KELLAHIN AND KELLAHIN

ATTORNEYS AT LAW

EL PATIO BUILDING

117 NORTH GUADALUPE

POST OFFICE BOX 2265

SANTA FE, NEW MEXICO 87504-2265 March 20, 1995

TELEPHONE (505) 982-4285 TELEFAX (505) 982-2047

HAND DELIVERED

Mr. David R. Catanach Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

W THOMAS KELLAHIN*

*NEW MEXICO BOARD OF LEGAL SPECIALIZATION RECOGNIZED SPECIALIST IN THE AREA OF NATURAL RESOURCES-OIL AND GAS LAW

JASON KELLAHIN (RETIRED 1991)

RECEIVED

NMOCD Case 11212 Re:

> Application of Conoco Inc. for downhole commingling and an exception to the GOR limit established in Order R-8909 for certain wells in the Warren Unit, Lea County, New Mexico

Oil Conservation Division

Dear Mr. Catanach:

On behalf of Conoco Inc, I presented the referenced case to you on your March 2, 1995 docket. You granted my request to submit corrected allocation formulas for the Warren Unit Well No. 113 (Exhibit 22) and Well No. 115 (Exhibit 22). The corrected were required because of new production information from the Drinkard formation in those two wells.

In addition, you inquired about possible waterflood response in the Blinebry-Tubb zones of Warren Unit Wells 9,26,97 and 99 and that potential affect on projected allocation formulas for those proposed downhole commingled wells.

In response to both issues, Mr. Damian Barrett, Conoco's petroleum engineer who testified before you, has prepared the enclosed Replacement and Supplemental Exhibits & Testimony.

Please call me if you have any questions.

W. Thomas Kellah

cc: Conoco Inc.

Attn: Jerry Hoover

REPLACEMENT & SUPPLEMENTAL EXHIBITS and TESTIMONY

FOR

EXAMINER HEARING

CASE 11212

Application for Downhole Commingling for Certain Wells in the Warren Unit Lea County, New Mexico

Submitted by: Conoco Inc.

Hearing Date: March 2, 1995

SUPPLEMENTAL TESTIMONY

BY DAMIAN BARRETT

The attached EXHIBITS 5, 7, 10, 22, 25, and 27 (4 graphs) are submitted as replacements for the same numbered and labeled EXHIBITS presented to the Examiner at the hearing on March 2, 1995.

As I explained to the Examiner in testimony at the hearing, updated production rates for Drinkard production in Warren Unit Well Nos. 113 and 115 only became available the day before the hearing after witnesses had arrived in Santa Fe. Therefore, the updated Drinkard producing rates for these two wells on EXHIBITS 5, 10, and the appropriate C-116's in EXHIBIT 25 were changed by hand prior to the hearing. Since well Nos. 113 and 115 are recent completions (newly drilled wells) stabilized production rates were not yet available when the EXHIBITS were originally prepared. It was important to incorporate this newer data into the case.

For your convenience, two of these hand-changed EXHIBITS, NOS. 5 and 10 have been reprinted and are submitted here as replacements for the same numbered EXHIBITS. Certain other EXHIBITS that needed to be updated based on the newer Drinkard production rates on these two wells required calculations that could not be done in Santa Fe prior to the hearing. Therefore, these corrections have been completed and are submitted as follows:

EXHIBIT NO. 7

Since the Drinkard reserves for these two wells would naturally be changed with revised producing rates and declines, EXHIBIT NO. 7 has been updated and an updated copy is herein submitted.

EXHIBIT NOS. 22 & 24

Particularly important was the recalculation of the proposed annual allocation formulas for Well Nos. 113 and 115 utilizing the updated producing rates. These formulas have been updated and are herein submitted as replacements for EXHIBIT NOS. 22 and 24.

EXHIBIT NO. 27 (4 Graphs Only)

Drinkard oil and gas production graphs for Well Nos. 113 and 115 have been updated and replotted. These four graphs are herein submitted as replacements for the same graphs submitted at the hearing.

In response to the Examiner's questions concerning possible waterflood response in the Blinebry-Tubb zones of Warren Unit Well Nos. 9, 26, 97, and 99, and their potential affect on projected allocation formulas for these wells, the following additional EXHIBIT No. 30 and the following discussion is herein submitted for the Examiners aid in considering this case.

EXHIBIT NO. 30 (New Supplemental Exhibit)

This map of the Warren Unit was previously submitted in Case No. 10897 in which Order No. R-10068-A approved the 2nd Expansion of the Warren Blinebry-Tubb Waterflood Project. This map shows the three stages (Pilot, 1st Expansion, and 2nd Expansion) in the development of this waterflood project. It also identifies the (a) current injection wells and flood patterns in blue triangles and lines and (b) future, proposed injection wells and flood patterns in dark pink.

Notice on EXHIBIT NO. 30 that Well Nos. 97 and 99 are in closest proximity to the early Pilot Stage of this waterflood project that was begun in 1983. These two wells were not drilled until 1991. Without available pressure sinks from producing wells at these locations, absolutely no waterflood sweep would have moved toward these locations between 1983 and 1991.

Since drilling them in 1991 both of these new wells have been on a normal primary recovery decline and have shown no waterflood response. This is demonstrated by the Blinebry-Tubb oil and gas producing curves for these two wells which were included in the hearing EXHIBIT No. 26. The production history on these wells confirms that only producers within three-quarter or complete flood patterns can be expected to experience any flood response. As peripheral edge wells to the Pilot Stage these two wells had absolutely no flood containment to produce a sweep in their direction and would not have been expected to receive any significant flood response.

Looking at Well Nos. 9 and 26, in Section 27, we see exactly the same geographic relationship of these two wells to the 1st Expansion to the Waterflood Project as Nos. 97 and 99 have to the Pilot Stage. They too are peripheral edge wells to the 1st Expansion flood patterns. Although none of the wells in the 1st Expansion have shown flood response as yet, earlier study and evaluation of the Pilot Stage has confirmed that unconfined patterns cannot be expected to produce flood response. Therefore, the vertical row of wells in the W/2 W/2 of Section 27 should not experience any flood response until they are enclosed in complete flood patterns by the conversion of the 2nd Expansion Area to waterflooding.

Since, this conversion will not be done until the Drinkard is plugged off and the commingling phase is completed, the allocation formulas for all four of these wells, which are based on current decline curve analysis, should not be affected by the waterflooding activities in the Pilot and 1st Expansion stages of the project.

Thank you for the opportunity to update EXHIBITS 5, 7, 10, 22, 24, and 27 and to submit EXHIBIT 30 and this additional testimony in response to your questions during the hearing. If I can be of any further assistance please contact me at (915) 686-5497.

Danian Banett	3-9-95
Damian Barrett	Date

WARREN UNIT

CURRENT PRODUCTIVITY TESTS

		WATER	_	-	7	20	0	0	0	က	36	46				
BLINEBRY TUBB		GOR	16,720	138,000	16,030	23,750	26,190	5,920	200,000	9,840	19,340	9,750				
BL		GAS	301	276	465	380	220	148	200	205	890	780				
		OIL	18	0	29	16	12	25	_	51	46	8				
	SHUT-IN	DATE	3/88	10/57	68/9		5/94	8/92	1/91							
		WATER	0	0	0	12	102	20	21	9	4	0				
RD		GOR	9,000	7,090	28,660	47,500	12,160	4,660	58,330	29,170	40,000	10,250				
DRINKARD		GAS	8	78	86	380	73	28	175	175	240	123				님
		OIL	01	-	က	ω	9	9	က	9	9	12	NEW DRILL	NEW DRILL	PROPOSED WELL	PROPOSED WELL
		WELL	0	0	56	94	4	86	6	113	114	115	116	117		119 P

BEFORE AN EXAMINER OF THE OIL CONSERVATION DIVISION

Additional Reserves Beyond Economic Limit Through DHC WARREN UNIT Blinebry-Tubb DHC with Drinkard

-Tubb ary Res.	GAS	423	202	578	929	1458	150	395	918	1488	1323	8169
Blinebry-Tubb Ult. Primary Res.	OIL	%	_	38	01	8	15	-	74	29	101	366
ard	GAS	137	118	207	1060	61	35	280	287	448	200	2833
➤ Drinkard To 2007 start of Flood	OIL	24	16	7	16	14	9	2	=	13	20	132
* To 20	WELL	0	01	26	94	67	86	8	113	114	115	OTAL_

BEFORE AN EXAMINER OF THE OIL CONSERVATION DIVISION

WARREN UNIT

DOWNHOLE COMMINGLED PRODUCTION

WAIER GOR		1 27,230				72 5,680	0,		40 21,730	56 9,820
GAS	361	354	551	760	623	176	375	677	1130	903
OIL		13 35					4 37		_	
WELL		10					66			115 92

BEFORE AN EXAMINER OF THE OIL CONSERVATION DIVISION

W.U. #113 - Annual Allocation Formulas

Warren Unit Blinebry-Tubb DHC Drinkard Allocation Formula Warren Unit #113

	warren Unit #11				
	Blinebry-Tubb	Drinkard			
YR		BOPD		% Blinebry-Tubb	% Drinkard
1995		6	54	0.89	0.11
1996	37	5	42	88.0	0.12
1997	28	4	32	0.87	0.13
1998	22	4	25	0.86	0.14
1999	17	3	20	0.85	0.15
2000	13	3	15	0.84	0.16
2001	10	2	12	0.82	0.18
2002	7	2	9	0.80	0.20
2003	6	2	7	0.79	0.21
2004		1	6	0.77	0.23
2005		1	4	0.75	0.25
2006			3	1.00	0.00
2007	2		2	1.00	0.00
			^	1 00	0.00
			2	1.00	0.00
	Blinebry-Tubb	Drinkard			0.00
YR	•	Drinkard MCFPD	Total	% Blinebry-Tubb	% Drinkard
1995	MCFPD 502	MCFPD 156	Total 658	% Blinebry-Tubb 0.76	% Drinkard 0.24
1995 1996	MCFPD 502 403	MCFPD 156 128	Total 658 532	% Blinebry-Tubb 0.76 0.76	% Drinkard 0.24 0.24
1995 1996 1997	MCFPD 502 403 324	MCFPD 156 128 105	Total 658 532 429	% Blinebry-Tubb 0.76	% Drinkard 0.24
1995 1996 1997 1998	MCFPD 502 403 324 261	MCFPD 156 128 105 85	Total 658 532 429 346	% Blinebry-Tubb 0.76 0.76 0.76 0.75	% Drinkard 0.24 0.24 0.24 0.25
1995 1996 1997 1998 1999	MCFPD 502 403 324 261 210	MCFPD 156 128 105 85 69	Total 658 532 429 346 279	% Blinebry-Tubb 0.76 0.76 0.76	% Drinkard 0.24 0.24 0.24
1995 1996 1997 1998	MCFPD 502 403 324 261 210 169	MCFPD 156 128 105 85 69 56	Total 658 532 429 346 279 225	% Blinebry-Tubb 0.76 0.76 0.76 0.75	% Drinkard 0.24 0.24 0.24 0.25
1995 1996 1997 1998 1999 2000 2001	MCFPD 502 403 324 261 210 169 136	MCFPD 156 128 105 85 69 56 46	Total 658 532 429 346 279 225 182	% Blinebry-Tubb 0.76 0.76 0.76 0.75 0.75	% Drinkard 0.24 0.24 0.24 0.25 0.25
1995 1996 1997 1998 1999 2000 2001 2002	MCFPD 502 403 324 261 210 169 136 109	MCFPD 156 128 105 85 69 56	Total 658 532 429 346 279 225	% Blinebry-Tubb 0.76 0.76 0.76 0.75 0.75 0.75	% Drinkard 0.24 0.24 0.24 0.25 0.25 0.25
1995 1996 1997 1998 1999 2000 2001	MCFPD 502 403 324 261 210 169 136 109	MCFPD 156 128 105 85 69 56 46	Total 658 532 429 346 279 225 182	% Blinebry-Tubb 0.76 0.76 0.76 0.75 0.75 0.75 0.75	% Drinkard 0.24 0.24 0.24 0.25 0.25 0.25 0.25
1995 1996 1997 1998 1999 2000 2001 2002	MCFPD 502 403 324 261 210 169 136 109 88	MCFPD 156 128 105 85 69 56 46 37	Total 658 532 429 346 279 225 182 146	% Blinebry-Tubb 0.76 0.76 0.76 0.75 0.75 0.75 0.75	% Drinkard 0.24 0.24 0.25 0.25 0.25 0.25 0.25
1995 1996 1997 1998 1999 2000 2001 2002 2003	MCFPD 502 403 324 261 210 169 136 109 88 71	MCFPD 156 128 105 85 69 56 46 37 30	Total 658 532 429 346 279 225 182 146 118	% Blinebry-Tubb 0.76 0.76 0.75 0.75 0.75 0.75 0.75 0.74	% Drinkard 0.24 0.24 0.25 0.25 0.25 0.25 0.26 0.26
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004	MCFPD 502 403 324 261 210 169 136 109 88 71 57	MCFPD 156 128 105 85 69 56 46 37 30 25	Total 658 532 429 346 279 225 182 146 118 95	% Blinebry-Tubb 0.76 0.76 0.76 0.75 0.75 0.75 0.75 0.74 0.74	% Drinkard 0.24 0.24 0.25 0.25 0.25 0.25 0.26 0.26
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005	MCFPD 502 403 324 261 210 169 136 109 88 71 57	MCFPD 156 128 105 85 69 56 46 37 30 25 20	Total 658 532 429 346 279 225 182 146 118 95	% Blinebry-Tubb 0.76 0.76 0.75 0.75 0.75 0.75 0.74 0.74 0.74	% Drinkard 0.24 0.24 0.25 0.25 0.25 0.25 0.26 0.26 0.26

BEFORE AN EXAMINER OF THE OIL CONSERVATION DIVISION

W.U. #115 - Annual Allocation Formulas

Warren Unit #115 Warren Unit #115

,	Warren Unit #115				
-	Blinebry-Tubb	Drinkard		Formula	
YR	BOPD	BOPD	TOTAL	% Blinebry-Tubb	
1995	66	11	77	0.86	0.14
1996	50	9	60	0.85	0.15
1997	39	8	46	0.84	0.16
1998	30	7	36	0.82	0.18
1999	23	6	28	0.80	0.20
2000	17	5	22	0.79	0.21
2001	13	4	17	0.77	0.23
2002	10	3	14	0.76	0.24
2003	8	3	11	0.74	0.26
2004	6	2	8	0.72	0.28
2005	5	2	7	0.69	0.31
2006	4	6	4	1.00	0.00
2007	3	5	3	1.00	0.00
	Blinebry-Tubb	Drinkard			
	MCFPD	MCFPD	TOTAL	% Blinebry-Tubb	% Drinkard
1995	719	112	831	0.87	0.13
1996	578	92	670	0.86	0.14
1997	465	75	540	0.86	0.14
1998	374	61	435	0.86	0.14
1999	301	50	350	0.86	0.14
2000	242	40	282	0.86	0.14
2001	194	33	227	0.86	0.14
2002	156	27	183	0.85	0.15
2003	126	22	147	0.85	0.15
2004	101	18	119	0.85	0.15
2005	81	14	96	0.85	0.15

12

10

65

53

2006

2007

77

63

BEFORE AN EXAMINER OF THE OIL CONSERVATION DIVISION

0.85

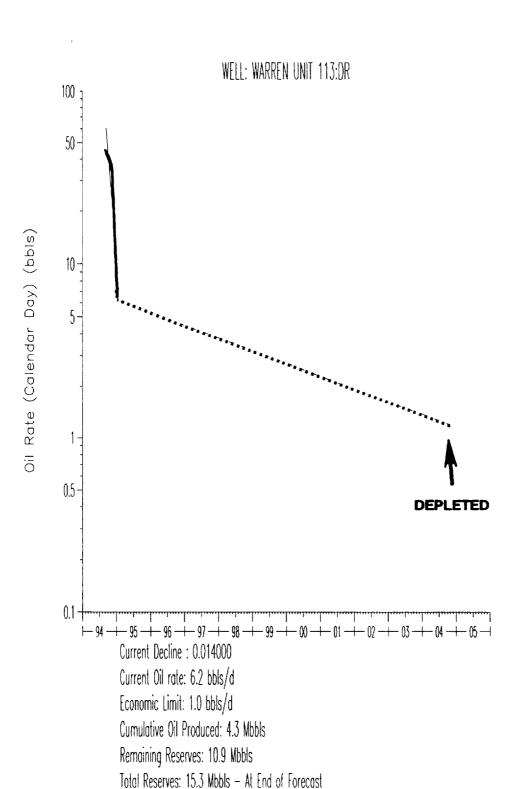
0.84

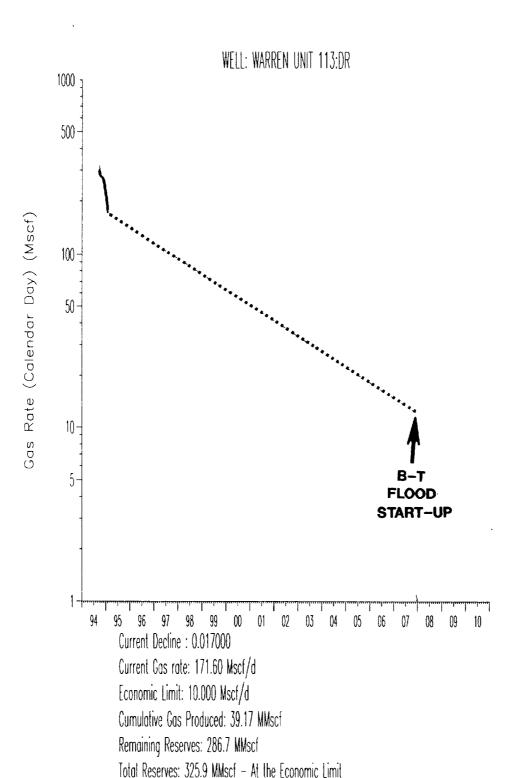
0.15

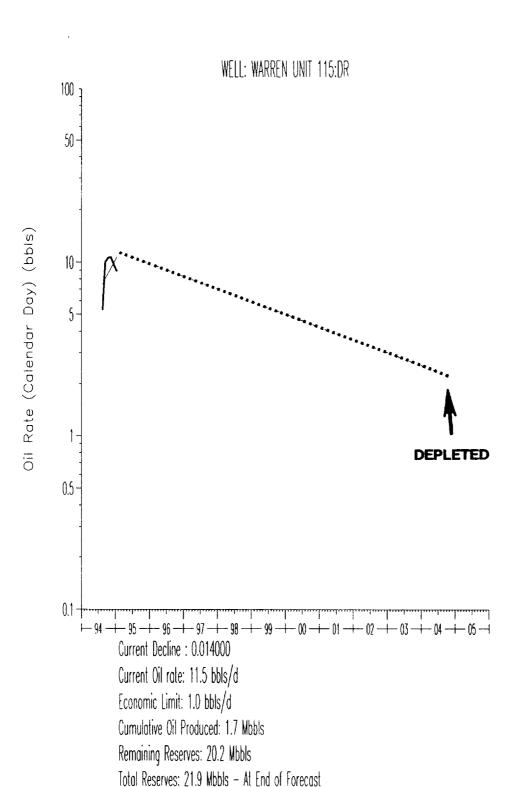
0.16

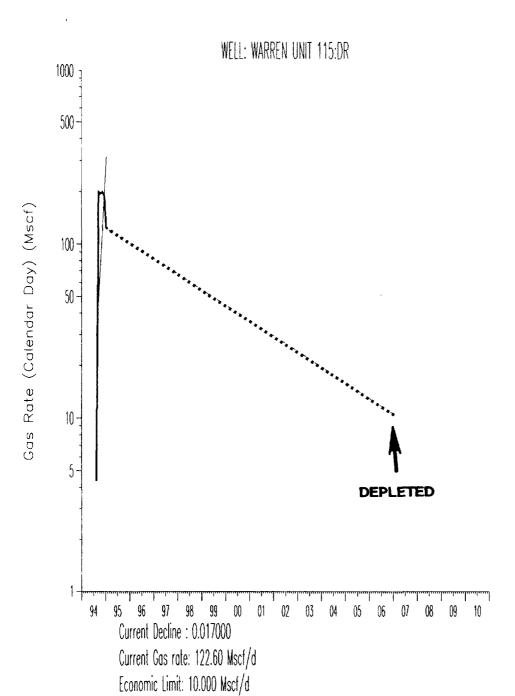
DRINKARD

OIL & GAS PRODUCTION CURVES

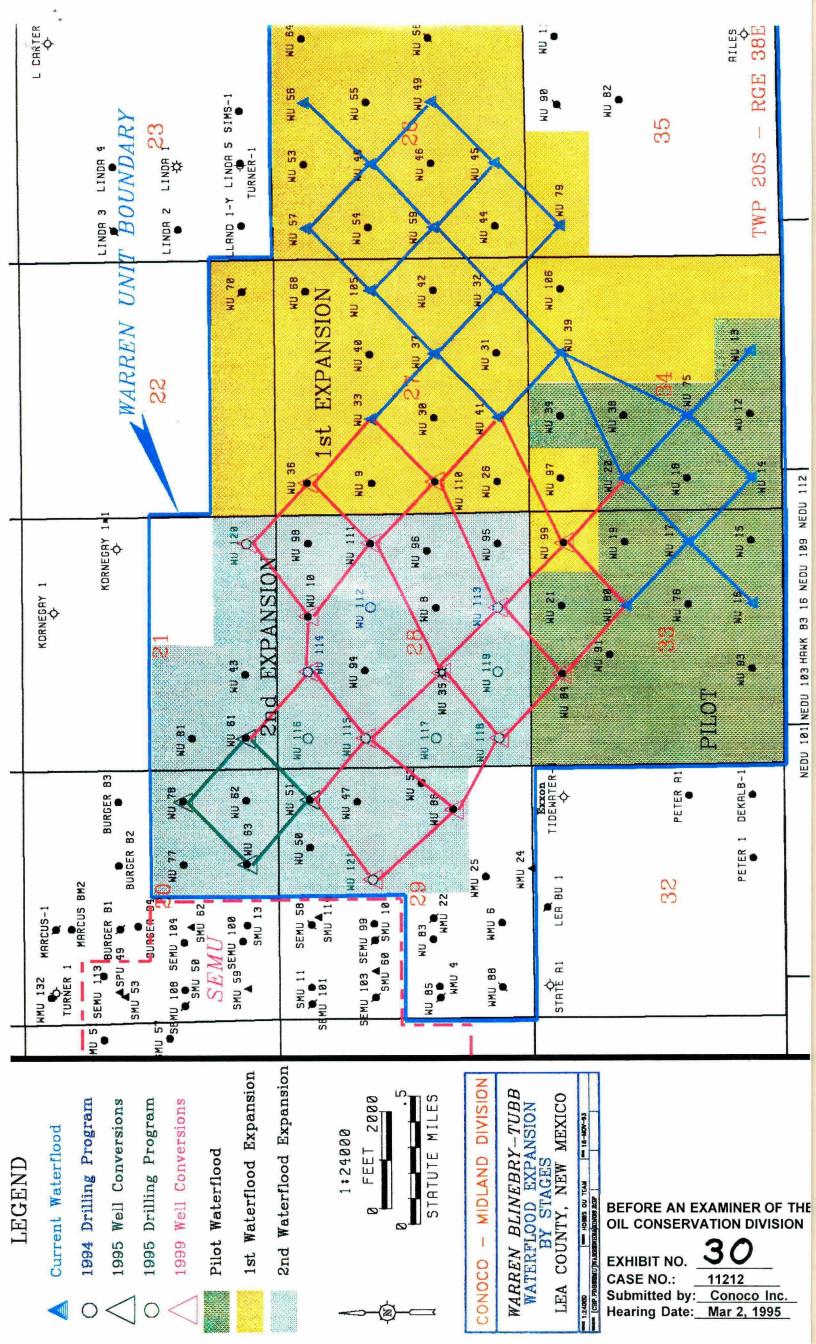

FOR WARREN UNIT WELL NOS.


9, 10, 26, 94, 97, 98, 99, 113, 114, 115


BEFORE AN EXAMINER OF THE OIL CONSERVATION DIVISION


EXHIBIT NO. 27
CASE NO.: 11212

Submitted by: <u>Conoco Inc.</u> Hearing Date: <u>Mar 2, 1995</u>



Cumulative Gas Produced: 27.93 MMscf

Total Reserves: 227.9 MMscf - At the Economic Limit

Remaining Reserves: 200.0 MMscf

REPLACEMENT & SUPPLEMENTAL EXHIBITS and TESTIMONY

FOR

EXAMINER HEARING

CASE 11212

Application for Downhole Commingling for Certain Wells in the Warren Unit Lea County, New Mexico

Submitted by: Conoco Inc.

Hearing Date: March 2, 1995

SUPPLEMENTAL TESTIMONY

BY DAMIAN BARRETT

The attached EXHIBITS 5, 7, 10, 22, 25, and 27 (4 graphs) are submitted as replacements for the same numbered and labeled EXHIBITS presented to the Examiner at the hearing on March 2, 1995.

As I explained to the Examiner in testimony at the hearing, updated production rates for Drinkard production in Warren Unit Well Nos. 113 and 115 only became available the day before the hearing after witnesses had arrived in Santa Fe. Therefore, the updated Drinkard producing rates for these two wells on EXHIBITS 5, 10, and the appropriate C-116's in EXHIBIT 25 were changed by hand prior to the hearing. Since well Nos. 113 and 115 are recent completions (newly drilled wells) stabilized production rates were not yet available when the EXHIBITS were originally prepared. It was important to incorporate this newer data into the case.

For your convenience, two of these hand-changed EXHIBITS, NOS. 5 and 10 have been reprinted and are submitted here as replacements for the same numbered EXHIBITS. Certain other EXHIBITS that needed to be updated based on the newer Drinkard production rates on these two wells required calculations that could not be done in Santa Fe prior to the hearing. Therefore, these corrections have been completed and are submitted as follows:

EXHIBIT NO. 7

Since the Drinkard reserves for these two wells would naturally be changed with revised producing rates and declines, EXHIBIT NO. 7 has been updated and an updated copy is herein submitted.

EXHIBIT NOS. 22 & 24

Particularly important was the recalculation of the proposed annual allocation formulas for Well Nos. 113 and 115 utilizing the updated producing rates. These formulas have been updated and are herein submitted as replacements for EXHIBIT NOS. 22 and 24.

EXHIBIT NO. 27 (4 Graphs Only)

Drinkard oil and gas production graphs for Well Nos. 113 and 115 have been updated and replotted. These four graphs are herein submitted as replacements for the same graphs submitted at the hearing.

In response to the Examiner's questions concerning possible waterflood response in the Blinebry-Tubb zones of Warren Unit Well Nos. 9, 26, 97, and 99, and their potential affect on projected allocation formulas for these wells, the following additional EXHIBIT No. 30 and the following discussion is herein submitted for the Examiners aid in considering this case.

EXHIBIT NO. 30 (New Supplemental Exhibit)
This map of the Warren Unit was previously submitted in Case No. 10897 in which Order No. R-10068-A approved the 2nd Expansion of the Warren Blinebry-Tubb Waterflood Project. This map shows the three stages (Pilot, 1st Expansion, and 2nd Expansion) in the development of this waterflood project. It also identifies the (a) current injection wells and flood patterns in blue triangles and lines and (b) future, proposed injection wells and flood patterns in dark pink.

Notice on EXHIBIT NO. 30 that Well Nos. 97 and 99 are in closest proximity to the early Pilot Stage of this waterflood project that was begun in 1983. These two wells were not drilled until 1991. Without available pressure sinks from producing wells at these locations, absolutely no waterflood sweep would have moved toward these locations between 1983 and 1991.

Since drilling them in 1991 both of these new wells have been on a normal primary recovery decline and have shown no waterflood response. This is demonstrated by the Blinebry-Tubb oil and gas producing curves for these two wells which were included in the hearing EXHIBIT No. 26. The production history on these wells confirms that only producers within three-quarter or complete flood patterns can be expected to experience any flood response. As peripheral edge wells to the Pilot Stage these two wells had absolutely no flood containment to produce a sweep in their direction and would not have been expected to receive any significant flood response.

Looking at Well Nos. 9 and 26, in Section 27, we see exactly the same geographic relationship of these two wells to the 1st Expansion to the Waterflood Project as Nos. 97 and 99 have to the Pilot Stage. They too are peripheral edge wells to the 1st Expansion flood patterns. Although none of the wells in the 1st Expansion have shown flood response as yet, earlier study and evaluation of the Pilot Stage has confirmed that unconfined patterns cannot be expected to produce flood response. Therefore, the vertical row of wells in the W/2 W/2 of Section 27 should not experience any flood response until they are enclosed in complete flood patterns by the conversion of the 2nd Expansion Area to waterflooding.

Since, this conversion will not be done until the Drinkard is plugged off and the commingling phase is completed, the allocation formulas for all four of these wells, which are based on current decline curve analysis, should not be affected by the waterflooding activities in the Pilot and 1st Expansion stages of the project.

Thank you for the opportunity to update EXHIBITS 5, 7, 10, 22, 24, and 27 and to submit EXHIBIT 30 and this additional testimony in response to your questions during the hearing. If I can be of any further assistance please contact me at (915) 686-5497.

Damian Banett	3-9-95
Damian Barrett	Date

WARREN UNIT

CURRENT PRODUCTIVITY TESTS

		WATER	_	_	7	20	0	0	0	ಣ	36	46				
BLINEBRY TUBB		GOR	16,720	138,000	16,030	23,750	26,190	5,920	200,000	9,840	19,340	6,750				
BL		GAS	301	276	465	380	220	148	200	205	890	780				
		OIL	18	0	29	16	21	25	_	51	46	8				
	SHUT-IN	DATE	3/88	10/57	68/9		5/94	8/92	1/91							
		WATER	0	0	0	21	102	20	21	9						
RD		GOR	9'000	7,090	28,660	47,500	12,160	4,660	58,330	29,170	40,000	10,250				
DRINKARD		GAS	8	78	86	380	73	28	175	175	240	123			긆	ᆵ
		OIL	10	=	က	Ø	9	9	က	9	9	12	NEW DRILL	NEW DRILL	PROPOSED WEL	PROPOSED WELL
		WELL	0	9	26	94	26	86	66	113	114	115	116	117		119 P
		-			•											

BEFORE AN EXAMINER OF THE OIL CONSERVATION DIVISION

WARREN UNIT Blinebry-Tubb DHC with Drinkard

Additional Reserves Beyond Economic Limit Through DHC

-Tubb ary Res.	GAS	423	202	578	929	1458	150	395	918	1488	1323	8169
Blinebry-Tubb Ult. Primary Res.	OIL	29	_	38	01	30	15	-	74	29	101	366
ard	GAS	137	118	207	1060	61	35	280	287	448	200	2833
Drinkard 37 start of Flood	MBO OIL	24	16	7	16	14	9	5	11	13	20	132
* To 2007	WELL	6	01	26	94	26	86	8	113	114	115	OTAL

BEFORE AN EXAMINER OF THE OIL CONSERVATION DIVISION

WARREN UNIT

DOWNHOLE COMMINGLED PRODUCTION

GOR	12,890	27,230	17,220	31,660	23,070	5,680	93,750	11,870	21,730	9,820
WATER	_	_	7	41	102	72	21	13	40	99
GAS	361	354	551	760	623	176	375	677	1130	903
OIL	28	13	32	24	27	31	4	22	52	92
WELL	0	10	26	94	26	86	66	113	114	115

BEFORE AN EXAMINER OF THE OLL CONSERVATION DIVISION

EXHIBIT NO. 11212

W.U. #113 - Annual Allocation Formulas

Warren Unit Blinebry-Tubb DHC Drinkard Allocation Formula Warren Unit #113

٧	Varren Unit #113				
E	3linebry-Tubb	Drinkard			
YR	BOPD	BOPD		nebry-Tubb	% Drinkard
1995	48	6	54	0.89	0.11
1996	37	5	42	0.88	0.12
1997	28	4	32	0.87	0.13
1998	22	4	25	0.86	0.14
1999	17	3	20	0.85	0.15
2000	13	3	15	0.84	0.16
2001	10	2	12	0.82	0.18
2002	7	2	9	0.80	0.20
2003	6	2	7	0.79	0.21
2004	4	1	6	0.77	0.23
2005	3	1	4	0.75	0.25
2006	3		3	1.00	0.00
2007	2		2	1.00	0.00
			2	1.00	0.00
i	Blinebry-Tubb	Drinkard			
YR	MCFPD	MCFPD		inebry-Tubb	% Drinkard
1995	502	156	658	0.76	0.24
1996	403	128	532	0.76	0.24
1997	324	105	429	0.76	0.24
1998	261	85	346	0.75	0.25
1999	210	69	279	0.75	0.25
2000	169	56	225	0.75	0.25
2001	136	46	182	0.75	0.25
2002	109	37	146	0.74	0.26
2003	88	30	118	0.74	0.26
2004	71	25	95	0.74	0.26
2005	57	20	77	0.74	0.26
2006	46	16	62	0.74	0.26
2007	37	13	50	0.73	0.27

BEFORE AN EXAMINER OF THE OIL CONSERVATION DIVISION

W.U. #115 - Annual Allocation Formulas

Warren Unit Blinebry-Tubb DHC Drinkard Allocation Formula Warren I Init #115

	Warren Unit #115				
	Blinebry-Tubb	Drinkard	-0-4:	Formula	
YR		BOPD		% Blinebry-Tubb	
1995		11	77	0.86	0.14
1996		9	60	0.85	0.15
1997	39	8	46	0.84	0.16
1998	30	7	36	0.82	0.18
1999	23	6	28	0.80	0.20
2000	17	5	22	0.79	0.21
2001	13	4	17	0.77	0.23
2002	10	3	14	0.76	0.24
2003	8	3	11	0.74	0.26
2004	6	2	8	0.72	0.28
2005	5	2	7	0.69	0.31
2006	4	6	4	1.00	0.00
2007	3	5	3	1.00	0.00
	Blinebry-Tubb	Drinkard			
	MCFPD	MCFPD	TOTAL	% Blinebry-Tubb	% Drinkard
1995	MCFPD 719	MCFPD 112	831	0.87	0.13
1995 1996	MCFPD 719 578	MCFPD 112 92	831 670	0.87 0.86	0.13 0.14
	MCFPD 719 578 465	MCFPD 112 92 75	831 670 540	0.87 0.86 0.86	0.13 0.14 0.14
1996	MCFPD 719 578 465	MCFPD 112 92 75 61	831 670 540 435	0.87 0.86 0.86 0.86	0.13 0.14 0.14 0.14
1996 1997	MCFPD 719 578 465 374 301	MCFPD 112 92 75 61 50	831 670 540 435 350	0.87 0.86 0.86 0.86 0.86	0.13 0.14 0.14 0.14 0.14
1996 1997 1998	MCFPD 719 578 465 374 301	MCFPD 112 92 75 61	831 670 540 435 350 282	0.87 0.86 0.86 0.86 0.86	0.13 0.14 0.14 0.14 0.14
1996 1997 1998 1999	MCFPD 719 578 465 374 301	MCFPD 112 92 75 61 50 40 33	831 670 540 435 350 282 227	0.87 0.86 0.86 0.86 0.86 0.86	0.13 0.14 0.14 0.14 0.14 0.14
1996 1997 1998 1999 2000	MCFPD 719 578 465 374 301 242 194	MCFPD 112 92 75 61 50 40	831 670 540 435 350 282	0.87 0.86 0.86 0.86 0.86	0.13 0.14 0.14 0.14 0.14
1996 1997 1998 1999 2000 2001	MCFPD 719 578 465 374 301 242 194 156	MCFPD 112 92 75 61 50 40 33 27 22	831 670 540 435 350 282 227 183 147	0.87 0.86 0.86 0.86 0.86 0.86 0.85 0.85	0.13 0.14 0.14 0.14 0.14 0.14 0.15 0.15
1996 1997 1998 1999 2000 2001 2002	MCFPD 719 578 465 374 301 242 194 156 126	MCFPD 112 92 75 61 50 40 33 27	831 670 540 435 350 282 227 183	0.87 0.86 0.86 0.86 0.86 0.86 0.86	0.13 0.14 0.14 0.14 0.14 0.14 0.15
1996 1997 1998 1999 2000 2001 2002 2003	MCFPD 719 578 465 374 301 242 194 156 126 101	MCFPD 112 92 75 61 50 40 33 27 22	831 670 540 435 350 282 227 183 147	0.87 0.86 0.86 0.86 0.86 0.86 0.85 0.85	0.13 0.14 0.14 0.14 0.14 0.14 0.15 0.15
1996 1997 1998 1999 2000 2001 2002 2003 2004	MCFPD 719 578 465 374 301 242 194 156 126 101 81	MCFPD 112 92 75 61 50 40 33 27 22 18	831 670 540 435 350 282 227 183 147 119	0.87 0.86 0.86 0.86 0.86 0.86 0.85 0.85 0.85	0.13 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.15
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005	MCFPD 719 578 465 374 301 242 194 156 126 101 81 65	MCFPD 112 92 75 61 50 40 33 27 22 18 14	831 670 540 435 350 282 227 183 147 119 96	0.87 0.86 0.86 0.86 0.86 0.86 0.85 0.85 0.85	0.13 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.15

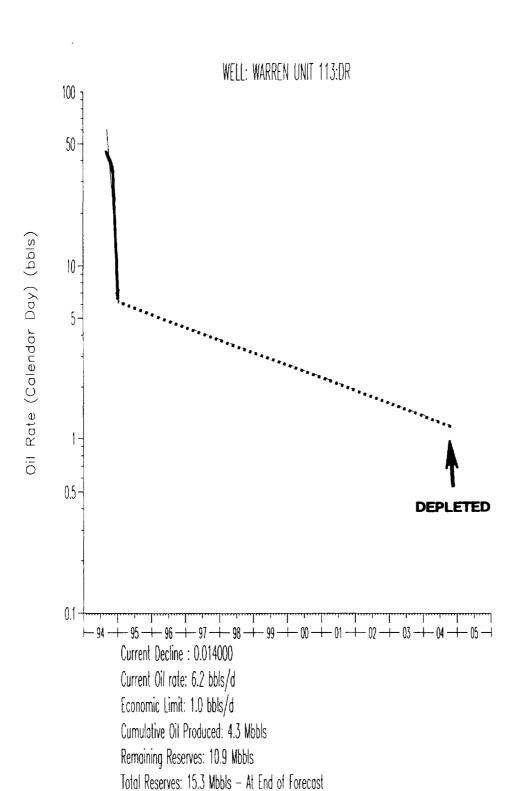
BEFORE AN EXAMINER OF THE OIL CONSERVATION DIVISION

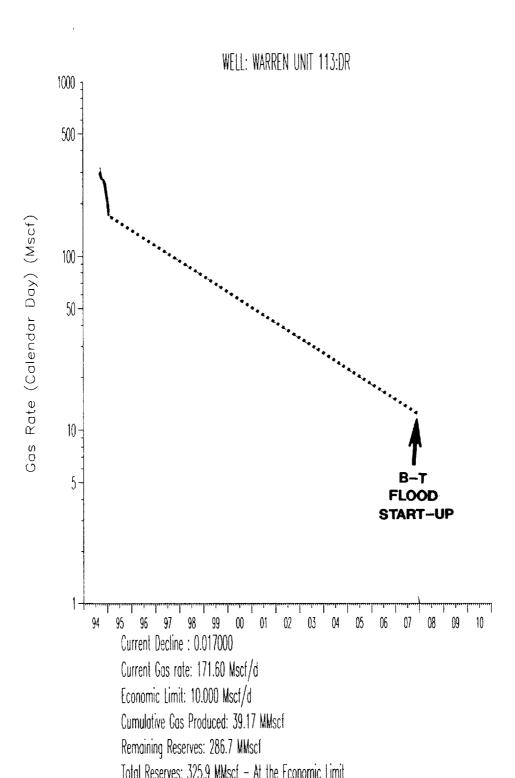
EXHIBIT NO. 24 CASE NO.:

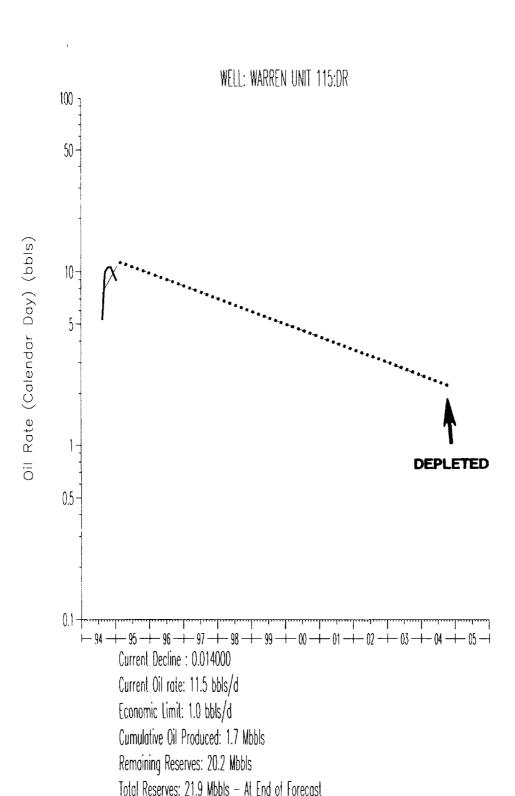
11212

Submitted by: Conoco Inc.
Hearing Date: Mar 2, 1995

DRINKARD


OIL & GAS PRODUCTION CURVES


FOR WARREN UNIT WELL NOS.


9, 10, 26, 94, 97, 98, 99, 113, 114, 115

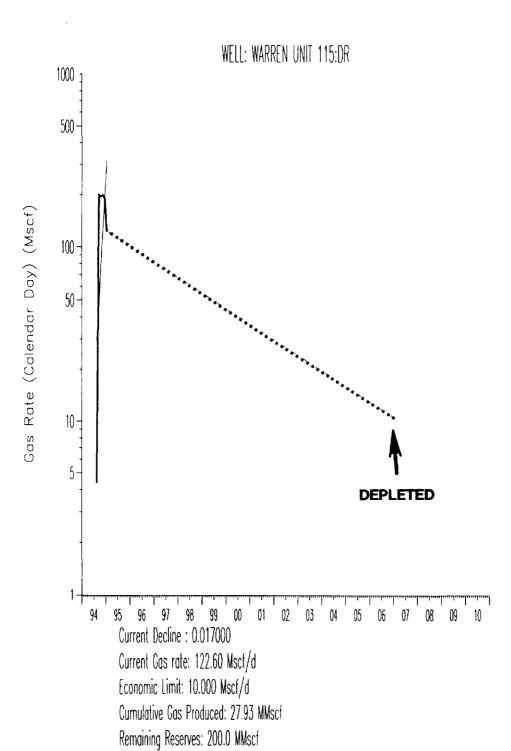
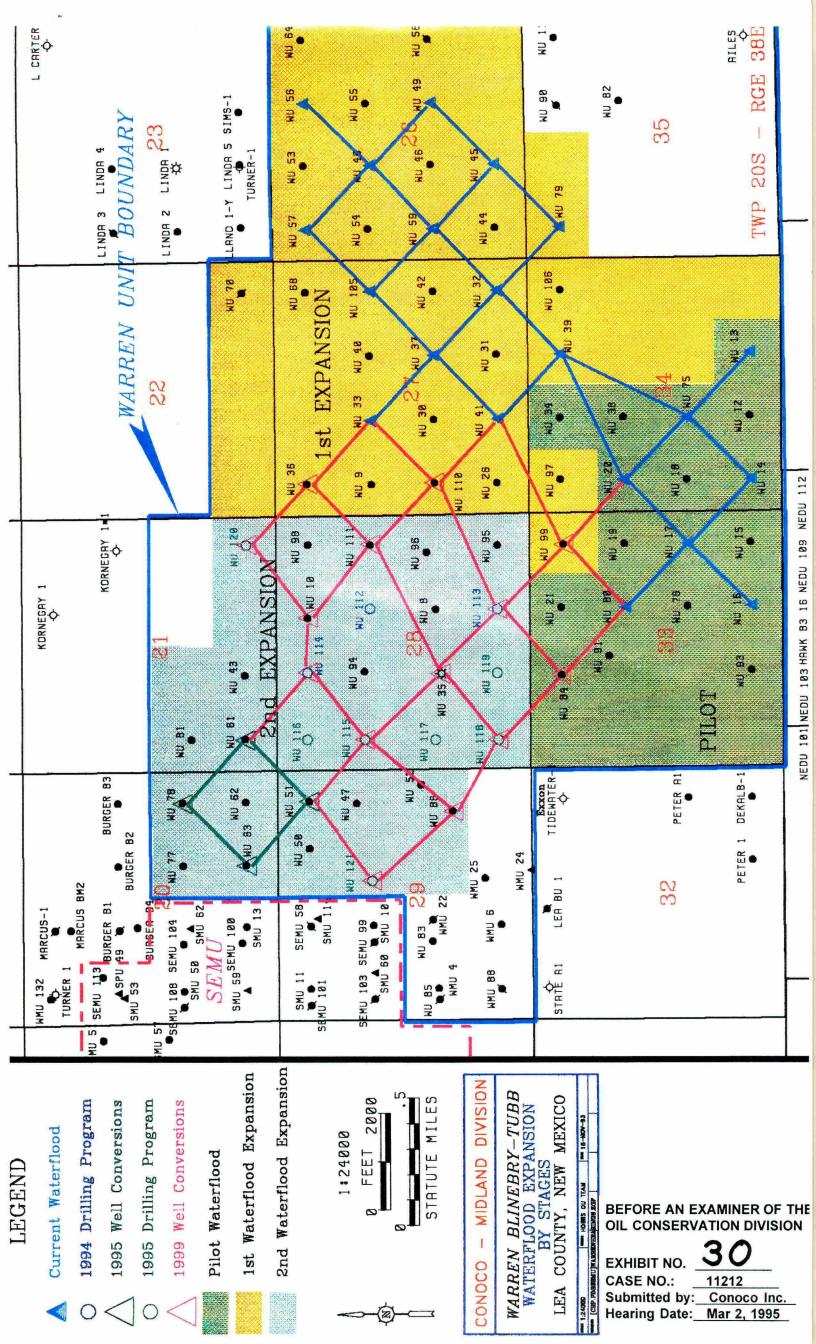

BEFORE AN EXAMINER OF THE OIL CONSERVATION DIVISION

EXHIBIT NO. 27



Total Reserves: 227.9 MMscf - At the Economic Limit

