform100%LUMagnesium hydroxidesat. sol.SSSChloroform100%SLMagnesium nitratesat. sol.SSSChromic acid20%SLMaleic acidsat. sol.SSSChromic acid50%SLMaleic acidsat. sol.SSSTric acidsat. sol.SSMercuric chloridesat. sol.SSSTric acidsat. sol.SSMercuric chloridesat. sol.SSS	Calcium sulfide	dil sol		5	Hydronen	10.0%	5	5
Carbon disulfide100%LUHydrogen peroxide90%SUCarbon monoxide100%SSHydrogen peroxide90%SUCarbon monoxide100%SSHydrogen sulfide, gaseous100%SSChioriacetic acidsol.SSLactic acid100%SSChiorine, aqueous solutionsat. sol.LULead acetatesat. sol.SSChiorine, gaseous dry100%LUMagnesium carbonatesat. sol.SSChiorine, gaseous dry100%LUMagnesium hydroxidesat. sol.SSChiorine, caid20%SLMagnesium nitratesat. sol.SSChromic acid20%SLMaleic acidsat. sol.SSChromic acid50%SLMercuric chloridesat. sol.SSTric acidsat. sol.SSMercuric cyanidesat. sol.SS	Carbon dioxide, gaseous dry	10.0%	S	S	Hydrogen perovide	70%	5	5
Carbon mannata100%SSHydrogen peroduce50%SSCarbon monoxide100%SSHydrogen peroduce50%SSChloracetic acidsolSSHydrogen peroduce100%SSChloracetic acidsolSSLactic acid100%SSChlorine, aqueous solutionsat. sol.LULead acetatesat. sol.SSChlorine, aqueous solutionsat. sol.LUMagnesium carbonatesat. sol.SSChlorine, gaseous dry100%LUMagnesium chloridesat. sol.SSChlorine acid20%SLMagnesium nitratesat. sol.SSChromic acid20%SLMaleic acidsat. sol.SSChromic acid50%SLMaleic acidsat. sol.SSTric acidsat. sol.SSMercuric chloridesat. sol.SSTric acidsat. sol.SSMercuric cyanidesat. sol.SS	Carbon disulfide	10.0%			Hydrogen peroxide	90%	5	
Carbon Hydrogen sumder, gaseous100%SSChloracetic acidsol.SSLactic acid100%SCarbon tetrachloride100%LULead acetatesat. sol.SSChlorine, aqueous solutionsat. sol.LUMagnesium carbonatesat. sol.SSChlorine, gaseous dry100%LUMagnesium chloridesat. sol.SSChlorine, gaseous dry100%LUMagnesium chloridesat. sol.SSChlorine caid20%SLMagnesium nitratesat. sol.SSChromic acid50%SLMaleic acidsat. sol.SSTric acidsat. sol.SSMercuric chloridesat. sol.SSTric acidsat. sol.SSMercuric cyanidesat. sol.SS	Carbon monoxide	100%	C I	c .	Hydrogen peroxide	100%	5	6
Carbon terachloride 50% 5 5 Carbon terachloride 100% 5 5 Carbon terachloride 100% L U Lead acetate sat. sol. S 5 Chlorine, aqueous solution sat. sol. L U Magnesium carbonate sat. sol. S S Chlorine, gaseous dry 100% L U Magnesium chloride sat. sol. S S Chloroform 100% U U Magnesium hydroxide sat. sol. S S Chromic acid 20% S L Maleic acid sat. sol. S S Chromic acid 50% S L Maleic acid sat. sol. S S Tric acid sat. sol. S S Mercuric chloride sat. sol. S S	Chloracetic acid	100%	c .		Hydrogen sunde, gaseous	100%	5	5
Chlorine, aqueous solution sat. sol. L U Magnesium carbonate sat. sol. S S Chlorine, aqueous solution sat. sol. L U Magnesium carbonate sat. sol. S S Chlorine, agaeous dry 100% L U Magnesium chloride sat. sol. S S Chlorine, agaeous dry 100% U U Magnesium chloride sat. sol. S S Chlorine cacid 20% S L Magnesium nitrate sat. sol. S S Chromic acid 20% S L Maleic acid sat. sol. S S ric acid sol. S S Mercuric chloride sat. sol. S S ric acid sat. sol. S S Mercuric cyanide sat. sol. S S	Carbon tetrachloride	10.0%	1	5	Load acotato	sat sol	5	5
Chlorine, agreesus activity 100% L U Magnesium caloritate Sat. Sol. S Chlorine, gaseous dry 100% L U Magnesium chloride sat. sol. S Chloroform 100% U U Magnesium hydroxide sat. sol. S S Chromic acid 20% S L Magnesium nitrate sat. sol. S S Chromic acid 50% S L Maleic acid sat. sol. S S ric acid sat. sol. S S Mercuric chloride sat. sol. S S ric acid sat. sol. S S Mercuric cyanide sat. sol. S S	Chlorine aqueous solution	sat sol	1		Magnarium carbonata	sat. sol.	5	-
Chlorine, gaseous dry 100% L U Magnesium chloride sat. sol. S S Chloroform 100% U U Magnesium hydroxide sat. sol. S S Chromic acid 20% S L Magnesium nitrate sat. sol. S S Chromic acid 50% S L Maleic acid sat. sol. S S ric acid sat. sol. S S Mercuric chloride sat. sol. S S ric acid sat. sol. S S Mercuric cyanide sat. sol. S S	chorne, aqueous solution	301. 501.	L	5	Magnesium carbonate	sat. sol.	0	5
Chloroform 100% U U Magnesium nydroxide sat. sol. S S Chromic acid 20% S L Magnesium nitrate sat. sol. S S Chromic acid 50% S L Maleic acid sat. sol. S S ric acid sat. sol. S S Mercuric chloride sat. sol. S S ric acid sat. sol. S S Mercuric cyanide sat. sol. S S	Chlorine, gaseous dry	100%	L	J	Magnesium chioride	Sat. Sol.	5	5
Chromic acid 20% S L Magnesium nitrate sat. sol. S S Chromic acid 50% S L Maleic acid sat. sol. S S ric acid sat. sol. S S Mercuric chloride sat. sol. S S ric acid sat. sol. S S Mercuric cyanide sat. sol. S S	Chloroform	100%	U	J	Magnesium nydroxide	sat. sol.	5	5
Chromic acid 50% S L Maleic acid Sat. Sol. S S ric acid sat. sol. S S Mercuric chloride sat. sol. S S maleic acid sat. sol. S S Mercuric chloride sat. sol. S S marcuric cyanide sat. sol. S S S S S	Chromic acid	20%	S I	_	Magnesium nitrate sat. sol.		5	5
ric acid sat. sol. S S Mercuric chioride sat. sol. S S Mercuric cyanide sat. sol. S S	Chromic acid	50%	S		Marguria ablasida	sat. sol.	2	5
Mercuric cyanide sat. sol. 5 5	tric acid	sat sol.	5	5	Mercuric chioride	sat. sol.	0	5
			200 - P		Mercuric pitrate	sat. sol.	5	5

		Resistance at:				Resistance at:		
Medium	Concentration	20° C (68° F)	60° C (140° F)	Medium	oncentration	20° C (68° F)	60° C (140° F)	
Mercury	100%	S	S	Silver acetate sa	t. sol.	S	S	
Methanol	100%	S	S	Silver cyanide sa	t. sol	S	S	
Methylene chloride	100%	L	2	Silver nitrate sa	it sol.	S	S	
Milk	-	S	S	Sodium benzoate sa	it. sol.	S	S	
Molasses	-	S	S	Sodium bicarbonate sa	t. sol.	S	S	
N				Sodium biphosphate sa	it. sol.	S	S	
Nickel chloride	sat. sol.	S	S	Sodium bisulfite so	ol.	S	S	
Nickel nitrate	sat. sol.	S	S	Sodium bromide sa	it. sol.	S	S	
Nickel sulfate	sat. sol.	S	S	Sodium carbonate sa	t. sol.	S	S	
Nicotinic acid	dil. sol.	S	-	Sodium chlorate sa	it. sol.	S	S	
Nitric acid	25%	S	S	Sodium chloride sa	t. sol.	S	S	
Nitric acid	50%	S	U	Sodium cyanide sa	it. sol.	S	S	
Nitric acid	75%	U	U	Sodium ferricyanide sa	t. sol.	S	S	
Nitric acid	100%	U	U	Sodium ferrocyanide sa	it. sol.	S	S	
0				Sodium fluoride sa	t. sol.	S	S	
Oils and Grease	-	S	L	Sodium hydroxide 40	2%	S	S	
Oleic acid	100%	S	L	Sodium hydroxide sa	t. sol.	S	S	
Orthophosphoric acid	50%	S	S	Sodium hypochlorite 155	% active chlorine	S	S	
Orthophosphoric acid	95%	S	L	Sodium nitrate sa	t. sol.	S	S	
Oxalic acid	sat sol.	S	S	Sodium nitrite sa	t. sol.	S	S	
Oxygen	100%	S	L	Sodium orthophosphate sa	t sol	S	S	
Ozone	100%	L	U	Sodium sulfate sa	t. sol	S	S	
P				Sodium sulfide sa	t. sol	S	S	
Petroleum (kerosene)	-	S	L	Sulfur dioxide, dry 10	0%	S	S	
Phenol	sol	S	S	Sulfur trioxide 10	0%	U	U	
Phosphorus trichloride	100%	S	L	Sulfuric acid 10	1%	S	S	
Photographic developer	cust conc.	S	S	Sulfuric acid 50	0%	S	S	
Picric acid	sat. sol.	S	-	Sulfuric acid 98	3%	S	υ	
Potassium bicarbonate	sat. sol.	S	S	Sulfuric acid fu	ming	U	U	
Potassium bisulfide	sol	S	S	Sulfurous acid 30	0%	S	S	
Potassium bromate	sat. sol.	S	S	T				
Potassium bromide	sat. sol.	S	S	Tannic acid so	al.	S	S	
Potassium carbonate	sat. sol.	S	S	Tartaric acid 50	d.	S	S	
Potassium chlorate	sat. sol	S	S	Thionyl chloride 10	0%	L	U	
Potassium chloride	sat. sol.	S	S	Toluene 10	0%	L	U	
Potassium chromate	sat sol	S	S	Triethylamine so	d.	S	L	
Potassium cyanide	sol	S	S	U				
Potassium dichromate	sat. sol.	S	S	Urea so	d.,	S	S	
Potassium ferricyanide	sat sol.	S	S	Urine –		S	S	
Potassium ferrocyanide	sat sol	S	S	W				
tassium fluorid	sat. sol.	S	S	Water -		S	S	
cassium hydroxide	10%	S	S	Wine vinegar -		S	S	
 otassium hydroxide 	sol	S	S	Wines and liquors –		S	S	
Potassium hypochlorite	sol	S	L	×				
Potassium nitrate	sat. sol.	S	S	Xylenes 10	0%	L	U	
Potassium orthophosphate	sat, sol.	S	S	Y				
Potassium perchlorate	sat. sol.	S	S	Yeast so	12	S	5	
Potassium permanganate	20%	S	S	Z				
Potassium persulfate	sat. sol.	S	S	Zinc chloride sa	t. sol.	S	S	
Potassium sulfate	sat. sol.	S	S	Zinc (II) chloride sa	t. sol.	S	S	
Potassium sulfite	sol	S	S	Zinc (IV) chloride sa	t sol	S	S	
Propionic acid	50%	S	S	Zinc oxide sa	t sol	S	S	
Propionic acid	100%	S	L	Zinc sulfate sa	t sol	S	S	
Pyridine	100%	S	L					
Q				Specific immersion testing should be	undertaken to	ascertain	n the	
Quinoi (Hydroquinone)	sat. sol.	S	S	suitability				
S				of chemicals not listed above with ref	erence to spec	ial requir	ements.	
Salicylic acid	sat. sol.	S	S					

Notes:

(S) Satisfactory: Liner material is resistant to the given reagent at the given concentration and temperature. No mechanical or chemical degradation is observed.

(L) Limited Application Possible: Liner material may reflect some attack. Factors such as concentration, pressure and temperature directly affect liner performance against the given media. Application, however, is possible under less severe conditions, e.g. lower concentration, secondary containment, additional liner protections, etc.

(U) Unsatisfactory: Liner material is not resistant to the given reagent at the given concentration and temperature. Mechanical and/or chemical degradation is observed

(-) Not tested

sat sol = Saturated aqueous solution, prepared at 20°C (68°F)

sol = aqueous solution with concentration above 10% but below saturation level

dil sol = diluted aqueous solution with concentration below 10%

cust conc = customary service concentration

GSE is a leading manufacturer and marketer of geosynthetic lining products and services. We've built a reputation of reliability through our dedication to providing consistency of product, price and protection to our global customers.

Our commitment to innovation, our focus on quality and our industry expertise allow us the flexibility to collaborate with our clients to develop a custom, purpose-fit solution.

DURABILITY RUNS DEEP For more information on this product and others, please visit us at GSEworld.com, call 800.435.2008 or contact your local sales office.

North America 800.435.2008 | Europe & Africa 49.40.767420 | Asia Pacific 66.2.937.0091 | South America 56.2.595.4200 | Middle East 20.23828.8888

This information is provided for reference purposes only and is not intended as a warranty or guarantee. GSE assumes no liability in connection with the use of this Information. Specifications subject to change without notice. GSE and other trademarks in this document are registered trademarks of GSE Environmental. I _C in the United States and certain foreign countries. 05MAR2015

TR-19/2007 **Chemical Resistance of Thermoplastics Piping Materials**

105 Decker Court, Suite 825, Irving, TX 75062 P: 469-499-1044 F: 469-499-1063 www.plasticpipe.org

CHEMICAL RESISTANCE OF THERMOPLASTICS PIPING MATERIALS

Foreword

This report was developed and published with the technical help and financial support of the members of the PPI (Plastics Pipe Institute, Inc.). The members have shown their interest in quality products by assisting independent standards-making and user organizations in the development of standards, and also by developing reports on an industry-wide basis to help engineers, code officials, specifying groups, and users.

The purpose of this technical report is to provide information on the transport of various chemicals using thermoplastic piping materials.

This report has been prepared by PPI as a service of the industry. The information in this report is offered in good faith and believed to be accurate at the time of its preparation, but is offered without any warranty, expressed or implied, including WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Consult the manufacturer for more detailed information about the particular weathering package used for its piping products. Any reference to or testing of a particular proprietary product should not be construed as an endorsement by PPI, which do not endorse the proprietary products or processes of any manufacturer. The information in this report is offered for consideration by industry members in fulfilling their own compliance responsibilities. PPI assumes no responsibility for compliance with applicable laws and regulations.

PPI intends to revise this report from time to time, in response to comments and suggestions from users of the report. Please send suggestions of improvements to the address below. Information on other publications can be obtained by contacting PPI directly or visiting the web site.

The Plastics Pipe Institute 469-499-1044 www.plasticpipe.org

September 2007

This report has been developed as an informative guide on resistance of thermoplastic piping materials to chemical attack. It is divided into two main sections: (1) a discussion of chemical resistance and general considerations for end use applications and (2) a listing of chemical resistance data (table) for several thermoplastic piping materials applicable to <u>non-pressure</u> applications. Determination of suitability for specific applications under stress (pressurized service) is beyond the scope of this report.

SECTION I: CHEMICAL RESISTANCE IN GENERAL

Thermoplastic materials generally are resistant to attack from many chemicals which makes them suitable for use in many process applications. The suitability for use in a particular process piping application is a function of:

- I. Material
 - A. The specific plastic material: ABS, CPVC, PP, PVC, PE, PB, PVDF, PEX¹, PA11, PK
 - B. The specific plastic material physical properties as identified by its cell classification according to the appropriate ASTM material specification.
- II. Product and Joint System
 - Piping product dimensions, construction, and composition (layers, fillers, etc.).
 - B. Joining system. Heat fusion and solvent cementing do not introduce different materials into the system. Mechanical joints can introduce gaskets such as elastomers, or other thermoplastic or non-thermoplastic materials used as mechanical fitting components.
 - C. Other components and appurtenances in the piping system.
- III. Use Conditions Internal and External
 - A. Chemical or mixtures of chemicals, and their concentrations.
 - B. Operating temperature maximum, minimum, and cyclical variations.
 - C. Operating pressure or applied stress maximum, minimum and cyclical variations.
 - D. Life-cycle information such as material cost, installation cost, desired service life, maintenance, repair and replacement costs, etc.

¹ Once cross-linked, PEX is no longer considered a thermoplastic material; however, it is included in this report as convenience for the reader.

Types of Chemical Attack on Plastics

In general, chemicals that affect plastics do so in one of two ways. One effect is chemical solvation or permeation; the other is direct chemical attack.

Chemical Solvation or Permeation

In the case of solvation or permeation, physical properties may be affected, but the polymer molecule structure itself is not chemically changed, degraded or destroyed. In solvation or permeation, gas, vapor or liquid molecules pass through the polymer, typically without damaging the plastic material itself. If the solvating chemical can be removed completely, the plastic is generally restored to its original condition. However, removal of the chemical is not always possible, and, in such cases, these chemical solvation effects may be permanent.

Sometimes the polymer itself may not be soluble, but it may contain a soluble compounding ingredient that may be extracted from the polymer compound. This is rare because such extractable ingredients are either not used in pipe compounds, or they are chemically bonded to the molecular polymer matrix and in such small amounts that they cannot be leached out to any significant extent.

Permeation may do little if any harm to the material, but it may have applicationrelated effects. The permeating chemical may transfer into a fluid on the other side of the pipe. In general, thermoplastic pipes should not be used where a permeating chemical in the environment surrounding the pipe could compromise the purity of a fluid, such as potable water inside the pipe (See also PPI *Statement N* on Pipe Permeation). In gas or vapor transmission service, there may be a very slight loss of contents through the pipe wall. Lastly, a permeating chemical entrained in the material may be released when heat fusion or solvent cement joining is performed. Thus, heat fusion or solvent cement joining may be unreliable if performed on permeated pipes.

Direct Chemical Attack

Direct chemical attack occurs when exposure to a chemical causes a chemical alteration of the polymer molecules by chain scission, crosslinking, oxidation or substitution reactions. Direct chemical attack may cause profound, irreversible changes that cannot be restored by removal of the chemical. Examples of this type of attack are 50% chromic acid at 140 °F on PVC, aqua regia on PVC at 73 °F, 95% sulfuric acid at 73 °F on PE and wet chlorine gas on PVC and PE. Direct chemical attack frequently causes a severe reduction of mechanical physical properties such as tensile strength, ductility, and impact resistance, and susceptibility to cracking from applied stress (stress cracking).

Chemical resistance may vary greatly from one plastic material to another (i.e., PVC, ABS, PE, etc.), and also among different cell classifications of the same plastic type (e.g. PVC 1120 to PVC 2110, PE 3608 to PE 4710, etc.). There may also be slight variations among commercial products having the same cell classification.

The chemical resistance of plastic piping is basically a function of the chemical resistance of the thermoplastic material, in addition to additives and other ingredients in the final compound. In general, the less inert compounding ingredients used the better the chemical resistance. Thermoplastic pipes with significant filler percentages may be susceptible to chemical attack where an unfilled material may be affected to a lesser degree or not at all.

Other Considerations

Chemical Families

While the effect of each individual chemical is specific, some chemicals can be grouped into general categories based on similarities in chemical characteristics (acids, bases, alcohols, etc.). For example, water-based (aqueous) solutions of neutral inorganic salts generally have the same effect on thermoplastic piping materials as water alone; thus, sodium chloride, potassium alum, calcium chloride, copper sulfate, potassium sulfate and zinc chloride solutions have the same effect as water. However, at elevated temperatures and/or high concentrations, some oxidizing salt solutions may attack some plastic materials.

Further, with organic chemicals in a specific series such as alcohols, ketones, or acids, etc., as the molecular weight of the organic chemical series increases, the chemical resistance of a particular plastic material to members of the specific organic chemical series frequently also increases. Thus, while one type of polyvinyl chloride at 73 °F is not suitable for use with ethyl acetate, it is suitable for the higher molecular weight butyl acetate.

Accelerating factors (concentration, temperature, stress)

Generally, the resistance of a particular plastic to a specific chemical decreases with an increase in concentration. For example, at 73°F polyethylene pipe can be used to carry 70% sulfuric acid but is not satisfactory for 95% sulfuric acid.

Also, the resistance of a particular plastic to a specific chemical generally decreases as temperature increases, generally decreases with increasing applied stress, and generally decreases where temperature or applied stress are varied or cycled. These effects can be greater overall in combination.

Combinations of Chemicals

In some cases, combinations of chemicals may have a synergistic effect on a thermoplastic material where the individual chemicals do not. It cannot be

assumed that an individual chemical's lack of effect would apply for combinations that include several chemicals. When the possible combined effect of several chemicals is unknown, the material should be tested in the complete chemical mixture(s) in question.

Multi-Layered (Composite) Piping

Some piping products utilize a multi-layered (*composite*) construction, in which the pipe wall is constructed of layers of different materials. The layers may consist of both thermoplastic and non-thermoplastic – for example, PE/AL/PE and PEX/AL/PEX pipes, which contain a mid-wall aluminum layer. An all-thermoplastic composite pipe may contain PVC, ABS, and PVC layers. Layered composite material pipes may have chemical resistance that differs from the chemical resistance of the individual materials.

Rate of Chemical Attack

Chemicals that attack plastics do so at a certain rate, some slowly and some more quickly. But usually, any chemical attack is increased when temperature or stress are increased, or when temperature or stress are varied. The particular rate must be taken into consideration in the life-cycle evaluation for a particular application. It has been observed in some chemical plants that while a particular application may have a relatively short service life, the overall life-cycle cost may be economically feasible and justifiable. Each combination of material cost, installation cost and service life must be evaluated and judged on its own merits.

In some cases involving a slow rate of chemical attack, particularly when the application will be pressurized, simple immersion data, like that represented in the following resistance tables, may not adequately characterize performance throughout the intended design life. Longer-term testing to replicate service conditions is advisable to fully measure the effects of these chemicals.

SECTION 2: CHEMICAL RESISTANCE DATA FOR THERMOPLASTIC PIPING IN <u>NON-PRESSURE</u> APPLICATIONS AND DATA TABLE

When thermoplastic pipes come into contact with chemical agents, it is important to know how the pipe may be affected. For gravity flow or non-pressure applications, where the pipe is not subject to continuous internal pressure or thermal stress, chemical immersion test data may provide suitable information. The pipe manufacturer may have additional data from similar tests, or information on previous installations under similar field conditions.

The following table provides resistance data, with the following cautions:

- Data Sources. The following chemical resistance information has been obtained from numerous sources. The data are based primarily on plastic material test specimens that have been immersed in the chemical, and to a lesser degree, on field-experience. In most cases, detailed information on the test conditions (such as exposure time), and on test results (such as change in weight, change in volume, and change in strength) was not available. Therefore, this information is best used only for comparison of different thermoplastic materials.
- II. Combinations of Chemicals. Chemicals that individually do not have an effect may affect the pipe if combined with certain other chemicals. The listings that follow do not address chemical combinations.
- III. Composite Piping. Layered composite piping may have chemical resistance that differs from that of the individual materials in the layers. The listings that follow are not applicable to layered composite piping products.
- IV. Applicability to fiberglass, filled materials. The listings that follow are not applicable to composite piping products such as reinforced epoxy resin (fiberglass) pipes, or to thermoplastic pipes containing significant percentages of filler materials.
- V. Concentrations. Where no concentrations are given, the relatively pure material is indicated, except in the case of solids where saturated aqueous solutions are indicated.

NOTE: Even though indicated as acceptable with certain temperature limitations, the use of PVC piping with liquid hydrocarbons such as gasoline and jet fuels should be limited to short-term exposure such as secondary containment systems. This piping is not recommended for long-term exposure to liquid hydrocarbons.

Resistance Codes

The following code is used in the data table:

Code	Meaning	Typical Result
140	Plastic type is generally resistant to temperature (°F) indicated by code.	Swelling < 3% or weight loss < 0.5% and elongation at break not significantly changed.
R to 73	Plastic type is generally resistant to temperature (°F) indicated by code and may have limited resistance at higher temperatures.	Swelling < 3% or weight loss < 0.5% and elongation at break not significantly changed.
C to 73	Plastic type has limited resistance to temperature (°F) indicated by code and may be suitable for some conditions.	Swelling 3-8% or weight loss 0.5-5% and/or elongation at break decreased by < 50%.
N	Plastic type is not resistant.	Swelling > 8% or weight loss > 5% and/or elongation at break decreased by > 50%.
_	Data not available.	

Plastic Materials Identification

ABS	acrylonitrile-butadiene-styrene
CPVC	chlorinated polyvinyl chloride
PP	polypropylene
PVC	polyvinyl chloride
PE	polyethylene
PB	polybutylene
PVDF	poly vinylidene fluoride
PEX	crosslinked polyethylene
PA11	polyamide 11
PK	polyketone

CHEMICALS THAT DO NOT NORMALLY AFFECT THE PROPERTIES OF AN UNSTRESSED THERMOPLASTIC MAY CAUSE COMPLETELY DIFFERENT BEHAVIOR (SUCH AS STRESS CRACKING) WHEN UNDER THERMAL OR MECHANICAL STRESS (SUCH AS CONSTANT INTERNAL PRESSURE OR FREQUENT THERMAL OR MECHANICAL STRESS CYCLES). UNSTRESSED IMMERSION TEST CHEMICAL RESISTANCE INFORMATION IS APPLICABLE ONLY WHEN THE THERMOPLASTIC PIPE WILL NOT BE SUBJECT TO MECHANICAL OR THERMAL STRESS THAT IS CONSTANT OR CYCLES FREQUENTLY.

WHEN THE PIPE WILL BE SUBJECT TO A CONTINUOUS APPLIED MECHANICAL OR THERMAL STRESS OR TO COMBINATIONS OF CHEMICALS, TESTING THAT DUPLICATES THE EXPECTED FIELD CONDITIONS AS CLOSELY AS POSSIBLE SHOULD BE PERFORMED ON REPRESENTATIVE SAMPLES OF THE PIPE PRODUCT TO PROPERLY EVALUATE PLASTIC PIPE FOR USE IN THIS APPLICATION.

C' mical	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
CH ₃ CHO			N	140	N	C to 73	C to 73		C to 140	C to 176	R to 73
	Aq. Of 40%		N		C to 73	R to 73		N	R to 73		
Acetamide CH ₃ CONH ₂	5%	120		140		140			140		
Acetic Acid CH ₃ COOH	vapor	120	180	180	140	140	140		140		
	5%		-		-						R to 176
	10%				-			R to 248	140	R to 176	
	25%	N	180	180	140	140	140		140		
	40%				-			R to 140	R to 176		
	50%						-	R to 140	R to 176	C to 68	
	60%	N	N	180	73	73	73	R to 104	73		
	80%					***		R to 104	-		
	85%	N	N	120	73	73	73		73		-
	glacial	N	N	120	73	73	73	R to 104	R to 68		
Acetic Anhydride (CH ₃ CO) ₂ O		N	N	73	N	73	140	N	73	C to 68	
Acetone CH ₃ COCH ₃	5%	Ν	N	73	N	C to 73	140	R to 212	C to 73	C to 140	-
	10%							R to 122	-		
	100%										R to 73 C to 122
Acetophenone C ₆ H ₅ COCH ₃		N		120		73		R to 68	73		
Acetyl Chloride CH ₃ COCI		N	N	***	N			N	-		
Acetylene HC≡CH	gas 100%	73	N	73	N	73	C to 73		73	140	-
AcetyInitrile			N		N						-
Acrylic Acid H ₂ C=CHCOOH	97%		N		N	140			140		

Plastics at Maximum Operating Temperature (F)

Plastics at Maximum Operating Temperature (F)

C'mical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Acrylonitrile H ₂ C=CHC≡N			N		N	140			140		
Adipic Acid COOH(CH ₂) ₄ COOH	saťd		180	140	140	140	73	R to 176	140		
Allyl Alcohol CH ₂ = CHCH ₂ OH	96%		C to 73	140	R to 73	140	140		N		
Allyl Chloride CH ₂ =CHCH ₂ Cl			N		N	C to 73		140	C to 73		
	Liquid							R to 68			
Aluminum Ammonium Sulfate (Alum) AINH ₄ (SO ₄) ₂ •12H ₂ O	sať d		180	140	140	140			140		
Aluminum Chloride Aqueous AlCl ₂	sať d	160	180	180	140	140	140	R to 212	140		
Aluminum Fluoride Anhydrous AIF ₃	sat'd	160	180	180	73	140	140	R to 212	140		
Aluminum Hydroxide Al(OH) ₃	sat'd	160	180	180	140	140	140	R to 212	140		N
Aluminum Nitrate Al(NO ₃) ₃ •9H ₂ O	sat'd		180	180	140	140	140	R to 212	140		
Aluminum Oxychloride			180	180	140		140		-		
Aluminum Potassium Sulfate (Alum) AlK(SO4)a •12Ha O	sat'd	160	180	140	140	140		R to 212	140		
Aluminum Sulfate (Alum) Al ₂ (SO ₄) ₃	saťd	160	180	140	140	140	C to 73	R to 212	140	194	
	20%		-		-		-				R to 73
Ammonia Gas NH ₃	100%	N	N	140	140	140	140		140	140	
Ammonia Liquid NH ₃	100%	160	N	140	N	140	73		140	140	
Ammonium Acetate CH ₃ COONH ₄	saťd	120	180	73	140	140	-	R to 212	140		
Ammonium Bifluoride NH ₄ HF ₂	saťd		180	180	140		140		140		
Ammonium Bisulfide (NH ₄)HS					140				-		
Ammonium Carbonate (NH ₄) ₂ CO ₃	saťd		180	212	140	140	140	R to 248	140		
Ammonium Chloride NH ₄ Cl	sat'd	120	180	212	140	140	140	R to 212	140		

C'mical	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК
Ammonium Dichromate (NH ₄) ₂ Cr ₂ O ₇			73		73						
Ammonium Fluoride NH ₄ F	10%	120	180	212	140	140		R to 212	140		
	25%	120	180	212	C to 140	140	73		140		
Ammonium Hydroxide NH ₄ OH	10%	120	N	212	140	140	140		140		N
	30%					R to 140)		R to 140		
	Conc.								194		
Ammonium Metaphosphate	Saťd		-	R to 212	R to 140	R to 140	R to 140	R to 248	R to 140		
Ammonium Nitrate NH ₄ NO ₃	sat'd	120	180	212	140	140	140	R to 212	140		
Ammonium Persulfate (NH ₄) ₂ S ₂ O ₈			180	140	140	140	140	R to 212	140		
Ammonium Phosphate (Monobasic) NH ₄ H ₂ PO ₄	all	120	180	212	140	140	140	R to 248	140		
Ammonium Sulfate	Sat'd.	120	180	212	140	140	140	R to 212	140		
	20%										R to 73
Ammonium Sulfide (NH ₄) ₂ S	dilute	120	180	212	140	140	140		140		
	Sat'd.		-			140			-		
Ammonium Thiocyanate NH ₄ SCN	50-60%	120	180	212	140	140	140	R to 212	73		
Amyl Acetate CH ₃ COOC ₅ H ₁₁		N	N	N	N	73		R to 122	73	C to 194	
Amyl Alcohol C ₅ H ₁₁ OH			N		N	140	140	R to 212	R to 140		
	100%						C to 140				
n-Amyl Chloride CH ₃ (CH ₂) ₃ CH ₂ Cl		N	N	N	N	C to 73			C to 73		
Anisole C ₇ H ₈ O											C to 73
Aniline C ₆ H ₅ NH ₂		N	N		N	73	C to 140	R to 68	C to 140		N
Aniline Chlorohydrate			N		N	C to 73	N		C to 73		

Plastics at Maximum Operating Temperature (F)

Plastics at Maximum Operating Temperature (F)

C'mical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК
Aniline Hydrochloride C ₆ H ₅ NH ₂ •HCl	sať d		N		N	140	N		140		
Anthraquinone C ₁₄ H ₈ O ₂			180		140	C to 73	C to 73		C to 73		
$\begin{array}{l} \textbf{Anthraquinone Sulfonic Acid} \\ \textbf{C}_{14} \ \textbf{H}_7 \ \textbf{O}_2 \bullet \textbf{SO}_3 \bullet \ \textbf{H}_2 \textbf{O} \end{array}$			180	73	140	140	C to 73		C to 73		
Antifreeze			-				-				R to 73 C to 176
Antimony Trichloride SbCl ₃	sat'd		180	140	140	140	140	R to 140	140		
Aqua Regia (Nitrohydrochloric Acid)		Ν	R to 73	N	C to 73	N	N	C to 194	N		
Arsenic Acid H ₃ AsO ₄	80%		180	140	140	140	140	R to 248	140		
Aryl Sulfonic Acid C ₆ H ₅ SO ₃ H			180		140	73			73		
Asphalt			N	73	N	73	140		73		
Barium Carbonate BaCO ₃	sat'd	120	180	140	140	140	140	R to 248	140		
Barium Chloride •2H2O	saťd	120	180	140	140	140	140	R to 212	140	194	
Barium Hydroxide Ba(OH) ₂	saťd	73	180	140	140	140	140		R to 212		-
	10%										R to 73
	30%					R to 140			R to 140		
Barium Nitrate Ba(NO ₃) ₂	saťd	73	180	140	73	140			140		-
Barium Sulfate BaSO ₄	sat'd	73	180	140	140	140	140	R to 212	140		
Barium Sulfide BaS	saťd	73	180	140	140	140	140		R to 248		
Beer		120	180	180	140	R to 140	140	R to 248	R to 140	68	R to 73
Beet Sugar Liquors			180	180	140	73	140		73		
Benzaldehyde C ₆ H ₅ CHO	10%	N	R to 73	73	R to 73	73	C to 73		73	R to 104	
	99%										C to 73
Benzene		Ν	N	N	N	C to 120	N	C to 122	R to 68		

C' mical ()ula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Benzene Sulfonic Acid C ₆ H ₅ SO ₃ H	10%		180	180	140	R to 73	-		R to 73		
	10%+		N		N						
Benzoic Acid C ₆ H ₅ COOH	all	160	180	73	140	140	140		R to 248		
Benzoyl Chloride C ₆ H ₅ COCI	Sat. Sol.							C to 68			
Benzyl Alcohol C ₆ H ₅ CH ₂ OH			N	120	N	140		R to 122	140	R to 68	
Benzyl Chloride C ₇ H ₇ Cl									R to 140		
Bismuth Carbonate (BiO) ₂ CO ₃	Saťd.		180	180	140	140	140		140		
Black Liquor	sat'd		180	140	140	120	140		120		
Bleach	5% Active Cl ₂		180	120	140	C to 140			C to 140		R to 73
	12% Active Cl ₂	73	185	120	140	73	140		73		
Borax N R ₄ O ₇ •10H ₂ O	saťd	160	180	212	140	140	140		140		-
Boric Acid	Sat'd	160	180	212	140	140	140	R to 212	140		
H ₃ BO ₃ Brake Fluid				140		140			140		-
Brine	sať d		180	140	140	140	140		140		
Bromic Acid HBrO ₃	Sat'd		180	N	140	N	140	R to 212	N		
	10%					140					-
Bromine Br ₂	Liquid	73	N	Ν	N	N	N	R to 248	N	N	
	vapor 25%		180	Ν	140	N			N		
Bromine Water	cold sat'd		180	Ν	140	N	C to 73	R to 176	N		
Bromobenzene C ₆ H ₅ Br					N				_		
Bromotoluene (Benzyl bromide) C ₆ H ₅ CH ₂ Br				С	N				-		
Butadiene CHCH=CH ₂	50%		180	N	140	73			73		

Plastics at Maximum Operating Temperature (F)

Plastics at Maximum Operating Temperature (F)

Chomical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
	Gas							R to 212			
Butane C ₄ H ₁₀	50%		180	140	140	140	N		140		
	Gas		-					R to 68	-		-
n-Butanol C ₄ H ₉ OH	Liquid		-					R to 140			R to 73
Butyl Acetate CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₃	100%	N	N	C to 73	N	C to 73	C to 73	C to 104	C to 73	R to 194	
Butyl Alcohol CH ₃ (CH ₂) ₂ CH ₂ OH			C to 73	180	140	140	140		140	C to 104	-
Butyl Cellosolve HOCH ₂ CH ₂ O(CH ₂) ₃ CH ₃	-		N		73				-		
n-Butyl Chloride C ₄ H ₉ Cl		N	N								
Butyl Glycol HOCH ₂ CH ₂ O(CH ₂) ₃ CH ₃	Liquid							R to 212			
Butylene © CH ₃ CH=CHCH ₃	Liquid			N	140	120			120		
Butyl Phenol C ₆ H ₄ OH				Ν	C to 73	73	73		R to 176		
Buryl Phthalate C ₁₆ H ₂₂ O ₄			N	180				R to 140			
Butyl Stearate CH ₃ (CH2) ₁₆ COO(CH ₂) ₃ CH ₃					73						
Butynediol HOCH ₂ C≡CCH ₂ OH					73					***	
Butyric Acid CH ₃ CH ₂ CH ₂ COOH		N	N	180	73	73	73		73		
	20%							R to 212	-		4
	Liquid							R to 176	73		
Cadmium Cyanide Cd(CN) ₂			180		140						
Calcium Bisulfide Ca(HS) ₂ o6H ₂ O			73		N	140			140		
Calcium Bisulfite Ca(HSO ₃) ₂			180	180	140	N	140		N		
	Saťd							R to 248	-		
Calcium Carbonate	Sat'd		180	180	140	140	140	R to 248	140		

C'mical iula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Calcium Chlorate Ca(ClO ₃) ₂ •2H ₂ O			180	180	140	140	140	R to 248	140		
Calcium Chloride CaCl ₂	5%										R to 176
	Sat'd	120	180	180	140	140	140	R to 248	R to 176	R to 194	
Calcium Hydroxide Ca(OH) ₂	-	160	180	180	140	140	140		140		
	2%										R to 73
	30%					R to 140			R to 140		
Calcium Hypochlorite Ca(OCI) ₂	30%	160	180	140	140	<mark>14</mark> 0	140		140		
	Saťd							C to 212	-		
Calcium Nitrate Ca(NO ₃) ₂			180	180	140	140	140		140		
	50%					140		R to 212	140		
	Sat'd		-					R to 176	-		
Caloum Oxide CaO			180		140	140			140		
Calcium Sulfate CaSO ₄		100	180	180	140	140	140	R to 212	140		
Calcium Hydrogen Sulfide Ca(HS) ₂	>10%							R to 248			
Camphor C ₁₀ H ₁₆ O		N		73	73	73			73		
Cane Sugar Liquors C ₁₂ H ₂₂ O ₁₁			180	180	140	140	150		140		
Carbitol CH ₃ CH ₂ O(CH ₂) ₂ O(CH ₂) ₂ OH	-		N		73				-		
Carbon Dioxide CO ₂	Dry 100%	160	180	140	140	140		R to 212	140		
	Wet	160	180	140	140	140	140		140		
Carbon Disulfide CS ₂	-	N	N	N	N	C to 140			R to 68	R to 104	
Carbon Monoxide	Gas		180	180	140	140	140	R to 140	140		
Carbon Tetrachloride		N	N	N	73	C to 73	N	C to 212	C to 68	N	R to 73

Plastics at Maximum Operating Temperature (F)

Plastics at M	Maximum O	perating 7	Cemperature ((F)	
---------------	-----------	------------	---------------	-----	--

C' mical	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Carbonic Acid H ₂ CO ₃	Sat'd	185	180	140	140	140			140		
Castor Oil			C to 180	140	140	73	140		73		
Caustic Potash KOH	50%	160	180	180	140	140	73		140		
Caustic Soda (Sodium Hydroxide) NaOH	40%	160	180	180	140	140	73		140		
Cellosolve			N	73	73	C to 120	140		C to 120		
Cellosolve Acetate CH ₃ COOCH ₂ CH ₂ OC ₂ H ₅			N	73	73						
Chloral Hydrate CCl ₃ CH (OH) ₂	Ali		180	C to 73	140	120	140		120		
Chloramine NH ₂ Cl	Dilute		N	73	73	73			73		
Chloric acid HClO ₃ •7H ₂ O	10%		180	73	140	73			73		
	20%		185	73	140	73			73		
Chlorine Gas	0-20 PPM moisture content	N	C to 73	N	C to 73	C to 73		R to 212	C to 73		
	20-50 PPM moisture content	Ν	N	Ν	N	C to 73			C to 73		
	50+ PPM moisture content	N	N	Ν	N	C to 73		N	C to 73		
Chlorine	Liquid	N	N	N	N	N			N		N
Chlorinated Water											
	Sat'd		180	180	140	C to 120	140	R to 212	C to 120		
Chloroacetic Acid CH ₂ CICOOH	50%	N	180	C to 73	140	120	N		120		
	>10%							R to 140			
Chloroacetyl Chloride CICH ₂ COCI					73						
Chlorobenzene C ₆ H ₅ Cl	Dry	N	N	73	N	C to 75	N		C to 75		
	Liquid							R to 140	R to 68	C to 176	
Chlorobenzyl Chloride CH4 CH2 Cl	-		N		N	C to 120			C to 120		

C' mical nula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Chloroethanol CICH ₂ CH ₂ OH	Liquid		-				N	R to 122			-
Chloroform CHCl ₃	Dry	N	N	N	N	C to 75	C to 73		C to 75		
	Liquid							R to 212	N		C to 73
Chloromethane CH ₃ Cl	Gas							R to 212			
Chloropicrin CCl ₃ NO ₂					N	73			73		
Chlorosulfonic Acid CISO ₂ OH			73	N	73	C to 120	N		C to 120		
	50%							R to 68			
	100%					N			N		
Chromic Acid H ₂ CrO ₄	Sat'd							R to 212			
	10%	73	180	140	140	73	140	R to 212	73	Ν	
	20%		-					R to 212	-		
	25%							R to 212			
	30%	N	180	73	140	73	140	R to 212	73		
	40%	N	180	73	140	73	73	R to 212	73		
	50%	Ν	C to 140	73	N	73	N	R to 212	73		
Chromium Potassium Sulfate CrK(SO ₄) ₂ •12H ₂ O	>10%							R to 212			
			- 1	73		73			73		
	Sat'd						R to 212				
Citric Acid C ₆ H ₈ O ₇	Sať d	160	180	140	140	140	140	R to 248	140	C to 140	
Coconut Oil			C to 180	73	140	73	140	R to 248	73		
Cod Liver Oil	Work Sol.							R to 248			
Coffee			180	140	140	140			140		

Plastics at Maximum Operating Temperature (F)

Plastics at Maximum Operating Temperature (F)

C'mical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Coke Oven Gas				73	140	140			140		
Copper Acetate Cu(C ₂ H ₃ O ₂) ₂ •H ₂ O	Sat'd		73	73	73						
Copper Carbonate CuCO ₃	Sat'd		180		140	140			140		
Copper Chloride CuCl ₂	Sat'd	73	180	140	140	140	140		140		
Copper Cyanide CuCN	Sat'd		180		140	140	140	R to 212	140		
Copper Fluoride CuF ₂ •2H ₂ O	2%		180	73	140	140	140		140		
Copper Nitrate Cu(NO ₃) ₂ •3H ₂ O	30 <mark>%</mark>		180	140	140	140	140		-		
	50%							R to 212			
Copper Sulfate CuSO ₄ •5H ₂ O	Sať d	120	180	120	140	140	140	R to 212	140	R to 194	
Corn Oil			C to 180	73	140	120			120		
Corn Syrup	-		185	140	140	140			140		
Cononseed Oil	-	120	C to 180	140	140	R to 140	140		R to 140		
Creosote			N	73	N	140			140		
Cresol CH ₃ C ₆ H ₄ OH	90%	N	N	R to 73	N	73	N	R to 68	73		
Cresylic Acid	50%		180		140	C to 73	N		C to 73		
Crotonaldehyde CH ₃ CH=CHCHO			N	C to 73	N		-		-		
	Liquid							R to 104	/		
Crude Oil			C to 180	140	140	C to 120	C to 73	R to 212	C to 120	R to 140	
Cupric Chloride CuCl ₂ • 2H ₂ O	20%										R to 73
Cupric Fluoride CuF ₂			180		140	140			140		
Cupric Sulfate CuSO ₄ • 5H ₂ O	Sat'd	100	180	73	140	140			-		
Cuprous Chloride	Sat'd	70	180		140	140			140		

Plastics at Maximum Operating Temperature (F)

C'mical hula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Cyclohexane C ₆ H ₁₂		73	N	N	N	N	-	R to 248	N	C to 140	-
Cyclohexanol C ₆ H ₁₁ OH		C to 120	N	140	N	73	C to 73	R to 104	73		
Cyclohexanone C ₆ H ₁₀ O	Liquid	N	N	73	N	120	N	N	C to 176	C to 140	
Detergents (Heavy Duty)			C to 180	180	140	R to 140			R to 140		R to 73
Dextrin (Starch Gum)	Sat'd		180	140	140	140	140		140		
Dextrose C ₆ H ₁₂ O ₆	Sat'd		180	140	140	140	140		140		
Diacetone Alcohol CH ₃ COCH ₂ C(CH ₃) ₂ OH			N	120	N					C to 140	
Dibutoxyethyl Phthalate C ₂₀ H ₃₀ O ₆			N		N						
n-Dibutyl Ether C ₄ H ₉ OC ₄ H ₉						73			73		
Dibutyl Phthalate C ₆ H ₄ (COOC ₄ H ₉) ₂		N	N	73	N	73			73		
Dibutyl Sebacate OCO(CH ₂) ₈ OCOC ₄ H ₉				73	73	73			73		
Dicnloroacetic Acid CHCl ₂ COOH	50%							R to 176	-		
Dichlorobenzene C ₆ H ₄ Cl ₂		N	N	C to 73	N	C to 120			C to 120		R to 73
	Liquid							R to 140	-		-
Dichloroethylene C ₂ H ₂ Cl ₂			N	C to 73	N	C to 120			C to 120		
	Liquid							R to 248	-		-
Diesel Fuels			C to 180	140	140	73	C to 73	R to 212	73		
Diethanolamine (CH ₂ CH ₂ OH) ₂ NH	Solid							N	-		
	20%		-				-		R to 194		
Diethylamine C ₄ H ₁₀ NH		N	N		N	C to 120	N	N	C to 120		
Diethyl Ether C ₄ H ₁₀ O		N	N	73	73	C to 140			C to 140	<mark>14</mark> 0	
Diglycolic Acid O(CH ₂ COOH) ₂	Saťd		180	140	140	140	140		140		

Plastics at Maximum Operating Temperature (F)

C'mical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
	10%							R to 140			
Dimethylamine (CH ₃) ₂ NH				73	140	73	N	N	73		
Dimethylformamide HCON(CH ₃) ₂		N	N	180	N	120			120		C to 73
	Liquid								N		
Dimethylhydrazine (CH ₃) ₂ NNH ₂					N						
Dimethyl Phthalate C ₆ H ₄ (COOCH ₃) ₂	-		N			C to 73			C to 73		
Dioctyl Phthalate C ₆ H ₄ (COOC ₈ H ₁₇) ₂		N	N	C to 73	N	73	C to 73		73	140	
Dioxane C ₄ H ₈ O ₂			N	C to 140	N	140			140		-
	Liquid							C to 68	-		
Diphenyl Oxide (C ₆ H ₅) ₂ O	Sat'd					73			73		
Disodium Phosphate	-		180	140	140	140	140		140		
Disniwashing Liquid (Cascade®)			-						-		R to 73
DOWTHERM A					N						
Ethanol C ₂ H ₅ OH	40%							R to 68			
	95%							R to 122	R to 140		
	Liquid							R to 122	R to 140		R to 176
Ether ROR		N	N	C to 73	N	73	N		73		
Ethyl Acetate CH ₃ COOCH ₂ CH ₃		N	N	C to 140	N	73	C to 73		73	140	R to 73 C to 176
	Liquid							C to 68	···		
Ethyl Acetoacetate $CH_3 COCH_2 COOC_2 H_5$		N	N		N						
Ethyl Acrylate CH ₂ =CHCOOC ₂ H ₅			N		N						
Ethyl Alcohol (Ethanol) OH			C to 140	140	140	140	140		140	C to 104	R to 176

Plastics at Maximum Operating Temperature (F)

C' mical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Ethyl Benzene C ₆ H ₅ C ₂ H ₅				C to 73	N	C to 73			-		
Ethyl Chloride C ₂ H ₅ Cl	Dry		N	C to 73	N	C to 73			C to 73		
	Gas		-					R to 212			
Ethyl Chloroacetate CICH ₂ COOC ₂ H ₅					N						
Ethyl Ether (C ₂ H ₅) ₂ O	Liquid		N	N	N	N	N	R to 122	R to 68		
Ethylene Bromide BrCH ₂ CH ₂ Br	Dry		N		N		N		-		
Ethylene Chloride (Vinyl Chloride) CH ₂ CH Cl	Dry	Ν	N	C to 73	N	C to 140			C to 140		
Ethylene Chlorohydrin CICH ₂ CH ₂ OH			N	73	N		N		-		
	Liquid							C to 68			
Ethylene Diamine NH ₂ CH ₂ CH ₂ NH ₂		N		73	N	140			140		
Cl ₂	Dry	N	N	C to 140	N	C to 73	140		C to 73		
Ethylene Glycol OHCH ₂ CH ₂ OH	Liquid	73	C to 180	212	140	140	140	R to 212	R to 212		C to 176
Ethylene Oxide CH ₂ CH ₂ O			N	C to 73	N	73			73	C to 140	
$\begin{array}{l} \textbf{2-Ethylhexanol}\\ \text{CH}_3 \ (\text{CH}_2 \)_3 \ \text{CHC}_2 \ \text{H}_5 \ \text{CH}_2 \text{OH} \end{array}$						73			73		
Fatty Acids R-COOH		160	73	120	140	120	150		120	194	
Ferric Chloride (Aqueous) FeCl ₃	Sat'd	120	180	140	140	140	150	R to 212	140		
Ferric Hydroxide Fe(OH) ₃	Sat'd	160	180	140	140	140			140		
Ferric Nitrate Fe(NO ₃) ₃ • 9H ₂ O	Sat'd	160	180	140	140	140	140	R to 212	140		
Ferric Sulfate Fe ₂ (SO ₄) ₃		160	180	140	140	140	140		140		-
	Sat'd		- 1					R to 212	-		
Ferrous Chloride FeCl ₂	Sat'd	160	180	140	140	140	140	R to 212	140		
Ferrous Hydroxide	Saťd	160	180	140	140	140			140		

C' mical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Ferrous Nitrate Fe(NO ₃) ₂	-	160	180	140	140	140			140		
Ferrous Sulfate	-	160	180	140	140	140	140		140		
	20%										R to 73
	Sat'd							R to 212			
Ferrous Chloride FeCl ₂	Sat'd	160	180	140	140	140	140	R to 212	140		
Fish Oil			180	180	140	140	140		140		
Fluoroboric Acid HBF ₄		73	73	140	140	140			140		
	Solid						-	R to 104			
Fluorine Gas (Dry) F ₂	100%		73	N	73	C to 73	C to 73		C to 73	N	
Fluorine Gas (Wet) F ₂		N	73	Ν	73	N	N		N	N	
Fluorosilicic Acid	25%							R to 212			
	30%		R to 140	140	140	140		R to 212			
	40%							R to 140			
	50%		73	73	140	140	140	R to 212	-		
	Sat'd							R to 212			
Formaldehyde HCHO	Dilute	160	73	140	140	140	140	R to 176		C to 104	
	<mark>35%</mark>	160	C to 73	140	140	140	140		140		
	37%	160	C to 73	140	140	140	140	R to 212	140		-
	50%		C to 73		140	140	140		140		

Plastics at Maximum Operating Temperature (F)

C'mical nula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Formic Acid HCOOH		N	C to 73	140	73	140	150		140		
	10%							R to 212	R to 140	N	N
	40%					-		R to 212	R to 140		
	50%							R to 176	R to 140		
	85%		·					R to 212			
	100%					140			140		
Freon 11 CCl ₃ F	100%	N	73	N	140	73			73		
Freon 12 CCl ₂ F ₂	100%		73	73	140	73			73	68	
	Work. Sol.							R to 212	R to 68		
Freon 21 CHCl ₂ F	100%			N	N	C to 120			C to 120		
Freon 22 C''''F ₂	100%		73	73	N	C to 120			C to 120	68	
Ficon 113 C ₂ Cl ₂ F ₃	100%			N	140	73			73		
Freon 114 C ₂ Cl ₂ F ₄	100%			N	140	73			73		
Fructose C ₆ H ₁₂ O ₆	Sat'd	73	180	180	140	140	140		140		
Fruit Juice	Work. Sol.							R to 212	-	104	
Furfural C ₄ H ₃ OCHO	100%	N	N	N	N	C to 140			C to 140	C to 140	
Gallic Acid C ₆ H ₂ (OH) ₃ CO ₂ H • H ₂ O		2	73		140	73			73		
Gasoline, Leaded*		N	N	N	140	73	N		73		
Gasoline, Unleaded*		N	N	N	140	73	N		73		R to 176
Gasoline (Fuel)								R to 212		R to 160	
Gasohol*		N	N	N	140	73	N		73		
Gasoline, Sour*		Ν	N	Ν	140	C to 73	N		C to 73		

Plastics at Maximum Operating Temperature (F)

C'mical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Gelatin			180	180	140	140	140		140		
Glucose C ₆ H ₁₂ O ₆ • H ₂ O	-	120	180	212	140	140	140		140		
	10%							R to 248	-		
Glue				140	140	140			140		
Glycerine C ₃ H ₅ (OH) ₃	-	140	180	212	140	140	140		140		
	Liquid							R to 248			-
Glycol OHCH ₂ CH ₂ OH	-		C to 180	212	140	140			140	C to 140	
Glycolic Acid OHCH ₂ COOH	Sať d		180	73	140	140			140		-
	10%							R to 212	-		
	30%							R to 140			
	65%							R to 212			
Giyuxal OCHCHO						140			140		
Grape Sugar			180		140						
Grapefruit Juice	Work. Sol.		-					R to 122			
Grease										194	
Green Liquor		160	180		140		140				
Heptane (Type 1) C ₇ H ₁₆		73	180	N	140	73	N		73		
	Liquid						-	R to 212	C to 176		
n-Hexane C ₆ H ₁₄		С	73	73	73						
	Liquid							R to 176			R to 73
Hexanol, Tertiary Type I CH ₃ (CH ₂) ₄ CH ₂ OH			180		140	140	140		140		_
Hydraulic Oil (Petroleum)					73	73			73		

Plastics at Maximum Operating Temperature (F)

C'mical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК
Hydrazine H ₂ NNH ₂			N	73	N						
Hydrobromic Acid HBr	20%	73	73	140	140	140	140	R to 212	140		
	50%	N		120	-	140		R to 140	140		-
	66%							R to 212			
Hydrochloric Acid HCI	1%										R to 176
	10%	C to 120	180	140	140	140	140	R to 212	R to 212	C to 104	N
	20%							R to 212	R to 212		
	30%	C to 73	180	140	140	140	140	R to 212	R to 140		
	Conc.								R to 140		
Hydrocyanic Acid HCN		160	180	73	140	140	140		140		
0	Sat'd							R to 248			
	10%							R to 248			
Hydrofluoric Acid HF	Dilute	73	73	180	73	140	140	R to 212	140		
	30%	N	73	140	73	140	140		140		
	40%							R to 212	-		
	50%	N	N	73	73	120	140	R to 212	120		
	60%					140		R to 140	140		
	70%							R to 212			
	100%	N	N	C to 73	N	120			120		
	Gas							R to 104			
Hydrogen H ₂	Gas		73	140	140	140	140	R to 248	140	194	
Hydrogen Cyanide HCN				73	140						

Plastics at Maximum Operating Temperature (F)

Chomical Concentration ABS CPVC PP PVC PE PVDF PB PEX **PA 11** PK hula) Hydrogen Fluoride, Anhydrous С 73 N HF ------------------Hydrogen Peroxide 3% R to 73 H2 O2 ------------____ ---------10% ---R to 212 30% R to 212 C to 104 -----------..... ------------50% 180 73 140 140 R to 212 N 140 --------90% 180 C to 73 140 73 N 73 -------------Hydrogen Phosphide (Type I) 73 140 140 140 140 PH₃ ----------____ Hydrogen Sulfide Dry 180 150 140 140 140 R to 248 140 H₂S ----____ ----Wet 180 140 140 140 _ **Hydrogen Sulfite** 10% ---140 R to 248 140 H₂SO₃ ------------------Hydroquinone Sat'd 180 140 --------140 140 140 C (OH)2 Hyuroxylamine Sulfate 180 140 140 140 (NH₂ OH)oH₂ SO₄ --------------------Hypochlorous Acid 10% 73 180 73 140 140 140 140 HOCI ------70% R to 212 ---------------.... --------Inks 140 140 140 -----------lodine 10% N 73 73 N C to 120 R to 176 C to 120 N ----12 ----Isobutyl Alcohol C to 73 ---C to 73 73 ----140 140 ---(CH₃)₂ CHCH₂ OH ----Isooctane C to 73 73 73 (CH3)3 CCH2 CH(CH3)2 ---------------____ Liquid ----R to 212 **Isopropyl Acetate** N N 73 73 CH₃ COOCH(CH₃)₂ --------..... -------Isopropyl Alcohol --C to 180 212 140 140 140 C to 212 140 R to 73 (CH₃)₂ CHOH ---____ Isopropyl Ether N C to 73 73 N 73 (CH₂)₂ CHOCH(CH₃)₂ ------------

Plastics at Maximum Operating Temperature (F)

C' mical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК
JP-4 Fuel*	-		C to 73	C to 73	140	73			73		
JP-5 Fuel*	-		C to 73	C to 73	140	73			73		
Kerosene*		73	73	C to 140	140	C to 140	C to 73		C to 140		
Ketchup					73						
Ketones		N	N	C to 73	N	73			73		
	Work Sol								R to 302		
Kraft Liquors		73	180		140	120	140		120		
Lactic Acid CH ₃ CHOHCOOH	10%							R to 140	-		
	20%		-						-		R to 73
	25%	73	180	212	140	140	140		140		
	80%	Ν	C to 180	140	73	140			140		
<u> </u>	Liquid		-					R to 212		R to 194	
Lard Oil			C to 180		140	C to 120	73		C to 120		
Latex				140		140			140		
Lauric Acid CH ₃ (CH ₂) ₁₀ COOH			180	140	140	120			120		
Lauryl Chloride (Type I) CH ₃ (CH ₂) ₁₀ CH ₂ Cl			73		140	120	73	R to 248	120		
Lead Acetate Pb(C H ₃ COO) ₂ o3H ₂ O	Sat'd		180	180	140	140	140	R to 212	140		
Lead Chloride PbCl ₂			180	140	140	120			120		
Lead Nitrate Pb(NO ₃) ₂	Sat'd		180	140	140	120			120		
Lead Sulfate PbSO ₄			180	140	140	120			120		
Lead Tetraethyl C ₈ H ₂₀ Pb								R to 212			
Lemon Oil			N	C to 73							

Plastics at Maximum Operating Temperature (F)

Plastics at Maximum Operating Temperature (F)

Ctomical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Lemon Juice						C to 140			C to 140		
Ligroin				140					-		
Lime Slurry						140			140		
Lime Sulfur			73	73	73	120	140		120		
Linoleic Acid CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ COOH			180	180	140		73		-		
Linoleic Oil (Type I)					140		73				
Linseed Oil		73	C to 180	140	140	R to 73	73	R to 248	R to 73	194	
Liqueurs				140	140	120	140		120		
Lithium Bromide LiBr				140	140	140			140		
Lithium Chloride LiCl				140	140	120			120		
Lithium Hydroxide				140		120			120		
Lubricating Oil (ASTM #1)			180	C to 140	140	73	140	R to 248	73		
Lubricating Oil (ASTM #2)			180	C to 140	140	73	140		73		
Lubricating Oil (ASTM #3)			180	C to 140	140	73	140		73		
Magnesium Carbonate MgCO ₃		120	180	212	140	140	140	R to 212	140		
Magnesium Chloride MgCl ₂	Sat'd	120	180	140	140	140	140	R to 140	140		
	50%							R to 212		<mark>19</mark> 4	
Magnesium Citrate MgHC ₆ H ₅ O ₇ o5H ₂ O			180		140	140			140		
Magnesium Hydroxide Mg(OH) ₂	Sat'd	160	180	180	140	140	140	R to 212	140		
Magnesium Nitrate Mg(NO ₃) ₂ o2H ₂ O		160	180	212	140	140	140	R to 248	140		
Magnesium Oxide MgO		160							-		
Magnesium Sulfate		160	180	212	140	140	140	R to 212	140		

C'mical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Maleic Acid HOOCCH=CHCOOH	Sat'd	160	180	140	140	140	140	R to 140	140		-
	50%		-					R to 212			
	10%						-	R to 140			
Malic Acid COOHCH ₂ CH(OH)COOH			180	140	140	140	140		140		
Manganese Sulfate MnSO ₄ • 4H ₂ O	-		180	180	140	140			140		
Margarine	Work Sol.							R to 248			
Mercuric Chloride HgCl ₂			180	180	140	140	140		140		
	Saťd							R to 212	-		
Mercuric Cyanide Hg(CN) ₂	Sat'd		180	140	140	140	140	R to 212	140		
Mercuric Sulfate HgSO ₄	Sať d		180	140	140	140			140		
Mercurous Nitrate	Saťd		180	140	140	140	140		140		
	10%							R to 212			
Mercury Hg	Liquid		180	140	140	140	140	R to 248	140	194	
Methane CH ₄		N	73	73	140	140			140	140	
Methanol (Methyl Alcohol) CH ₃ OH			N	180	140	R to 140	140		R to 140		
	5%							R to 140			
	Liquid		-					C to 176	R to 140		R to 176
Methoxyethyl Oleate CH ₃ OCH ₂ CH ₂ OOCC ₁₇ H ₃₃					73						
Methyl Acetate CH ₃ CO ₂ CH ₃		N	N	140	N	C to 120			C to 120		
Methyl Acrylate CH ₂ =CHCOOCH ₃	Tech Pure					140			140		
Methyl Amine CH ₃ NH ₂			N	N	N				-		
Methyl Bromide C ^니 Br			N	N	N	C to 73	-		C to 73	R to 68	

Plastics at Maximum Operating Temperature (F)

Plastics at Maximum Operating Temperature (F)

C'mical hula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Methyl Butyl Ketone CH ₃ CO(CH ₂) ₃ CH ₃	Liquid							C to 122	_		
Methyl Cellosolve HOCH ₂ CH ₂ OCH ₃	-		N	73	N	C to 120			C to 120		
Methyl Chloride CH ₃ Cl	Dry	N	N	N	N	C to 120	N		C to 120	R to 68	
Methyl Chloroform CH ₃ CCl ₃		N	N	C to 73	N	C to 120			C to 120		
Methyl Ethyl Ketone (MEK) CH ₃ COC ₂ H ₅	100%	N	N	73	N	N	73	C to 68	R to 140	C to 140	R to 73 C to 176
Methyl Isobutyl Carbinol (CH ₃) ₂ CHCH ₂ CH(CH ₃)OH			N		N						
Methyl Isobutyl Ketone (CH ₃) ₂ CHCH ₂ COCH ₃	-	N	N	73	N	73			73		
Methyl Isopropyl Ketone CH ₃ COCH(CH ₃) ₂	-		N		N	73			73		
Methyl Methacrylate CH ₂ =C(CH ₃)COOCH ₃			N		73	140		R to 68	140		
Methyl Sulfate (CH ₃) ₂ SO ₄			73	C to 73	73	140				68	
Methylene Bromide			N	N	N	C to 120			C to 120		
Methylene Chloride CH ₂ Cl ₂	100%		N	N	N	N	73	C to 104	N		C to 176
Methylene Chlorobromide CH ₂ ClBr			N		N						
Methylene lodide CH ₂ I ₂			N	N	N	C to 120			C to 120		
Methylsulfuric Acid CH ₃ HSO ₄			180	140	140						
Milk		160	180	212	140	140	140	R to 212	140	194	
Mineral Oil		73	180	C to 140	140	R to 73	C to 73	R to 212	C to 176		
Molasses			180	140	140	140	140		140		
Monochloroacetic Acid CH ₂ CICOOH	50 <mark>%</mark>			140	140	140			140		
Monochlorobenzene C ₆ H ₅ Cl	Tech Pure		N	73	N	C to 120			C to 120		
Monoethanolamine HOCH ₂ CH ₂ NH ₂					N						
Motor Oil	-		180	C to 140	140	R to 140	-		R to 140		

C'mical (Jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Morpholine C ₄ H ₈ ONH				140		140			140		
Mustard, Aqueous	Work. Sol.							R to 248			
N-methyl Pyrrolidone C ₅ H ₉ NO	100%										C to 73
Naphtha			73	73	140	73	73	R to 122	C to 176	R to 140	
Naphthalene C ₁₀ H ₈			N	73	N	73	73		73	R to 194	
Natural Gas		73		73	140	140	73		140		
Nickel Acetate Ni(OOCCH ₃) ₂ • 4H ₂ O				73		140			140		
Nickel Chloride NiCl ₂	Sat'd	160	180	180	140	140	140	R to 212	140		
Nickel Nitrate Ni(NO ₃) ₂ o6H ₂ O	Sat'd	160	180	180	140	140	140	R to 248	140		
Nickel Sulfate NiSO ₄	Saťd	160	180	180	140	140	140	R to 212	140		-
Nicotine C 14 N2			180		140	140	140		140		
Nicotinic Acid C ₅ H ₄ NCOOH			180		140	140	140	R to 212	140		

Plastics at Maximum Operating Temperature (F)

Ctomical nula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Nitric Acid HNO ₃	5%							R to 176	C to 140	N	
	10%	C to 73	180	180	140	73	C to 73	R to 212	C to 140		
	20%		_					R to 212	C to 140		
	25%							D to 010	0 10 110		
	25%						-	R to 212	C to 140		-
	30%	N	R to 130	140	140	73	N	R to 212	C to 140		
	35%								C to 140		
	40%	N	R to 120	73	140	73	N	C to 248	140		
	50%	N	110	Ν	100	C to 73	N		140		-
	65%							C to 248			
	70%	N	100	N	73	C to 73	N		C to 73		
0	85%		-					N			
	95%						N				
	100%	N	N	N	N	N	N		N		
Nitrobenzene C ₆ H ₅ NO ₂	100%	N	N	C to 140	N	N		R to 122	N		
Nitroglycerine CH ₂ NO ₃ CHNO ₃ CH ₂ NO ₃					N	73			73		
Nitroglycol NO ₃ (CH ₂) ₂ NO ₃	-				N						
Nitrous Acid HNO ₂	10%		180	C to 73	140	73			73		
Nitrous Oxide N ₂ O			73	73	73	73			73		
n-Octane C ₈ H ₁₈			C to 73								-
Oleic Acid CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH		160	180	73	140	C to 140	150	R to 248	C to 140	R to 140	-
Oleum x H ₂ SO ₄ oySO ₃		Ν	N	N	N	Ν	N	Ν	N		-
Olive Oil		160	C to 180	73	140	140		R to 248	R to 68		-

Plastics at Maximum Operating Temperature (F)

C'mical	Constant di	400	OPUC		DUC		-	DVDE	DEV	DA 44	DI
iula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Oxalic Acid HOOCCOOHo2H ₂ O	50%	160	180	140	140	140	140		140		
	10%					***		R to 140		R to 140	
	Saťd							R to 122			
Oxygen Gas O ₂		160	180	N	140	140		R to 212	140	R to 140	
Ozone O ₃			180	C to 73	140	C to 120			C to 120	C to 68	
	Sat'd							R to 68	-		
Palm Oil				73		140			140		
Palmitic Acid CH ₃ (CH ₂) ₁₄ COOH	10%	73	73	180	140	120	150		120		
	70%		73	180	73	120			120		
Paraffin C ₃₆ H ₇₄		73	180	140	140	C to 140		R to 212	C to 140		
Peanut Oil			C to 180	140				R to 248			
n-, entane CH ₃ (CH ₂) ₃ CH ₃	-	N	C to 180	N	C to 140	C to 120			C to 120		
Peracetic Acid CH ₃ COOOH	40%	Ν		73	73				-		
Perchloric Acid (Type I) HCIO ₄	10%		-		-			R to 212	-		
	20%							R to 212	-		
	15%		180	140	73	140	C to 73		140		-
	70%	73	180	C to 73	73	73	N	R to 212	73		
Perchloroethylene (tetrachloroethylene) Cl ₂ C=CCl ₂		N	N	C to 73	C to 140	C to 120		C to 212	C to 120	C to 68	-
Perphosphate			73	140	73						
Petroleum Ether								R to 212			

Plastics at Maximum Operating Temperature (F)

C'mical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Phenol C ₆ H ₅ OH		N	73	73	73	140	73		140	N	
	E9/								D to 040		
	5%				1		-		R to 248		
	50%							R to 176			
	90%					R to 140			R to 140		
	Solid							C to 122			
Phenylhydrazine C ₆ H ₅ NHNH ₂			N	N	N	C to 120		R to 104	C to 120		
$\begin{array}{l} \textbf{Phenylhydrazine Hydrochloride} \\ C_6H_5NHNH_2 \cdot HCI \end{array}$	10%							R to 140			
Phosphine PH ₃	Gas							R to 104			
Phosphoric Acid H ₃ PO ₄	10%		180	212	140	140	140		140		
	50%	73	180	212	140	140	73	R to 212	140	C to 104	
	75%							R to 212			
•	85%		180	212	140	73		C to 284	73		
	98%							R to 212			
Phosphoric Anhydride P ₂ O ₅			73	73	73						
Phosphorous (Red)					73	140			140		
Phosphorous (Yellow)					73	140			140		
Phosphorus Oxychloride POCl ₃	Liquid							R to 68			
Phosphorus Pentoxide P ₂ O ₅			73	73	73	140			140		
Phosphorus Trichloride PCl ₃			N	73	N	120	C to 73	C to 122	120		
Photographic Solutions			180	140	140	140	140		140		
Phthalic Acid C ₆ H ₄ (COOH) ₂			-	140	C to 140	140			140		
	Susp.							R to 212	-		

Plastics at Maximum Operating Temperature (F)

C'mical (Jula)	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК
Picric Acid C ₆ H ₂ (NO ₂) ₃ OH	10%	N	N	73	N	73	73	R to 212	73	C to 68	
	50%						-	R to 212	-		
	Sat'd.		-					R to 212	-		
Pine Oil			N	140		R to 73	-		R to 73		
Plating Solutions (Brass)			180	140	140	140	C to 73		140		
Plating Solutions (Cadmium)			180	140	140	140	C to 73		140		
Plating Solutions (Chrome)			180	140	140	140	C to 73		140		
Plating Solutions (Copper)			180	140	140	140	C to 73		140		
Plating Solutions (Gold)			180	140	140	140	C to 73		140		
Plating Solutions (Lead)			180	140	140	140	C to 73		140		
Plating Solutions (Nickel)			180	140	140	140	C to 73		140		
Plaung Solutions (Rhodium)			180	140	140	140	C to 73		140		
Plating Solutions (Silver)			180	140	140	140	C to 73		140		
Plating Solutions (Tin)			180	140	140	140	C to 73		140		
Plating Solutions (Zinc)			180	140	140	140	C to 73		140		
Potash (Aq) KOH	Sat'd		180		140	140			140		
Potassium Alum AIK (SO ₄) ₂ 012H ₂ O			180	<mark></mark> .	140	140			140		
Potassium Aluminum Sulfate AIK (SO ₄) ₂ 012H ₂ O			180	180	140		C to 73				
Potassium Amyl Xanthate CH ₃ (CH ₂) ₄ OC(=S)-S.K					73						
Potassium Bicarbonate KHCO ₃	Sat'd		180	140	140	140	140	R to 212	140		
Potassium Bi- chromate K ₂ Cr ₂ O ₇	Sat'd		180	140	140		C to 73	R to 212			
	40%							R to 212			

Plastics at Maximum Operating Temperature (F)

Plastics at Maximum Operating Temperature (F)

C'mical nula)	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК
Potassium Bisulfate KHSO ₄	-		180	212	140	140		R to 212	140		
Potassium Borate K ₂ B ₄ O ₇ o4H ₂ O			180	140	140	140	140	R to 212	140		
Potassium Bromate KBrO ₃			180	212	140	140	140	R to 212	140		
	10%								R to 212		
Potassium Bromide KBr			180	212	140	140	140	R to 248	140		
Potassium Carbonate K ₂ CO ₃		73	180	180	140	140	140	N	140		
Potassium Chlorate (Aqueous) KCIO ₃		160	180	212	140	140	140	N	140		
Potassium Chloride KCI		160	180	212	140	140	140	R to 212	140		
Potassium Chromate K ₂ CrO ₄			180	212	140	140	140		140		
Potassium Cyanide KCN			180	180	140	140	140	R to 212	140		
Potassium Dichromate	Sat'd		180	180	140	140	140		140		
Potassium Ethyl Xanthate KS ₂ COC ₂ H ₅					73						-
Potassium Ferricyanide K ₃ Fe(CN) ₆			180	180	140	140	140	R to 248	140		
Potassium Ferrocyanide $K_4 \text{ Fe}(CN)_6 \text{ o}3H_2 \text{ O}$			180	180	140	140		R to 248	140		
Potassium Fluoride KF			180	180	140	140	140	R to 212	140		
Potassium Hydroxide KOH	4%							C to 104			
	10%							R to 176	-		
	20%							R to 176	-		-
	25%	160	180	212	140	R to 140	140		R to 140		
	45%								-		R to 73
	50%							R to 176		C to 104	

rula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Potassium hydrogen Sulfite KHSO ₃	10%				-			R to 140			
	Sat'd				-			R to 212			
Potassium Hypochlorite KCIO		160	180		140	120			120		
	3%							R to 212			
Potassium lodide Kl			180	73	73	140		R to 212	140		
Potassium Nitrate KNO ₃		160	180	140	140	140	140		140	C to 104	
	50%							R to 212			
Potassium Orthophosphate H ₂ KPO ₄	Sat'd							R to 212			
Potassium Perborate KBO ₃			180	140	140	140	140		140		
Potassium Perchlorate KCIO ₄			180	140	140	140	140		140		
Potassium Permanganate	10%		180	73	140	140	140	R to 176	140		
	20%							R to 212			
	25%		180	73	73	140			140		
	30%		-				-	R to 212	-		
	Sat'd							R to 212			
Potassium Persulfate K ₂ S ₂ O ₈			180	140	140	140	140	R to 176	140		
Potassium Sulfate K ₂ SO ₄		160	180	180	140	140	140	R to 212	140	194	
Potassium Sulfide K ₂ S			180	140		140	140	68	140		
Potassium Sulfite K ₂ SO ₃ o2H ₂ O			180	140		140			140		
Propane C ₃ H ₈			73	73	140	140	73	R to 248	140	140	
Propargyl Alcohol HC=CCH ₂ OH			C to 180	140	140	140	140		140		
Propionic Acid CH- CH ₂ CO ₂ H		N	N	140	-	140		R to 140	140		

Plastics at Maximum Operating Temperature (F)

Plastics at Maximum Operating Temperature (F)

C'mical Jala)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Propyl Alcohol (Type I) CH ₃ CH ₂ CH ₂ OH	-	73	C to 73	140	140	R to 140	140	R to 122	R to 140		
Propylene Carbonate C ₄ H ₆ O ₃	100%		e								R to 73
Propylene Dichloride CH ₃ CHCICH ₂ CI	100%		N	N	N	N	4		N		
Propylene Oxide CH ₃ CHCH ₂ O			N	73	N	140			140		
Pyridine N(CH) ₄ CH			N	C to 140	N	73		R to 68	73	C to 68	
Pyrogallic Acid C ₆ H ₃ (OH) ₃	-				73		-		-		
Quinone C ₆ H ₄ O ₂				140		140			140		
Rayon Coagulating Bath	-		180		140	140	140		140		
Salicylaldehyde C ₆ H ₄ OHCHO	-			73	N	120	-		120		
Salicylic Acid C ₆ H ₄ (OH)(COOH)	-			140	140	140		R to 212	140		
Selenic Acid Aq.			180		140	140	140		140		
Sincic Acid SiO ₂ onH ₂ O	-		180	140	140	140	140	R to 212	140		
Silicone Oil	-		180	212	73	73			73		
Silver Acetate AgCH ₃ COO	Sat'd							R to 212	-		
Silver Chloride AgCl		160	180	140	140						
Silver Cyanide AgCN			180	180	140	140	140	R to 212	140		
Silver Nitrate AgNO ₃		160	180	180	140	R to 140	C to 73		R to 140		
	50%							R to 212			
Silver Sulfate Ag ₂ SO ₄		160	180	140	140	140	C to 73		140		
Soaps		73	180	140	140	R to 140	140		R to 140		
Sodium Acetate CH ₃ COONa	Sat'd		180	212	140	140	140	R to 212	140		
Sodium Alum A'' (CO_) ₂ 012H ₂ O			180		140						

Plastics at Maximum Operating Temperature (F)

Comical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Sodium Aluminate Na ₂ Al ₂ O ₄	Sat'd				140						
Sodium Benzoate C ₆ H ₅ COONa			180	140	140	140	140		140		
	35%							R to 68			
	50%							R to 212			
Sodium Bicarbonate NaHCO ₃	-	73	180	212	140	140	140	R to 212	140		
Sodium Bisulfate NaHSO₄		73	180	140	140	140	140		140		
	50%							R to 212			
Sodium Bisulfite NaHSO ₃	-		180	140	140	140			140		
Sodium Borate (Borax) Na ₂ B ₄ O ₇ o10H ₂ O	Sat'd	160	180	180	140	140	140		140		
Sodium Bromide NaBr	Sat'd	120	180	140	140	140	140		140		
	50%							R to 248			
Sculum Carbonate Na ₂ CO ₃	-	73	180	212	140	140	140	N	140	R to 140	
Sodium Chlorate NaClO ₃	Saťd		180	140	73	140	140	N	140		
Sodium Chloride NaCl		120	180	212	140	140	140		140		
	Sat'd		-					R to 212		194	
	10%							R to 212			R to 176
Sodium Chlorite NaClO ₂	25%		180	73	N	140	-		140		
Sodium Chromate Na ₂ CrO ₄ o4H ₂ O		120	180	140		140		R to 176	140		
Sodium Cyanide NaCN			180	180	140	140	140	R to 212	140		
Sodium Dichromate Na ₂ Cr ₂ O ₇ o2H ₂ O	Sat'd		180		140						-
	20%		180	180	140	140	140		140		-
	50%							R to 212			

Plastics at Maximum Operating Temperature (F)

C'-mical nula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Sodium Ferricyanide Na ₃ Fe(CN) ₆ o2H ₂ O	Sat'd		180	140	140	140	140		140		
Sodium Ferrocyanide $Na_3 Fe(CN)_6 o10H_2 O$	Sat'd		180	140	140	140	140		140		
Sodium Fluoride NaF		120	180	180	140	140	140	R to 212	140		
Sodium Hydrogen Sulfite NaHSO ₃	50%				-			R to 212			
Sodium Hydroxide NaOH	1%				-				R to 140		
	5%							C to 68			
	15%	120	180	212	140	140	140		R to 140		
	30%	120	180	212	140	R to 140	140	N	R to 140		
	40%	'				-			R to 140		
	50%	120	180	212	140	140	140		140	C to 104	
	60%								R to 140		
	70%	120	180	212	140	140	140		140		
Sodium Hypochlorite NaOClo5H ₂ O		120	180	73	73	140	140		140		N
	2% CI							R to 212			
	12.5% Cl							R to 68	-		
Sodium Iodide Nal			180		140		_				
Sodium Metaphosphate (NaPO ₃)n			180	120	140						
Sodium Nitrate NaNO ₃	Sat'd	160	180	180	140	140	140	R to 212	140		
Sodium Nitrite NaNO ₂		160	180	73	140	140	140	R to 212	140		
Sodium Palmitate CH ₃ (CH ₂) ₁₄ COONa	5%		180	140	140						
Sodium Perborate NaBO ₃ 04H ₂ O		120	180	73	140	73			73		
Sodium Perchlorate			180	212	140	140			140		
										1	

Plastics at Maximum Operating Temperature (F)

Chomical (inula)	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Sodium Peroxide Na ₂ O ₂	10%		180		140	140			140		
Sodium Phosphate NaH ₂ PO ₄	Acid	120	180	212	140	140	140	R to 140	140		
	Alkaline		120	180	212	140	140		140		
	Neutral		120	180	212	140	140		R to 212		
Sodium Silicate 2Na ₂ OoSiO ₂			180	140	140	140	140		140		
	10%							R to 140	-		
	50%							R to 212	-		
Sodium Sulfate Na ₂ SO ₄	Sat'd	160	180	212	140	140	140	R to 212			
	0.10%							R to 140			
Sodium Sulfide Na ₂ S	Saťd	160	180	212	140	140	140		140	C to 104	
Sodium Sulfite	Saťd	160	180	212	140	140	140	R to 212	140		
Scurum Thiosulfate Na ₂ S ₂ O ₃ o5H ₂ O			180	180	140	140	140		140		
	50%							R to 248			
Sour Crude Oil				140	140						
Soybean Oil				73		140			140		
Stannic Chloride SnCl ₄	Sat'd		180	140	140	140	140		140		
SNCl ₂	15%	120	180	140	140	140	140		140		-
	Sat'd					140			140		
Starch			180	140	140	140			140		
Starch Solution	Sat'd		1 - A	***		140			140		
Stearic Acid CH ₃ (CH ₂) ₁₆ COOH			180	73	140	120	150		120	C to 194	
-	100%					R to 120			R to 120		

Plastics at Maximum Operating Temperature (F)

C ¹ -mical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК
Stoddard's Solvent	-		N		N	73	140		73		
Styrene C ₆ H ₅ CH=CH ₂				73		C to 73			C to 73	R to 104	
Succinic Acid COOH(CH ₂) ₂ COOH			180	140	140	140			140		
Sugar C ₆ H ₁₂ O ₆	Aq.		180		140	140			140		
Sulfamic Acid HSO ₃ NH ₂	20%		N	180	N						
Sulfate Liquors (Oil)	6%		180	140	140				-		
Sulfite Liquors	6%	73	180		140	140			-		
Sulfur S	-		180	212	140	140	140			104	
Sulfur Chloride S ₂ Cl ₂	-			C to 73							
Sulfur Dioxide SO ₂	Gas Dry	N	73	140	140	140			140		
	Gas Wet	N	N	140	73	120	73	Ν	120		
Sumur Trioxide SO ₃	Gas Dry				140	N	-	N	N	C to 68	
	Gas		Ν		73	N		Ν			

C'mical nula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Sulfuric Acid H ₂ SO ₄	5%										R to 73
	30%	120	180	180	140	140	140	R to 248	R to 140		N
	50%	73	180	140	140	120	C to 73	R to 212	R to 140		
	60%	C to 73	180	73	140	120	C to 73	R to 248			
	70%	C to 73	180	73	140	R to 120	C to 73				
	80%	C to 73	180	73	140	R to 120	N	C to 248			
	90%	C to 73	150	73	73	120	N	R to 212			-
	93%	N	140	C to 73	73	C to 73	N				
	94% - 98%	N	130	C to 73	N	C to 73	N	C to 212	N		
	100%	N	N	C to 73	N	C to 73	N			C to 194	
Sulfurous Acid			180	140	140	140	140	R to 212	140		
1. Jil			C to 180	180	140	120			120		
Tannic Acid C ₇₆ H ₅₂ O46	10%	N	180	73	140	140	140	R to 212	140		
	Sat'd							R to 212			
Tanning Liquors		160	180	73	140	120	140		120		
Tar			N		N				_		
Tartaric Acid HOOC(CHOH) ₂ COOH		160	180	140	140	140	140	R to 248	140		
	Sat'd							R to 248	R to 176	R to 194	
Terpineol C ₁₀ H ₁₇ OH					C to 140				-		
Tetrachloroethane CHCl ₂ CHCl ₂				C to 73	C to 140	C to 120			C to 120		
Tetrachloroethylene Cl ₂ C=CCl ₂		N	N	C to 73	C to 140	C to 120		C to 212	C to 120	C to 68	
Tetraethyl Lead Pb(C ₂ H ₅) ₄			73	73	73				-	68	s

Plastics at Maximum Operating Temperature (F)

Plastics at Maximum Operating Temperature (F)

C ^L omical Jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Tetrahydrofuran C ₄ H ₈ O		N	N	C to 73	N	C to 73	C to 73	C to 68	N		
Tetralin C ₁₀ H ₁₂			N	N	N	N			N		
Tetra Sodium Pyrophosphate $Na_4P_2O_7o10H_2O$			180		140						
Thionyl Chloride SOCl ₂			N	N	N	N	140	N	N		
Thread Cutting Oils			73	73	73						
Tin (II) Chloride SnCl ₂								R to 212	-		
Tin (IV) Chloride SnCl ₄								R to 212	-		
Titanium Tetrachloride TiCl ₄				140	C to 73	120			120		
Toluene (Toluol) CH ₃ C ₆ H ₅		N	N	C to 73	N	C to 120	N		C to 120	R to 140	R to 73
Tomato Juice			180	212	140	140			140		
Transformer Oil			180	73	140	C to 120			C to 120		
Transformer Oil DTE/30			180		140	R to 120			R to 120		
Tributyl Citrate C ₁₈ H ₃₂ O ₇				C to 73	73	C to 120			C to 120		
Tributyl Phosphate (C ₄ H ₉) ₃ PO ₄			N	C to 140	N	73			73	R to 194	
Trichloroacetic Acid CCl₃COOH	50%			140	140	140		R to 104	140		
	10%					140			140		
Trichlorobenzene C ₆ H ₃ Cl ₃								R to 140			
Trichloroethane C ₂ H ₃ Cl ₃									-		R to 122
Trichloroethylene CHCI=CCl ₂		N	N	N	N	C to 120	N	R to 176	C to 68	C to 68	R to 176
Triethanolamine (HOCH ₂ CH ₂) ₃ N		C to 73	73	140	73	73	73	C to 104	73		
Triethylamine (C ₂ H ₅) ₃ N				N	140	73			73		
Trimethylolpropane (OH) ₃ C ₃ H ₅				140	73	C to 120			C to 120		

Plastics at Maximum Operating Temperature (F)

Chomical nula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Trisodium Phosphate Na ₃ PO ₄ • 12H ₂ O		73	180	140	140	140	140		140		
Turpentine		N	N	N	140	C to 120	C to 73		C to 120	R to 140	
Urea CO(NH ₂) ₂			180	180	140	140	140		140		
	10%							R to 212	-		-
	Saťd							R to 176		C to 140	-
Urine		160	180	180	140	140	140		140		
Vaseline (Petroleum Jelly)			N	140	N	120			120		
Vegetable Oil			C to 180	140	140	R to 140		R to 248	R to 140		
Vinegar		73	150	140	140	140	140		140	194	
Vinyl Acetate CH ₃ COOCH=CH ₂			N	73	N	140		C to 68	140		
Water, Acid Mine		160	180	140	140	140	180		140		194
Water, Deionized H ₂ O		160	180	140	140	140	180		140	194	176
Water, Distilled H ₂ O		160	180	212	140	140	180	R to 248	140	194	
Water, Potable H ₂ O		160	180	212	140	140	180	R to 248	140	194	
Water, Salt H ₂ O		160	180	212	140	140	180		140	194	
Water, Sea H ₂ O		160	180	212	140	140	180	R to 248	140	194	R to 176
Water, Soft H ₂ O		160	180	212	140	140	180		140	194	
Water, Waste H ₂ O		73	180	212	140	140	180		140	194	
Whiskey			180	140	140	140	140	R to 212	140		
White Liquor		73	180		140						
Wine		73	180	140	140	140	140	R to 248	140		
Wines and Spirits								R to 212	-		-

C'mical jula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК
Xylene (Xylol) C ₆ H ₄ (CH ₃) ₂	-	N	N	N	N	N	N	C to 140	N	C to 194	
Zinc Acetate Zn(CH ₃ COO) ₂ o2H ₂ O			180				-		-		
Zinc Carbonate ZnCO ₃			180	140		140		R to 212	140		
Zinc Chloride ZnCl ₂		120	180	180	140	140			140		
	50%									C to 73	
	Sat'd							R to 212	-		
Zinc Nitrate Zn(NO ₃) ₂ 06H ₂ O		160	180	180	140	140	140		140		
	Sat'd		-					R to 212	-		
Zinc Oxide ZnO								R to 212			
Zinc Stearate (CH ₃ (CH ₂) ₁₆ COO) ₂ Zn								R to 122			
Zinc Sulfate Z A07H2O		160	180	212	140	140	140		140		
-	Sat'd							R to 212	-		

Plastics at Maximum Operating Temperature (F)