PROPOSAL TO UNITIZE FOR SECONDARY RECOVERY OPERATIONS

DAGGER DRAW FIELD, EDDY COUNTY, NEW MEXICO

YATES PETROLEUM CORPORATION

Prepared for:

Prepared by: THE SCOTIA GROUP, INC.

FEBRUARY 2003

BEFORE THE OIL CONSERVATION DIVISION Santa Fe, New Mexico Case No. <u>13893</u> Exhibit No. 2 Submitted by: <u>YATES PETROLEUM CORPORATION</u> Hearing Date: <u>March 29, 2007</u>

1.1.1

- }

ter deg

TABLE OF CONTENTS

CONCLUSIONS4RECOMMENDATIONS61.0FIELD STATUS REVIEW72.0RESERVOIR CHARACTERIZATION82.1.1Discussion82.1.2Lithofacies92.1.3Depositional Model112.1.4Observations122.2Engineering142.3Geocellular Modeling163.0RESERVOIR PERFORMANCE193.1Primary Recovery193.2South Dagger Draw Waterflood Pilot214.0SECONDARY RECOVERY FORECAST234.1Discussion234.2Secondary Recovery Model245.0WATERFLOOD DESIGN AND IMPLEMENTATION275.1Phase 1275.2Phase 2276.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.3Available Data337.4Professional Qualifications34		INTE	RODUCTION	. 1
RECOMMENDATIONS.61.0FIELD STATUS REVIEW.72.0RESERVOIR CHARACTERIZATION.82.1Geology.82.1.1Discussion82.1.2Lithofacies.92.1.3Depositional Model112.1.4Observations122.2Engineering142.3Geocellular Modeling163.0RESERVOIR PERFORMANCE193.1Primary Recovery193.2South Dagger Draw Waterflood Pilot214.0SECONDARY RECOVERY FORECAST234.1Discussion234.2Secondary Recovery Model245.0WATERFLOOD DESIGN AND IMPLEMENTATION275.1Phase 1275.2Phase 2276.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.3Available Data337.4Professional Qualifications34		CON	CLUSIONS	. 4
1.0FIELD STATUS REVIEW		REC	OMMENDATIONS	. 6
2.0 RESERVOIR CHARACTERIZATION 8 2.1 Geology 8 2.1.1 Discussion 8 2.1.2 Lithofacies 9 2.1.3 Depositional Model 11 2.1.4 Observations 12 2.1.4 Observations 12 2.1.5 Depositional Model 11 2.1.4 Observations 12 2.2 Engineering 14 2.3 Geocellular Modeling 16 3.0 RESERVOIR PERFORMANCE 19 3.1 Primary Recovery 19 3.2 South Dagger Draw Waterflood Pilot 21 4.0 SECONDARY RECOVERY FORECAST 23 4.2 Secondary Recovery Model 24 5.0 WATERFLOOD DESIGN AND IMPLEMENTATION 27 5.1 Phase 1 27 5.2 Phase 2 27 6.0 ECONOMICS 29 7.0 QUALIFICATIONS AND LIMITATIONS 33 7.1 Independence and conflict of Interest 33 7.3 <		1.0	FIELD STATUS REVIEW	. 7
2.1 Geology		2.0	RESERVOIR CHARACTERIZATION	. 8
2.1.1Discussion82.1.2Lithofacies92.1.3Depositional Model112.1.4Observations122.2Engineering142.3Geocellular Modeling163.0RESERVOIR PERFORMANCE193.1Primary Recovery193.2South Dagger Draw Waterflood Pilot214.0SECONDARY RECOVERY FORECAST234.1Discussion234.2Secondary Recovery Model245.0WATERFLOOD DESIGN AND IMPLEMENTATION275.1Phase 1275.2Phase 2276.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.2Use of this Report337.3Available Data337.4Professional Qualifications34			2.1 Geology	. 8
2.1.2Lithofacies	· · ·		2.1.1 Discussion	. 8
2.1.3 Depositional Model112.1.4 Observations122.2 Engineering142.3 Geocellular Modeling163.0 RESERVOIR PERFORMANCE193.1 Primary Recovery193.2 South Dagger Draw Waterflood Pilot214.0 SECONDARY RECOVERY FORECAST234.1 Discussion234.2 Secondary Recovery Model245.0 WATERFLOOD DESIGN AND IMPLEMENTATION275.1 Phase 1275.2 Phase 2276.0 ECONOMICS297.0 QUALIFICATIONS AND LIMITATIONS337.1 Independence and conflict of Interest337.3 Available Data337.4 Professional Qualifications34	د. مربع ورو بر در رو مربع و رو رو رو رو رو		2.1.2 Lithofacies	. 9
2.1.4 Observations 12 2.2 Engineering 14 2.3 Geocellular Modeling 16 3.0 RESERVOIR PERFORMANCE 19 3.1 Primary Recovery 19 3.2 South Dagger Draw Waterflood Pilot 21 4.0 SECONDARY RECOVERY FORECAST 23 4.1 Discussion 23 4.2 Secondary Recovery Model 24 5.0 WATERFLOOD DESIGN AND IMPLEMENTATION 27 5.1 Phase 1 27 5.2 Phase 2 27 6.0 ECONOMICS 29 7.0 QUALIFICATIONS AND LIMITATIONS 33 7.1 Independence and conflict of Interest 33 7.2 Use of this Report 33 7.3 Available Data 33 7.4 Professional Qualifications 34		4 - 4	2.1.3 Depositional Model	11
2.2Engineering142.3Geocellular Modeling163.0RESERVOIR PERFORMANCE193.1Primary Recovery193.2South Dagger Draw Waterflood Pilot214.0SECONDARY RECOVERY FORECAST234.1Discussion234.2Secondary Recovery Model245.0WATERFLOOD DESIGN AND IMPLEMENTATION275.1Phase 1275.2Phase 2276.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.2Use of this Report337.3Available Data337.4Professional Qualifications34	and the second sec		2.1.4 Observations	12
2.3Geocellular Modeling	· t • .		2.2 Engineering	14
3.0RESERVOIR PERFORMANCE193.1Primary Recovery193.2South Dagger Draw Waterflood Pilot214.0SECONDARY RECOVERY FORECAST234.1Discussion234.2Secondary Recovery Model245.0WATERFLOOD DESIGN AND IMPLEMENTATION275.1Phase 1275.2Phase 2276.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.2Use of this Report337.3Available Data337.4Professional Qualifications34			2.3 Geocellular Modeling	16
3.1Primary Recovery193.2South Dagger Draw Waterflood Pilot214.0SECONDARY RECOVERY FORECAST234.1Discussion234.2Secondary Recovery Model245.0WATERFLOOD DESIGN AND IMPLEMENTATION275.1Phase 1275.2Phase 2276.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.2Use of this Report337.3Available Data337.4Professional Qualifications34		3.0	RESERVOIR PERFORMANCE	19
3.2South Dagger Draw Waterflood Pilot214.0SECONDARY RECOVERY FORECAST234.1Discussion234.2Secondary Recovery Model245.0WATERFLOOD DESIGN AND IMPLEMENTATION275.1Phase 1275.2Phase 2276.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.2Use of this Report337.3Available Data337.4Professional Qualifications34			3.1 Primary Recovery	19
4.0SECONDARY RECOVERY FORECAST234.1Discussion234.2Secondary Recovery Model245.0WATERFLOOD DESIGN AND IMPLEMENTATION275.1Phase 1275.2Phase 2276.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.2Use of this Report337.3Available Data337.4Professional Qualifications34			3.2 South Dagger Draw Waterflood Pilot	21
4.1Discussion234.2Secondary Recovery Model245.0WATERFLOOD DESIGN AND IMPLEMENTATION275.1Phase 1275.2Phase 2276.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.2Use of this Report337.3Available Data337.4Professional Qualifications34		4.0	SECONDARY RECOVERY FORECAST	23
4.2Secondary Recovery Model			4.1 Discussion	23
5.0WATERFLOOD DESIGN AND IMPLEMENTATION275.1Phase 1275.2Phase 2276.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.2Use of this Report337.3Available Data337.4Professional Qualifications34			4.2 Secondary Recovery Model	24
5.1Phase 1275.2Phase 2276.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.2Use of this Report337.3Available Data337.4Professional Qualifications34		5.0	WATERFLOOD DESIGN AND IMPLEMENTATION	27
5.2Phase 2276.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.2Use of this Report337.3Available Data337.4Professional Qualifications34			5.1 Phase 1	27
6.0ECONOMICS297.0QUALIFICATIONS AND LIMITATIONS337.1Independence and conflict of Interest337.2Use of this Report337.3Available Data337.4Professional Qualifications34			5.2 Phase 2	27
 7.0 QUALIFICATIONS AND LIMITATIONS		6.0	ECONOMICS	29
 7.1 Independence and conflict of Interest		7.0	QUALIFICATIONS AND LIMITATIONS	33
 7.2 Use of this Report			7.1 Independence and conflict of Interest	33
 7.3 Available Data			7.2 Use of this Report	33
7.4 Professional Qualifications			7.3 Available Data	33
			7.4 Professional Qualifications	34

7.5	Reserves Estimates	34
7.6	Future Net Revenue Estimates	35
7.7	Conclusions	35
7.8	Field Visit and Inspection	36
7.9	Liability Waiver	36

<u>Tables</u>

Table 1	Summary of Historical Production and Well Status	
Table 2	Waterflood Summary by Injection Pattern without Drilling	
Table 3	Waterflood Summary by Injection Pattern with Drilling	÷ .
Table 4	Waterflood Annual Volumes without Drilling	
Table 5	Waterflood Annual Volumes with Drilling	
Table 6.	Primary Production Cashflow	
Table 7	Phase 1 Cashflow without Drilling	
Table 8	Phase 2 Cashflow without Drilling	
Table 9	Phase 1 & 2 Cashflow without Drilling	
Table 10	Phase 1 Cashflow with Drilling	
Table 11	Phase 2 Cashflow with Drilling	
Table 12	Phase 1 & 2 Cashflow with Drilling	· .

,

<u>Figures</u>

Figure 1	Field Area Location Map
Figure 2	Proposed Well Activity Map
Figure 3	Upper Canyon Limestone Structure Map
Figure 4	Canyon Dolomite Structure Map
Figure 5	Base of Canyon Dolomite Structure Map
Figure 6	Upper Canyon Limestone Gross Thickness Map
Figure 7	Canyon Dolomite Gross Thickness Map
Figure 8	Stacking and Proportions of Sedimentary Cycles
Figure 9	Facies Progression
Figure 10	Depositional Model
Figure 11	Composite Cyclicity
Figure 12	Porosity*Feet Map

Figure 13 Net Porosity Map

Figure 14 Average Porosity Map

Figure 15 Cumulative Oil Production Map

Figure 16 Cumulative Gas Production Map

Figure 17 Cumulative Water Production Map

Figure 18 Cumulative Total Fluid Production Map

Figure 19 Cumulative GOR Map

Figure 20 Current Oil Rate Map

Figure 21 Current Gas Rate Map

Figure 22 Current Water Rate Map

Figure 23 Current Total Fluid Rate Map

Figure 24 Current GOR Map

Figure 25 Initial Oil Rate Map

Figure 26 Initial Gas Rate Map

Figure 27 Initial Water Rate Map

Figure 28 Initial Total Fluid Rate Map

Figure 29 Initial GOR Map

Figure 30 Geocellular Model Index Map

Figure 31 Geocellular Cross-Section DDNS1

Figure 32 Geocellular Cross-Section DDNS2

Figure 33 Geocellular Cross-Section DDNS3

Figure 34 Geocellular Cross-Section DDNS4

Figure 35 Geocellular Cross-Section DDNS5

Figure 36 Geocellular Cross-Section DDNS6

Figure 37 Geocellular Cross-Section DDNS7

Figure 38Geocellular Cross-Section DDNS8

Figure 39 Geocellular Cross-Section DDNS9

Figure 40Geocellular Cross-Section DDNS10

Figure 41 Geocellular Cross-Section DDNS11

Figure 42Geocellular Cross-Section DDNS12

Figure 43Geocellular Cross-Section DDEW1

Figure 44 Geocellular Cross-Section DDEW2

Figure 45 Geocellular Cross-Section DDEW3

Figure 46 Geocellular Cross-Section DDEW4

Figure 47 Geocellular Cross-Section DDEW5

Figure 48 Geocellular Cross-Section DDEW6

Figure 49 Geocellular Cross-Section DDEW7

Figure 50 Geocellular Cross-Section DDEW8

iii

Figure 51 Geocellular Cross-Section DDEW9

Figure 52 Geocellular Cross-Section DDEW10

Figure 53 Geocellular Cross-Section DDEW11

Figure 54 Geocellular Cross-Section DDEW12

Figure 55 Permeability Variation Plot

Figure 56 Relative Permeability – Oil-Water

Figure 57 Relative Permeability – Gas-Oil

Figure 58 Proposed Injector Areas

Figure 59 Injector Areas Including Proposed New Wells

Figure 60 Primary Production Forecast

Figure 61 Phase 1 Historical Production and Forecast without Drilling

Figure 62 Phase 2 Historical Production and Forecast without Drilling

Figure 63 Phase 1 & 2 Historical Production and Forecast without Drilling

Figure 64 Phase 1 Historical Production and Forecast with Drilling

Figure 65 Phase 2 Historical Production and Forecast with Drilling

Figure 66 Phase I & 2 Historical Production and Forecast Andrew Strategy and the

PROPOSAL TO UNITIZE FOR SECONDARY RECOVERY OPERATIONS

DAGGER DRAW FIELD, EDDY COUNTY, NEW MEXICO

INTRODUCTION

The Dagger Draw Field is located in Eddy County in southeast New Mexico and is one of the key oil and gas producing fields in the state (Figure 1). Yates Petroleum Corporation (Yates) is the principal operator in the field. The primary oil-producing horizon is the Pennsylvanian age Canyon dolomite at an average depth of 7,750 feet. As of September 2002, over 300 wells had been drilled with cumulative production in excess of 50 MMBO, 150 BCF, and 200 MMBW. The field is under primary production although a waterflood pilot was implemented in the southern part of the field with less than successful results.

The Dagger Draw field reservoir occurs within a patch reef complex that formed on the northwest shore of the Delaware Basin. The complex (including Dagger Draw and Indian Basin fields) is approximately 24 miles in length from south-southwest to north-northeast (Figure 1) and varies in width from 2.5 to 8.5 miles. The reefs formed in a sub- to intra-tidal nearshore regime. Deepwater shale and limestone occur to the southeast and higher energy shoreward facies occur to the northwest. The reservoir sequence includes porous dolomite and non-porous limestone. Shale beds occur low in the section over much of the field and interbedded throughout the section along the southeastern edge.

The porosity in the dolomite is reported as being the result of the primary fabric of the algal reef detritus. Dolomitization is the result of fluid movement through the porous facies. Because of the vuggy nature of the reservoir, it is believed that conventional log analysis may not adequately characterize the reservoir, and therefore it is difficult to estimate reliably the original oil in place. Other production abnormalities have also been observed in this field. Most notable are contrasting performance behavior of wells in close proximity, apparent loss of production potential of wells following a rate cutback, and the poor performance of the waterflood pilot study in the southern part of the field.

Yates has requested preparation of a proposal to inject produced water in a nine-section area of the Upper Pennsylvanian Canyon formation of the Dagger Draw Field in an effort to increase the recovery of oil above the currently projected 16.9 percent of original oil in place. As per Yates direction, the focus of the proposed project has been on a nine-section area including Sections 16, 17, 18, 19, 20, 21, 28, 29 and 30 of Township 19 South, Range 25 East in Eddy County, New Mexico. The study and its recommendations include work previously presented in several reports by The Scotia Group, Inc. (Scotia). These reports and their findings are included in this report by reference and not restated herein. The previous Scotia work generally focused on an area in size which is less than the nine sections discussed in this study and addressed petrophysical and flow unit characterization of the Upper Pennsylvanian Canyon formation along with material balance and numerical simulation studies of the reservoir.

This proposal contemplates conversion of 21 wells for water injection in an irregular pattern designed to mobilize oil in areas of the nine sections that have not experienced significant water production and are assumed to be part of the reservoir matrix not extensively connected with the more permeable (i.e., fracture or vugular) regions of the reservoir in the dual porosity system. The proposed implementation of the water injection project is set forth as two phases in an effort to minimize the impact on field production and operations. Phase 1 includes 13 injection wells and associated injection facilities and water distribution lines in Sections 18, 19, 20 and 30. Phase 2 includes eight injection wells and associated injection facilities and water distribution lines in Sections 16, 17, 21, 28 and 29.

CONCLUSIONS

- Ultimate recovery for the proposed nine-section waterflood area under primary conditions is estimated to be 16.9 percent of original oil in place.
- Performance to date suggests that injection into fracture or vugular porosity dominated areas (high cumulative production, significant water production) will only result in "cycling" of water between injection wells and producer wells with no meaningful incremental secondary oil recovery.
- It is proposed that water injection should focus on matrix porosity dominated areas (low cumulative production, low water production) in an effort to mobilize bypassed oil towards fracture and vugular porosity ("pipeline") areas in an effort to recover additional oil.
- An irregular pattern is recommended in order to properly locate injection wells in matrix porosity dominated areas relative to producing wells and optimize secondary recovery from the reservoir.
- Incremental recovery for Phase 1 and 2 with no new drilling is estimated to be 2.2 MMBO and 0.4 BCF net to unit ownership. These net incremental reserves have an undiscounted cash flow and present worth discounted at 10 percent of \$22.9 MM and \$15.6 MM, respectively. (See Table 9 and Figure 63)
- Incremental recovery for Phase 1 and 2 with the drilling of seven new wells is 2.9 MMBO and 1.1 BCF net to unit ownership. These net incremental reserves have an undiscounted cash flow and present

worth discounted at 10 percent of \$28.1 MM and \$18.0 MM, respectively. (See Table 12 and Figure 66)

- The "seven well drilling" case when compared to the "non-drilling" case is projected to recover 0.67 and 0.62 BCF additional reserves as a result of improved areal recovery and new well response based on the incremental forecasts and economics. Actual waterflood response and economics that exceed the current forecasts, however, may support future drilling.
- Additional upside may be demonstrated with expansion of the waterflood project beyond the nine section project area and with infill drilling to less than 40 acre well spacing.

RECOMMENDATIONS

The following recommendations are proposed for implementation of water injection for increased oil recovery in the Dagger Draw Field:

- Conversion of 21 wells for water injection (see attached Figure 2).
- Restoration of nine wells for production.
- Remedial well work to add/squeeze perforated intervals in 57 wells.
- Deferment of any new drilling pending evaluation of actual waterflood response.
- Additional core recovery operations for any future new wells in an effort to better describe and characterize the Upper Pennsylvanian Canyon Dolomite reservoir and understand the complex porosity-permeability inter-relationship of the reservoir and its impact on fluid production.
- Future construction of a detailed reservoir simulation model that captures the complexities of the Upper Pennsylvanian Canyon Dolomite reservoir in the nine-section waterflood area, incorporating data from all recently drilled horizontal wells, data from any future drilling operations, and actual reservoir performance.

1.0 FIELD STATUS REVIEW

Production within the reservoir sections of interest commenced in March 1971 from the Dagger Draw 30N No. 1 well, however, active field development was not initiated until 15 years later. In the nine sections of this study area, production peaked at over 13,000 barrels of oil per day (BOPD) in December 1995 and has declined rapidly to below 1,000 BOPD in January 2001. Initial reservoir pressure has also declined from approximately 3,000 psi to a current level of 500 to 700 psi. A total of 115 wells have been drilled in the nine-section study area.

The combined producing rate for the Dagger Draw Field for the nine sections of interest as of September 2002 was 623 BOPD, 3,997 MCFD and 6,353 BWPD. Currently there are 94 active wells producing from the Upper Pennsylvanian Canyon Dolomite in the nine-section area. The combined field producing rate in the nine sections of interest after conversion of 21 wells for water injection is anticipated to only decrease by approximately 100 BOPD. This producing rate does not include anticipated production increases from wells restored to production or drilled for production along with response to the water injection operations.

2.0 RESERVOIR CHARACTERIZATION

2.1 Geology

2.1.1 Discussion

The structure of the region dips southeastward into the depositional basin. Although true structural closures do not emanate on the top of the Canyon carbonate interval (Figure 3), local structurally high closure can occur due to the occurrence of porous dolomite high in the section surrounded by non-porous rock. Three structure maps across the nine-block area are included for reference (Figures 3, 4, and 5). Figure 3 is a map on the top of the Canyon Limestone and shows nearly monoclinal southeast dip at about 1 to 1.5 degrees. Figure 4 shows the top of the dolomitized layer. Although the general southeast dip is evident, the surface is much more irregular than the limestone top. The dolomite unit ranges in thickness from 150 feet in the northwest portion of the unit area to almost 400 feet in a strike-trending band in the southeast portion (Figure 7). This layer is overlain by an impermeable limestone (Canyon Limestone) ranging in thickness from a few feet to over 150 feet (Figure 6).

С

These rocks have been deposited in a series of shallowing upward cycles capped by marine flooding surfaces (parasequences). In various cored wells across the field area, between 27 and 39 parasequences were interpreted in intervals ranging from 203 to 262 feet. On average, the parasequences are seven feet thick for wells situated in an updip position. These parasequences thicken off-structure as evidenced by the core taken in

the Dagger Draw 31 Federal No. 7 well. In this well, eight parasequences were interpreted in 117 feet of analyzed core resulting in a 15-foot average thickness. Figure 8 shows a similar set of sequences in outcrop for a scale perspective. Four primary lithofacies are observed within these parasequences reflecting water depth and overall energy of depositional environment. These lithofacies, illustrated in a general sense in Figure 9 and 10, are described below.

2.1.2 Lithofacies

The base of the parasequence is often marked by a thin, dark, fissile shale. These shales range in thickness from 1 inch to 3 feet and reflect a deepwater basinal environment. Stagnant (low energy), anoxic conditions and a low sedimentation rate lead to thin beds with a scarcity of fossils. Little or no reservoir potential exists in these beds.

Overlying the basinal shales are fossiliferous mudstones and wackestones. These rocks range from 6 inches to 35 feet in thickness and are roughly 75 percent dolomitized in the cored intervals across the area. The wide diversity seen within the fossil assemblage and abundance of burrowing structures reflect well-oxygenated, normal marine conditions updip of the basinal facies. This lithofacies is often the deepest water environment within a given parasequence, as the basinal shales are not always observed. Little visible intergranular pore space was reported in core observations, however, occasional moldic pores and irregular vugs are noted. These rocks are generally considered to be of marginal reservoir

quality with porosity averaging 2.1 percent and permeability of 1.8 millidarcies.

Above the wackestone facies are algal boundstones ranging from 6 to 32 inches thick. These stromatolitic buildups are 100 percent dolomitized. They are usually laminated and display fenestral porosity oriented parallel with the bedding surface. Columnar growth, however, is not uncommon. Solution enhancement of the fenestral voids creates sizable vugs. Vertical solution fractures noted in these rocks help interconnect isolated framework pores. These deposits have been interpreted as algal bank bioherms that developed in a tropical to subtropical, shallow water, subtidal environment. This lithofacies is considered to have the highest reservoir quality within the sequence. Porosities from core measurements average four percent and permeability averages 9.3 millidarcies.

> Generally overlying the algal boundstones are grainstones composed of locally derived shell fragments and in-situ ooids. These rocks display primary intergranular porosity as well as moldic, vugular and dissolution fracture secondary porosity. They are indicative of a shallower water, higher energy environment updip of the algal reefs. The increased wave and tidal action of this intertidal position winnowed out clay particles and enhanced formation of ooid grains. Reservoir quality is almost as high as the underlying algal boundstones. Porosity and permeability averages 4.5 percent and 5.9 millidarcies, respectively. Where it is observed, this lithofacies represents the top of the parasequence and will be overlain by a basinal shale or open shelf wackestone or mudstone.

2.1.3 Depositional Model

The dolomite reservoir that comprises Dagger Draw Field was deposited on a low relief slope off the southeastern edge of the northwest shelf as it ramped into the northwestern margin of the developing Delaware Basin. This shallow water, tropical shelf environment allowed late Pennsylvanian and Permian age reefs and algal banks to prograde into the basin and help form the current basin edge. The algal bank boundstone and intertidal shoal grainstone trends in this field are an example of reef progradation that occurred in late Pennsylvanian time.

In the deepest water portion of the sequence, thin laminated shales were deposited as clay particles settled from suspension in stagnant, reducing conditions.

Updip of the basinal facies, quiet water normal marine conditions prevailed. Well-oxygenated water allowed for a wide diversity of observed fossil fragments and burrow structures. The mud supported wackestones and mudstones were deposited in this open shelf environment.

Further updip along the open shelf, stromatolitic and phylloid algae formed broad algal banks in elongate bodies that paralleled the shoreline. The algal boundstone reservoir trend documents this environment. These boundstones are found in every parasequence indicating these reef buildups were continuous in nature. Their pronounced thickness in certain parasequences is indicative of a gradual rise in sea level that allowed the vertical aggradation of the reef to keep pace.

Updip of the reef trend, algal bank growth is hindered in the higher energy intertidal zone due to increased wave action, higher sedimentation rates and intermittent subaerial exposure. This environment produced the grainstone lithology generally observed above the reef deposits. As in the algal reef trend, the grainstone facies was deposited in linear strike-oriented belts. The algal boundstones and intertidal grainstones are often found thinly interbedded with each other, indicating these two environments were likely closely associated and may only be separated by a few feet in water depth. The relatively thin nature of these deposits indicates this high energy, low sea level environment was probably short-lived.

2.1.4 Observations

The depositional model described above clearly results in a changing facies, and hence, changing lithology along a common time horizon. Time horizons dip from northwest to southeast into the depositional basin. Along this horizon, observed lithology will change from grainstones to boundstones, then to wackstones, mudstones and, finally, to thin basinal shales. As the cycles repeat following marine flooding events, the shallow water grainstones and boundstones prograde basinward as they build on older reefal deposits (Figure 11). Consequently, wells drilled in an updip position will encounter the favorable shallow water facies in older deposits than wells drilled further into the basin. Also, correlation of like facies in a dip direction will result in a surface that climbs relative to the actual time surface. As such, the top of the Cisco-Canyon Limestone surface is itself likely a time transgressive surface.

Having stated this, however, it must be noted that field-wide boundaries are not apparent from the log data. Rather, non-porous rocks indicative of high-stands, while appearing to occur at a relatively consistent depth, do not form continuous widespread boundaries to vertical flow. Facies indicative of low-stand could not be delineated from logs. The general impression gained from correlations in the area is that the reservoir architecture is controlled primarily by the patch-reef morphology and not regional sequence tracts.

البوارة فبالبد الدوفاريا

and a Addition As stated earlier, facies belts in this setting are related to water depth at the time of deposition and are generally deposited along strike. Production patterns in Dagger Draw Field tend to mimic the trend of reefal facies. Maps of cumulative oil production (Figure 15), cumulative gas production (Figure 16), cumulative water production (Figure 17), cumulative total fluid production (Figure 18), and \emptyset h (i.e., porosity x thickness) (Figure 12) reveal three distinct belts of high production associated with increased section of porous rock trending northeast to southwest parallel to the edge of the Delaware Basin. These distinct belts of high production would likely dominated shallow facies correspond by water to areas (grainstone/boundstone) of differing age. Narrower avenues dominated by open shelf wackestones and mudstones separate these belts.

> It is commonly accepted and demonstrated that the shallow water facies provides the superior reservoir rock in both primary and secondary porosity and permeability. These areas dominated by reefal and intertidal deposition would clearly be the preferred focus areas of exploratory activity.

Oil production within these zones has been substantially higher than that seen in the areas dominated by open shelf deposition. However, copious amounts of water production accompany this higher oil production. From this, it would seem that the pore space in this portion of the reservoir has been pervasively swept at this mature stage. It does not seem likely that injecting additional water into this higher porosity portion of the formation would result in any appreciable additional oil production. The large amount of water production indicates a substantial aquifer is connected with the pore space network in the higher productivity zones. Injection of water into these zones would result in sweeping of areas already exposed to substantial water flow while pumping water back into the source aquifer only to be produced again later. Any potential to mobilize additional oil would occur within the lower permeability areas dominated by wackestones and mudstones. Scotia's waterflood strategy is to focus water injection in these lower porosity and permeability areas in an attempt to move oil into the porosity network utilized by the higher productive wells. The injection pattern that results is geometrically irregular and is driven by relative well performance across this mature oil field.

A. Santa a

2.2 Engineering

وأسوابها والأستقوات أرجامه كوافين ي

· · ·

Material balance calculations for the entire field indicate substantial original oil in place of approximately 250 million barrels of oil. When reviewing the pressure data associated with the material balance study, pressure measurements of approximately 85 to 90 percent of estimated original reservoir pressure were observed after more than 50 million barrels of oil were produced. Later pressure observations in these same wells, one

to two years later, showed pressure measurements of less than 30 percent of estimated original reservoir pressure. From this rapid decline in measured reservoir pressure, it can be inferred that more than one system of porosity and permeability may control the flow of oil, gas and water in the reservoir. This is consistent with the dual porosity reservoir system as described in core reports which was a necessary assumption for history matching in the previous Scotia reservoir simulation work.

While over 50 MMBO have been produced from approximately 300 wells from the entire Dagger Draw Field, overall recovery as a percent of original oil is only about 21 percent. The original reservoir pressure was approximately 3,037 psia and it is believed that free gas existed when the field was first developed. Later work done to recommend a North Waterflood Pilot Study by Scotia estimated the initial gas saturation to be four percent. A special core study provided the relative permeability relationship of oil and water and the estimate of initial water saturation is observed at 30 percent. The original reservoir properties used in this report are summarized in the following table:

Average Reservoir Properties For Dagger Draw Field					
Oil Saturation	66 %				
Water Saturation	30 %				
Original Gas Saturation	4 %				
Reservoir Temperature	130 °F				
Reservoir Pressure	3,037 psia				
Porosity	7.6 % mean (5.7-27.4)				
Permeability	<.06 - > 1,000 md.				
Oil-Water contact	-4,380 ft				
Formation Volume Factor	1.4965 Res bbl/STB				

The remaining discussion of reservoir performance is focused on the nine-section waterflood area identified by Yates for improved recovery operations.

2.3 Geocellular Modeling

In an effort to aid in identifying injection locations, a grid of 24 crosssections across the nine sections of interest (Figure 30) was generated from Scotia's previously developed Geocellular Model. The Geocellular Model was based on petrophysical analysis and correlation of porosity trends computed from neutron-density cross-plots within the Canyon Dolomite. Further detail on construction of this model is contained in previous reports by Scotia regarding Dagger Draw Field (References 3 and 5).

Twelve cross-sections oriented north-south and twelve cross-sections oriented east-west were used in the analysis. Performance trend maps (see Figures 15 through 29) were then developed relating to cumulative production (oil, water and gas), current rate (oil, water and gas) and gas-oil ratio. These performance trend maps were then reviewed in conjunction with the Geocellular Model cross-sections along with perforation and pressure data in an effort to arrive at what Scotia considers to be optimum injection locations within matrix porosity dominated areas.

Several of these cross-sections are discussed below for reference and illustration. Cross-section DDNS2 (Figure 32) is extracted from the western portion of the proposed unit area. This section shows three proposed

injectors and two proposed drill sites. Note that one drill site is flanked by two proposed injectors. The next drill location to the north shows good apparent porosity connectivity with the proposed injector one location south.

Figure 34 shows cross-section DDNS4 extracted along well locations on the eastern edge of Sections 18, 19, and 30. Six Phase 1 proposed injector locations occur on the cross-section which is situated within a generally lower porosity, lower oil productivity corridor (Figures 12 and 15).

Figure 38 shows cross-section DDNS8 along well locations on the eastern edge of Sections 17, 20, and 29. Two proposed drill sites and three proposed injectors are shown on the cross-section. The open location in the northeast quarter of the southeast quarter of Section 17 (Location 17I) is flanked by three proposed injectors (all Phase 2) and would be necessary for improved sweep efficiency. The Phase 1 proposed injector in the northeast quarter of the southeast quarter of Section 20 (Location 20I) is shown to occur in a generally low porosity area flanked by higher porosity wells. The proposed drill sites in the southeast quarter of the southeast quarter of section 29 (Location 29P) is situated at the edge of the proposed unit and would be drilled to prevent oil from being swept out of the unit area.

Figure 48 shows cross-section DDEW6 through the center of the unit area in Sections 19, 20, and 21. One proposed drill site and three proposed injectors are situated on this line. The drill location in the northeast quarter of the southwest quarter of Section 19 (Location 19K) is in an area of apparent good porosity and should be in an optimum location to recover oil

from the injector located one location south. Porosity degradation at the locations of the three proposed injectors is also apparent.

Figure 51 shows cross-section DDEW9 along the southern edge of Sections 16, 17, and 18. One drill location and three injectors (all Phase 2) are situated on the cross-section. The drill location in the southwest quarter of the southeast quarter of Section 17 (Location 17O) is adjacent to two proposed injectors and is shown as having good apparent connectivity with those locations. Once again, generally lower porosity is noted at the injector locations.

The cross-section north of cross-section DDEW9, DDEW10, shows three Phase 2 drill sites, one Phase 1 injector, and one Phase 2 injector. The drill locations in the northwest quarter of the southeast quarter of Section 16 (Location 16J) and the northwest quarter of the southwest quarter of Section 16 (Location 16L) are each adjacent to two proposed injectors not shown on this section. The proposed drill site in the northeast quarter of the southeast quarter of Section 17 (Location 17I) is adjacent to three injectors.

ang sa sa sa

3.0 RESERVOIR PERFORMANCE

3.1 **Primary Recovery**

Table 1 presents for each well in the nine-section area various historical production data. The cumulative production and current producing rate information in Table 1 is as of April 2002 and does not reflect any subsequent work undertaken by Yates since that time.

As described in previous work by Scotia, reservoir description through the use of conventional log analysis is difficult. Core data is limited and therefore does not provide any better reservoir parameters for determining the original oil in place by volumetric methods. For the waterflood area in this study, porosity-thickness (\emptyset ·h) values were computed for each well for which log data was available. A cut off of four percent porosity was used to determine the net \emptyset h for each well. The resulting pore volume above the oil-water contact at 4,380 feet subsea true vertical depth was then estimated at 42,407.17 acre Ø.h. Using the fluid properties at initial conditions, the original oil in place was then estimated to be 145.1 million stock tank barrels. Cumulative production at the end of September 2002 for the waterflood area was 24.3 MMBO or 16.7 percent of the original oil in place. Based on current trends and operations, the remaining primary production gross reserves are estimated to be 0.28 MMBO and 1.8 BCF (Table 6 and Figure 60). Therefore only 16.9 percent of the original oil in place in the waterflood area is projected to be recovered

under primary production leaving more than 100 MMBO in place which can be targeted for improved recovery operations.

As noted previously when reviewing the pressure data associated with the material balance study of the full field, pressure measurements were observed in numerous wells that were 85 to 90 percent of the original reservoir pressure after almost 50 MMBO were produced. Later pressure observations in these same wells, one to two years later, showed recorded pressures of less than 30 percent of the estimated original pressure. This rapid decline in reservoir pressure would tend to support a dual porositypermeability reservoir system that is described in the core reports and was a necessary assumption in obtaining an acceptable history match in the reservoir simulation study work performed by Scotia (Reference 5) covering a portion of the proposed nine section waterflood area presented in this report.

and the state of the

Therefore, when contemplating enhanced or improved recovery operations in the Dagger Draw Field, this dual porosity-permeability system must be considered in the design and implementation of the program. It should also be noted that many wells have produced significant volumes of water based on a review of historical production for each well. To better understand the historical field performance, maps of cumulative oil, cumulative water, cumulative total fluid (oil and water) and gas-oil ratio were prepared (Figures 15 through 29). These maps show areas of varied historical performance, which is not inconsistent with the expectations as described by the geologic model and detailed core studies. An important observation is that areas of the waterflood area that produced lower

cumulative volumes of oil also tended to produce less associated water. These areas are interpreted to be in the lower porosity-permeability system in contrast to the areas of higher cumulative oil and water production which are interpreted to be in the fracture or vugular porosity dominated areas of the reservoir.

The drive mechanism for the Upper Pennsylvanian Canyon Dolomite reservoir is considered to be a partial water drive, especially since the reservoir pressure has declined substantially. The current average reservoir pressure has been estimated to be 800 psia as determined in the previous Scotia material balance study (Reference 2). However, a seemingly decomposition of unlimited source of water appears to be connected to the reservoir based on the same the 80.6 MMBW that has been produced with the cumulative oil production of 24.3 MMBO. Additionally, water production associated with the current field operations does not appear to be declining. This would re-enforce the seemingly limitless water source connected to the reservoir. Again, as noted on the historical performance maps, not all portions of the waterflood area have performed in the same manner. These observations substantiate a lower porosity-permeability system associated with lower fluid recovery in contrast to the areas of higher cumulative oil and water production which are interpreted to be in the fracture or vugular porosity dominated areas of the reservoir.

3.2 Performance of South Dagger Draw Pilot

A production history review was made of public domain production data obtained for the pilot line drive waterflood program in the southern part

of Dagger Draw in Sections 14 and 23 of T20S-R24E. Injection volumes for the four converted north to south line injectors together with two well spacings of producers were examined. A dramatic response was observed in all offset wells to the four injectors. Essentially, the offset producers demonstrated significant water production increase within 12 months of commencement of injection. With one exception, the Hillview AHE Federal No. 13 well, the increase in water production in each well was accompanied by a decrease in oil production. The important point to note here is that this phenomenon (i.e., increase in water production) occurred in every well surrounding the four north to south line injectors.

Bender the client available for Federate difference difference distributions and distribution of the four injectors in quantities as wells also indicated an increase of water production in significant quantities as wells. In response to the increasing water production in these offset wells beyond the first offset to the injection wells, the injection volumes were decreased by the operator based on the expectation of continued increased water production without a corresponding increase in oil production.

From the observed performance histories of the wells in the South Dagger Draw waterflood area, there appears to be an effective conduit for water between wells with no clear distinct bias in direction. Additionally, while there may have been mechanical reasons associated with the decrease in oil production once significant water production was experienced in the wells offset to the injectors, it could suggest that increased reservoir pressure as a result of the injected water is inhibiting the mobilization of oil in the matrix.

4.0 SECONDARY RECOVERY FORECAST

4.1 Discussion

Based on the geologic model and reservoir performance to date, a program to improve oil recovery is proposed focusing on portions of the reservoir that have produced lesser volumes of oil and water and are interpreted to be in the matrix porosity dominated areas of the reservoir system. The proposed water injection program has been divided into Phases 1 and 2. Phase 1 covers 13 injection wells and associated injection facilities and water distribution lines for Sections 18, 19, 20 and 30. Phase 2 covers eight injection wells and associated injection facilities and water distribution lines for Sections 18, 19, 20 and 30. Phase 2 covers or eight injections 16, 17, 21, 28 and 29. The Phase 1 and 2 plans reflect an orderly implementation of remedial well activity and installation of injection facilities for the more than 115 wells that have been drilled in the waterflood area to date.

As discussed previously, Table 1 presents for each well in the ninesection area various historical production data and a brief comment of recommended action for implementation of the proposed waterflood. It is anticipated that initial average water injection rates would range from 2,000 to 5,000 barrels of water per well per day based on the previous reservoir simulation work performed by Scotia. The actual volumes of water injected will be dependent on bottomhole pressure constraints such that the fracture gradient is not exceeded. It should be noted that a detailed study of each

well's historical records and mechanical condition has been performed by Yates. For implementation of secondary recovery operations, Yates has provided various cost estimates for remedial work of existing wells including conversion of 21 wells for injection, water injection facilities and water distribution lines. These costs are discussed in the economics section of this report (Section 6.0).

Various methods were considered to project incremental oil recovery resulting from water injection operations. However, as discussed previously, reservoir characterization is difficult and detailed data is limited. It is felt that a full reservoir simulation study at this time would not necessarily provide a better result than a conventional Dykstra-Parsons approach given the available data. Therefore, a ten-layer Dykstra-Parsons model has been used based on the core data from six wells in the Dagger Draw Field. The formulation and relevant assumptions of the model are discussed in the next section. The projected volumes of oil from the Dykstra-Parsons model are felt to represent the most likely incremental oil recovery from water injection operations and are consistent with the incremental recovery projections from previous reservoir simulation work performed by Scotia (Reference 5) in other areas of the Upper Pennsylvanian Canyon formation.

4.2 Secondary Recovery Model

A Dykstra-Parsons model has been constructed for both the estimation of incremental oil and the projection of that oil over time. The model assumes piston displacement (i.e., each barrel of water injected displaces a

constant equivalent fraction volume of oil) of the oil by water in a linear displacing process. The total reservoir thickness for an injection pattern is based on the thickness computed for the injection well and is assumed constant over the injection pattern pore volume. The pore volume for each injection pattern was computed based on the pore volume map. An areal sweep factor has been computed for each injection pattern based on producing well locations. The sweep factor is defined as the ratio of the volume of the reservoir swept by injected water at any time to the total volume of the reservoir subject to injection. Figure 58 shows the computed areal sweep factors for each pattern for the existing wells. Figure 59 shows the computed areal sweep factors for each pattern for the infill wells. Ten layers of equal thickness are assumed and the permeability for each layer was varied based on core data from the six wells as shown in the table below:

Γ	Permeability, md					
	Dagger			Cooper		
Layer	Draw #12	Saguaro #8	Barbara #12	AHH #1	Barbara #2	Ocotillo #1
1	79.80	184.0	318.0	25.00	49.0	20.0
2	9.98	8.1	13.2	4.10	11.0	3.1
3	1.81	4.6	3.2	1.00	7.6	1.4
4	0.89	2.8	1.2	0.46	1.3	0.7
5	0.52	1.4	0.6	0.29	0.8	0.3
6	0.36	0.8	0.5	0.17	0.4	0.2
7	0.19	0.4	0.2	0.07	0.3	0.1
8	0.12	0.3	0.2	0.03	0.2	0.1
9	0.09	0.1	0.1	0.02	0.1	0.0
10	0.06	0.0	0.1	0.01	0.1	0.0

A delay time was computed simplistically as the time equal to inject a volume of water equivalent to the volume of gas in the injection pattern assuming a current gas saturation of 12 percent. The estimation of a 12 percent gas saturation was determined in the Scotia report entitled "North Pilot Water Injection Recommendation" (Reference 4). The current water saturation was estimated to be 44 percent in this same report (Reference 4). Incremental oil recovery and the rate projections are based on 2,500 barrels of injected water per day in each injection pattern.

Because of the wide variability of the permeability data exhibited with the state of from core analysis coupled with the fact that all wells have produced water, as here a loss of the projected oil recovery from the highest permeability layer (layer 1) in the Dykstra-Parsons calculations was not included in the projected incremental recovery. It is assumed that the produced water to date would have preferentially swept this high permeability zone. The projected incremental oil from the ten-layer waterflood model is the average of the six cases and therefore excludes any response associated with the highest permeability layer defined by the Dykstra-Parsons variance. Table 2 summarizes the incremental oil recovery for each of the water injection patterns for the existing field development case (i.e., no new wells). Table 3 summarizes the incremental oil recovery for each of the water injection patterns for the expanded field development case (i.e., seven new wells). The tables also describe the variability of pattern area, porous acre-feet, injection well thickness, average porosity greater than four percent, allocated cumulative production, recoverable original oil in place for an injection pattern, area sweep factor and estimated current remaining original oil in place.

1 :

5.0 WATERFLOOD DESIGN AND IMPLEMENTATION

5.1 Phase 1

Phase 1 is the first phase of implementation and includes 13 injection wells in Sections 18, 19, 20 and 30 as shown in Figures 58 and 59. Phase 1 implementation also includes the drilling of two wells, which are targeted for patterns located in the northeast quarter of the southwest quarter of Section 19 (Location 19K) and in the northeast quarter of the northwest quarter of Section 30 (Location 30C). For each injection pattern, the acreage and the areal sweep factor are shown in Table 2, based on current wells, and in Table 3, which includes the benefit from the drilling of new wells. The projected response of future rates of oil production over a ten-year period for Phase 1 is shown in Table 4. Gross incremental recoverable oil for Phase 1 over a ten-year period is estimated to be 2.2 MMBO without drilling and 2.4 MMBO with the drilling of two infill wells. These volumes of incremental oil are before consideration of the impact of net revenue ownership and operating cost burden.

5.2 Phase 2

Phase 2 is the second phase of implementation and includes eight injection wells in Sections 16, 17, 21, 28 and 29 as shown in Figures 58 and 59. Phase 2 implementation also includes the drilling of five wells which are targeted for patterns in the northwest quarter of the southeast quarter of Section 16 (Location 16J), the northwest quarter of the southwest quarter of

Section 16 (Location 16L), the northeast quarter of the southeast quarter of Section 17 (Location 17I), the southwest quarter of the southeast quarter of Section 17 (Location 17O) and the southeast quarter of the southeast quarter of Section 29 (Location 29P). For each injection pattern, acreage and the areal sweep factor is shown in Table 2, based on current wells, and in Table 3, which includes the benefit from the drilling of new wells. The projected response of future rates of oil production over a ten-year period for Phase 2 is shown in Table 5. Gross incremental recoverable oil for Phase 2 over a ten-year period is estimated to be 1.1 MMBO without drilling and 1.4 MMBO with the drilling of five infill wells. These volumes of incremental oil are before consideration of the impact of net revenue ownership and operating cost burden.

6.0 ECONOMICS

The waterflood plan has been divided into two parts, with Phase 1 consisting of injection in Sections 18, 19, 20 and 30 in T19S R25E, followed by Phase 2 which consists of injection in Sections 16, 17, 21, 28 and 29. The following table summarizes the cost estimates prepared by Yates for Phase 1 and Phase 2:

	<u>Phase 1</u> <u>\$MM</u>	<u>Phase 2</u> <u>\$MM</u>	<u>Total</u> <u>\$MM</u>
Prepare existing wells for waterflood	3.26	2.82	6.08
Drill new producing wells	1.73	4.33	6.06
Install water injection lines	0.32	0.20	0.52
Install water injection facilities	<u>0.45</u>	0.37	<u>0.82</u>
Total	5.76	7.72	13.48

Costs Estimated for North Dagger Draw Waterflood

Additional information used in the economic analysis of the waterflood project and unit operations is summarized in the following table:

Working Interest	100 %
Net Revenue Interest	83.0 %
Oil Price	\$25 /barrel
Gas Price	\$2.50 MCF
Operating Cost	\$2,600 /well/month
Water injection cost	\$0.06 /bbl
Produced water handling cost	\$0.02 /bbl
Water supply cost	\$0.05 /bb1

For purposes of the economic projection, all costs and prices have been scheduled without escalation in future years. The effective date for the economic forecasts is January 1, 2003. Phase 1 and Phase 2 water injection have been scheduled to commence on July 1, 2003 and July 1, 2005, respectively.

Summarized in the table below are the results of the reserves evaluation and economic analysis for the primary production case as compared with the projections for Phase 1 and 2. Separate cases are shown for no new drilling versus the drilling of additional wells as previously discussed. Reserves and economics for Phase 1 are incremental to the primary production case. Likewise, Phase 2 reserves and economics are incremental to the combined Phase 1 and primary production cases. The production forecasts and economic schedules corresponding to the results summarized below are shown in the Tables and Figures indicated.

Case	Net Reserves	Undiscounted Cash Flow	Present Worth Disc. @ 10%	Reference
Primary	0.23 MMBO 1.54 BCF	\$ 5.47 MM	\$ 4.57 MM	Table 6, Figure 60
Phase 1	1.52 MMBO 0.30 BCF	\$17.98 MM	\$ 13.11 MM	Table 7, Figure 61
Phase 2	0.72 MMBO 0.14 BCF	\$ 4.90 MM	\$ 2.53 MM	Table 8, Figure 62
Total	2.47 MMBO 1.98 BCF	\$28.35 MM	\$20.21 MM	

Without Drilling

an a	With Drilling	en en en der der Britten en d	and a second sec
--	---------------	-------------------------------	--

1 11

Case	Net Reserves	Undiscounted Cash Flow	Present Worth Disc. @ 10%	Reference
Primary	0.23 MMBO 1.54 BCF	\$ 5.47 MM	\$ 4.57 MM	Table 6, Figure 60
Phase 1	1.80 MMBO 0.54 BCF	\$20.19 MM	\$14.16 MM	Table 10, Figure 64
Phase 2	1.11 MMBO 0.52 BCF	\$ 7.94 MM	\$ 3.87 MM	Table 11, Figure 65
Total	3.14 MMBO 2.60 BCF	\$33.60 MM	\$22.60 MM	

The "seven well drilling" case when compared to the "non-drilling" case is projected to recover 0.67 MMBO and 0.62 BCF additional reserves as a result of improved areal recovery and new well response based on the incremental forecasts and economics. Actual waterflood response and economics that exceed the current forecasts, however, may support future additional drilling. As shown in the costs provided by Yates, the cost of drilling seven new wells is 45 percent of the estimated total cost of the entire
project. The need for these new wells plus additional wells should be carefully evaluated for cost effectiveness coupled with evaluation of waterflood response. Additional measures to reduce or delay costs and possibly improve incremental recovery by lowering the economic limit could include the following:

- Delay conversion of some of the injection wells in Phase 2.
- Delay drilling of new wells.

2 74 A

- Use existing low-pressure transfer pumps at the beginning of the waterflood until injection wells pressure up.
- Reuse high-pressure pumps from the Sawbuck pilot when necessary.

7.0 QUALIFICATIONS AND LIMITATIONS

7.1 Independence and conflict of Interest

This report has been prepared by The Scotia Group. Scotia is an independent oil and gas advisory firm headquartered in Dallas, Texas. All evaluations performed by Scotia are strictly fee-based and Scotia has not and will not receive any benefit, which may be regarded as affecting its ability to render an unbiased opinion on the petroleum interests held by Yates.

7.2 Use of this Report

This report has been prepared exclusively for Yates and should not be duplicated or distributed to any third parties without the express written consent of Yates and the Scotia Group, except as required by law.

7.3 Available Data

This study was based on data supplied by Yates, on public domain information and on nonproprietary data from in-house files. The supplied data was reviewed for reasonableness from a technical perspective. As is common in oil field situations, basic physical measurements taken over time cannot be verified independently in retrospect. As such, beyond the application of normal professional judgment, such data must be accepted as representative. While we are not aware of any falsification of records or data pertinent to the results of this study, Scotia does not warrant the accuracy of the data and accepts no liability for any losses from actions based upon reliance on data, which is subsequently shown to be falsified or erroneous.

7.4 Professional Qualifications

Scotia personnel who prepared this report are degreed professionals with the appropriate qualifications and experience to complete the project brief. Scotia and its staff do not claim expertise in accounting, legal and environmental matters, and opinions on such matters do not form part of this report.

7.5 Reserves Estimates

Reserves estimates were made using extrapolation of performance trends and other accepted engineering methods as described within. The estimates were made in accordance with the 1997 oil and gas reserves definitions as endorsed by the SPE. The reserves definitions allow for changes in category as information is gathered and as producing history is accumulated. As such, the volume and class of reserves is expected to change and be revised with time.

Net oil and gas reserves are those estimated quantities of crude oil, natural gas and natural gas liquids attributed to the evaluated interests (after deduction of applicable royalties and overriding royalties) that are considered to be economically recoverable under the economic conditions modeled. It is implicit that good oil field practices are maintained in order to effect recovery of the estimated reserves.

7.6 Future Net Revenue Estimates

Future net revenue estimates are based upon the estimated future production profile and future prices for oil and gas adjusted for capital expenditure, operating costs, interest reversions and severance and ad valorem taxes, but without consideration of any federal income tax liability or any other types of encumbrance that might exist against the evaluated interests. The estimates do not include the salvage value for the leases or the cost of abandonment and site restoration. The present worth of future net revenues reflects the application of certain discount factors and does not represent an estimate of fair market value for the properties.

Future net revenue and present worth of future net revenue estimates are representative of the pricing scenarios that have been modeled. Such estimates should not be construed as exact quantities. Future production rates, product prices, operating costs and revenues from the sale of petroleum products could differ from the estimates presented.

7.7 Conclusions

ee ei te

Scotia cannot attest to the validity or correctness of the ownership information provided by Yates and such an opinion does not form a part of this report. Cost parameters and operating cost data were supplied by Yates. This report is restricted to an independent engineering estimate of reserves and the future estimated cash flows. It is not the intention or purpose of this report to comment on title, ownership or legal encumbrances, and

commercial or business relationships or sunk costs involved in acquiring the properties.

7.8 Field Visit and Inspection

No field visit to the properties, which are the subject of this report, has been made. As is customary in this type of evaluation, a field visit was not considered necessary. As such, Scotia is not in a position to comment on the state of operations or that such operations are in compliance with any state or federal regulations that may apply to them.

أنار بالمهافع وأكورات المراجا بمزير بالجاج بترشهم فالمحاج كالمراجع فالمحروف فالرزيان فالترج بأنها بافراوين وراوي

7.9 Liability Waiver

This report has been prepared on a best efforts basis to address the requirement of the brief specified by Yates. The results and conclusions represent informed professional judgments based on the data available and time frame allowed to perform this work. No warranty is implied or expressed that actual results will conform with these estimates. Scotia accepts no liability for actions or losses derived from reliance on this report or the data on which it was based.

REFERENCES

- 1. Reservoir Evaluation Study, Canyon Dolomite, Dagger Draw Field Study Area, Eddy County, New Mexico (April, 1998)
- Dagger Draw Field Material Balance Valuation of OOIP (May, 1998)
- 3. Flow Unit Identification & Characterization of the Northern Dagger Draw Field, Eddy County, New Mexico (February, 1999)
- 4. North Pilot Water Injection Recommendation, Dagger Draw Field, Eddy County, New Mexico (April, 1999)
 - 5. Simulation Study of the North Dagger Draw Field, Pilot Water Injection (August, 2001)
 - 6. Geological Analysis of the Cisco Canyon Dolomite in the Conoco, Inc. Dagger Draw No. 12; North Dagger Draw Field; Eddy County, New Mexico; Reservoirs, Inc. (December, 1992)
 - Bergan, Gail R.: "Facies Analysis of the Dagger Draw No. 12, Barbara Federal No. 12 and the Saguaro AGS Federal Com No. 8, Dagger Draw Field; Eddy County, New Mexico," (August, 1994)
 - Bergan, Gail R.: "Facies Analysis, Reservoir Evaluation and Sequence Stratigraphic Interpretation of the Nearburg Producing Co. Dagger Draw 31 Federal Com No. 7, Dagger Draw Field; Eddy County, New Mexico (January, 1996)
 - Tiinker, Scott W.; Zahm, Laura C.; and Caldwell, Donald H.: "Sequence Stratigraphy and 3D Modeling of a Pennsylvanian Ramp Reservoir: Canyon and Cisco Formations, South Dagger Draw Field, New Mexico, USA," GCSSEPM Conf. (2001)

- Kerans, Charles and Tinker, Scott W.: "Sequence Stratigraphy and Characterization of Carbonate Reservoirs," SEPM Short Course Notes No. 40 (1997)
- Martin, A. J.; Solomon, S. T. and Hartmann, D. J.: "Characterization of Petrophysical Flow Units in Carbonate Reservoirs," AAPG Bulletin V. 81 (May 1997) P. 734 - 759
- 12. Willhite, G. Paul: Waterflooding, Textbook Series, SPE, Richardson, Texas (1986) **3**.
- Craig, F. F. Jr.: The Reservoir Engineering Aspects of Waterflooding, Monograph Series, SPE, Richardson, Texas (1971)
 3.
- 14. Stiles, L. H.H "Optimizing Waterflood Recovery in a Mature Waterflood, the Fullerton Clearfork Unit," paper SPE 6198 presented at the 1976 SPE Annual Technical Conference and Exhibition, New Orleans, Oct. 3-6.
- George, C. J. and Stiles, L. H.: "Improved Techniques for Evaluating Carbonate Waterfloods in West Texas," JPT (Sept. 1989) 1547-53.
- Barber, A. H. et. al.: "Infill Drilling to Increase Reserves—Actual Experience in Fields in Texas, Oklahoma and Illinois," JPT (Aug. 1983) 1530-38.
- Barbe, J. A. and Schnoebelen, D. H.: "Quantitative Analysis of Infill Performance: Robertson Clearfork Unit," JPT (Dec. 1987) 1593-1601; Trans., AIME, 283.
- 18. Wu, C. H., Laughlin, B. A. and Jardon, M.: "Infill Drilling Enhances Waterflood Recovery," JPT (Oct. 1989) 1088-95.
- Ehrlich, Robert: "Relative Permeability Characteristics of Vugular Cores – Their Measurement and Significance,: paper SPE 3553 presented at the 1971 SPE Annual Technical Conference and Exhibition, New Orleans, Oct. 3-6.

- 20. Cox, D. O.: "Waterflood Performance Estimation With a Layered Streamtube Model," paper SPE 16489 presented at the 1987 SPE Petroleum Industry Applications of Microcomputers, Del Lago, Montgomery, Texas, June 23-26.
- Lucia, F. J., Kerans, Charles and Senger, R. K.: "Defining Flow Units in Dolomitized Carbonate-Ramp Reservoirs," paper SPE 24702 presented at the 1992 SPE Annual Technical Conference and Exhibition, Washington, DC, Oct. 4-7.
- 22. deZabala, E. F., and Kamath, J.: :Laboratory Evaluation of Waterflood Behavior of Vugular Carbonates," paper SPE 30780 presented at the 1995 SPE Annual Technical Conference and Exhibition, Dallas, Oct. 22-25.
- 23. Dehghani, Kaveh, Edwards, Kelly A. and Harris, P. M.: "Modeling of Waterflood in a Vuggy Carbonate Reservoir," paper SPE 38910 presented at the 1997 SPE Annual Technical Conference and Exhibition, San Antonio, Oct. 5-8.
 - Davies, D. K. and Vessell, R. K.: "Identification and Distribution of Hydraulic Flow Units in a Heterogeneous Carbonate Reservoir: North Robertson Unit, West Texas," paper SPE 35183 presented at the 1996 SPE Permian Basin Oil and Gas Conference, Midland, March 27-29.
 - Davies, D. K. and Vessell, R. K.: "Flow Unit Characterization of a Shallow Shelf Carbonate Reservoir: North Robertson Unit, West Texas," paper SPE/DOE 35433 presented at the 1996 SPE/DOE Tenth Symposium on Improved Oil Recovery, Tulsa, OK, April 21-24.

Summary Table Well Recommendations Dagger Draw Field

	North edge of unit: Good unneefed lower porceity	North edge of unit; Good unperf d lower porosity; High cum. oil & water	North edge of unit; High cum. water; High current rate	North edge of unit; High current rate	High water - Yates recommended injector	East edge of unit; Perfd in middle section only; Unper'd porosity in upper & lower section	High Current Rate; East edge of unit	High Current Rate: Very high cum. water	Marginally high current rate; Perfd in upper section only; Good	unperra porosity in midale & lower section Low Cum Overall low calculated porosity, but decent unperf d porosity in middle section.	Low cum Perf'd intervals show relatively high calculated porosity.	East edge of unit; Basal porosity not perfd.	North Edge of unit - Not perfd in Canyon. Need to add Canyon perfs to	receive sweep. Proposed injector one location south. North edge of unit	North edge - Relatively high rate	North edge of unit: Need location to receive sweep Relatively high water producer: Extension, nerfol with high overall	calculated porosity.	Temp. Abn High cum. oil & water; Very small perfid interval; Need to	reactivate & add perts to receive sweep. Last prod 2/02. High overall calculated porosity. Yates recommended	injector.	Temp. Abn Good calculated porosity in middle & lower section, but lower section is not beri'd.	This location is surrounded by 3 recommended injectors. Once the ability to mobilize oil is established, this location should be drilled to	Temp. Abn Perfd in middle section only: Need explore adding perfs in a substantial section of high calculated porosity in basal portion.	High current rate.	Good calculated porosity in perfd intervals.	High current rate. Could add perfs in lower section. Yates recommended injector.	This Incetion is adjacent to 2 recommended injectors. Once the ability	to mobilize oil is established, this location should be drilled to receive the summer	us sweep. Low cum Extensivley perfd in upper section, but could add perfs in lower.
	BPM) Recommendation	0 Produce	5,934 Produce	4,525 Produce	4,296 Possible Injector	8,772 Produce	872 Produce	18,579 Produce	1,574 Produce	0 Injector	274 Injector	584 Produce	Recomplete as	producer 428 Produce	268 Produce	Drill as producer Descible injector		Reactivate as	Producer	- - - -	Injector	Potential producer	Injector	522 Produce	Reactivate as producer	410 Produce	Potential producer		124 Injector
urrent Rate	as (Mcf/M) Water (হহৰ	336	3,714	1,894	442	507	1,645	962	702	ю	1,655	066		981	287									2,140		639			268
Ū	Oil (BPM) Ga	50	648	295	26	23	376	355	266	0	191	312		186	249									428		275			64
Ľ	ater (MBW)	1,092	1,290	806	1,701	571	129	2,510	855	290	124	146		104	133	1 184	5	1,006	302		362		303	167	422	252			56
um. Productio	ias (MMcf) W 191	419	757	638	222	121	122	298	183	44	287	219		369	278	207	100	347	361		159		210	364	319	241			93
o	Oil (MBO) G	266	167	313	75	66	55	138	88	31	92	11		181	61	ŝ	77	229	206		65		31	150	215	160			30
	n Well Name Bovd X Com #1	Aparejo 'APA' State #3	Aparejo 'APA' State #5	Aparejo 'APA' State #1 Not Drilled	Aparejo 'APA' State #2 Not Drilled	Boyd X State Com #12	Amole 'AMM' State #4	Not Drilled Amole 'AMM' State #2 Not Drilled	Amole 'AMM' State #1	Amole 'AMM' State #3	Boyd X State Com #10	Boyd X State Com #11	Julie #3	Julie #2	Jenny Com #2	Not Drilled		Barbara Federal #3	Dagger Draw A #1	0	Julie Com #1	Not Drilled	Barbara Federal #7	Barbara 17 SW Co #17	Barbara Federal #4	Barbara 17 SW Co #10	Not Drilled		Barbara 17 SE Co #18
	Locatior 16A	16B	16C	16D 16E	16F 16G	16H	161 161	<u>8</u> ž	16M	16N	160	16P	17A	17B	170	<u>6</u>	1	17F	17G		171	171	L71	17K	17L	17M	N71 071)	17P

Page 1

					Summary T Weli Recomme Dagger Draw	able ndations Field	
Well Name	Oil (MBO)	Cum. Produc Gas (MMcf)	tion Water (MBW)	Oil (BPM)	Current Rate Gas (Mcf/M) W	ater (BPM) Recommendation	Notes
Conoco Com #1 Not Drilled Not Drilled Not Drilled Not Drilled	259	425	414	1,009	4,225	1,377 Produce	North Edge - High current rate
Barbara 18 NW Federal #16	0	0	7			Reactivate as producer	Low cum TA - No wells between this well and edge of unit.
Conoco Com #9	134	364	605			Reactivate as	TA - No wells between this well and edge of unit; Could add perfs in
Barbara Federal #1 Not Drilled	272	734	2,575			produce	uppermost section. High cum. oil & water. Yates recommended injector.
Barbara Federal #6	292	962	1,407			Reactivate as	High cum. oil & water. TA. Could add perfs in lower high porosity
Barbara Federal #2	158	540	673			producer Injector	section. TA. Long section of high calculated porosity in middle & lower portion. Yates recommended injector.
Lehman Com #11	289	979 A 67	321	261 33	1,984 2 064	1,579 Produce	West Edge - High current rate
Lenman Com # Not Drilled	07	134	917	36	2,004	III Produce	west Eoge; high gas rate
Barbara 18 SE Federal #12	177	430	335	464	2,191	1,111 Produce	High current rate; Lower porosity not all perf'd.
Barbara 18 SE Federal #8	260	527	856	608	2,677	857	High current rate; High cum. oil; Extensively perfd.
Ross EG Federal #5	78	166	552	2	506	3,684 Injector	Locally high GOR; Good lower porosity not perfd
Ross EG Federal #2	331	685	2,017	52	719	2,368 Produce	High cum. oil & very high cum. water; Extensively perf'd.
Lodewick A #1	646	1,454	2,415	50	724	1,958 Produce	High cum oil & very high cum water; Highest porosity in lower section, but could add perfs in middle section as well.
Lodewick A #3	112	717	196	0	1,163	0 Produce	West edge of unit; Currently all gas production; Extensively perfd.
Lodewick A Com #2	156	569	241	0	869	0 Produce	West edge of unit; Gas well; Low current liquid production; high basal

Location 18A 18A 18B 18C 18C 18C 18E 18E

18G

18K

Lodewick A #3	112	717	196	0	1,163	0 Produce	West edge of unit; Currently all gas production; Extensively perf.d.
Lodewick A Com #2	156	569	241	0	698	0 Produce	West edge of unit; Gas well; Low current liquid production; high basal
							porosity not perfid.
Not Drilled						Drill as producer	Undrilled location near edge of unit in high volume area.
Parish IV Com #4	267	567	336	55	646	872 Produce	High cum. oil - Yates recommended injector.
Ross EG Federal #12	32	109	191	114	464	1,078 Injector	Low volumes; Add perfs in lowest portion of section.
Ross EG Federal #9	28	109	572	-	518	3,802 Injector	Locally high GOR; phi-h≕79.8; Good lower porosity; Add perfs in
							lowest portion of section.
Parish IV Deep C #1	287	413	2,066	27	227	1,181 Produce	High cum. oil & water; Extensively perfd.
Not Drilled						Drill as Producer	Adjacent to high cum. oil area and has several recommended injectors
							to the east.
Dagger Draw 19 S #4	791	1,988	2,843			Produce	West edge of unit;high cum. oil, water & gas
Dagger Draw 19 S #10	295	981	253	89	2,453	911 Produce	West edge of unit; High cum. oil
Dagger Draw 19 S #14	95	304	128	40	1,065	642 Injector	Good porosity in lower section; extensively perfd.
Chamiza AJC Com #1	185	556	463	81	1,176	737 Produce; 2nd Stage	Similar to 19N with slightly better porosity in upper section. Yates
						Injector	recommended injector. Produce until breakthrough observed, then
							convert to injection.
Parish IV Com #5	183	575	689	92	1,248	1,511 Produce; 2nd Stage	Similar to 190 & 19N Few perfs in upper section; Produce until
						Injector	breakthrough observed, then convert to injection.

19F 19H 19H

19D 19D

181 180 198 198 198 198 198 198 198

ēğ

191 191 190 190

Page 2

ł

19P

	Notes High current rate: Good porosity in upper & lower section with middle	of lesser quality; Only upper is perfd.	High current rate; Little porosity in upper section & no perfs; Avg porosity in middle section is perfd; Could add perfs in next lobe deeper.	High current rate	Marginalty hi cum. oil; high cum. water; Basal poorosity not perf'd; Yates recommended injector.	Low volumes; High water relative to oil; Porosity in lower section only, & this section not perf.d	Low volumes & high water; Undrilled locations north & south. Yates recommended injector.	High current rate; Thick section of high porosity is perf.d. Middle & lower section shows average to good porosity, but not perf.d.	Low rate: Low volumes: Mapped as high GOR, but good candidate since rate is quite low; Undrilled locations east & west; Yates recommended injector.		High cum. water & high GOR; Low overall calculated porosity.	Low oil with relatively high water; Lowest high porosity lobe is unperfd.	High cum. water; Yates recommended injector.	Perfd in upper section with good porosity, Basal porosity not perfd.	High cum. oil & GOR. Yates recommended injector.	Hi cum. oil & water; Middle section porosity not perfd.	East edge of unit; High current rate Horizontal	High current rate; High cum. oil.	High current rate; Recent well - Horizontal	High current rate; High cum. oil.; Thick section of basal porosity not perfd.	High current rate; High cum. oil.; All porosity is in lower section.		TA; Low volumes with high water; Could sweep to 21B updip to north or 210 updip to south. Yates recommended injector.	Hink current rate. Recent welt: East edue of unit			High cum. oil & water; Uppermost high porosity not perf'd; Yates recommended injector.	High current rate; High cum, oil; recent well; Good middle section porosity not perf.d.	Moderate current rate; Extensive high porosity section in middle & Invoice section via section	East edge of unit; High cum. oil; Good porosity in lower section not perfd.
	er (BPM) Recommendation 1.085 Produce		1,749 Produce	3,396 Produce	4,018 Produce	Produce	329 Injector	954 Produce	Injector		1,454 Produce	2,425 Injector	30 Injector	928 Produce	260 Produce	4,158 Produce	6,349 Produce	1,210 Produce	Produce	2,121 Produce	2,052 Produce	4,634	Injector	837 Broduce			2,587 Produce	1,289 Produce	5,252 Produce	3,728 Produce
Current Rate	3as (Mcf/M) Wat 1,944		974	578	632		239	1,746			1,210	393	0	1,463	901	819	7,193	2,451		1,070	3,397	7,062		1 949			378	4,481	527	474
-	Oil (BPM) (218		232	73	121		59	236			116	114	15	211	48	250	3,397	562		180	635	1,773		C7C	i i		49	448	251	68
Ę	ater (MBW) 227		584	896	1,151	443	575	303	75		1,443	581	1,158	279	450	1,394	53	441		612	722	107	552	đ	2		1,117	441	693	1,492
um. Productio	as (MMcf) W 531		254	235	380	83	213	620	105		418	116	188	490	1,124	664	60	969		537	705	458	55	1 1	2		517	1,031	163	847
ō	Oil (MBO) G 199		142	159	233	27	38	184	17		134	60	96	96	247	294	25	563		453	438	133	ΰ	P	r		245	600	112	580
	Nell Name Hooper Amp Com #4	Not Drilled	Ross EG Federal #6	Ross EG Federal #3	Ross EG Federal #4	Ross EG Federal #7	Ross EG Federal #10	Hooper Amp Com #3	Ross EG Federal #13	Not Drilled	Ross EG Federal #1	Ross EG Federal #8	Patriot AIZ Com #1	Patriot AIZ Com #4	Patriot AIZ Com #2	Patriot AIZ Com #3	Rodke ADY Com #1-H	Ross EG Federal #14	Not Drilled	Vann APD #1	Hooper Amp #2	Patriot AIZ #11-H	Osage #1	Not Urlifed Datrict AI7 #6_H	Not Drilled	Not Driffed	Hooper Amp #1	Patriot AIZ #10-H	Patriot AIZ #5	Cutter APC #1
	Location 20A	20B	20 C	20D	20E	20F	20 G	20H	201	207	20K	20L	20M	20N	200	20P	21A	21B	21C	21D	21E	21F	21G		21J	21L	21M	21N	210	21P

						Well Recomr Dagger Dr	nendations aw Field		
cation	Well Name Not Drilled	Oil (MBO)	Cum. Product Gas (MMcf)	tion Water (MBW)	Oil (BPM)	Current Rate Gas (Mcf/M)	Water (BPM) Recomm	endation	Notes
	Hinkle ALD #2	516	1,008	1,389	165	1,141	4,536 Produce		High cum. oil & water; Moderate basal porosity not perf.d. Phi-h = 57.0
	Ross IZ #3	11	97	58	83	1,607	1,216 Injector		Low volumes
_	Lorene Ann #1	260	514	111	14	162	89 Produce		High cum. oil; Phi-h = 77.8; Several lower lobes of high porosity not perf.d.
	Ross I2 #2	84	458	228	170	2,062	2,802 Produce		High current rate & GOR; Phi-h = 72.8; Several lower lobes of high porosity not perf'd.
	Ross IZ Com #1	533	606	362	51	1,239	735 Produce		High cum. oil & current GOR; Abundant lower porosity not perf d.
	Hinkle ALD #1	283	306	262	39	222	292 Produce		High cum. oil; Abundant lower porosity not perfd.
	Hinkle ALD #3-H	159	863	380	234	3,717	5,264 Produce		East edge of unit; Horizontal; Newer well showing high cum. oil & GOR relative to age
	Tackitt AOT #1	335	1,093	1,085	416	1,993	893 Produce		east edge of unit; High cum. oil & water; abundant unperf d basal porosity.
	Tackitt AOT #2	265	1,277	1,475	301	2,485	6,364 Produce		High cum. oil; High current rate; Abundant unperf d basal porosity.
	State K #3-H	785	1,895	835	144	1,599	1,267 Produce		Horizontal; High cum. oil & gas; Abundant unperf dmiddle & lower porosity.
	Not Drilled						Produce		New well; Minimal calculated porosity
	Not Drilled						Drill as proc	ducer	South edge of unit; Drill location to prevent seeping oil off unit.
	State K #1	100	222	117	1,023	1,001	2,496 Produce		South edge of unit; High current rate; Ample unperf'd porosity in middle section.
	Tackitt AOT #3	447	1,129	656	338	3,559	2,293 Produce		South edge of unit; High current rate; Abundant unperf d high porosity in middle & lower section.
	Not Drilled						Drill as proc	ducer	South edge of unit; Drill location to prevent seeping oil off unit.
	Binger AKU #4-H	7	60	102	407	1,463	4,277 Produce		Horizontal; High current rate; No log data loaded
	Binger AKU #1	0//	1,087	731	168	2,205	1,738 Produce		High cum. oil; Ample section of unperf d porosity in middle & lower section.
	Voight AJD Com #3	347	679	1,098	173	1,673	5,526 Produce		High cum. oil; High current rate; No log data loaded
_	Voight AJD Com #1	275	583	638	64	606	919 Produce		High cum. oil; Only uppermost zone perfd; Several porous lobes
									beneath abbear untouched

08C	Roce 17 #3	Ť	07	a 7	53	1 607	1 016 Injector	
28D	Lorene Ann #1	260	514	111	4	162	89 Produce	High cum. oil; Phi-h = 77.8; Several lower lobes of high porosity not perf.d.
28E	Ross IZ #2	84	458	228	170	2,082	2,802 Produce	High current rate & GOR; Phi-h = 72.8; Several lower lobes of high
28F	Ross IZ Com #1	533	606	362	51	1,239	735 Produce	porosity not perro. High cum. oil & current GOR; Abundant lower porosity not perfd.
28 G	Hinkle ALD #1	283	306	262	39	222	292 Produce	High cum. oil; Abundant lower porosity not perfd.
28H	Hinkle ALD #3-H	159	863	380	234	3,717	5,264 Produce	East edge of unit; Horizontal; Newer well showing high cum. oil & GOR
281	Tackitt AOT #1	335	1,093	1,085	416	1,993	893 Produce	relative to age. East edge of unit; High cum, oil & water; abundant unperf d basal
28J	Tackitt AOT #2	265	1,277	1,475	301	2,485	6.364 Produce	porosity. High cum. oil: High current rate: Abundant unperf'd basal porosity.
28K	State K #3-H	785	1,895	835	144	1,599	1,267 Produce	Horizontal; High cum. oil & gas; Abundant unperfd middle & lower
ē							-	porosity.
28L 28M	Not Driled Not Driled						Produce Drill as producer	New well; Minimal calculated porosity South odde of unit: Drill Location to prevent coopied oil off unit
28N	State K#1	100	222	117	1,023	1,001	2,496 Produce	South edge of unit; High current rate; Ample unperfd porosity in
		!						middle section.
280	Tackitt AOT #3	447	1,129	656	338	3,559	2,293 Produce	South edge of unit; High current rate; Abundant unperf high porosity in middle & lower section.
28P	Not Drilled						Drill as producer	South edge of unit, Drill location to prevent seeping oil off unit.
29A	Binger AKU #4-H	7	60	102	407	1,483	4,277 Produce	Horizontal; High current rate; No log data loaded
29B	Binger AKU #1	0//	1,087	731	168	2,205	1,738 Produce	High cum. oil; Ample section of unperf d porosity in middle & lower section
29 C	Voight AJD Com #3	347	679	1.098	173	1,673	5,526 Produce	High cum. oil: High current rate: No log data loaded
29D	Voight AJD Com #1	275	583	638	64	606	919 Produce	High cum. oil; Only uppermost zone perf'd; Several porous lobes beneath appeart untouched
29E	Voight AJD Com #2	285	852	1,043	148	1,322	3,139 Produce	High cum. oil, Abundant unperfid basal porosity; Yates recommended
70F	Asnden 40H Federal #3	204	553	313	979	1 061	1 678 Produce	injector. Hinh current rate: Ahindant unnerfid norosity in middle & lower
5		5	2	2	2			
29 G	Binger AKU #2	285	665	269	121	1,023	1,904 Produce	High cum. oil; Only a small interval of perfs in middle section; Large section of unperfd porosity in upper & lower section.
29H	Not Driled							BHL for 29A horizontal.
291	Boyd X State Com #5	195	428	143	94	1,075	1,103 Produce	Lower volumes than surrounding wells; Abundant unperf'd basal porosity; Adjacent to recommended injector; monitor for breakthrough
29J	Boyd X State #3	190	269	521	0	171	0 Injector	Low volume well between 2 high cum. areas; Ample unperf of lower
29K	Bovd X State Com #4	157	307	577	120	615	2.345 Produce	porosity. Lower volumes than surrounding wells: Abundant unperfed porosity in
						• - -		middle section, Adjacent to recommended injector, monitor for breakthrough
29L	Boyd X State Com #2	345	069	2,957			Produce	High cum. oil with very little calculated porosity.
29M	Aspden AOH Federal #1	104	168	80	37	342	575 Produce	South edge of unit; Perf d only in uppermost section
29N	Aspden AOH Federal #2	275	526	229			Produce	South edge of unit; Perfd only in uppermost section; Very little calculated porosity in middle & lower section; High current rate & high
								cum. oil.
290	Boyd X State #6	405	756	334	105	710	564 Produce	South edge of unit; High cum. oil; Very small perfd interval in uppermost section only; Very ample section of high porosity in middle
29P	Not Drilled					Page 4	Drill as producer	section. South edge of unit; Drill location to captrue swept oil on unit.

Summary Table

Not Drilled 29P Summary Table Well Recommendations Dagger Draw Field

ocation	Neil Name	C Oil (MBO) G	um. Production ias (MMcf) Wate	er (MBW)	Oil (BPM)	Current Rate Gas (Mcf/M)	Water (BPM) Recomm	endation	Notes
	Dagger Draw 30 N #15	57	243	124	11	1,092	635 Injector		Moderately high cum. oil
	Dagger Draw 30 N #5	121	826	2,063			Reactivate producer	as	High cum. water; Ample unperfd lower porosity
	Not Drilled						Drill as Pro	ducer	Undrilled location; Could drill location to produce & observe until broadshound schemed than convert to injection
	Dagger Draw 30 N #1	469	1.435	3.236			Produce		breakingougn acriteved, men convent to injection. West edge of unit: High cum, oil: No log data loaded.
	Dagger Draw 30 N #9	220	576	338	58	1,198	1,382 Produce		West edge of unit; extensively perfd
	Dagger Draw 30 N #13	89	494	287	84	1,780	1,244 Injector		Extensivley perfid in good porosity in middle section, but could add
	Dagger Draw 30 N #12	200	634	248	108	1,424	984 Produce		perfs in uppermost & lowermost section. High current total liquid rate; Perfd In upper section only; Abundant
	Dagger Draw 30 N #17	85	292	201	9	681	923 Injector		lower porosity unperf.d. Yates recommended injector. Lower cums.: Limited current fluid rate; Abundant lower porosity
	Dadder Draw #2	53	203	527			Injector		unperfd; phi-h = 51.2 Lower cums : Extensively perfd, phi-h = 53.0
	Dagger Draw 30 S #8	329	1,327	1,937	98	2,790	3,603 Produce		High cum. oil; Ample unperf'd porosity in uppermost & lowermost section: whi h = 75.8
	Dagger ZW #1	250	1,560	1,484	145	1,633	2,605 Produce		High cum oil & water, Could add perfs in lower section; Continue to produce until breathrough is observed, then convert to injection;
	Dagger ZW #3	108	403	413	79	1,747	4,335 Produce		r ares recommended injector. West edge of unit: Low cums.; Extensively prfd.
	Pincushion AHN #1	214	584	551	89	979	2,454 Produce		SW edge of unit; Little calculated porosity, Moderate cums.
	Pincushion AHN #3	112	438	676	13	358	1,111 Produce		South edge of unit; lower cums.; Could add perfs in lower section.
	Dagger Draw 30 S #11	565	956	411	18	1,087	2,025 Produce		South edge of unit; High cum. oil; Abundant unperfd lower porosity
	Dagger Draw 30 S #16	141	449	241	0	e	0 Produce		South edge of unit; Lower cums.; Ample unperfd lower porosity.
	Total Total for Proposed Producers	24,176	60,092	79,310	21,432 18,195	130,232 109,589	197,755 171,562		

Waterflood Summary by Injection Pattern without Drilling Inj = 2,500 BWPD with Volumetrics based on 4% cut-off

						time to			Original	Cumulative	Cumulative
		porositv-	average			breakthrough,	Np 10 years,	Secondary	Oil-in-Place,	Production,	Recovery to
Dattern	acres	acre-ft	porosity	thickness. ft	area sweed	vears	MBO	Recovery, %	MBO	MBO	date, %
180	15437	1128 57	612%	119.5	62.00%	1.15	177.3	4.6	3,861.4	596.3	15.4
19a	126.81	835 44	9.28%	12	100.00%	0.85	202.4	7.1	2,858.5	537.2	18.8
19h	79.55	438.06	8.34%	99	100.00%	0.45	125.7	8.4	1,498.8	282.2	18.8
191	85.09	339.91	8.32%	48	100.00%	0.35	103.6	8.9	1,163.0	309.3	26.6
19n	171.32	1878.05	8.88%	123.5	56.64%	1.92	229.2	3.6	6,425.8	752.2	11.7
20g	124.12	614.35	6.60%	75	39.94%	0.63	78.8	3.7	2,102.0	202.2	9.6
201	137.44	540.51	9.48%	41.5	46.50%	0.55	80.5	4.4	1,849.4	465.5	25.2
20k	115.34	475.19	25.75%	16	66.16%	0.48	0.79	6.0	1,625.9	323.0	19.9
20m	102.46	625.59	20.70%	29.5	100.00%	0.64	164.5	7.7	2,140.5	383.1	17.9
30.9	114.46	579.99	9.74%	52	100.00%	0.59	155.4	7.8	1,984.4	335.7	16.9
30F	166.19	2400.99	8.63%	167.5	74.70%	2.45	313.8	3.8	8,215.0	680.7	8.3
30h	71.73	502.03	7.25%	96.5	100.00%	0.51	139.4	8.1	1,717.7	327.4	19.1
30	124.04	1421.82	10.37%	110.5	100.00%	1.45	282.7	5.8	4,864.8	627.5	12.9
Phase 1	1.573						2,150.4	5.3	40,307.0	5,822.4	14.4
16n	112.37	320.84	11.90%	24	57.32%	0.33	59.6	5.4	1,097.8	257.8	23.5
160	112.6	555.33	6.95%	12	54.13%	0.57	88.5	4.7	1,900.1	431.7	22.7
17h	140.51	743.39	6.30%	84	37.46%	0.76	82.9	3.3	2,543.5	266.2	10.5
171	136.7	627.85	6.51%	70.5	23.69%	0.64	, 49.3	2.3	2,148.2	240.7	11.2
17n	133.65	590.72	6.80%	65	32.10%	0.60	61.0	3.0	2,021.2	237.7	11.8
210	159.53	974.27	7.93%	<i>LL</i>	100.00%	0.99	205.3	6.2	3,333.5	370.3	11.1
280	174.65	1579	9.52%	95	100.00%	1.61	270.0	5.0	5,402.6	1,147.0	21.2
291	172.12	1148.38	10.94%	61	77.55%	1.17	191.7	4.9	3,929.2	831.1	21.2
Phase 2	1,142						1,008.3	4.5	22,375.9	3,782.6	16.9

Table 2

...

2

Υ,

Inj = 2,500 BWPD with Volumetrics based on 4% cut-off by Injection Pattern with Drilling Waterflood Summary

						time to			Original	Cumulative	Cumulative
		porosity-	average			breakthrough,	Np 10 years,	Secondary	Oil-in-Place,	Production,	Recovery to
Pattern	acres	acre-ft	porosity	thickness, ft	area sweep	years	MBO	Recovery, %	MBO	MBO	date, %
18k	154.32	1128.57	6.12%	119.5	62.00%	1.15	184.6	4.8	3,861.4	596.3	15.4
19a	126.81	835.44	9.28%	11	100.00%	0.85	212.0	7.4	2,858.5	537.2	18.8
19h	79.55	438.06	8.34%	66	100.00%	0.45	130.0	8.7	1,498.8	282.2	18.8
19i	85.09	339.91	8.32%	48	100.00%	0.35	106.1	9.1	1,163.0	309.3	26.6
19n	171.32	1878.05	8.88%	123.5	100.00%	1.92	354.9	5.5	6,425.8	752.2	11.7
20g	124.12	614.35	6.60%	75	39.94%	0.63	80.5	3.8	2,102.0	202.2	9.6
20i	137.44	540.51	9.48%	41.5	46.50%	0.55	82.3	4.4	1,849.4	465.5	25.2
20k	115.34	475.19	25.75%	16	66.16%	0.48	99.2	6.1	1,625.9	323.0	19.9
20m	102.46	625.59	20.70%	29.5	100.00%	0.64	170.9	8.0	2,140.5	383.1	17.9
30a	114.46	579.99	9.74%	52	100.00%	0.59	161.3	8.1	1,984.4	335.7	16,9
30f	166.19	2400.99	8.63%	167.5	100.00%	2.45	398.5	4.9	8,215.0	680.7	8.3
30h	71.73	502.03	7.25%	96.5	100.00%	0.51	144.5	8.4	1,717.7	327.4	19.1
30i	124.04	1421.82	10.37%	110.5	100.00%	1.45	300.6	6.2	4,864.8	627.5	12.9
Phase 1	1,573						2,425.4	6.0	40,307.0	5,822.4	14.4
16n	112.37	320.84	11.90%	24	100.00%	0.33	96.8	8.8	1,097.8	257.8	23.5
160	112.6	555.33	6.95%	71	100.00%	0.57	147.9	7.8	1,900.1	431.7	22.7
17h	140.51	743.39	6.30%	84	59.98%	0.76	123.6	4.9	2,543.5	266.2	10.5
17j	136.7	627.85	6.51%	70.5	67.55%	0.64	. 119.3	5.6	2,148.2	240.7	11.2
$17\tilde{p}$	133.65	590.72	6.80%	65	82.39%	09.0	133.0	6.6	2,021.2	237.7	11.8
21g	159.53	974.27	7.93%	77	100.00%	0.99	217.6	6.5	3,333.5	370.3	11.1
28c	174.65	1579	9.52%	95	100.00%	1.61	289.2	5.4	5,402.6	1,147.0	21.2
29j	172.12	1148.38	10.94%	61	100.00%	1.17	240.7	6.1	3,929.2	831.1	21.2
Phase 2	1,142						1,368.1	6.1	22,375.9	3,782.6	16.9

.

Table 3

í

*

Annual Projected Volumes Secondary Recovery without Drilling Case

....

		Ph	ase 1				Ph	ase 2	
	Q oil,Total bbl/day	Q oil,Total bbl/yr	Q gasl,Total Mcf/yr	Q wtr,Total bbl/yr		Q oil,Total bbl/day	Q oil,Total bbl/yr	Q gasi,Total Mcf/yr	Q wtr,Total bbl/yr
1	116	21,031	4,119	62,418	1	0	0	0	0
2	1,569	572,786	112,191	4,443,040	2	0	0	<u>\</u> 0	0
3	1,216	443,664	86,900	6,510,920	3	47	17,033	່ 3,336	78,685
4	1,053	384,212	75,255	7,472,753	4	792	289,183	56,642	, 2,769,533
5	664	242,268	47,453	7,684,561	5	780	284,685	55,761	4,437,229
6	463	169,169	33,135	7,757,660	6	451	164,437	32,208	4,713,612
7	380	138,612	27,150	7,788,218	7	297	108,503	21,252	4,769,546
8	298	108,886	21,328	7,817,943	8	224	81,843	16,031	4,796,205
9	249	90,810	17,787	7,836,019	9	166	60,766	11,902	4,817,282
10	215	78,580	15,391	7,848,249	10	146	53,253	10,431	4,824,796

Annual Projected Volumes Secondary Recovery with Drilling Case

		Pł	nase 1				Pł	ase 2	
	Q oil,Total bbl/day	Q oil,Total bbl/yr	Q gasi,Total Mcf/yr	Q wtr,Total bbi/yr		Q oil,Total bbl/day	Q oil,Total bbl/yr	Q gasi,Total Mcf/yr	Q wtr,Total bbl/yr
1	116	21.031	4,119	62.418	1	o	0	` o	0
2	1,569	572,786	112,191	4,443,040	2	Ō	Õ	õ	0
3	1,213	442,706	86,713	6,465,817	3	56	20,326	3,981	67,646
4	1,175	428,862	84,001	7,393,737	4	1,060	386,812	75,765	2,601,059
5	742	270,730	53,028	7,656,100	5	992	361,962	70,897	4,359,952
6	548	200,058	39,185	7,726,771	6	563	205,576	40,266	4,672,473
7	435	158,887	31,121	7,767,942	7	383	139,965	27,415	4,738,084
8	359	131,097	25,678	7,795,732	8	292	106,489	20,858	4,771,559
9	295	107,784	21,112	7,819,045	9	221	80,704	15,807	4,797,345
10	250	91,415	17,905	7,835,414	10	182	66,256	12,978	4,811,793

Table 6 Client : Yates Petroleum Corp Effective Date : 1 2003 BBLS,MCF,\$

ZMAINbas Run Start- 2003 **Proved Producing**

Final

		ESIMATEL	88 THE PRODU	CIION	}	COMPANY NET P	REDUCTION		T PRICES
Date	Well Count	CI-BBL G	ndensate-BEL	Gas-MDF	CIH-BBBL	Contensate-BEL	Gas-MCF	Ol/Grad S/BBL	Gas \$MOF
12-2003 12-2004 12-2005 12-2006 12-2007	1 1 1 1 1	114,646 63,395 33,917 20,971 14,174	000000000000000000000000000000000000000	701,969 409,670 251,738 152,296 94,548	95,156 52,618 28,151 17,406 11,764		582,634 340,026 208,943 126,406 78,475	25.00 25.00 25.00 25.00 25.00	2.50 2.50 2.50 2.50 2.50
12-2008 12-2009 12-2010 12-2011 12-2012	1 1 1	10,714 7,476 4,767 3,911 3,061		77,755 56,140 42,305 35,819 16,497	8,893 6,205 3,957 3,246 2,541		64,537 46,596 35,113 29,730 13,693	25.00 25.00 25.00 25.00 25.00	2.50 2.50 2.50 2.50 2.50
12-2013 12-2014	1	1,757 1,458	0	6,010 4,988	1,458 1,210	C) 4,988) 4,140	25.00 25.00	2.50
Sub T Remn		280,247	0	1,849,735	232,605	C	1,535,280	25.00 0.00	2.50 0.00
Total.		280,247	0	1,849,735	232,605	C	1,535,280	25.00	2.50
		COMPANY FUTU	RE GROSS REVI	ENUES		PRO	DUCTION TAXES	N	ET REVENUE
Date	01-5	Condensate-	\$ Gas-\$	Total- S		Dil/Cond- \$	Gas- S	Total- S	<u>s</u>
12-2003 12-2004 12-2005 12-2006 12-2007	2,378,904 1,315,446 703,778 435,148 294,111		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86 3,835,49 65 2,165,51 56 1,226,13 14 751,16 87 490,29	00 2 34 33 88	160,398 76,362 40,854 25,260 17,073	96,353 47,204 29,006 17,548 10,894	256,751 123,566 69,861 42,809 27,967	3,578,739 2,041,946 1;156,274 708,354 462,330
12-2008 12-2009 12-2010 12-2011 12-2012	222,316 155,127 98,915 81,153 63,516) 161,3 116,4 87,7 74,3 34,2	42 383,65 91 271,61 83 186,69 24 155,47 31 97,74	7 8 8 8 7 7	12,905 9,005 5,742 4,711 3,687	8,959 6,469 4,875 4,127 1,901	21,865 15,474 10,617 8,838 5,588	361,792 256,144 176,082 146,640 92,159
12-2013 12-2014	36,458 30,253	C	12,4	71 48,92 50 40,60	9 4	2,116 1,756	693 575	2,809 2,331	46,120 38,273
Sub T Remn	5,815,125	C	3,838,2	00 9,653,32	:5 0	359,870	228,604	588, 474	9,064,851
Total	5,815,125	c	3,838,2	00 9, 653, 32	:5	359,870	228,604	588,474	9,064,851
		COSTS			TURE CASH E	OW REFORE INC		1	
Date	Operating- \$	Capital	S Tot	al-S Un	disc- S	Cumulative- \$	10.0% DCF - \$	INDI	CATORS
12-2003 12-2004 12+2005 12-2006 12-2007	1, 327, 110 820, 180 440, 138 251, 306 157, 170	C C Q C C C	1, 327, 1 820, 1 440, 1 251, 3 157, 1	10 2,251, 80 1,221, 38 716, 06 457, 70 305,	630 766 136 048 160	2,251,630 3,473,395 4,189,530 4,646,578 4,951,739	2, 146, 845 1, 059, 007 564, 304 327, 407 198, 729	Gross Well Cou No Entities Com Acreage Allocat Overall Life Economic Half	nt 1. bined 1. ion Yrs 12. Life tr2 2004
12-2008 12-2009 12-2010 12-2011 12-2011 12-2012	156,931 125,469 93,967 93,894 62,491		156,9 125,4 93,9 93,8 62,4	31 204, 69 130, 67 82, 94 52, 91 29,	861 675 115 746 668	5,156,600 5,287,275 5,369,389 5,422,135 5,451,803	121,283 70,330 40,177 23,461 11,997	Peak Revenue 1 Revenue/Equiv Invest/Equiv Bb Aver Opcst/Eq Net CEFoniu B	(ear 3. Bal \$ 19.76 \$ 5 Bal \$ 7.35 N \$ 11.21
12-2013 12-2014	31,214 31,210	0 O	31,2 31,2	14 14, 10 7,	906 063	5,466,709 5,473,771	5,479 2,360	Payont Discounted ROF Return on Inv(F 5.0% DCF \$	Con Over 100 0.00 4,972,339 4,972,339
	2 501 000							10.0% DCF \$ 10.0% DCF \$ 12.5% DCF \$ 15.0% DCF \$ 26.0% DCF \$ 25.0% DCF \$	4, 301, 685 4, 571, 378 4, 399, 611 4, 243, 478 3, 970, 191 3, 738, 719
Sub T Remn	3,591,080	000	3,591,0	80 5,473, 0	771 0	5,473,771	4,571,378	30.0% DCF \$ 35.0% DCF \$ 40.0% DCF \$	3,539,937 3,367,185 3,215,407
Total	3,591,080	0	3,591,0	su 5,473,	7/1	5,473,771	4,571,378		5,215,451

These results are subject to the qualifications and limitations contained in a document titled "Proposal to Unitize for Secondary Recovery Operations, Dagger Draw Field, Eddy County, New Mexico".

Table 7 Client : Yates Petroleum Corp Effective Date : 1 2003 BBLS,MCF,\$

Final ZMAINP11 Run Start- 2003 Probable Phase 1 without Drilling

	┝	ESTEVATED 8/8	THE PRODUCTS	0N+	α	MPANY NET FR	DUCIEN		TI FRICES ————————————————————————————————————
Date	Well Count	Cl-BBL Conde	nsite-BBL (he MIF	Cil-BBL	Condensate-BBL	Ges-MCF	Cll/Cond-S/BEL	Gas SMDF
12-2003 12-2004 12-2005 12-2006 12-2007 12-2007 12-2008	54 54 54 54 54 54 54 54	21,031 572,786 443,664 364,212 242,268 169,169	0 0 0 0 0 0 0	4, 119 112, 191 86, 900 75, 255 47, 453 33, 135	17,456 475,412 368,241 318,896 201,083 140,410	0 0 0 0 0	3,419 93,119 72,127 62,462 39,386 27,502	25.00 25.00 25.00 25.00 25.00 25.00	2.50 2.50 2.50 2.50 2.50 2.50
									۶ ۲
Sub T	1,	833, 131	Q	359,053	1,521,198	0	298,011	25.00	2.50
Remn Total	1,	0 833, 131	0	0 359,053	0 1,521,498	0	298,014	25.00	2.50
		COMPANY FUTURE	GROSS REVENU	fs		PR()D	UCTION TAXES	N	ET REVENUE!
Date	Oil- \$	Condensate- S	Gas- S	Total- \$	Oil/	Cond- \$	Gas- \$	Total-S	\$
12-2003 12-2004 12-2005 12-2005 12-2006 12-2007	436.398 11,885,306 9,206,025 7,972,405 5,027,069	0 0 0 0	8,548 232,796 180,317 156,155 98,465	444,946 12,118,102 9,386,343 8,128,559 5,125,533	3	25,333 689,942 534,410 462,798 291,821	475 12,932 10,017 8,674 5,470	25,808 702,874 544,426 471,472 297,291	419,138 11,415,228 8,841,916 7,657,087 4,828,242
Sub T	38,037,162	0	745,036	38,782,497	2,	208,075	41, 387	2,249,461	36, 533, 036
Total	38,037,462	0	745,036	38,782,497	2,	208,075	41,387	2,249,461	36, 533, 036
[1	COSTS		i FIITI		W DEFORE INCOM		J [
Date	Operating- \$	Capital- \$	Total- S	Undi	sc-\$ Cu	mulative- \$	10.0% DCF - \$	INDI	CATORS
12-2003 12-2004 12-2005 12-2006 12-2007	1,239,345 2,528,928 2,624,655 2,691,256 2,718,038	4,030,000 0 0 0 0	5,269,345 2,528,928 2,624,655 2,691,256 2,718,038	-4,850,2 8,886,3 6,217,2 4,965,8 2,110,2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	850,206 036,094 253,354 219,186 329,390	-4,812,036 7,702,504 4,899,112 3,557,275 1,374,223	Gress Well Cou No Entities Com Acreage Allocat Overal Life Economic Half	nt 3. iblued 54. ion Yrs 6. Life tr4 2005
12-2008	2,717,789	0	2,717,789	653, 6	36 17,	983,026	386,969	Peak Revenue Y Revenue/Equiv Bb Aver Opcst/Eq Net CF/Equiv B Discounted ROU Return on Inv((ear 4. Bbl \$ 24.68 \$ 2.56 Bbl \$ 9.24 bl \$ 11.45 Qtr3 2004 8 \$ 8 Over 100 ROD 5.46
Sub T Remn	14, 520, 011	4,030,000	18,550,011	17,983,0	²²⁵ 17,	983, 025 0	13, 108, 046	7.0% DCF \$ 10.0% DCF \$ 12.5% DCF \$ 15.0% DCF \$ 20.0% DCF \$ 25.0% DCF \$ 30.0% DCF \$	14, 381, 145 13, 108, 046 12, 147, 569 11, 267, 514 9, 714, 769 8, 392, 618 7, 257, 232 6, 274, 749
Total	14,520,011	4,030,000	18,550,011	17,983,0	17,	983,025	13,108,046	40.0% DCF \$	5, 418, 626

These results are subject to the qualifications and limitations contained in a document titled "Proposal to Unitize for Secondary Recovery Operations, Dagger Draw Field, Eddy County, New Mexico".

Table 8 Client : Yates Petroleum Corp Effective Date : 1 2003 BBLS,MCF,\$

· •

Final ZMAINP22 Run Start- 2005 Probable Phase 2 without Drilling

	 	ESIIVATED 8	8 THS PRODUCIN	N+	(COMPANY N	ET PRODU	CIICN		T HRICES
Date	Well Count	Cil-BBL Cond	ensate-BBL C	hs-MCF	OI-BBL	Condensate	BBL	Gas-MCF	Cil/Cond-S/BEL	Gas \$/MOF
12-2005 12-2006 12-2007 12-2008 12-2008 12-2009	39 39 39 39 39 39 39	17,033 289,183 284,685 164,437 108,503	0 0 0 0 0	3, 336 56, 642 55, 761 32, 208 21, 252	14,137 240,022 236,289 136,483 90,058		0 0 0 0	2,769 47,013 46,282 26,733 17,640	25.00 25.00 25.00 25.00 25.00	2.50 2.50 2.50 2.50 2.50 2.50
	_									÷ ŧ
Sub T Remn		863,840	0	169,200 0	716,988 0		0	140,436	25.00 0.00	2.50 0.00
Total		863,840	0	169,200	716,988		0	140,436	25.00	2.50
[- COMPANY FUTURI	GROSS REVENUE				PRODUCT	ION TAXES	NI	T REVENUE
Date	Oil- \$	Condensate- \$	Gas-S	Total- S	<u>`</u>)il/Cond- \$	G	as- \$	Total-\$	\$
12-2005 12-2006 12-2007 12-2008 12-2009	353, 425 6,000,544 5,907,213 3,412,065 2,251,442	0 0 0 0	6,923 117,532 115,704 66,832 44,099	360,348 6,118,076 6,022,917 3,478,897 2,295,541		20,516 348,332 342,914 198,070 130,696		385 6,529 6,427 3,713 2,450	20,901 354,860 349,341 201,783 133,146	339,447 5,763,216 5,673,576 3,277,114 2,162,395
Sub T Remn	 17, 921, 689 0	0000	351,089	18,275,778		1,040,528		19, 50 <u>3</u>	1,060,031	17,215,747
Total	17,924,689	0	351,089	18,275,778		1,040,528		19,503	1,060,031	17,215,747
Date	 Operating- \$	COSTS Capital- \$	Total- S	FUTU] Undisc	RE CASH FL E- \$	OW BEFORE Comulative- \$	INCOME 1	FAX	INDI	CATORS
12-2005 12-2007 12-2007 12-2008 12-2009	1,785,146 1,768,765 1,789,294 1,779,520	3, 390, 000 0 0 0	5, 175, 147 1, 766, 765 1, 786, 565 1, 779, 294 1, 809, 520	-4,835,76 3,994,45 3,867,01 1,497,67 352,87	20 - 11 - 00 - 55 -	4.835,700 -841,249 3.045,761 4.543,581 4.896,456	-3 2 2 2,	940, 843 861, 429 831, 329 886, 747 886, 747 189, 919	Gross Well Cou No Entitles Com Acreage Allocati Overall Life Economic Half J Peak Revenue Y Revenue/Equiv J Invest/Equiv Bb Aver Opriz/Eq 1 Net CF/Equiv B Disconneed ROR Return on Inv(R 5.0% DCF \$ 7.0% DCF \$ 15.0% DCF \$ 5.0% DCF \$	nt 3. blaed 39. 97 Yrs 5. .ife tr4 2007 ear 6. bl \$ 24.68 \$ 12.06 bl \$ 6.61 0 tr1 2007 \$ 40.22 OD 2.44 3.535,937 3.096,974 4.558,579 2.125,128 1.755,533 1.207,146
Sub T Remn	8,929,291 0	3,390,000	12,319,291	4,896,45	0	4,896,456	2	, 528, 579 0	30.0% DCF \$ 35.0% DCF \$ 40.0% DCF \$	449, 985 199, 350 7, 440
iocar	0,929,291	3,390,000	12,319,291	4,896,45	00	4,090,430	2	, 328, 5/9		,

These results are subject to the qualifications and limitations contained in a document titled "Proposal to Unitize for Secondary Recovery Operations, Dagger Draw Field, Eddy County, New Mexico".

Final ZMAINndr Run Start- 2003 Probable Phase 1 and 2 without Drilling

Table 9 Client : Yates Petroleum Corp Effective Date : 1 2003 BBLS,MCF,\$

		— ESIMAT	ED 8/8 THE PRO	DUCIIO	V+		COMPANY N	EFRODU	TION		
Date	Well Court	CI-BEL	Condensate-BBL	Gas	→MOF	CH-BBBL	Condensate	BBL	Gas-MCF	Ci/Cond \$/BBL	Gas \$MDF
12-2003 12-2004 12-2005 12-2006 12-2007	54 54 93 93 93	21,031 572,786 460,696 673,395 526,953	0 0 0 0	1	4,119 112,191 90,236 131,897 103,214	17,456 475,412 382,378 558,918 437,371		0 0 0 0	3,419 93,119 74,896 109,475 85,667	25.00 25.00 25.00 25.00 25.00 25.00	2.50 2.50 2.50 2.50 2.50 2.50 2.50
12-2008 12-2009	93 39	333,606 108,503	0 0		65,343 21,252	276,893 90,058		0	54,235 17,640	25.00 25.00	2.50 2.50
											î Ņ
Sub T	2	. 696. 971	0		28,253	2.238.486		0	438,450	25.00	2.50
Remn Total	2	, 696, 971	ŏ	ŗ	28,253 2	238.486		ŏ	438,450	25.00	0.00 0.00 2.50
[,,				.,,					
Data		- COMPANY FU	UTURE GROSS R	EVENUES				PRODUCT	ION TAXES		NET REVENUE
12-2003	426 209			3-9 5 5 4 0	1 ULAF 3		25 222		43- J 	1014-1 	410, 120
12-2003 12-2004 12-2005 12-2006 12-2007	11,885,306 9,559,450 13,972,948 10,934,281		0 23 0 18 0 27 0 21	2,796 7,240 3,687 4,169	12,118,102 9,746,690 14,246,635 11,148,449		689,942 554,926 811,130 634,735		2,932 0,401 5,203 1,897	702,874 565,327 826,333 646,632	11,419,128 9,181,363 13,420,302 10,501,817
12-2008 12-2009	6,922,325 2,251,442		0 13 0 4	5,587 1,099	7,057,912 2,295,541		401,841 130,696		7,532 2,450	409,373 133,146	6,648,539 2,162,395
Sub T Remn	55,962,150		0 1,09	5,125 0	57,058,274 0		3,248,603	(i0, 890 0	3,309,193	53,748,782
Total	55,962,150		0 1,09	5,125	57,058,274		3,248,603	(60,890	3, 309, 493	53,748,782
Date	 Operating- \$	COSTS Capi	 ital- \$	Total- \$	- FUTU Undis	RE CASH FL :- \$.OW BEFORE Cumulative- \$	INCOME 1 10	AX .0% DCF - \$		DICATORS
12-2003 12-2004 12-2005 12-2006 12-2007	1,239,345 2,528,928 4,409,802 4,460,021 4,504,604	4,030,0 3,390,0	000 5,261 0 2,522 000 7,799 0 4,460 0 4,500	9,345 928 928 9,802 9,021 1,604	-4,850,20 8,886,30 1,381,56 8,960,28 5,997,21	16 - 10 11 1 4 2	4,850,206 4,036,094 5,417,656 4,377,937 0,375,150	-4. 7, 6, 3,	812,036 702,504 958,269 418,702 905,553	Gross Well C No Entities C Acreage Alloc Overall Life Economic Hal	eunt 6. embined 93. ation 7. Yrs 7. f Life tr3 2006
12-2008	4,497,083 1,809,520		0 4,49 0 1,809	7,083 5,520	2,151,4 352,87	6 2:	2, 526, 606 2, 879, 480	1,	273, 716 189, 919	Peak Revenue Revenue/Equiv I Aver Opst/E Net CF/Equiv Payou Discounted R Return on Inv 5.0% DCF 10.0% DCF 12.5% DCF 12.5% DCF	Year 6. NBJ \$ 24.68 Sb1 3.21 JBJ 10.14 Bb1 2004 Qtr3 2004 Qtr3 2004 Qtr3 2004 Qtr3 2004 Qtr3 2004 S 18.848.334 17,478.117 15,636,626 \$ 13,043,048 10,922,905 \$ 10,922,905 13,043,048 \$ 10,922,905 13,043,048
Sub T Remn	23, 449, 302	7,420,0	000 30,869	, 302 0	22,879,48	1 2: 0	2,879,481 0	15,	636, 626 0	25.0% DCF 30.0% DCF 35.0% DCF	\$ 9,170,460 \$ 7,707,218 \$ 6,474,100
Total	23, 449, 302	7,420,0	000 30,869	9, 302	22,879,48	1 22	2,879,481	15,	636,626	40.0% DCF	\$ 5,426,066

These results are subject to the qualifications and limitations contained in a document titled "Proposal to Unitize for Secondary Recovery Operations, Dagger Draw Field, Eddy County, New Mexico".

Table 10 Client : Yates Petroleum Corp Effective Date : 1 2003 BBLS,MCF,\$

UNESCALA	1
	TICIKN

		ESIIM	TED 8/8 TH	5 PROLCI	0N	 	COMPANY N	ETROL	CHON		CT PRICES ——
Date	Well Count	CI-BBL	Contensat	e-1867. (lis MF	OH-BBEL	Contraste	BBL	Gas-MCF	Cl/Cml-S/BEL	Gas \$/MDF
12-2003 12-2004 12-2005 12-2006 12-2007	56 56 56 56 56	36,275 592,845 455,316 437,522 277,045		0 0 0 0 0 0	54,423 178,386 128,324 112,579 73,867	30,108 492,061 377,912 363,143 229,947		00000	45,171 148,060 106,509 93,441 61,309	25.00 25.00 25.00 25.00 25.00	2.50 2.50 2.50 2.50 2.50
12-2008 12-2009	56 56	204,867 162,671		0	55,054 43,608	170,039 135,017		0	45,695 36,195	25.00	2.50
											я 92.
Sub T		2,166,540		<u> </u>	646,241	1,798,228		Q	536,380	25.00	2.50
Remn Total		0 2,166,540		0	0 646,241	0 1,798,228		0	0 536,380	25.00	0.00 2.50
Date	 0il-	COMPANY I S Conden:	FUTURE GR sate- \$	OSS REVENU Gas- S	ES Total- S		Oil/Cond- \$	PRODUCT	TION TAXES Fas- \$	P Total- S	ET REVENUE S
12-2003 12-2004	752,70 12,301,53	1	0	112,928 370,151	865,6 12,671,6	29	43,694 714,104		6,273 20,562	49,967	815,661 11,937,016
12-2005	9,078,58 5,748,67	5 4	0	233,602 153,273	9, 312, 11 5, 901, 9	78 37 48	527,012 333,710		12,977 8,514	539,988 342,225	8,772,198 5,559,723
12-2008 12-2009	4,250,983 3,375,423	3	0	114,237 90,487	4,365,2 3,465,9	20 10	246,770 195,943		6,346 5,027	253,115 200,970	4,112,104 3,264,940
Sub T	44.055.700		0	1 240 051	46 206 6		2 600 678		74.400	2 604 160	42 612 494
Remn	44. 055. 202	5 -	ŏ	1, 340, 951	10,290,0	Ő	2,009,078		74,490	2,001,100	13, 012, 101
IOLAL	44,955,702	4		1, 340, 951	46,296,6		2,609,678		/4,490	2,004,100	43, 612, 484
Date	Oper ating-	COSI - \$ Ca	'S pital- \$	Tetal-\$	FU Un	TURE CASH F dise-\$	LOW BEFORE Cumulative-\$	INCOME 1	FAX 0.0% DCF - \$	IND	ICATORS
12-2003 12-2004 12-2005 12-2006 12-2007	1,271,560 2,593,048 2,689,789 2,757,128 2,782,17	5,762 5 3 3	, 600 0 0 0	7,034,161 2,593,048 2,689,785 2,757,128 2,782,173	-6,218 9,343 6,461 6,015 2,777	500 969 057 071 549	-6,218,500 3,125,469 9,586,525 15,601,596 18,379,144	-6 8 5 4	,197,283 ,099,203 ,091,219 ,308,900 ,808,817	Gross Well Co No Entities Co Acreage Alloca Overall Life Economic Half	nht 4. nbined 56. tion Yrs 7. Life tr1 2006
12-2008 12-2009	2,781,822 2,781,663	1 3	0 0	2,781,821 2,781,663	1,330 483	284 278	19,709,428 20,192,706		787,562 260,102	Peak Revenue Revenue/Equiv	Year 4. Bbl \$ 24.53
										Aver Opert/Equiv B Net CF/Equiv J Payout Discounted RO Return on Inv(5.0% DCF 10.0% DCF 12.5% DCF 15.0% DCF 13.0% DCF	9 3 3.53 Bbl \$ 9.35 3.63 Qtr3 2004 8 8.397 ROI) 4.50 4.50 \$ 16,866,154 15,717,981 \$ 14,158,520 2.298,937 \$ 12,989,937 3.16 \$ 10,061,534 3.16
Sub T Remn	17,657,177	5,762,	, 600 2	23,419,777	20,192,	708 2	20,192,708	14	, 158, 520	25.0% DCF 30.0% DCF	8,489,514 7,150,888 6,001,144
Total	17,657,177	5,762,	, 600 2	23, 419, 777	20, 192,	708 2	20, 192, 708	14	, 158, 520	40.0% DCF	5,005,891

These results are subject to the qualifications and limitations contained in a document titled 'Proposal to Unitize for Secondary Recovery Operations, Dagger Draw Field, Eddy County, New Mexico''.

Prepared by The Scotia Group, Inc Dallas, Houston

S.S.L. FEB 11 2003 10:24:35

Final ZMAINP2d Run Start- 2005 Probable Phase 2 with Drilling

Table 11 Client : Yates Petroleum Corp Effective Date : 1 2003 BBLS,MCF,\$

••

[FSTRATED	A TEN EDITET	N I		CTA/PANV N	FT PROTE		1 Parter	TRACKS
Date	Well Count	CI-BEL Con	densate-BBL (he-MOF	OI-BBL	Condensate	-BBL	Gas-MCF	Cl/Gnd \$/BEL	Gas \$/MDF
12-2005 12-2006 12-2007 12-2008 12-2009 12-2010	44 44 44 44 44 44 44 44	65,051 413,227 379,401 217,949 149,200 113,646	0 0 0 0 0 0	151,573 162,934 128,445 81,098 57,890 44,474	53,992 342,979 314,903 180,898 123,836 94,326		0 0 0 0 0	125,805 135,235 106,609 67,311 48,049 36,913	25.00 25.00 25.00 25.00 25.00 25.00	2.50 2.50 2.50 2.50 2.50 2.50
										7
Sub T Remn	1,	338, 171 0	0	626, 413 0	1,110,933 0		0	519,923 0	25.00 0.00	2.50 0.00
Total	1,	. 338, 474	0	626, 413	1,110,933		0	519,923	25.00	2.50
Date	 Oil- \$	COMPANY FUTUR Condensate- \$	RE GROSS REVENUI Gas-S	ES Total- S		Oil/Cond- \$	PRODUCT G	10N TAXES 325- \$	Total- \$	ST REVENUE
12-2005 12-2006 12-2007 12-2008 12-2009 12-2010	1,349,810 8,574,465 7,872,571 4,522,449 3,095,894 2,358,147	0 0 0 0 0	314,513 336,089 266,522 168,277 120,122 92,283	1,664,323 8,912,554 8,139,094 4,690,726 3,216,016 2,450,430		78,356 497,748 457,003 262,528 179,717 136,890		17,471 18,781 14,805 9,348 6,673 5,126	95,828 516,529 471,808 271,876 186,389 142,017	1,568,496 8,396,025 7,667,286 4,418,850 3,029,627 2,308,413
Sub T Remn	27,773,335	0	1,299,806	29,073,142		1,612,242		72,201	1,684,446	27, 388, 695
Total	27,773,335	0	1,299,806	29,073,142	·	1,612,242		72,204	1,684,446	27,388,695
Date	 Operating- \$	COSTS Capital (Total- \$	FUTU Undi	IRE CASH FI 5c-S	LOW BEFORE Comulative-S	INCOME 1	FAX).0% DCF - S	INDI	CATORS
12-2005 12-2006 12-2007 12-2008 12-2009	1,944,716 1,932,410 1,946,957 1,938,186 1,967,826	7,720,000 0 0 0 0	9,664,716 1,932,410 1,946,957 1,938,186 1,967,826	-8,096,2 6,463,6 5,720,3 2,480,6 1,061,8	20 - 15 - 28 63 00	8,096,220 1,632,605 4,087,724 6,568,387 7,630,187	-6 4 3 1	.676,621 ,630,215 ,725,237 ,468,615 571,466	Gross Well Con No Entities Com Acreage Allocati Overali Life Economic Half I	nt 4. bined 44. ion Yrs 6. Life tr4 2007
12-2010	1, 998, 157	0	1,998,157	310, 2	56	7,940,443		151,801	Peak Revenue Y Revenue/Equiv B Invest/Equiv B Aver Opcst/Equi Net CF/Equiv B Payont Discounted ROR Return on Inv(R	fear 6. Bbl \$ 24.28 \$ 6.45 Bbl \$ 9.79 Sch \$ 9.79 Bbl \$ 9.34 Sch \$ 2.007 \$ 34.85 Sch \$ 2.03
Sub T	11 728 253	7 720 000	10 4/8 252	7 940 4	43	7 940 442		870.712	5.0% DCF \$ 7.0% DCF \$ 10.0% DCF \$ 12.5% DCF \$ 15.0% DCF \$ 20.0% DCF \$ 25.0% DCF \$	5,591,617 4,839,574 3,870,712 3,186,820 2,597,155 1,647,003 933,718
Remn Total	11,728,253	7,720,000	19, 448, 253	7,940 4	°ŏ 43	7, 940, 443	د د	. 870. 712	35.0% DCF \$ 40.0% DCF \$	-10, 554 -317, 851
L	11, 120,200	.,.20,000	17, 110, 233	1, 240, 4		., ., ., ., ., .		, 5, 5, 112		

These results are subject to the qualifications and limitations contained in a document titled "Proposal to Unitize for Secondary Recovery Operations, Dagger Draw Field, Eddy County, New Mexico".

Final ZMAINdrl Run Start- 2003 Probable Phase 1 and 2 with Drilling Table 12 Client : Yates Petroleum Corp Effective Date : 1 2003 BBLS,MCF,\$

		- ESTIMATED 8	8 THE PRODUCTIN	N+		COMPANY N	ETROLO	TION		T PRICES
Date	Well Count	Cil-BBL Cond	ensate-BBL C	hs-MIF	OI-BBL	Condensate	BRL	Gas-MCF	Cl/Cand S/BBL	Gas \$/MCF
12-2003 12-2004 12-2005 12-2006 12-2007	56 56 100 100	36,275 592,845 520,367 850,749 656,446	000000	54,423 178,386 279,897 275,513 202,311	30,108 492,061 431,905 706,122 544,850		0 0 0 0 0	45,171 148,060 232,314 228,676 167,918	25.00 25.00 25.00 25.00 25.00	2.50 2.50 2.50 2.50 2.50
12-2008 12-2009 12-2010	100 100 44	422,816 311,871 113,646	0 0 0	136,152 101,498 44,474	350,937 258,853 94,326		0 0 0	113,006 84,244 36,913	25.00 25.00 25.00	2.50 2.50 2.50
Sub T Remn Total	3,	\$05,014 0 \$05,014	0 1 0 1	, 272, 654 0 , 272, 654	2,909,162 0 2,909,162		0 0 0	1,056,303 0 1,056,303	25.00 0.00 25.00	2.50 0.00 2.50
[1	COMPANY EUTIDE	CBOOD BEVENIU		1		BBODUCTI	ON TAVES	1 NI	TOFVENIE
Date	Oil- S	Condensate- S	Gas- S	Total- \$	 1	Oil/Cond- I	rkodu chi Ga	UN TAXES B-\$	Total- \$	1 KEVENUEj \$
12-2003 12-2004 12-2005 12-2006 12-2007	752,701 12,301,531 10,797,616 17,653,050 13,621,244		112,928 370,151 580,786 571,690 419,796	865.629 12,671,682 11,378,401 18,224,740 14,041,041		43,694 714,104 626,802 1,024,760 790,713	2 3 3 2	6,273 0,562 2,263 1,757 3,320	49,967 734,666 659,064 1,056,517 814,033	815,661 11,937,016 10,719,337 17,168,224 13,227,008
12-2008 12-2009 12-2010	8,773,432 6,471,317 2,358,147	0 0 0	282,514 210,609 92,283	9,055,946 6,681,920 2,450,430	5	509,298 375,660 136,890	1	5,694 1,699 5,126	524,991 387,359 142,017	8,530,955 6,294,567 2,308,413
<u></u>	72 729 039	0	2.640.757	75 360 700		4.221.921		6. 691	4.368.615	71,001,180
Remn	72 729 030	Ŏ	2 640 757	75 260 705	Ĵ.	4 221 021	14	6,60A	0	71 001 180
			2,040,131	73, 305, 150	,	4,221,521			1,000,010	
Date	Operating-\$	COSTS Capital- \$	Tetal- \$	FUT Undi	URE CASH FI ise-S	LOW BEFORE Cumulative-S	INCOME TA 10.	4X 0% DCF - S	INDI	CATORS
12-2003 12-2004 12-2005 12-2006 12-2007	1,271,560 2,593,048 4,634,502 4,689,538 4,729,130	5,762,600 7,720,000 0	7,034,161 2,593,048 12,354,501 4,689,538 4,729,130	~6,218,5 9,343,5 -1,635,1 12,476,6 8,497,8	500 - 569 164 586 1 378 2	6,218,500 3,125,469 1,490,305 3,968,991 2,466,870	-6, 8, -1, 8, 5,	197,283 099,203 585,402 939,114 534,054	Gress Well Cou No Entities Cem Acreage Allocati Overall Life Economic Half I	at 8. blned 100. on Yrs 8. Jfe tr1 2007
12-2008 12-2009 12-2010	4,720,008 4,749,489 1,998,157	O C O	4,720,008 4,749,489 1,998,157	3,810,5 1,545,6 310,2	947 2 978 2 256 2	26,277,816 7,822,894 8,133,150	2,	256,177 831,568 151,801	Peak Revenue Y Revenue/Equiv J Invest/Equiv B Aver Opcat/Equiv Net CF/Equiv B Payoni Disconnted ROR Return on Inv(F 5.0% DCF \$ 7.0% DCF \$	ear 6. b) \$ 24.43 \$ 4.37 \$ 9.52 b) \$ 9.52 b) \$ 9.12 Qtr3 2004 \$ 70.37 COL 3.09 22,457,770 20,557,554
Sub T Remn Total	29, 385, 430 0 29, 385, 430	13,482,600 0 13,482,600	42,868,030 0 42,868,030	28, 133, 1 28, 133, 1	150 2	28, 133, 150 0 28, 133, 150	18,	029,232	10.0% DCF \$ 12.5% DCF \$ 15.0% DCF \$ 20.0% DCF \$ 25.0% DCF \$ 30.0% DCF \$ 35.0% DCF \$ 40.0% DCF \$	16, 029, 232 16, 176, 757 14, 522, 472 11, 708, 537 9, 423, 232 7, 546, 804 5, 990, 590 4, 688, 040

These results are subject to the qualifications and limitations contained in a document titled "Proposal to Unitize for Secondary Recovery Operations, Dagger Draw Field, Eddy County, New Mexico".

JE ST IRISHHILLS.	JE ST IRSH HILLS .	ST						5	8350	2	1	2	5			2 6
12 ***	3			_				8 ***	5800	8250	8250	8240	8247	8250	8200	92938220
3100	101			TRUDY				THOMAS "AJJ"	THOMAS AJJ	WARREN "ANW"	JOHNST ON FD	Swarren ANW	WARREN ANW	POLO AOP	POLO "AOP"	Personap.
				¢ 1			THOMAS "AU"	3	6	1	*	6	0 5	0 5	1	• 1
				9095			2	8250	8233	8274	9320	8210			8294	\$290
					ROY AET	ROY AET	ROY AET	ROY "AET"	ROV "AET"	WARREN "ANW"	WARREN 'ANW'	WARREN 'ANW	Warzen ANW	POLO "AOP"	POLO 'AOP'	POLO 'AOP'
					3 11190	2 8250	1	4	5	2	7	3	00	0		6 8250
							50.5	u.n	and and a start	No anal Statist					クト	
D					CONOCO		JENNY FD COM	JULIE	JULIE	APAREJO 'APA'	APAREJO "APA"	APAREJO	vu	6	GER	APOLLO 'APU'
			18	R	1		2 8115	2 8200	3 9350	1 8270	5 9410	3 8286	BOYD X		6 9129	1 8275
				5	6100	JENNY COM		DAGGER DRAW "A					1 9370 BOYD X			BOYD BN
A	TIMEDISOROCIUM C	АВ	ARE EARE FD	CONOCO	BARB FD	#	BARB FD	1	JULE		APAREJO 'APA'		12	ARYEE BOAR	OSAGE BOYD 15	3
	10 9190		16 5 8100 9183	9 8100	1 9040	8100	3 7905		8052		2 9304		8255	J 9428	8 8135	-
								17	-			16				15
1	MOLLY OD	LEHMAN FD	BARBED	BARB FD		BARB FD	BARA 175W COM	PAREFD	1.025		AMOLE 'AMM'		AMOLE "AMM"	SAGE BOYD '15	OSACE BOYD '15'	-Ça BROAD BU.
	•	11 8105	7954	6 8170		4 8070	•	8054			2		4 8250	7 8170	•	1 2 276750
	MOLLY	LEHMAN	-TD	BARR FD	RABBERCONED	BARBARA FEDER	9370 LAL	BA	REARA "17SE" CON	AMOLE "AMM"	AMOLE 'ANDA'	BOAD .A.	BOYD X	MACE BOND TH	8150	Royd RN
		•			• -	10			∇	1	V		11	•	•	•
	1 9212	si20		8100	3 1 8154 630	810.5			8200	6363	200	8340	8-4/0	8350	4	008
	CONE FD	LODEWICK A	LODEWICK A	ROSS EG FD		ROSS EG FD	ROSS "EG" FD	ROSS RANCH	HOOPER 'AMP'	VANN 'APD'		ROSS 'EG' FD	RODKE "ADY"	OSS RANCH "22	" ROSS RANCH '22'	B&B
	EE ED		Ŷ		ROSS "EG" FD		6	4		1	1	14	ĥ	0 5	3	4
	120 7950	SUP9	7950	8100	8220	8080	8300	630	1060	643		8350	aas D	DRAW	\$070	8200
,	EE FD	•		PARISH IV	ROSS "EG" FD	ROSS EG FD	ROSS "EG" FD	ROSS EG FD	HOOPER "AMP"	HOOPER "AMP"	PATRIOT "AL	OSAGE		MEARANCH "22	" ROSS RANCH '22'	BAB
	1	7500		4	V		Y	X	3	2	11 8670	V		2	4	1
24	7942		1		8275	00236		20				21		0.05		22
24 DD "24" FE	ED DD FD	DAG DRAW		SPARISH IV	ROSS "EG" FD	ROSS "EG" FD	ROSSECFD	20	ROSS "EG" FD			21	Patriet AIZ	LOSS RANCH '2	2' ROSS RANCH	L LBAB
4	2	Y		1	9230	8	9450		No.		1		6 8228		ROSS 7	9
8000	7950 DD FD	7/90		CHAMIZA AJC	Parish IV	PATRIOT "AIZ"				HOOPER "AMO"				1 1200		BAB
DD FD "24	4" • 1	DAG DRAW	DAGGER DRAW					PATRIOT "AIZ"	PATRIOT "AIZ"	•	PATRIOTAIZ	PATRIOT "AIZ	" CUTTER 'APC'	ROSS RANCH '2	2' ROSS RANCH "22	" B
3	7950	10 8100	8091	8300	8250	EZ30	4 8220	2 8250	3 8330	8300	10	5 8300	1 8300	S 8120	6	2
	DD FD "25"															
DD "25" FEDE	3 RAL 7996	DAG DRAW		DAG DRAW	DAG DRAW "SEN"	VOICHT "AJD"	VOICHT "AJD"	BINGER "AKU"	BINGER AKU	LORENE ANN	ROSSIZ	HINKLE .	ALD" HINKLE ALD	OUTH BOYD	7 South Boyd 27	South Boyd 27
4		1 7860		\diamond	8018	1 8250	8270	0	4	1 8350	8200	2	?		•	9
DD FD		D. C. D. L. WITE	D. COPP. DD. AM	8100	DAGGER DRAW	VOICHT "A ID"	ASDDEN 'AOH'	EINCER AVII		ROSSIZ	ROSS IZ	HINKLE "ALE	" HINKLE "ALD"	3124 SOUTH BOYD "	South Boyd 27	
2	•	AG DRAWTD		DACGER DRA	W N 8100	•	•	•	•	•	•	•	e	•	11	
1300	1 7940	8110	8100	12 8100		8270	8210	8340		8210	9460	8200	8609	8100	2229	9620
25 CUSHION	DAGZW		DAG ZW		DACDRAW	BOYD "X" STAT	F BOYD "X" STAT	F BOYD "X" STAT	E BOYD 'X' STATE	STATEK	STATE "K"	28		OUTH BOYD	27 South Board 27	21
•	•	DAGGER "ZW"	•		V	•	•	∇		*	3	•	TACKITT 'AOT'	•	۲	
8300	8000	3	8000	8011	9368	8300	8300	8320	8350	9520	7806	8000	1	8100		
FED		INCUSHION AN	N PINCUSHION AND	N DAG DRAW FD	DAG DRAW "30SE	" ASPDEN "AOH"		BOYD 'X' STATE			ST K 6096 A	TACKITT 'AG	DT.	SOUTH B	OYD '27 AIKMAN	
			3	u n	16	1	ASPDEN 'AOH'	6			**	3		5		
		8125	8204	8300	8100	8300	8379	8410	and the states		9410	820			9344	
STATE "CO"	COM ST CO	DAG DRAW	DANGER DRAW:	31 DAG DRAW	DAG DRAW "31"	JOYCE FD	JOYCE FD	SAVANNAH ST	SAVANNAH ST	STATE 'B'		ST B	STATE 'B'			
7 8150	5 2018	1 8029	15	2	6 8052	1	2 8100	2 8028	1 9615	2 8035		1 9451	3 7850			
STATECOCOM	2					8150		ST K 6096 B		State 'B'						
•	ST "CO"	DAC DRAW		DAG DRAW	DAG DRAW '31'		ALBERT ST	1 9450		4					PAN CANADL	AN
9427	6 8240	4 8300		8	7 8000		1 9428								1 9640	
DEEST		FOSTER "B"		31				32			21	2		1		34
DENST	DEE STATE	•		Ø				JZ			3.	3				1.1.1
	6	aun .		1		1						1.1.1		1		
Symb	ol Lege	end														
	Dhorn 1	Injector				\wedge								ang string to the second		1
	i nase 1	ujector				11					d.		TES			
	Phase 2	Injector				N					and the second s		ERPOR	ATION	1.1.1	
						П										
	Phase 1	Drill We	11									41 5				
						N					Nor	th Dag	ger Dra	w Field	Unit	

Phase 2 Drill Well
Phase 1 Workover

 \bigcirc

1000 0 1000 2000 3000 ft

North Dagger Draw Field Unit Proposed Well Activity Contour Interval: Date: 7 November, 2002 Scale: 1" = 3,000'

Phase 2 Drill Well

1000

0

1000 2000 3000 ft The Scotia Group, Inc. 0

Scale: 1" = 3,000'

Phase 2 Drill Well

1000 0 1000 2000 3000 ft

North Dagger D	raw Field Unit
Canyon I	olomite
Gross Thickn	tess isochore
Contour Interval:	Date:
20'	7 November, 2002
The Scotia Group, Inc.	Scale: 1" = 3,000"

Phase 1 Drill Well

Phase 2 Drill Well

1000

0

1000 2000

3000 ft

North Dagger Draw Field Unit Canyon Dolom ite mulative Cas Production Through April, 2002 Cumulative C Contour Interval: 100 M M cf Date: 11 November, 2002 Scale: 1" = 3,000' The Scotia Group, Inc

	ES TROLEUM IRPORATION
North Dagge Can Cum. Total Fluid	er Draw Field Unit yon Dolomite (Oll + Water) Production
Throu	gh April, 2002
Contour Interval: 200 MBF	D ate: 19 February, 2003
The Scotia Group, Inc.	S c a le: 1" = 3,000'

Phase 2 Drill Well

1000 0 1000 2000 3000 ft

North Dagger Draw Field Unit Canyon Dolomite Cumulative COR Through April, 2002 Contour Interval: 500 Date: 11 November, 2002 Scale: 1 " = 3,000' The Scotia Group, In

Phase I Drill Well

Phase II Drill Well

C PETRERATION			
North Dagger Draw Field Unit			
Contour Interval: 100 B bls/M o.	Date: 22 November, 2002		
The Scotia Group, Inc.	Scale: 1 " = 3,000 3		

Phase II Drill Well

Phase I Drill Well

CORPORATION		
North Dagger D Canyon J Current Gas Ra) raw Field Unit Dolomite (April, 2002)	
Contour Interval: 250 M cf/M o.	Date: 11 November, 2002	
The Scotia Group, Inc.	Scale: 1" = 3,000'	

Phase 2 Drill Well

1000 0 1000 2000 3000 ft

North Dagger Draw Field Unit Canyon Dolomite Current Water Rate (April, 2002)		
ontour Interval: 00 B bls/M o.	Date: 11 November, 2002	
The Scotia Group, Inc.	Scale: 1" = 3.000'	

(

Phase II Drill Well

1000 0 1000 2000 3000 ft

North Dagger Draw Field Unit Canyon Dolomite Current GOR (April, 2002) Contour Interval: 5,000 The Scotia Croup, Inc. 1 = 3,000'

North Dagger Cany	ES TROLEUM RPORATION r Draw Field Unit on Dolomite
Contour Interval:	Date:
100 B bis/D ay	12 November, 2002
The Scotia Group, Inc.	Scale: 1" = 3,000'

PETROLEUM EERPORATION		
North Dagger Draw Field Unit Canyon Dolomite Initial Cas Rate		
Contour Interval: 100 M cf/D	Date: 12 November, 2002	
The Scotia Group, Inc.	S cale: 1 " = 3,000'	

Phase I Drill Well
Phase II Drill Well

1000 0 1000 2000 3000 ft

 Content Dagger Draw Field Unit Canyon Dolomite

 Initial Total Fluid (Oil + Water) Rate

 Content Interval:

 200 Bbls/Day

 The Socia Group, Inc.

 1° = 3,000°

Dagger Draw #12 Permeability Variance

Figure 55a

Saguaro #8 Permeability Variance

Figure 55b

Barbara #12 Permeability Variance

Figure 55c

Barbara #2 Permeability Variance

Barbara #2 Permeability Variance

Figure 55e

Ocotillo #1 Permeability Variance

1000		90 00 00 00 00 00 00 00 00 00	3.0000
	345e ^{-2.1289x}		2.0000
	y = 0		000
			1.00
			0.0000
			000
			-1.0
			-2.0000
	•		0000

Figure 55f

Pattern No. is shown for each injector. See Table 2 for areas, parameters, & sweep factors. 1000 0 1000 2000 3000 ft

North Dagger Draw Field Unit Current Injector Areas (No Infill Drilling) Contour Interval: Date: 22 November, 2002 Scale: 1ⁿ = 3,000³

Pattern No. is shown for each injector. See Table 3 for areas, parameters, & sweep factors.

S.S.L. FEB 11 2003 10:51:05

S.S.L. FEB 11 2003 11:18:09

