STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

APPLICATION OF LIME ROCK RESOURCES II-A, L.P. FOR COMPULSORY POOLING, EDDY COUNTY, NEW MEXICO.

Case No. 20211

VERIFIED STATEMENT OF DOUG LACEY

Doug Lacey, being duly sworn upon his oath, deposes and states:

1. I am a landman for Lime Rock Resources II-A, L.P. ("Lime Rock"), and have personal knowledge of the matters stated herein. I have been qualified by the Division as an expert petroleum landman.

2. Pursuant to Division Rules, the following information is submitted in support of the compulsory pooling application filed herein:

(a) The purpose of this application is to force pool royalty owners and overriding royalty interest owners into the horizontal spacing unit described below, and in a well to be drilled in the unit, for pooling designation purposes.

(b) No opposition is expected because the interest owners being pooled have simply failed to sign a pooling designation for the subject well unit.

(c) A Form C-102 outlining the well unit being pooled is attached as Attachment A. Lime Rock seeks an order pooling all interests in a 160-acre horizontal spacing unit in the Red Lake Glorieta-Yeso Pool comprised of the N/2 S/2 of Section 13, Township 18 South, Range 26 East, N.M.P.M., Eddy County, New Mexico. The unit will be dedicated to the Leavitt Well No. 13-4H, a horizontal well with a surface location in the NW/4 SW/4 of Section 18, Township 18 South, Range 27 East, N.M.P.M., with a first take point in the NE/4 SE/4 and a last take point in the NW/4 SW/4 of Section 13.

(d) The parties being pooled are listed on Attachment B. They are either royalty owners whose leases do not contain a pooling clause, or are overriding royalty interest owners. Lime Rock owns 100% of the working interest in the well unit.

(e) Some of the interest owners being pooled are unlocatable. In order to locate the persons being pooled, Lime Rock reviewed its division order files on nearby wells, the pertinent county records, telephone records, and internet databases.

(f) Lime Rock has made a good faith effort to obtain the voluntary joinder of interest owners in a pooling designation, or to locate the interest owners.

(g) Lime Rock requests that it be designated operator of the well.

(h) The attachments to this affidavit were prepared by me, or compiled from company business records.

(i) The granting of this application is in the interests of conservation and the prevention of waste.

VERIFICATION

STATE OF TEXAS

)) ss.)

COUNTY OF HARRIS

Doug Lacey, being duly sworn upon his oath, deposes and states that: He is a landman for Lime Rock Resources II-A, L.P.; he is authorized to make this verification on its behalf; he has read the foregoing statement, and knows the contents thereof; and the same is true and correct to the best of his knowledge, information, and belief.

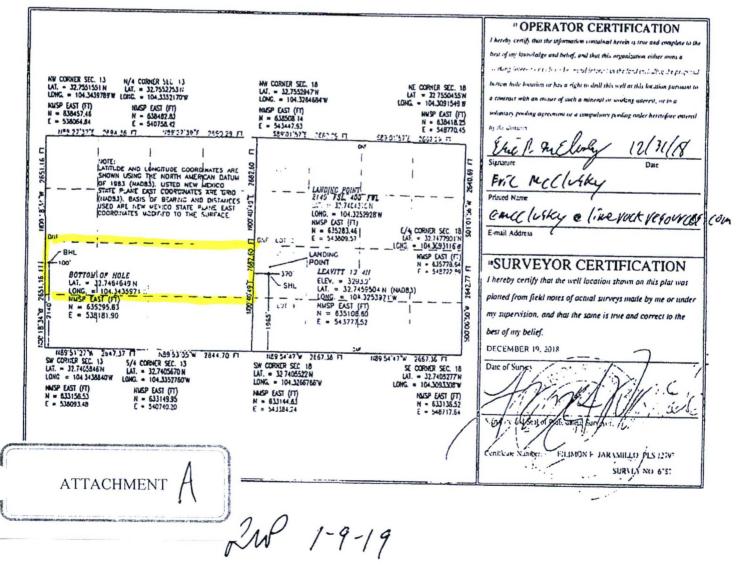
lacy Doug Lacey

SUBSCRIBED AND SWORN TO before me this 22ND day of August, 2019 by Doug Lacey.

My Commission Expires: MAY 25, 2022

Man

Notary Public


THAO PHAM Notary Public, State of Texas Comm. Expires 05-25-2022 Notary ID 131582786

	. '											
	(Justrier 1) 1623 11 Frenzh Dr., 110 Phore (\$75) 393-6161			-		State of New	Mexico		0 8.20		Form C-10 Revised August 1, 201 One copy to appropriat District Offic	
	District [] STIS First St. Artesis Phone (575) 748-1283 District []]	NM 58210		Energ				Destinent	ARTESU	OCD.		
	HUT HID BILL D. Reed Finne, (213) 334-014a District IV 1220 S. St. Francis Dr Phone, (305) 476-3460	, Sana Fel NN	4-6.70		12	20 South St. Santa Fe, N			-		IENDED REPORT	
			W	ELL LC	CATIO	N AND ACF	EAGE DEDI	CATION PL	AT			
	30-0	API Number	5594		Pool Cod	ic		³ Pool Na	The second s	1		
	Property (Code				* Property	Name				Well Number	
	'OGRIDI	7				LEAVIT	The second se				4H	
	207588					Operator				* Elevation 3293.2		
							RCES II-A, L.I	P				
	UL or lot no.	Section	Township	Range		the second s	Location					
,	3	18	18 S	27 E	Lot Idn	Feet from the 1965	ret from the North/South line Fr		East/West line WEST		County EDDY	
				" B	ottom H	ole Location	If Different Fr	om Surface		-		
	UL or lat nn. L	Section 13	Township 18 S	Range 26 E	Lot Idn	Feet from the 2140	North/South line SOUTH	Fect from the 100	East/We WE	county		
	"Dedicated Acres Joint or Infill Consolie				Code			" Order No.				

1

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Attachment B

Lorena Bailey EnnesRI15411 South 184th PlaceRIQueen Creek, AZ 85142RI & ORRIDonald R. Fanning & Sons Inc.RI & ORRI50 Flemming RoadArtesia, NM 88210Billy C. Norwood and
Betty R. Norwood,
d/b/a Norwood Oil CompanyORRIP.O. Box 1029
Malakoff, TX 75418Artesia

. .

, mare ,

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

APPLICATION OF LIME ROCK RESOURCES II-A, L.P. FOR COMPULSORY POOLING, EDDY COUNTY, NEW MEXICO.

Case No. 20211

VERIFIED STATEMENT OF STAN BISHOP

Stan Bishop, being duly sworn upon his oath, deposes and states:

1. I am over the age of 18, and have personal knowledge of the matters stated herein.

2. I am a geologist for Lime Rock Resources II-A, L.P., and I am familiar with the geological matters involved in this case. I have been qualified by the Division as an expert petroleum geologist.

3. The following plats are attached hereto:

(a) Attachment A is a base map highlighting the well unit and identifying other nearby producing Yeso wells.

(b) Attachment B is a map on top of the Yeso subsea structure. It shows that structure dips to the southeast. The approximate location of the lateral is also shown. Attachment C is the same plat showing a line of cross-section.

(c) Attachment D is an east-west cross section. The well logs on the cross-section give a representative sample of the Yeso formation in this area. The target zone for the well is the Paddock zone of the Red Lake-Glorieta Yeso Pool. That zone is continuous and of uniform thickness across the well unit.

4. I conclude from the maps that:

(a) The horizontal spacing unit is justified from a geologic standpoint.

(b) Each quarter-quarter section in the well unit will contribute more or less equally to production.

EXHIBIT 7
V

(c) There is no faulting or other geologic impediment in the area which will adversely affect the drilling of the subject well.

5. An East/West orientation is preferred for the well.

.

6. Attachment E is the Standard Planning Report for the horizontal well. The producing interval of the proposed well will be orthodox.

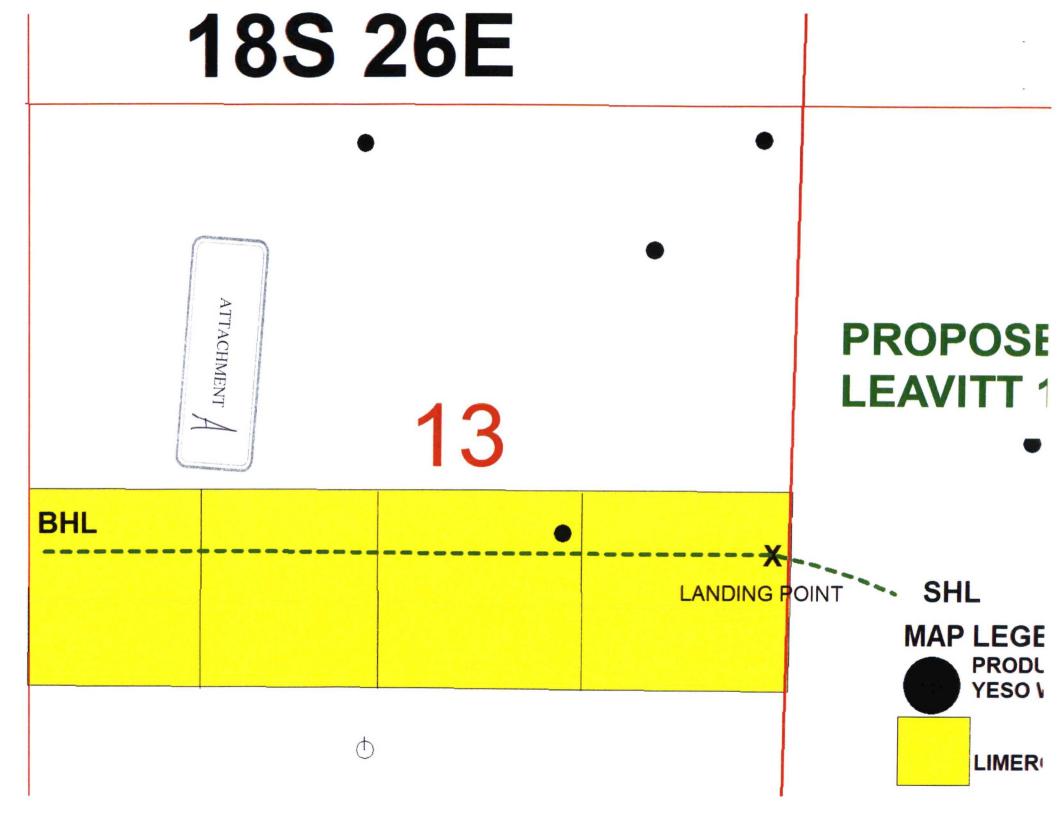
VERIFICATION

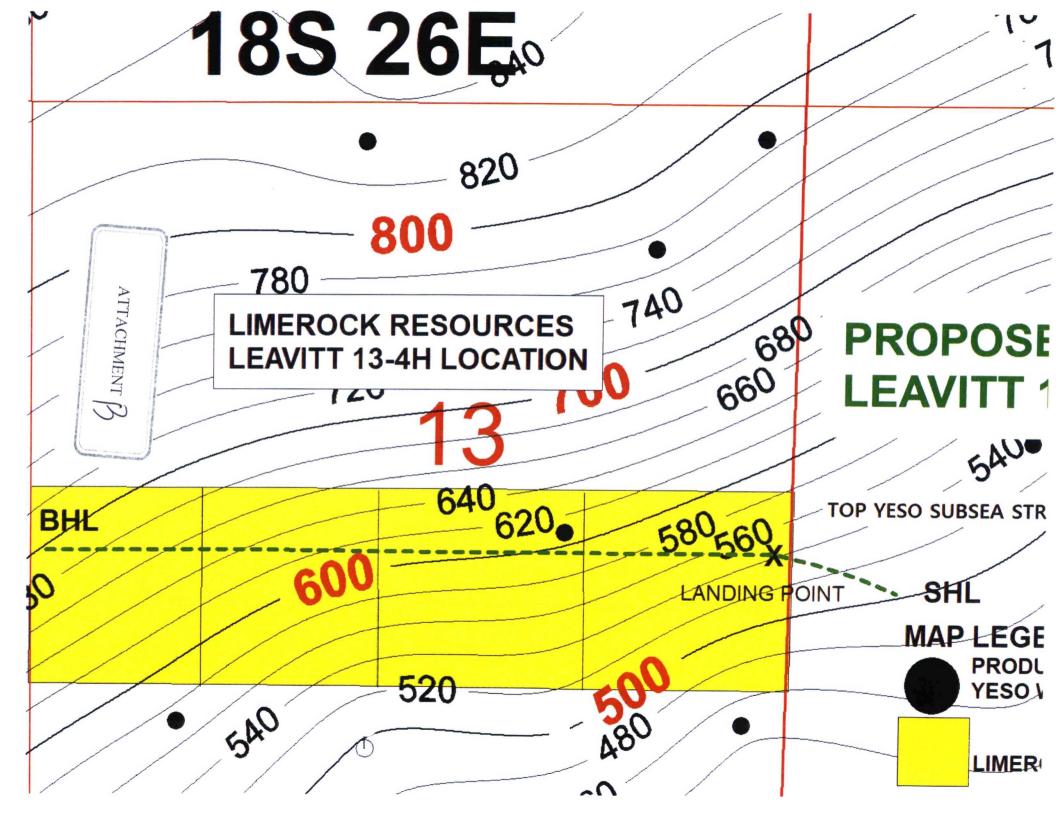
STATE OF TEXAS

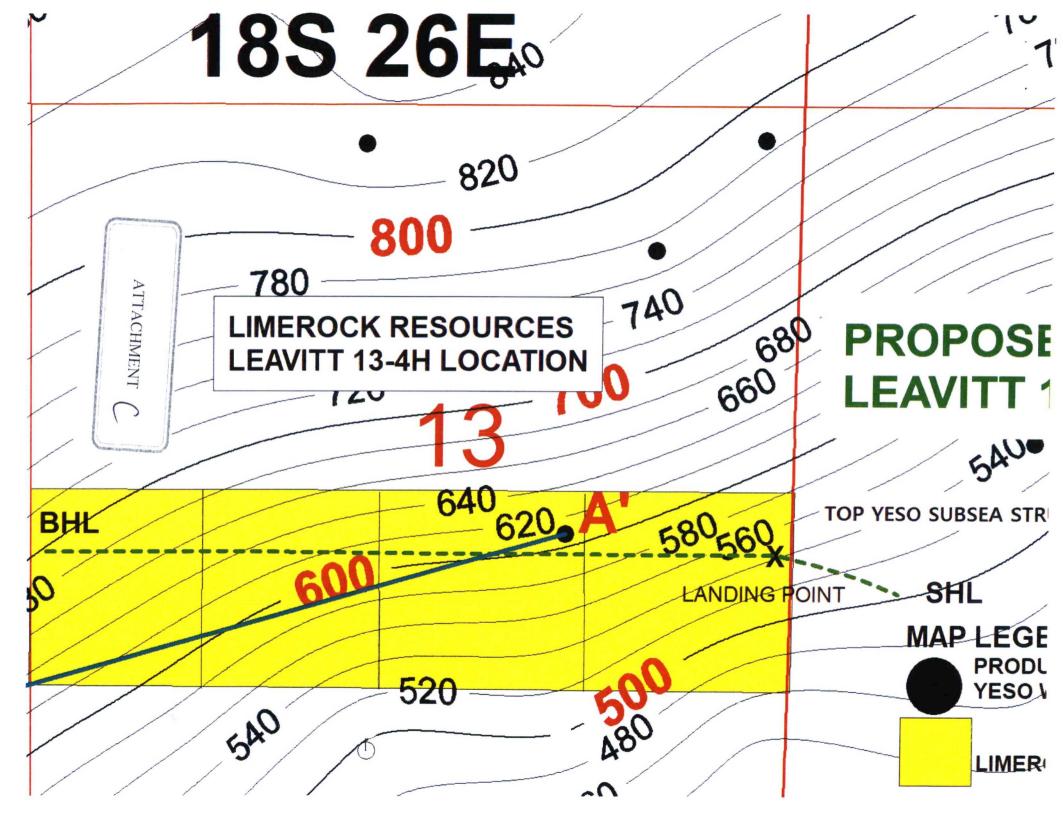
)) ss.)

COUNTY OF HARRIS

Stan Bishop, being duly sworn upon his oath, deposes and states that: He is a geologist for Lime Rock Resources II-A, L.P.; he is authorized to make this verification on its behalf; he has read the foregoing statement, and knows the contents thereof; and the same is true and correct to the best of his knowledge, information, and belief.


Bishop


SUBSCRIBED AND SWORN TO before me this _____ day of August, 2019 by Stan Bishop.


My Commission Expires: MAY 25, $2\phi_{22}$

Notary Publi

THAO PHAM lotary Public, State of Texas Comm. Expires 05-25-2022 Notary ID 131582786

- 0	^
Participant participant Participant participant	LIME ROCK MCNATT-VAN 990 FSL TWP: 18 S - Ran
000	NDERGRIFF 2 /880 FEL ge: 26 E - Sec. 14
	Pursuly 0840 2000 0 50 994 0 10 PE 2000 be 100 2000
	Parodyri (244) 3 deep 844 2 deep 255 LS Rousky 3 deep 255 LS Rousky 2014 3 deep
	Aludiog Cas) Cf 2 10 900 UNITS C2 C2 C2 0 800 UNITS C5(MA) 3 1000 UNITS C5(MA) 3 1000 UNITS
	Per Quelly Cat PLU 10000 000 % 100 000 PLUDUAL 10000 000 UMITS 5 000 0.01 10000 2000
APPROXIM BLI	LIME RO FANI 2310 TWP: 18 S - I Correlation CALI 8000 m 150 TOMS 10000 Bs CGRTH 0 api 11 CGRUT(GRTO) 0 moi 10 CGRUT(GRTO) 0 moi 10 CGRUT(GRTO) 0 moi 10 CGRUT(GRTO) 0 moi 10 CGRUT(GRTO)
3000 3050 3100 3250 3250 3250 3350 3450 3450 3550	000 D 2 000 D 2 000 D 2 02
ALLEANDING	
	Percs.6y (Perc) 9% 4) 0.3 5% 50 1003 0.3 0.3 0.3 0.3 0.3 0.3 0.3
And a second of the second s	NPH decp P Sh LS Porosity XPH
	C2 0 10 000 UNITS 1 C3
	Per Guesty Car FLU 0000 000 11 10 000 FLU 000 FLU 000 FLU 000 Car 0000 000 UNITS 5.000 000 000 FLO
0-	

RECEIVED

JAN 0 8 2019

DISTRICT INARTESIA O.C.D.

Lime Rock Resources

Eddy County, NM SEC 18 T18S R27E Leavitt 13-4H

Original Wellbore

Plan: Plan 1

Standard Planning Report

04 January, 2019

.

Planning Report

Database: ^ompany: 	ompany: Lime Rock Resources >ject: Eddy County, NM 40: SEC 18 T18S R27E Vell: Leavitt 13-4H Vellbore: Original Wellbore esign: Plan 1				TVD Refe MD Refe North Re	rence:		Well Leavitt 13 KB @ 3314.2u KB @ 3314.2u Grid MinImum Curv	usft Usft	
Map System: Geo Datum: Map Zone:	US Star North A	te Plane 1983 merican Datun axico Eastern 2			System Da	atum:	N	lean Sea Level		
Site	SEC 1	8 T18S R27E								
Site Position: From: Position Uncertain		VLong 0).0 usft	Northing: Easting: Slot Radius:		7,839.89 usft 3,939.97 usft 13-3/16 "	Latitude: Longitude: Grid Conver	gence:		32° 45' 12.448 N 104° 19' 29.525 W 0.00 °
Well	Leavitt	13-4H								
Well Position	+N/-S +E/-W	-16	1.3 usft 2.5 usft	Northing: Easting:		635,108.6 543,777.5		titude: ngitude:		32° 44' 45.421 N 104° 19' 31.430 W
Position Uncertai	nty		0.0 usft	Wellhead Elev	ation:		Gr	ound Level:		3,293.2 usf
Wellbore	Origin	al Wellbore								
Magnetica	M	IGRF2015		Sample Date 1/4/2019	Declin: (*)			Angle (*) 60.40	Field Str (n1 48 00	
esign	Plan 1									
Audit Notes:										
Version:				Phase:	PROTOTYPE	Π	e On Depth:		0.0	
Vertical Section:			Depth Fra (us 0.		+N/-S (usft) 0.0	(1	E/-W usft) 0.0		rection (*) (71.92	
Plan Survey Tool Depth From (usft) 1 0.	Dept (us		(Wellbo		Tool Name		Remarks			
Plan Sections										
Measured Depth In	clination (*)	Azimuth (°)	Vertica Depth (usft)	+N/-S	+E/-W (usft)	Dogleg Rate (*/100usft)	Build Rat o (°/100usft)	Tum Rate (*/100usft)	TF0 (°)	Target
(usft)				0.0 0.0	0.0	0.00	0.00	0.00	0.00	
0.0	0.00	0.00								
0.0 2,213.6	0.00	0.00		13.6 0.0	0.0	0.00	0.00		0.00	
0.0 2,213.6 2,869.5	0.00 52.47	0.00 289.50	2,78	13.6 0.0 81.6 93.4	0.0 -263.9	0.00 8.00	0.00 8.00	0.00	289.50	
0.0 2,213.6	0.00	0.00	2,78 2,84	13.6 0.0	0.0 -263.9 -338.6	0.00	0.00 8.00 0.00			

•.

۰.

Planning Report

TVD Reference:

MD Reference:

North Reference:

Local Co-ordinate Reference:

Survey Calculation Method:

Well Leavitt 13-4H

KB @ 3314.2usft

KB @ 3314.2usft

Minimum Curvature

Grid

 Database:
 EDM Server Database

 "ompany:
 Lime Rock Resources

 ject:
 Eddy County, NM

 .ce:
 SEC 18 T18S R27E

 Well:
 Leavitt 13-4H

 Wellbore:
 Original Wellbore

 Design:
 Plan 1

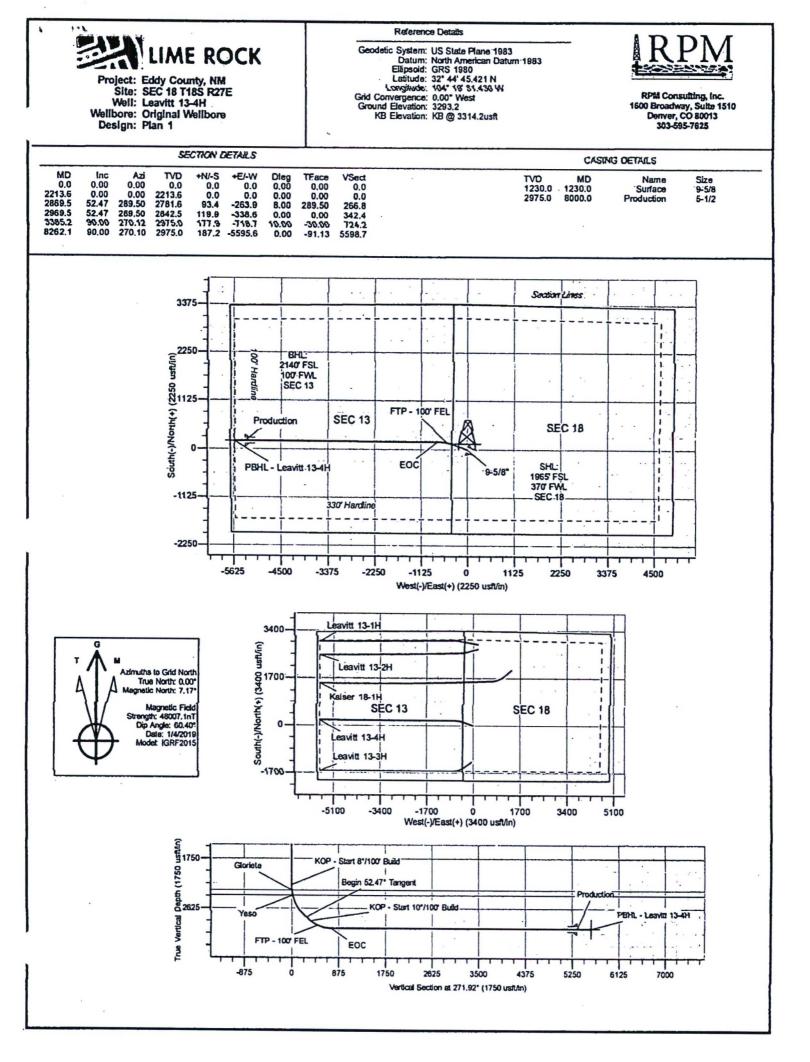
Planned Survey

Measured			Vertical			Vertical	Dogleg	Build	Tum
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	C	ຕ	(usft)	(usft)	(usft)	(usft)	("/100usft)	("/100usft)	(*/100usft)
	.0 0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.		0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.		0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.		0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.	.0 0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
Queen						0.0	0.00	0.00	0.00
500.	.0 0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.		0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
637.	.0 0.00	0.00	637.0	0.0	0.0	0.0	0.00	0.00	0.00
Grayburg	3					0.0	0.00	0.00	0.00
700.	.0 0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.		0.00	800.0	0.0	0.0	0.0	0.00	0.00	
							0.00	0.00	0.00
900.		0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
906.	.0 0.00	0.00	906.0	0.0	0.0	0.0	0.00	0.00	0.00
Premiar									
946.	.0 0.00	0.00	946.0	0.0	0.0	0.0	0.00	0.00	0.00
San Andr	78S								
1,000.	.0 0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.	.0 0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1 200									
1,200.		0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,230.		0.00	1,230.0	0.0	0.0	0.0	0.00	0.00	0.00
9-5/8" - S									
1,300.		0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.		0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.	.0 0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.	0 0.00	0.00	1,600.0	0.0	0.0	0.0			
1,700.		0.00	1,700.0	0.0		0.0	0.00	0.00	0.00
1,800.		0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.		0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.		0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
						0.0	0.00	0.00	0.00
2,100.		0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.		0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,213.		0.00	2,213.6	0.0	0.0	0.0	0.00	0.00	0.00
	art 8º/100' Build								
2,300.		289.50	2,299.8	1.7	-4.9	5.0	8.00	8.00	0.00
2,305.	2 7.33	289.50	2,305.0	2.0	-5.5	5.6	8.00	8.00	0.00
Glorieta									
2,397.	0 14.67	289.50	2,395.0	7.8	-22.0	22.3	8.00	8.00	0.00
Yeso									
2,400.		289.50	2,397.9	8.1	-22.7	23.0	8.00	8.00	0.00
2,500.		289.50	2,492.4	18.9	-53.3	53.9	8.00	8.00	0.00
2,600.		289.50	2,581.5	34.0	-95.9	97.0	8.00	8.00	0.00
2,700.	0 38.91	289.50	2,663.5	53.0	-149.8	151.5	8.00	8.00	0.00
2,800.	0 46.91	289.50	2,736.6						
2,869.		289.50		75.8	-213.9	216.3	8.00	8.00	0.00
2,869.			2,781.6	93.4	-263.9	266.8	8.00	8.00	0.00
	47° Tangent	289.50	2,781.8	93.5	-264.1	267.1	0.00	0.00	0.00
2.900.		289.50	2 800 0	101 5					
2,969.	-		2,800.2	101.5	-286.7	289.9	0.00	0.00	0.00
		289.50	2,842.5	119.9	-338.6	342.4	0.00	0.00	0.00
	rt 10°/100' Build								
3,000.		287.64	2,860.5	127.7	-362.0	366.0	10.01	8.72	-6.10
3,100.		282.28	2,911.1	149.8	-445.2	449.9	10.00	8.87	-5.36
3,128.	0 66.52	280.94	2,922.9	154.9	-470.1	475.0	10.00	9.00	-4.81

COMPASS 5000.15 Build 90

Planning Report

Database: EDM Server Database Local Co-ordinate Reference: Well Leavitt 13-4H Company: Lime Rock Resources TVD Reference: KB @ 3314.2usft Ject: Eddy County, NM MD Reference: KB @ 3314.2usft SEC 18 T185 R27E .0: North Reference: Grid Well: Leavitt 13-4H Survey Calculation Method: Minimum Curvature Wellbore: **Original Wellbore** Design: Plan 1


Planned Survey

.

Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn
(usft)	(7)	C	(usft)	(usft)	(usft)	(usft)	("/100usft)	(*/100usft)	(*/100usft)
FTP - 100' F	EL								
3,200.0	73.05	277.69	2,947.7	165.8	-538.7	542.0	10.00	9.06	-4.5
3,300.0	82.18	273.52	2,969.2	175.3	-633.8	639.3	10.00	9.14	-4.1
3,385.2	90.00	270.12	2,975.0	177.9	-718.7	724.2	10.00		
EOC			-,		-/ 10./	124.2	10.00	9.17	-3.6
3,400.0	90.00	270.12	2,975.0	178.0	-733.5	739.0	0.00	0.00	0.0
3,500.0	90.00	270.12	2,975.0	178.2	-833.5	839.0	0.00	0.00	0.0
3,600.0	90.00	270.12	2,975.0	178.4	-933.5	938.9	0.00	0.00	0.0
3,700.0	90.00	270.12	2,975.0	178.6	-1,033.5	1,038,9	0.00	0.00	0.0
3,800.0	90.00	270.12	2,975.0	178.8	-1,133.5				
3,900.0	90.00	270.12	2,975.0	179.0		1,138.8	0.00	0.00	0.0
4,000.0	90.00	270.12	2,975.0		-1,233.5	1,238.8	0.00	0.00	0.0
4,100.0	90.00	270.12		179.2	-1,333.5	1,338.7	0.00	0.00	0.0
4,200.0	90.00	270.12	2,975.0 2,975.0	179.5	-1,433.5	1,438.7	0.00	0.00	0.0
				179.7	-1,533.5	1,538.6	0.00	0.00	0.0
4,300.0	90.00	270.12	2,975.0	178.9	-1,633.5	1,638.6	0.00	0.00	0.0
4,400.0	90.00	270.12	2,975.0	180.1	-1,733.5	1,738.5	0.00	0.00	0.0
4,500.0	90.00	270.12	2,975.0	180.3	-1,833.5	1,838.5	0.00	0.00	0.0
4,000.0	90.00	270.12	2,975.0	180.5	-1,933.5	1,938.4	0.00	0.00	0.0
	90.00	270.12	2,975.0	180.7	-2,033.5	2,038.4	0.00	0.00	0.0
4,800.0	80.08	270.11	2,875.0	180.9	-2,133.5	2,138.3	0.00	0.00	0.0
4,900.0	90.00	270.11	2.975.0	181.1	-2,233.5	2.238.3	0.00	0.00	0.0
5,000.0	90.00	270.11	2,975.0	181.3	-2,333.5	2,338.2	0.00	0.00	0.0
5,100.0	90.00	270.11	2,975.0	181.5	-2,433.5	2,438.2	0.00	0.00	0.0
5,200.0	90.00	270.11	2,975.0	181.7	-2,533.5	2,538.1	0.00	0.00	0.0
5,300.0	90.00	270.11	2,975.0	181.9	-2,633.5	2,638.1	0.00	0.00	0.0
5,400.0	90.00	270.11	2,975.0	182.1	-2,733.5	2,738.0	0.00	0.00	0.0
5,500.0	90.00	270.11	2,975.0	182.3	-2,833.5	2,838.0	0.00	0.00	0.0
5,600.0	90.00	270.11	2,975.0	182.5	-2,933.5	2,937.9	0.00	0.00	0.0
5,700.0	90.00	270.11	2,975.0	182.6	-3,033.5	3,037.9	0.00	0.00	0.0
5,800.0	90.00	270.11	2,975.0	182.8	-3,133.5	3,137.8	0.00	0.00	0.0
5,900.0	90.00	270.11	2,975.0	183.0	-3,233.5	3,237.8	0.00	0.00	0.0
6,000.0	90.00	270.11	2,975.0	183.2	-3,333.5	3,337.7	0.00	0.00	0.0
6,100.0	90.00	270.11	2,975.0	183.4	-3,433.5	3,437.7	0.00	0.00	0.0
6,200.0	90.00	270.11	2,975.0	183.6	-3,533.5	3,537.6	0.00	0.00	0.0
6,300.0	90.00	270.11	2,975.0	183.8	-3,633.5	3,637.6	0.00	0.00	0.0
6,400.0	80.00	270.11	2,975.0	184.0	-3,733.5	3,737.5	0.00	0.00	0.0
6,500.0	90.00	270.11	2,975.0	184.2	-3,833.5	3,837.5	0.00	0.00	0.0
6,600.0	90.00	270.10	2,975.0	184.3	-3,933.5	3,937.4	0.00	0.00	0.0
6,700.0	90.00	270.10	2,975.0	184.5	-4,033.5	4,037.4	0.00	0.00	0.0
6,800.0	90.00	270.10	2,975.0	184.7	-4,133.5	4,137.3	0.00	0.00	0.0
6,800.0	80.08	270.10	2,875.0	184.8	-4,233.5	4,237.3	0.00	0.00	0.0
7,000.0	90.00	270.10	2,975.0	185.1	-4,333.5	4,337.2	0.00	0.00	0.0
7,100.0	90.00	270.10	2,975.0	185.2	-4,433.5	4,437.2	0.00	0.00	0.0
7,200.0	90.00	270.10	2,975.0	185.4	-4,533.5	4,537.1	0.00	0.00	0.0
7,300.0	90.00	270.10	2,975.0	185.6	-4,633.5	4,637.1	0.00	0.00	0.0
7,400.0	90.00	270.10	2,975.0	185.8	-4,733.5	4,737.0	0.00	0.00	0.00
7,500.0	90.00	270,10	2,975.0	185.9	-4,833.5	4,837.0	0.00		
7,600.0	90.00	270.10	2,975.0	186.1	-4,933.5			0.00	0.00
7,700.0	90.00	270.10	2,975.0	186.3	-4,933.5	4,936.9 5,036.9	0.00	0.00	0.00
7,800.0	90.00	270.10						0.00	0.00
7,900.0	90.00		2,975.0	186.5	-5,133.5	5,136.8	0.00	0.00	0.00
8,000.0	90.00	270.10	2,975.0	186.6	-5,233.5	5,238.8	0.00	0.00	0.00
0,000,0	80.00	270.10	2,975.0	186.8	-5,333.5	5,338.7	0.00	0.00	0.00

					Planning R	eport					
Database: Company: roject: s: dell: Vellbore: Design:	EDM Server Lime Rock R Eddy County SEC 18 T18 Leavitt 13-4H Original Well Plan 1	esources v, NM S R27E		TVD Reference:KEMD Reference:KENorth Reference:Gr					Well Leavitt 13–4H KB @ 3314.2usft KB @ 3314.2usft Grid Minimum Curvature		
Manned Survey											
Measured Depth (usft)	Inclination (*)	Azimuti (*)	Vertica h Depth (usft)	•	N/-S	+E/- W (usft)	Vertical Section (usft)	Dogleg Rate (*/100usft)	Bulld Rate (*/100us		Tum Rate */100usft)
8,100.0 8,200.0	90.00 90.00			75.0	187.0	-5,433.5	5,436.7	0.00		0.00	0.00
				75.0	187.1	-5,533.5	5,536.6	0.00		0.00	0.00
8,262.1 PBHL	90.00	270	0.10 2,9	75.0	187.2	-5,595.6	5,598.7	0.00		0.00	0.00
Design Targeta											
larget Name - hit/miss target - Shape	Dlp Angle (*)	Dip Dir.	TVD	+N/-S	+E/-W	Northing		sting			
PBHL - Leavitt 13-4H	0.00	(°) 0.00	(usft) 2,975.0	(usft) 187.:	(usft) 2 -5,595.6	(usft) 635,2		usft) 38,181.90	Latitud	-	Longitude
- plan hits target of - Point	enter										
Casing Points											
Me	easured Depth (usft) 1,230.0	Vertical Depth (usft) 1,230.0			Name			Casir Diame (*)		Hole Diameter (*) 12-1	
Me	Depth (usft)	Depth (usft)			Name			Diame (")	ter	Diameter (")	14
Me I Formations	Depth (usft) 1,230.0 8,000.0	Depth (usft) 1,230.0 2,975.0			Name			Diame (")	ter 9-5/8	Diameter (") 12-1	14
Meas Formations	Depth (usft) 1,230.0 8,000.0	Depth (usft) 1,230. 2,975.0			Name			Diame (")	9-5/8 5-1/2	Diameter (*) 12-1 8-3 Dip	14
Me I formations	Depth (usft) 1,230.0 8,000.0 ured Ve pth D	Depth (usft) 1,230.0 2,975.0		Nama	Name			Diame (") Di	9-5/8 5-1/2 p Di	Diameter (*) 12-1 8-3 Dip rection	14
Meas Formations Dep	Depth (usft) 1,230.0 8,000.0 ured Ve pth D	Depth (usft) 1,230. 2,975.(entical eepth usft)	0 Production	Name	Name		Lithology	Diame (") Di Ci	9-5/8 5-1/2 p Dia	Diameter (*) 12-1 8-3 Dip	14
Meas Formations Dep	Depth (usft) 1,230.0 8,000.0	Depth (usft) 1,230. 2,975.(entical eepth usft) 400.0	0 Production	Name	Name		Lithology	Diame (") Di ("	e-5/8 5-1/2 p Dia) 0.00	Diameter (*) 12-1 8-3 Dip rection	14
Meas Formations Dep	Depth (usft) 1,230.0 8,000.0 	Depth (usft) 1,230. 2,975.(entical eepth usft) 400.0	D Production	Name	Name		Lithology	Diame (") Di (" (e-5/8 5-1/2 p Dia 0.00 3.00	Diameter (*) 12-1 8-3 Dip rection	14
Me Formations Meas Dep (us	Depth (usft) 1,230.0 8,000.0 uured Ve pth D ift) ((400.0 637.0 906.0 946.0	Depth (usft) 1,230.(2,975.(artical eepth usft) 400.0 (637.0 (906.0 (D Production	Name	Name		Lithology	Diame (") Di (" (((((((((((((()))))))))	b -5/8 5-1/2 p D i 0.00 3.00 0.00	Diameter (*) 12-1 8-3 Dip rection	14
Meas Formations Dep (us	Depth (usft) 1,230.0 8,000.0 uured Ve pth D ift) ((400.0 637.0 906.0	Depth (usft) 1,230.(2,975.(artical eepth usft) 400.0 (637.0 (906.0 (Queen Grayburg Premier San Andres Glorieta	Name	Name		Lithology	Diame (*) Di (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	b b b c c c c c c c c	Diameter (*) 12-1 8-3 Dip rection	14
Meas Formations Meas (us 2 2	Depth (usft) 1,230.0 8,000.0 urred Ve pth D ift) ((400.0 637.0 906.0 946.0 2,305.2	Depth (usft) 1,230.(2,975.(artical eepth usft) 400.0 637.0 906.0 946.0 2,305.0	Queen Grayburg Premier San Andres Glorieta	Name	Name		Lithology	Diame (*) Di (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	b b -5/8 5 -1/2 b b b c c c c c c c c	Diameter (*) 12-1 8-3 Dip rection	14
Formations Meas Dep (us 1 Tan Annotations Measu	Depth (usft) 1,230.0 8,000.0 ured Vent 400.0 637.0 906.0 946.0 2,305.2 2,397.0 ured Vent	Depth (usft) 1,230.(2,975.(artical eepth usft) 400.0 (637.0 (906.0) 946.0 (2,305.0 (2,395.0) dcal	Queen Grayburg Premier San Andres Glorieta Yeso	Coordinate	88		Lithology	Diame (*) Di (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	b b b c c c c c c c c	Diameter (*) 12-1 8-3 Dip rection	14
Formations Meas Dep (us Yan Annotations Measu Dept	Depth (usft) 1,230.0 8,000.0 ured Vent 400.0 637.0 906.0 946.0 2,305.2 2,397.0 ured Vent th De	Depth (usft) 1,230.(2,975.(artical eepth usft) 400.0 (637.0 (906.0 (946.0 (2,305.0 (2,395.0 (2,395	Queen Grayburg Premier San Andres Glorieta Yeso Local (+N/-S	Coordinat	99 +E/-W		Lithology	Diame (*) Di (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	b b b c c c c c c c c	Diameter (*) 12-1 8-3 Dip rection	14
Formations Meas Dep (us lan Annotations Measu Dept (ust	Depth (usft) 1,230.0 8,000.0 uured Ve pth D sft) (1 400.0 637.0 906.0 946.0 2,305.2 2,397.0 ured Ven th De ft) (u	Depth (usft) 1,230.0 2,975.0 entical eepth usft) 400.0 637.0 906.0 946.0 2,305.0 2,395.0 2,395.0 2,3	Queen Grayburg Premier San Andres Glorieta Yeso Local (+N/-S (usft)	Coordinat	98 +E/-₩ {usft}	Comment	Lithology	Diame (*) Di (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	b b b c c c c c c c c	Diameter (*) 12-1 8-3 Dip rection	14
Formations Formations Meas (us fan Annotations Measu Depi (ust 1,1	Depth (usft) 1,230.0 8,000.0 urred Vent ft) (1 400.0 637.0 906.0 946.0 2,305.2 2,397.0 urred Vent th De tt) (u 230.0 1	Depth (usft) 1,230.0 2,975.0 entical eepth usft) 400.0 637.0 906.0 946.0 2,305.0 2,395.0 dical pth sft) ,230.0	Queen Grayburg Premier San Andres Glorieta Yeso Local (+N/-S (usft) 0.0	Coordinate	98 +E/-₩ {usft} 0.0	Comment 9-5/8"		Diame (") 	b b b c c c c c c c c	Diameter (*) 12-1 8-3 Dip rection	14
Formations Meas Dep (us tan Annotations Measu Dept (ust 1,2 2,2	Depth (usft) 1,230.0 8,000.0 urred Ver th D 946.0 2,305.2 2,397.0 urred Ver th De th De th De th De th 2 230.0 1 213.6 2	Depth (usft) 1,230.0 2,975.0 entical eepth usft) 400.0 637.0 906.0 946.0 2,305.0 2,395.0 2,395.0 2,3	Queen Grayburg Premier San Andres Glorieta Yeso Local (+N/-S (usft) 0.0 0.0	Coordinat	98 +E/-₩ {uaft} 0.0 0.0	Comment 9-5/8" KOP - Start	8*/100' Build	Diame (") 	b b b c c c c c c c c	Diameter (*) 12-1 8-3 Dip rection	14
Formations Meas Dep (us Tan Annotations Measu Dept (us 1,2,2,5)	Depth (usft) 1,230.0 8,000.0 urred Vent fft) (400.0 637.0 906.0 946.0 2,305.2 2,397.0 urred Vent th Dep ff) (ur 230.0 1 213.6 2 869.8 2	Depth (usft) 1,230.0 2,975.0 entical eepth usft) 400.0 906.0 946.0 2,305.0 2,395.0 dcal pth sft) ,230.0 2,213.6	Queen Grayburg Premier San Andres Glorieta Yeso Local (+N/-S (usft) 0.0	Coordinat	98 +E/-₩ {usft} 0.0	Comment 9-5/8" KOP - Start Begin 52.47	8°/100' Build * Tangent	Diame (") Di (" (((((((((((((()))))))))	b b b c c c c c c c c	Diameter (*) 12-1 8-3 Dip rection	14
Formations Measu Que (us Man Annotations Measu Dept (ust 1,2 2,5 2,5 3,1	Depth (usft) 1,230.0 8,000.0 urred Ver pth D fft) ((400.0 637.0 906.0 946.0 2,305.2 2,397.0 urred Ver th De ft) (ur 230.0 1 213.6 2 869.8 2 969.5 2 128.0 2	Depth (usft) 1,230.0 2,975.0 ertical eepth usft) 400.0 906.0 946.0 2,305.0 2,395.0 2,395.0 2,395.0 4 cal pth sft) ,230.0 .213.6 .781.8 .842.5 .822.0	Queen Grayburg Premier San Andres Glorieta Yeso Local (+N/-S (usft) 0.0 0.0 93.5 119.9 154.9	Coordinat	98 +E/-W (usft) 0.0 -264.1 -338.6 -470.7	Comment 9-5/8" KOP - Start Begin 52.47	8*/100' Build * Tangent 10*/100' Build	Diame (") Di (" (((((((((((((()))))))))	b b b c c c c c c c c	Diameter (*) 12-1 8-3 Dip rection	14
Formations Measu Cus (us Man Annotations Measu Dept (us 1,2,2,4) 2,5 2,5 2,5 3,1 3,3	Depth (usft) 1,230.0 8,000.0 urred Ver fth D 946.0 2,305.2 2,397.0 urred Ver th De ft) (u 230.0 1 213.6 2 869.8 2 969.5 2 128.0 2 385.2 2	Depth (usft) 1,230.0 2,975.0 ertical eepth usft) 400.0 (637.0 (906.0 (946.0 (2,305.0 (2,395.0 (2,395	Queen Grayburg Premier San Andres Glorieta Yeso Local (+N/-S (usft) 0.0 0.0 93.5 119.9	Coordinat	₽8 +E/-W (usft) 0.0 -264.1 -338.6	Comment 9-5/8" KOP - Start Begin 52.47 KOP - Start	8*/100' Build * Tangent 10*/100' Build	Diame (") Di (" (((((((((((((()))))))))	b b b c c c c c c c c	Diameter (*) 12-1 8-3 Dip rection	14

· .

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

APPLICATION OF LIME ROCK RESOURCES II-A, L.P. FOR COMPULSORY POOLING, EDDY COUNTY, NEW MEXICO.

)

Case No. 20211

SELF-AFFIRMED STATEMENT OF NOTICE

COUNTY OF SANTA FE

) ss. STATE OF NEW MEXICO)

James Bruce deposes and states:

1. I am over the age of 18, and have personal knowledge of the matters stated herein.

2. I am an attorney for Lime Rock Resources II-A, L.P.

3. Lime Rock Resources II-A, L.P. has conducted a good faith, diligent effort to find the names and correct addresses of the interest owners entitled to receive notice of the application filed herein.

4. Notice of the application was provided to the interest owners, at their last known addresses, by certified mail. Copies of the notice letter and certified return receipts are attached hereto as Attachment A.

5. Lime Rock Resources II-A, L.P. has complied with the notice provisions of Division Rules.

6. I understand that this Self-Affirmed Statement will be used as written testimony in this case. I affirm that my testimony in paragraphs 1 through 5 above is true and correct and is made under penalty of perjury under the laws of the State of New Mexico. My testimony is made as of the date handwritten next to my signature below.

8/22/19 Date:

James Bruce

JAMES BRUCE ATTORNEY AT LAW

POST OFFICE BOX 1056 SANTA FE, NEW MEXICO 87504

369 MONTEZUMA, NO. 213 SANTA FE, NEW MEXICO 87501

(505) 982-2043 (Phone) (505) 660-6612 (Cell) (505) 982-2151 (Fax)

jamesbruc@aol.com

February 28, 2019

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

To: Persons on Exhibit A

Ladies and gentlemen:

Enclosed is a copy of an application for compulsory pooling, filed with the New Mexico Oil Conservation Division by Lime Rock Resources II-A, L.P., regarding a Yeso well in the N/2S/2 of Section 13, Township 18 South, Range 26 East, NMPM, Eddy County, New Mexico.

This matter is scheduled for hearing at 8:15 a.m. on Thursday, March 21, 2019, in Porter Hall at the Division's offices at 1220 South St. Francis Drive, Santa Fe, New Mexico 87505. You are not required to attend this hearing, but as an owner of an interest who may be affected by the application, you may appear and present testimony. Failure to appear at that time and become a party of record will preclude you from contesting this matter at a later date.

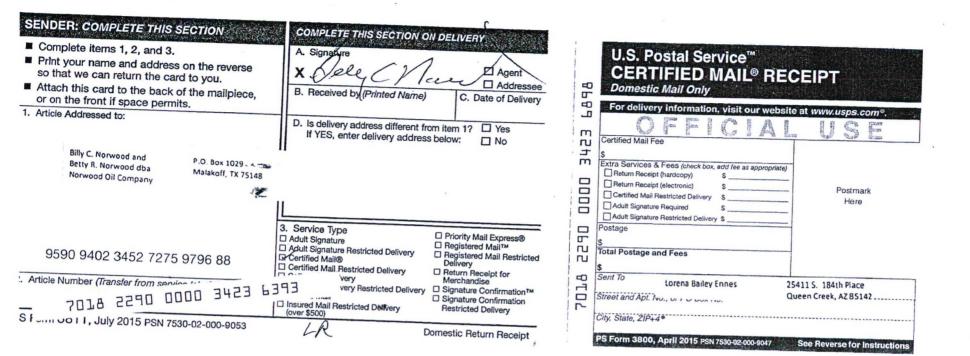
A party appearing in a Division case is required by Division Regulations to file a Pre-Hearing Statement no later than Thursday, March 14, 2019. This statement must be filed with the Division's Santa Fe office at the above address, and should include: The names of the party and his or her attorney; a concise statement of the case; the names of the witnesses the party will call to testify at the hearing; the approximate time the party will need to present its case; and identification of any procedural matters that need to be resolved prior to the hearing

Very truly yours,

James Bruce

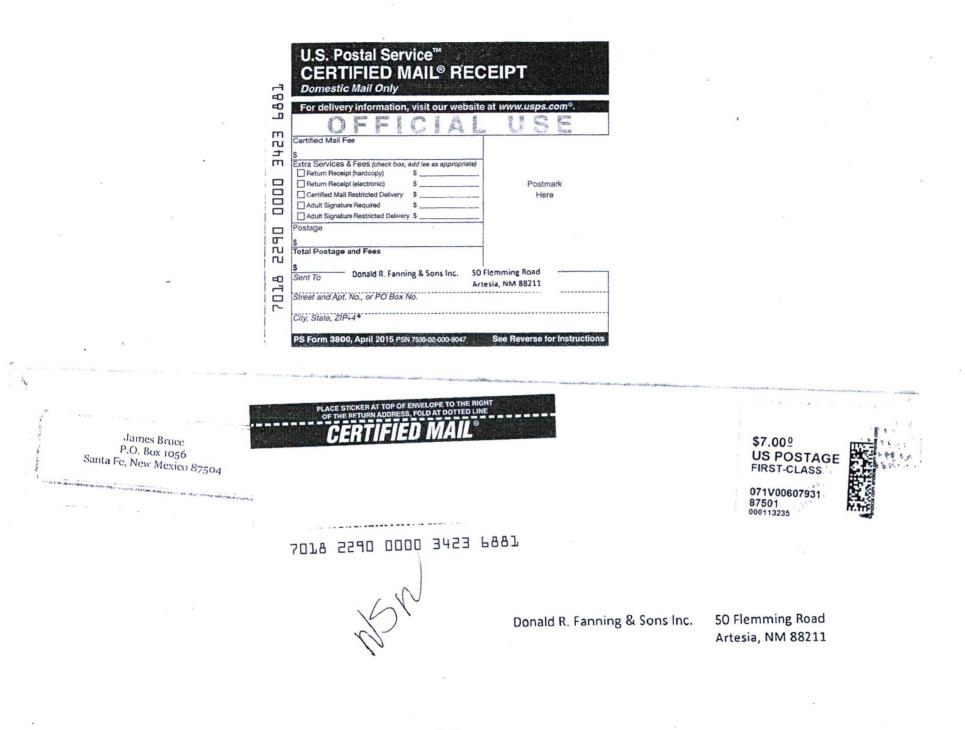
Attorney for Mewbourne Oil Company

ATTACHMEN


Lorena Bailey Ennes 15411 South 184th Place Queen Creek, AZ 85142

Donald R. Fanning & Sons Inc. 50 Flemming Road Artesia, NM 88210 RI

RI & ORRI


ORRI

Billy C. Norwood and Betty R. Norwood, d/b/a Norwood Oil Company P.O. Box 1029 Malakoff, TX 75418

 SENDER: COMPLETE THIS SECTION Complete items 1, 2, and 3. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 1. Article Addressed to: Lorena Bailey Ennes 25411 S. 1844 Face Queen Creek, AZ 851 	
9590 9402 3452 7275 9795 03 2. Articl 7018 2290 0000 3423 PS Form 3811, July 2 SN 7530-02-000-9053	3. Service Type □ Priority Mail Express® □ Adult Signature Restricted Delivery □ Registered Mail™ □ Adult Signature Restricted Delivery □ Registered Mail™ □ Certified Mail® □ Registered Mail Restricted Delivery □ Certified Mail® □ Registered Mail Restricted Delivery □ Certified Mail Restricted Delivery □ Return Receipt for Merchandise □ Insured Mail □ Signature Confirmation™ □ Insured Mail □ Signature Confirmation □ (over \$500) □ CP

NSS 87504>1056

CURRENT-ARGUS

AFFIDAVIT OF PUBLICATION

Ad No. 0001279217

JAMES BRUCE ATTORNEY AT LAW PO BOX 1056

SANTA FE NM 87504

I, a legal clerk of the **Carlsbad Current-Argus**, a newspaper published daily at the City of Carlsbad, in said county of Eddy, state of New Mexico and of general paid circulation in said county; that the same is a duly qualified newspaper under the laws of the State wherein legal notices and advertisements may be published; that the printed notice attached hereto was published in the regular and entire edition of said newspaper and not in supplement thereof on the date as follows, to wit:

03/06/19

Subscribed and sworn before me this 6th of March 2019.

State of WI/County of Brown NOTARY PUBLIC

My Commission Expires

Ad#:0001279217 P O : Tanos Energy Holdings LLC # of Affidavits :0.00

NOTICE

To: Tanos Energy Holdings LLC, Energen Resources Corporation, Terrance W. Mangan, Ann Landrith Holdings LLC, Roscommon LLC, Savage Minerals LLC, Henrietta L. Johnson, Billy C. Norwood, Betty R. Norwood, Norwood Oil Company, New Mexico Oil Corporation, Kathleen V. Waldrop, Andrea L. Lerfald, Jo Etta Kruger, Dorothy Waldrop, CBR Oil Properties LLC, First Century Oil Inc., Michael Harrison Moore as Trustee of the Michael Harrison Moore 2006 Trust, Richard Lyons Moore as Trustee of the Richard Lyons Moore 2006 Trust, Cedar Creek Central LLC, Peregrine Energy LLC, Jeannette Anne Greene, Retha June Dossey, Dana Ray Mosman, Donna R. Nichols, Sidney Nichols, Donald R. Fanning & Sons Inc., Lorena Bailey Ennes, Benjamin Lee Wilson as Trustee of The Wilson Family Trust, R.K. Moore, Lois Vandagriff, Lillian Lorene Busch, Harriet Parish, St. Devote LLC, and Percussion Petroleum Operating LLC., r your heirs, devisees, successors, or assigns: Lime Rock Resources II-A, L.P. has filed two applications with the Oil Conservation Division for orders pooling all mineral interests in the Yeso formation underlying the horizontal spacing units described as follows: (a) Case No. 20210: For a horizontal spacing unit comprised of the S/2N/2 of Section 13, Township 18 South, Range 26 East, NMPM and the SW/NW/4 of Section 18, Township 18 South, Range 27 East, NMPM. The unit will be dedicated to the Kaiser Well No. 18-1H; and (b) Case No. 20211: For a horizontal spacing unit comprised of the N/2S/2 of Section 13, Township 18 South, Range 26 East, NMPM. The unit will be dedicated to the Leavitt Well No. 13-4H.

Also to be considered will be the cost of drilling and completing the wells and the allocation of the cost thereof, as well as actual operating costs and charges for supervision, designation of applicant as operator of the wells, and a 200% charge for the risk involved in drilling and completing the wells. The applications are scheduled to be heard at 8:15 a.m. on March 21, 2019 at the Division's offices at 1220 South St. Francis Drive, Santa Fe, New Mexico 87505. As an interest owner to the well units you have the right to enter an appearance and participate in the cases. Failure to appear will preclude you from contesting these matters at a later date. The attorney for applicant is James Bruce, P.O. Box 1056, Santa Fe, New Mexico 87504. The units are located approximately 5 miles southeast of Atoka, New Mexico. Pub: March 6, 2019

