
Analysis of Pressure Data for Fractured Wells: 
The Constant-Pressure Outer Boundary 

R.RAGHAVAN 
NICO HADINOTO 

MEMBERS SPE-AIME 

U. OF TULSA 
TULSA, OKLA. 

ABSTRACT 

Analysis of flowing and shut-in pressure behavior 
of a fractured well in a developed five-spot fluid 
injection-production pattern is presented. An 
idealization of this situation, a fractured well 
located at the center of a constant-pressure square, 
is discussed. Both infinite-conductivity and 
uniform-flux fracture cases are considered. Applica­
tion of log-log and semilog methods to determine 
formation permeability, fracture length, and average 
reservoir pressure is discussed. 

INTRODUCTION 

The analysis of pressure data in fractured wells 
has received considerable attention because of the 
large number of wells that have been hydraulically 
fractured or that intersect natural fractures. A l l 
these studies, however, were restricted to wells 
producing from infinite reservoirs 1* 2 or to cases 
where the fractured well is located in a closed 
reservoir. 2 >3 In some cases, these results were 
not compatible with production performance and 
reservoir characteristics when applied to fractured 
injection wells. The literature did not consider a 
fractured well located in a drainage area with a 
constant-pressure outer boundary. The most common 
example of such a system would be a fractured 
well in a developed injection-production partem. 

We studied pressure behavior (drawdown, buildup, 
injectivity, and fa l loff ) for a fractured well located 
in a region where the outer boundaries are 
maintained at a constant pressure. The results 
apply to a fractured well in a five-spot injection-
production pattern and also should be applicable to 
a fractured well in a water drive reservoir. 4 , ̂  
We found important differences from other systems 
previously reported. 

We first examined drawdown behavior for a 
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fractured well located at the center of a 
constant-pressure square. Both infinite-conductivity 
and uniform-flux solutions 1 were considered. The 
drawdown solutions then were used to examine 
buildup behavior by applying the superposition 
concept. 4 ' 6 Average reservoir pressure as a function 
of fracture penetration ratio (ratio of drainage 
length to fracture length) and dimensionless time 
also was tabulated. This represented important new 
information because, as shown by Kumar and 
Ramey,4 determination of average reservoir pressure 
for the constant-pressure outer boundary system 
was not as simple as that for the closed case since 
fluid crossed the outer boundary in an unknown 
quantity during both drawdown (injection) and 
buildup ( fa l lo f f ) . 

MATHEMATICAL MODEL 

This study employed die usual assumptions of a 
homogeneous, isotropic reservoir in the form of a 
rectangular drainage region completely f i l led with 
a slightly compressible fluid of constant viscosity. 
Pressure gradients were small everywhere and 
gravity effects were neglected. The outer boundary 
of the system was at constant pressure and was 
equal to the ini t ial pressure of the system. The 
plane of the fracture was located symmetrically 
within the reservoir, parallel to one of the sides of 
the boundary (Fig. 1). The fracture extended 
throughout the vertical extent of the formation and 
fluid was produced only through the fracture at a 
constant rate. Both the uniform-flux and the 
infinite-conductivity fracture solutions were 
considered.1 An infinite-conductivity fracture had 
no pressure drop within the fracture, whereas a 
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uniform-flux fracture had a high, but not infinite, 
conductivity. Application pf results to field data 
indicated that the uniform>flux solution was more 
applicable to a well intersecting a natural fracture 
than was the infinite-conductivity solution; however, 
the infinite-conductivity solution matched the 
behavior of hydraulically fractured wells better 
than the uniform-flux solution did. 

This mathematical treatment assumed that the 
drainage boundary was rectangular and the fracture 
was located anywhere within the rectangle. The 
only other requirement for the mathematical solution 
was that the fracture plane be parallel to either the 
short or long side of the rectangle. Note that a l l 
the quantitative results presented here apply only 
to the specific case of a square drainage region 
with the well in the center pf this square. 

The mathematical solution obtained by the 
Greens' function product solution technique shown 
by Gringarten and Ramey7 may be written as 

lDA ( aa 

PD (*D> yD< <-DA) = 16 ( x e / x , ) f < ] £ ( 1 / B ) 

• exp [-«2 „2 ( y e / x e ) t D A } 

• sin n-nXj /(2xg) sin n TTXW/ 

• (2xe) sin nnx/(2xe) 

^ exp [-*i2 „2 { x j y e ) 

t ' D A ] sia n7T.yw/(2ye) 

sinn ny/(2ye) > d t ' D A , 

where the dimensionless pressure drop is 

PD (*D> >D» 1DA) = , ^ p lPi-P(*,y>0], 
141.2 qBfi 

(2) 

the dimensionless time, t p A , based on the drainage 
area is given by 

(3) lDA = 
0.000264 kt 

c6 ct (i A 

dimensionless distances, XQ and y p , are given, 
respectively, by 

and the area is represented by 
A = 4 * e y e 

(4) 

(5) 

Other symbols are shown in Fig. 1 and the bottom 
left corner of the rectangle is the origin. 

(we caution the reader thatlthe term drainage area 
used here referred to the area within the rectangle 
and was used mainly for convenience. In fact, the 
determination of drainage areas of vertically 

fractured wells draining a developed pattern or 
located in an injection-production pattern requires 
more in-depth study.) 

Because a l l the quantitative results presented 
here pertained to a square drainage region with the 
well at the center, the dimensionless wellbore 
pressure drop was computed as follows. For the 
uniform-flux case the wellbore pressure drop, PWD-> 
was computed at x p = y D = 0.5. For the 
infinite-conductivity case i t was not readily apparent 
how Eq. 1 could be used to calculate the pressure 
drop. I t was shown in Ref. 1 that the uniform-flux 
solution could be used to obtain an approximate 
infinite-conductivity unsteady-state solution (that 
is, satisfying the boundary condition? exactly after 
a certain period of time) by computing the pressure 
drop at x D = 0.5 + 0.732 X f D , y D = 0.5, where X f D = 
X j / \ j A . Gringarten et a l . obtained this result by 
breaking up the fracture length into discrete 
elements and adjusting the withdrawal from each 
element by trial and error until the pressure at any 
given time over the entire fracture length was 
uniform to as high an accuracy as desired. They 
then showed that the infinite-conductivity wellbore 
pressure drop could be obtained to within 0.1-percent 
accuracy by assuming a uniform-flux distribution 
and computing the pressure drop at XQ = 0.5 + 0.732 

x f D ' yo ~ Results obtained by finite-difference 
techniques also have shown that this approach is 
valid. For very early times, the uniform-flux and 
infinite-conductivity solutions are identical . 1 In all 
the results shown here x w D = y w p = 0.5. 

For small values of dimensionless time i t can be 
shown that, for all points on the fracture plane, 

PD (*D» 0-5. 'DxP = V> t D x f (6) 

where t n „ is the dimensionless time based on the 

fracture half length, Xj , and is given by 

*Dx, = t-DA 
7 

(7) 

TRANSIENT FLOV INFORMATION 

Figs. 2 and 3 are log-log graphs that present the 
dimensionless wellbore pressure drop, p w p , vs 
dimensionless time, t p X { , obtained by integrating 

Eq. 1 for the infinite-conductivity and uniform-flux 
cases, respectively (see also Tables 1 and 2). In 
both figures, solutions for the dimensionless 
pressure drop at a fractured well located at the 
center of a closed square are given for comparison. 
The x e / x j = oo line in Figs. 2 and 3 represents a 
vertically fractured well in an infinite reservoir and 
not an unfractured we l l . A detailed treatment of the 
flow behavior of a vertically fractured well in an 
infinite reservoir may be found in Ref. 1. 

The results in Figs. 2 and 3 indicate three 
characteristic flow periods. A linear flow period 
occurs at early times when the fracture controls 
flow behavior. This period is characterized by a 
straight line of slope equal to 0.5 on log-log 
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Dimensionless 
Time, t D A — 

Fracture 
Penetration 

TABLE 1 — DIMENSIONLESS WELLBORE PRESSURE DROP FOR AN 
INFINITE-CONDUCTIVITY VERTICAL FRACTURE AT THE CENTER OF A 

CONSTANT-PRESSURE SQUARE, 
y 

>tgrj 

Dimensionless Wellbore Pressure Drop, 

'RESSURE SQUARE 

Ratio, xe/x( 

0.00200 
0.00300 
0.00400 
0.00500 
0.00600 
0.00700 
0.00800 
0.00900 
0.01000 
0.01500 
0.02000 
0.03000 
0.04000 
0.05000 
0.06000 
0.07000 
0.08000 
0.09000 
0.10000 
0.20000 
0.30000 
0.40000 
0.50000 

> 0.60000 

PwD 

1.5 10 

0.15784 
0.19142 
0.21820 
0.24050 
0.25962 
0.27635 
0.29123 
0.30462 
0.31679 
0.36368 
0.40058 
0.45173 
0.48851 
0.51689 
0.53954 
0.55790 
0.57287 
0.58513 
0.59518 
0.63481 
0.64031 
0.64108 
0.64118 
0.64120 

0.40797 
0.43153 
0.45325 
0.47346 
0.54979 
0.62611 
0.73127 
0.81138 
0.87491 
0.92623 
0.96805 
1.00227 
1.03031 
1.05332 
1.14405 
1.15665 
1.15840 
1.15865 
1.15868 

0.69375 
0.78873 
0.92096 
1.02216 
1.10259 
1.16763 
1.22066 
1.26405 
1.29962 
1.32880 
1.44388 
1.45987 
1.46209 
1.46240 
1.46244 

0.94886 
1.07177 
1.23463 
1.35602 
1.45129 
1.52790 
1.59019 
1.64110 
1.68281 
1.71702 
1.85192 
1.87066 
1.87326 
1.87362 
1.87368 

1.31317 
1.50330 
1.68940 
1.82405 
1.92829 
2.01157 
2.07910 
2.13421 
2.17934 
2.21634 
2.36223 
2.38249 
2.38531 
2.38570 
2.38575 

1.65473 
1.81527 
2.00912 
2.14790 
2.25483 
2.34006 
2.40909 
2.46542 
2.51152 
2.54932 
2,69834 
2.71903 
2.72191 
2.72231 
2.72236 

1.99999 
2.15836 
2.35661 
2.49769 
2.60608 
2.69237 
2.76222 
2.81919 
2.86582 
2.90405 
3.05475 
3.07568 
3.07859 
3.07899 
3.07905 

15 

2.38611 
2.55643 
2.75712 
2.89946 
3.00864 
3.09550 
3.16579 
3.22310 
3.27002 
3.30847 
3.46008 
3.48113 
3.48406 
3.48446 
3.48452 

"Values of p^o for times smaller than that shown here are identical to the closed outer 
boundary case. 

coordinates and is commonly referred to as the 
one-half slope line. After a transition period, a 
pseudo-radial flow period exists. Data in the 
pseudo-radial flow period have a characteristic 
slope of 1.151/log- on semilog coordinates. This 
period, however, exists for only certain values of 
x e /xp For the uniform-flux case, this period is 
absent for fracture penetration ratios -less than 3 
and for infinite-conductivity fractures for x e / x j 
less than 5. After a second transition period, 
steady-state flow occurs for all x j x ^ similar to 
that of an unfractured well in a constant-pressure 
square. This period is analogous to pseudo-steady-
state flow behavior for wells in closed systems. 
During steady state the pressure at each point in 
the system is time invariant. The system reaches 
steady state at a t p A of about 0.4 for al lx e /xy. 

For practical purposes, Figs. 2 and 3 may be 
used for type-curve matching for the appropriate 
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FIG. 2 — DIMENSIONLESS WELLBORE PRESSURE 
DROP VS DIMENSIONLESS TIME FOR AN INFINITE-

CONDUCTIVITY VERTICAL FRACTURE. 
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fracture type.2 If a drainage limit became evident 
during the test, then data points would follow the 
appropriate x e / x j line. If the system under study is 
located in a constant-pressure square, then field 
data would fall below the x j x ^ = » curve and 
follow the appropriate x e / x j line. On the other 
hand, if the system boundaries are closed, then 
data would rise above the x e / x j = » curve and 
follow the corresponding x e / x j line. Figs. 2 and 3 
also may be used for analyzing falloff or buildup 
data.1'2 This aspect of pressure analysis will be 
considered in the section on shut-in pressure 
behavior. 

For unfractured wells, Hurst et al . 6 remarked 
that the time at which system boundaries (closed or 
constant-pressure) affect pressure behavior is the 
same; that is, curves influenced by outer boundary 

0 10*' l 10 IO2 I0 3 
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FIG. 3 — DIMENSIONLESS WELLBORE PRESSURE 
DROP VS DIMENSIONLESS TIME FOR A UNIFORM-

FLUX VERTICAL FRACTURE. 
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conditions will depart simultaneously from the 
infinite reservoir curve, regardless of the nature of 
the outer boundary. The results in Figs. 2 and 3 
indicate that for practical purposes this observation 
also holds for all cases, except x j x j = 1. This 
implies that a limiting statement can be made 
concerning the drainage volume for a fractured well 
that does not indicate a drainage boundary effect 
for both closed and constant-pressure boundary 
cases provided * e / * / k !'"> I S> i f t n e f r a c t u r e 

does not extend to the outer boundary. 
Comparison of Figs. 2 and 3 for the closed and 

constant-pressure cases for x j x j = 1 indicates one 
important difference. The pressure drops are iden­
tical for the uniform-flux and infinite-conductivity 
cases for the closed reservoir, whereas for the 
constant-pressure case this is not so. These 
results are caused by the influence of the outer 
boundary. If x e / x f = 1, no pressure gradients 
parallel to the fracture plane exist in a closed 
reservoir; in the constant-pressure case this is not 
so. 

AVERAGE RESERVOIR PRESSURE 

In the case of a closed reservoir, the average 
reservoir pressure in an area drained by a well may 
be obtained from a simple materials balance. For a 
well in a closed system producing at a constant 
rate, the dimensionless average pressure obtained 
by a materials balance is given by 

P~D (lDA> = 
kh 

141.2 qBfi 
lp; -P (0] = 2 nt DA 

.(8) 

For the system under study here, the average 
reservoir pressure cannot be obtained readily from 
a materials balance unless the quantity of fluid 
crossing the constant pressure boundary is known. 
Dimensionless average reservoir pressures may he 

* ' T A B L E 2 — ni l , 

calculated, however, by integrating Eq. 1 over the 
drainage area. These are shown in Table 3 and are 
accurate to five digits. 

The pp (tpA) values presented in Table 3 re­
present important new information. Theoretically, if 
a well producing from a bounded system is shut in, 
then the wellbore pressure will stabilize at the 
mean pressure of the area drained at the instant 
the well is shut in. However, in the system 
examined here the final pressure will not stabilize 
at the mean pressure of the system but at the 
pressure corresponding to that of the outer boundary, 
namely p,-. Furthermore, the average reservoir 
pressure during buildup changes as fluid crosses 
the reservoir boundary. In most engineering 
applications such as material-balance computations, 
the average reservoir pressure at the instant of 
shut-in and not at the end of the buildup period is 
required. Once p,- is determined, the information 
shown in Table 3 can be used to calculate the 
average reservoir pressure. This will be examined 
further in considering aspects of buildup. 

At this point, one qualifying remark about Table 
3 is necessary. Strictly speaking, the results 
presented by Table 3 are rigorously correct only 
for the uniform-flux case. As pointed put by 
Gringarten et a/.1, the flux distribution per unit 
area of the fracture for the infinite-conductivity 
fracture changes with time until the flux distribution 
reaches a stablized condition at long times (Fig. 
2 of Ref. 1). This distribution is different from the 
uniform-flux case, and thus the areal pressure 
distribution around the fracture would be different. 
To our knowledge, no simple method exists for 
determining pressure distribution surrounding an 
infinite-conductivity vertical fracture, although the 
pressure at the fracture may be readily determined 
using the procedure of Gringarten et al. Thus, the 
results in Table 3 should be understood to be 
somewhat approximate, especially when applying 

'TABLE 2 — DIMENSIONLESS WELLBORE PRESSURE OROP FOR A 
UNl'FORM-FLUX VERTICAL FRACTURE AT THE CENTER OF A 

CONSTANT-PRESSURE SQUARE 
Dimensionless 
Time, f D A _ 

Fracture 
Penetration 
Ratio, x e / x f 

0.01000 
0.02000 
0.03000 
0.04000 
0.05000 
0.06000 
0.07000 
0.08000 
0.09000 
0.10000 
0.20000 
0.30000 
0.40000 
0.50000 
0.60000 

> 0.70000 

Dimensionless Wellbore Pressure Drop, pwrf 

1.5 

0.35447 
0.50001 
0.60695 
0.69069 
0175790 
0.81250 
0;85711 
0:89364 
0:92360 
0i94818 
1.04514 
1.05861 
1.06048 
1.06074 
1.06078 
1.06079 

0.53060 
0.73915 
0.88494 
0.99613 
1.08433 
1.15558 
1.21364 
1.26114 
1.30007 
1.33201 
1.45798 
1.47547 
1.47790 
1.47824 
1.47829 
1.47829 

10 15 

1.11788 
1.24159 
1.33856 
1.41647 
1.47981 
1.53157 
1.57398 
1.60875 
1.74589 
1.76494 
1.76758 
1.76795 
1.76800 
1.76801 

1.61427 
1.71813 
1.80114 
1.86846 
1.92341 
1.96841 
2.00530 
2.15076 
2.17096 
2.17377 
2.17416 
2.17421 
2.17422 

2.10733 
2.21496 
2.30071 
2.37013 
2.42677 
2.47313 
2.51113 
2.66097 
2.68178 
2.68467 
2.68507 
2.68513 
2.68514 

2.54761 
2.63412 
2.70414 
2.76125 
2.80799 
2.84630 
2.99736 
3.01834 
3.02125 
3.02166 
3.02171 
3.02172 

2.90216 
2.98909 
3.05942 
3.11678 
3.16372 
3.20220 
3.35391 
3.37498 
3.37790 
3.37831 
3.37837 
3.37837 

3.40543 
3.47593 
3.53343 
3.58048 
3.61905 
3.77122 
3.79236 
3.79529 
3.79576 
3.79576 
3.79576 

•Values of p w D for times smaller than that shown here are identical to the closed outer 
boundary case. 
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them to actual f ield problems for infinite-conductivity 
fractures. 

THE EFFECTIVE WELLBORE RADIUS 

Many authors have interpreted the behavior of a 
a fractured well in terms of an equivalent unfractured 
system using the concept of an effective wellbore 
radius. Prats 9 has shown that steady-state 
production of an incompressible fluid via an 
infinite-conductivity vertical fracture from a closed 
circular reservoir may be described by an unfractured 
well with an effective radius equal to one-half of 
the fracture half-length, for ratios, of reservoir 
radius to fracture half-length greater than 2. This 
also holds for the flow of a compressible f luid at 
pseudo steady state}® The effective wellbore 
radius at steady state for an infinite-conductivity or 
uniform-flux vertical fracture for the 1 present case 
can be obtained from 

PwD ( ' O A ) = l n 

8 (Xf/r„) *e 
I Xl 

V exp(y) CA 

(9) 

where C A is the shape factor for a well in a closed 

square and r j , is the effective wellbore radius. 
Effective radii computed from Eq. 9 and correspond­
ing results for the closed outer boundary case are 
shown in Fig. 4. I t is evident from these results 
that the nature of fhe outer boundary must be taken 
into account i f this concept is to be used to 
describe pressure behavior at the well . 

Clarification of the value for the shape factor 
used in Eq. 9 is needed here. Kumar and Ramey4 

have shown that the value for C A depends on 
whether the defining equation for the shape factor 
involves (p { - p w f ) or (p - p w f ) . As they pointed 
out, the equation involving (pf - p w j ) is a more 
fundamental definition. I f (pf - p w j ) is used for 
defining the shape factor, then C A = 30.88 
regardless of whether the outer boundary conditions 
are closed or at constant pressure. [However, we 
do not know i f this observation applies for other 
drainage shapes even i f (pf - p w j ) is used.] 

SHUT-IN PRESSURE BEHAVIOR 

Buildup pressures at the fractured well may be 
analyzed along conventional lines using the 
radial-flow i dea l i z a t i on 1 1 " 1 3 at late times and the 
linear-flow approximation 1 4 at early times. More 

TABLE 3 — DIMENSIONLESS AVERAGE PRESSURE DROP, p D , VS DIMENSIONLESS 
TIME, t D A , FOR A VERTiCAL FRACTURE LOCATED AT THE CENTER OF A 

CONSTANT-PRESSURE SQUARE 
Dimensionless 
Time, t D A — 

Fracture 
Penetration 
Ratio, xg7x{ 

0.0002 
0.0003 
0.0004 
0.0005 
0.0006 
0.0007 
0.0008 
0.0009 
0.0010 
0.0020 
0.0030 
0.0040 
0.0050 
0.0060 
0.0070 
0.0080 
0.0090 
0.0100 
0.0200 
0.0300 
0.0400 
0.0500 
0.0600-
0.0700 
0.0800 
0.0900 
0.1000 
0.2000 
0.3000 
0.4000 
0.5000 

> 0.6000 

Dimensionless Average Pressure Drop, PD' 

1 1.5 10 

00124 
00185 
00245 
00305 
.00364 
00423 
00482 
.00541 
.00599 
.01173 
.01731 
02275 
.02808 
.03332 
03846 
.04351 
.04849 
.05338 
.09851 
13689 
.16896 
19550 

,21737 
.23535 
.25012 
.26225 
27221 
,31150 
31696 
31772 
,31782 
31784 

0:01257 
0.01884 
0:02510 
0:03132 
0.03751 
0.04366 
0.04975 
0.05580 
0.06179 
0.11828 
0.16731 
0.20868 
0.24304 
0,27140 
0.29474 
0.31392 
0.32967 
0.34261 
0.39365 
0.40074 
0.40173 
0.40186 
0.40188 

0.01257 
0.01885 
0.02513 
0.03141 
0.03768 
0.04393 
0.05017 
0.05638 
0.06256 
0.12187 
0.17443 
0.21913 
0.25641 
0.28724 
0.31264 
0.33351 
0.35066 
0.36474 
0.42031 
0.42803 
0.42910 
0.42925 
0.42927 

01257 
01885 
02513 
,03142 
,03770 
04398 
,05025 
05651 
06277 
12357 
17842 
22549 
26491 
29756 
32447 
34661 
36479 
37972 
43866 
44685 
44799 
44815 
44817 

01257 
01885 
02513 
03142 
03770 
04398 
05026 
05654 
06281 
12419 
18013 
22839 
26891 
30251 
33022 
35302 
37175 
38713 
44784 
45627 
45744 
45761 
45763 

0.01257 
0.01885 
0.02513 
0.03142 
0.03770 
0.04398 
0.05026 
0.05654 
0.06281 
0.12433 
0.18056 
0.22915 
0.26997 
0.30384 
0.33177 
0.35475 
0.37363 
0.38914 
0.45034 
0.45884 
0.46002 
0.46019 
0.46021 

0.01257 
0.01885 
0.02513 
0.03142 
0.03770 
0.04398 
0.05026 
0.05654 
0.06282 
0.12440 
0.18078 
0.22954 
0.27053 
0.30453 
0.33259 
0.35566 
0.37462 
0.39020 
0.45166 
0.46020 
0.46139 
0.46155 
0.46158 

15 

0.01257 
0.01885 
0.02513 
0.03142 
0.03770 
0.04398 
0.05026 
0.05654 
0.06282 
0.12444 
0.18090 
0.22975 
0.27082 
0.30491 
0.33302 
0.35615 
0.37515 
0.39076 
0.45237 
0.46093 
0.46212 
0.46228 
0.46231 

PD = 

*For times earl 
kh 

141.2 qBfi 

ier than those shown here the following equation applies. 

[Pj -P(f)l = ZTTtDA . 
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recently, type-curve matching has been proposed to 
analyze pressure data . 1 ' 2 

Application of the type-curve and linear-flow 
approximation procedures to the problem under 
consideration is similar to that discussed in Refs. 
2 and 14 and so w i l l not be discussed in detail 
here. Although these procedures are well known, 
one point should be emphasized regarding 
application of log-log type curves in Figs. 2 and 3 
to pressure buildup or fal loff data by the type-curve 
matching procedure. On a log-log graph, the ordinate 
must be the absolute difference between the flowing 
pressure at the start of the test and the shut-in 
pressure during the test vs the logarithm of the 
shut-in time. This is based directly on the work of 
Agarwal et a / . 1 5 

The results for the semilog graphs are different 
from previous studies. Determination of the 
permeability-thickness product by the conventional 
semilog approach requires significant corrections. 
In general, determination of permeability by this 
method is a trial-and-error process because the 
fracture length also influences the slope of the 
straight line. Thus, the log-log approach is 
preferable for estimating the permeability-thickness 
product and fracture length. However, the semilog 
methods, particularly the Miller-Dyes-Hutchinson 
method, 1 2 are advantageous for calculating the 
average reservoir pressure. 

SEMILOG BUILDUP GRAPHS ' 

We shall now examine common methods of 
buildup analysis as they apply to a fractured well 
in a constant-pressure square. The basic equation 
required to generate buildup data is 

P D S = 
kb 

•(Pi-Pws> 

CO 
3 

UJ 
rr 

s 
UJ 

Ed 

u o rr o. p 

,UNIFORM-FLUX 

WFINITE-CONDUCTIVITY 

CONSTANT PRESSURE BOUNDARY 
CLOSED BOUNDARY 

0 0.2 0.4 0.6 0.8 I 

RECIPROCAL FRACTURE PENETRATION RATIO, Xf / X e 

FIG. 4 — RECIPROCAL DIMENSIONLESS EFFECTIVE 
WELLBORE RADIUS VS RECIPROCAL FRACTURE 

PENETRATION RATIO. 

s 141.2 ?B ^ 

= Pw D tx

e/
xf-> 0 + A £ 'Wl 

- PwD (*«/*/» A 1 D A ) < 1 0 ) 

The conventional approach to the analysis of shut-in 
pressures has been to replace che right side of Eq. 
10 with appropriate analytical expressions, to plot 
buildup data accordingly, and then to examine them 
for significant characteristics. However, recent 
s tudies 5 ' 6 have indicated that previous assumptions, 
although sufficient, were unnecessary and that 
general empirical methods may be used to examine 
shut-in pressure behavior. We have adopted this 
approach here in examining the basic characteristics 
of the common semilog buildup plots (Muskat, 1 1 

Miller-Dyes-Hutchinson, and Horner 1 3 ) . Because 
the application of these methods to fractured wells 
was reviewed recently, only the essential differences 
between this study and that of Raghavan et a / . 1 6 

wi l l be considered. From a discussion of the 
drawdown solutions i t should be evident that 
buildup graphs for both uniform-flux and infinite-
conductivity fractures are required. Only the 
infinite-conductivity case w i l l be examined in 
detail. 

THE EXTENDED MUSKAT METHOD 

The extended Muskat method involved a plot of 
the logarithm of (p - p w s ) vs shut-in time for 
closed bounded systems. For the constant-pressure 
outer boundary case, however, a more appropriate 
pressure difference was - p w s ) * Eq. 10 is the 
basis for obtaining generalized'Muskat graphs. The 
objective of this method was to find a straight line 
when the correct value of pt- has been selected by 
tr ial . The slope of the correct Muskat straight line 
was proportional to the hydraulic diffusivi ty, and 
the intercept of this straight line was proportional 
to the permeability-thickness product. 4* 6 

Fig. 5 is a typical Muskat graph for x j x j = 15 
and for a range of producing times up to steady 
state. I t shows straight lines did form for the 
correct value of p,- and al l were parallel for the 
producing times considered. Because the slope of 
the correct Muskat straight line is proportional to 
the hydraulic diffusivi ty, the correct diffusivity or 
the porosity-compressibility product can be obtained 
from this graph. Similar results were also obtained 
for other values of x e / x j . The permeability-thickness 
product may be obtained by extrapolating the 
correct straight line and determining the intercept. 
The intercepts of the various straight lines are a 
strong function of producing time. Thus, the effect 
of producing time must be taken into account in 
determining the permeability-thickness product, kb, 
by this method. 

Fig. 6 provides the information required to 
determine the kh product by this method as a 
function of X j / x e and producing time. The kh 
product may be determined from the following 
equation. 

144 
SOCIETY OF PETROLEUM ENGINEERS JOURNAL 



kh = 
141.2 qB ji 

(Pi-Pws\ wsJht = 0 

[b ( x f / x e , i D A ) ] , . .(11) 

where b is the ordinate given in Fig. 6. The 
denominator was obtained by extrapolating the 
correct straight line of the f ield data to zero 
shut-in time. 

In Fig. 6 we used x j / x e so i t would be possible 
to compare results with an unfractured well in a 
constant-pressure square as well as with those 
results presented in Ref. 16 ( x j / x e = 0 corresponds 
to an unfractured well in a constant-pressure 
square). 

The porosity-compressibility product may be 
obtained from the slope of the Muskat graph, as 
mentioned. Examination of the Muskat graph for 
various penetration ratios indicated the slopes 
were not a function of x j x ^ . The slopes of the 
correct straight lines were approximately constant 
and equal to 0.1111" 1 log ~. Thus, the <f>ct product 
may be calculated by 

<f>c = -0.0571 (12) 

where m is the slope of the correct Muskat straight 
line in log ~ / D . Here the symbol " l o g " refers to 
"logarithm to the base 10." 

A comparison of these results with corresponding 
cases for a vertically fractured well in a closed 
square indicated that the intercepts presented here 
were about the same (for small x j x j ) or larger (for 
large x e / x j ) than those reported in Ref. 16. On the 
other hand, values of the slopes obtained here were 
much smaller than those given in Ref. 16. The 

IT 
O 

10 

-| 1 | 1 1 1 1 rr-r~ 
FRACTURE PENETRATION RATIO. 

X, /X f •IS 
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0002 -
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_ l _ _|_ I 
0.02 0.1 0.04 006 0.08 
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FIG. S — MUSKAT GRAPH FOR A VERTICALLY 
FRACTURED WELL IN A CONSTANT-PRESSURE 

SQUARE. 

higher intercept and lower slope values resulted 
from the increase in the general pressure level 
because of the presence of the constant-pressure 
boundary. 

Two other aspects of the Muskat graph also 
deserve attention. These pertain to the duration of 
time for which the Muskat straight line exists. A l l 
curves in Fig. 5 straightened out only after a 
minimum shut-in time shown by the left-hand dashed 
line. This minimum time increased as the producing 
time decreased, and i t also was dependent on x e / x j . 
Fig. 7 presents the shut-in times required for the 
start o i the Muskat straight line as a function of 
x j x j and t p A . As the flowing time approached 
steady state, the value of the shut-in time needed 
to reach the proper straight line became independent 

Q2 0.4 0.6 0.8 I 

RECIPROCAL FRACTURE PENETRATION RATIO, Xf / X e 

FIG. 6 — MUSKAT GRAPH INTERCEPT VS PRODUCING 
TIME FOR A VERTICALLY FRACTURED WELL LN A 

CONSTANT-PRESSURE SQUARE. 
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DIMENSIONLESS TIME. I M 

FIG. 7 — BUILDUP TIME TO START OF MUSKAT 
STRAIGHT LINE FOR A VERTICALLY FRACTURED 

WELL IN A CONSTANT-PRESSURE SQUARE. 
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of the flowing time. 
As a result of the above requirement, a thorough 

analysis of pressure data by the Muskat method 
required that dimensionless time checks be made 
with the help of Fig. 7 to assure that the test had 
been run long enough and the proper straight line 
was chosen. This lower limit was important because 
apparent straight lines could be obtained on the 
Muskat graph for times less than those shown in 
Fig. 7, yielding an incorrect low value of initial 
pressure, 

As studies have shown, 4 " 6 , 1 6 an upper limit also 
existed for the duration of the straight line, because, 
in general, data beyond that required to reach 
steady state could not be analyzed by the Muskat 
method. This implied an upper time limit of 
A t 0 A = 0.4. 

It should be clear from the above discussion that 
unlike the closed drainage area, the average 
reservoir pressure in the area drained at the 
instant of shut-in could not be directly obtained by 
the Muskat method. The procedure would be to first 
determine and then estimate the average 
reservoir pressure from Table 3. The right-hand 
dashed line in Fig. 5 shows the shut-in times at 
which pws = p. 

THE MILLER-DYES-HUTCHINSON METHOD 

The Miller-Dyes-Hutchinson (MDH) method 
required that buildup pressures be plotted as a 
function of the logarithm of shut-in time. A 
dimensionless MDH buildup graph was first 
presented by Perrine.17 As in the case of the 
Muskat graph, Eq. 10 was the basis for preparing 
the dimensionless MDH graph. We followed the 
general procedure outlined by Ramey and Cobb6 

and examined this method for a wide range of 
producing times rather than taking the classical 
approach of assuming long producing time prior to 
shut-in. Fig. 8 is a typical MDH graph obtained in 
this study. 

In a conventional MDH graph for an unfractured 
well, a linear portion with a slope of 1.151/log ~ 

| r 
PRODUCING T I M C , I M 

y / / 1 BY MUSKAT GRAPH 

" FRACTURE PENETRATION RATIO, X , / X ( • 15 -

INFINITE-CONDUCTIVITY 

-

SHUT-IN TIME, a t M 

FIG. 8 — MILLER-DYES-HUTCHINSON BUILDUP 
GRAPH FOR VERTICALLY FRACTURED WELL IN 
A CONSTANT-PRESSURE SQUARE (INFINITE-

CONDUCTIVITY). 
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was evident for early shutrin times. However, in 
Fig. 8, no well defined straight line was evident. 
The maximum slope for any of the curves on Fig. 8 
was 0.965, much less than the expected value of 
1.151. In addition, the maximum slope decreased as 
producing time decreased. This type of behavior 
was typical of this method of analysis for a 
vertically fractured well. Raghavan et a/. 1 6 

described a similar effect for closed drainage 
systems. They noted that the reduced slope would 
lead an analyst to compute large permeability-
thickness values and thus ascribe this result to 
the opening of "new sand" after fracturing. Though 
this could happen, the results shown in Fig. 8 
indicated that the slope of the apparent MDH 
straight line for a fractured well was much less 
than that for an unfractured well. 

The curve in Fig. 8 for producing times t p A ^ 
0.4 represented steady-state behavior before shut-in. 
As in the unfractured well case, a single curve 
resulted for this condition. Fig. 8 also shows the 
region of the buildup data straightened by the 
Muskat graph. 

At this stage, an apparent paradox regarding this 
type of a graph should be clarified. Earlier 
discussions on drawdown pointed out that a 
pseudo-radial flow period existed. Thus, one should 
have expected a slope of 1.151/log cycle at least 
for this penetration ratio; This slope was not 
obtained for two reasons. First, for small values of 
producing time the proper MDH straight line lasted 
very briefly. 6 During the corresponding period for 
this instance, linear rather than radial flow pre­
vailed. The second reason-for this result was the 
superposition principle in Eq. 10 for obtaining 
the buildup curves. 

Fig. 8 raises serious questions about the 
applicability of this type of graph for determining 
formation flow capacity. A method was proposed16 

for correcting the slopes of the apparent straight 
line for the case of a fractured well in a closed 
square. It was suggested that the maximum slope 
be read for the fractured well buildup and then the 
permeability be corrected to the true value. Fig. 9 
presents permeability-thickness correction factors 
for the MDH method of graphical analysis as a 
family of dashed lines for a fractured well in a 
constant-pressure square. The correction factors 
were obtained from plots similar to Fig. 8 by 
dividing the maximum slope by 1.151. The solid 
lines represent similar correction factors for the 
Horner graph and will be discussed later. As shown 
in Fig. 9, in most instances the correction factors 
for the MDH graph were considerably less than 
those for the Horner graph. This implied that the 
apparent permeability-thickness from this procedure 
could be in . greater error than that obtained by the 
Horner method. A step-by-step procedure to estimate 
the permeability-thickness product, kh, by this 
approach is given in Ref. 16. 

The above discussion indicates a log-log 
type-curve analysis should be more reliable than 
the MDH method for estimating formation flow 
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capacity because one must be certain tbe test was 
run long enough to obtain the maximum slope. The 
fracture penetration ratio had to be known to use 
the correction factors shown in Fig. 9, whereas in 
the type-curve procedure this was not the case. 
Al l the field data examined confirmed this 
observation. 

Although the MDH procedure is not recommended 
for determining kh, graphs such as those in Fig. 8 
are useful for determining average reservoir 
pressure, p. The following procedure is recommended 
to calculate average reservoir pressure by this 
method. 

1. Dimensionless flowing time, t p A , and di­
mensionless shut-in time,. AtpA , are calculated 
corresponding to any value of shut-in time, At. 

2. For the appropriate value of fracture penetration 
ratio, x e / x j , and dimensionless time, A t p A , 
calculated in Step 1, a dimensionless pressure drop 
is read from a graph such as Fig. 8. 

3. The pressure at the outer boundary is 
calculated by 

141.2 aBu 
?l "WS kh 

(13) 

where p w s is the shut-in pressure corresponding to 
the time used in determining A t p A in Step 1. 

4. The average reservoir pressure may be 
obtained for the appropriate dimensionless producing 
time and fracture penetration ratio by the expression 

141.2 qBu _ 
(14) 

where pp may be obtained from Table 3. 
This recommendation to determine average 

pressure differs from that in Refs. 3 and 16. Those 
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authors recommended use of the Muskat graph, but 
considering the portion of the buildup data 
straightened by that graph (Fig. 8), in practice i t 
would be unusual for the test to be run for that 
period of time. The Muskat method would be more 
useful i f the test were run for a long enough period. 

THE HORNER METHOD 

The Horner method required a graph of the shut-in 
pressures, p w s , vs the logarithm of (t + At) /At . 
Here, t was the producing time before shut-in and 
At was the shut-in time. Eq. 10 also was used in 
this instance to obtain synthetic Horner graphs. 

Fig. 10 presents the Horner graph for a vertically 
fractured well located in a constant-pressure square. 
There is an important difference between the graph 
shown here and the Horner graph for the closed 
square. Unlike the closed case, the shut-in wellbore 
pressure reached p j for all producing times because 
of f luid recharge across the constant-pressure 
boundary. As in the MDH graph, no extensive linear 
portion was evident. Fig. 10, however, indicates 
that al l curves approached a common value of 
maximum slope for t D A < 0.1. For larger values of 
t p A the maximum slope increased. The synthetic 
Horner graphs for values of * e / *y examined in this 
study indicated that the change in maximum slope 
occurred only i f x e / x j >1.5 . 

Permeability-thickness correction factors were 
also prepared for the Homer graph. The results are 
shown as two solid lines in Fig. 9; as mentioned, 
the maximum slope changed after a certain value of 
producing time for x e / x j > _ 1.5, requiring two lines. 

A comparison of the shape of the buildup curves 
shown in Fig. 10 with that of an unfractured well in 
a constant-pressure square also showed an important 
difference. Kumar and Ramey showed that as 
producing time increased, the curves moved to the 
right and suggested that a system under recharge 
could be identified by this property. In this 
instance, however, the curves moved to the lef t for 
brief producing times before moving back to the 
right. Thus, the suggestion to identify a constant-
pressure boundary system by pressure buildup or 

i 111 m i i i 11111| 
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FIG. 10 — HORNER GRAPH FOR VERTICALLY 
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CONSTANT-PRESSURE SQUARE. 
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fal loff data may not apply to fractured wells unless 
producing times are very large. 

Conventional well test analysis with a Horner 
graph to calculate average reservoir pressure 
required the use of the Matthews-Brons-Hazebroek 
(MBH) 1 8 (p* - p) functions. The false pressure, p*, 
was obtained by extrapolating the proper straight 
line to a time ratio of unity. Determination of MBH 
functions to calculate p { , and then p, did not appear 
worthwhile, however, because of the lack of an 
identifiable straight line with the proper slope on a 
Horner graph. 

THE UNIFORM-FLUX FRACTURE 

Considering the obvious difficult ies involved in 
the graphical differentiation of the Horner and MDH 
graphs and associated pt'oblems in determining 
correct slopes, the uniform-flux case was not 
examined in detail. The type-curve approach was 
more advantageous in determining the permeability-
thickness product and fracture length., However, 
on a quantitative basis, buildup pressures were 
different for this case. Thus, graphs similar to Fig. 

OtMCNSIQNLESS SHUT-IN TIME, 4 1 0 1 

FIG. 11 — MILLER-DYES-HUTCHINSON BUILDUP 
GRAPH FOR VERTICALLY FRACTURED WELL IN A 
CONSTANT-PRESSURE SQUARE (UNIFORM-FLUX) 

(x . /x , = 1). 
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FIG. 12 — MILLER-DYES-HUTCHINSON BUILDUP 
GRAPH FOR VERTICALLY FRACTURED WELL IN A 
CONSTANT-PRESSURE SQUARE (UNIFORM-FLUX) 

( x e / x f = 2). 

8 were useful for determining average reservoir 
pressures. Figs. 11 through 14 present the 
appropriate graphs for four values of xe/xj. 

DISCUSSION 

The main purpose of this study was to f i l l a gap 
in the existing knowledge of fractured well analysis 
especially the determination* of average reservoir 
pressure. Although many specific quantitative 
conclusions are presented, the important results 
are general in nature. For example, the log-log 
type-curve matching procedure was determined best 
fo r . finding formation permeability and fracture 
length, whereas the MDH method appeared to be 
best for determining average reservoir pressure. In 
addition, although the Horner method was more 
reliable than the MDH method for determining the 
kb product, i t did not compare favorably with the 
log-log approach. The Horner graph was not useful 
for diagnostic purposes in identifying the constant-
pressure outer boundary as in the unfractured well 
case. 

Some unsolved problems regarding fractured wells 
should be mentioned. Our results, for example, 
apply only to the injection-production pattern shown 
in Fig. 15 and this is but one of the many 
orientations possible. In fact, since sweep efficiency 

DIMENSIONLESS SHUT-IN TIME, A I 0 A 

FIG. 13 — MILLER-DYES-HUTCHINSON BUILDUP 
GRAPH FOR VERTICALLY FRACTURED WELL IN A 
CONSTANT-PRESSURE SQUARE (UNIFORM-FLUX) 

( x a / x ( = 5). 

FIG. 14 — MILLER-DYES-HUTCHINSON BUILDUP 
GRAPH FOR VERTICALLY FRACTURED WELL IN A 
CONSTANT-PRESSURE SQUARE (UNIFORM-FLUX) 

(*e/*7 = 10). 
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considerations are of primary importance, a fracture 
orientation at a 45° angle to that shown in Fig. 15 
would be preferred. If the fracture orientation is 
different from that considered here, one would 
expect the drawdown behavior to be close to that 
shown here for larger fracture penetration ratios. 
However, for small fracture penetration ratios these 
results would not apply. Further, i t is not evident 
whether the average reservoir pressure would equal 
that found by this study even for large penetration 
ratios. The problems indicate significant areas for 
further study. 
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