

Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

JUL 2 9 2004

Mr. Clint Marshall Mining Environmental Compliance Section New Mexico Environmental Department P. O. Box 26110 Santa Fe, New Mexico 87502

Subject: Semi-Annual Discharge Monitoring Report For January 2, 2004 Through June 30, 2004

Dear Mr. Marshall:

Enclosed is the Waste Isolation Pilot Plant Discharge Monitoring Report for the period of January 1, 2004 through June 30, 2004. This report is required by Discharge Plan 831.

We certify under penalty of law that this document and all enclosures were prepared under our direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on our inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of our knowledge and belief, true, accurate, and complete. We are aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

R. Paul Detwiler, Acting Manager Carlsbad Field Office

Enclosure

cc: wo/enclosure J. Kieling, NMED Sincerely,

S. D. Warren, Manager Washington TRU Solutions LLC

4.0 <u>SUMMARY OF ACTIVITIES RELATED TO THE SHALLOW SUBSURFACE WATER</u> (SSW) MONITORING AND SAMPLING PROGRAM

Water levels in the shallow wells (PZ-1 through PZ-12, C-2505, C-2506, and C-2507) were obtained on September 17 and December 9, 2004, and are included in Table 3. These were taken on the quarterly milestones outlined in Table 2, Ground Water Monitoring Schedule, in the December 22, 2003, DP-831 Modification. Figure 1 represents a potentiometric surface map for the December 2004 monitoring data.

WQSP-6A was sampled on May 26, 2004, and in November 2004 as part of the WIPP Hazardous Waste Facility Permit Detection Monitoring Program (DMP) (Table 3). Only WQSP-6A data for the May sampling event are provided in this report because the results for the November event were not available at the time of submittal. The November WQSP-6A analytical data will be provided in the July 31, 2005, Semi-annual Discharge Monitoring Report. The signed laboratory reports for WQSP-6A are included in Attachment 3.

Concentrations for selenium and chromium in the WQSP-6A sample were below the method detection limits of 0.0250 mg/l. Sulfate, chloride, and total dissolved solids (TDS) concentrations were detected at concentrations exceeding standards of 20.6.2.3103 NMAC, *Standards for Ground Water of 10,000 mg/l TDS Concentration or Less* for Human Health and Domestic Water Supply. Although the concentrations were higher than the standards, they are less than background concentrations established in the *Waste Isolation Pilot Plant RCRA Background Groundwater Quality Baseline Report* (DOE/WIPP 98-2285). The Dewey Lake groundwater in WQSP-6A has not been impacted by the shallow subsurface water identified at the WIPP site.

The shallow wells were sampled for field and general chemistry parameters in November 2004 as required by the December 22, 2003, modification to DP-831. Five wells were sampled on November 8, 2004, while the remaining wells were sampled on November 9, 2004. Results for the field sampling parameters and laboratory analyses are presented in Table 3. Laboratory reports for all shallow well analyses are included in Attachment 3. Chloride concentrations exceeded values listed in 20.6.2.3103 NMAC for Human Health and Domestic Water Supply in all shallow wells sampled. The maximum concentration was 92,400 mg/l in PZ-9, while the minimum concentration was 353 mg/l in PZ-10. Total dissolved solids concentrations exceeded 20.6.2.3103 NMAC values for Human Health and Domestic Water Supply in all shallow wells sampled with the maximum concentration of 144,000 mg/l in PZ-9. Nitrate concentrations exceeded 20.6.2.3103 NMAC values for Human Health and Domestic Water Supply in one well, PZ-12, with a concentration of 19.8 mg/l. Sulfate concentrations exceeded 20.6.2.3103 NMAC values for Human Health and Domestic Water Supply in nine wells sampled with a maximum concentration of 14,500 mg/l in PZ-9. Chromium concentrations were below the detection limit in all but one of the SSW wells sampled. Well C-2507 had a chromium concentration of 0.0140 mg/l. Selenium was detected in nine wells sampled, all exceeding concentrations identified in 20.6.2.3103 NMAC for Human Health and Domestic Water Supply.

Ľ

Ta	ble 1: Se	ewage La	igoon and	d H-19 Se	mi-Annu	al Analyti	cal Resu	lts
Analyte	Influe Facultativ Sys	ent to re Lagoon tem	Evaporatio	on Pond B	Evaporati	on Pond C	H-19 Eva Po	aporation and
Nitrate (mg/l)	<1.00	NA	<0.10		NA		NA	
TKN (mg/l)	16.5	NA	19		NA		NA	
TDS (mg/l)	444	NA	500		7,040		64,500	
	Activity	TPU 2 σ	Activity	TPU 2 σ	Activity	TPU 2 σ	Activity	TPU 2 σ
U ^{233/234} Bq/I)	6.40E-02	5.95E-03	1.64E-02	3.09E-03	1.80E-02	3.00E-03	1.74E-01	1.11E-02
U ²³⁵ (Bq/l)	1.50E-03	9.67E-04	3.45E-04	1.42E-03	1.37E-04	3.17E-04	3.35E-03	1.48E-03
U ²³⁸ (Bq/l)	2.14E-02	3.28E-03	7.49E-03	2.07E-03	5.16E-03	1.59E-03	3.71E-02	4.56E-03
Pu ^{zse} (Bq/l)	1.17E-04	3.82E-04	-2.48E-05	3.14E-04	1.56E-04	4.60E-04	2.81E-04	5.11E-04
Pu ^{239/240} (Bq/l)	6.95E-05	2.61E-04	5.36E-05	2.57E-04	-3.37E-05	1.19E-04	5.24E-05	4.33E-04
Am ²⁴¹ (Bq/l)	1.84E-04	4.31E-04	2.74E-04	4.58E-04	1.24E-04	3.75E-04	1.71E-05	3.08E-04
Sr ^{ye} (Bq/I)	2.68E-02	2.95E-02	1.13E-02	2.68E-02	1.89E-02	2.94E-02	5.67E-03	2.58E-02
TPU 2 σ =	total propa	gated unc	ertainty at 2	2-sigma (9	5% confide	nce interva	d)	
NA: The a	nalytical p	arameter is	s not requir	red.				
NS: Not S	ampled							

Table 2:	Infiltratio	on Contro	I Evapo	ration Po	onds Ann	ual Analyti	cal Results
Evaporation Pond	Chloride mg/l	Nitrate-N mg/l	Sulfate mg/l	TDS mg/l	Selenium mg/l	Chromium mg/l	Water Depth (ft)/Volume (ft ³)
SPEP	10000	< 20.0	220	18400	< 0.0500	< 0.250	NM
Salt Storage Extension Evaporation Basin	92100	1.26	10409	128000	< 0.0500	< 0.250	NM
Pond 1	8.70	1.09	8.86	218.0	<0.0100	< 0.0500	1.8 / 24,190
Pond 2	75.0	1.11	10.3	244.0	< 0.0100	< 0.0500	5.2 / 194,671
Pond A	120	<1.00	12.1	312	< 0.0500	< 0.250	2.9 / 550,000
"Bold" concer Water Supply	itrations exc	eed standard	ls listed in	20.6.2.3103	S NMAC for	Human Healtl	h and Domestic

-

SUMARY OF SHALLOW SUBSURFACE WATER LEVELS, FIELD PARAMETERS, AND ANALYTICAL RESULTS

· .	Water Monit	· Level toring		Field Para	meters	Ğ	eneral Ch	emistry F	arameters		Trace	Metais
Monitoring Site	09/17/04	12/09/04	Hd (NS)	Temp. (°C)	Electrical Conductivity @25 °C (uS/cm)	Sample Date	Nitrate (mg/l)	Sulfate (mg/l)	Chloride (mg/l)	TDS (I/gm)	Selenium (mg/l)	Chromium (mg/l)
PZ-1	3371.18	3371.43	8.20	21.2	>3999	11/09/04	1.30	6530	45700	85800	0.106	<0.0100
PZ-2	3369.99	3370.57	AN	AN	NA	NS	SN	NS	NS	NS	NS	NS
PZ-3	3371.51	3371.83	AA	AN	NA	NS	SN	NS	NS	NS	SN	SN
PZ-4	3364.85	3365.65	AN	NA	NA	NS	NS	NS	SN	NS	NS	NS
PZ-5	3372.95	3373.74	6.65	21.5	>3999	11/09/04	<2.50	1820	47800	86000	0.0940	<0.0100
PZ-5 Dup.	NA	AN	6.65	21.5	>3999	11/09/04	3.59	12000	58600	77800	0.0890	<0.0100
P2-6	3369.78	3370.59	6.65	21.5	>3999	11/09/04	4.89	13000	75400	113000	0.0600	<0.0100
PZ-7	3376.70	3377.06	6.52	21.5	>3999	11/08/04	2.89	7460	43600	80400	0.0880	<0.0100
PZ-8	DRY	DRY	A	AN	NA	SN	SN	SN	SN	NS	NS	NS
PZ-9	3364.95	3365.80	5.90	21.9	> 3999	11/09/04	1.40	14500	92400	144000	0.0660	<0.0100
PZ-10	3367.92	3370.69	7.22	20.9	2328	11/08/04	3.69	431	353	1576	<0.0500	<0.0100
PZ-11	3373.93	3374.25	6.45	22.3	> 3999	11/08/04	3.15	13000	84100	119000	<0.0500	<0.0100
PZ-12	3355.74	3357.16	6.96	21.0	>3999	11/08/04	19.8	879	7170	9540	0.0660	<0.0100
C-2811	3339.69	3340.90	7.26	20.4	3371	11/08/04	7.63	305	1030	1996	0.0540	<0.0100
C-2505	3367.53	3368.11	AN	AA	AN	SN	SN	SN	SN	NS	SN	NS
C-2506	3367.96	3368.53	AN	AN	NA	SN	SN	SN	SN	SN	NSN N	NS
C-2507	3364.58	3365.15	6.65	18.6	> 3999	11/09/04	7.58	824	1380	3350	0.0800	0.0140
WQSP-6a	3197.301	3197.14 2	AN	AN	AN	05/26/04	9.61	2000	416	3698	<0.0250	<0.0250

Explanation: ¹ Water Level Measurement Taken on 3/09/04

² Water Level Measurement Taken on 6/09/04

NS: Not Sampled as per permit conditions

"Bold" concentrations exceed standards listed in 20.6.2.3103 NMAC for Human Health and Domestic Water Supply

D:\ Hydrology\ SSW Program\Semianoual Reporting\SSW_Pot_Sart_121103.pdf

<u>,</u> Х

FIGURE 1

Department of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

JAN 3 1 2005

FEB 0 4 2005

Mr. Clint Marshall Ground Water Pollution Prevention Section New Mexico Environment Department P.O. Box 26110 Santa Fe, NM 87502

Subject: Semi-Annual Discharge Monitoring Report for July 1, 2004 through December 31, 2004

Dear Mr. Marshall:

Enclosed is the Waste Isolation Pilot Plant Discharge Monitoring Report for the period of July 1, 2004, through December 31, 2004. This report is required by Discharge Plan 831.

It is noted in Section 3.0 of the enclosed report No. 43 that pumping of water over the banks of Evaporation Baskin A, Pond 1 and Pond 2 occurred during this reporting period. DOE has filed a Notice of Discharge for these events pursuant to 20.6.2.1203 NMAC.

If you have any questions about this report or require any additional information, please contact Mr. H. L. Plum at (505) 234-7462.

Sincerely,

ray Dr. Inés R. Triav

Dr. Ines R. Triay Acting Manager

Enclosure

cc: w/o enclosure J. Bearzi, NMED *ED J. Kieling, NMED ED

WASTE ISOLATION PILOT PLANT (WIPP) SEMI-ANNUAL DISCHARGE MONITORING REPORT FOR DISCHARGE PLAN DP-831

REPORT NUMBER 43: July 1, 2004 through December 31, 2004

SPECIFIC REQUIREMENTS OF DP-831

1.0 DISCHARGE VOLUMES:

Facultative Lagoon System(Based on Total Domestic Water Usage)635,032 gallonsMiscellaneous Water Discharged to the Facultative Lagoon SystemNoneFacultative Lagoon System Evaporation Pond BNone

H-19 Evaporation Pond

172,220 gallons

2.0 WATER QUALITY ANALYSIS

Table 1 contains the water quality analytical results for the Facultative Lagoon System and the H-19 Evaporation Pond. The laboratory data sheets are included in Attachment 1. Table 2 contains the water quality analytical results for the four storm water run-off evaporation ponds and the Salt Storage Extension Evaporation Basin, which constitute the infiltration controls approved in the December 22, 2003, Discharge Plan Modification. The laboratory data sheets are included in Attachment 2.

Staff gauges have been manufactured for installation in the ponds to facilitate accurate field measurements of the water levels to one-hundredth of a foot in accordance with DP-831. The unusually high precipitation rates and volume of water in the Salt Pile Evaporation Pond and Salt Storage Extension Basin have prevented the installation of the staff gauges to date. To determine the water level and volume measurements, standard field survey techniques were used to measure the elevation of the water level to determine the volume in Pond 1, Pond 2, and Evaporation Basin A.

3.0 INFILTRATION CONTROL ACTIVITIES (DECEMBER 22, 2003, MODIFICATION)

The previous Discharge Monitoring Report for January through June 2004 reported the completion of the cap for the old salt storage area, Cell A of the Salt Storage Extension Area, and the Salt Storage Extension Evaporation Basin. The remaining work for installing the infiltration controls was anticipated to be complete by late September; however, above average rainfall has delayed construction activities. Pond 1, Pond 2, and Evaporation Basin A were de-watered by pumping water over the pond banks to facilitate meeting the construction deadlines established in DP-831; however, continued rainfall precluded completing the lining of Basin A by November 2004 and a request for an extension was submitted to NMED on November 12, 2004. The remaining work includes the lining of the salt pile run-off ditches with HDPE, the placement of native soils and vegetative cover on the old Salt Pile, and the lining of Evaporation Basin A, Pond 1, and Pond 2 with HDPE. The completion of the construction of the remaining infiltration controls are anticipated to be complete by April 2005 in accordance with the extension granted by your office in a letter dated November 18, 2004.

WASTE ISOLATION PILOT PLANT (WIPP) SEMI-ANNUAL DISCHARGE MONITORING REPORT FOR DISCHARGE PLAN DP-831

REPORT NUMBER 42: January 1, 2004 through June 30, 2004

JUL 2 9 2004

SPECIFIC REQUIREMENTS OF DP-831

1.0 DISCHARGE VOLUMES:

2.0

Facultative Lagoon System	(Based on Total Domestic Water Usage)	597,965 gallons
Miscellaneous Water Discharged to	the Facultative Lagoon System	None
Facultative Lagoon System Evapora	tion Pond B	None
H-19 Evaporation Pond		269,885 gallons
WATER QUALITY ANALYSIS		

Table 1, attached, contains the water quality analytical results for the Facultative Lagoon System and the H-19 Evaporation Pond.

3.0 INFILTRATION CONTROL ACTIVITIES (DECEMBER 22, 2003 MODIFICATION)

In January 2004, the Salt Storage Extension Evaporation Basin was completed and Cell A of the Salt Storage Extension Area was completed in February 2004. Construction of the new haul road was completed and mining operations began placing salt in Cell A in May 2004. The old salt pile high-density polyethylene liner installation for the cap was 70% complete at the end of this reporting period (June 2004) and the liner installation was complete on July 8, 2004.

4.0 <u>SUMMARY OF ACTIVITIES RELATED TO THE SHALLOW SUBSURFACE WATER (SSW)</u> MONITORING AND SAMPLING PROGRAM

Water levels in the shallow wells (PZ-1 through PZ-12, C-2505, C-2506, and C-2507) were obtained on March 10, April 14, and June 10, 2004 (Table 2). With the exception of the April measurement, these were taken on the quarterly milestones outlined in Table 2, Ground Water Monitoring Schedule, in the December 22, 2003 DP-831 Modification. April measurements were in addition to the quarterly measurements to observe the water level trends after heavy rainfall during the first week of April. For most of the site the water elevations were on a declining trend from 2003 to April 2004, even after the heavy rainfall. Water level measurements taken in June indicated a rising trend in elevation reflecting the lagging response to the early April rainfall event.

WQSP-6A was sampled on November 19, 2004 and May 24, 2004 as part of the WIPP Hazardous Waste Facility Permit Detection Monitoring Program (DMP) (Table 1). Only WQSP-6A data for the November sampling event are provided in this report because the results for the May event were not available at the time of submittal. The May WQSP-6A analytical data will be provided in the January 31, 2005 Semi-annual Discharge Monitoring Report. The signed laboratory reports for WQSP-6A are attached to this report.

Concentrations for nitrate and chromium in the WQSP-6A sample were below the method detection limits of 0.01 mg/l and 0.025 mg/l, respectively. Sulfate, chloride, total dissolved solids (TDS), and selenium concentrations were detected at concentrations exceeding standards of 20.6.2.3103 NMAC, *Standards for Ground Water of 10,000 mg/l TDS Concentration or Less* for Human Health and Domestic Water Supply. Although the concentrations were higher than the standards, they are less than background concentrations established in the *Waste Isolation Pilot Plant RCRA Background Groundwater Quality Baseline Report* (DOE/WIPP 98-2285). The Dewey Lake groundwater in WQSP-6A has not been impacted by the shallow subsurface water identified at the WIPP site.

The shallow wells were sampled for field and general chemistry parameters in June 2004 as required by the December 22, 2003 modification to DP-831. Three wells were sampled on June 14, 2004, while the remaining wells were sampled on June 21, 2004. Results for the field sampling parameters and laboratory analyses are presented in Table 2. Laboratory reports for all shallow well analyses are attached. Chloride concentrations exceeded values listed in 20.6.2.3103 NMAC for Human Health and Domestic Water Supply in all shallow wells sampled. The maximum concentration was 80,200 mg/l in PZ-9, while the minimum concentration was 368 mg/l in PZ-10. Total

dissolved solids (TDS) concentrations exceeded 20.6.2.3103 NMAC values for Human Health and Domestic Water Supply in all shallow wells sampled with the maximum concentration of 140,000 mg/l in PZ-9. The minimum TDS concentration was detected in PZ-10 at a concentration of 1,714 mg/l. Nitrate concentrations exceeded 20.6.2.3103 NMAC values for Human Health and Domestic Water Supply in six wells, with the highest concentration of 21.20 mg/l detected in PZ-6. The minimum concentration was below the detection limit in PZ-1 and PZ-9. Sulfate concentrations exceeded 20.6.2.3103 NMAC values for Human Health and Domestic Water Supply in nine wells sampled with a maximum concentration of 3,740 mg/l in PZ-9. Chromium concentrations were below the detection limit for all SSW wells sampled. WQSP-6A had a chromium concentration of 0.028 mg/l, but this value was well within background concentrations established for the Hazardous Waste Facility Permit. Selenium was detected in all wells sampled; however, none of the values exceeded those identified in 20.6.2.3103 NMAC for Human Health and Domestic Water Supply. WQSP-6A selenium concentrations exceeded 20.6.2.3103 NMAC values for Human Health and Domestic Water Supply; however, the value was within the background concentrations established for the HAZARDOUS WASTE FACILITY PERMIT.

Analyte	Influe	ent to	Evaporati	on Pond B	Evaporati	on Pond C	H-19 Fv:	poration
Analyte	Facultativ Sys	ve Lagoon tem			LTuporuti		Po	ond
Nitrate (mg/l)	<0.10	NA	NA		NA		NA	
TKN (mg/l)	19	NA	NA		NA		NA	
TDS (mg/l)	500	NA	12,080		13,860		114,000	
	Activity	TPU 2 σ	Activity	TPU 2 σ	Activity	TPU 2 σ	Activity	TPU 2 σ
U ^{233/234} Bg/I)	1.48E-02	3.85E-03	4.65E-02	9.92E-03	4.00E-02	8.57E-03	2.61E-01	5.44E-02
U ²³⁵ (Bq/l)	6.89E-04	6.99E-04	2.34E-03	1.42E-03	2.18E-03	1.37E-03	1.57E-02	5.27E-03
U ²³⁸ (Bq/l)	4.45E-03	1.79E-03	1.84E-03	1.42E-03	1.63E-02	4.29E-03	8.20E-02	1.86E-02
Pu ²³⁸ (Bq/l)	1.10E-04	2.21E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.40E-04	4.84E-04
Pu ^{239/240} (Bq/l)	1.10E-04	3.82E-04	-2.15E-04	3.05E-04	1.06E-04	2.14E-04	3.39E-04	4.83E-04
Am ²⁴¹ (Bq/l)	0.00E+00	0.00E+00	1.07E-04	4.81E-04	3.47E-04	6.14E-04	0.00E+00	0.00E+00
Sr ⁹⁰ (Bq/l)	1.77E-02	3.84-02	-1.06E-02	4.62E-02	2.91E-02	3.77E-02	5.01E-02	4.76E-02
TPU 2 σ =	total propag	jated uncer	tainty at 2-s	igma (95%	confidence	interval)		
NA: The a	nalytical par	rameter is n	ot required.					
NS: Not Sa	ampled							

	S
	_
	ī
	тí
	2
	ш,
	13
	$\underline{\nabla}$
	<u>ک</u>
	_
	7
	\geq
	4
	<
	0
	Z
	in
	22
	LL.
	ш
	F
	ш
	-
	-
	◄
	M
	7
	~
	u_
	0
	Ч
	ш
	Ш.
N	_
	Ś
9	Ť
0	īīī
ab	Ē
Tab	Nei
Tab	EVEI.
Tab	LEVEI
Tab	R LEVEI
Tab	ER LEVEI
Tab	TER LEVE
Tab	TER LEVEI
Tab	ATER LEVEI
Tab	NATER LEVEI
Tab	WATER LEVEI
Tab	E WATER LEVEI
Tab	CE WATER LEVEI
Tab	ACE WATER LEVEI
Tab	ACE WATER LEVEI
Tab	REACE WATER LEVER
Tab	RFACE WATER LEVEI
Tab	URFACE WATER LEVEI
Tab	SURFACE WATER LEVEI
Tab	3SURFACE WATER LEVEI
Tab	JBSURFACE WATER LEVE
Tab	UBSURFACE WATER LEVE
Tab	SUBSURFACE WATER LEVEI
Tab	V SUBSURFACE WATER LEVEI
Tab	W SUBSURFACE WATER LEVEI
Tab	OW SUBSURFACE WATER LEVEI
Tab	LOW SUBSURFACE WATER LEVEI
Tab	LOW SUBSURFACE WATER LEVEL
Tab	ALLOW SUBSURFACE WATER LEVEI
Tab	ALLOW SUBSURFACE WATER LEVEI
Tab	HALLOW SUBSURFACE WATER LEVE
Tab	SHALLOW SUBSURFACE WATER LEVEI
Tab	SHALLOW SUBSURFACE WATER LEVEI
Tab	DF SHALLOW SUBSURFACE WATER LEVEI
Tab	OF SHALLOW SUBSURFACE WATER LEVEI
Tab	Y OF SHALLOW SUBSURFACE WATER LEVE
Tab	RY OF SHALLOW SUBSURFACE WATER LEVEI
Tab	RY OF SHALLOW SUBSURFACE WATER LEVEI
Tab	ARY OF SHALLOW SUBSURFACE WATER LEVE
Tab	MARY OF SHALLOW SUBSURFACE WATER LEVE
Tab	MMARY OF SHALLOW SUBSURFACE WATER LEVE
Tab	IMMARY OF SHALLOW SUBSURFACE WATER LEVE
Tab	UMMARY OF SHALLOW SUBSURFACE WATER LEVEN

	Water	Level Moni (Ft AMSL)	itoring		Field Pa	rameters	ÿ	meral Che	emistry P	arameters		Trace	Metals
Monitoring Site	3/10/04	4/14/04	6/10/04	Hd (NS)	Temp. (°C)	Electrical Conductivity @25 °C (µS/cm)	Sample Date	Nitrate (mg/l)	Sulfate (mg/l)	Chloride (mg/l)	TDS (mg/l)	Selenium (mg/l)	Chromium (mg/l)
PZ-1	3371.21	3371.13	3371.18	6.32	27.8	3999	6/21/04	<10.0	1530	36300	79600	0.0440	<0.00500
PZ-2	3370.00	3369.91	3370.04	SN	NS	SN	6/21/04	NS	NS	NS	NS	SN	SN
PZ-3	3371.32	3371.29	3371.45	SN	NS	NS	6/21/04	NS	NS	NS	NS	NS	NS
PZ-4	3364.65	3364.65	3364.91	SN	NS	NS	6/21/04	NS	NS	NS	NS	NS	NS
PZ-5	3372.78	3372.71	3372.85	6.50	25.0	3999	6/21/04	20.7	1340	28800	55200	0.0670	<0.00500
PZ-5 Dup.	3372.78	3372.71	3372.85	6.50	25.0	3999	6/21/04	20.7	1370	32300	66000	0.0630	<0.00500
PZ-6	3369.69	3369.61	3369.79	6.09	29.3	3999	6/21/04	21.2	2860	70500	13400 0	0.0170	<0.00500
PZ-7	3376.40	3376.32	3376.60	6.23	22.1	3999	6/21/04	20.7	2620	53000	10900 0	0.041	<0.00500
PZ-8	Dry	Dry	Dry	SN	NS	SN	6/21/04	NS	NS	NS	NS	NS	NS
PZ-9	3364.57	3364.56	3364.78	6.04	25.7	3999	6/21/04	<20.0	3740	80200	14000 0	<0.0100	<0.00500
PZ-10	3367.28	3367.22	3368.01	6.99	25.9	2515	6/14/04	3.81	469	368	1714	0.02000	<0.00500
PZ-11	3373.77	3373.72	3373.97	6.23	22.8	3999	6/21/04	20.8	2220	58100	12300 0	<0.0100	<0.00500
PZ-12	3355.18	3355.26	3356.34	6.54	24.7	3999	6/14/04	11.2	773	5320	0026.	0.0770	<0.00500
C-2811	3339.07	3339.03	3339.43	7.15	22.9	3147	6/14/04	6.06	299	769	2022	0.0470	<0.00500
C-2505	3367.50	3367.44	3367.79	NS	NS	NS	6/21/04	NS	NS	SN	NS	NS	NS
C-2506	3367.98	3367.91	3368.23	NS	NS	NS	6/21/04	NS	NS	SN	NS	NS	NS
C-2507	3364.37	3364.30	3364.71	6.72	25.9	3999	6/21/04	7.55	717	1300	3830	0.029	0.028
WQSP-6a	3197.93 ¹	3198.07	3197.15 ²	7.20	23.4	4060	11/19/04	<0.01	1950	391	3955	0.219	<0.025

¹ Water Level Measurement Taken on 3/09/04 Explanation:

² Water Level Measurement Taken on 6/09/04 NS: Not Sampled as per permit conditions "Bold" laboratory concentrations exceed standards listed in 20.6.2.3103 NMAC for Human Health and Domestic Water Supply

Department of Energy

Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

JUL 2 9 2005

RECENZO

AUG 0 1 2005

Mr. Clint Marshall Ground Water Pollution Prevention Section New Mexico Environment Department P.O. Box 26110 Santa Fe, NM 87502

Subject: Semi-Annual Discharge Monitoring Report for January 1, 2005, Through June 30, 2005

Dear Mr. Marshall:

The purpose of this letter is to transmit to you the Waste Isolation Pilot Plant Discharge Monitoring Report for the period of January 1, 2005, through June 30, 2005. This report is required by Discharge Plan 831.

If you have any questions about this report or require any additional information, please contact Mr. H. L. Plum at (505) 234-7462.

Sincerely,

Lloyd L. Piper, Acting Manager

Enclosure

cc: w/enclosure S. Zappe, NMED

cc: w/o enclosure C. Padilla, NMED *ED J. Bearzi, NMED ED J. Kieling, NMED ED *ED denotes electronic distribution

Mr. Clint Marshal

bcc: w/o enclosure V. Daub, CBFO *ED G Basabilvazo, CBFO ED M. Rose, CBFO ED J. Plum, CBFO ED <u>ر</u>۱ H. Johnson, CBFO ED D. Mercer, CBFO ED L. Steven, WTS ED G. Johnson, WTS ED D. Bignell, WRES ED M. Crawley, WRES ED R. Kehrman, WRES ED J. Siegel, WRES ED RCRA Chronology CBFO M & RC *ED denotes electronic distribution

-2-

JUL 2 9 2005

CBFO:OCT:HJP:KJB:05-1501:UFC5486

WASTE ISOLATION PILOT PLANT (WIPP) SEMI-ANNUAL DISCHARGE MONITORING REPORT FOR DISCHARGE PLAN DP-831

REPORT NUMBER 44: January 1, 2005 through June 30, 2005

SPECIFIC REQUIREMENTS OF DP-831

1.0 DISCHARGE VOLUMES:

Facultative Lagoon System

Miscellaneous Water Discharged to the Facultative Lagoon System

None

664,411 gallons

20,797 gallons

None

and the second second

and the second second

Facultative Lagoon System Evaporation Pond B

H-19 Evaporation Pond

2.0 SURFACE WATER QUALITY ANALYSIS

Table 1 contains the water quality analytical results for the Facultative Lagoon System and the H-19 Evaporation Pond. The laboratory data sheets are included in Attachment 1.

3.0 INFILTRATION CONTROL ACTIVITIES (DECEMBER 22, 2003, MODIFICATION)

The July 1, 2004, through December 31, 2004, Discharge Monitoring Report discussed the status of the remaining construction work on the infiltration controls to include the lining of the salt pile run-off ditches with HDPE, the placement of native soils and vegetative cover on the old Salt Pile, and the lining of Storm Water Infiltration Control (SWIC) Pond A, Pond 1, and Pond 2 with HDPE.

The salt pile run-off ditches, Pond 1 and Pond 2 were lined in January 2005. The placement of native soils, including repairs from excessive precipitation events in the fall of 2004, was completed in March of 2005. The hydro-mulch and seed mix was applied in April of 2005. As reported to the Ground Water Quality Bureau in several letters between March and July 2005, continued precipitation has prevented the installation of the HDPE liner in SWIC Pond A. Efforts to dewater the pond and dry the soils enough to resume construction are ongoing.

Additionally, heavy rains in May and June of 2005 resulted in additional erosion on the side slopes of the salt pile cover before seed germination occurred. Various options for repairing the erosion, establishing vegetation and minimizing long-term maintenance for the salt pile are being evaluated for effectiveness.

4.0 <u>SUMMARY OF ACTIVITIES RELATED TO THE SHALLOW SUBSURFACE WATER</u> (SSW) MONITORING AND SAMPLING PROGRAM

Water levels in the shallow wells (PZ-1 through PZ-12, C-2505, C-2506, and C-2507) were obtained on March 16 and June 21, 2005, and are included in Table 2. These were taken on the quarterly milestones outlined in Table 2, Ground Water Monitoring Schedule, in the December 22, 2003, DP-831 Modification.

The Water Quality Sampling Program, Well 6A (WQSP-6A) was sampled on November 17, 2004, and April 2005 as part of the WIPP Hazardous Waste Facility Permit Detection Monitoring Program (DMP) (Table 2). Only WQSP-6A data for the November sampling event are provided in this report because the results for the April event were not available at the time of submittal. The April WQSP-6A analytical

data will be provided in the July 1, 2005, through December 31, 2005, Semi-annual Discharge Monitoring Report due by January 31, 2006. The signed laboratory reports for WQSP-6A are included in Attachment 2.

Concentrations for selenium and chromium in the WQSP-6A sample were below the method detection limits of 0.0250 milligrams per liter (mg/l). Sulfate, chloride, and total dissolved solids (TDS) concentrations were detected at concentrations exceeding standards of 20.6.2.3103 NMAC, *Standards for Ground Water of 10,000 mg/l TDS Concentration or Less for Human Health and Domestic Water Supply*. Although the concentrations were higher than the standards, they are less than the naturally occurring background concentrations established in the *Waste Isolation Pilot Plant RCRA Background Groundwater Quality Baseline Report* (DOE/WIPP 98-2285). The shallow subsurface water identified at the WIPP site has not impacted the Dewey Lake groundwater in WQSP-6A.

The ten shallow wells were sampled for field and general chemistry parameters in May 2005 as required by the December 22, 2003, modification to DP-831. Five wells were sampled on May 16, 2005, while the remaining five wells were sampled on May 17, 2005. Results for the field sampling parameters and laboratory analyses are presented in Table 2. Laboratory reports for all shallow well analyses are included in Attachment 3. Chloride concentrations exceeded the value of 250.0 mg/l listed in 20.6.2.3103 NMAC for human health and domestic water supply in all shallow wells sampled. The maximum concentration was 182,000 mg/l in PZ-9, while the minimum concentration was 416 mg/l in PZ-10. Total dissolved solids concentrations exceeded the 20.6.2.3103 NMAC value of 1,000 mg/l for human health and domestic water supply in all shallow wells sampled with the maximum concentration of 164,000 mg/l in PZ-9. Nitrate concentrations did not exceeded the 20.6.2.3103 NMAC value of 10 mg/l for human health and domestic water supply. Sulfate concentrations exceeded the 20.6.2.3103 NMAC value of 600.0 mg/l for human health and domestic water supply in nine wells sampled with a maximum concentration of 5,090 mg/l in PZ-9. Chromium concentrations exceeded the 20.6.2.3103 NMAC value of 0.05 mg/l for human health and domestic water supply in eight of the shallow wells sampled, with a maximum concentration of 0.0940 mg/l. Selenium was detected in nine wells sampled. Seven of these wells exceeded the concentration of 0.05 mg/l identified in 20.6.2.3103 NMAC for human health and domestic water supply.

Та	ble 1: Se	ewage La	igoon and	d H-19 Se	mi-Annua	al Analyti	cal Resu	lts
Analyte	Influe Facultativ Sys	ent to e Lagoon tem	Evaporatio	on Pond B	Evaporatio	on Pond C	H-19 Eva Po	poration nd
Nitrate (mg/l)	<0.435		<0.10		NA		NA	
TKN (mg/l)	59.1		19		NA		NA	
TDS (mg/l)	522		6,840		8,970		285,000	
	Activity	TPU 2 σ	Activity	TPU 2 σ	Activity	TPU 2 σ	Activity	TPU 2 σ
U ^{233/234} (Bq/I)	5.32E-02	6.72E-03	1.16E-02	3.45E-03	1.81E-02	3.86E-03	7.37E-01	3.85E-02
U ²³⁵ (Bq/l)	6.61E-04	8.61E-04	5.18E-04	9.13E-04	2.25E-04	5.19E-04	9.95E-03	3.05E-03
U ²³⁸ (Bq/l)	2.26E-02	4.25E-03	5.03E-03	2.27E-03	6.43E-03	2.28E-03	1.75E-01	1.35E-02
Pu ²³⁸ (Bq/l)	-1.28E-04	2.55E-04	0.00E+00	3.93E-04	-4.50E-05	3.53E-04	7.35E-04	1.60E-03
Pu ^{239/240} (Bq/I)	-4.90E-05	1.58E-04	6.54E-05	3.44E-04	3.14E-04	4.16E-04	-3.21E-04	7.92E-04
Am ²⁴¹ (Bq/l)	5.95E-04	7.82E-04	2.30E-04	5.05E-04	1.28E-04	4.53E-04	1.85E-04	5.48E-04
Sr ⁹⁰ (Bq/l)	3.32E-04	4.02E-02	2 1.01E-03 2.97E-02 -4.08E		-4.08E-03	08E-03 2.85E-02 6.14E-03 4.3		
TPU $2\sigma = 1$ NA: The a	total propa nalytical pa	igated unc arameter is	ertainty at 2-sigma (95% confidence interva s not required.		al)			
NS: Not S	ampled							
TKN: Tota	I Kjeldahl I	Nitrate			····			
TDS: Tota	I Dissolved	d Solids		<u> </u>	<u> </u>			
Bold" Seco	uerei per l	iter	tondord- l	isted in OO	C 0 0100 M	AAC for 11-		b and
Domestic V	Nater Supr	s exceed s	standards I	isteu în 20.	0.2.3103 NI	MAC IOF ML	inan riealt	n and

•

SUMMARY OF SHALLOW SUBSURFACE WATER LEVELS, FIELD PARAMETERS, AND ANALYTICAL RESULTS Table 2

	Water Leve (Ft A	I Monitoring MSL)		Field Para	Imeters	ğ	eneral Ch	emistry P	arameters		Trace	Metals
Monitoring Site	03/16/05	06/21/05	Hd (NS)	Temp. (°C)	Electrical Conductivity @25 ⁰ C (μS/cm)	Sample Date	Nitrate (mg/l)	Sulfate (mg/l)	Chloride (mg/l)	TDS (mg/l)	Selenium (mg/l)	Chromium (mg/l)
PZ-1	3371.97	3372.40	6.32	23.8	>3999	5/17/05	1.47	2640	62300	100500	0.0600	0.0770
PZ-2	3371.31	3371.70	AN	NA	NA	SN	NS	NS	NS	NS	SN	NS
PZ-3	3372.17	3372.64	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS
PZ-4	3366.78	3367.17	NA	NA	NA	NS	NS	NS	NS	NS	SN	NS
PZ-5	3374.73	3375.05	6.45	21.9	6662<	5/11/05	2.96	3260	46000	65400	0.0930	0.0670
PZ-6	3371.35	3371.61	6.00	22.6	666 E<	5/17/05	4.25	3610	109000	160500	0.0500	0.0540
PZ-7	3377.79	3377.95	6.36	21.4	6666<	5/16/05	4.02	2530	42100	65900	0.0820	0.0940
PZ-8	Dry	Dry	NA	NA	NA	SN	NS	NS	NS	NS	SN	NS
PZ-9	3366.47	3366.17	5.93	20.40	>3999	5/17/05	2.82	5090	182000	164000	0.0500	0.0710
PZ-10	3372.26	3372.12	7.01	20.1	1618	5/16/05	3.63	572	416	1756	0.0440	0.0370
PZ-11	3374.58	3374.66	6.26	21.8	>3999	5/16/05	4.63	2890	66000	100000	<0.0100	<0.0100
PZ-12	3358.89	3358.69	6.77	20.7	>3999	5/16/05	8.85	679	3730	5890	0.0510	0.0540
C-2811	3342.54	3342.70	6.98	20.1	>3999	5/16/05	6.02	524	1930	3740	0.0580	0.0530
C-2505	3369.01	3369.26	NA	AN	AN	SN	SN	NS	NS	NS	NS	NS
C-2506	3369.41	3369.66	NA	NA	NA	NS	NS	NS	NS	NS	SN .	NS
C-2507	3366.16	3366.41	6.81	20.8	>3999	5/17/05	7.94	860	1370	3340	0.0780	0.0630
WQSP-6a	3197.16 ¹	3196.83 ²	7.3	23.2	4070	11/17/05	6.72	1960	487	3655	<0.0250	<0.0250

¹ Water Level Measurement Taken on 3/08/05 Explanation:

² Water Level Measurement Taken on 6/20/05

NS: Not Sampled as per permit conditions . "Bold" concentrations exceed standards listed in 20.6.2.3103 NMAC for Human Health and Domestic Water Supply