COUNSEL EMERITUS William R. Federici

J.O. Seth (1883-1963) A.K. Montgomery (1903-1987) Frank Andrews (1914-1981) Seth D. Montgomery (1937-1998)

Victor R. Ortega Gary Kilpatric Thomas W. Olson Walter J. Melendres John B. Draper Nancy M. King Sarah M. Singleton Stephen S. Hamilton Edmund H. Kendrick Louis W. Rose Randy S. Bartell Paul E. Houston Kevin M. Sexton Jeffery L. Martin Alexandra Corwin Aguilar Jeffrey J. Wechsler Shannon A. Parden Brian T. Judson Susan R. Johnson Holly Agajanian Sharon T. Shaheen Jaime R. Kennedy

OF COUNSEL Joe A. Sturges J. Scott Hall Suzanne C. Odom Earl Potter, P.A.

MONTGOMERY & ANDREWS

PROFESSIONAL ASSOCIATION ATTORNEYS AND COUNSELORS AT LAW

325 Paseo de Peralta Santa Fe, New Mexico 87501

Post Office Box 2307 Santa Fe, New Mexico 87504-2307

> Telephone (505) 982-3873 Fax (505) 982-4289

> > July 10, 2008

ALBUQUERQUE OFFICE

6301 Indian School Road, N.E. Suite 400 Albuquerque, New Mexico 87110

Post Office Box 36210 Albuquerque, New Mexico 87176-6210

> Telephone (505) 884-4200 Fax (505) 888-8929

> > www.montand.com

Reply to Santa Fe Office

HAND-DELIVERED

Mr. David Brooks New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

Re: NMOCD Case No. 14134, Application of the Board of Country Commissioners of Rio Arriba County; and NMOCD Case No. 14141, Application of Approach Operating, LLC, Rio Arriba County, New Mexico

Dear Mr. Brooks:

At the end of the hearing on June 23, 2008, you requested that we supplement the record with additional information relative to the Hinkle, Martinez and Sultemeier water wells shown on Exhibit 15 discussed by our witness, Mr. Peter Maggiore.

Enclosed is Mr. Maggiore's July 7, 2008 report on his follow-up investigation made pursuant to your request.

•

Should you require additional information, please do not hesitate to contact me.

Very truly yours,

1. I von gall

J. Scott Hall

UUL 10 PHY ED

Mr. David Brooks July 10, 2008 Page 2

JSH/mb

Enclosure

cc: Ted Trujillo, Esq. (w/enc.) Adan Trujillo, Esq. (w/enc.)

To: J. Scott Hall, Attorney, Montgomery and Andrews P.A.

From: Pete Maggiore, Senior Vice President, North Wind Inc.

Date: July 7, 2008:

Subject: Background Information for Post-Hearing Submittal – New Mexico Oil and Conservation Division Case Numbers 14134 and 14141, Approach Operating LLC (Approach)

Background

At the conclusion of the above-referenced hearing on June 23, 2008 Hearing Examiner Brooks requested that Approach supplement the hearing record with a post-hearing submittal that focused upon Approach's Exhibit 15 (Water Data Map). Specifically, Hearing Examiner Brooks requested additional information that would either verify or refute the location of domestic water supply wells (specifically the Cloyd Hinkle domestic well and the Leroy A Martinez domestic well) which were plotted on Exhibit 15 in the visiting of Approach's proposed Cloyd Hinkle No. 1 well location.

Analysis

Attachment A to this Memorandum provides the references from the New Mexico Office of the State Engineer, WATERS Database for the following domestic wells:

- 1) Cloyd G. Hinkle well;
- 2) Leroy Martinez Well; and
- 3) William H. Sultemeier Well

Approach Exhibit 15, depicted these well locations as plotted using the most appropriate professional techniques. These locations were defined using both preliminary applications and completed well logs.

The lands in the vicinity of the Approach lease are primarily unsurveyed, and therefore it is not surprising to have conflicting or inaccurate data reflected in the Office of the State Engineer database for wells in this area. It is also important to note that the Office of the State Engineer data base defaults their well location data to the center of the smallest land appropriation unit provided during the permit process. This can be as crude as a township and range designation. As can be seen in Attachment B, the x and y coordinates listed show multiple locations that share the same X, Y coordinates by default and appear to reflect not specific data points but rather the quadrant or associated land unit that they are permitted to fall within.

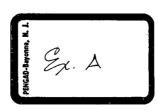
Additional Field Work

On July 2, 2008 Ms. Heather Smith, M.S., P.G. and myself performed a field survey in the immediate vicinity of the proposed Cloyd Hinkle No. 1 well (see Approach Exhibit No. 1, page no. 3 and Approach Exhibit 8 (i)). After contacting the landowner, the survey was conducted by first locating the Cloyd Hinkle No. 1 well stake (Attachment C) and performing several traverses across the area, in both north-south and east-west directions (Attachment D, photographs with descriptions). The area of review was approximately 500 feet surrounding the well stake. Upon conclusion of the traverses the following observations were made:

- 1) No domestic wells, or direct evidence of domestic wells (rig roads, drill cuttings, water tanks, pressure tanks, etc) were noted.
- Vegetation becomes extremely dense to the east and south, making traverses in those directions difficult. In addition, the surface grade in the east and south directions increase significantly (to 10 degrees and greater) suggestion that these areas would be an unlikely location for a domestic well.
- 3) The open area to the west of the well stake (between the well stake and the highway) contains evidence of a man-made structure (a bulldozed area which could have been constructed either as a tank for livestock watering or for flood control). Siting a domestic well behind a structure would not be likely.

In addition, we visually surveyed the leased area in the vicinity of the Sultemeier No. 1 proposed well location in an attempt to verify any additional well locations that might exist, as suggested by persons who testified at the above-referenced hearing. Accompanying us during this visual survey was the landowner, Ms. Beth Sultemeier.

One well, with a 7 inch diameter metal casing was identified immediately south of the Sultemeier No. 1 drill pad. Upon measurement, this well contained a groundwater depth of 32.55 feet below the top of casing with an apparent total well depth of 52.15 feet below top of casing (Attachment E). Approach has obtained permission from Ms. Sultemeier to place a locking well cap on this well. In addition, our field survey revealed an old windmill well located approximately 500 feet east of the rig road and approximately 500 feet south of the drill pad. This well exhibited a groundwater depth of approximately 46.42 feet from below the top of casing. The total well depth could not be definitively determined as it appeared that the gauging instrument encountered the refusal by the top of the suspended pump. Finally, the well that was referred to as having a hand pump associated with it was not found, despite numerous traverses in the vicinity by both Ms. Sultemeier and me.


Conclusion

Given the above analysis, it is my professional opinion that neither the Cloyd Hinkle domestic water supply well or the Leo R. Rodelle domestic water supply well exist within the area of review and in the immediate vicinity of Approach's proposed Cloyd Hinkle No. 1 well. Such wells, if they indeed exist, may have been abandoned, buried, or otherwise exist in a location other than depicted in Exhibit 15 and away from the immediate vicinity of the Approach's proposed Cloyd Hinkle No. 1 well.

New Mexico Office of the State Engineer Water Right Summary

Back

DB File Nor: Primary Putpose: Primary Status: Total Acres: Total Diversion: Owner: CL	RG 62305 DOM 72-12-1 DOMESTIC ONE HO PMT Permit 0 3 OVD G. HINKLE	USEHOLD		
Documents on File				
Doc File/Act	Status 1 2 3 Trans Desc	From/To Acres Diversi	on Consumptive	
72121 05/31/1995	PMT APR CNV CONVERSION RG	623 T 0	3	
Point of Diversion POD Number RG 62305 RG 62305 2	(qtr are 1=NM 2=NE 3=SW 4=SE) (qtr are biggest to smallest Source Tws Rng Sec q q q -	X Y are in Feet Zone X Y C 410300 2058750 C 410300 2058750	UTM are in Meters) UTM Zone Resting Northing 13 360893 4058026 13 360893 4058026	Latitude Longitude Oth 000 000 000 000

http://iwaters.ose.state.nm.us:7001/iWATERS/WaterAdditionalReportsDispatcher

7/8/2008

New Mexico Office of the State Engineer Transaction Summary

Back

72121 All Applications Under Statute 72-12-1

Trn_desc:CONVERSION RG 62305 File Date:05/31/1995 Trn_nbr: 28611

Primary status: PMT Permit Secondary status: APR Approved Person assigned: null Applicant: CLOYD G. HINKLE

÷

Events

 •			
Date	Тура	Description	Comment
05/31/1995	CNV	Converted from Main Frame	

0

DB_File_Nbr Diversion Acres RG 62305 D 3

Consumptive Purpose of Use DOM 72-12-1 DOMESTIC ONE HOUSEHOLD Processed By *****

New Mexico Office of the State Engineer Point of Diversion Summary

Back

(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are biggest to smallest)

POD Number	Tws Rng Sec q q q	Zone X Y
RG 62305		C 410300 2058750
Driller Licence:	1289 AMERICAN DRILLING	
Driller Name:		Source:
Drill Start Date:		Drill Finish Date: 09/11/1995
Log File Date:	09/21/1995	PCW Received Date:
Pump Type:		Pipe Discharge Size:
Casing Size:		Estimated Yield:
Depth Well:	760	Depth Water:

http://iwaters.ose.state.nm.us:7001/iWATERS/WellAndSurfaceDispatcher?email_address=... 7/8/2008

.....

New Mexico Office of the State Engineer Point of Diversion Summary

Back

(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are biggest to smallest) POD Number Tws Rng Sec q q q Zone х Y RG 62305 2 C 410300 2058750 Driller Licence: 1289 AMERICAN DRILLING Driller Name: Source: Drill Start Date: 09/12/1995 Drill Finish Date: 09/15/1995 Log File Date: 09/21/1995 **PCW** Received Date: Pump Type: Pipe Discharge Size: Casing Size: Estimated Yield: Depth Well: 820 Depth Water: 820

New Mexico Office of the State Engineer Transaction Summary

Back

72121 All Applications Under Statute 72-12-1

Trn_desc:RG 69778 File Date:05/17/2000 Trn_nbr: 179978 Primary status: PMT Permit Secondary status: APR Approved Person assigned: ******* Applicant: LEROY A. MARTINEZ Events Date Type Description Comment Processed By Î 05/17/2000 Application Received ***** APP * 05/17/2000 FIN Final Action on application ***** 05/17/2000 WAP General Approval Letter ***** 04/11/2005 ARV Rec & Arch - file location RG 69778 Box: 841 ***** DB_File_Nbr Acres Diversion Consumptive Purpose of Use ٥ DOM 72-12-1 DOMESTIC ONE HOUSEHOLD RG 69778 0 3 Foint of Diversion X: 409700.0 Y: 2058600.0 C in theTIERRA AMARILLA RG 69778 Grant Remarks REPERMIT. INCOMPLETE WELL RECORD FILED 2/25/2000. ADDITIONAL INFORMATION REQUESTED OF DRILLER ON 5/8/2000. Conditions 4 :Use shall be limited to household, non-commercial trees, lawn and garden not to exceed one acre and/or stock use. Action of the State Engineer SEE GENERAL CONDITIONS OF APPROVAL Approval Code: A Approved Action Date: 05/17/2000 log due date: 05/17/2001 State Engineer: Thomas C. Turney By:

New Mexico Office of the State Engineer Transaction Summary

Back

72121 All Applications Under Statute 72-12-1 Trn_nbr: 148992 Trn_desc:RG 69778 File Date:05/07/1998 Primary status: EXP Expired Permit Secondary status: EXP Expired Person assigned: ****** Applicant: LEROY A. MARTINEZ Events Date туре Description Comment Processed By 節 ***** 05/07/1998 Application Received APP Final Action on application General Approval Letter ***** 05/12/1998 FIN ***** 05/12/1998 WAP Well Log Reminder Letter ****** WRM 04/15/1999 02/11/2000 EXP Expired Permit (well log late) ***** 窗 Well Log Received 02/25/2000 LOG ***** Late Well Log Filed (Exp Pmt) Rec & Arch - file location ***** 02/28/2000 TAT ***** 04/12/2005 ARV RG 69778 Box: 848 DB File Nbr Acres Diversion Consumptive Purpose of Use RG 69778 0 . 3 0 DOM 72-12-1 DOMESTIC ONE HOUSEHOLD Point of Diversion RG 69778 X: 409700.0 Y: 2058600.0 C in theTIERRA AMARILLA LAND Grant Conditions 1 4 :Use shall be limited to household, non-commerical trees, lawn and garden not to exceed one acre and/or stock use. Action of the State Engineer See general conditions of approval E, F, and H. Approval Code: A Approved Action Date: 05/12/1998 log due date: 05/12/1999 State Engineer: Thomas C. Turney By: ,

http://iwaters.ose.state.nm.us:7001/iWATERS/wr_RegisServlet1?email_address=hsmith@n... 7/8/2008

File Number: RG 69778

APPLICATION #5.00 IN ACCORDANCE 1+C 1-22679	MEXICO STATE ENGINEER OF N TO APPROPRIATE UNDERGROU E WITH SECTION 72-12-1 NEW ME	UND WATERS
1. APPLIČANT Name: LEROY A. M	ARTINEZ.	Work Phone: 5057561050
Contact:		5057561050
Address: P. O. BOX	202	
City: <u>TIERRA AMA</u>	RILLA	
2. LOCATION OF WELL (E thru		
A1/41/4 in <u>Rio Arriba</u> (1/4 Section: Township County.	: Range:N.M.P.M.
B. X = <u>409700</u> fee <u>Central</u> Zone in the U.S.G.S. Quad Map	et, y = 2058600 fee TIFRRA AMARILLA LAND Err	t, N.M. Coordinate System Grant.
	File Number if existing we	
D. On land owned by:	· · · · · · · · · · · · · · · · · · ·	
E. Tract No, Mag	No of the	
	No of Unit/Tract Subdivision recorded in	
G. Latitude:	Longitude:	
H. Other:		
3. USE OF WATER (check use app	4	
Livestock watering.		
Note: If any of the of business or use explanations sectio	under item 5 of the addition	d, give the name and hature onal statements or
<pre> More than one house exceed a total of o</pre>	hold, non-commercial trees, ne acre.	, lawns and gardens not to
	ry purposes and the irrigat awns not to exceed one acre n.	
Prospecting, mining resources.	or drilling operations to	discover or develop natural
Construction of pub	lic works, highways and roa	ads.
Trn Desc: $\frac{l_6}{05/17/20}$ Log Due Date: $\frac{05/17/20}{05}$ Form: wr-01		e Number: <u>RG 69778</u> n Number: /79978

12.

.

1

lon

File Number: RG 69778

NEW MEXICO STATE ENGINEER OFFICE APPLICATION TO APPROPRIATE UNDERGROUND WATERS IN ACCORDANCE WITH SECTION 72-12-1 NEW MEXICO STATUTES

4. WELL INFORMATION (Change, Repair, Drill, Test, Supplement)

Name of well driller and driller license number: WD 1113 Ernest B. Well Drilling_______ __Approximate depth 350 feet; Outside diameter of casing 5______ inches. Change Location of existing well or replacement well Repair or Deepen: ____ Clean out well to original depth ____ Deepen well from _____ to ____ feet ____ Other Drill and test a well for ______use. _____ Supplemental well 5. ADDITIONAL STATEMENTS OR EXPLANATIONS: EAT (()) REPERMIT. INCOMPLATE WELL RECOND FILED 2-25-2000 ADDITIONIN INFORMATION REQUESTED OF DRILLER ON 5/8/2000 **ACKNOWLEDGEMENT FOR NATURAL PERSONS** I, Leroy A. Martinez _____ affirm that the foregoing statements are true to (Please Print) the best of my knowledge and belief, By: Signature Signature KG 69 File Number: RG 69778 Trn Desc: Trn Number: 179978 Log Due Date: 05 2001

Form: wr

NEW MEXICO STATE ENGINEER OFFICE APPLICATION FOR PERMIT TO USE UNDERGROUND WATERS IN ACCORDANCE WITH SECTION 72-12-1 NEW MEXICO STATUTES

GENERAL CONDITIONS OF APPROVAL (A thru I)

- A The maximum amount of water that may be appropriated under this permit is 3 acre-feet in any year.
- B The well shall be drilled by a driller licensed in the State of New Mexico in accordance with Section 72-12-12 New Mexico Statutes Annotated. A licensed driller shall not be required for the construction of a driven well; provided, that the casing shall not exceed two and three-eighths (2 3/8) inches outside diameter (Section 72-12-12).
- C Driller's well record must be filed with the State Engineer within
 10 days after the well is drilled or driven. Well record forms
 will be provided by the State Engineer upon request.
- D The casing shall not exceed 7 inches outside diameter except under specific conditions in which reasons satisfactory to the State Engineer are shown.
- E If the well under this permit is used at any time to serve more than one household or livestock in a commercial feed lot operation, or for drinking and sanitation purposes in conjunction with a commercial operation, the permittee shall notify the State Engineer Office in writing.
- F In the event this well is combined with other wells permitted under Section 72-12-1 New Mexico Statutes Annotated, the total outdoor use shall not exceed the irrigation of one acre of non-commercial trees, lawn, and garden, or the equivalent outside consumptive use, and the total appropriation for household and outdoor use from the entire water distribution system shall not exceed 3 acre-feet in any year.
- G If artesian water is encountered, all rules and regulations pertaining to the drilling and casing of artesian wells shall be complied with.
- H The amount and uses of water permitted under this Application are subject to such limitations as may be imposed by the courts or by lawful municipal and county ordinances which are more restrictive than applicable State Engineer Regulations and the conditions of this permit.

Trn Desc: <u>RG 69778</u> Log Due Date: <u>05/17/2001</u> Form: wr-01 page: 1

File Number: <u>RG 69778</u> Trn Number: <u>179978</u>

NEW MEXICO STATE ENGINEER OFFICE APPLICATION FOR PERMIT TO USE UNDERGROUND WATERS IN ACCORDANCE WITH SECTION 72-12-1 NEW MEXICO STATUTES

GENERAL CONDITIONS OF APPROVAL (Continued)

I The permittee shall utilize the highest and best technology available to ensure conservation of water to the maximum extent practical.

SPECIFIC CONDITIONS OF APPROVAL

- 4 Use shall be limited to household, non-commercial trees, lawn and garden not to exceed one acre and/or stock use.
- LOG This permit will automatically expire unless the well RG 69778 is completed and the well record filed on or before 05/17/2001.

SEE GENERAL CONDITIONS OF APPROVAL

ACTION OF STATE ENGINEER

This application is approved for the use indicated, subject to all general conditions and to specific conditions listed above.

Witness my hand and seal this <u>17</u> day of <u>May</u> A.D., <u>2000</u>

Thomas C. Turney , State Engineer

7-By: ERIN S. TRUJIĽ

Log		RG 69778 05/17/2001 wr-01	er: <u>RG 69778</u> er: <u>179978</u>

STATE ENGINEER OFFICE

5_-

÷

WELL RECORD

Section	I.	GENERAL	INFORMATION	
		-		

l was drille	d under Permit	NoR	6 697-	78	and is located	in the:		
a	_ % %	¥	¼ of Sc	ction	Township	Range		N.M.P.M
			·					
	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14							
						iystem Cientr		
					•	License NoW		
dress <u>30 1</u>	IN. Asl	1 51	A.ztec.	Nm 8-	1410-21	86		
vation of la	nd surface or			at well	l is	ft. Total depth of	well3	S (
npleted we	11 IS 📶 S					upon completion of	weit0	
Denth	in Fect	Sec	5		L-BEARING ST		Estimated	Yield
From	То	in Feet		Description of \	Vater-Bearing F	ormation	(gallong per	
110	115	5'	Sa	nd			Ę.	
215	230'	15	5	and			Ŝ	
310	330	20'	5	and			E	
							0	<u>US</u>
	L	i		1.050000		l_		Ğ
Diameter	Pounds	Threads		n 3. RECORD	Length .	Type of Shoe	Perfe	orations
(inches)	per foot	per in.	Тор	Bottom	((eer)		From	To
978	36#	N/A	+ 70"	23'	24'	Drive		160
5'	PVC_	gha	+ 20	350	352'	Are up	140	260
			1			•	310	330
		Secti	on 4. RECO	RD OF MUDDI	NG AND CEME	INTING		
Depth From	in Feet	liole Diameter	Sacl		bic Feet Cement	Method o	of Placement	
80'	. 350'	83/4/5	in c	adre dais	2	1-3/2 4		
	-	0-74/5	11. 1	uses curves	a	ds 3/2 mix		
70	80	4 3 9	Lion 6	neres !!	Senton	,	0 F	- <u>8</u> 3
20'	. 70'	205	facles ,	portlan	d carlo	nt		
			Sectio	n 5. PLUGGIN	g record		25	<u> Ray</u>
	actor		<u>`</u>					高望
	od bi				No	Depth in Fee Top Bo	ttom No	ubar Her f Grant
e Welt Plug ging appro	ed							8
SPUIP styles		State line	inger Denne		$-\frac{2}{3}$			
			ineer Represe					
	2-25-	1000	FOR USE	OF STATE EN	GINEER ONLY	Tierra	Aman	114
e Received	A 1.3							

÷

 ϕ

	in Feet	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CERTIFICATION OF A CONTRACT OF A
From	То	Thickness in Feet	Color and Type of Material Encountered
0	24	24'	surface clay/chillie - rock - shale
24'	110'	86'	Shale
110	115'	5'	sand
115'	215	100'	shale
215	230'	15'	Sand
230'	315'	85'	shale
315'	330'	15'	sand
330	350'	15'	shale
			<u> </u>
			· · · · · · · · · · · · · · · · · · ·
` ,	<u> </u>		······································
	<u>-</u>		
			:
			<u>, 410</u>
	· · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
<u> </u>			
<u> </u>			
·			
<u></u>	· · · · · · · · · · · · · · · · · · ·		·
		l ł	

Section 7. REMARKS AND ADDITIONAL INFORMATION

Drilled the additional size for storage capacity Bast quifer lower zone.

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Brierd. Bu

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this fc is used as a plugging record, only Section f(a) is Section 5 need be completed.

V

- - -

428003 205(1573 13 366260 4057763 425508 2057719 13 366810 4057663 425508 2057719 13 366897 4055763 426804 2052231 13 365897 4055974 426804 2052231 13 365897 4055974 415773 2061756 13 365172 4058913 417738 2061756 13 365172 4058913 410000 2051600 13 360893 4058006 410000 2058760 13 360893 4058026 400700 2058760 13 360893 4058026 400700 2058760 13 360893 4058026	Owner	Well TD Wat	Er DEPTH	Use	DB File NBR	第日 NS	Diversion POD	2-	e zone	××	JTM Zone Easting Nort	Vorthing Start Date	Start Date Finish Date
NO.1 IRR SD 6370 0 C 42268 2057719 13 364610 4057665 ZAR NRT SD 6370 C 42268 2057719 13 364610 4057655 ZAR NRT SD 6370 C 426804 2052231 13 365897 4055974 NRT SD 5383 1 0 <sd< td=""> 5383 C 426804 2052231 13 365897 4055974 NRT SD 5383 1 0<sd< td=""> 5383 C 426804 2052231 13 365897 4055974 ZAR NRT SD 5383 4 70 SD 5383 4055974 13 365897 4055974 MIL SD 5383 4 70 SD 5383 4055974 555974 555974 4555974 ZAR MIL RG 53837 4 70 SD 555997 555997</sd<></sd<>	PALMA LOPPACHER			MUL	RG 817	740	3 RG	81740	υ			5769	
ZAR INRT SD 637/0 1 0 SD 637/0 2 42/500 4057713 13 364610 4057665 INRT SD 5383 1 0 SD 5383 C 425604 2052231 13 365697 4055974 INRT SD 5383 2 0 SD 5383 C 425604 2052231 13 365697 4055974 INRT SD 5383 2 0 SD 5383 C 425604 2052231 13 365697 4055974 INRT SD 6383 3 0 SD 5383 C 425604 2052231 13 365697 4055974 SD SD 5383 4 0 SD 5383 4055974 4055974 SD SD SD SD SD SD 4055974 4055974	NUTRITAS DITCH NO. 1			IRR	ខ្ល	970	0 80	6370	o		13 364610 405	7663	
IRR ISD 6383 0 SD 6383 1 355697 4055974 NRT SD 6383 1 0 SD 6383 2 426804 2052231 13 355997 4055974 ZAR NRT SD 6383 2 0 SD 6383 2 426804 2052231 13 355997 4055974 ZAR NRT SD 6383 3 0 SD 6383 2 426804 205231 13 355997 4055974 ZAR NRT SD 6383 4 - 0 SD 6383 2 426804 205231 13 365997 4055974 ZAR NRT SD 6383 4 - 0 SD 5383 2 426804 2052231 13 365997 4055974 ZAR SD JS 65897 36597 365973 4056906 917127003 365917	AGRIPINA G. SALAZAR			NRT	ខ្ល	370 1	0 SD	6370	υ		13 364610 405	7663	
NRT SD 5383 1 0 SD 5383 2 4 26804 2052231 13 365897 4055974 ZAR NRT SD 6383 3 0 SD 6383 5 0 SD 6383 4 55897 4055974 ZAR NRT SD 6383 3 0 SD 6383 5 0 SD 6383 4 55897 4055974 ZAR NRT SD 6383 3 0 SD 6383 5 426604 2052231 13 365897 4055974 JON RG 9011 RG 63448 C 426604 2052231 13 374085 4055974 JIL RG 80911 RG 63448 C 475602 13 374085 4055974 JILE NRT SD 6367 1 36517 4058913 35772 4058913 JIER NRT SD 63677 1 0 SD <td< td=""><th>V SENA DITCH</th><td></td><td></td><td>RR</td><td>8 8</td><td>383</td><td>0 80</td><td>6383</td><td>υ</td><td></td><td></td><td>5974</td><td></td></td<>	V SENA DITCH			RR	8 8	383	0 80	6383	υ			5974	
NRT SD 6383 2 0 SD 6383 2 0 SD 6383 2 45604 2052231 13 365697 4055974 ZAR NRT SD 6383 3 0 SD 6383 C 426804 2052231 13 365997 4055974 ZAR MUL RG 63833 4 0 SD 6383 C 426804 2052231 13 365997 4055974 ZAR MUL RG 69911 SI 6383 C 426804 2052231 13 365739 4055974 JILE MUL RG 69911 SIR C 416773 2061756 13 365773 4058913 JILE JIN SD 63677 0 SD 63677 C 417738 2061756 13 365773 4058913 JILE JIN RG 500H RG 500H RG 5061756	JOHN M. SENA			NRT	ខ្ល	383 1	0 80	6383	υ			5974	
AR NRT SD 6383 3 0 SD 6383 4 0 SD 6383 5 6 65673 13 365897 405597 4 5 65697 4055974 4055976 4056976 405702 4058913 4056976 4059712 <	FRANK C. SENA			NRT	к В	383 2	0 80	6383 6383	o			5974	
ZAR NRT SD 6383 4 0 SD 6383 4 50 255 3 7065 453573 2055734 13 37405 4055974 50 25 0 25 00011 50 5367 0 50713 13 367172 4056913 SHLEGEL NRT SD 6367 0 50 6367 0 417738 2061756 13 365172 4058913 SHLER 300 DOM RG 70010 C 417738 2061756 13 365172 4058913 MEIER 300 DOM RG 71070 C 417738 2061756 13 365172 4058913 MEIER 300 N RG 5233 Shallow C 417738 2061756 <	JOHN M. SENA			NRT	ខ	83 3	0 S 0	6383	ပ			5974	
MUL RG B5446 3 RG B5446 C 45373 2059734 13 374085 405515 50 25 DOM RG 80911 3 RG 13 37705 13 36773 4059065 9112/2003 9 11 26 25 DOM RG 80911 3 86172 4058056 9112/2003 9 11 8 3557 0 S367 0 S367 0 S367 4058913 365172 4058913 11 NRT S0 5367 1 0 S26 6367 C 417738 2061756 13 365172 4058913 11 NRT S0 6367 2 0 56 71070 C 417738 2061756 13 365172 4058913 11 NRT S0 6367 2 0 67 417700 0 417738 5061756 13 <t< td=""><th>AGRIPINA G. SALAZAR</th><td></td><td></td><td></td><td>~</td><td>383 4</td><td>, o SD</td><td>6383 :</td><td>o</td><td></td><td></td><td>5974</td><td>:</td></t<>	AGRIPINA G. SALAZAR				~	383 4	, o SD	6383 :	o			5974	:
50 25 DOM RG 80911 3 RG 80911 3 RG 80911 3 RG 90911 3 RG 90911 3 RG 90011 3 RG 90011 3 RG 90011 3 RG 90011 3 RG 9112.0003 3 RG 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.0003 9.12.003 9.12.0003 9.12.12.003 9.12.12.003 9.12.12.003 9.12.12.003 9.12.12.003 9.12.12.003 9.12.12.003 9.12.12.003 9.12.12.003 9.12.12.003 9.12.12.003 9.12.12	V RAY MER			MUL	Sc Sc	14G	3 RG	85446	υ			3154	
IRR SD 6357 0 SD 6567 C 417738 2061756 13 363172 4058913 GEL NRT SD 6367 1 0 SD 6367 C 417738 2061756 13 363172 4058913 R 300 DOM RD 5367 2 0 SD 6367 C 417703 2061756 13 363172 4058913 R 300 DOM RD 70 C 417703 2061756 13 365172 4058913 70 TB DOM RG 55240 3 RG 55240 3 RG 410000 2058330 13 356834 4058504 41511992 2 70 T8 DOM RG 55240 3 RG 55240 3 RG 405000 13 366834 4058505 40511992 2 70 T8 DOM RG <	C DAVID MORRISON	50	25	MOD	3G 80	911	3 RG	80911 Shallo	U ≩				9/13/2003
GEL INT SD 6357 1 D SD 6367 C 417738 2061756 13 363172 4058913 R 300 INT SD 6367 2 D SD C 417738 2061756 13 363172 4058913 R 300 INT SD 6367 2 D SD C 417738 2061756 13 35518 40559013 R 300 INT SD RG 710 C 417738 2061756 13 35518 40559013 35518 40559013 4055901932 4051092 4051092 4051092 4051092 4051092 4051092 4051092 4051092 4051092 4051092 4051092 4051092 4051092 4051092 4051092 40511992 4051092 4051092 4051092 4051092 4051092 4051092 4051092 4051092 4051092 4051092 40511992 40511992 4051092 4051092 40511992 40511	V LUJAN DITCH			IRR	с С С	367	0 80	6367					
INT SD 6357 2 0 SD 6367 C 417738 2061756 13 36313 4056304 7 70 100M RG 71070 C 419000 2051900 13 368896 4729/1992 70 70 18 700M RG 55240 3 RG 55240 3 RG 470000 2058750 13 360800 4071992 1921932 760 70 70 7 410000 20582500 13 360803 4058026 9/611992 1671932 1671932 1671932 1671932 1671932 1671932 1671932 1671932 1671932 1671932 1671932 1671932 1671932 1671932 1671932 1671932 1671932 1	ELLIS GORDON SCHLEGEL				_	367 1	0 SD	6367	υ			3913	
R 300 DOM RG 71070 R (1070) C 4(19000 205(800) 13 3855(8 4055904 70 70 18 DOM RG 55239 3 RG 55239 3 RG 40000 205(600) 13 360813 4055904 70 18 DOM RG 55240 3 RG 55240 3 RG 40000 2058300 13 360803 4058056 4/19/1992 2 760 760 0 RG 52345 3 RG 52345 13 360803 4058056 4/19/1992 2 760 820 820 8 RG 52345 C 410000 2058750 13 360803 4058026 9/11/1995 3 760 820 83778 53245 C 4100000 2058750 13 360803 4058026 9/11/1995 3 3 3 3 3 3	ASCENCION LABRIER			_	~	367 2	0 50	6367	υ			3913	
58 7 DOM RG 55.239 3 RG 55.239 3 RG 57.349 3 RG 410000 2051600 13 360813 4029826 4729/1992 2 70 18 500M RG 55240 3 RG 55240 3 RG 410000 2058300 13 350803 4051/992 2 70 18 500M RG 55240 3 RG 55240 3 RG 405700 13 350803 4058056 9/15/1995 2 700 100 RG 62305 3 RG 55240 3 RG 8/1992 16/1995 </td <th>WILLIAM H. SULTEMEIER</th> <td>300</td> <td></td> <td>DOM</td> <td>3G 710</td> <td>020</td> <td>0 RG</td> <td>71070</td> <td>υ</td> <td></td> <td>13 363518 405</td> <td>5004</td> <td></td>	WILLIAM H. SULTEMEIER	300		DOM	3G 710	020	0 RG	71070	υ		13 363518 405	5004	
T0 18 [DOM] R6 55240 3 RG 55240 Shallow C 410000 2058300 13 3 50800 4051992 40500 2058300 13 3 50800 4051058 9/// 5//95 20 2/// 5// 5 2/// 5	GILBERT A. ESPINOSA	58	7	MOD	35. 55.	239	3 RG		U ≥		13 360813 405	4	5/14/1992
760 DOM RG 62305 3 RG 62305 C 410300 2058750 13 360803 4058026 916/1995 1 20 820 820 820 76 62305 2 410300 2058750 13 360803 4058026 9171/1995 1 21 350 83 0508178 3 6 81718 5 1 3 360833 405705 9172/1995 1 3<	LEO R. RODELLE	70	18	MOG	3G 551	240	3 RG		U ≩		13 360800 405	4	4/24/1992
820 820 RG 6235 2 C 410300 2058750 13 360833 4058026 9/12/1995	CLOYD G. HINKLE	760				<u>8</u> 5	3 RG	62305	ပ		4		3/11/1995
3 RG 63778 Shallow C 409700 2058600 13 360710 4057963		820					RG	62305 2	o	. 4	4	თ	9/15/1995
	LEROY A. MARTINEZ	350	83	MOD		78	3 RG	69778 Shallo	U ≥		13 360710 405	_	

s.

PENGAD-Bayanne, M. J.

Attachment C- Proposed Hinkle Drill Site: Location Stake

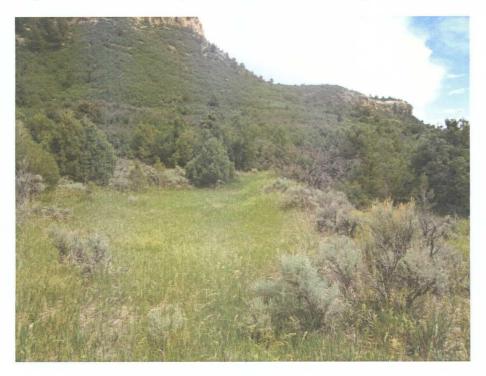
1. Cloyd Hinkle Site : proposed drilling location – picture

2. Cloyd Hinkle Site : proposed drilling location - picture 2

Attachment C- Proposed Hinkle Drill Site: Location Stake

3. Cloyd Hinkle Site: Traversing for water structures / existing wells from database (pic. 3)

Summary of Logbook field data for 7-2-08: Hinkle Site (For complete records see log book pages)


1500 Arrive at Hinkle Ranch:

- In efforts to locate water wells identified in the state engineer's database as existing near the proposed drilling location on this property, P Maggiore and H Smith traversed the area on foot.
 - Aerial photos and existing maps were consulted and visual clues in the area such as old road beds and de-forested areas were considered and investigated further visually.
 - No signs of existing wells or water containing structures were identified in the area surrounding the proposed drilling location.
- GPS coordinates of proposed drill site stake : 36 39' 28.940" N; 106 33' 19.031" W;
- 2358 m elevation MSL; WGS 1984.
- This GPS reading is annotated by the cautionary warning "poor satellite geometry."

1610 leave site

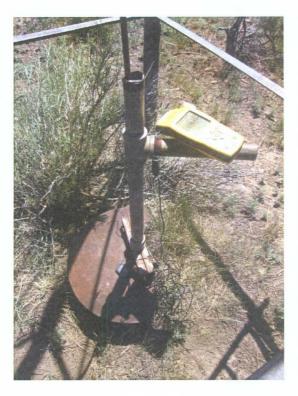
Attachment D- Proposed Hinkle Drill Site: Location Stake

1. Cloyd Hinkle Site: Traversing for water structures / existing wells from database (pic. 1)

2. Cloyd Hinkle Site: Traversing for water structures / existing wells from database (pic. 2)

Attachment E- Sultemeier No 1Proposed Hinkle Drill Site: and Sultemeier Windmill Site

 Existing Water Well at the edge of the Sultemeier Drill Pad: Casing: OD = 7"; ID= 6.5"; stick up = .75' from ground surface



2. (Top of drill pad is approximately 4 feet above top of this well casing)

Attachment E- Sultemeier No 1Proposed Hinkle Drill Site: and Sultemeier Windmill Site

3. Windmill fitted well location on the Sultemeier Ranch - GPS Coordinate Collection

4. Windmill fitted well location on the Sultemeier Ranch - sample location #2

Attachment E- Sultemeier No 1Proposed Hinkle Drill Site: and Sultemeier Windmill Site

<u>Summary of Logbook field data for 7-2-08: Sultemeier Ranch</u> (For complete records see log book pages)

0930: Meet Beth Sultemeier at her ranch to gain access and review water well locations and conduct visual survey of the area of concern

0955: Initial Well Identified at Drill pad site:

- GPS coordinates : 36 38' 32.345" N; 106 32' 49.942" W;
- 2330 m elevation MSL; WGS 1984.
- Casing OD = 7", ID = 6.5",
- water level =32.55' btoc,
- soft tag at bottom = 52.157 ' btoc,
- casing is .75' stick up from original ground surface
- top of new drill pad is 4' higher than top of casing
- well is 17' from existing road
- well is 8.5' from drill pad
- Sample ID = SltW-1 at 1103 on 7-2-08
- Collected : Total Cyanide, Metals, Fl, NO2, NO3, DRO, GRO, SVOCs, VOC's
- Samples collected with a bailer -1^{st} grab. No purging.
- Water is visually very clear no odor.
- Water level after sampling and 10 additional bailers of water collected in quick succession did not show any preliminary significant draw down in water column.
- Final water level = 32.77 'btoc
- 1115 Complete Sampling at Site 1

1130 Move to windmill site on the Sultemeier Ranch. This is the site of an old homestead. Structures other than windmill are no longer still standing, but debris remains here.

- GPS coordinates : 36 38' 17.652" N; 106 32' 43.036" W;
- 2318 m elevation MSL; WGS 1984.
- Casing OD = 7", ID = 6.5", threaded metal
- Water level =46.42' btoc,
- Bailer only submerges ~6" maximum till it strikes refusal. (Top of pump system possibly??),
- Casing is 7" stick up from original ground surface
- Sample ID = SItW-2 collected at 1228 on 7-2-08
- Collected : Total Cyanide, Metals, Fl, NO2, NO3, DRO, GRO, SVOCs, VOC's
- Samples collected with a bailer 1st grab. No purging.
- Water is visually heavy with black sediment, which increases in concentration with bailing.
- Water effervesces upon contact with HCl preservative
- Did not collect Total Cyanide or 1 of the SVOC bottles due to insufficient water volume. Water level in this well decreased over the course of sampling until there was no more recoverable water above the area of bailer refusal.

Brooks, David K., EMNRD

From: J. Scott Hall [SHall@montand.com]

Sent: Wednesday, July 09, 2008 8:15 AM

To: Brooks, David K., EMNRD

Cc: Ted J. Trujillo; Price, Wayne, EMNRD; Jones, Brad A., EMNRD

Subject: RE: Approach LLC - Basin Disposal

Mr. Brooks:

I am advised that Approach Operating will utilize the TNT environmental site located on Highway 537 south of Dulce, NM. If further information is needed, please let me know.

Thanks.

J. Scott Hall Montgomery & Andrews, P.A. P. O. Box 2307 Santa Fe, NM 87504-2307 shall@montand.com (505) 986-2646

THIS MESSAGE CONTAINS INFORMATION WHICH MAY BE CONFIDENTIAL AND PRIVILEGED. UNLESS YOU ARE THE ADDRESSEE (OR AUTHORIZED TO RECEIVE FOR THE ADDRESSEE), YOU MAY NOT USE, COPY OR DISCLOSE TO ANYONE THE MESSAGE OR ANY INFORMATION CONTAINED IN THE MESSAGE. IF YOU HAVE RECEIVED THIS MESSAGE IN ERROR, PLEASE ADVISE THE SENDER BY REPLY E-MAIL TO <u>shall@montand.com</u> AND DELETE THE MESSAGE. THANK YOU.

-----Original Message----- **From:** Brooks, David K., EMNRD [mailto:david.brooks@state.nm.us] **Sent:** Tuesday, June 24, 2008 10:41 AM **To:** J. Scott Hall **Cc:** Ted J. Trujillo; Price, Wayne, EMNRD; Jones, Brad A., EMNRD **Subject:** Approach LLC - Basin Disposal

Dear Scott:

I am advised by OCD's Environmental Bureau that Basin Disposal is not an approved facility for the waste from your client, Approach LLC's, proposed wells in Rio Arriba County that are the subject of Cases 13134 and 13141.

Please contact Brad Jones of the Environmental Bureau at 476-3487 for more information on this subject.

Sincerely

David K. Brooks Legal Examiner

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. - This email has been scanned by the Sybari - Antigen Email System.

This inbound email has been scanned by the MessageLabs Email Security System.