Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

Final Report

Reporting Period Start Date: January 14, 2002

Reporting Period End Date: May 13, 2004

Shirley P. Dutton, Eugene M. Kim, Ronald F. Broadhead, Caroline L. Breton, William D. Raatz, Stephen C. Ruppel, and Charles Kerans

May 2004

Work Performed under DE-FC26-02NT15131

Prepared by

Bureau of Economic Geology John A. and Katherine G. Jackson School of Geosciences The University of Texas at Austin University Station, P.O. Box X Austin, TX 78713-8924

and

New Mexico Bureau of Geology and Mineral Resources

New Mexico Institute of Mining and Technology Socorro, NM 87801-4681

Samson Exhibit ______ NMOCD Case Nos. 13492/13493 Submitted 8/10/06

Mississippian Play

Mississippian Platform Carbonate (Play 108)

The Mississippian Platform Carbonate play is the smallest oil-producing play in the Permian Basin, having cumulative production of only 15.1 MMbbl ($2.40 \times 10^6 \text{ m}^3$) from five reservoirs (table 11). Because no Mississippian reservoirs had produced >10 MMbbl ($1.59 \times 10^6 \text{ m}^3$), this play was not included in the *Atlas of Major Texas Oil Reservoirs* (Galloway and others, 1983). The play is shown as extending across much of the Permian Basin (fig. 27) because smaller Mississippian reservoirs (<1 MMbbl [< $1.59 \times 10^5 \text{ m}^3$]) cumulative production) are located throughout the area. The play does not include areas where the Mississippian was removed by erosion (fig. 27) (Ruppel, 1983; Frenzel and others, 1988; Ruppel, 1989). Production in the play is controlled by both structural and stratigraphic traps (Wright, 1979).

Little information is available about this play. Frenzel and others (1988) noted that Osage and Meramec carbonate strata in west Texas generally consist of finely crystalline, nonporous limestones. Hamilton and Asquith (2000) described the stratigraphy and facies of upper Mississippian (Meramec and Chester) deposits in New Mexico and adjacent West Texas. Upper Mississippian platform carbonates are the shelf equivalents of the Barnett Shale, which

RRC RESN	RRC	FLDNAME	RESNAME	STATE	COUNTY	DISCYR	DEPTHTOP	2000 PROD	CUMPROD
11308333	8A	BRAHANEY	MISSISSIPPIAN	тх	YOAKUM	1960	10880	11,119	4,268,423
24377300	8A	DEROEN	MISSISSIPPIAN	TX	DAWSON	1981	10182	58,502	2.002.217
31690001	8A	FLUVANNA		TX	BORDEN	1951	8173	10,857	5,788,200
34961250	8A	GIN	MISS.	TX	DAWSON	1965	11403	5,984	1,148,179
51742333	8A	LAMESA, WEST	MISS.	TX	DAWSON	1959	11280	5,303	1,903,803
		Totals						91,765	15,110,822

Table 11. Mississippian Platform Carbonate play (play 108).

Figure 27. Play map for the Mississippian Platform Carbonate play, showing location of reservoirs having >1 MMbbl cumulative production, the play boundary, and geologic features. See figure 1 for county names and figure 2 for identification of geologic features.

was deposited in the deeper basin to the south and east (figs. 28, 29). Hamilton and Asquith (2000) studied the depositional and diagenetic history of Austin Upper Mississippian field, a gas

.

Figure 28. Map showing location of Chester limestone subcrop. From Hamilton and Asquith (2000). Upper Mississippian carbonates were deposited on the Chester platform while the Barnett Shale was deposited in the basin to the south. Cross section A-A' shown in figure 29.

Figure 29. South-north cross section A-A' of the upper Mississippian Meramec and Chester limestones. From Hamilton and Asquith (2000). Line of section shown in figure 28.

reservoir in Lea County. Production from Austin field is from ooid grainstones in the top 100 ft (30 m) of the upper Chester. Mississippian fields in eastern Gaines and western Dawson Counties are also interpreted as occurring in Chester ooid grainstones that developed landward of the platform margin (Hamilton and Asquith, 2000). The ooid grainstones form elongate lenticular trends perpendicular to the platform margin. Intergranular pores are preserved where precipitation of equant calcite cement was not complete.

Production from Mississippian limestone in Reeves and Pecos Counties is mainly from the upper Mississippian. Log analysis of a porous interval near the base of the Mississippian (Kinderhook?) suggests that it may represent an additional pay zone (Asquith and others, 1998).

West Lamesa field in Dawson County, Texas, produces from limestone and chert, whereas Brahaney field, Yoakum County, Texas, produces from dolomite and dolomitic limestone (Wright, 1979). Fluvanna field, Borden County, produces from weathered Mississippian chert at the top of the Mississippian section (Grimes, 1982). Mississippian reservoirs include fracture, vuggy, intercrystalline, and cavernous pores (Wright, 1979).

A wide range of porosity and permeability has been reported for Mississippian reservoirs. Porosity averages 7 percent in Gin field. Mississippian reservoir rocks in Brahaney field average 12 percent porosity and 5 md ($5 \times 10^{-3} \,\mu\text{m}^2$) permeability (Files of the Railroad Commission of Texas). Porosity in Fluvanna field averages 21 percent; permeability ranges from 4 to 181 md (4 to $181 \times 10^{-3} \,\mu\text{m}^2$) and averages 40 md ($40 \times 10^{-3} \,\mu\text{m}^2$) (Files of the Railroad Commission of Texas).

References

- Asquith, G. B., Hardage, B. A., Lancaster, D. E., and Pendleton, V. M., 1998, Petrophysics of the Mississippian limestones in the Waha/West Waha area Reeves and Pecos counties, Texas, *in* DeMis, W. D., and Nelis, M. K., eds., The search continues into the 21st century: West Texas Geological Society Publication No. 98-105, p. 173-180.
- Frenzel, H. N., Bloomer, R. R., Cline, R. B., Cys, J. M., Galley, J. E., Gibson, W. R., Hills, J. M., King, W. E., Seager, W. R., Kottlowski, F. E., Thompson, S., III, Luff, G. C., Pearson, B. T., and Van Siclen, D. C., 1988, The Permian Basin region, *in* Sloss, L. L., ed., Sedimentary cover—North American Craton; U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. D-2, p. 261–306.
- Galloway, W. E., Ewing, T. E., Garrett, C. M., Jr., Tyler, N., and Bebout, D. G., 1983, Atlas of major Texas oil reservoirs: The University of Texas at Austin, Bureau of Economic Geology Special Publication, 139 p.
- Grimes, D. N., 1982, Fluvanna field: selected oil & gas fields in West Texas: West Texas Geological Society Publication No. 82-75, p. 232-236.
- Hamilton, D. C., and Asquith, G. B., 2000, Depositional, diagenetic, and production histories of Chester ooid grainstones in the Austin (Upper Mississippian) field: Lea County, New Mexico, *in* DeMis, W. D., Nelis, M. K., and Trentham, R. C., eds., The Permian Basin: proving ground for tomorrow's technologies: West Texas Geological Society Publication No. 00-109, p. 95–106.
- Ruppel, S. C., 1983, Facies and depositional setting of Mississippian rocks in the Palo Duro– Hardeman Basin area, in Shaw, R. L., and Pollan, B. J., Permian Basin cores—a workshop: Permian Basin Section, Society of Economic Paleontologists and Mineralogists Core Workshop No. 2, Midland, Texas, May 17–18, p. 47–67.
 - 1989, Summary of Mississippian stratigraphy in north and north-central Texas, *in* Mear, C. E., McNulty, C. L., and McNulty, M. E., eds., A symposium on the petroleum geology of Mississippian carbonates in north-central Texas: Fort Worth Geological Society and Texas Christian University, p. 49–55.
- Wright, W. F., 1979, Petroleum geology of the Permian Basin: West Texas Geological Society Publication No. 79-71, 98 p.

Pennsylvanian Plays

The Pennsylvanian oil plays that occur completely, or partly, within the Permian Basin are: (1) Northwest Shelf Strawn Patch Reef, (2) Northwest Shelf Upper Pennsylvanian Carbonate, (3) Pennsylvanian Platform Carbonate, (4) Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate, (5) Upper Pennsylvanian and Lower Permian Slope and Basinal Sandstone, (6) Pennsylvanian and Lower Permian Reef/Bank, and (7) Upper Pennsylvanian Shelf Sandstone. All Pennsylvanian oil plays that occur in Texas are delineated in the oil atlas (Galloway and others, 1983). Two of the original Texas play names have been modified slightly, and all play boundaries have been expanded; otherwise the play definitions have not been changed.

Oil in the Pennsylvanian and Lower Permian Reef/Bank play is produced from dispersed limestone buildups characterized by prominent depositional topography (Galloway and others, 1983). The Pennsylvanian and Lower Permian Reef/Bank play is not included in this portfolio of Permian Basin plays because most of the reservoirs in the play are located in the North-Central Texas geologic province. Ten fields in the play, however, are in the Permian Basin, in Kent, Crockett, Mitchell, and Irion Counties (table 12). The largest fields in the Permian Basin part of

Table 1	12. Penns	ylvanian and	Lower F	Permian	Reef/Bank	play.

RRC RESN	RRC	FLONAME	RESNAME	STATE	COUNTY	DISCYR	DEPTHTOP	2000 PROD	CUMPROD
10556500	8A	BOOMERANG	PENNSYLVANIAN REEF	тх	KENT	1955	6582	11,653	3,293,149
10560500	8 A	BOOMERANG, S.	STRAWN LIME	тх	KENT	1964	6623	15,741	5,589,563
18436333	8A	CLAIREMONT	PENN., LOWER	тх	KENT	1950	6742	32,794	15,880,427
18437333	8A	CLAIREMONT, EAST	STRAWN	тх	KENT	1960	6494	12,607	1,456,046
45582666	8	JAMESON, NORTH	STRAWN	тх	MITCHELL	1953	5866	32,005	9,622,521
74505500	7C	RANCH	STRAWN	тх	CROCKETT	1953	8156	6,680	3,744,987
83873750	7C	SIXTY SEVEN	STRAWN REEF	тх	IRION	1956	6898	23,313	2,867,254
90315001	7C	TODD, DEEP		тх	CROCKETT	1940	5691	0	3,679,628
90315333	7C	TODD, DEEP	CRINOIDAL	тх	CROCKETT	1940	5778	169,638	37,338,101
98803500	7C	WORLD, WEST	STRAWN	тх	CROCKETT	1954	8190	10,752	8,632,607
		Totale						246 402	02 104 283

¹ This play is not included in the play portfolio because most of the play is in the North-Central Texas geologic province. Production listed here represents only the 10 reservoirs in the Permian Basin, as defined in figure 1.

the play are Todd, Deep (Crinoidal), which produced 37.3 MMbbl $(5.93 \times 10^6 \text{ m}^3)$ of oil through 2000, and Clairemont (Penn., Lower), which produced 15.9 MMbbl $(2.53 \times 10^6 \text{ m}^3)$. Total cumulative production from the 10 fields in the Permian Basin part of the play is 92.1 MMbbl $(1.46 \times 10^7 \text{ m}^3)$ (table 12).

Similarly, the Upper Pennsylvanian Shelf Sandstone play is located mainly in North-Central Texas and thus is not described in this report. Five reservoirs in this play occur in the Permian Basin (table 13). These five reservoirs had cumulative production of 7.3 MMbbl $(1.16 \times 10^6 \text{ m}^3)$ through 2000 (table 13).

Present structural features of the Permian Basin, including the Central Basin Platform and Midland and Delaware Basins (fig. 2), began forming in Early Pennsylvanian time (Frenzel and others, 1988). The thickness and distribution of Pennsylvanian rocks in the Permian Basin are quite variable owing to nondeposition and erosion over positive areas such as the Central Basin Platform. Pennsylvanian faulting formed many of the oil-producing anticlines in the area. Pennsylvanian rocks in the Permian Basin are commonly cyclic because they formed during a time of high-amplitude, high-frequency eustatic sea-level fluctuations caused by glaciation and deglaciation in the Southern Hemisphere (Heckel, 1986).

Table 13. Upper Pennsylvanian Shelf Sandstone play¹.

RRC RESN	RRC	FLDNAME	RESNAME	STATI	E COUNTY	DISCYR	DEPTHTOP	2000 PROD	CUMPROD
2711001	8A	ANDREW NOODLE CREEK		тх	KENT	1969	4010	0	1,063,283
21959500	8A	CROTON CREEK, E.	TANNEHILL	тх	DICKENS	1969	4574	0	1,285,205
64626380	8A	NAVIGATOR	TANNEHILL B	тх	DICKENS	1996	4418	323,280	1.273.061
78525500	8A	ROUGH DRAW, N.	NOODLE CREEK	TX	KENT	1963	4140	4.050	1,620,751
91784700	8A	TUMBLEWEED, NW.	TANNEHILL	тх	DICKENS	1986	4108	99,226	2.021.841
				тх				,==	
		Totais						426.556	7.264.141

¹ This play is not included in the play portfolio because most of the play is in the North-Central Texas geologic province. Production listed here represents only the five reservoirs in the Permian Basin, as defined in figure 1.

References

- Frenzel, H. N., Bloomer, R. R., Cline, R. B., Cys, J. M., Galley, J. E., Gibson, W. R., Hills, J. M., King, W. E., Seager, W. R., Kottlowski, F. E., Thompson, S., III, Luff, G. C., Pearson, B. T., and Van Siclen, D. C., 1988, The Permian Basin region, *in* Sloss, L. L., ed., Sedimentary cover—North American Craton; U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. D-2, p. 261–306.
- Galloway, W. E., Ewing, T. E., Garrett, C. M., Jr., Tyler, N., and Bebout, D. G., 1983, Atlas of major Texas oil reservoirs: The University of Texas at Austin, Bureau of Economic Geology Special Publication, 139 p.
- Heckel, P. H., 1986, Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along the Midcontinent outcrop belt, North America: Geology, v. 14, p. 330–334.

Northwest Shelf Strawn Patch Reef (Play 109)

Reservoirs of the Northwest Shelf Strawn Patch Reef play lie in New Mexico on the Northwest Shelf of the Permian Basin and are also present within the Delaware Basin (fig. 30). Most reservoirs lie within a triangular trend formed roughly by the cities of Lovington, Carlsbad, and Artesia. Oil-productive reservoirs are found mainly in the eastern two-thirds of this triangular trend; gas reservoirs are found in the west part of the trend, as well as outside the main trends. The play boundary terminates on the west in the transition zone between oil and gas production, and the gas fields of the west part of the play are not shown in figure 30. There are 104 known, discovered Strawn reservoirs in the play, 13 of which have produced >1 MMbbl $(1.59 \times 10^5 \text{ m}^3)$ of oil (fig. 30, table 14). Cumulative production from these 13 reservoirs was 69.9 MMbbl $(1.11 \times 10^7 \text{ m}^3)$ as of 2000. Annual production from these 13 reservoirs was 1.06 MMbbl $(1.69 \times 10^5 \text{ m}^3)$ during 2000. Production from this play has seen an overall decrease during the 1990's as production from existing reservoirs has matured.

Reservoirs are patch reefs of Strawn (Desmoinesian: Middle Pennsylvanian) age. The patch reefs grew on a south-dipping carbonate ramp that was present before the western Permian Basin segmented into the Northwest Shelf and the Delaware Basin. Reservoirs are principally

Table 14. Northwest Shelf Strawn Patch Reef play (play 109).

RRC RESN	RRC	FLDNAME	RESNAME	STATE	COUNTY	DISCYR	DEPTHTOP	2000 PROD	CUMPROD
		BIG EDDY	STRAWN	NM	EDDY	1966	11333	0	1,402,000
		BURTON FLAT EAST	STRAWN	NM	EDDY	1976	10600	67,662	2,990,681
		CASEY	STRAWN	NM	LEA	1975	11326	17,989	3,414,520
	,	CASS	PENNSYLVANIAN	NM	LEA	1944	7700	. 0	2,885,000
		GOLDEN LANE	STRAWN	NM	EDDY	1969	11098	18.432	1.448.602
		HUMBLE CITY	STRAWN	NM	EDDY	1972	11429	24,093	1,303,341
		HUMBLE CITY SOUTH	STRAWN	NM	LËA	1982	11520	20,520	3,444,361
		LOVINGTON NORTHEAST	PENNSYLVANIAN	NM	LEA	1952	11256	0	16.921.580
		LOVINGTON WEST	STRAWN	NM	LEA	1985	11594	479,493	5.162.551
		LUSK	STRAWN	NM	LEA & EDDY	1960	11168	38.447	20.682.947
		REEVES	PENNSYLVANIAN	NM	LEA	1956	10950	14.066	1,286,874
		SHIPP	STRAWN	NM	LEA	1985	11138	43,428	7,624,050
		SHOE BAR NORTH	STRAWN	NM	LEA	1973	11275	340,752	1,297,324
		Totals						1 064 882	69 863 831

Figure 30. Play map for the Northwest Shelf Strawn Patch Reef play, showing location of reservoirs having >1 MMbbl cumulative production, the play boundary, and geologic features. See figure 1 for county names and figure 2 for identification of geologic features.

bioherms composed of phylloid algal, coralgal, and foraminiferal lime wackestones and packstones (Harris, 1990). Bioherm growth was localized on preexisting structures that had bathymetric expression (Thornton and Gaston, 1967; Harris, 1990). Seals are interbedded marine mudstones. The larger Strawn reservoirs are internally complex and exhibit intricate porosity variations (fig. 31).

Figure 31. Map of Strawn structure and porosity at the Lovington Northeast reservoir. Shown is structure of the Strawn limestone. Contour interval is 50 ft. Shaded areas are where the Strawn has porosity \geq 4 percent. Modified by Speer (1993) from Caughey (1988).

References

- Caughey, C. A., 1988, Lovington Penn. Northeast (oil), *in* A symposium of oil and gas fields of southeastern New Mexico, supplement: Roswell Geological Society, p. 231-232.
- Harris, D. C., 1990, Ramp buildups in the lower Strawn limestone (Penn.): controls on stratigraphic reservoir variability, *in* Flis, J. E., and Price, R. C., eds., Permian Basin oil and gas fields: innovative ideas in exploration and development: West Texas Geological Society, Publication 90-87, p. 91–101.
- Speer, S. W., 1993a, Granite Wash (Permian), *in* Atlas of major Rocky Mountain gas reservoirs: New Mexico Bureau of Mines and Mineral Resources, p. 162.

1993b, Strawn, *in* Atlas of major Rocky Mountain gas reservoirs: New Mexico Bureau of Mines and Mineral Resources, p. 157.

Thornton, D. E., and Gaston, H. H., Jr., 1967, Lusk Strawn field, *in* A symposium of oil and gas fields of southeastern New Mexico, supplement: Roswell Geological Society, p. 15–20.

Northwest Shelf Upper Pennsylvanian Carbonate (Play 110)

Reservoirs of the Northwest Shelf Upper Pennsylvanian Carbonate play lie on the Northwest Shelf of the Permian Basin, in New Mexico (fig. 32). The trend of reservoirs extends from the shelf edge near Carlsbad in Eddy County onto the shelf interior in Roosevelt and Chaves Counties. There are 197 known, discovered reservoirs in this play, 34 of which have produced >1 million bbl oil $(1.59 \times 10^5 \text{ m}^3)$ (table 15). Cumulative production from these 34 reservoirs was 353.8 MMbbl $(5.62 \times 10^7 \text{ m}^3)$ through 2000. During the 1990's, annual production from this play peaked at 11.2 MMbbl $(1.78 \times 10^6 \text{ m}^3)$ during 1996 and has since

Table 15. Northwest Shelf Upper Pennsylvanian Carbonate play (play 110).

RRC RESN	RRC	FLDNAME	RESNAME	STATE	COUNTY	DISCYR	DEPTHTOP	2000 PROD	CUMPROD
		ALLISON	PENNSYLVANIAN	NM	LEA	1954	9673	29.526	23,833,082
		ANDERSON RANCH NORTH	CISCO CANYON	NM	LEA	1984	11498	9.827	1.321.870
		BAGLEY	PENNSYLVANIAN	NM	LEA	1949	9190	2.664	4,339,919
		BAGLEY NORTH	PERMO PENN	NM	LEA	1957	10000	143,913	52.951.956
		BAR-U	PENNSYLVANIAN	NM	LEA	1964	9100	42.021	1.364 117
		BAUM	UPPER PENNSYLVANIAN	NM	LEA	1955	9940	34.221	15,224,467
		BOUGH	PERMO PENN	NM	LEA	1949	9617	0	6.329.000
		CERCA	UPPER PENNSYLVANIAN	NM	LEA	1968	10397	Ō	1.975.473
		CROSSROADS	PENNSYLVANIAN	NM	LEA	1949	9750	0	2,170,000
		DAGGER DRAW NORTH	UPPER PENN	NM	EDDY	1974	7550	1.805.612	48,909,673
		DAGGER DRAW SOUTH	UPPER PENN	NM	EDDY	1971	7506	419,638	16.214.241
		DEAN	PERMO PENN	NM	LEA	1955	11500	15.455	6,165,150
		FLYING M SOUTH	BOUGH	NM	LEA	1965	9020	0	1.211.000
		HIGH PLAINS	PERMO PENN	NM	LEA	1985	10400	ō	1.056.081
		HIGHTOWER EAST	UPPER PENNSYLVANIAN	NM	LEA	1959	10218	9.666	1.054.219
		INBE	PERMO PENN	NM	LEA	1962	9658	8.817	16.439.579
		INDIAN BASIN	UPPER PENNSYLVANIAN	NM	EDDY	1963	7370	1,914,766	13.274.441
		JENKINS	CISCO	NM	LEA	1963	9750	0	2,099,000
		LAZYJ	PENNSYLVANIAN	NM	LEA	1952	9600	30.552	7.630.855
		LEAMEX	PENNSYLVANIAN	NM	LEA	1956	11340	3,770	1.367.438
		MILNESAND	PENNSYLVANIAN	NM	ROOSEVELT	1956	9202	0	1.001.000
		NONOMBRE	UPPER PENNSYLVANIAN	NM	LEA	1965	10345	0	1.077.000
		PRAIRIE SOUTH	CISCO	NM	ROOSEVELT	1960	9651	ō	2,906,000
		RANGER LAKE	PENNSYLVANIAN	NM	LEA	1956	10300	7.025	5.084.059
		SAUNDERS	PERMO-UPPER PENN	NM	LEA	1980	9800	128,353	38,920,906
		SHOE BAD	PERMO PENN	NM	LEA	1962	10363	5.004	2.716.804
		SHUE BAR	PENNSYLVANIAN	NM	LEA	1954	10440	0	1.056.568
		TDAMO	PENNSYLVANIAN	NM	CHAVES	1964	9058	14.957	9.227.853
		TRES BADALOTES	UPPER PENNSYLVANIAN	. NM	EDDY	1977	9825	101,059	1,986,681
		TRES PAPALUTES	PENNSYLVANIAN	NM	LEA	1970	10400	24.567	1,942,584
		THES PAPALUTES WEST	PENNSYLVANIAN	NM	LEA	1972	10400	0	1.237.313
		VACUUM	PENNSYLVANIAN	NM	LEA	1965	9856	10.017	1,809,541
		VADA	UPPER PENNSYLVANIAN	NM	LEA	1964	10000	78,567	6.613.696
			PENNSYLVANIAN	NM	ROOSEVELT &	1967	9800	31,165	53,336,607
		Fotais						4,871,162	353,848,173

Figure 32. Play map for the Northwest Shelf Upper Pennsylvanian Carbonate play, showing location of reservoirs having >1 MMbbl cumulative production, the play boundary, and geologic features. See figure 1 for county names and figure 2 for identification of geologic features.

declined by 56 percent to 4.9 MMbbl $(7.79 \times 10^5 \text{ m}^3)$ per year, largely as a result of production decline in the Dagger Draw North and Dagger Draw South reservoirs. Production increase

during the early 1990's was a result of new oil brought online with redevelopment of the Dagger Draw reservoir.

Reservoirs are carbonates of Canyon (Upper Pennsylvanian: Missourian) age, the Cisco and Bough D zones of Virgilian (Upper Pennsylvanian) age, and the Bough B and C zones of earliest Wolfcampian (Permian) age (fig. 33). The exact age of Bough A, B, and C zones is problematic. They have been traditionally considered by the industry and regulatory entities as Virgilian in age, but fusulinid biostratigraphy indicates that they are of earliest Wolfcampian age (Cys and Mazzullo, 1985; Cys, 1986). More recent work based on correlation with conodonts has suggested that the Bough intervals may perhaps be of latest Virgilian age after all

Figure 33. Stratigraphic column of Upper Pennsylvanian and Lower Permian strata, southeast New Mexico.

(see Wahlman, 2001). Whatever their correct age assignment, Bough B and C zones form major reservoirs in the trend on the Northwest Shelf from Saunders northward to Allison, although the underlying Bough D zone of definite Late Pennsylvanian age also contributes significant production in many of the reservoirs along this trend. The stratigraphic relationship of reservoirs in the Northwest Shelf part of this play to the reservoirs in the Wolfcamp Platform Carbonate play (play 114) is not well established, but available data indicate that the reservoirs assigned to the Wolfcamp Platform Carbonate play are younger than those assigned to this play. Wolfcamp Platform Carbonate play reservoirs produce mainly from Bough A and younger zones.

Traps in the Northwest Shelf Upper Pennsylvanian Carbonate play are primarily stratigraphic and are formed by phylloid algal mounds and associated grainstones and packstones (Cys, 1986; Speer, 1993; Cox and others, 1998; Mazzullo, 1998). Reservoirs on the Northwest Shelf are limestones. Wide, well-bedded phylloid algal banks grew across shallow-water bathymetric highs on shelf areas (Wahlman, 2001). The boundaries of many of the reservoirs on the Northwest Shelf are regulatory, and much of the oil has accumulated in essentially continuous stratigraphic traps that cross regulatory reservoir boundaries. Reservoirs at or near the shelf edge (for example, Dagger Draw, Dagger Draw South) are Missourian to Virgilian in age, older than on the Northwest Shelf, and they have generally been dolomitized. On the shelf edge, traps are formed primarily by massive phylloid algal mounds that grew along bathymetric breaks (Wahlman, 2001). Productive porosity is mostly intercrystalline, intergranular, and vugular; the porosity system is dominated by vugular porosity. Depth to production varies from 7,400 ft to 11,500 ft (2,250 to 3,505 m).

At Dagger Draw North and Dagger Draw South, production is obtained from a dolomitized fairway of shelf-edge algal mounds and intermound grainstones and packstones

Figure 34. Depositional model for Upper Pennsylvanian algal-mound complex, South Dagger Draw reservoir. After Cox and others (1998).

(Cox and others, 1998; fig. 34). Impermeable, thinly bedded limestones lie shelfward and act as a seal on the shelf side of the algal mound trend. Impermeable basinal black shales, which may also act as source rocks for the algal mound complex, lie basinward.

Upper Pennsylvanian carbonate reservoirs on the Northwest Shelf have typically been discovered by drilling small, seismically defined anticlines. Initial development has generally been concentrated on the crests of the anticlines and, in most of the larger fields, generally has not extended into off-structure areas (Broadhead, 1999; fig. 35). However, in many cases, the anticlinal structures have little, if anything, to do with oil entrapment. Subsequent drilling in many reservoirs proceeded in discrete phases into off-structure areas, each with a corresponding

Figure 35. Structure-contour map on top of Upper Pennsylvanian dolostone reservoir and South Dagger Draw and North Dagger Draw reservoirs and time periods during which wells were drilled. After Broadhead (1999). Contours from Reddy (1995).

Figure 36. Historical annual oil production and number of productive wells active in any given year, Baum Upper Pennsylvanian reservoir. After Broadhead (1999).

increase in production (fig. 36). The stratigraphic nature of entrapment was often not recognized until large portions of the reservoir were drilled out many years after initial discovery. Recognition of the stratigraphic nature of these reservoirs early in development is necessary if the reservoir is to be developed efficiently and completely in the years immediately following discovery.

References

- Broadhead, R. F., 1999, Underdeveloped oil fields—Upper Pennsylvanian and lower Wolfcampian carbonate reservoirs of southeast New Mexico: Carbonates and Evaporites, v. 14, no. 1, p. 84–105.
- Cox, D. M., Brinton, L., and Tinker, S. W., 1998, Depositional facies and porosity development of an Upper Pennsylvanian algal mound reservoir, South Dagger Draw, Eddy County, New Mexico, *in* Winfree, K., ed., Cored reservoir examples from Upper Pennsylvanian and Lower Permian carbonate margins, slopes and basinal sandstones: West Texas Geological Society, Publication 98-103, variously paginated.
- Cys, J. M., 1986, Lower Permian grainstone reservoirs, southern Tatum Basin, southeastern New Mexico, *in* Ahlen, J. L., and Hanson, M. E., eds., Southwest Section of American Association of Petroleum Geologists Transactions and guidebook of 1986 convention, Ruidoso, New Mexico: New Mexico Bureau of Mines and Mineral Resources, p. 115–120.
- Cys, J. M., and Mazzullo, S. J., 1985, Depositional and diagenetic history of a Lower Permian (Wolfcamp) phylloid-algal reservoir, Hueco Formation, Morton field, southeastern New Mexico, *in* Roehl, P. O., and Choquette, P. W., eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 277–288.
- Mazzullo, S. J., 1998, Depositional model and exploration strategies for the Cisco-Canyon (Upper Pennsylvanian) on the Northwest shelf, southeastern New Mexico, *in* DeMis, W. D., and Nelis, M. K., eds., The search continues into the 21st century: West Texas Geological Society, Publication 98-105, p. 31-40.
- Reddy, G., 1995, Dagger Draw South, *in* A symposium of oil and gas fields of southeastern New Mexico, 1995 supplement: Roswell Geological Society, p. 76–77.
- Speer, S.W., 1993, Upper Pennsylvanian, *in* Atlas of major Rocky Mountain gas reservoirs: New Mexico Bureau of Mines and Mineral Resources, p. 154–156.
- Wahlman, G. P., 2001, Pennsylvanian-Lower Permian mounds and reefs in the Permian Basin (west Texas-New Mexico): composition, evolution, distribution, and reservoir characteristics, *in* Viveiros, J. J., and Ingram, S. M., eds., The Permian Basin: microns to satellites, looking for oil and gas at all scales: West Texas Geological Society Publication No. 01-110, p. 57-64.

Pennsylvanian Platform Carbonate (Play 111)

The Pennsylvanian Platform Carbonate play has been expanded both geographically and geologically from the Pennsylvanian Platform Carbonate play that was described in the *Atlas* of Major Texas Oil Reservoirs (Galloway and others, 1983). As originally defined by Galloway and others (1983), the play consisted of reservoirs that produce from Middle and Upper Pennsylvanian (Strawn, Canyon, and Cisco) carbonates located on the east edge of the Central Basin Platform. The play has been expanded in this report to include Atoka through Cisco reservoirs on the Texas part of the Northwest Shelf and Central Basin Platform and in the Midland Basin (fig. 37). The expanded play has produced 340.5 MMbbl ($5.41 \times 10^7 \text{ m}^3$) from 74 reservoirs (table 16).

The Central Basin Platform was an active, high-relief uplift during much of the Pennsylvanian (Frenzel and others, 1988). Lower Pennsylvanian Atoka deposits are interpreted to have been deposited before uplift of the Central Basin Platform (Tai and Dorobek, 1999). Upper Strawn strata may be the earliest synorogenic deposits, deposited on a carbonate ramp that prograded eastward (Tai and Dorobek, 1999). The most intensive uplift of the Central Basin Platform postdated the Strawn and continued from Middle Pennsylvanian to Early Permian time (Tai and Dorobek, 1999). Atokan and Desmoinesian carbonates in the Midland Basin were deposited on low-relief ramps at a time of relatively low regional subsidence, whereas Missourian and Virgilian deposits were deposited on higher-relief carbonate platforms at a time of higher rates of regional subsidence (Hanson and others, 1991; Mazzulo, 1997). Highfrequency glacioeustatic sea-level fluctuations during the Pennsylvanian resulted in highly cyclic depositional sequences (Wahlman, 2001).

Figure 37. Play map for the Pennsylvanian Platform Carbonate play, showing location of reservoirs having >1 MMbbl cumulative production, the play boundary, and geologic features. See figure 1 for county names and figure 2 for identification of geologic features.

Table 16. Pennsylvanian Platform Carbonate play (play 111). Production shown for fields that have had others combined into them represents the totals; combined fields are highlighted.

RRC RESN	RRC	FLDNAME	RESNAME	STATE	COUNTY	DISCYR	DEPTHTOP	2000 PROD	CUMPROD
597466		BOALLO	ocin	TV.	TIPTON	1058	9236	806	1 289 736
2207608	7C	AMACKER-TIPPETT	STRAWN	тх	UPTON	1954	9870	3,822	1,842,947
2212111	7C	AMACKER-TIPPETT, S.	BEND	тх	UPTON	1961	9848	11,984	6,908,189
2213250	7C	AMACKER-TIPPETT, SE	BEND 10600	тх	UPTON	1966	10637	19,801	4,159,301
2725500	8	ANDREWS	PENNSYLVANIAN	TX	ANDREWS	1954	9220	0	15,502,674
2727750	8	ANDREWS, NORTH	STRAWN		ANDREWS	1959	9369	3 914	3,073,474
3177500	on A	ANTON, SOUTH	STRAWN	1.4	MINGER	1957	8552	100 645	22.978.851
4605080	8	AZALEA	ΑΤΟΚΑ	TX	MIDLAND	1973	10898	25,979	2,996,387
5166555	8	BAKKE	PENN.	тх	ANDREWS	1956	8956	12,190	12,336,328
9359250	8	BLOCK 31, EAST	ATOKA	тх	CRANE	1965	8122	1,748	1,225,223
9962500		BLOCK 31, MW	PENN UPPER	n n	GRANE	1969	7967		4 489 708
9450200		BLOCK 42	PENN	ы. Т	UPTON AND DEVICE	4054	9450	19,9/1	1 100 472
11240500	8	BRADEORD RANCH	ATOKA		MIDLAND	1934	11221	4.779	5.717.992
21287250	. 8	COWDEN	CISCO	TX	ECTOR	1955	8846	91,618	6,348,910
21289180	8	COWDEN, NORTH	CANYON	тх	ECTOR	1973	9094	37,950	1,428,470
21292750	8	COWDEN, SOUTH	PENNSYLVANIAN	тх	ECTOR	1955	8360	4,554	1,095,207
23131250	8	DARMER	CANYON	тх	WINKLER	1964	8500	42,577	2,323,635
23138500	8	DARMER, NE.	PENN	TX	WINKLER	1978	8256	13,649	1,055,362
23907710	8	DEEP ROCK	PENN.	1X		1901	9037	70,020	3 642 912
24390100	°	DESPENADO		- i^	MIDCAND	130-	10045	18,543	1.115.430
25395100		DORA ROBERTS	CONSCLIDATED	TX P	MIDLAND	100	10341	34,294	2,371,200
25585500	88	DOSS	CANYON	ΤX	GAINES	1949	8850	0	1,712,794
28899747	8	EMMA.	STRAWN	. TX	ANDREWS	1956	9129	2.622	3,239,757
29507500	8	ESTES BLOCK 34	PENN.	TX	WARD	1957	7 8150	29,578	4,999,188
20394500		FASKEN	PENN.	n K	ECTOR	195	10158	32.473	1 655 075
35653777	8	GOLDSMITH, E.	PENNSYLVANIAN		ECTOR	195	3 8621	4,224	1,005,075
30176830	0 8		STRAWN		FCTOR	195/	2 9028	35,940	1.014.517
40295600	70	HELUMA	PENN.	TX	UPTON	195	6 8030	10,867	1,930,528
0/37824740	8	HEA	PENNSYLVANIAN	X7	WARD		BOES	1,413	3,516,869
43083250	8A	HUAT	CANYON	ТХ	GAINES	196	1 10470	51,032	6,037,105
44238500	8A	IDALOU	STRAWN	тх	LUBBOCK	197	0 9264	10,230	2,063,298
46134250	8A	JENKINS, NORTH	CANYON	TX	GAINES	195	2 8590	0	1,079,745
4/00/000	0	JOHNSON	PENN DENNEYI MANIAN		CRANE	19/-	3 9201 3 7930	. 0	2 104 204
49415545	70	KING MOUNTAIN N	CISCO	TX I	UPTON	197	5 8764	7.937	2.014.219
51812750	8A	LANDON	STRAWN	ŤX	COCHRAN	194	7 10340	2,714	1,210,407
52567500	8	LAZYR	STRAWN DETRITUS	тх	ECTOR	196	3 8307	2,689	1,211,321
53411710	8A	LEVELLAND	STRAWN	тх	HOCKLEY	195	7 10120) 0	1,044,056
53414500	9 8A	LEVELLAND, NE.	STRAWN	TX	HOCKLEY	196	4 10084	1 15,627	3,448,189
59419498	5 8	MCFARLAND	PENNSYLVANIAN		ANDREWS	195	0 10423	10,707 14,460	5,053,412
61473500	, o , s	MILLER BLOCK B-29	PENN		WARD	190	9 8104	1 3 428	2,737,993
62416666	5 8	MONAHANS, E.	PENN., LO.	TX	WINKLER	196	4 887;	6,913	1,325,184
62418666	6 8	MONAHANS, NE.	PENN DETRITAL, UP	тх	WINKLER	196	8 8128	3 14,434	3,878,539
62703400) 8	MOONLIGHT	MISSISSIPPIAN	тх	MIDLAND	198	4 11599	9 18,387	1,162,891
65766111	6	NOLLEY	CANYON	TX	ANDREWS	196	7 1038	4 19,572	2,131,200
69193568	5 6	PARKER	PENNSYLVANIAN	TX	ANDREWS	195	4 908	7 13,914	8,334,854
69233494	, c a ,	PARKER, WEST	PENNSYI VANIAN			190	07 9040 00 104 <i>4</i>	D 3,109 N 63,001	15 249 943
70279500	5 70	PEGASUS	PENNSYLVANIAN	TX	UPTON	195	1047	0 123.311	17,127,951
74590075	5 84	RAND-PAULSON	CANYON	тх	HOCKLEY	199	963	8 39,819	1,123,263
78167001	84	ROPES		тх	HOCKLEY	195	0 929	0 16,910	25,593,426
78175333	3 84	ROPES, WEST	CISCO SAND	тх	HOCKLEY	195	53 987	5 5,449	7,217,081
79659700	3 (SAINT LAWRENCE	STRAWN	TX	GLASSCOC	K 198	3 989	0 11,994	1,469,268
8223154	J 64	SEAGRAVES	STRAWN	IX TY	GAINES	195	x6 1124 /2 1070	3 7,155	1,049,161
8434733	3 8/	SMYER N.	CANYON		HOCKIEY	104	S 1079 S6 963	2 10,447	5 195 857
84347666	5 84	SMYER, N.	STRAWN	τx	HOCKLEY	195	56 996	8 0	6,354,886
8759956	B 8	3 SWEETIE PECK	PENNSYLVANIAN	TX	MIDLAND	196	50 1034	2 5,911	2,158,236
8913475	0 70	TEXEL	PENNSYLVANIAN	TX	UPTON	19	54 914	3 5,441	1,621,367
9135060	U 8	3 TRIPLE-N	PENN., UPPER	тх	ANDREWS	19	58 891	2 47,044	16,084,222
0607152	<u> </u>		PENNSYLVANIAN	TX	ECTOR	19	6 845	0 0	1,045,392
2305810	čenani	VIEREV		TX TX		19:	74 895 AAAA	o 292,047	15,782,648
9464050	0 1	8 WAGON WHEEL	PENN	т	WARD	10	79 AR1	2 367 335	9 445 581
9513840	6 1	B WARD, SOUTH	PENN. DETRI., UP.	Ť	WARD	19	63 770	0 5.000	1,631,943
9510809	0	WAR-SAN	CONSOLIDATED	e D	MIDLAND*	19	96 1079	4 34,375	3,223,679
9640866	4 8/	WESCOTT	STRAWN	T	GAINES	19	54 1100	8 44,214	5,564,505
9958360	0 70		PENNSYLVANIAN	1	UPTON	19	52 981	0 4,304	1,374,833
	- '	· ····································	UTIVANI	1)	PECUS	19	/0 830	ч 6,405	1,889,536
		Totais						2.076.281	340,469,274

Atokan reservoirs in the Midland Basin in Andrews and Midland Counties are composed of thin (15 to 20 ft [5 to 6 m]), silty to bioclastic-rich zones in the "Atoka" shale (Candelaria, 1990). During sea-level lowstands, carbonate detritus was carried from carbonate banks into relatively deeper water and deposited in extensive, sheetlike units up to 40 mi (64 km) long by 10 mi (16 km) wide (Candelaria, 1990). The Atoka reservoirs have porosity ranging from 6 to 8 percent; permeability is commonly less than 0.1 md ($0.1 \times 10^{-3} \mu m^2$). Natural fractures are interpreted to enhance storage capacity, continuity, and fluid transmissibility in these lowporosity, low-permeability reservoirs (Candelaria, 1990). Wells are typically stimulated by fracturing with diesel or lease crude oil to minimize formation damage by water and injecting 50,000 to 100,000 pounds of sand proppant. Simple acidizing treatments can damage Atoka reservoirs (Candelaria, 1990).

Some workers correlate the "Atoka" shale in this area to the Lower Pennsylvanian (Morrowan or Atokan), whereas others correlate it to the Upper Mississippian (Chester) Barnett Shale (Candelaria, 1990). The Atoka reservoirs have been included with the Pennsylvanian Platform Carbonate play in this report. Moonlight (Mississippian) reservoir has also been assigned to the Pennsylvanian Platform Carbonate play because, despite its name, it is interpreted as producing from a zone of bioclastic wackestones within the "Atoka" shale (Candelaria, 1990), similar to the Atoka reservoirs in fields such as Desperado and Azalea.

Strawn reservoirs on the Central Basin Platform and in the Midland Basin produce from shallow-marine, fossiliferous limestone; the traps are anticlines and faulted anticlines (Kosters and others, 1989). The reservoir in Seminole SE and other Strawn fields in Gaines County consist of *Chaetetes* (coral or sponge) biolithite and associated ooid and skeletal grainstones (Mazzullo, 1982). Strawn limestones also form reservoirs on the Northwest Shelf, in Hockley,

Lubbock, and Cochran Counties (fig. 37). Strawn carbonates in the Wilshire Pennsylvanian reservoir, Upton County, were deposited on a shallow carbonate ramp that prograded eastward away from the incipient Central Basin Platform (Tai and Dorobek, 1999). Upper Strawn strata are missing at Wilshire field, probably because of post-Strawn uplift and erosion on the faultbounded anticline that forms the trap (Tai and Dorobek, 1999). Several Strawn reservoirs in Ward, Winkler, and Ector Counties on the Central Basin Platform produce from detrital limestone, dolomite, chert, and sandstone, known as "Strawn Detritus." These detrital facies are attributed to erosion of older carbonates and cherts on exposed Pennsylvanian structures (Kosters and others, 1989; Van Der Loop, 1991; Tai and Dorobek, 1999). The largest of these fields is the Arenoso Strawn Detritus reservoir, which produces mainly from chert conglomerates and sandstones deposited in alluvial-fan, braided-stream, and shoreface environments (Van Der Loop, 1991).

On the east side of the Midland Basin, the Strawn produces in reservoirs such as the St. Lawrence from high-frequency, upward-shallowing cycles. Cycles are composed of lowenergy, mud-rich facies at the base, overlain by high-energy, grain-rich facies that form the reservoirs (Sivils and Stoudt, 2001; Sivils, 2002). Core-measured porosity (maximum 10 percent) agrees well with log porosity. Correlation of cycles is possible because of the close tie between log signature of cycles and cycles observed in core (Sivils, 2002).

Many of the larger reservoirs in this play, such as the Andrews, Triple-N, and University Block 9, produce from Upper Pennsylvanian carbonates on the east side of the Central Basin Platform and in Hockley County (fig. 37). Detailed descriptions of a typical Upper Pennsylvanian platform-carbonate reservoir on the Central Basin Platform were published by Saller and others (1994, 1999a, b) and Dickson and Saller (1995). The Strawn through Cisco

section represents one long-term regression on the east side of the Central Basin Platform, and a major unconformity occurs at the top of the Pennsylvanian (Saller and others, 1999b). These studies illustrate that the reservoirs are developed in highly cyclic successions of shallow-water carbonate-platform facies. The deposits thin to the west, indicating that the Central Basin Platform was a depositional high during the Late Pennsylvanian and Early Permian (Saller and others, 1999b). Stratigraphic heterogeneity is created by cyclic alternations of porous and nonporous limestone facies and shales (figs. 38, 39). Additional heterogeneity is contributed by karst-related diagenesis at and below cycle tops during sea-level-fall events (Dickson and Saller, 1995). Porosity in these rocks is developed primarily in phylloid algal boundstones, thick

Figure 38. Idealized upward-shallowing cycle in Upper Pennsylvanian carbonates in the Southwest Andrews area. From Saller and others (1999b).

Figure 39. Core description and gamma-ray log through the producing interval in the X-1 well, Andrews field, Southwest Andrews area, Andrews County. After Saller and others (1999a), reprinted by permission of the AAPG, whose permission is required for further use. ©Copyright 1999. The American Association of Petroleum Geologists. All rights reserved. See Saller and others (1999a) for well location.

grainstones, and a few wackestone/packstones (Saller and others, 1999a). Phylloid algae were the dominant mound builders in shelf and shelf-margin areas during the Middle and Late Pennsylvanian (Wahlman, 2001). Phylloid-algal buildups developed during the late, highstand parts of Pennsylvanian depositional sequences and were commonly exposed to meteoric diagenesis when sea level fell (Wahlman, 2002).

Reservoir-grade porosity (>4 percent) occurs in 5 to 25 percent of the gross reservoir interval (fig. 40) (Saller and others, 1999a). Porosity is best developed in the upper part of cycles >6 ft (2 m) thick that were subjected to subaerial erosion for brief to moderate lengths of time

Figure 40. Stratigraphic cross section showing distribution of porous limestone in the Canyon and Cisco intervals in Deep Rock and Parker fields, southwest Andrews County. After Saller and others (1999a), reprinted by permission of the AAPG, whose permission is required for further use. ©Copyright 1999. The American Association of Petroleum Geologists. All rights reserved. See Saller and others (1999a) for location of cross section.

(Saller and others, 1999b). Reservoir porosity is largely determined by the amount of burial compaction and cementation and not by the amount of porosity created during subaerial exposure (Dickson and Saller, 1995). Porosity in Ropes field, which produces from a Canyon-Cisco limestone buildup, averages 8.5 percent; permeability averages 66 md ($66 \times 10^{-3} \mu m^2$) and ranges from 0.1 to 1,100 md (0.1 to 1,100 $\times 10^{-3} \mu m^2$) (Godfrey, 1982; Collier and others, 1998).

Simple anticlinal closures form traps for most of these reservoirs. The traps are

interpreted to be postdepositional, but productive areas within the structural traps are limited because of the irregular distribution of porous facies (Galloway and others, 1983). Ropes field produces from a stratigraphic trap (Godfrey, 1966; Collier and others, 1998).

References

- Candelaria, M. P., 1990, Atoka detrital a subtle stratigraphic trap in the Midland Basin, *in* Flis, J. E., and Price, R. C., eds., Permian Basin oil and gas fields: innovative ideas in exploration and development: West Texas Geological Society, Publication No. 90-87, p. 104–106.
- Collier, H., Shaw, R., and McCracken, M., 1998, Integrating sample, seismic, petrophysical, and engineering data to revitalize an old field; Ropes Canyon Reef Unit, Hockley County, Texas, *in* DeMis, W. D. and Nelis, M. K., eds., The search continues into the 21st century: West Texas Geological Society Publication No. 98-105, p. 105–106.
- Dickson, J. A. D., and Saller, A. H., 1995, Identification of subaerial exposure surfaces am porosity preservation in Pennsylvanian and lower Permian shelf limestones, eastern Central Basin Platform Texas, *in* Budd, D. A., Saller, A. H., and Harris, P. M., eds., Unconformities in carbonate shelf strata—their recognition and the significance of associated porosity: American Association of Petroleum Geologists Memoir 57, p. 239–257.
- Frenzel, H. N., Bloomer, R. R., Cline, R. B., Cys, J. M., Galley, J. E., Gibson, W. R., Hills, J. M., King, W. E., Seager, W. R., Kottlowski, F. E., Thompson, S., III, Luff, G. C., Pearson, B. T., and Van Siclen, D. C., 1988, The Permian Basin region, *in* Sloss, L. L., ed., Sedimentary cover—North American Craton; U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. D-2, p. 261–306.
- Galloway, W. E., Ewing, T. E., Garrett, C. M., Jr., Tyler, N., and Bebout, D. G., 1983, Atlas of major Texas oil reservoirs: The University of Texas at Austin, Bureau of Economic Geology Special Publication, 139 p.
- Godfrey, C. B., 1982, Ropes & South Ropes Penn.: selected oil & gas fields in West Texas: West Texas Geological Society Publication No. 82-75, p. 565-567.
- Hanson, B. M., Powers, B. K., Garrett, C. M., Jr., McGookey, D. E., McGlasson, E. H., Horak, R. L., Mazzullo, S. J., Reid, A. M., Calhoun, G. G., Clendening, J., and Claxton, B., 1991, The Permian Basin, *in* Gluskoter, H. J., Rice, D. D., and Taylor, R. B., eds., The

Geology of North America, v. P-2, Economic Geology, U.S.: Geological Society of America, p. 339–356.

- Kosters, E. C., Bebout, D. G., Seni, S. J., Garrett, C. M., Jr., Brown, L. F., Jr., Hamlin, H. S., Dutton, S. P., Ruppel, S. C., Finley, R. J., and Tyler, Noel, 1989, Atlas of major Texas gas reservoirs: The University of Texas at Austin, Bureau of Economic Geology Special Publication, 161 p.
- Mazzullo, S. J., 1982, Types and controls on Permo-Pennsylvanian carbonate stratigraphic traps of shallow-marine origin in Permian Basin: exploration models: Oil and Gas Journal, v. 80, p. 127–141.
 - 1997, Stratigraphic exploration plays in Ordovician to Lower Permian strata in the Midland Basin and on the Eastern Shelf, *in* DeMis, W. D., ed., Permian Basin oil and gas fields: turning ideas into production: West Texas Geological Society Publication No. 97-102, p. 1-37.
- Saller, A. H., Dickson, J. A. D., and Boyd, S. A., 1994, Cycle stratigraphy and porosity in Pennsylvanian and lower Permian shelf limestones, eastern Central Basin Platform, Texas: American Association of Petroleum Geologists Bulletin, v. 78, p. 1820–1842.
- Saller, A. H., Dickson, J. A. D., and Matsuda, F., 1999a, Evolution and distribution of porosity associated with subaerial exposure in upper Paleozoic platform limestones, West Texas: American Association of Petroleum Geologists Bulletin, v. 83, p. 1835–1854.
- Saller, A. H., Dickson, J. A. D., Rasbury, E. T., and Ebato, T., 1999b, Effects of long-term accommodation changes on short term cycles: Upper Paleozoic platform limestones, West Texas, *in* Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops, and models: Society of Economic Paleontologists and Mineralogists Special Publication No. 63, p. 227–246.
- Sivils, D. J., 2002, Reservoir characterization of the Strawn (Desmoinesian) from St. Lawrence Field, Glasscock County, Texas, *in* Transactions, Southwest Section, American Association of Petroleum Geologists, Ruidoso, New Mexico, p. 193–197.
- Sivils, D. J., and Stoudt, E. L., 2001, Reservoir characterization of the Strawn (Desmoinesian) from St. Lawrence field, Glasscock County, Texas, *in* Viveiros, J. J., and Ingram, S. M., eds., The Permian Basin: microns to satellites, looking for oil and gas at all scales: West Texas Geological Society Publication No. 01-110, p. 53.
- Tai, P., and Dorobek, S. L., 1999, Preliminary study on the Late Paleozoic tectonic and stratigraphic history at Wilshire field, central Upton County, southwestern Midland Basin, west Texas, *in* Grace, D. T., and Hinterlong, G. D., eds., The Permian Basin: providing energy for America: West Texas Geological Society Publication No. 99-106, p. 19-29.

- Van Der Loop, M., 1991, Depositional environments in the Arenoso field, Winkler County, Texas, *in* Candelaria, M., ed., Permian Basin plays—tomorrow's technology today: West Texas Geological Society Publication No. 91-89, p. 73-91.
- Wahlman, G. P., 2001, Pennsylvanian-Lower Permian mounds and reefs in the Permian Basin (west Texas-New Mexico): composition, evolution, distribution, and reservoir characteristics, *in* Viveiros, J. J., and Ingram, S. M., eds., The Permian Basin: microns to satellites, looking for oil and gas at all scales: West Texas Geological Society Publication No. 01-110, p. 57–64.

2002, Pennsylvanian and Lower Permian shelf-margin mounds and reefs in the Permian Basin region (West Texas-New Mexico): composition, evolution, distribution, and reservoir characteristics, *in* Transactions, Southwest Section, American Association of Petroleum Geologists, Ruidoso, New Mexico, p. 169. Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate (Play 112)

This large play, the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate, has produced 2,699.2 MMbbl $(4.29 \times 10^8 \text{ m}^3)$ from 70 reservoirs within the Horseshoe Atoll, a nonreefal, isolated, carbonate platform system in the northern Midland Basin (table 17, figs. 41, 42). Production is from stacked Strawn through Wolfcamp limestones and dolomitic limestones that aggraded from the floor of the basin in a northward-opening arc (Galloway and others, 1983). Deposition of the Horseshoe Atoll began on a broad Strawn carbonate platform that lay basinward of the clastic deposition in North-Central Texas (Vest, 1970). Isolated reservoirs produce from Strawn carbonates in Garza and Borden Counties, where carbonate mounds developed on local structural highs in the underlying Ellenburger (F. J. Lucia, personal communication, 2000). During lowstands, these mounds were subaerially exposed, and meteoric diagenesis developed moldic porosity.

Through time, isolated carbonate knolls and pinnacles evolved from the laterally continuous carbonate platform. Subsidence of the Midland Basin led to repeated backstepping of the platform from Strawn through Canyon and Cisco time, and considerable relief developed on the vertically accreting pinnacles (Vest, 1970; Galloway and others, 1983; Kerans, 2001b). Early-middle Canyon, high-frequency eustatic shifts produced systematic upward-coarsening, tight-to-porous cycles that cause strongly layered reservoir heterogeneity (fig. 43). In the later Canyon and Cisco, high-frequency cycles show higher amplitude eustatic shifts and cycle-scale karstification (Kerans, 2001b). The lithofacies that compose the Horseshoe Atoll include sponge-algal-bryozoan and phylloid-algal-mound wackestones and boundstones, crestal tidal-flat and peritidal wackestones, shoal and shoreface grainstones, shelf crinoidal wackestones, and debris-flow lithoclast packstones and wackestones (Galloway and others, 1983; Schatzinger, 1988).

Table 17. Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (play 112). Production shown for fields that have had others combined into them represents the totals; combined fields are highlighted.

RRC RESN	RRC	FLDNAME	RESNAME	STATE	COUNTY	DISCYR	DEPTHTOP	2000 PROD	CUMPROD
450250	8A	ACKERLY NORTH	CANVON DEEL						
450375	84	ACKERLY NORTH	CIRCO	TX	DAWSON	1958	9154	11,621	1,198,872
570500	8A	ADAIR	WOLECAMP		DAWSON	1972	8766	0	1,106,255
573500	8A	ADAIR. NORTHEAST	WOLFCAMP		TERRY	1950	8505	41,192	52,422,109
3250510	8A	APCLARK	STRAWN		POPOEN	1954	8846	11,361	1,326,016
4690300	8	B.C.	CANYON		BURDEN	1996	8534	159,265	1,231,864
12476400	8A	BROWNFIELD, S.	STRAWN		TEPOV	1985	9041	15,035	1,226,734
12469333	8A	BROWNFIELD, SOUTH	CANYON		TEODY	1961	10013	20,545	1,349,752
14627666	8A	CAIN	STRAWN	TY	GARZA	1950	9330	5,381	5,252,940
14215250	8	C. C. GUNN	CANYON REEF	ТХ	HOWARD	1097	7032	10,735	1,047,176
19346142	8A	COGDELL	AREA	тх	KENT	1040	6706	600.020	1,000,090
19347250	8A	COGDELL, EAST	CANYON	тх	SCURRY	1958	6813	25 162	5 745 654
19351333	8A	COGDELL, SE.	CANYON 6800	тх	SCURRY	1970	6832	3 718	1 035 //0
24562142	8A	DIAMOND -M-	CANYON LIME AREA	тх	SCURRY	1948	6569	1 076 585	748 878 437
25/28500	8A	DOUBLE J	CANYON REEF	тх	BORDEN	1969	6641	82,743	4 335 241
2090/000	88	DOVER	STRAWN	тх	GARZA	1985	8123	54.320	1,268,004
20029500	88	ELZON, W.	STRAWN 6950	тх	KENT	1967	6972	20	1.674.677
31607947	90	ELLIN (ANINIA CON)	STRAWN	. XI.	BORDEN	11954	1769-	32 125	13.803.241
33101250	94	FLUVANNA, SW.	STRAWN, UPPER	TX	BORDEN	1973	7902	8,245	3,048,201
34849500	84	GUL	CANYON	тх	SCURRY	1961	6846	20,059	2,016,286
35738001	84	GOOD	PENN. REEF 6900	тх	SCURRY	1970	6937	86,966	1,155,277
35741500	84	GOOD NORTHEAST	CANYON DECE	TX	BORDEN	1949	7905	97,619	49,768,450
35744333	84	GOOD SE	CANYON REEF	TX	BORDEN	1953	8066	62,258	3,509,246
38866666	84	HAPPY	STRAWN	TX	BORDEN	1959	8123	0	1,095,717
40716333	8A	HERMLEIGH	STRAWIN	TX	GARZA	1958	7951	1,367	1,839,792
41816333	8A	HOBO		TX	SCURRY	1953	6530	27,627	1,051,427
48583001	84	KELLY SNYDER	FERINSTEVANIAN	TX.	BORDEN	1951	7100	33,656	12,964,339
49678500	8A	KIRKPATRICK	PENN		SCURAY	1948	, 67 95	3,183,905	1,264,216,085
55578500	8A	LUCY, NORTH	PENN		GARZA	1961	7902	1,367	1,534,724
55818333	8	LUTHER, NORTH	CANYON REFE		BORDEN HOM/ADD	1973	7830	13,944	2,259,712
55975500	8A	LYN KAY	6150			1952	7950	15	1,789,764
61046250	8	MIDDLETON	CANYON REEF	ŤŶ		1975	6164	27,520	1,157,730
63799500	8A	MUNGERVILLE	PENNSYLVANIAN	ŤX	DAWSON	1900	9530	51,998	1,285,697
64217500	8A	MYRTLE, NW.	STRAWN	тх	BORDEN	1951	8020	02,213	9,030,009
64221666	8A	MYRTLE, W.	STRAWN	тх	BORDEN	1956	8072	2 409	1,013,491
66669500	8	OCEANIC	PENNSYLVANIAN	тх	HOWARD	1953	8140	136 138	2,002,400
66672500	8	OCEANIC, N.E.	PENNSYLVANIAN	тх	BORDEN	1968	8135	7 463	1 405 837
70001300	8	PERRIWINKLE	CANYON	тх	MARTIN	1985	9420	72,795	1 062 980
72213300	88	POLAR, EAST	PENNSYLVANIAN	тх	KENT	1950	6855	0	1,993,424
75780001	04	POST, WEST	STRAWN	тх	GARZA	1979	8482	ō	1.099.724
75781500	04	REINECKE		тх	BORDEN	1950	6791	562,858	85.247.005
79131666	8	REINEGRE, E.	CANYON	тх	BORDEN	1966	6794	2,329	1,281,886
79887001	84	SALT OPEEN	PENNREEF	TX	HOWARD	1967	7424	12,681	1,207,162
79891500	84	SALT CREEK SOUTH	DENIN LOWER	тх	KENT	1950	6200	5,792,610	356,369,037
81021250	8	SARA-MAG	CANYON DEEF	TX	KENT	1952	6622	0	1,403,717
81987400	8A	SEAN ANDREW	DEMN	IX	HOWARD	1954	7580	250,936	3,937,283
84470750	84	SNYDER N		IX	DAWSON	1994	8329	51,699	1,296,502
85292750	8A	SPRABERRY, WEST	PENN		DAMAGON	1850		9,371	7,936,335
85743666	8A	STATEX	CISCO REEF		TEPPY	1953	8060	4,988	2,293,014
87646500	8A	SWENSON-GARZA	STRAWN		CARZA	1952	10032	12,433	2,870,697
88611568	8A	TEAS	PENN, 8100	TY I	GARZA	1971	/356	0	1,390,411
88760100	8 A	TEN GALLON	CANYON LIME	TX	SCURRY	1900	8009	20,205	3,892,415
88977142	8A	TEX-HAMON	CANYON	тх	DAWSON	1992	10060	57,961	1,1/3,235
90268333	8A	TOBE	STRAWN	ТХ	GARZA	1951	7451	22 077	1,399,045
90697500	8A	TONTO, NE.	CISCO 5030	тх	SCURRY	1966	5046	6 147	1,733,100
91316500	84		PENN. REEF	TX	DAWSON	1958	8497	1 913	1,700,652
91670700	84	THEROW	REEF	тх	SCURRY	1956	6862	100 444	6 516 418
92290666	94		STRAWN	TX	GARZA	1979	7599	21.027	1 300 773
93308001	9	VEALNOOD	PENNSYLVANIAN	TX	BORDEN	1958	8084	4.390	3 015 323
93310001	8	VEALMOOR EAST		тх	HOWARD	1948	7934	106,125	39,565,153
93854500	8	VINCENT N		TX	HOWARD	1950	7414	154,771	62,692.195
93857500	8	VINCENT S	STRAMAN	тх	HOWARD	1957	7444	28,497	2.558.261
93860500	8	VINCENT, WEST		тх	HOWARD	1964	7839	17,244	1,195,546
94114001	8A	VON ROEDER	r 121414,	TX	HOWARD	1957	7454	23,579	1,116,613
94114666	8A	VON ROEDER	WOI ECAMP	TX	BORDEN	1959	6835	63,015	19,299,794
94116001	8 A	VON ROEDER, NORTH		TX TX	BORDEN	1964	6063	9,091	1,020,734
96180001	8A	WELLMAN			BORDEN	1954	6835	12,654	10,322,342
				IX.	ICKKY	1950	9712	228,174	74,181,795
	٦	otals							

13,686,639 2,699,242,936

Figure 41. Play map for the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, showing location of reservoirs having >1 MMbbl cumulative production, the play boundary, and geologic features. See figure 1 for county names and figure 2 for identification of geologic features.

Figure 42. Isopach map of the Horseshoe Atoll carbonate. Modified from Galloway and others (1983); after Vest (1970). The thickest carbonate buildup is along the western margin, which is structurally lower, and where active atoll accretion continued into Early Permian time (Galloway and others, 1983). Cross section A-A' shown in figure 44.

Prevailing winds and ocean currents influenced the distribution of carbonate facies (Walker and others, 1991; 1995). Percentages of grainstones are highest in the northeast, windward part of the platform, whereas mud-dominated facies predominate to the southwest (Schatzinger, 1988; Walker and others, 1991; 1995).

Because the Horseshoe Atoll was deposited under icehouse conditions during a time of peak glaciation, there were high-frequency oscillations of sea level by 65 to 460 ft (20 to 140 m) (Reid and Reid, 1999; C. Kerans, personal communication, 2002). Fresh water percolated through the carbonate platform during sea-level lowstands, resulting in the development of

caves, karst, and fractures, as well as fabric-selective moldic porosity (Reid and Reid, 1991; Mazzullo, 1997; C. Kerans, personal communication, 2002). Prolonged exposure in the middle Cisco terminated platform growth locally (Kerans, 2001b). Exposure and erosion at sequence boundaries produced a series of truncation surfaces, with local development of lowstand/ transgressive wedges on the flanks of the platform. The Horseshoe Atoll was buried beneath prograding slope and basin clastic sediments from the east; Wolfcamp shales provide top and lateral seals.

A few of the reservoirs in this play were deposited south of the Horseshoe Atoll during sea-level lowstands, including BC Canyon in Howard County, Perriwinkle Canyon in Martin County, and Tex-Hamon Canyon in Dawson County (Reid and others, 1990; Mozynski and Reid, 1992; Mazzullo, 1997, 2000). Reservoirs occur in both in situ carbonate buildups and reworked limestone-clast breccias derived from the exposed carbonate platform. These shallow-water carbonates were deposited during lowstands in areas that were relative deepwater-slope environments during sea-level highstands (Mazzullo, 1997). Because the lowstand carbonate reservoirs are included, the play boundary extends farther south than is commonly shown for the outline of the Horseshoe Atoll.

Detailed reservoir studies have been conducted of the SACROC unit (Kerans, 2001a, b; Raines and others, 2001). The SACROC (Scurry Area Canyon Reef Operators Committee) unit, which incorporates nearly all of Kelly-Snyder field and part of Diamond -M- field, is the largest producing unit of the Horseshoe Atoll play. (Horseshoe Atoll production is listed in table 17 under Railroad Commission of Texas reservoir names and not by units. Thus, production from the SACROC unit is listed under the Kelly-Snyder reservoir, and production from the Sharon Ridge unit is listed under the Diamond -M- (Canyon Lime Area) reservoir.) Since discovery in the 1940's, primary, secondary, and tertiary recovery activities in the SACROC unit have been extensive, including the first CO₂ flood in west Texas.

The north part of the SACROC unit is depositionally and diagenetically complex (Raines and others, 2001). In this area, the 700-ft-thick (310-m) reservoir column consists of Canyon and Cisco carbonates that change from layered, open-shelf subtidal cycles having minimal diagenetic overprint (lower and mid-Canyon) to high-energy, shoal-related cycles having frequent exposure surfaces (upper Canyon–lower Cisco) and increased evidence of cycle and sequence-scale erosion (fig. 44) (Kerans, 2001a, b). Early Cisco deposition was characterized by dramatic changes in depositional style, including growth of pinnacle reefs and formation of complex, fractured, muddy, crinoid-dominated facies that resemble Waulsortian deeper-water buildups (Wilson, 1975). Porosity in the SACROC unit ranges from 4.0 to 20.0 percent and averages 9.8 percent; permeability ranges from 1 md to 1,760 md (1 to 1,760 × 10⁻³ μ m²) and averages 19 md (19 × 10⁻³ μ m²) (Wingate, 1996).

Seismic data were used extensively in constructing the stratigraphic framework of the SACROC unit and allowed significant advances in our understanding of the stratigraphic architecture that were not possible with logs alone. The result of this modeling is a 3-D volume that is drastically different from that previously generated. Huge volumes of the platform previously modeled as laterally continuous layers can be shown to consist of erosionally generated slope wedges associated with major icehouse eustatic sea-level falls (fig. 44). Complex promontories and reentrants similar to the present-day Bahama platform mark the edges of the field, and large windward-leeward asymmetries control reservoir-quality distribution. Muddy zones are extensive across the entire reservoir and have a large impact on flow (C. Kerans, personal communication, 2002). This modern model of the north part of the SACROC unit should greatly aid ongoing efforts for enhanced recovery using water-alternating-with-gas (WAG) processes and related practices. An estimated 700 MMbbl $(1.11 \times 10^8 \text{ m}^3)$ of

unrecovered mobile oil remains in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (Tyler and Banta, 1989).

The SACROC unit has undergone CO₂ flooding since 1972, but recent modifications to the CO₂-flood design in the central part of the unit have increased production by ~6,000 bbl/d $(9.54 \times 10^2 \text{ m}^3)$ (Raines and others, 2001). Unit production in 2002 was at an 8-year high of 11,000 bbl/d $(1.75 \times 10^3 \text{ m}^3)$ (Raines, 2002). The changes to the flood include (Raines and others, 2001)

(1) Targeting oil that is residual to the earlier waterflood, instead of attempting to recover oil unswept by the earlier waterflood.

(2) Ensuring that the pressure inside areas to be flooded is above minimum miscibility pressure before CO_2 injection begins. If water is injected to raise the pressure in the area, it is injected below the parting pressure so that the formation is not fractured.

(3) Using smaller, injection-centered 5-spot patterns of about 40 acres.

(4) Containing the CO₂ project area by a row of water-curtain wells beyond the producers to reduce CO₂ migration outside the pattern. Mass-balance analysis indicated that approximately 50 percent of injected CO₂ was being lost out of intended patterns.

(5) Increasing the volume of CO_2 injected to ~70 percent of the hydrocarbon pore volume in the pattern area.

(6) Using a multiphase Water Alternating with Gas (WAG) injection scheme instead of one or two continuous CO₂ slugs. WAG injection slows down the CO₂ flood front to delay breakthrough and reduces costs. (7) Acquiring 4-D (time-lapse) cross-well seismic data to track CO_2 in the reservoir by comparing seismic velocity profiles between wells after less-dense CO_2 has replaced oil and water (Raines, 2003).

The revised CO₂ flood has arrested production decline in the SACROC unit. In 2001 the central area that is undergoing the CO₂ flood contributed ~75 percent of total unit production (Raines and others, 2001). Many of the lessons learned at the SACROC unit should be applicable both to CO₂ floods in other reservoirs in this play and carbonate reservoirs in other plays in the Permian Basin. CO₂ floods are also being conducted in other fields producing from the Horseshoe Atoll, including Salt Creek, Cogdell, Diamond -M-, the Sharon Ridge unit of Diamond -M- field (Kinder Morgan, personal communication, 2002), and Cogdell field (S. Pennell, personal communication, 2002). Phase 1 CO₂ flood at the north end of Cogdell field started in late 2001 and has increased production from an average of 369 bopd in 2001 to 2500 bopd in November 2002. Salt Creek field has undergone secondary waterflooding and tertiary CO₂ flooding that have achieved a recovery of more than 50 percent of OOIP; ultimate recovery may be as high as 60 percent of OOIP (Genetti and others, 2002).

References

- Galloway, W. E., Ewing, T. E., Garrett, C. M., Jr., Tyler, N., and Bebout, D. G., 1983, Atlas of major Texas oil reservoirs: The University of Texas at Austin, Bureau of Economic Geology Special Publication, 139 p.
- Genetti, D. B., Whitaker, C. A., Smith, D. P., and Price, L. M., 2003, Applying improved recovery processes and effective reservoir management to maximize oil recovery at Salt Creek: Society of Petroleum Engineers, SPE 13th Middle East Oil Show & Conference, Bahrain, April, SPE 81458, 11 p.

Kerans, C., 2001a, Reservoir architecture at SACROC and the Canyon-Cisco transition, in Viveiros, J. J., and Ingram, S. M., eds., The Permian Basin: microns to satellites, looking for oil and gas at all scales: West Texas Geological Society Publication No. 01-110, p. 49.

2001b, Stratigraphic and diagenetic controls on reservoir architecture of a nonreefal icehouse isolated platform—Sacroc Unit, Horseshoe Atoll, Texas (abs.): American Association of Petroleum Geologists Bulletin, v. 85, p. 386–387.

Mazzullo, S. J., 1997, Stratigraphic exploration plays in Ordovician to Lower Permian strata in the Midland Basin and on the Eastern Shelf, *in* DeMis, W. D., ed., Permian Basin oil and gas fields: turning ideas into production: West Texas Geological Society Publication No. 97-102, p. 1–37.

2000, Models of porosity evolution in Pennsylvanian lowstand carbonates (now in slope-to-basinal settings) and in Lower Permian, highstand-resedimented basinal carbonates, *in* Reid, S. T., ed., Geo-2000: into the future: Transactions, Southwest Section American Association of Petroleum Geologists, Publication SWS 2000-107, p. 130–138.

- Mozynski, D. C., and Reid, A. M., 1992, Perriwinkle–Perriwinkle North fields, Martin County, Texas: a Cisco-Canyon lowstand reef complex, *in* Cromwell, D. W., Moussa, M. T., and Mazzullo, L. J., eds., Transactions, Southwest Section, American Association of Petroleum Geologists, SWS 92-90, p. 61–78.
- Raines, M. A., Dobitz, J. K., and Wehner, S. C., 2001, A review of the Pennsylvanian SACROC unit, *in* Viveiros, J. J., and Ingram, S. M., eds., The Permian Basin: microns to satellites, looking for oil and gas at all scales: West Texas Geological Society Publication No. 01-110, p. 67–74.
- Raines, M. A., 2002, Interpretations on a Pennsylvanian reef, in Transactions, American Association of Petroleum Geologists Southwest Section Convention: Roswell Geological Society, p. 210.

2003, Reef heterogeneity as seen by wireline and cross-well seismic in the Pennsylvanian SACROC Unit, Scurry County, Texas, *in* Hunt, T. J., and Lufholm, P. H., eds., The Permian Basin: back to basics: West Texas Geological Society Publication No. 03-112, p. 325.

Reid, A. M., Mozynski, D. C., and Robinson, W. C., 1990, B.C. Canyon field: a low sea level stand, early Canyon carbonate buildup, *in* Flis, J. E., and Price, R. C., eds., Permian Basin oil and gas fields: innovative ideas in exploration and development: West Texas Geological Society, Publication No. 90-87, p. 119–129. Reid, A. M., and Reid, S. A. T., 1991, The Cogdell Field study, Kent and Scurry Counties, Texas: a post-mortem, *in* Candelaria, M., ed., Permian Basin plays, tomorrow's technology today: West Texas Geological Society, Publication No. 91-89, p. 39–66.

1999, Glacio-eustatic sea level fluctuations and the formation of Pennsylvanian age carbonate reservoirs in the Permian Basin of West Texas, *in* Grace, D. T., and Hinterlong, G. D., eds., The Permian Basin: providing energy for America: West Texas Geological Society Publication No. 99-106, p. 71–79.

- Schatzinger, R. A., 1988, Changes in facies and depositional environments along and across the trend of the Horseshoe Atoll, Scurry and Kent Counties, Texas, *in* Cunningham, B. K., ed., Permian and Pennsylvanian stratigraphy, Midland Basin, West Texas: studies to aid in hydrocarbon exploration: Permian Basin Section, Society of Economic Paleontologists and Mineralogists, Publication No. 88-28, p. 79–107.
- Tyler, N., and Banta, N. J., 1989, Oil and gas resources remaining in the Permian Basin: targets for additional hydrocarbon recovery: The University of Texas at Austin, Bureau of Economic Geology Geological Circular 89-4, 20 p.
- Vest, E. L., 1970, Oil fields of Pennsylvanian-Permian Horseshoe Atoll, West Texas, in Halbouty, M. T., ed., Geology of giant petroleum fields: American Association of Petroleum Geologists Memoir 14, p. 185–203.
- Walker, D. A., Golonka, J., Reid, A., and Reid, S., 1995, The effects of paleolatitude and paleogeography on carbonate sedimentation in the Late Paleozoic, *in* Huc, A.-Y., ed., Paleogeography, paleoclimate, and source rocks: American Association of Petroleum Geologists Studies in Geology No. 40, p. 133–155.
- Walker, D. A., Golonka, J., Reid, A., and Tomlinson-Reid, S., 1991, The effects of late Paleozoic paleolatitude and paleogeography on carbonate sedimentation in the Midland basin, Texas, *in* Candelaria, M., ed., Permian Basin plays—tomorrow's technology today: West Texas Geological Society Publication No. 91-89, p. 141–162.

Wilson, J. L., 1975, Carbonate facies in geologic history: New York, Springer-Verlag, 471 p.

Wingate, T. P., 1996, Kelly-Snyder field (SACROC unit): oil & gas fields in West Texas, v. VII: West Texas Geological Society Publication Number 96-99, p.71–76. Upper Pennsylvanian and Lower Permian Slope and Basinal Sandstone (Play 113)

The Upper Pennsylvanian and Lower Permian Slope and Basinal Sandstone play, called Upper Pennsylvanian Slope Sandstone in the oil atlas (Galloway and others, 1983), has produced 271.4 MMbbl ($4.31 \times 10^7 \text{ m}^3$) from 59 reservoirs in the Midland Basin and along the Eastern Shelf (table 18, fig. 45). Much of the play is in the North-Central Texas geologic province, but because a significant part of the play is located in the Permian Basin, the entire play is included in this portfolio. Of the 59 reservoirs in the play (fig. 45), 28 are in the Permian Basin and 31 are in North-Central Texas. The reservoirs in the Permian Basin had cumulative production of 108.3 MMbbl ($1.72 \times 10^7 \text{ m}^3$), compared with 163.1 MMbbl ($2.59 \times 10^7 \text{ m}^3$) from the North-Central Texas reservoirs.

As the Eastern Shelf prograded into the Midland Basin during Cisco and Wolfcamp deposition, a sequence of submarine fans accumulated at the base of offlapping slope wedges (fig. 46) (Galloway and Brown, 1972; Galloway and others, 1983; Brown and others, 1987, 1990). Reservoir sand bodies were deposited in lower parts of the slope wedges along a broad north-south-trending belt. As a result of miscorrelation of slope and basin reservoirs with older shelf units, the "Canyon" sandstone reservoirs of this play are commonly correlative with Cisco or Wolfcamp strata on the Eastern Shelf (Galloway and others, 1983; Neuberger, 1987).

The sandstones of this play were interpreted by Brown and others (1987, 1990) and Whitsitt (1992b) to have been deposited during periods of sea-level lowstand. Rapid fall of relative sea level eroded submarine canyons and produced Type 1 unconformities; basin-floor fans were deposited on the unconformities. During maximum fall of relative sea level and earliest relative rise, lowstand slope fans and deltaic/slope wedge systems prograded into the Midland Basin (fig. 47) (Brown and others, 1990). The reservoirs are developed within large,

Table 18. Upper Pennsylvanian and Lower Permian Slope and Basinal Sandstone play (play 113). Production shown for fields that have had others combined into them represents the totals; combined fields are highlighted.

RRC RESN	RRC	FLDNAME	RESNAME	STATE	COUNTY	DISCYR	DEPTHTOP	2000 PROD	CUMPROD
2718400	70	ANOREW A	CANYON	тх	IRION	1979	7390	58,724	3.321.404
3602550	70	ARIEDGE	PENN SAND	TX	COKE	1974	5270	7 065	1,191,965
4170666	7B	ASPERMONTLAKE	CANYON SAND	TX	STONEWALL	1951	4862	9,193	2.236.772
5143300	2070	BAKER RANCH	CANYON	TY .	DRICH	1978	2019	-24 266	2,298,589
8630400	70	BLOODWORTH NE	S750 CONYON 4		NOT AN	1057	B 124	8 124	3,710,179
12175852	7C	BRONTE	4800 SAND	ΤX	COKE	1952	4838	0	6.075,918
12244075	70	BROOKS	CANYON K	TX	IRION	1973	6494	19,495	1,072,548
17991500	7C	CHRISTI	CANYON 6800	тх	IRION	1971	6824	5,798	1,192,011
18799498	7B	CLAYTONVILLE	CANYON SD. 5200	тх	FISHER	1955	5197	3,458	2,094,750
19346284	8A	COGDELL	FULLER SAND	тх	KENT	1950	4985	0	1,234,509
20097700	8	CONGER	PENN	XT	GLASSCOCK	1978	7739	, 222,782	20,406,213
20101500	7C	CONGER, SW	PENN	TX	REAGAN	1979	8134	19,879	2,675,544
25930284	7C	DOVE CREEK	CANYON -C-	TX	TOM GREEN	1965	6497	11,268	1,205,124
25930426	7C	DOVE CREEK	CANYON -D-	TΧ	IRION	1965	6540	30,509	3,140,304
31628250	7B	FLOWERS	CANYON SAND	ТX	STONEWALL	1951	4024	99,721	31,076,719
31634500	7B	FLOWERS, W.	CANYON SAND	ТΧ	STONEWALL	1952	4270	9,629	5,653,948
32653400	7B	FRANKIRK	CANYON SAND	τх	STONEWALL	1952	4587	18,389	1,526,680
32654332	7B	FRANKIRK, EAST	CANYON SD	тх	STONEWALL	1960	4406	6,874	1,940,490
33190001	8A	FULLER		тх	SCURRY	1951	5147	18,667	7,431,645
33191500	8A	FULLER, EAST	FULLER -B-	ТХ	SCURRY	1961	4935	15,763	1,251,629
33196332	- 8A	FULLER, SE.	FULLER	TX	SCURRY	1957	5032	6,292	1,233,168
33196498	8A	FULLER, SE.	FULLER -C-	TX	SCURRY	1961	5029	23,956	1,356,946
3/328333	7B	GUEST	CANYON SAND	TX	STONEWALL	1951	4557	47,833	10,548,187
44042125	70	1. A. B.	HARRIS SAND	TX	COKE	1970	5275	1,894	1,097,186
44042750	7Ç	1. A. B.	PENN 5070	TΧ	COKE	1957	5063	323	1,023,437
AFE ADDRESS	0.97	MARCHINE CONTRACTOR	PERIOD F150	- 44 - 44	CORE		53192	113,210,90	42.408 749
45991666	84	JAYTON WEST	STRAWN SAND	ΤY	KENT	1963	6466	8 681	1.938.821
47542250	7B	JUDY GAIL	CANYON SAND	тх	FISHER	1953	4546	66,486	2,726,433
48422500	7B	KEELER-WIMBERLY	CANYON SD.	TX	FISHER	1952	4528	9,894	1,116,777
48583498	84	KELLY-SNYDER	CISCO SAND	TX.	SCUREY	1052	6160	12,056	15,359,584
51592500	78	LAKE TRAMMEL, S.	CANYON	TX	NOLAN	1951	5130	48,488	3,686,833
51595333	18	LAKE TRAMMEL W	DANYON	- TX	NOLAN		5217	67,3,16	12:812,787
56382200	8A	MABEN	CISCO	тх	KENT	1989) 5664	112,246	1,481,691
60496500	7B	MENGEL, E.	CANYON SAND	тх	STONEWALL	1961	4276	107,241	2,081,076
60989200	8A	MICHELLE KAY	CISCO	тх	KENT	1983	5835	86,782	2,252,054
65821666	78	NOODLE, N.	CISCO, LOWER	TX	JONES	1953	3 3669	9,738	2,102,487
65623400	78	NOODLE, NW.	CANYON SD. 4000	TX	JONES	1955	3950	3,208	1,0/1,443
0/999333	70	OZONA, NW.	CANYON	1X	CROCKETT	1963	6675	17,508	1,913,927
71770001	70	DITZED	LARYON		CONES		4415	22 741	2 494 204
73242500	70	PROBANDT	CANIMON		JUNES	1840	4000	22,741	1 468 833
74863200	78	PAVEN CREEK			TOM GREEN	19/3	1 109	2,000	1 602 581
76360500	7B	RICE BROS	CANTON SAND		FIGHER	190*	+ +220	11.005	1 511 631
77622500	70	ROCK PEN	CANYON	ŤŶ	IRION	1076	5 7145	35.014	3,205,731
78567125	7B	ROUND TOP	CANYON		EISHER	105	3 4568	6 197	2 862 869
78819500	7B	ROYSTON	CANYON	TX	FISHER	195	3 4460	3 751	1.358.151
83873250	70	SIXTY SEVEN	CANYON	тх	IRION	196	6684	3.002	1.081.381
79303666	8A	6-M-S	CARYON GAND	TX N	KENT	105	6	17.465	41,405,716
87015881	7C	SUGG RANCH	CANYON	TX	STERLING	198	7 7860	166,487	7,615,629
87018550	8	SUGG RANCH	CANYON DIST 08	TX	STERLING	198	7 7860	89,130	6,483,258
87613500) 7B	SWEETWATER	CANYON SAND	TX	FISHER	195	5 5230	3,757	4,807,189
87920500) 7C	T. D.	6575	тх	TOM GREEN	198	2 6592	17,388	1,001,559
90383250) 7B	TOLAR	CANYON	тх	FISHER	195	3 4502	5,203	1,524,888
90674375	5 7B	TOMPKINS	CANYON SD. 4900	тх	STONEWALL	. 195	6 4824	i 0	1,452,542
90674875	5 7B	TOMPKINS	STRAWN SAND	ΤX	STONEWALL	. 195	5 5347	0	2,154,676
90694125	5 8A	TONTO	CANYON SAND	тх	SCURRY	195	5 6690) 16,982	3,093,714
93410710	70	VELREX	HENDERSON UPPER	тх	SCHLEICHEF	R 196	4 6406	5 14,060	1,008,498
99058500) 7C	ZAN-ZAN	MID. CANYON	тх	IRION	198	8 6014	23,815	1,174,262
		Totais						1.802.373	271,448,389

elongate, fan-shaped lobes of sandstone that thin up depositional and structural dip and lap out against the slope and shelf margin.

In Flowers (Canyon Sand) field, production is from turbidite sandstones deposited in submarine-fan channel, lobe, and overbank/levee environments (Neuberger, 1987). Sandstones

Figure 45. Play map for the Upper Pennsylvanian and Lower Permian Slope and Basinal Sandstone play, showing location of reservoirs having >1 MMbbl cumulative production, the play boundary, and geologic features. See figure 1 for county names and figure 2 for identification of geologic features.

Figure 46. Generalized west-east dip cross section, Virgilian and Wolfcampian Series, from the Eastern Shelf in North-Central Texas into the Midland Basin. Horizontal scale approximate. From Brown and others (1990); modified from Brown (1969).

are fine- to very fine grained, thin- to thick-bedded turbidites (Neuberger, 1987). The reservoir zone is a complex of vertically separated, laterally discontinuous, lobate to elongate sandstones (Galloway and others, 1983). The reservoir at Zan Zan (Middle Canyon) field in Irion County is composed of thin- to medium-bedded, fine-grained sandstone (Whitsitt, 1992a).

The southern boundary of the play (fig. 45) represents the transition to predominantly gas production instead of oil. Slope and basinal sandstones continue south into Schleicher, Sutton, Crockett, Val Verde, and Edwards Counties, where they produce gas in the Upper Pennsylvanian and Lower Permian Slope and Basinal Sandstone gas play (Kosters and others, 1989).

Reservoir sandstones in the play have average porosity ranging from 12 to 19 percent and average permeability ranging from 2 to 117 md (2 to $117 \times 10^{-3} \,\mu\text{m}^2$) (Galloway and others, 1983). Log-calculated water saturation in productive intervals of Zan Zan (Middle Canyon) field is commonly >50 percent, but these values may be in error because siderite cement in the sandstones may increase resistivity or because of the presence of abundant water in micropores (Whitsitt, 1992a). Core data should be used to supplement well logs to accurately evaluate reservoir properties of these low-resistivity sandstones (Whitsitt, 1992a).

References

- Brown, L. F., Jr., 1969, North Texas (eastern shelf) Pennsylvanian delta systems, in Fisher, W. L., Brown, L. F., Jr., Scott, A. J., and McGowen, J. H., eds., Delta systems in the exploration for oil and gas: The University of Texas at Austin, Bureau of Economic Geology Special Publication, p. 40–53.
- Brown, L. F., Jr., Solís Iriarte, R. F., and Johns, D. A., 1987, Regional stratigraphic cross sections, Upper Pennsylvanian and Lower Permian strata (Virgilian and Wolfcampian Series), North-Central Texas: The University of Texas at Austin, Bureau of Economic Geology cross sections, 27 p. and 27 plates.

1990, Regional depositional systems tracts, paleogeography, and sequence stratigraphy, Upper Pennsylvanian and Lower Permian strata, North- and West-Central Texas: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 197, 116 p.

- Galloway, W. E., and Brown, L. F., Jr., 1972, Depositional systems and shelf-slope relationships in Upper Pennsylvanian rocks, North-Central Texas: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 75, 62 p.
- Galloway, W. E., Ewing, T. E., Garrett, C. M., Jr., Tyler, N., and Bebout, D. G., 1983, Atlas of major Texas oil reservoirs: The University of Texas at Austin, Bureau of Economic Geology Special Publication, 139 p.
- Kosters, E. C., Bebout, D. G., Seni, S. J., Garrett, C. M., Jr., Brown, L. F., Jr., Hamlin, H. S., Dutton, S. P., Ruppel, S. C., Finley, R. J., and Tyler, Noel, 1989, Atlas of major Texas gas reservoirs: The University of Texas at Austin, Bureau of Economic Geology Special Publication, 161 p.
- Neuberger, D. J., 1987, Swastika (Upper Pennsylvanian) shelf-margin deltas and delta-fed turbidites, Flowers "Canyon Sand Field" area, Stonewall County, Texas: The University of Texas at Austin, M.S. thesis, 171 p.
- Whitsitt, P., 1992a, Petrography and log analysis of the Zan Zan middle "Canyon" sandstone, eastern Irion County, Texas, *in* Cromwell, D. W., Moussa, M. T., and Mazzullo, L. J., eds., Transactions, Southwest Section American Association of Petroleum Geologists, SWS 92-90, p. 101–106.

1992b, Sequence stratigraphy of the upper and middle "Canyon" oil and gas fields in eastern Irion County, Texas, and the potential for future exploration, *in* Cromwell, D. W., Moussa, M. T., and Mazzullo, L. J., eds., Transactions, Southwest Section American Association of Petroleum Geologists, SWS 92-90, p. 107–111.

Lower Permian Plays

Five plays in the Permian Basin produce from Lower Permian (Wolfcampian and Leonardian) reservoirs: (1) Wolfcamp Platform Carbonate, (2) Wolfcamp/Leonard Slope and Basinal Carbonate, (3) Leonard Restricted Platform Carbonate, (4) Abo Platform Carbonate, and (5) Spraberry/Dean Submarine-Fan Sandstone. Only three of these plays (1, 3, and 5) were described in the oil atlas (Galloway and others, 1983). The Wolfcamp/Leonard Deepwater Carbonate play was defined by Kosters and others (1989) as a gas play and by Tyler and others (1991) as an oil play. The Abo Platform Carbonate play was defined by Holtz and others (1993). The Leonard Restricted Platform Carbonate play was called the Clear Fork Platform Carbonate play in the oil atlas.

References

- Galloway, W. E., Ewing, T. E., Garrett, C. M., Jr., Tyler, N., and Bebout, D. G., 1983, Atlas of major Texas oil reservoirs: The University of Texas at Austin, Bureau of Economic Geology Special Publication, 139 p.
- Holtz, M. H., Garrett, C. M., Jr., and Tremblay, T. A., 1993, Update of Atlas of Major Texas Oil Reservoirs Data Base and Atlas of Major Texas Gas Reservoirs Data Base: The University of Texas at Austin, Bureau of Economic Geology contract report prepared for the U.S. Geological Survey under Contract No. 1434-93-C-40079, 14 p. plus data tape.
- Kosters, E. C., Bebout, D. G., Seni, S. J., Garrett, C. M., Jr., Brown, L. F., Jr., Hamlin, H. S., Dutton, S. P., Ruppel, S. C., Finley, R. J., and Tyler, Noel, 1989, Atlas of major Texas gas reservoirs: The University of Texas at Austin, Bureau of Economic Geology Special Publication, 161 p.
- Tyler, N., Bebout, D. G., Garrett, C. M., Jr., Guevara, E. H., Hocott, C. R., Holtz, M. H., Hovorka, S. D., Kerans, C., Lucia, F. J., Major, R. P., Ruppel, S. C., and Vander Stoep, G. W., 1991, Integrated characterization of Permian Basin reservoirs, University Lands, West Texas: targeting the remaining resource for advanced oil recovery: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 203, 136 p.

Wolfcamp Platform Carbonate (Play 114)

The Wolfcamp Platform Carbonate play, which lies on the Central Basin Platform and Northwest Shelf in Texas and New Mexico (fig. 48), has produced 460.5 MMbbl $(7.32 \times 10^7 \text{ m}^3)$ through 2000 from 54 reservoirs (table 19). The play is split into two parts by the San Simon Channel (figs. 2, 48). Many of the reservoirs in the play are located along the east margin of the Central Basin Platform; the west part of the Central Basin Platform remained exposed

Table 19. Wolfcamp Platform Carbonate play (play 114). Production shown for fields that have had oth	ners
combined into them represents the totals; combined fields are highlighted.	

. .

RRC RESN	RRC	FLDNAME	RESNAME	STATE	E COUNTY	DISCYR	DEPTHTOP	2000 PROD	CUMPROD
1964666	8A	ALSABROOK	WOLFCAMP	тх	GAINES	1953	9125	0	1,053,164
2725750	8	ANDREWS	WOLFCAMP	тх	ANDREWS	1953	8596	0	22,785,915
2725760	8	ANDREWS	WOLFCAMP-PENN	тх	ANDREWS	1995	9380	666,442	3,692,443
2730852	8	ANDREWS SOUTH	WOLECAMP	тх	ANDREWS	1953	9183	63,186	15,169,599
5166888	Ř	BAKKE	WOLECAMP	тх	ANDREWS	1956	8492	178,729	25.048.339
21202125	Ň	COMPENSION P	TARY IN RYON	i î	ECTOR .	1066	9202	594 309	43 011 248
21292250	A	COWDEN SOUTH	CANYON 8900	TY	FCTOR	1068	8003	57 366	13,270,487
01272193		n E d		10	CAREC	1300	0333	205 450	22,609,269
226 TRACA	9.6	n c a	MOLECIAL PROVIDE R	- 10 March - 40	CONTROL	1080	5400	15 007	1 468 007
26538930		DUNE	WOLECAMP	TV	CRANE	1057	7710	11 022	7 564 044
27770500	a	EDWARDS DA S	7000		CRANE	1067	7005	11,000	2 312 280
27746500	0 a	EDWARDS WEST	CANYON		ECTOR	1070	1923	65 269	23 070 851
20204750	6	EDWARDS, WEST	WOLFCAMP		ANDOCING	1970	0902	60,200	7 451 167
20204975	0	FASKEN	WOLFCAMP		ANDREWS	1952	8571	6 240	1 242 662
20209975	0	FASKEN	WOLFCAMP, NORTH		ANDREWS .	1900	8290	0,240	1,040,000
30390073	0	FASKEN, SOUTH	WOLFCAMP		ECTOR	1900	8475	27,090	1,290,240
31/00000	8	FLYING -W-	WOLFCAMP	1X	WINKLER	1955	8190	21,904	1,525,905
33235750	8	FULLERION, SOUTH	WOLFCAMP	1X	ANDREWS	1955	8245	23,569	4,217,011
45726550	84	JANICE	WOLFCAMP	TX	YOAKUM	1981	8937	33,269	1,577,530
59419830	8	MCFARLAND	WOLFCAMP	TX	ANDREWS	1955	9134	72,720	8,558,308
60142750	8	MEANS, SOUTH	WOLFCAMP	тх	ANDREWS	1956	9378	85,212	7,257,075
61118830	8	MIDLAND FARMS	WOLFCAMP	TX	ANDREWS	1954	9539	77,430	15,397,011
105760000	9	NOLLEY	WOLFCAMP	and start X	ANDREWS	1851	9227	Z13,962	30,459,165
69193710	8	PARKER	WOLFCAMP	TX	ANDREWS	1953	8554	338,613	5,501,626
80473868	8	SAND HILLS	WOLFCAMP	TX	CRANE	1958	5684	27,310	2,537,187
82225568	84	SEMINOLE	WOLFCAMP LIME	TX	GAINES	1963	9259	14,592	1,455,586
82225/10	8A	SEMINOLE	WOLFCAMP REEF	TX	GAINES	1962	9162	27,292	1,452,509
82570600	- 8	SHAFTER LAKE	WOLFCAMP	TX	ANDREWS	1951	8405	2,330	12,195,348
84819850	10	SOUTHWEST MESA	WOLFCAMP	тх	CROCKETT	1988	6268	24,833	1,463,139
88969800	A6	TEX-FLOR	WOLFCAMP	тх	GAINES	1977	9152	11,066	1,810,349
90196666	/C	TIPPETT, W.	WOLFCAMP LO.	TX	CROCKETT	1967	5564	0	1,365,836
S BOIBOSSS	o ev	JIPPELL WEST	HUECO	, IX	CROCKETT	1966	5012	5,579	1,469,047
88071928	8	TXL	WOLFCAMP, NORTH	тх	ECTOR	1959	7535	9,903	4,584,422
92534750	8	UNIVERSITY BLOCK 9	WOLFCAMP	тх	ANDREWS	1953	8430	183,250	28,350,317
95397800	84	WASSON	WOLFCAMP	• TX	GAINES	1956	8448	18,923	6,060,592
00201000		WEMAC	WOLFCAMP	J. JK	ANDREWS	. 1953	8708		4,239,021
96296500	8	WEMAC, SOUTH	WOLFCAMP	тх	ANDREWS	1962	8786	2,577	1,701,980
90756800	8	WHEELER	WOLFCAMP	тх	ECTOR	1959	7604	60,959	5,753,930
		ANDERSON RANCH	WOLFCAMP	NM	LEA	1953	9760	19,061	4,235,028
		ANDERSON RANCH NORT	WOLFCAMP	NM	LEA	1960	9823	30,797	6,652,176
		BRONCO	WOLFCAMP	NM	LEA	1953	9600	994	2,086,478
		CAUDILL	PERMO PENN	NM	LEA	1956	10285	6,593	1,979,249
		DENTON	WOLFCAMP	NM	LEA	1950	9240	242,272	41,755,373
		GLADIOLA	WOLFCAMP	NM	LEA	1950	9578	14,524	4,144,627
		HENSHAW	WOLFCAMP	NM	EDDY	1960	8822	11,483	3,401,748
		KEMNIIZ	LOWER WOLFCAMP	NM	LEA	1956	10742	18,731	16,608,371
		KEMNITZ WEST	WOLFCAMP	NM	LEA	1963	10678	2,748	1,029,531
			WOLFCAMP	NM	LEA	1951	9300	21,755	1,369,908
		LANE	WOLFCAMP	NM	LEA	1955	9700	0	1,028,000
		MORION	WOLFCAMP	NM	LEA	1964	10310	8,430	2,605,976
		MURIONEAST	WULFCAMP	NM	LEA	1970	10506	21,786	1,781,208
		TOUD	WOLFCAMP	NM	ROOSEVELT	1971	7580	31,769	1,115,408
		TUWNSEND	PERMO-UPPER PENN	NM	LEA	1952	10400	124,759	24,101,823
		IULK	WULFCAMP	NM	LEA	1951	9700	15,862	2,429,801
		Totals						4.012.646	457.405.339

Figure 48. Play map for the Wolfcamp Platform Carbonate play, showing location of reservoirs having >1 MMbbl cumulative production, the play boundary, and geologic features. See figure 1 for county names and figure 2 for identification of geologic features.

throughout the Wolfcamp (Wright, 1979). Wolfcamp Platform Carbonate reservoirs in New Mexico were deposited on the shelf and shelf margin of the northern Delaware Basin. Although

similar in age and depositional setting to reservoirs in the Northwest Shelf Upper Pennsylvanian Carbonate play (play 110), the reservoir strata in the Wolfcamp Platform Carbonate play in New Mexico are generally thought to be slightly younger and are traditionally grouped into a separate play. Carbonate-debris beds, which were derived from Wolfcamp platform-margin buildups, are found in downslope basinal deposits in the Midland and Delaware Basins and compose the Wolfcamp/Leonard Slope and Basinal Carbonate play (play 115).

Fusulinid biostratigraphy indicates that reservoirs in the Wolfcamp Platform Carbonate play occur mostly in Lower and Middle Wolfcamp strata (Candelaria and others, 1992; Saller and others, 1999b). Two of the largest reservoirs in the play, Edwards West and South Cowden (table 19), are interpreted as producing from the Wolfcamp on the basis of biostratigraphy, despite having been reported and named as producing from Canyon reservoirs (Candelaria and others, 1992).

Large-scale stratigraphic relations and facies of the Wolfcamp were documented along the east margin of the Central Basin Platform (Candelaria and others, 1992) and the northern Midland Basin (Mazzullo and Reid, 1989). Recent studies of typical Wolfcamp fields on the Central Basin Platform show that, like many reservoirs in the Pennsylvanian Platform Carbonate Play, these reservoirs are composed of highly cyclic shallow-water carbonate facies that are variably overprinted by diagenesis that took place at and below cycle tops during sea-level-fall events (Candelaria and others, 1992; Saller and others, 1994, 1999a, b; Dickson and Saller, 1995; Ruppel, 2001). Although reservoirs developed in Wolfcamp platform carbonates are commonly referred to as reefs because of their geometries, recent studies have illustrated that many of the reservoirs are composed of cyclic deposits of interbedded skeletal and ooid-bearing grainstones and organic-rich wackestones and packstones (fig. 49) (Mazzullo, 1982; Saller and others, 1994;

Figure 49. Typical vertical Wolfcamp facies succession in the Wolfcamp Platform Carbonate play. From Ruppel (2001). Core and log are from University Block 9 field, Andrews County, from the Shell 9A No. 1 well (Cross Timbers 11 SA No. 1 well). See Ruppel (2001) for location of well.

Ruppel, 2001). Shelf-margin organic buildups in the Wolfcamp are micrite dominated and composed of phylloid algae, foraminifera, and *Tubiphytes* (Mazzullo and Reid, 1989; Wahlman, 2001). These buildups generally do not have reservoir-quality porosity, but porosity is well developed in flanking and capping bioclastic packstone-grainstone facies (Wahlman, 2001).

Correlation of the Wolfcamp succession and identification of facies, cycles, and karst intervals are difficult using wireline logs alone (Ruppel, 2001). Image logs calibrated to core can be used to resolve major depositional facies, cycle boundaries, and karst diagenesis (fig. 50) and develop an accurate reservoir model.

Traps are structural and stratigraphic (Galloway and others, 1983; Candelaria and others, 1992). Structural closure forms the trap in many fields, including Andrews, Bakke, Midland Farms, and University Block 9. Updip facies change and porosity pinch-out create the stratigraphic traps at the Dune and Nolley Wolfcamp reservoirs, and dolomitization of platformmargin facies at Seminole Wolfcamp Reef reservoir forms a diagenetic stratigraphic trap (Tyler and others, 1991; Candelaria and others, 1992). Expected ultimate recovery per well in the play ranges from 60,000 bbl (9.54×10^3 m³) to >500,000 bbl (7.95×10^4 m³) (Candelaria and others, 1992). In the grainstone facies that is the main reservoir facies, porosity can be as high as 12 to 15 percent, and permeability can be 40 to 60 md ($40-60 \times 10^{-3} \mu m^2$) (Candelaria and others, 1992). However, in many fields in this play the reservoir facies average 5 to 8 percent porosity and <1 md (<1 × 10⁻³ µm²) matrix permeability (Ruppel, 2001; Stoudt and others, 2001). Permeability in Edwards West field is due mainly to fractures associated with karst because matrix permeability is <1 md (<1 × 10⁻³ µm²) (Stoudt and others, 2001).

Reservoirs in New Mexico are located on or shelfward (northward) of the east-westtrending Wolfcampian shelf margin (fig. 2; see Malek-Aslani, 1970). Although some reservoirs

are found well north of the shelf margin, most are clustered on or near the shelf margin. Production is derived largely from lower Wolfcamp units. Shelf-margin reservoirs are interpreted to lie within a barrier-reef complex, with lithologies consisting of reefal (hydrozoan boundstones), backreef (skeletal grainstones), and forereef (talus slope) facies (Malek-Aslani, 1970). The northern shelf area reservoirs are composed of shallow-marine limestone facies, with most accumulations found in phylloid-algal bioherms developed on preexisting paleobathymetric highs or as grainstones capping and flanking the bioherms (Cys and Mazzullo, 1985; Malek-Aslani, 1985; Cys, 1986).

Traps on the shelf in New Mexico are largely stratigraphic, with porosity pinch-outs formed from porous biohermal and grainstone facies that grade laterally into low-porosity nonbiohermal facies. On the shelf margin, traps are combinations of structural ridges and stratigraphic pinch-outs (porous reefal facies laterally juxtaposed with lower porosity nonreef strata). The structural ridges trend generally north-south and are thought to be bounded by lowrelief faults. Because of the relationship of Wolfcamp reservoirs to positive structural elements that have a tectonic origin, it is common to find Wolfcamp reservoirs stacked atop structurally controlled reservoirs in older, deeper strata.

Two Wolfcamp reservoirs in New Mexico, Vacuum and Corbin, have been assigned to the Wolfcamp/Leonard Slope and Basinal Carbonate play (115) on the basis of their location south of the Wolfcamp shelf margin as mapped by Malek-Aslani (1970, 1985; figs. 48, 51; tables 19, 20). The mapped shelf margin is based on lower Wolfcamp facies. Vacuum is productive from both the upper and lower parts of the Wolfcamp, and Corbin South is productive from the upper and middle parts of the Wolfcamp. The lower and middle Wolfcamp in this area comprise interbedded dark shales and limestones and are basinal facies. The upper Wolfcamp, however,

comprises dominantly light-colored carbonates. At the Vacuum reservoir, the upper Wolfcamp has a mound-shaped appearance, and crosswell seismic tomography indicates that the productive interval has internal clinoformal bedding (Martin and others, 2002). On the basis of overall shape and internal bedding surfaces, Martin and others (2002) suggested that the upper Wolfcamp reservoir may be an isolated algal mound deposited on the Wolfcamp shelf. If this is the case, then the upper parts of the Vacuum and Corbin South reservoirs are in the Wolfcamp Platform Carbonate play (114) and the shelf edge prograded southward at least 10 to 12 miles during Wolfcamp time from the Kemnitz reservoir (fig. 48) to a position south of the Vacuum reservoir (fig. 51). If the upper part of the Vacuum reservoir is a shelf deposit, then general location and lithologic composition suggest that the upper part of the Corbin South reservoir was also deposited on the Wolfcamp shelf and not in the basin. Alternatively, the southward-prograding clinoforms seen via crosswell seismic tomography in the Vacuum reservoir may indicate southward-prograding slope deposits.

References

- Candelaria, M. P. Sarg, J. F., and Wilde, G. L., 1992, Wolfcamp sequence stratigraphy of the eastern Central Basin Platform, *in* Mruk, D. H., and Curran, C., eds., Permian Basin exploration and production strategies: application of sequence stratigraphic and reservoir characterization concepts: West Texas Geological Society Publication 92-91, p. 27–44.
- Cys, J. M., 1986, Lower Permian grainstone reservoirs, southern Tatum Basin, southeastern New Mexico, *in* Ahlen, J. L., and Hanson, M. E., eds., Southwest Section, American Association of Petroleum Geologists Transactions and guidebook of 1986 convention, Ruidoso, New Mexico: New Mexico Bureau of Mines and Mineral Resources, p. 115–120.
- Cys, J. M., and Mazzullo, S. J., 1985, Depositional and diagenetic history of a Lower Permian (Wolfcamp) phylloid-algal reservoir, Hueco Formation, Morton field, southeastern New Mexico, *in* Roehl, P. O., and Choquette, P. W., eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 277–288.

- Dickson, J. A. D., and Saller, A. H., 1995, Identification of subaerial exposure surfaces and porosity preservation in Pennsylvanian and lower Permian shelf limestones, eastern Central Basin Platform Texas, *in* Budd, D. A., Saller, A. H., and Harris, P. M., eds., Unconformities in carbonate shelf strata—their recognition and the significance of associated porosity: American Association of Petroleum Geologists Memoir 57, p. 239–257.
- Galloway, W. E., Ewing, T. E., Garrett, C. M., Jr., Tyler, N., and Bebout, D. G., 1983, Atlas of major Texas oil reservoirs: The University of Texas at Austin, Bureau of Economic Geology Special Publication, 139 p.
- Malek-Aslani, M., 1970, Lower Wolfcampian reef in Kemnitz field, Lea County, New Mexico: American Association of Petroleum Geologists, Bulletin, v. 54, p. 2317–2335.

1985, Permian patch-reef reservoir, North Anderson Ranch field, southeastern New Mexico, *in* Roehl, P. O., and Choquette, P. W., eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 265–276.

- Martin, R. L., Welch, C. L., Hinterlong, G. D., Meyer, J., and Evans, R., 2002, Using crosswell seismic tomography to provide better resolution in the Wolfcamp Formation in Lea County, New Mexico, *in* Hunt, T. J., and Lufholm, P. H., eds., The Permian Basin: preserving our past—securing our future: West Texas Geological Society, Publication 02-111, p. 25–34.
- Mazzullo, S. J., 1982, Types and controls on Permo-Pennsylvanian carbonate stratigraphic traps of shallow-marine origin in Permian Basin: exploration models: Oil and Gas Journal, v. 80, p. 127–141.
- Mazzullo, S. J., and Reid, A. M., 1989, Lower Permian platform and basin depositional systems, northern Midland Basin, Texas, *in* Crevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F., eds., Controls on carbonate platform and basin development: Society of Economic Paleontologists and Mineralogists Special Publication 44, p. 305–320.
- Ruppel, S. C., 2001, Stratal architecture and facies development in a middle Wolfcampian platform carbonate reservoir: University Block 9 Field Andrews County, Texas, *in* Stoudt, E. L., and Sivils, D. J., eds., Wolfcampian of West Texas (Permian Basin, Sierra Diablo and Hueco Mountains)—shelfal and periplatform carbonate reservoirs and outcrop analogs: Permian Basin Section SEPM Core Workshop and Field Trip Guidebook, Publication No. 2001-41, p. 3-1–3-18.
- Saller, A. H., Dickson, J. A. D., and Boyd, S. A., 1994, Cycle stratigraphy and porosity in Pennsylvanian and lower Permian shelf limestones, eastern Central Basin Platform, Texas: American Association of Petroleum Geologists Bulletin, v. 78, p. 1820–1842.

- Saller, A. H., Dickson, J. A. D., and Matsuda, F., 1999a, Evolution and distribution of porosity associated with subaerial exposure in upper Paleozoic platform limestones, West Texas: American Association of Petroleum Geologists Bulletin, v. 83, p. 1835–1854.
- Saller, A. H., Dickson, J. A. D., Rasbury, E. T., and Ebato, T.,1999b, Effects of long-term accommodation changes on short term cycles: Upper Paleozoic platform limestones, West Texas, *in* Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops, and models: SEPM Special Publication No. 63, p. 227–246.
- Stoudt, E. L., Prezbindowski, D. R., and Sivils, D. J., 2001, Phillips Edwards West field, Ector County, Texas—controls on reservoir distribution in Wolfcamp shelfal carbonates, *in* Viveiros, J. J., and Ingram, S. M., eds., The Permian Basin: microns to satellites, looking for oil and gas at all scales: West Texas Geological Society Publication No. 01-110, p. 55.
- Tyler, N., Bebout, D. G., Garrett, C. M., Jr., Guevara, E. H., Hocott, C. R., Holtz, M. H., Hovorka, S. D., Kerans, C., Lucia, F. J., Major, R. P., Ruppel, S. C., and Vander Stoep, G. W., 1991, Integrated characterization of Permian Basin reservoirs, University Lands, West Texas: targeting the remaining resource for advanced oil recovery: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 203, 136 p.
- Wahlman, G. P., 2001, Pennsylvanian-Lower Permian mounds and reefs in the Permian Basin (west Texas-New Mexico): composition, evolution, distribution, and reservoir characteristics, *in* Viveiros, J. J., and Ingram, S. M., eds., The Permian Basin: microns to satellites, looking for oil and gas at all scales: West Texas Geological Society Publication No. 01-110, p. 57–64.
- Wright, W. F., 1979, Petroleum geology of the Permian Basin: West Texas Geological Society Publication No. 79-71, 98 p.

Wolfcamp/Leonard Slope and Basinal Carbonate (Play 115)

The Wolfcamp/Leonard Slope and Basinal Carbonate play, which is located in the Midland and Delaware Basins adjacent to the Central Basin Platform and Eastern Shelf (fig. 51), has produced 191.9 MMbbl $(3.05 \times 10^7 \text{ m}^3)$ from 41 reservoirs (table 20). None of the reservoirs in the play had produced >10 MMbbl $(1.59 \times 10^6 \text{ m}^3)$ of oil by 1982, so the play is not included in the Atlas of Major Texas Oil Reservoirs (Galloway and others, 1983). Although the reservoirs in Glasscock County have been named Wolfcamp (table 20), regional fusulinid biostratigraphy shows that they are actually Lower Leonardian (Mazzullo, 1997) (fig. 52).

Table 20. Wolfcamp/Leonard Slope and Basinal Carbonate play (play 115). Production shown for fields that have had others combined into them represents the totals; combined fields are highlighted.

			•						
RRC RESN	RRC	FLDNAME	RESNAME	STATE	COUNTY	DISCYR	DEPTHTOP	2000 PROD	CUMPROD
2207912	7C	AMACKER-TIPPETT	WOLFCAMP	тх	UPTON	1954	9090	161,453	5,567,355
2220900	7C	AMACKER-TIPPET, SW	9100	тх	UPTON	1980	9344	583,285	5,264,842
2220700	7C	AMACKER-TIPPETT, SW	WOLFCAMP	TΧ	UPTON	1977	9218	2,593,888	16,046,136
2220710	7C	AMACKER-TIPPETT, SW.	WOLFCAMP A	тх	UPTON	1988	9069	201,693	4,442,155
4228684	8	ATHEY	WOLFCAMP 10900	TX Course	FECOS	1007	11253	60,615	
5229500	8A	BALE, EAST	WOLFCAMP	ΤX	GAINES	1972	10005	2,665	1,636,763
8735500	8	BLALOCK LAKE, E.	WOLFCAMP	тх	GLASSCOCK	1971	7914	188,510	5,978,078
8739500	8	BLALOCK LAKE, S.	WOLFCAMP	тх	GLASSCOCK	1974	8246	389,662	10,256,922
8740500	8	BLALOCK LAKE, SE	WOLFCAMP	тх	GLASSCOCK	1981	8245	229,826	9,974,801
19235700	8	COBRA	WOLFCAMP	тх	GLASSCOCK	1984	7 9 47	1,080,278	10,587,410
20844500	7C	CORVETTE	WOLFCAMP	TX	UPTON	1991	9388	110,532	4,826,776
21382875	8	COYANOSA	WOLFCAMP		PECOS	1970	11814	2,769	6,299,774
21597250	8	CREDO	WOLFCAMP	TX	STERLING	1962	7334	12,169	3,951,915
21597500	8	CREDO	WOLFCAMP, LOWER -B-	тх	STERLING	1962	7430	735	2,497,526
24488650	8	DEWEY LAKE	WOLFCAMP	тх	GLASSCOCK	1982	8449	6,970	1,395,910
24562710	8A	DIAMOND -M-	WOLFCAMP	тх	SCURRY	1952	5310	0	2,596,809
34001750	8	GARDEN CITY, W.	WOLFCAMP 7880	тх	GLASSCOCK	1966	7920	286,123	3,479,124
35708670	8	GOMEZ	WOLFCAMP UPPER	тх	PECOS	1977	10620	3,144	1,227,066
38866600	8 A	HAPPY	SPRABERRY LIME	тх	GARZA	1989	4970	976,132	7,336,714
42971664	6.	HOWARD-GLASSCOCK	WOLFCAMP 7400	, X	HOWARD	1970	7441	78,590	6,178,414
43926600	8	HUTTO, SOUTH	WOLFCAMP	тх	HOWARD	1964	7421	36,345	3,330,447
48338500	8A	KAY	WOLFCAMP REEF	тх	GAINES	1959	10349	· 0	1,976,465
57324650	- 8	MARALO	WOLFCAMP	тх	PECOS	1984	11055	11,421	1,200,187
72810500	8	POWELL	8300	тх	GLASSCOCK	1982	8552	12,202	2,181,282
78279300	8	ROSE CREEK, N	WOLFCAMP	тх	STERLING	1982	5084	70,894	1,582.370
85279400	70	SPRABERRY	TRENDAREA CL. FK.	TX Σ	REAGAN	1955	6194	79,498	11,927,959
85280400	8	SPRABERRY	TREND AREA CL. FK.	тх	MIDLAND	1955	7000	21,289	3,375,768
85447300	70	SRH	CLEAR FORK	τx	REAGAN	1995	i 4837	129,667	1,266,029
90369666	, 8A	TOKIO, SOUTH	WOLFCAMP	TX	TERRY	1953	9860	15,016	3,114,383
91336498	8	TRIPLE M	WOLFCAMP UPPER	TX	STERLING	1963	6746	6,623	3,109,333
91424475	, 7C	TRIUMPH	WOLFCAMP	ŤX	UPTON	1992	8530	183,282	3,362,056
95129600	8	WAR-WINK, S.	WOLFCAMP	тх	WARD	1976	3 12758	270,499	12,741,227
95130900	, 8	WAR-WINK, W.	WOLFCAMP	TX	WARD	1976	3 11545	604,798	2,865,482
		BAISH	WOLFCAMP	NM	LEA	1962	2 9800	28,315	1,068,654
		BURTON FLAT NORTH	WOLFCAMP	NM	EDDY	1975	5 9160	0	3,226,531
		CORBIN SOUTH	WOLFCAMP	NM	LEA	1967	11000	127,055	6,609,050
		JOHNSON RANCH	WOLFCAMP	NM	LEA	1985	5 13500	291,937	1,380,757
		SUNAKB	WOLFCAMP	NM	LEA	1980	10519	16,981	1,199,917
		SHUE BAR NORTH		NM	LEA	1973	3 10456	15,877	1,706,095
		VACUUM		NM	LEA	1963	3 9950	78,821	6,660,250
		WANT?		NM	LEA	196	7 10690	1,093	1,952,599
		WANTZ .	GRANITE WASH	NM	LEA	1963	s 7270	77,637	7,782,243
		Totals						9.046.188	194,975.500

194.975.500

Figure 51. Play map for the Wolfcamp/Leonard Slope and Basinal Carbonate play, showing location of reservoirs having >1 MMbbl cumulative production, the play boundary, and geologic features. See figure 1 for county names and figure 2 for identification of geologic features.

Figure 52. West-east cross section illustrating progradation of the Eastern Shelf margin and fields producing from Wolfcamp and Leonard periplatform carbonates in Glasscock and Sterling fields. From Mazzullo (1997).

Wolfcamp and Lower Leonard deposits in the Midland and Delaware Basins are composed primarily of dark shales and interbedded detrital carbonate (Wilson, 1975; Hobson and others, 1985a, b; Mazzullo and others, 1987; Mazzullo and Reid, 1989). Carbonate interbeds consists of a variety of resedimented deposits, including breccias, sand, and muds deposited by debris flows, turbidity currents, grain flow, and bottom currents on the lower slope and basin floor (Hobson and others, 1985a, b; Loucks and others, 1985; Mazzullo and Reid, 1987; Montgomery, 1996; Mazzullo, 1997). These rocks contain clasts of shallow-water facies identical to those observed in platform and platform-margin sequences, including skeletal grainstones and wackestones and ooid grainstones, indicating that they were derived by downslope transport from the platform margin. Large detached blocks of dolostone are also common, particularly in proximal parts of the debris flows (Mazzullo and Reid, 1987). Traps are largely stratigraphic, with reservoirs encased in dark-gray to black, kerogen-rich basinal shales, which act as both the seal and the source rock.

Mazzullo (1997, 2000) interpreted Wolfcamp and Leonard resedimented carbonates as having been deposited during periods of sea-level highstand. Other workers have interpreted the basinal carbonate debris as having been shed into the basins during both highstands and lowstands (Becher and von der Hoya, 1990; Pacht and others, 1995; Simo and others, 2000). Pacht and others (1995) concluded that although much of the basinal carbonate debris was deposited during highstand time, porous debris flows were best developed in lowstand systems tracts along the northwest margin of the Midland Basin.

The allochthonous carbonates of this play are distributed in distinct lobes that trend normal to the shelf edge. Considerable vertical and lateral heterogeneity within these sequences has been created by the irregular stacking of discrete depositional units (Hobson and others, 1985a, b; Becher and von der Hoya, 1990). Cores of Wolfcamp and Leonard deepwater carbonates are illustrated and described in Kaufman and others, 2001; Merriam, 2001; Sivils, 2001; Sivils and Stoudt, 2001). Amacker Tippett Wolfcamp field produces mainly from fusulinid algal grainstones and large slide blocks (fig. 53) (Van Der Loop, 1990). Pay zones have porosity of \geq 3 percent and gamma-ray values of \leq 25 API units. The reservoir facies at Powell Wolfcamp field are packstones and grainstones located in channels that incise into brecciated carbonate debris flows and shales. Porosity, which ranges from 6 to 22 percent, is composed of interparticle, moldic, and fracture pores (Montgomery, 1996). Reservoir permeability ranges from 100 to 500 md (100 to 500 × 10⁻³ µm²).

Three-dimensional seismic surveys have successfully imaged productive channels in northwestern Glasscock County by identifying zones of thicker Wolfcamp isochrons and lower amplitudes. Use of 3-D seismic surveys has increased rates of drilling success in the Powell Ranch area to >70 percent (Dufford and Holland, 1993; Montgomery, 1996).

New Mexico reservoirs in this play are located basinward of the Wolfcamp shelf margin (fig. 2). The Wolfcamp shelf margin appears to be roughly coincident with the overlying, younger Abo shelf margin but in some places may be seaward of it or landward of it by as much as 1 mile. Production is derived largely from limestones in the lower Wolfcamp, although limestones in the middle to upper Wolfcamp are productive in some reservoirs. Most productive strata appear to be carbonate debris flows derived from the shelf margin (see Loucks and others, 1985) or possibly the slope.

Two lower Wolfcampian reservoirs in New Mexico (Vacuum North, Shoe Bar North) were placed in this play because they lie immediately south of the shelf edge as mapped by Malek-Aslani (1970). The lithology and depositional setting of these reservoirs are not well known, so it is conceivable that they are actually platform-margin reservoirs deposited during temporally limited progradation of the shelf margin. However, their position in terms of known paleobathymetry indicates that they should be included in the Wolfcamp/Leonard Slope and Basinal Carbonate play rather than in the Wolfcamp Platform Carbonate play. Farther south, the Scharb reservoir is formed by allochthonous debris flow carbonates deposited on the Wolfcamp paleoslope (Mazzullo and Arrant, 1988). Burton Flat North is productive from basinal carbonates in a shale-rich part of the Wolfcamp. The Wolfcamp at Johnson Ranch is a basinal facies composed of interbedded brown limestone and brown shale. Two Wolfcamp reservoirs in New Mexico, Vacuum and Corbin, have been assigned to the Wolfcamp/Leonard Slope and Basinal Carbonate play (115) on the basis of their location south of the Wolfcamp shelf margin as mapped by Malek-Aslani (1970, 1985; figs. 48, 51; tables 19, 20). The mapped shelf margin is based on lower Wolfcamp facies. Vacuum is productive from both the upper and lower parts of the Wolfcamp, and Corbin South is productive from the upper and middle parts of the

Wolfcamp. The lower and middle Wolfcamp in this area comprise interbedded dark shales and limestones and are basinal facies. The upper Wolfcamp, however, is composed dominantly of light-colored carbonates. At the Vacuum reservoir, the upper Wolfcamp has a mound-shaped appearance, and crosswell seismic tomography indicates that the productive interval has internal clinoformal bedding (Martin and others, 2002). On the basis of overall shape and internal bedding surfaces, Martin and others (2002) suggested that the upper Wolfcamp reservoir may be an isolated algal mound deposited on the Wolfcamp shelf. If this is the case, then the upper parts of the Vacuum and Corbin South reservoirs are in the Wolfcamp Platform Carbonate play (114) and the shelf edge prograded southward at least 10 to 12 miles during Wolfcamp time from the Kemnitz reservoir (fig. 48) to a position south of the Vacuum reservoir (fig. 51). If the upper part of the Vacuum reservoir is a shelf deposit, then general location and lithologic composition suggest that the upper part of the Corbin South reservoir was also deposited on the Wolfcamp shelf and not in the basin. Alternatively, the southward-prograding clinoforms seen via crosswell seismic tomography in the Vacuum reservoir may indicate southward-prograding slope deposits.

One New Mexico reservoir included in the play, Wantz Granite Wash, is productive from granite-wash clastics. Reservoirs in the Granite Wash subplay are productive from laterally discontinuous Wolfcampian-age conglomerates and "granite wash" arkosic sandstones deposited on the flanks of structural highs of Early Permian age and in paleotopographic lows on top of structural highs of Early Permian age (Bowsher and Abendshein, 1988; Speer, 1993). The sandstones are encased in shales that seal the sandstone and conglomerate reservoirs. Examination of drill cuttings and logs indicates that a part of the reservoir resides in fractured Precambrian granite that underlies the granite wash (A.L. Bowsher, cited in Speer, 1993). Low-displacement, high-angle faults, acting in concert with the lenticular geometry of reservoir

sands and conglomerates, compartmentalize reservoirs. Compartmentalization has perhaps

prevented optimal development, with standard vertical wells drilled on 40-acre spacing.

References

- Becher, J. W., and von der Hoya, H. A., 1990, Wolfcampian and Early Leonardian fore-reef debris fans: Midland Basin, west Texas, *in* Flis, J. E., and Price, R. C., eds., Permian Basin oil and gas fields: innovative ideas in exploration and development: West Texas Geological Society, Publication No. 90-87, p. 153–155.
- Bowsher, A. L., and Abendshein, M., 1988, Wantz Granite Wash (oil), *in* A symposium of oil and gas fields of southeastern New Mexico, supplement: Roswell Geological Society, p. 328-329.
- Dufford, S., and Holland, T., 1993, Wolfcamp detrital: a 3D case history Glasscock County, Texas, *in* Gibbs, J., and Cromwell, D., eds., New dimensions in the Permian Basin: West Texas Geological Society Publication 93-93, p. 75.
- Galloway, W. E., Ewing, T. E., Garrett, C. M., Jr., Tyler, N., and Bebout, D. G., 1983, Atlas of major Texas oil reservoirs: The University of Texas at Austin, Bureau of Economic Geology Special Publication, 139 p.
- Hobson, J. P., Caldwell, C. D., and Toomey, D. F., 1985a, Early Permian deep-water allochthonous limestone facies and reservoir, west Texas: American Association of Petroleum Geologists Bulletin, v. 69, p. 2130–2147.

1985b, Sedimentary facies and biota of early Permian deep-water allochthonous limestone, southwest Reagan County, Texas, *in* Crevello, P. D., and Harris, P. M., eds., Deep-water carbonates—a core workshop: Society of Economic Paleontologists and Mineralogists Core Workshop No. 6, p. 93–139.

- Kaufman, J., Fiske, D., and Caputo, J., 2001, Contrasting depositional models for Wolfcamp periplatform carbonate reservoirs, Reagan and Upton Counties, Midland Basin, Texas, *in* Stoudt, E. L., and Sivils, D. J., eds., Wolfcampian of West Texas (Permian Basin, Sierra Diablo and Hueco Mountains)—shelfal and periplatform carbonate reservoirs and outcrop analogs: Permian Basin Section SEPM Core Workshop and Field Trip Guidebook, Publication No. 2001-41, p. 1-1-1-2.
- Loucks, R. G., Brown, A. A., Achauer, C. W., and Budd, D. A., 1985, Carbonate gravity flow sedimentation on low angle slopes off the Wolfcampian northwest shelf of the Delaware Basin, *in* Crevello, P. D., and Harris, P. M., eds., Deep-water carbonates—a core workshop: Society of Economic Paleontologists and Mineralogists Core Workshop No. 6, p. 56–92.

Malek-Aslani, M., 1970, Lower Wolfcampian reef in Kemnitz field, Lea County, New Mexico: American Association of Petroleum Geologists Bulletin, v. 54, p. 2317–2335.

. .

1985, Permian patch-reef reservoir, North Anderson Ranch field, southeastern New Mexico, *in* Roehl, P. O., and Choquette, P. W., eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, p. 265–276.

- Martin, R. L., Welch, C. L., Hinterlong, G. D., Meyer, J., and Evans, R., 2002, Using crosswell seismic tomography to provide better resolution in the Wolfcamp Formation in Lea County, New Mexico, *in* Hunt, T. J., and Lufholm, P. H., eds., The Permian Basin: preserving our past—securing our future: West Texas Geological Society, Publication 02-111, p. 25–34.
- Mazzullo, S. J., 1997, Stratigraphic exploration plays in Ordovician to Lower Permian strata in the Midland Basin and on the Eastern Shelf, *in* DeMis, W. D., ed., Permian Basin oil and gas fields: turning ideas into production: West Texas Geological Society Publication No. 97-102, p. 1–37.

2000, Models of porosity evolution in Pennsylvanian lowstand carbonates (now in slope-to-basinal settings) and in Lower Permian, highstand-resedimented basinal carbonates, *in* Reid, S. T., ed., Geo-2000: into the future: American Association of Petroleum Geologists, Southwest Section, Transactions, Publication SWS 2000-107, p. 130–138.

Mazzullo, L. J., and Arrant, B. G., 1988, Scharb Wolfcamp (oil), *in* A symposium of oil and gas fields of southeastern New Mexico, supplement: Roswell Geological Society, p. 289–290.

Mazzullo, S. J., and Reid, A. M., 1987, Basinal Lower Permian facies, Permian Basin: part IIdepositional setting and reservoir facies of Wolfcampian-lower Leonardian basinal carbonates: West Texas Geological Society Bulletin, v. 26, no. 8, p. 5-10.

1989, Lower Permian platform and basin depositional systems, northern Midland Basin, Texas, *in* Crevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F., eds., Controls on carbonate platform and basin development: Society of Economic Paleontologists and Mineralogists Special Publication 44, p. 305–320.

Mazzullo, S. J., Reid, A. M., and Mazzullo, L. J., 1987, Basinal Lower Permian facies, Permian Basin: part 1---stratigraphy of the Wolfcampian-Leonardian boundary: West Texas Geological Society Bulletin, v. 26, no. 7, p. 5-9.

Merriam, C. H., 2001, Depositional history of Lower Permian (Wolfcampian-Leonardian) carbonate buildups, Midland Basin, Upton County, Texas, Texas, *in* Stoudt, E. L., and Sivils, D. J., eds., Wolfcampian of West Texas (Permian Basin, Sierra Diablo and Hueco Mountains)—shelfal and periplatform carbonate reservoirs and outcrop analogs:

Permian Basin Section SEPM Core Workshop and Field Trip Guidebook, Publication No. 2001-41, p. 2-1–2-22.

Montgomery, S. L., 1996, Permian "Wolfcamp" limestone reservoirs: Powell Ranch field, eastern Midland Basin: American Association of Petroleum Geologists Bulletin, v. 80, p. 1349–1365.

1 🔊 🖓

- Pacht, J. A., Brooks, L., Messa, F., 1995, Stratigraphic analysis of 3D and 2D seismic data to delineate porous carbonate debris flows in Permian strata along the northwestern and eastern margins of the Midland Basin, *in* Martin, R. L., ed., In search of new Permian Basin oil and gas fields: using today's technologies and tomorrow's ideas for exploration, development, and 3D seismic in a mature basin: West Texas Geological Society Publication No. 95-98, p. 83-86.
- Simo, J. A., Wahlman, G. P., Beall, J. L., and Stoklosa, M. L., 2000, Lower Permian (Wolfcampian) in the Hueco Mountains; stratigraphic and age relations, *in* DeMis, W. D., Nelis, M. K., and Trentham, R. C., eds., The Permian Basin: proving ground for tomorrow's technologies: West Texas Geological Society, Publication No. 00-109, p. 63-64.
- Sivils, D. J., 2001, Examples of Wolfcampian debris flow deposits from the Eastern Shelf of the Midland Basin, Glasscock County, Texas, *in* Stoudt, E. L., and Sivils, D. J., eds., Wolfcampian of West Texas (Permian Basin, Sierra Diablo and Hueco Mountains)—shelfal and periplatform carbonate reservoirs and outcrop analogs: Permian Basin Section SEPM Core Workshop and Field Trip Guidebook, Publication No. 2001-41, p. 4-1-4-9.
- Sivils, D. J., and Stoudt, E. L., 2001, Basinal Wolfcampian carbonate debris flow, Midland Basin, Texas, *in* Stoudt, E. L., and Sivils, D. J., eds., Wolfcampian of West Texas (Permian Basin, Sierra Diablo and Hueco Mountains)—shelfal and periplatform carbonate reservoirs and outcrop analogs: Permian Basin Section SEPM Core Workshop and Field Trip Guidebook, Publication No. 2001-41, p. 5-1–5-3.
- Speer, S. W., 1993, Granite Wash (Permian), *in* Atlas of major Rocky Mountain gas reservoirs: New Mexico Bureau of Mines and Mineral Resources, p. 162.
- Van Der Loop, M., 1990, Amacker Tippett Wolfcamp field, Upton County, Texas, in Flis, J. E., and Price, R. C., eds., Permian Basin oil and gas fields: innovative ideas in exploration and development: West Texas Geological Society, Publication No. 90-87, p. 133–151.

Wilson, J. L., 1975, Carbonate facies in geologic history: New York, Springer-Verlag, 471 p.