1 STATE OF NEW MEXICO 2 ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT 3 OIL CONSERVATION DIVISION 4 5 IN THE MATTER OF THE HEARING) CALLED BY THE OIL CONSERVATION) DIVISION FOR THE PURPOSE OF 6) CONSIDERING: CASE NO. 11,067 7) APPLICATION OF MERIDIAN OIL, INC.) 8 9 1 1994 10 11 12 REPORTER'S TRANSCRIPT OF PROCEEDINGS 13 EXAMINER HEARING 14 BEFORE: DAVID R. CATANACH, Hearing Examiner 15 August 18, 1994 16 Santa Fe, New Mexico 17 18 19 This matter came on for hearing before the Oil 20 Conservation Division on Thursday, August 18, 1994, at 21 Morgan Hall, State Land Office Building, 310 Old Santa Fe 22 23 Trail, Santa Fe, New Mexico, before Steven T. Brenner, Certified Court Reporter No. 7 for the State of New Mexico. 24 25 * * *

1

STATE OF NEW MEXICO ENERGY, MINERALS, AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

> CASE NO. 11067 Order No. R-10202

APPLICATION OF MERIDIAN OIL INC. FOR A CO2 INJECTION PILOT PROJECT, SAN JUAN COUNTY, NEW MEXICO.

ORDER OF THE DIVISION

BY THE DIVISION:

This cause came on for hearing at 8:15 a.m. on August 18, 1994, at Santa Fe, New Mexico, before Examiner David R. Catanach.

NOW, on this 29th day of September, 1994, the Division Director, having considered the testimony, the record, and the recommendations of the Examiner, and being fully advised in the premises,

FINDS THAT:

(1) Due public notice having been given as required by law, the Division has jurisdiction of this cause and the subject matter thereof.

(2) The applicant, Meridian Oil Inc., seeks authority to initiate a pilot carbon dioxide injection project in the Basin-Fruitland Coal Gas Pool within a portion of its Allison Unit in Township 32 North, Ranges 6 and 7 West, NMPM, San Juan County, New Mexico, by the injection of carbon dioxide into the coal seams through four proposed injection wells shown on Exhibit "A" attached hereto.

(3) The pilot project area is proposed to comprise the following described area:

TOWNSHIP 32 NORTH, RANGE 6 WEST, NMPM Section 19: All Section 30: N/2 TOWNSHIP 32 NORTH, RANGE 7 WEST, NMPMSection 24:E/2Section 25:NE/4

(4) The Allison Unit is a Federal exploratory unit initially comprising some 11,705 acres in New Mexico and some 2,069 acres in Colorado. Within New Mexico, the unit comprises portions of Township 32 North, Ranges 6 and 7 West, NMPM, San Juan County. The unit was formed in 1950 and is currently operated by Meridian Oil Inc.

(5) Further land testimony by the applicant indicates that the Basin-Fruitland Coal Participating Area (BFCPA) covers the entire Allison Unit area. The evidence further indicates that the interest ownership within the pilot project area is common.

(6) According to applicant's evidence and testimony, laboratory research and computer modeling have indicated that injection of carbon dioxide into coal formations may aid in the methane desorption process which may result in the recovery of a significantly greater amount of gas from the Basin-Fruitland Coal Gas Pool than would normally be recovered by pressure depletion.

(7) According to applicant's engineering evidence and testimony, the proposed carbon dioxide pilot injection project is an attempt to test the effectiveness of carbon dioxide as a displacing agent as described above.

(8) Applicant's testimony indicates that the injection of carbon dioxide into the coal seams may result in the recovery of an additional 1.1 BCF of gas from the pilot project area which may otherwise not be recovered, thereby preventing waste.

(9) The applicant proposes to inject into three distinct coal seam intervals located within the gross interval from approximately 3,058 feet to 3,376 feet.

(10) Applicant further proposes to inject approximately 2.5 MMCFG per day at an average surface injection pressure of approximately 1500 psi.

(11) The applicant's plan of operation for the pilot project area includes a period of six month continuous injection during which time no production will occur, followed by six months of continuous production during which time no injection will occur.

(12) The applicant proposes to utilize the following described wells as producing wells within the pilot project area:

WELL LOCATION
Unit M, Section 19
Unit I, Section 19
Unit A, Section 30
Unit G, Section 24
Unit H, Section 25

(13) Applicant's proposed pilot project, according to its testimony, should be completed within approximately four years.

(14) No offset operator and/or interest owner appeared at the hearing in opposition to the application.

(15) Approval of the proposed pilot carbon dioxide injection project will allow the applicant the opportunity to test a new process and technology which may ultimately result in the recovery of otherwise unrecoverable gas from the Basin-Fruitland Coal Gas Pool, thereby preventing waste, and will not violate correlative rights.

(16) The applicant should take all steps necessary to ensure that the injected carbon dioxide enters only the coal seam intervals and is not permitted to escape to other formations or onto the surface from injection, production, or plugged and abandoned wells.

(17) At the hearing the applicant requested that it be granted an exception to the requirement that the tubing in its injection wells be plastic-lined. To support its request, the applicant testified that the injected carbon dioxide gas will be dehydrated prior to being injected.

(18) The applicant did not present sufficient evidence to indicate that the injected fluid does not have corrosive properties.

(19) The applicant's Division Form C-108, presented as evidence in this case, indicates that the tubing in the proposed injection wells will be cement lined.

(20) The injection of carbon dioxide into the wells shown on Exhibit "A" should be accomplished through 2 7/8-inch cement or plastic lined tubing installed in a packer set within 100 feet of the uppermost injection perforation; an approved leak, detection device should be attached to the annulus in order to determine leakage in the casing, tubing or packer.

(21) Prior to commencing injection operations into the wells shown on Exhibit "A", the casing in each well should be pressure tested throughout the interval from the surface down to the proposed packer setting depth, to assure the integrity of such casing.

(22) The injection well or pressurization system should be initially equipped with a pressure control device or acceptable substitute which will limit the surface injection pressure to no more than 2000 psi.

(23) The Division Director should have the authority to administratively authorize a pressure limitation in excess of the pressure limitation described in Finding No. (22) above upon a showing by the operator that such higher pressure will not result in the fracturing of the injection formation or confining strata.

(24) The operator should give advance notification to the supervisor of the Aztec District Office of the Division of the date and time of the installation of injection equipment and of the mechanical integrity pressure tests in order that the same may be witnessed.

(25) The proposed carbon dioxide injection pilot project should be approved and the project should be governed by the provisions of Rule Nos. 701 through 708 of the Oil Conservation Division Rules and Regulations.

(26) Expansion of the pilot project should be approved only after notice and hearing.

IT IS THEREFORE ORDERED THAT:

(1) The applicant, Meridian Oil Inc., is hereby authorized to initiate a pilot carbon dioxide injection project in the Basin-Fruitland Coal Gas Pool underlying a portion of its Allison Unit in Township 32 North, Ranges 6 and 7 West, NMFM, San Juan County, New Mexico, by the injection of carbon dioxide into the coal seams through four injection wells shown on Exhibit "A" attached hereto.

(2) The pilot project area shall comprise the following described area:

TOWNSHIP	32 NORTH, RANGE 6 WEST, NMPM
Section 19:	All
Section 30:	N/2
FOWNSHIP	32 NORTH, RANGE 7 WEST, NMPM
Section 24:	E/2
Section 25:	NE/4

(3) The applicant shall take all steps necessary to ensure that the injected carbon dioxide enters only the proposed injection interval and is not permitted to escape to other formations or onto the surface from injection, production, or plugged and abandoned wells.

(4) Injection into the wells shown on Exhibit "A" shall be accomplished through 2 7/8-inch cement or plastic lined tubing installed in a packer set approximately within 100 feet of the uppermost injection perforation; an approved leak detection device shall be attached to the annulus in order to determine leakage in the casing, tubing or packer.

(5) The injection well or pressurization system shall be equipped with a pressure control device or acceptable substitute which will limit the surface injection pressure to no more than 2000 psi.

(6) The Division Director shall have the authority to administratively authorize a pressure limitation in excess of the above upon a showing by the operator that such higher pressure will not result in the fracturing of the injection formation or confining strata.

(7) Prior to commencing injection operations into the wells shown on Exhibit "A", the casing in each well shall be pressure-tested throughout the interval from the surface down to the proposed packer setting depth, to assure the integrity of such casing.

(8) The operator shall give advance notification to the supervisor of the Aztec District Office of the Division of the date and time of the installation of injection equipment and of the mechanical integrity pressure tests in order that the same may be witnessed.

(9) The applicant shall immediately notify the supervisor of the Aztec District Office of the Division of the failure of the tubing, casing or packer in any injection well, the leakage of gas from or around any producing well, or the leakage of gas from any plugged and abandoned well within the project area, and shall take such steps as may be timely and necessary to correct such failure or leakage.

(10) The subject project is hereby designated the Allison Basin Fruitland Carbon Dioxide Pilot Project, and the applicant shall conduct injection operations in accordance with Division Rule Nos. 701 through 708 and shall submit monthly progress reports in accordance with Division Rule Nos. 706 and 1115.

(11) Expansion of the pilot project shall be approved only after notice and hearing.

(12) Jurisdiction of this cause is retained for the entry of such further orders as the Division may deem necessary.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION Q Q WILLIAM J. LEMAY Director

EXHIBIT "A"

•

1

,

DIVISION ORDER NO. R-10202 ALLISON BASIN FRUITLAND CO2 PILOT PROJECT APPROVED INJECTION WELLS

Well Name	<u>Location</u>	<u>Unit</u>	S-T-R	Injection <u>Perforations</u>	Packer <u>Depth</u>	Tubing <u>Size</u>
Allison Unit No. 140	600' FSL & 785' FEL	ይ	19-32N-6W	3109′ - 3376′	3059'	2 7/8"
Allison Unit No. 141	1070' FSL & 800' FEL	ሲ	24-32N-7W	3067' - 3366'	3017'	2 7/8"
Allison Unit No. 142	1920' FNL & 850' FWL	ы	19-32N-6W	3059′ - 3326′	3009'	2 7/8"
Allison Unit No. 143	1205' FNL & 1880' FWL	ט	30-32N-6W	3058′ - 3315′	3008	2 7/8"

- -----

.

. . •

•

, ,

1	INDEX	
2		
3	August 18, 1994 Examiner Mearing	
4	CASE NO. 11,067	
5		DACE
6	APPEARANCES	3
7	APPLICANT'S WITNESSES:	
8	<u>ALAN ALEXANDER</u> Direct Examination by Mr. Kellahin	5
9	Examination by Examiner Catanach	14
10	<u>GREG JENNINGS</u> Direct Examination by Mr. Kellahin	16
11	Examination by Examiner Catanach	25
12	<u>CRAIG McCRACKEN</u> Direct Examination by Mr. Kellahin	29
13	Examination by Examiner Catanach	46
14	REPORTER'S CERTIFICATE	53
15	* * *	
16		
17	EXHIBITS	
18	Identified Admitted	
19	Exhibit 1 6 13, 46 Exhibit 2 6 -	
20	Exhibit 3 6 13 Exhibit 4 7 13	
21	Exhibit 5 7 25 Exhibit 6 7 46	
22	Exhibit 7 7 25	
23	* * *	
24		
25		

```
1
                        APPEARANCES
 2
 3
     FOR THE APPLICANT:
 4
     KELLAHIN & KELLAHIN
     117 N. Guadalupe
 5
     P.O. Box 2265
     Santa Fe, New Mexico 87504-2265
     By: W. THOMAS KELLAHIN
 6
 7
 8
     FOR AMOCO:
 9
     CAMPBELL, CARR, BERGE & SHERIDAN, P.A.
     Suite 1 - 110 N. Guadalupe
10
     P.O. Box 2208
     Santa Fe, New Mexico 87504-2208
11
     By: WILLIAM F. CARR
12
                                 * * *
13
14
15
16
17
18
19
20
21
22
23
24
25
```

1	WHEREUPON, the following proceedings were had at
2	1:08 p.m.:
3	EXAMINER CATANACH: At this time we'll call Case
4	11,067, which is the Application of Meridian Oil, Inc., for
5	a CO ₂ injection pilot project, San Juan County, New Mexico.
6	Are there appearances in this case?
7	MR. KELLAHIN: Mr. Examiner, I'm Tom Kellahin of
8	the Santa Fe law firm of Kellahin and Kellahin, appearing
9	on behalf of the Applicant, and I have three witnesses to
10	be sworn.
11	EXAMINER CATANACH: Additional appearances?
12	Will the three witnesses please stand to be sworn
13	in at this time?
14	MR. HAWKINS: Excuse me, Mr. Examiner
15	EXAMINER CATANACH: Sorry?
16	MR. HAWKINS: Bill Hawkins with Amoco. Our
17	attorney is not here right now, but we'd like to enter our
18	appearance in the case as well.
19	EXAMINER CATANACH: Is your attorney Bill Carr?
20	MR. HAWKINS: Yes, he is.
21	EXAMINER CATANACH: Where is he?
22	MR. HAWKINS: I don't know.
23	EXAMINER CATANACH: Okay.
24	Could I get the witnesses to stand and be sworn
25	in at this time?

1	(Thereupon, the witnesses were sworn.)
2	ALAN ALEXANDER,
3	the witness herein, after having been first duly sworn upon
4	his oath, was examined and testified as follows:
5	DIRECT EXAMINATION
6	BY MR. KELLAHIN:
7	Q. Mr. Alexander, would you please state your name
8	and occupation?
9	A. My name is Alan Alexander. I'm currently
10	employed as a senior land advisor for Meridian Oil, Inc.,
11	in their Farmington, New Mexico, office.
12	Q. As part of your duties as landman, have you been
13	involved as part of the Meridian area team to study the
14	facts and circumstances surrounding this Application?
15	A. Yes, sir, I have.
16	Q. Are you knowledgeable about the ownership and the
17	leasehold configurations within the area that we've
18	identified for this CO ₂ injection pilot project?
19	A. Yes, sir, I am.
20	Q. It's a portion of what's identified as the
21	Allison unit, is it not?
22	A. That's correct.
23	Q. And are you familiar with the contract documents
24	that are involved in that unit process?
25	A. Yes, sir.

5

1 MR. KELLAHIN: We tender Mr. Alexander as an expert landman. 2 EXAMINER CATANACH: Mr. Alexander is so 3 qualified. 4 5 Q. (By Mr. Kellahin) Mr. Alexander, let's have you 6 summarize for us how you've organized the hearing book so 7 that as we go through it the Examiner will know the 8 sequence of presentation. Α. Yes, behind Exhibit Number 1 we have included for 9 10 the Examiner a copy of our Application. 11 And attached to the Application is the C-108 form that we mailed out as part of our notice requirements and 12 sent to the Division. 13 14 Q. Now, the original C-108 that was mailed out to 15 the parties and filed with the Division is behind Exhibit Tab 1? 16 17 Yes, sir. Α. 18 Q. There have been some subsequent revisions and supplements to that C-108? 19 Α. That's correct. 20 And where would we find those changes? 21 Q. 22 We have included those changes behind Exhibit Tab Α. Number 2 in the book. 23 24 Q. All right, sir. What then do we find? Behind Exhibit Tab Number 3 we have provided land 25 Α.

plats, and they cover the project area. 1 2 And also we'll speak to the fact that there are some freshwater wells in this injection area that we would 3 4 like to talk about. Behind Exhibit Tab Number 4 we have included the 5 working interest ownership for the Allison unit, and those 6 7 are the parties --EXAMINER CATANACH: Excuse me, Mr. Kellahin, I'm 8 still on your commingling case. 9 10 Sorry. THE WITNESS: That's fine. 11 Behind Exhibit Tab Number 4, besides the list of 12 13 working interest owners, we have also included copies of our certified receipts, indicating the notices that we did 14 send out in this project for this hearing. 15 16 Behind Exhibit Tab Number 5, we are going to show and talk about the geologic discussion for the project 17 18 area. Behind Exhibit Tab Number 6 we have included the 19 reservoir engineering presentation for this afternoon's 20 21 hearing. 22 And behind Exhibit Tab Number 7, we have included a cross-section that covers the project area. 23 24 Q. (By Mr. Kellahin) Let's turn to the display 25 that's shown behind Exhibit Tab Number 3, first display,

7

it's a partial foldout.

1

I

2	Are you familiar with the Division's desire to
3	have a map of the project area under the C-108 processing
4	whereby within a two-mile radius of any injection well they
5	can locate and find any well that has been drilled?
6	A. Yes, sir.
7	Q. And have you accomplished that on this display?
8	A. Yes, sir, we have indicated the two-mile radius
9	from each of the injection wells. Those radiuses are
10	color-coded to match the injection wells so that you can
11	easily locate all of the wells that were within each
12	respective two-mile radius.
13	We've also included a radius for a half-mile
14	investigation around the wellbore.
15	And the other thing to be noted on this land plat
16	is the location of the freshwater wells in proximity to the
17	injection wells.
18	Q. There's a color code on the right margin that
19	shows the water well in a rectangle with a blue "W"?
20	A. That's correct.
21	Q. And then below that are the conventional symbols
22	that Meridian utilizes to identify the producing interval
23	of the various hydrocarbon wells?
24	A. That is correct.
25	Q. Let's focus on your efforts and Meridian's

efforts to identify and locate freshwater sources. 1 Yes, when we initially filed the Application, we 2 Α. 3 were using the USGS database for registered water wells. We did not find any in this area, and we so stated in the 4 Application. 5 However, upon sending out notices to all the 6 7 people involved, we became aware through their correspondence back to us that in fact there were some 8 9 water wells out in this area that were more than likely 10 unregistered water wells. At that time I went ahead and contacted the State 11 12 Engineering Office here in Santa Fe to confirm whether he 13 had any registered water wells on file. They do not, so I 14 sent out a survey team into the area of our switchers to survey the area and find any and all water wells that they 15 could. 16 As a result of that survey and some 17 correspondence that came back to us from the surface owners 18 19 who we sent certified letters to, we have located four 20 water wells that are in the area of these injector wells. 21 Q. Do we have any of those freshwater wells located within the area of review for any injection well? 22 Yes, three of the water wells fall within the 23 A. half-mile radius of two of the injector wells, and you can 24 25 see that on this land plat.

1	Q. All right. Where do we find those wells?
2	A. If you will notice up in Section 19 of 32 North,
3	6 West, up in the northwest quarter of the northwest
4	quarter, there are two water wells in very close proximity
5	to each other.
6	Q. That's in the area of review for the injection
7	well, 142?
8	A. Yes, sir, that's correct.
9	Q. And then when we look at injection well 141 to
10	the south and west of the first well
11	A. Yes, sir.
12	Q do you see 141? There is a freshwater well
13	there just to the west?
14	A. That is correct, in Section 24.
15	Q. As a result of that investigation, what is the
16	deepest total depth of any freshwater well within a half-
17	mile radius of investigation?
18	A. Within that radius, the deepest depth that we
19	were able to ascertain And again, this information was
20	provided by the land owners; there are no official records
21	of the depths of these wells. They indicated that those
22	wells the deepest one, which is located in Section 24 of
23	32 North, 7 West, is 245 feet deep.
24	Q. Despite the fact that we're going to be injecting
25	CO ₂ , have you advised your engineering personnel within

1	your team of the deepest known freshwater sources, and have
2	they correspondingly adjusted the casing surface casing
3	program for their injection wells?
4	A. Yes, we have.
5	Q. So in each instance our surface casing string for
6	an injection well is substantially below the deepest known
7	freshwater source?
8	A. That's correct.
9	Q. What's the status of any objections or concerns
10	by any of the parties notified of your request?
11	A. We have not had any objections to the hearing. I
12	think that was clarified. One initial letter from one of
13	the surface owners could have been interpreted as an
14	objection, but he followed up with another letter making it
15	very clear that he did not object to the Application as
16	long as we did the appropriate water testing, which we are
17	doing.
18	Q. All right. You're referring to Mr. and Mrs.
19	Lawrence Kelly?
20	A. That is correct.
21	Q. As of today, are you aware of any objection from
22	anyone with regards to the approval of this Application?
23	A. No, sir, I am not.
24	Q. Let's turn to the next display, past the locator
25	map within this same tab section. What's the next display?

That display is also a map, and we have obtained 1 Α. a survey from one of the survey people that we use in the 2 field to ascertain the exact locations of those water wells 3 for our own records, since they are not documented anywhere 4 5 else, and this map represents an adequately -- represents the distance from each of our injector wells to each of 6 these water wells that are in this area. 7 8 Q. The carbon dioxide injection project, would that 9 be considered an enhanced or a secondary recovery project procedure? 10 11 Α. We consider it to be an enhanced recovery 12 procedure. 13 Q. And would that be conducted pursuant to the existing documents and agreements in the Allison unit? 14 15 Yes, sir, it would be. Α. Within that unit concept, have you notified the 16 0. 17 interest owners within the unit that would participate in this production? 18 19 Α. Yes, we have. 20 And have you received any objection from those Q. interest owners? 21 22 Α. None so far. 23 Is there a portion of the display book where we Q. can find a summary of the ownership? 24 Yes, sir, behind Exhibit Tab Number 4 I have 25 Α.

1	included a listing of the Allison unit working interest
2	owners for the Fruitland Coal participating area at this
3	point in time.
4	Q. Behind that summary, what is next contained in
5	the exhibit book?
6	A. We have included Xerox copies of our certified
7	mailing cards for each of the parties that we did contact,
8	and that also includes the surface owners that were
9	contacted.
10	Q. Okay, the certificate that contains my signature
11	is a notification of the surface owners at each injection
12	well location?
13	A. That is correct.
14	Q. And plus any operator within a half-mile radius?
15	A. Yes, that's correct.
16	Q. Except that would be Meridian, I guess.
17	A. That is Meridian.
18	Q. All right. So there's no other operator to
19	notify?
20	A. There are no other operators.
21	MR. KELLAHIN: That concludes my examination of
22	Mr. Alexander.
23	We move the introduction of the exhibits behind
24	Exhibit Tab 1, 3 and 4.
25	EXAMINER CATANACH: Exhibits 1, 3 and 4 will be

1	admitted as evidence.
2	EXAMINATION
3	BY EXAMINER CATANACH:
4	Q. Mr. Alexander, what do you actually In your
5	opinion, what is the project area for this project?
6	A. The project area for this project, we will
7	describe to you in some later testimony.
8	If you wanted to take just a very quick look, and
9	it will be covered again in more detail behind Exhibit Tab
10	Number 6, and it's the second page behind Exhibit 6, gives
11	a very good locator map for you, and that locator map shows
12	the Allison unit. This project is fully located within the
13	boundaries of the Allison unit.
14	And then if you would also go back four or five
15	pages till you get back to an exhibit that says, Allison
16	Unit Injection Project Area, that will further delineate
17	the project area for you. It's in the green rectangle, and
18	that is our project area.
19	Q. Approximately two sections, a little bit more
20	than two sections?
21	A. Yes, sir, approximately.
22	Q. Okay. Mr. Alexander, within that project area,
23	is that all included in the Fruitland Coal participating
24	area?
25	A. Yes, sir, within the Allison unit, correct.

 Q. That parties that are listed behind Tab Exhibit Number 4, those are the working interest owners within th Fruitland Coal PA? A. Yes, sir, that's correct. Q. That's not necessarily just in the project area thatle in the whole bldiese unit? 	e ,
 Number 4, those are the working interest owners within th Fruitland Coal PA? A. Yes, sir, that's correct. Q. That's not necessarily just in the project area thatle in the whole bldiger unit? 	e ,
 Fruitland Coal PA? A. Yes, sir, that's correct. Q. That's not necessarily just in the project area that!s in the whole bllicer writ? 	,
 A. Yes, sir, that's correct. Q. That's not necessarily just in the project area that! 	,
5 Q. That's not necessarily just in the project area	,
c that la in the shale bllies whit?	
o chat's in the whole Allison unit?	
7 A. It's in the whole participating area, and that	is
8 exactly also the same interest that would be in the proje	ct
9 area. The Fruitland Coal participating area extends and	
10 covers all acreage within the Allison unit.	
11 Q. The Fruitland Coal PA?	
12 A. Yes, sir.	
Q. So in essence, everything within the project ar	ea
14 is commonly owned?	
15 A. Yes, sir.	
16 Q. Is that federal acreage?	
17 A. The acreage that the project area covers?	
18 Q. Right.	
A. I believe that it is. I have a map with me whi	ch
20 I could verify that for you. I don't have it up here.	
Q. I'm not sure that's entirely important. I was	
22 just curious.	
23 Have you submitted to your various working	
24 interest owners a participation plan in the project?	
A. Yes, sir, we have. That was mailed out on July	

-

1	10th to each of the working interest owners.
2	Q. Is everybody participating, or
3	A. We're still receiving elections at this point to
4	participate or not.
5	Q. But no objections?
6	A. No objections to this point.
7	EXAMINER CATANACH: Okay. I have nothing further
8	of this witness, Mr. Kellahin.
9	MR. KELLAHIN: Call at this time Mr. Greg
10	Jennings.
11	<u>GREG JENNINGS</u> ,
12	the witness herein, after having been first duly sworn upon
13	his oath, was examined and testified as follows:
14	DIRECT EXAMINATION
15	BY MR. KELLAHIN:
16	Q. Mr. Jennings, would you please state your name
17	and occupation?
18	A. Yes, my name is Greg Jennings. I'm currently
19	employed as a senior geologist for Meridian Oil, Inc., and
20	located in Farmington, New Mexico.
21	Q. Mr. Jennings, on prior occasions have you
22	testified as an expert witness before the Division?
23	A. Yes, I have.
24	Q. Describe for us your involvement in this project
25	as a geologist.

1	A. Well, as you've heard in previous testimony,
2	we're divided into geographical areas. We have teams
3	assigned to those geographical areas, and I'm the geologist
4	that's responsible for the area that includes the Allison
5	unit and, as such, have been actively involved with this
6	project.
7	Q. As part of that responsibility, have you made
8	yourself informed on the geology available concerning the
9	coal gas seams within the project area?
10	A. Yes, I have.
11	Q. And have you taken that information and reduced
12	it to some geologic illustrations for the Examiner?
13	A. Yes.
14	Q. Let me have you turn to the information behind
15	Exhibit Tab Number 5 and ask you if this represents your
16	work product.
17	A. Yes, it does.
18	Q. In addition, there is a cross-section that's
19	contained in the back of the exhibit booklet. Is that also
20	your work product?
21	A. That's correct.
22	Q. And based upon that work product, do you have now
23	geologic conclusions and opinions concerning the
24	feasibility geologically of this injection project?
25	A. Yes, I do.

MR. KELLAHIN: We tender Mr. Jennings as an 1 2 expert geologist. 3 EXAMINER CATANACH: Mr. Jennings is so qualified. 0. (By Mr. Kellahin) Let's take the isopach, which 4 is the first display behind Exhibit Tab 5. 5 Α. Right. 6 7 Tell us what you're mapping when we look at that Q. isopach. 8 This is an isopach of the total net coal or total 9 Α. Fruitland Coal over the area depicted. 10 The basic purpose of the map is to show a very 11 uniform amount of coal. You might notice the injection 12 wells are spotted on this map. They're depicted as red 13 triangles right in the center, 140 through 143, and in the 14 project area the coal thickness ranges from approximately 15 16 40 feet to approximately 50 feet. One of the reasons that this area was picked for this project is that the coal 17 reservoir is very continuous. 18 Within the proposed injection project area, do 19 Q. you have an opinion about the continuity of that coal and 20 21 the coal characteristics, to whether or not it is reasonably uniform? 22 Yes, I do. The coal is -- it will -- When we 23 Α. look at the cross-section exhibit momentarily, we'll see 24 this in a little better detail, but the coal is divided 25

18

1	into three basic coal seams, and those coal seams are
2	continuous across the project area and have only minor
3	variations in thickness, and it does act as one continuous
4	reservoir.
5	Q. Geologically, why is that of significance to you
6	when you and the engineers are trying to construct a pilot
7	project for CO ₂ injection into the coal gas?
8	A. Well, the significance is that we have complete
9	confidence that the CO ₂ gas, when it's injected into the
10	coal, will stay in the coal.
11	Q. Let's turn to the structure map. The structure
12	map is identified as being on the "base of middle coal
13	zone". What does that mean?
14	A. Well, as I mentioned previously, we've identified
15	three major coal packages or three major coal seams that
16	were added together to come up with the total coal
17	thickness. Those are the zones which we will be injecting
18	into. Those are the main producing zones in really the
19	primary and only producing zones in the Allison unit. And
20	we simply picked the base of the middle coal zone to draw a
21	structure map.
22	Q. Having drawn the structure map, is there a
23	geologic conclusion concerning structure that's of
24	significance to us when we look at approving this pilot
25	project?

1 Α. Yes, the important thing to note is that we have a relatively uncomplicated structural setting. Once again, 2 3 the injection wells are located on the map for reference as red triangles, and what you see is just monoclinal dip to 4 5 the northeast, no major structural complications, no indications of any faulting or anything which would cause a 6 7 separation of the reservoir. Do you see any faulting or other geologic event 8 0. that would provide a conduit or an opportunity for the CO₂ 9 injected into the coal then to leave the coal reservoir? 10 No, definitely not. 11 Α. Let's turn to the cross-section. 12 Q. The cross-section is back behind Exhibit 7, which 13 Α. is now unfolded before you. 14 15 Any particular significance of the selection of Q. the wells in the cross-section and the orientation of the 16 cross-section from northeast to southwest? 17 Well, we've constructed many cross-sections 18 Α. through this project area, and we have selected this cross-19 section to show at this hearing for a couple reasons. 20 One, once again, looking at the map, you can see 21 that it runs right through the center of the project area, 22 and it is very representative of the coal stratigraphy in 23 24 the project area. 25 Q. When we look at the existing coal gas wells in

1 the project area, how many do we have? Α. I'd need to flip back to the -- Are you talking 2 3 about the number of producing wells? Q. Yes, sir. 4 I need to flip back to the exhibit that shows the 5 Α. project area just to make sure I don't give you a wrong 6 well count. 7 As we've already discussed, we have four 8 injection wells and five wells which will be producing 9 wells inside the project area. 10 11 Q. When we look at those five producing wells that 12 are currently in the project area and compare it to the cross-section, in what particular coal members are those 13 wells perforated? 14 Yes, that's the other important aspect that we 15 Α. wanted to draw out of this cross-section. 16 As you can see, the main coal package can be 17 subdivided into three coal seams, and those are confined to 18 an interval approximately 100 feet total thickness, and you 19 can really see that all the way across the cross-section. 20 Those three coal seams are the zones which we're 21 going to inject into, which we're going to perforate and 22 inject carbon dioxide into. 23 Are they currently perforated in the existing 24 0. producing coal gas wells in the project area? 25

1 Α. Yes, those are the same coal zones that are open 2 and completed and producing in the wells in the project 3 area. 4 So the Examiner will have a marker point, if you Q. will, find a well on your cross-section that is typical and 5 give us a footage that would represent the approximate top 6 7 and bottom of the injection interval. Α. Well, let's just go to the Allison Number 132, 8 9 which is located right in the center of your cross-section. 10 It's a little short log, and it's located in the northeast of Section 25, 32 North, 7 West. You can also see it on 11 12 the map. It is in the project area. It is one of the wells that will be affected by the injection project, and 13 the top of the coal is at approximately 3120, and the base 14 15 of the coal is at approximately 3170. 16 You might just note while you're looking at the cross-section, if you look to the left of that well, you'll 17 see that there are a couple of small, very thin coal 18 stringers way down deep in the section. Those are very 19 20 insignificant coal stringers in the Allison unit area. 21 They are not producing in the coal wells in the project area, and they will not be injected into. 22 23 ο. Apart from the engineering reasons that support the conclusion that the CO_2 will be confined within those 24 three main coal seams, are there geologic boundaries, 25

1	vertical boundaries on the top of the coal and on below
2	the coal, that will confine the CO ₂ ?
3	A. Yes.
4	Q. Describe or illustrate what those are.
5	A. I think the easiest way to understand what I'll
6	be telling you is just to look at the Burnt Mesa Number 1,
7	which is right to the left of the Allison 132 on the cross-
8	section, and you essentially have shaley members above and
9	below the coal seams.
10	Occasionally you will find a little bit of
11	sandstone in some of those intervals. Those sandstones and
12	those shales are very tight, very low permeability. It's a
13	drastic contrast to the permeability of the coal. There
14	are definite vertical barriers, and that will result in the
15	CO ₂ remaining in the coal reservoir.
16	Q. Is there any Fruitland sand gas production or
17	Pictured Cliffs sand gas production within the immediate
18	proximity of the coal seam within the project area?
19	A. No, there is no Fruitland sand production or
20	Pictured Cliffs production in the entire Allison unit.
21	Q. Is there a reason for that?
22	A. It's because the reservoir is so tight and has
23	such low permeability.
24	Q. So when we're looking for that kind of
25	relationship between the coal and the PC sand and the

1	Fruitland sand, that exists in other parts of the Basin but
2	is not present in the Allison unit?
3	A. That's correct.
4	Q. In addition to this specific work, did you also
5	assist the engineering members of your area team in the
6	formulating of geologic interpretations for their reservoir
7	modeling for the project area?
8	A. Yes.
9	Q. And
10	A. This project has actually been worked on by
11	myself and one other geologist.
12	Q. When Mr. McCracken starts describing his
13	engineering work, we're going to see some geologic
14	interpretations. Do those represent conclusions for which
15	you agree?
16	A. Definitely.
17	Q. And that work is either your work or the work of
18	others that you have reviewed?
19	A. That's correct.
20	MR. KELLAHIN: That concludes my examination of
21	Mr. Jennings.
22	We move the introduction of his geologic exhibits
23	contained within Exhibit 5.
24	EXAMINER CATANACH: Exhibit 5 will be admitted as
25	evidence.

1	THE WITNESS: We need 5 and
2	MR. KELLAHIN: Five and 7, Mr. Examiner.
3	EXAMINER CATANACH: Five and 7 will be admitted
4	as evidence.
5	EXAMINATION
6	BY EXAMINER CATANACH:
7	Q. Mr. Jennings, these are the only coal-seam
8	intervals within the unit; is that correct? I mean, the
9	three that you've described here, those are the main
10	intervals?
11	A. Right. And as you can see on the cross-section,
12	there is an occasional thin, two-to-three-foot stringer
13	that might be present 100 or 200 feet below, or perhaps 100
14	feet above, but they are not completed in the producing
15	coal wells and will not be injected into.
16	Q. Okay. Did you say the producing wells within the
17	project area are all completed in all three of these
18	intervals?
19	A. Yes, they are all completed open-hole excuse
20	me, I should say naturally with a pre-perforated liner,
21	which we commonly refer to as Open-a-Hole.
22	Q. Is there a Have you seen any evidence of a
23	dominant producing zone, or do you have any knowledge of
24	that?
25	A. I might defer to Mr. McCracken. He's going to

1	get into a little bit of his reservoir modeling to address
2	that.
3	Q. Okay. Are these coals fractured in any way upon
4	completion; do you know?
5	A. Well, the There are really two types of
6	permeability that exist in the coal, as you know: the
7	cleats that are formed during coalification and those
8	are the primary permeability source of permeability for
9	the coal.
10	Natural fracturing does occur to a minor degree.
11	Q. Is the cleat permeability, is that oriented in
12	any particular direction?
13	A. Yes, it is, and Craig will elaborate on this some
14	more, but we have found a primary permeability direction
15	that trends more in a northwesterly orientation, and Craig
16	has some very specific information that will give you some
17	good detail on that.
18	Q. You testified that there's shaley members above
19	and below the coal intervals in this Is that present
20	throughout the project area?
21	A. Yes. It varies. There are sandstones that exist
22	within the Fruitland formation, and sometimes they're
23	present close to the coal.
24	But we have evaluated those reservoirs, tested
25	them in other parts of the Basin and have found them and

are confident in this area that they are very low 1 2 permeability. In fact, they're such low permeability that we have not even pursued them as a target reservoir for 3 production in this area. 4 And once again, the difference in permeability 5 between the coal reservoir and any sandstone or shale above 6 or below, the difference is very strong. The coal is where 7 the permeability lies. 8 You're confident that these shale barriers will Q. 9 confine the CO₂ to the coal interval? 10 Yes, and that is for a couple reasons. 11 Α. One, the fact that the higher permeability is in 12 13 the coal reservoir. And two -- and I hate to keep saying this; Craig 14 will elaborate on this more -- the coal has a natural 15 adsorptive capacity for carbon dioxide. So given its 16 choice, the carbon dioxide will naturally stay in the coal 17 reservoir. 18 In terms of the net coal thickness, is this one 19 ο. of the thicker areas within the unit? 20 Not really. It's fairly representative of the 21 Α. unit. 22 You know, we may find parts of the unit that are 23 ten feet thinner, but it's not an extremely thick area. 24 Was there a geologic consideration why this was 25 Q.

1	placed in the project was placed where it was?
2	A. Yes, there were a variety of reasons for picking
3	the location, and one is that this area has exhibited a
4	little better production characteristics and therefore a
5	little more dewatering, which will allow the project to
6	better success.
7	Q. Does structure really have any bearing on the
8	injection project?
9	A. No, it doesn't.
10	Q. Is there any particular coal interval that you'll
1 1	be focusing on in terms of the project, or is it just all
12	three of them?
13	A. We will be perforating and injecting into all
14	three.
15	We will We have two pressure-monitoring wells
16	in the area, and in one of the wells the coals do separate
17	a little bit, and we will actually be setting a packer in
18	between those two coal in that interval that separates
19	the two coals, and monitoring the pressure in both upper
20	and lower interval to see if there are any differences.
21	But we will be injecting into all three zones,
22	all three coal zones, simultaneously.
23	EXAMINER CATANACH: I have nothing further.
24	MR. KELLAHIN: Mr. Examiner, next witness is
25	Craig McCracken.

	29
1	CRAIG MCCRACKEN,
2	the witness herein, after having been first duly sworn upon
3	his oath, was examined and testified as follows:
4	DIRECT EXAMINATION
5	BY MR. KELLAHIN:
6	Q. Mr. McCracken, for the record please state your
7	name and occupation.
8	A. My name is Craig McCracken. I'm a petroleum
9	engineer employed by Meridian Oil, Incorporated, in
10	Farmington, New Mexico.
11	Q. On prior occasions have you testified before the
12	Division?
13	A. Yes, I have.
14	Q. Give us a quick summary of your involvement as an
15	engineer in this project.
16	A. For almost a year now I've been involved in a
17	detailed modeling study of the area in question, both to
18	attempt to characterize the reservoir and, along those same
19	lines, to try to determine how those characteristics might
20	affect a carbon dioxide flood.
21	Q. Apart from that involvement in the project, have
22	you also been responsible for preparing and completing what
23	is called the Division Form C-108?
24	A. Yes, I have.
25	Q. Based upon your work, do you now have engineering

conclusions about the feasibility of this pilot project? 1 Α. I do. 2 3 ο. Do you have an opinion as to whether or not the institution of this pilot project will create the 4 5 probability of improving ultimate recovery from the coal gas reservoir? 6 I believe that this project will increase the 7 Α. recovery from the coal bed reservoir. 8 9 MR. KELLAHIN: We tender Mr. McCracken as an expert engineer. 10 EXAMINER CATANACH: He is so qualified. 11 12 ο. (By Mr. Kellahin) Let's come back to the C-108 later. 13 14 Α. Okay. Let's look at the information behind Exhibit 15 0. Number 8, I believe it is. 16 I believe it's 6. 17 Α. Six, all right, back to 6. 18 Q. 19 When we look at the documents behind Exhibit 6, 20 does that represent your work product? Yes, it does. 21 Α. You've given us a summary on the first page. 22 Q. Give us the project overview. What are your major 23 24 engineering conclusions? We feel that drilling four injector wells in the 25 Α.

1 configuration that's been shown before and which we'll go
2 over again, and obtaining approval for a maximum injection
3 rate of 2.5 million cubic feet per day per well of carbon
4 dioxide and a maximum surface injection pressure of 2000
5 pounds is the optimum configuration for flooding the coal
6 in this area.

We feel that the best way to go about this is by
cycling the injection, injecting for half a year and then
producing for half a year within the project area.

We feel that the recovery that we expect from this area over the time period covered by this project from conventional recovery methods is a little bit over 19 BCF. We expect to recover an additional BCF through this technique over a four-year period of project life.

Q. Let's turn to the next page and have you locate for us the Allison unit in relation to the size and shape of the Basin Fruitland Coal Gas Pool.

A. The Allison unit straddles the New MexicoColorado border. All of the project that we propose will
be in New Mexico. It's located in the north central part
of the Basin, if you judge the borders of the Basin by the
Fruitland Coal outcrop, which is outlined in red in that
map.

There are some other locations on there, such as the City of Farmington and some of the other numbered units

1 in the basin to help orient the position of the unit. Can you give us a summary of the engineering 0. 2 hypothesis that you're testing here with the pilot project? 3 If you'll turn to the next exhibit following the Α. 4 locator map, we feel that there are two main mechanisms 5 6 that can be used to enhance the recovery of methane from coal by the injection of carbon dioxide. I've termed the 7 first one selective sorption. 8 This simplified representation that you see on 9 this page illustrates the idea that coal is more adsorptive 10 of carbon dioxide than it is methane. 11 We have some laboratory tests, which I'll 12 elaborate on a little bit later, that show that in the 13 presence of carbon dioxide, methane will be released from 14 the coal and carbon dioxide will be adsorbed. 15 The following page illustrates the concept that 16 17 introducing another gas -- and this gas doesn't necessarily have to be carbon dioxide -- into the cleat system in the 18 coal will reduce the concentration of methane in the cleat 19 And since differential concentration is the 20 system. mechanism behind diffusion, we'll accelerate the diffusion 21 of methane out of the coal matrix and into the coal cleats. 22 Does this pilot project represent Meridian's 23 Q. first effort in the field to test the laboratory results? 24 25 Α. Yes, it does.

1 Q. Do you have an illustration to show us the advantage that you think exists by the use of CO₂ as an 2 injection medium? 3 On the following page, there's a comparison of 4 Α. isotherms of three different gases, nitrogen, methane and 5 carbon dioxide. 6 7 On the Y axis of this graph is the adsorbed gas content in standard cubic feet per ton, and on the X axis 8 is the pressure in pounds per square inch, absolute. 9 As you expose the coal to each of these gases at 10 11 higher and higher pressures, they're capable of adsorbing more and more of each gas. But what you can see on this 12 13 graph is the increasing adsorptive capability of the coal 14 for carbon dioxide over methane, over nitrogen. And that has a lot to do, theoretically, with the polarity of each 15 16 of the molecules. Carbon dioxide is by far the more polar molecule of the three. 17 Your next display is captioned "Methane 18 Q. 19 Displacement". This particular graph represents a test that we 20 Α. did to try to demonstrate particularly the selective 21 sorption mechanism on a coal sample from the Allison unit. 22 This is from the Allison unit Number 132, which 23 It is in the 24 Greg detailed in on his cross-section. 25 project area.

1 The nature of this test -- The blue line on this isotherm up to 1625 p.s.i. represents the introduction of 2 methane only into this core sample. What we did from that 3 point on was inject carbon dioxide to try to see what would 4 happen, particularly at higher test pressures. 5 And what you see there is that in the pressure 6 7 range from 1625 to roughly 1850, this particular sample 8 adsorbed 400 standard cubic feet per ton of carbon dioxide, 9 while releasing roughly 260 standard cubic feet per ton of methane, or about half of the methane that was in the coal 10 at 1625 p.s.i. 11 What is your engineering opinion concerning the 12 Q. maximum initial injection pressure in order to achieve 13 effective response from CO₂ injection? 14 15 Α. Based on several simulation studies, we feel that 2000 p.s.i. would be the maximum injection pressure that 16 17 would be necessary to sweep the reservoir the most efficiently and expose the reservoir to the optimum amount 18 of carbon dioxide. 19 20 Q. And that's a surface pressure? That's correct. 21 Α. All right. Let's deal with this topic now. 22 The Q. Division uses as a guideline a water gradient, of you will, 23 of .2 p.s.i. per foot of depth. When we deal with 24 saltwater disposal wells or water injection wells, the 25

35 Division requires -- or limits surface injection pressures 1 2 for that fluid, so that at the surface you have no more 3 than .2 p.s.i. per foot of depth to the top perforation. All right. 4 When we're dealing with CO_2 , help us make the 5 conversion so that we know the significance of 2000 p.s.i. 6 7 at the surface when you're injecting CO_2 . The gradient of a column of water should be 8 Α. roughly .43 p.s.i. per foot. So for every thousand feet of 9 water that you're dealing with, you're going to be dealing 10 with around 430 p.s.i. 11 12 The gradient for carbon dioxide varies a little 13 bit due to the compressibility of carbon dioxide, however it's going to be on the order of .03 p.s.i. per foot. 14 So where the -- a column of water in a 3300-foot well, such as 15 16 we're dealing with in Allison, would probably be around 17 1300 p.s.i. and would probably be less than 100 p.s.i. if the column were CO₂ instead of water. 18 The one thing that I could point out here, if we 19 could flip back to the first page of this exhibit, I've 20 21 attempted to show what the gradient of a 2000-p.s.i. injection pressure would be here, and it's .62. 22 I've also researched three wells that were 23 fracture-treated in the Allison unit and looked at some 24 data on those actual fracture treatments and some 25

1 calculations that were made by the service companies who did those treatments initially, and they show a .75 or 2 greater frac gradient. 3 So this would be well underneath the frac 4 gradient, and the additional pressure exerted by the column 5 of carbon dioxide would only change that .62 p.s.i. per 6 7 foot by a few hundredths. Q. If the Examiner approves an initial maximum 8 injection surface pressure for CO₂ of 2000 p.s.i., will 9 that allow you the opportunity to inject CO₂ into the coal 10 reservoir, but not be so great as to cause that gas to 11 migrate out of the coal reservoir? 12 13 Α. It should be well under the pressure that would cause something like that to happen. 14 15 Q. Have you reviewed the order Amoco received for their nitrogen injection project? 16 Yes, I have. 17 Α. Q. And what are they using as a maximum surface 18 limitation for nitrogen in that project? 19 I believe that it was 2000 p.s.i. 20 Α. Do you see any problem in setting that initial 21 Q. rate at 2000? 22 23 Α. No. 24 Q. Let's turn to the next display. It says Allison Unit Injection Project Area. Mr. Jennings described it a 25

1	while ago, but let me have you do it again.
2	The black outline represents what, sir?
3	A. The outline of the Allison unit.
4	Q. And then the green box is the injection project
5	area that you want to initiate?
6	A. That is correct.
7	Q. Why this particular location?
8	A. The five wells inside the green box in this page
9	are the five best producers.
10	Greg alluded during his testimony to the fact
11	that these wells had dewatered this area. Something that's
12	fairly important in trying to displace methane through
13	these producing wells is the relative permeability, and the
14	lower the water saturation is within the reservoir, the
15	higher the relative permeability of the gas is going to be.
16	And this is an area where our simulations indicate that
17	we've seen significant dewatering, and therefore
18	significant decreases in the relative permeability, and
19	we'll see the greatest effect from injecting carbon
20	dioxide.
21	Q. Let's turn to the next display and have you
22	identify for the Examiner the study area which is the model
23	area that you've inputted into your simulator.
24	A. The modeling study area is outlined in the red.
25	It's roughly 3.5 miles by 3.9 miles and includes 18

37

1 producing wells.

2	And what we have attempted to do is pinpoint the
3	characteristics of the reservoir that we felt we had
4	evidence on and sensitize our study for some of the other
5	parameters to try to get a match on the production that's
6	actually come out of those 18 wells over the four years
7	from the summer of 1989 to the summer of 1993.
8	Q. What does the red rectangle represent?
9	A. That is the outline of the modeling study area.
10	That's the area that a detailed geological analysis was
11	done, and that analysis was input into a numerical
12	simulator, and that's where we attempted to get the match
13	on the 18 producing wells.
14	Q. Okay, let's look at the next display.
15	A. The next display represents the same display
16	outline overlain on an individual zone isopach of what we
17	are calling the middle main coal.
18	The reason that that's there is to try to show
19	the 3-D representation of the reservoir which is shown on
20	the next page.
21	Q. Okay, let's turn to that.
22	A. And then what this is
23	Q. You're looking at the colored display that's got
24	the three layers of coal?
25	A. That's correct.

1 Q. All right. Α. And what that represents is a -- if you were to 2 3 drop vertical planes down through each boundary of the 4 modeling area, down through the coals and lift them up to the surface, this is our interpretation, both geologically 5 6 and according to the numerical model, of what they would look like. 7 And what I've done is, in the pink I've spotted 8 9 the producing wells that are in the project area, and in 10 the white I've spotted the four proposed injection wells. Q. What's your engineering basis for locating the 11 12 four injectors as you've proposed to locate them? 13 It has to do, to a very large extent, with a Α. question that was again alluded to earlier about the 14 direction of predominant permeability. 15 From doing some paleomagnetic studies and doing 16 some oriented-core studies we've determined that the 17 18 direction of predominant permeability is 25 degrees north 19 of west. And what we attempted to do was to orient our 20 injector wells along the predominant direction of 21 22 permeability. The simulation study sensitized the values of two to one, four to one, and eight to one for the 23 24 magnitude of directional permeability in the X direction to 25 permeability in the Y direction.

And we found that four to one fit the pressure 1 distributions that we actually saw within this grid much 2 better than either two to one or eight to one. 3 We feel by orienting injector wells along the 4 direction of predominant permeability we will put more coal 5 in contact with the carbon dioxide, rather than flowing it 6 directly to the producing wells. 7 Q. Do you have a display that shows your history 8 match on existing production within the project area? 9 The last display in this section illustrates in 10 Α. 11 the solid red line the actual production from these 18 wells over that four-year period. 12 13 The solid blue line represents the water 14 production from those same wells. The boxes -- again, respectively, gas in red, 15 16 water in blue -- represent actual output points from the simulator and show that we feel we had an excellent match 17 on the history and therefore an excellent characterization 18 of this reservoir before we began doing the study that 19 produced the results in our summary. 20 When we go back to the project overview and look 21 Q. at the conclusions, describe for us how you came to the 22 conclusion that the additional incremental recovery of 23 methane attributed to the injection project was going to be 24 25 1.1 BCF.

Α. When the simulator was allowed to run four years 1 2 into the future to try to model the project life with no 3 injection, no additional enhancement, the result was the 19.4 BCF that's illustrated here as the study-area base 4 recovery. 5 When four injector wells were put into the model 6 and allowed to inject carbon at the rates and pressures 7 that are specified above, 1.1 BCF of additional methane was 8 recovered from the model. 9 10 I should probably point out at this point that there were several sensitivities done on the positioning 11 12 and the rates and the pressures of these wells, and this was the optimum scenario. 13 14 ο. Take us through a summary of the operational sequence or plan that you propose to initiate in the 15 project if the Examiner approves it. What's the process? 16 Α. First of all would be the drilling of the four 17 18 injector wells in the areas as we've outlined them in this 19 Application. 20 Q. Then what happens? 21 Α. We would then complete them by perforating, 22 acidizing and breaking down. And then the carbon dioxide would be delivered 23 through the wells, through a unit distribution system, and 24 25 would be treated for water and heated at the surface

1	location to reservoir pressure and then injected into the
2	wells at the rates and pressure specified.
3	Q. You mentioned a cyclic injection procedure.
4	A. Yes.
5	Q. Describe that to us.
6	A. The four injection wells would be operated for a
7	six-month period with the producing wells in the project
8	area shut in. Following that six-month period, the
9	injector wells would be shut in and the producing wells
10	would be opened up and allowed to flow.
11	This particular procedure is the result not only
12	of the simulator indicating that this is the best way to go
13	about doing this injection process, but also a patent
14	that's held by Conoco that in fact expires within the next
15	week, which details this process as being an optimum means
16	of injecting carbon dioxide to remove methane from coal
17	mines, to avoid mine explosions.
18	Q. Describe for us whether or not you have an
19	engineering conclusion about confining the CO ₂ vertically,
20	if you will, to the coal gas seams.
21	Q. Well, in addition to the geologic reasons that
22	Greg gave why the carbon dioxide is not going to migrate
23	outside the coal, I think if you look at the adsorptive
24	capacity of coal for carbon dioxide, you'll see that the
25	coal excuse me, the carbon dioxide would much rather

42

1 stay in the coal than go anywhere else.

A lot of it is going to adsorb very large quantities. When you think about 400 standard cubic feet per ton and how much coal is in this area, very large quantities are going to adsorb before there's going to be enough carbon dioxide adsorbed for it to want to try to leave the formation.

Q. When you look in a horizontal extent about how
9 far the coal -- the CO₂ is going into the coal seams, are
10 you going to have the ability to monitor and test where
11 that CO₂ is going?

A. We have not only the producing wells in the area that we'll be monitoring the composition and the pressure and rates on, to try to determine things exactly like that, but we will also be taking those results from those wells and going back into our model and trying to refine the model and see if the conclusions that we made can be modified by the results that we're seeing from the flood.

19 So we intend on continually monitoring this, not 20 only from a compositional, pressure and rate standpoint, 21 but also by attempting to match the results of the flood on 22 the simulator.

Q. In addition to the Allison unit wells that Meridian operates in the coal gas, do you also operate the coal gas wells immediately to the south of the unit and the

project area? 1 Yes, we do. 2 Α. Will you have the opportunity to utilize those 3 Q. wells to monitor for the migration of CO_2 ? 4 Α. Yes. Yes, we do, and we will. 5 6 ο. Let's turn now to the C-108 procedure. We mentioned initially that after the C-108 was filed, there 7 8 were some modifications made as a result of further investigation as to the depth and the location of 9 freshwater sources. Let's start at that point, then, and 10 let's look behind Exhibit Tab Number 2. 11 The first four pages behind that exhibit tab 12 Α. represent modifications to the wellbore schematics 13 originally submitted with the C-108. 14 15 Q. In what way were they modified? The surface casing, if you'll reference the 16 Α. 17 original C-108, was set at 200 feet. This was before we 18 had the knowledge that there were water wells as deep as --19 I believe 250 feet was the deepest, roughly, was the 20 deepest water well that was found from the field study. We modified these wellbore schematics, and the 21 same data in tabular form, which is the last page in this 22 particular exhibit, to reflect a 350-foot surface casing 23 setting down. 24 25 Behind the four schematics within the same 0.

1	exhibit section, what is the summary sheet?
2	A. That is a tabular representation of roughly the
3	same data that appears on the schematics, as required by
4	the C-108.
5	Another difference between this tabulation and
6	the one that appears in the C-108 is the recalculated
7	cement volume for the surface casing being 150 feet deeper.
8	Q. Within the area of review for each of the
9	injection wells, did you tabulate for the Examiner the
10	location and mechanical integrity information for any
11	producing well?
12	A. Yes, I did. What I tabulated in Let me try to
13	locate this for you. It's behind The fourth page behind
14	the type log, the pull-out type log of the Allison POW
15	Number 2, is a tabulation of the wells that are in the
16	review area, and what I have here is the well name and
17	number, the location, the formation that the well was
18	completed in, date drilled, depth and the type of
19	completion.
20	What I have done for these wells, as well as the
21	wells in the two-mile area specified by the C-108, is
22	examined the cementing records of each one of those wells.
23	And what I found from that was, there's at least 200 feet
24	of cement over the top Fruitland Coal interval in each of
25	these wells.

45

1	Q. Did you find any plugged and abandoned wellbores
2	within any area of review for any of the four injection
3	wells?
4	A. No, I did not.
5	Q. What's your conclusion about the mechanical
6	integrity of all the wells within the area of review for
7	any injection well?
8	A. All of these wells are sound with respect to the
9	Fruitland Coal.
10	Q. Do these wells pose any risk to freshwater
11	sources?
12	A. No.
13	MR. KELLAHIN: That concludes my examination of
14	Mr. McCracken.
15	We move the introduction of his engineering
16	displays behind Exhibits Number What was it? Six?
17	THE WITNESS: Six.
18	MR. KELLAHIN: Six. And then he's verified the
19	C-108, which is contained behind Exhibit Tab Number 1.
20	EXAMINER CATANACH: Exhibit Numbers 1 and 6 will
21	be admitted into evidence.
22	EXAMINATION
23	BY EXAMINER CATANACH:
24	Q. Mr. McCracken, where did you have your area-of-
25	review wells listed?

~

1	A. They're in Exhibit 1 Oh, I'm sorry, are you
2	talking about the tabulation?
3	Q. Right.
4	A. Oh, that's If you'll go to the type log of the
5	Allison POW Number 2, it's the fourth page behind that.
6	Q. Where is the type log at?
7	A. It's the fifth page of Exhibit 1.
8	Q. Okay.
9	A. That's it.
10	Q. Okay, got it.
11	Is this the only information you have on the
12	area-of-reviews?
13	A. Yes, it is. Except for the map.
14	Q. Okay. Can I get you to submit some more data on
15	these wells showing the casing and cementing data on those
16	wells
17	A. Certainly.
18	Q as well as cement tops, if those were
19	calculated. I assume you calculated those tops?
20	A. The great majority of them were from temperature
21	surveys or cement bond logs. There were two and I
22	believe it's the Burnt Mesa Number 1 and the Allison Unit
23	18 which were calculated, but they were calculated
24	disregarding the standard hundred percent excess.
25	Q. Okay. If you would submit that additional

. –

information --1 2 Α. Okay. 3 Q. -- I would appreciate it. 4 What's the source of your CO_2 ? 5 Α. Meridian Oil Gathering Incorporated's Valverde 6 plant. 7 Mr. McCracken, do you have any -- You mentioned Q. that you had some data with regards to the fracture 8 gradient of these wells on initial treatment? 9 Α. 10 Yes. 11 Q. Do you have any of that data with you? 12 Α. No, I do not. 13 There were only three wells that were ever fracture-treated in the coal in the Allison unit. 14 None of 15 them are within the project area. Two of them are fairly close. 16 17 Okay. Can I get you to submit that additional Q. information as well? 18 Certainly. 19 Α. 20 Okay. The recovery you've got listed here, ο. study-area base recovery, 19.4 BCF, is that ultimate 21 22 recovery, or is that just in the four-year period? That's over a roughly ten-year period that 23 Α. 24 encompasses the six years of history to date, plus the four years of the project. 25

1	Q. Okay.
2	A. Actually, that's six years of history as of
3	1-1-95, when we hope to institute the project.
4	Q. Okay. That doesn't include the 1.1 additional
5	incremental?
6	A. That's correct. That simulator run produced a
7	recovery over that same period of time, or over an
8	equivalent period of time, of 20.5.
9	Q. Okay. What's the significance of the four-year
10	project life?
11	A. We feel that if this project is successful and
12	turns out to be the type of project that we think that it
13	could be, we will probably come back before the Division
14	within that period of time with either an expansion or a
15	continuation.
16	We feel that the four years gives us sufficient
17	time to evaluate what we've got and the kind of response
18	that we're getting.
19	Q. As I understand it, you propose to inject in all
20	four wells continually for a six-month period?
21	A. That's correct.
22	Q. And then during that time will you be producing
23	the
24	A. Not from the wells in the project area, they'll
25	be shut in.

1	Q. They will be shut in for a $$
2	A. Yes.
3	Q six-month period?
4	And the second six months, you will strictly be
5	producing from the wells in the project area?
6	A. Yes.
7	Q. Will your production stream change as a result of
8	the CO ₂ injection?
9	A. Yes, it will.
10	Q. And what changes will that be?
11	A. We expect it to be roughly two and a half times
12	what it was without the enhancement, so that on an annual
13	basis we'll be producing about one and a quarter times as
14	much methane as we would just from primary production.
15	Q. Will the composition of the produced gas change?
16	A. Yes, it will.
17	Q. That will
18	A. We expect compositions of produced gas to be in
19	the 10-to-12-percent range when we initially turn some of
20	the producing wells back on, and then it will decline back
21	to normal levels for the unit, which are in the 5-to-6-
22	percent range from there.
23	Q. Are you confident the area-of-review wells are
24	cemented and cased adequately to prevent any gas from going
25	up the annulus?

50

- - -

1	A. Yes, I am. The minimum depth that I found
2	between the top of cement and the top of the top injection
3	zone is 200 feet.
4	Q. You don't think that any microannulus will be a
5	problem in any of those wells?
6	A. There was none indicated on any of the cement
7	bond logs I examined.
8	Q. What kind of tubulars do you intend to use in the
9	injection wells?
10	A. Since the carbon dioxide is going to be delivered
11	to the wells at very low water content, it's going to be
12	dehydrated at the compressor station, we're going to use
13	regular tubulars, the same kind of tubulars we'd use in any
14	well.
15	We don't expect corrosion problems because we're
16	not going to be putting the carbon dioxide in contact with
17	significant quantities of water.
18	Q. So you don't plan on lining the tubing with
19	anything?
20	A. No. That's another reason for picking a
21	dewatered area to inject into.
22	EXAMINER CATANACH: I think that's all I have of
23	the witness, Mr. Kellahin.
24	MR. KELLAHIN: That concludes our presentation,
25	Mr. Examiner.

1	EXAMINER CATANACH: Okay. If you can get me that
2	additional information, we'll go ahead and process the
3	Application.
4	Is there anything further in this case?
5	MR. KELLAHIN: No, sir.
6	EXAMINER CATANACH: Okay. There being nothing
7	further, Case 11,067 will be taken under advisement.
8	(Thereupon, these proceedings were concluded at
9	2:24 p.m.)
10	* * *
11	
12	
13	the transfer and the table for an arrive in
14	a complete record of the proceedings in the Events in the formed by the proceedings in
15	heard by me on tuber 1974
16	Dieud K. Catan, Examiner
17	Oil Conservation Division
18	
19	
20	
21	
22	
23	
24	
25	

	53
1	CERTIFICATE OF REPORTER
2	
3	STATE OF NEW MEXICO)
4	COUNTY OF SANTA FE)
5	
6	I, Steven T. Brenner, Certified Court Reporter
7	and Notary Public, HEREBY CERTIFY that the foregoing
8	transcript of proceedings before the Oil Conservation
9	Division was reported by me; that I transcribed my notes;
10	and that the foregoing is a true and accurate record of the
11	proceedings.
12	I FURTHER CERTIFY that I am not a relative or
13	employee of any of the parties or attorneys involved in
14	this matter and that I have no personal interest in the
15	final disposition of this matter.
16	WITNESS MY HAND AND SEAL September 21, 1994.
17	Stilling Kenne
18	STEVEN T. BRENNER
19	CCR No. 7
20	
21	My commission expires: October 14, 1994
22	
23	
24	
25	