ENERGY, MINERALS AND NATURAL **RESOURCES DEPARTMENT**

w1

-

ť,

1220 South St. Francis Dr. Santa Fe, New Mexico 87505

P. 10	13695	~	
Can		Revised June	ł

levised	June	10,	2003
---------	------	-----	------

	APPLICATION FOR AUTHORIZATION TO INJECT	
I.	PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Storag	ze
II.	OPERATOR: Chaparral Energy, LLC	
	ADDRESS: 701 Cedar Lake Blvd., Oklahoma City, OK 73114	_
	CONTACT PARTY: Leigh Kuykendall PHONE: (405) 478 87	70
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.	
IV.	Is this an expansion of an existing project? Yes X No If yes, give the Division order number authorizing the project:	_
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.	
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.	
VII.	Attach data on the proposed operation, including:	
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby 	
*VIII	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.	t
IX.	Describe the proposed stimulation program, if any.	
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted)	•
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.	
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.	
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.	
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.	
	NAME: Leigh Kuykendall TITLE: Sr. Engineering Tech	
	SIGNATURE: Leigh Kuflendall DATE: 6/29/05	
	E-MAIL ADDRESS	
*	If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:	

INJECTION WELL DATA SHEET Side 1

Chaparral Energy, LLC OPERATOR: WEL

WELL NAME & NUMBER: State K #1-21				
WELL LOCATION: 1980' FSL & 1980' FWL FOOTAGE LOCATION	K UNIT LETTER S	21 SECTION	11S TOWNSHIP	33E RANGE
WELLBORE SCHEMATIC		<u>WELL CO</u> Surface C	<u>NSTRUCTION DAT.</u> asing	~ 4
- Attached -	Hole Size: 17 1/2"		Casing Size: 13	3/8"
	Cemented with: 400 Top of Cement: surfac	sx.	or	ft Circulated
		Intermediate	e Casing	
	Hole Size: 11"		Casing Size: 8	5/8" -
	Cemented with: 350	SX.	or	ft3
	Top of Cement: 2235'		Method Determined	1: Calculated
	·	Production	ı Casing	
	Hole Size: 8 5/8"		Casing Size: 5	1/2"
	Cemented with: 700	SX.	or	ĥ
	Top of Cement: surface	0	Method Determine	d: Circulated
	Total Depth: 3850'			
		Injection	Interval	
	3850	feet	t to <u>4469 Op</u>	en hole

' ; · ;

(Perforated or Open Hole; indicate which)

DATE IN	SUSPENSE	ENGINEER	LOGGED (N	TYPE	APP NO.	
	<u> </u>		ABOVE THIS LINE FOR DIVISION U	SE ONLY	<u></u>	<u></u>
	ľ	NEW MEXICO OI - Eng 1220 South St. Fr	L CONSERVATIO jineering Bureau - ancis Drive, Santa Fe,	ON DIVISION NM 87505		
		DMINISTRA	rive Applic/	ATION CHI	ECKLIST	
THIS	CHECKLIST IS MA	NDATORY FOR ALL ADMIN WHICH REQUIRI	ISTRATIVE APPLICATIONS E PROCESSING AT THE DIV	FOR EXCEPTIONS TO ISION LEVEL IN SAN	O DIVISION RULES AND TA FE	REGULATIONS
ן <u></u>	VSL-Non-Stan [DHC-Down [PC-Poo [Cor-Qualition]	dard Location] [NSP hole Commingling] l Commingling] [O WFX-Waterficod Expa [SWD-Salt Water fied Enhanced Oil Re	-Non-Standard Prorat [CTB-Lease Commin LS - Off-Lease Storag ansion] [PMX-Press Disposal] [IPI-Injec covery Certification]	ion Unit] [SD-Si gling] [PLC-Po e] [OLM-Off-L sure Maintenanc tion Pressure in [PPR-Positive	multaneous Dedica pol/Lease Comming ease Measurement e Expansion] crease] • Production Respo	xtion] jling] t] vnse]
[1] T	YPE OF APF [A]	PLICATION - Check Location - Spacing U NSL NSI	Those Which Apply f Init - Simultaneous De D SD	or [A] dication		
	Check ([B]	One Only for [B] or [C Commingling - Stora DHC CT	C] ge - Measurement B PLC P	C 🗌 OLS [OLM	
	[C]	Injection - Disposal -	Pressure Increase - Er X 🕱 SWD 🗍	hanced Oil Reco	overy PPR	
	[D]	Other: Specify		·····		
[2] N	OTIFICATIO [A]	DN REQUIRED TO Working, Royalt	: - Check Those Which y or Overriding Royal	n Apply, or Do ty Interest Owner	es Not Apply rs	
	[B]	Offset Operators	, Leaseholders or Surf	ace Owner		
	[C]	X Application is O	ne Which Requires Pu	blished Legal No	otice	
	[D]	Notification and U.S. Bureau of Land Mana	or Concurrent Approv agement - Commissioner of Public	al by BLM or SI	.0	
	[E]	For all of the abo	ove, Proof of Notificati	on or Publicatior	n is Attached, and/or	r,
	[F]	Waivers are Atta	ched			
3] SU	JBMIT ACCU F APPLICAT	URATE AND COM	PLETE INFORMAT	ION REQUIRE	D TO PROCESS	тне түре

4. F.

CERTIFICATION: I hereby certify that the information submitted with this application for administrative [4] approval is accurate and complete to the best of my knowledge. I also understand that no action will be taken on this application until the required information and notifications are submitted to the Division.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

Leigh Kuykendall	Leight	verter Dall	Sr. Engineering Tech	6/30/05
Print or Type Name	Signature		Title	Date

leighk@chaparralenergy.com e-mail Address

C-108 Application for Authorization to Inject State K #1-21 1980' FSL & 1980' FWL of Sec. 21-11S-33E Lea Co., NM

V. Area of Review Map is attached.

۰.

- VI. Wellbore schematics are attached for all wells that penetrate the proposed injection zone within the ¹/₂ mile area of review.
- VII. 1. Proposed average daily injection rate is 750 BW
 - Proposed maximum daily injection rate is 1200 BW
 - 2. Closed system
 - 3. Proposed maximum injection pressure is 2000 psi.
 - 4. Source of injected water is a well being completed in the Penn/Wolfcamp reservoirs. No compatibility problems with San Andres water is expected. A water analysis is attached.
- VIII. The injection zone is the San Andres, a fine grained sucrosic dolomite from 3730' 5100'. The average depth of drinking water is 55' from surface in this area.
- IX. The San Andres injection interval will not require stimulation in order to take water.
- X. Well logs are on file from the original completion of the well.
- XI. Chemical analyses of fresh water wells within the area of review are attached.
- XII. After examining the available engineering and geologic data, no evidence of open faults or other hydrologic connection between the disposal zone and underground sources of drinking water.
- XIII. Proof of Notice is attached.

Project: \\profile\profile\ronb\My Documents\Power Tools v6.0\state k.MDB

Date: 3/25/2005

State K #1-21 Proposed Injection Well Sec. 21-115-33E Lea Co., NM Area of Review Tabulation

Well Name	Operator	Well Type	Well Status	Date Drilled Location	Total Depth	Compl Record Attached?	Schematic Attached?
Bell A Bell B State K #2-21 State K #3-21	Phoenix Hydrocarbons Tipperary Oil & Gas Chaparral Energy, LLC Chaparral Energy, LLC	oi oi as Oi	Producing P&A Shut in Completing	5/24/1966 720' FNL & 1980' FW 12/31/1966 1980' FNL & 660' FW 4/1/1968 1980' FSL & 660' FW 1/20/2005 660' FSL & 1980' FW1	L 10801' L 10250' 10170' 10200'	Yes Yes Yes Yes	Yes Yes Yes Yes

. . .

· , · · .

٠.

÷ .

Analytical Report

<u>Prepared for:</u> Leigh Kuykendall Chaparral Energy 701 Cedar Lake Bld. Oklahoma City, OK 73114

Project: State K #3-21 Project Number: None Given Location: 18 mi. west of Tatum, NM

Lab Order Number: 5G01015

Report Date: 07/12/05

Fresh Water Wells

Chaparral Energy	Project: State K #3-21	Fax: (405) 478-4162
701 Cedar Lake Bld.	Project Number: None Given	Reported:
Oklahoma City OK, 73114	Project Manager: Leigh Kuykendall	07/12/05 15:41

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Section 21	5G01015-01	Water	06/30/05 16:00	07/01/05 14:30
Section 22	5G01015-02	Water	06/30/05 16:10	07/01/05 14:30

Chaparral EnergyProject:State K #3-21Fax: (405) 478-4162701 Cedar Lake Bld.Project Number: None GivenReported:Oklahoma City OK, 73114Project Manager: Leigh Kuykendall07/12/05 15:41

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Section 21 (5G01015-01) Water									
Total Alkalinity	150	4.00	mg/L	2	EG50715	07/07/05	07/07/05	EPA 310.2M	
Chloride	50.7	2.50	Π	5	EG51103	07/08/05	07/08/05	EPA 300.0	
Specific Conductance (EC)	907	5.00	umhos/cm	1	EG50803	07/07/05	07/07/05	EPA 9050A	
Total Dissolved Solids	644	5.00	mg/L	"	EG51209	07/07/05	07/08/05	EPA 160.1	
Sulfate	228	2.50		5	EG51103	0 7/08/0 5	07/08/05	EPA 300.0	
Section 22 (5G01015-02) Water									
Total Alkalinity	128	4.00	mg/L	2	EG50715	07/07/05	07/07/05	EPA 310.2M	
Chloride	49.0	2.50	"	5	EG51103	07/08/05	07/08/05	EPA 300.0	
Specific Conductance (EC)	780	5.00	umhos/cm	1	EG50803	07/07/05	07/07/05	EPA 9050A	
Total Dissolved Solids	497	5.00	mg/L	11	EG51209	07/07/05	07/08/05	EPA 160.1	
Sulfate	171	2.50		5	EG51103	07/08/05	07/08/05	EPA 300.0	

Environmental Lab of Texas

٠.

•

Chaparral Energy 701 Cedar Lake Bld. Oklahoma City OK, 73114

Project: State K #3-21 Project Number: None Given

Project Manager: Leigh Kuykendall

Fax: (405) 478-4162 Reported:

07/12/05 15:41

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

	_	Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	M	lethod	Notes
Section 21 (5G01015-01) Wat	ler									
Calcium	116	0.500	mg/L	50	EG50802	07/08/05	07/08/05	EPA	6010B	
Magnesium	18.2	0.0100		10	•	"	R		9	
Potassium	4,56	0.0500	•	1	"	*	"			
Sodium	66.7	0.100		10	a	н	н		n	
Mercury	ND	0.00100	*	2	EG50807	07/08/05	07/08/05	EPA	7470A	
Aluminum	ND	0.0150	и	1	EG50708	07/07/05	07/07/05	EPA	6010B	
Arsenic	ND	0.00800	я	"	м		"		"	
Barium	0.0303	0.00100	•	"	٠		"		"	
Boron	0.187	0.00500	•		n				n	
Cadmium	0.00100	0.00100			"				"	
Chromium	ND	0.00500	•		n	n	"		•	
Cobalt	ND	0.00200		"	n	n	11		n	
Copper	0.00450	0.00200		н	11		"			
Iron	ND	0.00200	u	n	n	n			*	
Lead	J [0.00280]	0.0110	n	u		u	u			J
Manganese	0.00130	0.00100		•		u	15		n	
Molybdenum	ND	0.00200				н	n		"	
Nickel	ND	0.00600			н	*	u			
Selenium	0.0216	0.00400	ч		"		"			
Silver	ND	0.00500	•	.,	"	0			11	
Zinc	0.00330	0.00100	"	"	a	*	n		Π	
Section 22 (5G01015-02) Wate	er									
Calcium	82.0	0.100	mg/L	10	EG50802	07/08/05	07/08/05	EPA	6010B	
Magnesium	14.9	0.0100				*	n		4	
Potassium	3.62	0.0500		1					n	
Sodium	55,2	0.100		10	"	"				
Mercury	ND	0.00100		2	EG50807	07/08/05	07/08/05	EPA	7470A	
Aluminum	ND	0.0150	"	1	EG50708	07/07/05	07/07/05	EPA	6010B	
Arsenic	0.0125	0.00800					"			
Barium	0.0370	0.00100	n			11				
Boron	0.177	0.00500		"		п			•	
Cadmium	ND	0.00100	n	"	D	ti	ч		1	
Chromium	ND	0.00500		11		u				
Cobalt	ND	0.00200	-	"		u		•	•	
Copper	J [0.00120]	0.00200	٠	n			a	*		J
Iron	ND	0.00200	"	u	u	и	19	1	1	-
Lead	J [0.00310]	0.0110	"		n	н				J

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

.

• .

•

Chaparral Energy	Project: State K #3-21	Fax: (405) 478-4162
701 Cedar Lake Bld.	Project Number: None Given	Reported:
Oklahoma City OK, 73114	Project Manager: Leigh Kuykendall	07/12/05 15:41

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Section 22 (5G01015-02) Water									
Manganese	ND	0.00100	mg/L	1	EG50708	07/07/05	07/07/05	EPA 6010B	
Molybdenum	ND	0.00200	a	vi	"	*	n	n	
Nickel	ND	0.00600				n	n	81	
Selenium	0.0266	0.00400	н	۳	u			N	
Silver	ND	0.00500	м	н	n		"	*	
Zinc	0.00420	0.00100		и	w	n	n	11	

Environmental Lab of Texas

Chaparral Energy	Project: State K #3-21	Fax: (405) 478-4162
701 Cedar Lake Bld.	Project Number: None Given	Reported:
Oklahoma City OK, 73114	Project Manager: Leigh Kuykendall	07/12/05 15:41

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike		Source		%REC		RPD	
Analyte	Result	Limit	Units	Level		Result	%REC	Limits	RPD	Limit	Notes
Batch EG50715 - General Prepa	ration (WetChem)										
Blank (EG50715-BLK1)				Prepared	&	Analyzed:	07/07/05				
Total Alkalinity	ND	2.00	mg/L								
Duplicate (EG50715-DUP1)	Source:	5G0101	15-01	Prepared	&	Analyzed:	07/07/05				
Total Alkalinity	152	4.00	mg/L			150			1.32	20	
Reference (EG50715-SRM1)				Prepared	&	Analyzed:	07/07/05				
Bicarbonate Alkalinity	230		mg/L	200		·····	115	80-120			
Batch EG50803 - General Prepa	ration (WetChem)										
Calibration Check (EG50803-CCV1)				Prepared	&	Analyzed:	07/08/05				
Specific Conductance (EC)	1420		umhos/cm	1410			101	80-120			
Duplicate (EG50803-DUP1)	Source:	5G0101	5-01	Prepared	&	Analyzed:	07/07/05				
Specific Conductance (EC)	909	5.00	umhos/cm			907			0.220	20	
Batch EG51103 - General Prepa	ration (WetChem)			. <u> </u>							
Blank (EG51103-BLK1)				Prepared	&	Analyzed:	07/08/05				
Chloride	ND	0.500	mg/L								
Sulfate	ND	0.500	*								
LCS (EG51103-BS1)				Prepared	&	Analyzed:	07/08/05				
Chloride	10.7		mg/L	10.0			107	80-120			
Sulfate	9,90		H	10.0			99.0	80-120			

Chaparral Energy	Project: State K #3-21	Fax: (405) 478-4162
701 Cedar Lake Bld.	Project Number: None Given	Reported:
Oklahoma City OK, 73114	Project Manager: Leigh Kuykendall	07/12/05 15:41

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG51103 - General Prepara	tion (WetChem)									
Calibration Check (EG51103-CCV1)				Prepared a	& Analyze	:d: 07/08/0	5			
Sulfate	10.4		mg/L	10.0		104	80-120		· · · · · · · · · · · · · · · · · · ·	
Chloride	10.9		н	10.0		109	80-120			
Duplicate (EG51103-DUP1)	Source	: 5G01015	-01	Prepared a	& Analyze	d: 07/08/0:	5			
Sulfate	231	2.50	mg/L		228			1.31	20	
Chloride	52.9	2.50	n		50.7			4.25	20	
Batch EG51209 - General Prepara	tion (WetChem)									
Blank (EG51209-BLK1)				Prepared:	07/07/05	Analyzed:	07/08/05			
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EG51209-DUP1)	Source	5G01015	-01	Prepared:	07/07/05	Analyzed:	07/08/05		÷	
Total Dissolved Solids	609	5.00	mg/L		644			5.59	20	

۰.

•

Chaparral Energy	Project: State K #3-21	Fax: (405) 478-4162
701 Cedar Lake Bld.	Project Number: None Given	Reported:
Oklahoma City OK, 73114	Project Manager: Leigh Kuykendall	07/12/05 15:41

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC	2000	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG50708 - 6010B/No Digestion										
Blank (EG50708-BLK1)				Prepared &	Analyzed	: 07/07/05	i			
Atuminum	ND	0.0150	mg/L							
Arsenic	ND	0.00800	-							
Barium	ND	0.00100	*							
Boron	ND	0.00500	"							
Cadmium	ND	0.00100								
Chromium	ND	0.00500	11							
Cobalt	ND	0.00200	"							
Copper	ND	0.00200								
Iron	ND	0.00200								
Lead	ND	0.0110								
Manganese	ND	0.00100								
Molybdenum	ND	0.00200								
Nickel	ND	0.00600								
Selenium	ND	0.00400								
Silver	ND	0.00500	8							
Zinc	ND	0.00100	4							
LCS (EG50708-BS1)				Prepared &	Analyzed	07/07/05				
Aluminum	1.36	0.0150	mg/L	1.50		90.7	85-115			······································
Arsenic	0.881	0.00800		0.800		110	85-115			
Barium	0.230	0.00100	4	0.200		115	85-115			
Boron	0.981	0.00500		1.00		98.1	85-115			
Cadmium	0.208	0.00100	**	0.200		104	85-115			
Chromium	0.206	0.00500	"	0.200		103	85-115			
Cobalt	0.183	0.00200	*	0.200		91.5	85-115			
Copper	0.195	0.00200	н	0.200		97.5	85-115			
Iron	0.202	0.00200	"	0.200		101	85-115			
Lead	1.02	0.0110	"	1.10		92.7	85-115			
Manganese	0.201	0.00100	17	0.200		100	85-115			
Molybdenum	0.212	0.00200	n	0.200		106	85-115			
Nickel	0.568	0.00600	11	0.600		94.7	85-115			
Selenium	0.404	0.00400		0.400		101	85-115			
Silver	0.102	0.00500	"	0.100		102	85-115			
Zinc	0.216	0.00100		0.200		108	85-115			

Environmental Lab of Texas

· · · ·

Chaparral Energy 701 Cedar Lake Bld. Oklahoma City OK, 73114

٬. 、

• .

Project: State K #3-21 Project Number: None Given Project Manager: Leigh Kuykendall

Fax: (405) 478-4162

Reported: 07/12/05 15:41

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

	Paruli	Reporting	1 Inite	Spike	Source	WREC	%REC	BBD	RPD	Neter
Analyte	Kesuit	Limit	Units	Level	Kesuit	76KEC		KPD	Lumit	Notes
Batch EG50708 - 6010B/No Digestion										
Calibration Check (EG50708-CCV1)				Prepared	& Analyzed	: 07/07/05				
Aluminum	0.936	<u> </u>	mg/L	1.00		93.6	90-110			
Arsenic	0.990			1.00		99.0	90-110			
Barium	1.03		15	1.00		103	90-110			
Boron	0.996			1.00		99.6	90-110			
Cadmium	1.03			1.00		103	90-110			
Chromium	1.02		14	1.00		102	90-110			
Cobalt	0.992		"	1.00		99.2	90-110			
Copper	1.01		-	1.00		101	90-110			
Lead	0.929		•	1.00		92.9	90-110			
Iron	1.00			1.00		100	90-110			
Manganese	0.988			1.00		98.8	90-110			
Molybdenum	1.04		н	1.00		104	90-110			
Nickel	0.957		*	1.00		95.7	90-110			
Selenium	0.994			1.00		99.4	90-110			
Silver	0.520			0.500		104	90-110			
Zinc	0.914		-	1.00		91.4	90-110			
Matrix Spike (EG50708-MS1)	Sou	rce: 5G01015	-01	Prepared	& Analyzed:	07/07/05				
Aluminum	1.48	0.0150	mg/L	1.50	ND	98.7	75-125			
Arsenic	0,976	0.00800		0.800	ND	122	75-125			
Barium	0.242	0.00100		0.200	0.0303	106	75-125			
Boron	1.18	0.00500	п	1.00	0.187	99.3	75-125			
Cadmium	0.204	0.00100	**	0.200	0.00100	102	75-125			
Chromium	0,202	0.00500		0.200	ND	101	75-125			
Cobalt	0.195	0.00200	"	0.200	ND	97.5	75-125			
Copper	0.206	0.00200		0.200	0.00450	101	75-125			
Lead	1.16	0.0110	11	1.10	0.00280	105	75-125			
Iron	0.197	0.00200	"	0.200	ND	98.5	75-125			
Manganese	0.199	0.00100	*	0.200	0.00130	98.8	75-125			
Molybdenum	0.206	0.00200		0.200	ND	103	75-125			
Nickel	0.614	0.00600		0.600	ND	102	75-125			
Selenium	0.487	0.00400		0.400	0.0216	116	75-125			
Silver	0.119	0.00500		0.100	ND	119	75-125			
Zinc	0.240	0.00100		0.200	0.00330	118	75-125			

Chaparral Energy	Project: State K #3-21	Fax: (405) 478-4162
701 Cedar Lake Bld.	Project Number: None Given	Reported:
Oklahoma City OK, 73114	Project Manager: Leigh Kuykendali	07/12/05 15:41

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG50802 - 6010B/No Digestion											
Blank (EG50802-BLK1)				Prepared	&	Analyzed:	07/08/05	;			
Calcium	ND	0.0100	mg/L								
Magnesium	ND	0.00100	-								
Potassium	ND	0.0500									
Sodium	ND	0.0100	۳								
Calibration Check (EG50802-CCV1)				Prepared	&	Analyzed:	07/08/05	1			
Calcium	2.01		mg/L	2,00			100	85-115			
Magnesium	2.24			2.00			112	85-115			
Potassium	1.77			2.00			88.5	85-115			
Sodium	1.85		"	2.00			92.5	85-115			
Duplicate (EG50802-DUP1)	Sou	rce: 5G01015	-01	Prepared	&	Analyzed:	07/08/05				
Calcium	117	0.500	mg/L			116			0.858	20	••• · ••• • • • • • • •
Magnesium	18.1	0.0100	n			18.2			0.551	20	
Potassium	4.40	0.0500	μ			4.56			3.57	20	
Sodium	61.8	0.100	u.			66.7			7.63	20	
Batch EG50807 - EPA 7470A											
Blank (EG50807-BLK1)				Prepared	&	Analyzed:	07/08/05				
Mercury	ND	0.00100	mg/L						· · · · · · · ·		
LCS (EG50807-BS1)				Prepared	&	Analyzed:	07/08/05				
Mercury	0.00170	0.000500	mg/L	0.00200			85.0	85-115			
Calibration Check (EG50807-CCV1)				Prepared	&	Analyzed:	07/08/05				
Mercury	0.00103	······	mg/L	0.00100			103	90-110			

Environmental Lab of Texas

·• ,

·. .

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Chaparral Energy 701 Cedar Lake Bld. Oklahoma City OK, 73114	Energy Project: State K #3-21 r Lake Bld. Project Number: None Given City OK, 73114 Project Manager: Leigh Kuykendall									
	Total Metals	by EPA Environm	/ Stand	lard Me Lab of '	thods - Fexas	Quality	y Contr	ol		
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG50807 - EPA 7470A Matrix Spike (EG50807-MS1)	Sou	rce: 5G01015		Prepared	& Analyze	d: 07/08/0	5			

Matrix Spike Dup (EG50807-MSD1)	Source	: 5G01015-	02	Prepared & Analyzed: 07/08	/05		
Метситу	0.00206	0.000500	mg/L	ND	75-125	2.87	20

mg/L

0.000500

0.00212

ND

75-125

•

Mercury

Chaparral 701 Cedar	Energy Lake Bld.	Project: State K #3-21 Project Number: None Given	Fax: (405) 478-4162 Reported:
Oklahoma	City OK, 73114	Project Manager: Leigh Kuykendall	07/12/05 15:41
<u> </u>		Notes and Definitions	
J	Detected but below the Reporting Limit; there	fore, result is an estimated concentration (CLP J-Flag).	
DET	Analyte DETECTED		
ND	Analyte NOT DETECTED at or above the reporting	g limit	
NR	Not Reported		
dry	Sample results reported on a dry weight basis		
RPD	Relative Percent Difference		
LCS	Laboratory Control Spike		
MS	Matrix Spike		
Dup	Duplicate		

Raland K Junit Report Approved By: 7/12/2005 Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

· • .

٠.

. .

Analytical Report

Prepared for:

Herman Steen Chaparral Energy, LLC (Odessa) 11908 W Hwy. 80 E Odessa, TX 79765

Project: Permit Water Project Number: State K 3-21 Location: None Given

Lab Order Number: 5G28004

Report Date: 08/09/05

ſ	Chaparral Energy, LLC (Odessa)	Project: Permit Water	Fax: (432) 561-9467
	11908 W Hwy. 80 E	Project Number: State K 3-21	Reported:
	Odessa TX, 79765	Project Manager: Herman Steen	08/09/05 16:12

ANALYTICAL REPORT FOR SAMPLES

• • •

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Produced Water	5G28004-01	Water	07/19/05 00:00	07/21/05 13:55

Chaparral Energy, LLC (Odessa)
11908 W Hwy. 80 E
Odessa TX, 79765

Project: Permit Water Project Number: State K 3-21 Project Manager: Herman Steen

Reported: 08/09/05 16:12

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Produced Water (5G28004-01) Water									
Carbonate Alkalinity	ND	0.100	mg/L	1	EH50502	07/28/05	07/28/05	EPA 310.2M	O-04
Bicarbonate Alkalinity	76.0	2.00				u			O-04
Hydroxide Alkalinity	ND	0.100	11		и	11	v	u	O-04
Chloride	63800	5.00	н	я	EH50901	08/08/05	08/08/05	EPA 325.3M	
рН	5.95		pH Units		EG52818	07/28/05	07/28/05	EPA 150.1	
Total Dissolved Solids	95300	20.0	mg/L	4	EH50306	08/02/05	08/03/05	EPA 160.1	
Sulfate	821	50.0	It	100	EH50312	08/03/05	08/03/05	EPA 300.0	

Up Life of part

Environmental Lab of Texas

Chaparral Energy, LLC (Odessa)	Project: Permit Water	Fax: (432) 561-9467
11908 W Hwy. 80 E	Project Number: State K 3-21	Reported:
Odessa TX, 79765	Project Manager: Herman Steen	08/09/05 16:12

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte Produced Water (5G28004-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Calcium	4800	10.0	mg/L	1000	EH50405	08/04/05	08/04/05	EPA 6010B	<u></u>
Magnesium	881	0.200	u	200	u	U	u	68	
Potassium	120	2.50	•	50			u		
Sodium	26800	100		10000	**	u	н	u	

Environmental Lab of Texas

• • •

Chaparral Energy, LLC (Odessa)	Project: Permit Water							Fax: (432) 561-9467 Reported:		
11908 W Hwy. 80 E	Project Number: State K 3-21									
Odessa TX, 79765 Project Manager: Herman Steen									08/09/0	5 16:12
General C	hemistry Par	ameters by	/ EPA /	Standard	l Metho	ds - Qua	ality Cont	rol		
		Environn	nental I	Lab of Te	xas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG52818 - General Preparation (WetChem)									
Calibration Check (EG52818-CCV1)				Prepared 8	k Analyzed	07/28/05				
pH	6.99		pH Units	7.00		99.9	97.5-102.5			
Duplicate (EG52818-DUP1)	Sou	urce: 5G28004	-01	Prepared 8	k Analyzed	07/28/05				
pH	5,97		pH Units		5.95			0.336	2.5	
Batch EH50306 - General Preparation (WetChem)									
Blank (EH50306-BLK1)				Prepared: (08/02/05 A	nalyzed: 0	8/03/05			
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EH50306-DUP1)	Sou	arce: 5G28004	-01	Prepared: (08/02/05 A	nalyzed: 0	8/03/05			
Total Dissolved Solids	96300	20.0	mg/L		95300			1.04	5	
Batch EH50312 - General Preparation (WetChem)									
Blank (EH50312-BLK1)	_			Prepared 8	k Analyzed	08/03/05				
Sulfate	ND	0.500	mg/L							
LCS (EH50312-BS1)				Prepared &	z Analyzed:	08/03/05				
Sulfate	9,66		mg/L	10.0		96.6	80-120			
Calibration Check (EH50312-CCV1)				Prepared &	Analyzed:	08/03/05				
Sulfate	8.35		mg/L	10.0		83.5	80-120			
Duplicate (EH50312-DUP1)	Sou	ırce: 5G29003-	-01	Prepared &	Analyzed:	08/03/05				
Sulfate	748	25.0	mg/L		743			0.671	20	

Environmental Lab of Texas

, ,

• • .

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 7

Chaparral Energy, LLC (Odessa)	ermit Water					Fax: (432)	561-9467			
11908 W Hwy. 80 E		Project Number: State K 3-21								
Odessa TX, 79765		Project Mai	nager: H	erman Steen					08/09/05 16:12	
General	Chemistry Para	meters by	EPA /	Standard	Metho	ds - Qua	lity Con	trol	•	
		Environn	nental]	Lab of Te	kas					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH50502 - General Preparation	ı (WetChem)									
Blank (EH50502-BLK1)				Prepared &	Analyzed:	07/28/05				
Total Alkalinity	ND	2.00	mg/L							
Duplicate (EH50502-DUP1)	Sour	ce: 5G20026-	-02	Prepared &	Analyzed:	07/28/05				
Total Alkalinity	94.0	2.00	mg/L		94.0			0.00	20	
Reference (EH50502-SRM1)				Prepared &	: Analyzed:	07/28/05				
Bicarbonate Alkalinity	230	2.00	mg/L	200		115	80-120			
Batch EH50901 - General Preparation	n (WetChem)									
Blank (EH50901-BLK1)				Prepared &	: Analyzed:	08/08/05				
Chloride	ND	5.00	mg/L							·····
Duplicate (EH50901-DUP1)	Sour	ce: 5G28004-	-01	Prepared &	: Analyzed:	08/08/05				
Chloride	63800	5.00	mg/L		63800			0.00	20	
Reference (EH50901-SRM1)				Prepared &	: Analyzed:	08/08/05				
Chloride	4960		mg/L	5000		99.2	80-120			

•••••

Chaparral Energy, LLC (Odessa)	
11908 W Hwy. 80 E	
Odessa TX, 79765	

۰ ،

Project: Permit Water Project Number: State K 3-21 Project Manager: Herman Steen

Reported: 08/09/05 16:12

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
			Prepared &	Analyzed:	08/04/05				
ND	0.0100	mg/L			··				
ND	0.00100	u							
ND	0.0500								
ND	0.0100								
			Prepared &	Analyzed:	08/04/05				
1.75		mg/L	2.00		87.5	85-115			
1.98			2.00		99.0	85-115			
1.83		11	2.00		91.5	85-115			
1.70		ų	2.00		85.0	85-115			
Sou	ırce: 5G28004-	01	Prepared &	: Analyzed:	08/04/05				
4800	10.0	mg/L		4800	· · · · · · · · · · · · · · · · · · ·		0.00	20	
854	0.200	н		881			3.11	20	
122	2.50	"		120			1.65	20	
25900	100			26800			3.42	20	
	Result ND ND ND ND 1.75 1.98 1.83 1.70 Sou 4800 854 122 25900	Reporting Limit ND 0.0100 ND 0.00100 ND 0.0500 ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0100 I.75 1.98 1.83 1.70 Source: 5G28004- 4800 10.0 854 0.200 122 2.50 25900 100	Reporting Limit Units ND 0.0100 mg/L ND 0.00100 " ND 0.0500 " ND 0.0100 " ND 0.0500 " ND 0.0100 " 1.75 mg/L " 1.83 " 1 1.70 " " Source: 5G28004-01 4800 10.0 mg/L 854 0.200 " 122 2.50 " 25900 100 "	Reporting Limit Spike Units Result Limit Units Level Prepared & Prepared & Prepared & ND 0.0100 mg/L Prepared & ND 0.0500 " Prepared & ND 0.0100 " Prepared & 1.75 mg/L 2.00 2.00 1.83 " 2.00 1.83 " 2.00 1.70 " 2.00 1.70 2.00 1.70 1.200 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00 1.70 2.00	Reporting Result Spike Limit Spike Level Source Result ND 0.0100 mg/L Prepared & Analyzed: ND 0.00100 " ND ND 0.0500 " Prepared & Analyzed: ND 0.0100 " Prepared & Analyzed: ND 0.0100 " Prepared & Analyzed: 1.75 mg/L 2.00 1.83 " 2.00 1.70 " 2.00 1.70 " 2.00 Source: SG28004-01 Prepared & Analyzed: 4800 10.0 mg/L 4800 854 0.200 " 881 122 2.50 " 120 25900 100 " 26800	Reporting Limit Spike Limit Source Result Source Result Source Result Source Result Source Result Source Result Source %REC ND 0.0100 mg/L Prepared & Analyzed: 08/04/05 ND 0.00100 " Prepared & Analyzed: 08/04/05 ND 0.0100 " Prepared & Analyzed: 08/04/05 1.75 mg/L 2.00 87.5 1.98 " 2.00 99.0 1.83 " 2.00 91.5 1.70 " 2.00 85.0 Source: 5G28004-01 Prepared & Analyzed: 08/04/05 4800 10.0 mg/L 4800 881 122 2.50 " 120 26800	Reporting Limit Spike Limits Source Result %REC %REC Result Limits Units Level Result %REC Limits Prepared & Analyzed: 08/04/05 ND 0.0100 mg/L <td>Reporting Result Spike Limit Source Result %REC %REC MREC RPD Prepared & Analyzed: 08/04/05 ND 0.0100 mg/L</td> <td>Reporting Limit Spike Limit Source Result %REC %REC %REC Limits RPD RPD RPD Limit ND 0.0100 mg/L</td>	Reporting Result Spike Limit Source Result %REC %REC MREC RPD Prepared & Analyzed: 08/04/05 ND 0.0100 mg/L	Reporting Limit Spike Limit Source Result %REC %REC %REC Limits RPD RPD RPD Limit ND 0.0100 mg/L

Environmental Lab of Texas

Chaparral Energy, LLC (Odessa)Project:Permit WaterFax: (432) 561-946711908 W Hwy. 80 EProject Number:State K 3-21Reported:Odessa TX, 79765Project Manager:Herman Steen08/09/05 16:12

Notes and Definitions

O-04	This sample was analyzed outside the EPA recommended holding time
DET	Analyte DETECTED

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Just Date:

8/9/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

March 1, 2006

State of New Mexico Energy, Minerals and Natural Resources Dept. Oil Conservation Division 1220 South Saint Francis Drive Santa Fe, NM 87505

Attn: Florene Davidson

Re: Application for Salt Water Disposal Request for Hearing State K #1-21, API No. 30-025-22049 Unit K, Sec. 21-11S-33E Lea Co., NM

Case 13693

Dear Ms. Davidson:

Please accept this letter as a request to place the above referenced Application to Inject onto a Division hearing docket to present the case to a hearing examiner. Chaparral Energy applied to convert the State K #1-21 to an injection well on August 12, 2005. The State of New Mexico received an objection letter from the surface tenant, Weldon L. Dallas, on July 18, 2005. Therefore, in order to proceed with this application we respectfully request a hearing date. I have enclosed a copy of the original application that was filed per Ms. Davidson's request.

If you have any questions or require any further information, please contact me at (405)426-4451 or <u>traci@chaparralenergy.com</u>. Thank you.

Respectfully,

aci Commin

Traci Cornish Engineering Tech

Enclosures tc

cc: Weldon L. Dallas HC-12 Box 46 Tatum, NM 88267

> Phoenix Hydrocarbons Operating Corporation PO Box 3638 Midland, TX 79702

WATER ANALYSIS REPORT

Company Address Lease Well Sample	y : Chaparral Energ s : : State K 3-21 : Pt. : Well Head	Ŷ	Date Date Sampled Analysis No.	: !: :	08/08/05 07/19/05 5G080505	5	
E						+/1	gh_
	ANALISIS		mg/ 1			- medir	112 .
n		0					\ ⁰ 9 ⁴
2	ט בים איז דים ב שנים בים בים בים בים בים בים בים בים בים ב	• ³					
<u>د.</u> ٦	Specific Gravity N	R					1 de
4	Total Dissolved Solids		105002.3				
5.	Suspended Solids		NR				Wnorn.
6.	Dissolved Oxygen		NR				$C \setminus V$
7.	Dissolved CO2		NR				
8.	Oil In Water		NR				V
11.	Bicarbonate	HCO3	76.0	I	HCO3	1.2	
12.	Chloride	C1	63800.0	(C1 1	799.7	
13.	Sulfate	SO4	821.0	5	304	17.1	
14.	Calcium	Ca	4800.0	(Ca	239.5	
15.	Magnesium	Mg	881.0	P	ſg	72.5	
16.	Sodium (calculated)	Na	34624.3	1	la 1	.506.1	
17.	Iron	Fe	0.0				
18.	Barium	Ba	0.0				
19.	Strontium	Sr	0.0				
20.	Total Hardness (CaCO3)		0.0				

PROBABLE MINERAL COMPOSITION

*milli equivalents per Liter	Compound	Equiv wt	X meg/L	= mg/L
ф			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
240 *Ca < *HCO3 1	Ca(HCO3)2	81.0	1.2	101
>	CaSO4	68.1	17.1	1164
72 *Mg> *SO4 17	CaC12	55.5	221.2	12273
/ /	Mg (HCO3) 2	73.2		
1506 *Na> *C1 1800	MgSO4	60.2		
ф	MgC12	47.6	72.5	3450
Saturation Values Dist. Water 20 C	NaHCO3	84.0		
CaCO3 13 mg/L	Na2504	71.0		
CaSO4 * 2H2O 2090 mg/L	NaC1	58.4	1506.1	88014
BaSO4 2.4 mg/L				

REMARKS:

•

Respectfully submitted, Sandra S

and the second second

SCALE TENDENCY REPORT

Company	: Chaparral Energy	Date	: 08/08/05
Address	:	Date Sampled	: 07/19/05
Lease	: State K 3-21	Analysis No.	: 5G080505
Well	:	Analyst	: Sandra S
Sample Pt.	: Well Head	-	

. . . .

STABILITY INDEX CALCULATIONS (Stiff-Davis Method) CaCO3 Scaling Tendency

S.I.	-	-0.8	at	80	deg.	म	or	27	deg.	С
S.I.		-0.6	at	120	deg.	F	or	49	deg.	С
S.I.	77 .	-0.4	at	180	deg.	F	or	82	deq.	С

CALCIUM SULFATE SCALING TENDENCY CALCULATIONS (Skillman-McDonald-Stiff Method) Calcium Sulfate

S	-	2892	at	80	deg.	F	or	27	deg	С
S	22	3126	at	120	deg.	F	or	49	deg	С
S	7	3101	at	180	deg.	7	or	82	deg	С

Respectfully submitted, Sandra S

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	apaval I	nergy
Date/Time:	7/21/05	2:00
Order #:	54210 59	28004
Initials:	CR.	

Sample Receipt Checklist

Sample Receipt Checklist								
Temperature of container/cooler?	Yes	No	24.0 C					
Shipping container/cooler in good condition?	Yes	No	none					
Custody Seals intact on shipping container/cooler?	Yes	No	diol present					
Custody Seals intact on sample bottles?	Yes	No	Not present					
Chain of custody present?	1 YES	No						
Sample Instructions complete on Chain of Custody?	YB	No						
Chain of Custody signed when relinquished and received?	(es)	No						
Chain of custody agrees with sample label(s)	Yes	No						
Container labels legible and intact?	(CES)	No						
Sample Matrix and properties same as on chain of custody?	(শ্ৰু	No						
Samples in proper container/bottle?	1 COS	No						
Samples properly preserved?	(73)	No						
Sample bottles intact?	(B)	No						
Preservations documented on Chain of Custody?	(G)	No						
Containers documented on Chain of Custody?	C	No						
Sufficient sample amount for indicated test?	(69)	No						
All samples received within sufficient hold time?	Yes	No						
VOC samples have zero headspace?	Yes	No	Not Applicable					

Other observations:

Contact Person: - Hermun Date/Time: <u>1/21/05 1155</u> Contacted by: <u>Umic</u> Regarding:
On ices
Corrective Action Taken:
Whenlif testing for metals need to be on ice.
Client wants to proceed with analysis.

AFFIDAVIT OF PUBLICATION

State of New Mexico, County of Lea.

I, KATHI BEARDEN

Publisher

of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, do solemnly swear that the clipping attached hereto was published once a week in the regular and entire issue of said paper, and not a supplement thereof for a period.

of_____1

weeks.

_____ 2005

Beginning with the issue dated

July 3 2005 and ending with the issue dated

July 3

alhi larden

Publisher Sworn and subscribed to before

me this <u>6th</u> day of

July 2005 Notary Public. My Commission expires February 07, 2009 (Seal) OFFICIAL SEAL DORA MONTZ NOTARY PUBLIC STATE OF NEW MEXICO

My Commission Expires:

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937, and payment of fees for said publication has been made.

02105572000 67531631

Chaparral Energy, Inc. 701 Cedar Lake Blvd. OKLAHOMA CITY, OK 73114-7806

7001 0360 0003 5081 8130

June 30, 2005

Weldon Dallas Weldon L. & Edith Dallas Living Trust HC 12, Box 46 Tatum, NM 88267

Re: Application to Inject State K #1-21 Sec. 21-11S-33E Lea Co., NM

Gentlemen:

Enclosed for your review is a copy of Chaparral Energy, LLC's, application to convert the above referenced well into a salt water disposal. A requirement of the New Mexico Oil & Gas Conservation Division is that all surface owners and offset operators be notified of the application.

Any objections must be submitted in writing to the NMOCD, 1220 S. St. Francis Dr., Santa Fe, NM, 87505. Objections must be received within 15 days of receipt of this letter.

If you have questions or need further information regarding this request, please contact Ron Brown, Operations Engineer, at (405) 478-8770.

Sincerely,

CHAPARRAL ENERGY, LLC

infondal

Leigh Kuykendall Sr. Engineering Tech

	U.S. Postal So CERTIFIED (Domestic M	ervic M A ail O	e NLR n/y: N	ECE	EIPT suran	ce Cove	rage f	Provid	ed)
OETQ	OFF		C		A	L.	U	S	
5081	Posta Certified F		\$			-			
E000	Return Receipt F. (Endorsement Requin Restricted Delivery F. (Endorsement Require	e d) e d)					Posti He	mark Ine	
09E0	Total Postage & Fee	= [\$ e	; [Ax	n	D	n DO a			
1007	Street, Apt. No.; or PO Box No. City, State, ZIP+ 4	A	2 l et u	2	- H	804 4 NM	6	87[.7
	PS Form 3800, Jani	ary 2	001		a da	See Rever	se for	Instruc	tions

701 Cedar Lake Blvd., Oklahoma City, Oklahoma 73114 • telephone: 405-478-8770 • facsimile: 405-478-1947 🛒

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailplece, or on the front if space permits. 	A. Received by (Please Print Clearly) B. Date of Delivery W L Dallag 7/12/05 C. Signature X M L Dalla G 17/12/05 C. Signature D date of Delivery C. Signature C. Signature
1. Article Addressed to:	If YES, enter delivery address below:
Weldon Dallas	
He 12 Box 46	
Tatum NM 88267	3. Service Type A Certified Mail Express Mail Registered Return Receipt for Merchandise insured Mail C.O.D.
	4. Restricted Delivery? (Extra Fee)

June 30, 2005

Phoenix Hydrocarbons Operating Corporation PO Box 3638 Midland, TX 79702

Application to Inject Re: State K #1-21 Sec. 21-11S-33E Lea Co., NM

Gentlemen:

Enclosed for your review is a copy of Chaparral Energy, LLC's, application to convert the above referenced well into a salt water disposal. A requirement of the New Mexico Oil & Gas Conservation Division is that all surface owners and offset operators be notified of the application.

Any objections must be submitted in writing to the NMOCD, 1220 S. St. Francis Dr., Santa Fe, NM, 87505. Objections must be received within 15 days of receipt of this letter.

If you have questions or need further information regarding this request, please contact Ron Brown, Operations Engineer, at (405) 478-8770.

Sincerely,

CHAPARRAL ENERGY, LLC

referdall

Leigh Kuykendall Sr. Engineering Tech

	U.S. CEF (Don	Posta RTIFI nesti	al Servi IED M c <i>Mail</i>	ce AIL R Only: I	ECE Vo In	EIPT suran	ce Cov	erage F	rovid	ed)
61.63	0	F	F			A	l	U	S	E
5081		Cert	Postage ified Fee	\$				Por	tmark	
E001	Retric (Endors Restric	um Rea ement ted Dei	celpt Fee Required) ivery Fee Required)				-	H	lero	
	Total I	Postag	e & Fees	\$	- 11]			
Breet Apt. No.; Do Bar 2128										
700	City, St	ate, ZI	P+4	M	Ľ	ond		- X- 1	970	12

701 Cedar Lake Blvd., Oklahoma City, Oklahoma 73114 • telephone: 405-478-8770 • facsimile: 405-478-1947 🛒

 SENDER: COMPLETE THIS SECTION Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. Article Addressed to: Phoency Hydro Carbons P O Bax 3638 	COMPLETE THIS SECTION ON DELIVERY A. Received by (Please Print Clearly) B. Date of Delivery C. Signature X How D. Is delivery address different from item 1? Yes, enter delivery address below:
Midland TX 79702	Service Type Service Type Certified Mail Registered Return Receipt for Merchandise Insured Mail C.O.D.

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary Mark E. Fesmire, P.E. Director Oil Conservation Division

August 26, 2005

Leigh Kuykendall Chaparral Energy, Inc. 701 Cedar Lake Blvd Oklahoma City, OK 73114

Cuse 13695

RE: Application for Salt Water Disposal

State K #1-21 API No. 30-025-22049 Unit K, Section 21, Township 11 South, Range 33 East, NMPM, Lea County, NM Injection into the San Andres open hole 3,850 to 4,476

Dear Ms. Kuykendall:

The Division in Santa Fe received your application to inject on August 12, 2005. On July 18, 2005, the Division received an objection letter from Mr. Weldon Dallas. This application can no longer be processed administratively and is being denied.

Chaparral does have the option of placing an application to inject onto a Division hearing docket and presenting its case to a hearing examiner. If Chaparral wants to proceed in this manner, be aware that, the Division requires that the applicant in any hearing must post an application with the Division, must write the summary of the application to be placed on the docket (send to Florene Davidson in this office), and must take care of all required notice of the hearing.

Notice of any pending Division hearing concerning an application to inject into this well must be supplied by certified mail to Mr. Weldon Dallas and to all affected parties.

Recards

William V. Jones PE Engineer for the Division

Copied to: Oil Conservation Division - Hobbs district office

State Land Office – Oil, Gas, and Minerals Division

Weldon L. Dallas 505-398-6553 HC-12 Box 46 Tatum, NM 88267

7-14-05 Dear Sir; I OBject To this salt water disposal Well ON Sec 21 - T-11 R-33E, Because it Might contanguate ous Freshwater. Our Freshwater is a pecious item here in the day southwest, and it is getting more scarce As the droughs continue. Fresh Water is really more valueable Than Oil or gas. RECEIVED SINCerely, JUL 8 2005 OIL CONSERVATION Weldon S. Dallas HC-12 BOX46 7atum NM 88267 Phone (505) 3986553

Gentlemen:

Enclosed for your review is a copy of Chaparral Energy, LLC's, application to convert the above referenced well into a salt water disposal. A requirement of the New Mexico Oil & Gas Conservation Division is that all surface owners and offset operators be notified of the application.

Any objections must be submitted in writing to the NMOCD, 1220 S. St. Francis Dr., Santa Fe, NM, 87505. Objections must be received within 15 days of receipt of this letter.

If you have questions or need further information regarding this request, please contact Ron Brown, Operations Engineer, at (405) 478-8770.

Sincerely,

CHAPARRAL ENERGY, LLC

Kendoch

Leigh Kuykendall Sr. Engineering Tech

701 Cedar Lake Blvd., Oklahoma City, Oklahoma 73114 🔹 telephone: 405-478-8770 🔹 facsimile: 405-478-1947 🛒