COSTS TO DRILL & COMPLETE CASEY STRAWN FIELD LEA COUNTY, NEW MEXICO

Surface Assembly 350' 13 3/8" O.D. Casing 4800' 8 5/8" O.D. Casing 11500' 5 1/2" O.D. Casing Production Packer 11500' 2 3/8" Tubing 13,900' 2 7/8" Linepipe Linepipe Installation Miscellaneous Trucking Roads, Dirt Work, Pits Contract Drilling 11500, @16.5 \$/Ft. Contract Drilling 3 Days @ 5000 \$/Day Completion Unit 10 Days @ \$1,500 Bits Salaries & Wages Mud & Additives Cementing & Services Water Perforating Acidizing Electric Logging & Surveys Miscellaneous Other Drilling Costs Tubing Inspection Casing Crews	25,000 10,000 80,300 145,800 8,000 55,400 13,900 9,000 15,000 15,000 15,000 50,000 5,000 75,000 65,000 30,000 10,000 20,000 10,000 15,000
Total	\$997,150

ECONOMICS DRILL AND COMPLETE CASEY STRAWN FIELD LEA COUNTY, NEW MEXICO

Drilling Costs - Tangible	\$453,700
Drilling Costs - Intangible	\$543,450
Reserves - Oil (BBLS)	214,000
Reserves - Gas (MCF)	214,000
Project Life (yrs)	24
Payout (yrs)	2.11
Present Worth Net Profit	\$2,101,087
Present Worth Index	3.11
Discounted Cash Flow Rate of Return (%)	46.33

CASEY (STRAWN) FIELD CALCULATIONS

MINIMUM DRAINAGE AREA

Case 7730 C+K Ex 16

The volumetric equation for ultimate recovery is:

ULTIMATE RECOVERY =
$$\frac{7758 \times A \times H \times \emptyset \times (1-S_W) \times R.F.}{B_O}$$

Solved for drainage area:

ACRES (drainage) = Ultimate Recovery x B_O

$$\frac{\text{Ultimate Recovery x B}_{O}}{7758 \times \text{H x } \emptyset \times (1-S_{W}) \times \text{R.F.}}$$

From log calculations, literature and fluid properties:

	Ø (%) <u>min-max</u>	H (ft.) min-max	S _W (%) min-max	R.F. (%) min-max	Ult. Rec. (MBO) min - max	B _O (bbl/bbl) min - max
West Knowles No. 4	6 - 13	21 - 59	12 - 30	12 - 25	665 - 865	1.4 - 1.6
Shipp '27' No. 1	6 - 8	12 - 55	7 - 22	12 - 25	400 - 470	1.4 - 1.6
Shipp '34' A No. 1	10 - 14	22 - 24	35 - 70	12 - 25	262 - 380	1.4 - 1.6
Shipp '34' A No. 2	. 6 - 10	16 - 28	6 - 32	12 - 25	262 - 380	1.4 - 1.6

For minimum acreage drained: ACRES = $\frac{\text{Ultimate recovery x B}_{\text{O}}}{7758 \times \text{H} \times \text{Ø} \times (1-\text{S}_{\text{W}}) \times \text{R.F.}}$ use min # in numerator use max # in denominator

West Knowles No. 4 minimum drainage area =
$$\frac{665,000 \times 1.4}{7758 \times 59 \times .13 \times (1-.12) \times .25} = 71 \text{ ACRES}$$

Shipp '27' No. 1 minimum drainage area =
$$\frac{400,000 \times 1.4}{7758 \times 55 \times .08 \times (1-.07) \times .25}$$
 = 70 ACRES

Shipp '34' A No. 1 minimum drainage area =
$$\frac{262,000 \times 1.4}{7758 \times 24 \times .14 \times (1-.35) \times .25}$$
 = 86 ACRES

Shipp '34' A No. 2 minimum drainage area =
$$\frac{262,000 \times 1.4}{7758 \times 28 \times .10 \times (1-.06) \times .25}$$
 = 72 ACRES

11/17-52