	<u> </u>
STATE OF NEW MEXICO	
ENERGY, MINERALS AND NATURAL RESOURCE	ES DEPARTMENT
OIL CONSERVATION DIVISION	N DEBENNA
IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:	
APPLICATION OF YATES PETROLEUM CORPORATION FOR AMENDMENT OF THE SPECIAL) POOL RULES AND REGULATIONS FOR THE NORTH) DAGGER DRAW-UPPER PENNSYLVANIAN POOL AND) FOR THE CANCELLATION OF OVERPRODUCTION,) EDDY COUNTY, NEW MEXICO	CASE NOS. 11,525
APPLICATION OF YATES PETROLEUM) CORPORATION FOR AMENDMENT OF THE SPECIAL) POOL RULES AND REGULATIONS FOR THE SOUTH) DAGGER DRAW-UPPER PENNSYLVANIAN POOL AND) FOR THE CANCELLATION OF OVERPRODUCTION,) EDDY COUNTY, NEW MEXICO	and 11,526
	(Consolidated)
	ORIGINAL
REPORTER'S TRANSCRIPT OF PROCE EXAMINER HEARING	EDINGS
BEFORE: MICHAEL E. STOGNER, Hearing Exami	iner
May 3rd, 1996 Santa Fe, New Mexico	
This matter came on for hearing Mexico Oil Conservation Division, MICHAEL Hearing Examiner, on Friday, May 3rd, 1996 Mexico Energy, Minerals and Natural Resour Porter Hall, 2040 South Pacheco, Santa Fe, Steven T. Brenner, Certified Court Reporte State of New Mexico.	before the New E. STOGNER, 5, at the New cces Department, New Mexico, er No. 7 for the
* * *	

INDEX

May 3rd, 1996 Examiner Hearing CASE NOS. 11,525 and 11,526 (Consolidated) PAGE EXHIBITS 3 **APPEARANCES** 5 **APPLICANT'S WITNESSES:** <u>BRENT MAY</u> (Geologist) Direct Examination by Mr. Carr 9 Examination by Examiner Stogner 17 ROBERT S. FANT (Engineer) Direct Examination by Mr. Carr 20 Cross-Examination by Mr. Kellahin 56 Examination by Mr. Padilla 113 Examination by Mr. Bruce 118 Examination by Mr. Carroll 119 Examination by Examiner Stogner 123 CONOCO WITNESSES: **BILL HARDIE** (Geologist) Direct Examination by Mr. Kellahin 133 Cross-Examination by Mr. Carr 146 Examination by Examiner Stogner 156 <u>ROBERT E. BEAMER</u> (Engineer) Direct Examination by Mr. Kellahin 157 Cross-Examination by Mr. Carr 169 Examination by Examiner Stogner 175 Direct Examination (Case No. 11,526) by Mr. Kellahin 180 Cross-Examination (Case No. 11,526) by Mr. Carr 188 **REPORTER'S CERTIFICATE** 192 * * *

> STEVEN T. BRENNER, CCR (505) 989-9317

2

ΕX	K H I B I T S	
Applicant's - Case Nos. 1	1,525 and 11,5	26 (Consolidated)
	Identified	Admitted
Exhibit 1	12	16
Exhibit 2	14	16
Exhibit 3	15	16
Exhibit 4	26	56
Exhibit 5	28	56
Exhibit 6	32	56
Exhibit 7	34	56
Exhibit 8	38	56
Exhibit 9	40	56
Exhibit 10	43	56
Exhibit 11	46	56
Exhibit 12 (doe	s not exist)	
Exhibit 13	49	56
Exhibit 14	53	56
	* * *	
Conoco - Case No. 11,525		
	Identified	Admitted
Exhibit 1	134	146
Exhibit 2	137	146
Exhibit 3	141	146
Exhibit 4	144	146
Exhibit 5	158	169
Exhibit 6	158, 162	169
Exhibit 7	162	169
Exhibit 8	162	169
Exhibit 9	162, 163	169
(Co	ntinued)	

E	хнів	ITS (Contin	ued)
Conoco - Case No.	11,525		
		Identified	Admitted
Exhibit	10	162	169
Exhibit	11	162	169
Exhibit	12	162, 164	169
Exhibit	13	162	169
Exhibit	14	162	169
Exhibit	15	162	169
Exhibit	16	162	169
Exhibit	17	162	169
Exhibit	18	162	169
Exhibit	19	165	169
Exhibit	20	165	169
Conoco - Case No.	11,526	Idontified)dmitted
		Identified	Admitted
Exhibit	1	181	187
Exhibit	2	181	-
Exhibit	3	181	-
Exhibit	4	181	-
Exhibit	5	181	-
Exhibit	6	181	-
Exhibit	7	181	187
Exhibit	8	181	187
Exhibit	9	181	187
Exhibit	10	181	187
Exhibit	11	181	187
Exhibit	12	181	187
Exhibit	13	181	187
Exhibit	14	181	187
Exhibit	15	181	187
	(Co	ntinued)	

•

EXHIBITS (Continued) Conoco - Case No. 11,526 Identified Admitted Exhibit 16 181 187 Exhibit 17 181 187 Exhibit 18 187 181 Exhibit 19 181 187 Exhibit 20 181 187 Exhibit 21 181 187 * * * APPEARANCES FOR THE DIVISION: RAND L. CARROLL Attorney at Law Legal Counsel to the Division 2040 South Pacheco Santa Fe, New Mexico 87505 FOR THE APPLICANT and NEARBURG EXPLORATION COMPANY: CAMPBELL, CARR, BERGE and SHERIDAN, P.A. Suite 1 - 110 N. Guadalupe P.O. Box 2208 Santa Fe, New Mexico 87504-2208 By: WILLIAM F. CARR (Continued...)

APPEARANCES (Continued)

FOR CONOCO, INC.:

KELLAHIN & KELLAHIN 117 N. Guadalupe P.O. Box 2265 Santa Fe, New Mexico 87504-2265 By: W. THOMAS KELLAHIN

FOR JAMES T. CHAVEZ:

PADILLA LAW FIRM, P.A. 1512 South St. Francis Drive P.O. Box 2523 Santa Fe, New Mexico 87504-2523 By: ERNEST L. PADILLA

FOR MARATHON OIL COMPANY (Case No. 11,526 only):

MONTGOMERY & ANDREWS, P.A. 325 Paseo de Peralta P.O. Box 2307 Santa Fe, New Mexico 87504-2307 By: EDMUND H. KENDRICK

FOR MEWBOURNE OIL COMPANY:

HINKLE, COX, EATON, COFFIELD & HENSLEY 218 Montezuma P.O. Box 2068 Santa Fe, New Mexico 87504-2068 By: JAMES G. BRUCE

* * *

WHEREUPON, the following proceedings were had at 1 2 8:00 a.m.: EXAMINER STOGNER: This hearing will come to 3 Welcome to the continuation of Docket Number 13-96. order. 4 At this time I'm going to consolidate and call 5 both Cases 11,525 and 11,526. 6 7 MR. CARROLL: Application of Yates Petroleum 8 Corporation for amendment of the special pool rules and 9 regulations for the North Dagger Draw-Upper Pennsylvanian Pool and for the cancellation of overproduction, Eddy 10 County, New Mexico. 11 And the Application of Yates Petroleum 12 13 Corporation for amendment of the special pool rules and regulations for the South Dagger Draw-Upper Pennsylvanian 14 Pool and for the cancellation of overproduction, Eddy 15 County, New Mexico. 16 17 EXAMINER STOGNER: At this time I'll call for 18 appearances. May it please the Examiner, my name is 19 MR. CARR: William F. Carr with the Santa Fe law firm Campbell, Carr, 20 21 Berge and Sheridan. 22 We represent Yates Petroleum Corporation in this 23 matter, and I have two witnesses. 24 And I would also like to enter my appearance for 25 Nearburg Exploration Company.

1 EXAMINER STOGNER: Other appearances? Mr. Examiner, I'm Tom Kellahin of 2 MR. KELLAHIN: 3 the Santa Fe law firm of Kellahin and Kellahin. I'm appearing today on behalf of Conoco, Inc., 4 and I have two witnesses to be sworn. 5 6 MR. PADILLA: Mr. Examiner, I'm Ernest L. 7 Padilla, Santa Fe, New Mexico, for James T. Chavez. MR. KENDRICK: Mr. Hearing Examiner, I'm Ned 8 9 Kendrick with the Montgomery and Andrews law firm in Santa Fe, representing the Marathon Oil company in the 10 second of those two Applications, the South Dagger Draw 11 12 Application. 13 No witnesses. MR. BRUCE: Mr. Examiner, Jim Bruce from the 14 15 Hinkle law firm in Santa Fe, representing Mewbourne Oil 16 Company. 17 I do not have any witnesses. MR. PADILLA: Mr. Examiner, I don't have any 18 witnesses. 19 20 EXAMINER STOGNER: Mr. Kellahin --MR. KELLAHIN: Yes, sir. 21 EXAMINER STOGNER: -- how many witnesses do you 22 have? 23 24 MR. KELLAHIN: Two. 25 EXAMINER STOGNER: And Mr. Carr?

Two witnesses. 1 MR. CARR: 2 EXAMINER STOGNER: Mr. Carroll, do you know if the Division -- or do you have any plans of calling a 3 witness for the Division? 4 MR. CARROLL: Mr. Examiner, the Division may call 5 a witness. 6 7 EXAMINER STOGNER: Okay. At this time, why don't 8 we swear in all witnesses or all possible witnesses? We'll 9 have everybody stand. 10 (Thereupon, the witnesses were sworn.) 11 EXAMINER STOGNER: Gentlemen, proceedings in this 12 matter? Do we need to just start right in, or is there any 13 need for opening remarks? 14 MR. CARR: I'm ready to go. MR. KELLAHIN: Let's put on some witnesses. 15 16 EXAMINER STOGNER: Okay. 17 MR. CARR: At this time we'd call Mr. Brent May. 18 BRENT MAY, the witness herein, after having been first duly sworn upon 19 20 his oath, was examined and testified as follows: DIRECT EXAMINATION 21 BY MR. CARR: 22 23 Q. Would you state your name for the record, please? Brent May. 24 Α. 25 Mr. May, where do you reside? Q.

9

1	Α.	In Artesia, New Mexico.
2	Q.	By whom are you employed?
3	Α.	Yates Petroleum.
4	Q.	What is your current position with Yates?
5	А.	I'm a geologist.
6	Q.	Have you previously testified before this
7	Division?	
8	Α.	Yes, I have.
9	Q.	At the time of that testimony, were your
10	credentia	ls as an expert in petroleum geology accepted and
11	made a ma	tter of record?
12	Α.	Yes, they were.
13	Q.	Are you familiar with the Application filed in
14	each of t	hese cases on behalf of Yates Petroleum
15	Corporati	on?
16	Α.	Yes, I am.
17	Q.	Are you familiar with the status of the ownership
18	in these	pools?
19	Α.	Yes, I am.
20	Q.	Mr. May, have you made a geological study of the
21	Canyon or	upper Pennsylvanian formation in this area?
22	Α.	Yes, I have.
23		MR. CARR: Are the witness's qualifications
24	acceptabl	e?
25		EXAMINER STOGNER: Any objection?

1	MR. KELLAHIN: No objection.
2	EXAMINER STOGNER: They are.
3	Q. (By Mr. Carr) Could you briefly state what Yates
4	Petroleum Corporation seeks in these cases?
5	A. In Case 11,525, the North Dagger Draw Pool, we're
6	asking for a special depth bracket allowable of 4000
7	barrels of oil per day for each 160-acre proration unit.
8	We're also asking for the cancellation of all
9	overproduction in the pool on the date that the requested
10	depth bracket allowable become effective.
11	In Case 11,526, which is South Dagger, we're
12	asking for a special depth bracket allowable of 8000
13	barrels of oil per day for each 320-acre proration unit,
14	and also, again, the cancellation of all overproduction in
15	the pool on the date the requested depth bracket allowable
16	becomes effective.
17	Q. Could you just initially summarize the important
18	provisions of the rules which currently govern development
19	in each of these two pools?
20	A. Currently in North Dagger the spacing is 160
21	acres, the depth bracket allowable is currently 700 barrels
22	of oil per day, and the GOR is 10,000 to 1.
23	In South Dagger the spacing is 320 acres, and the
24	depth bracket allowable is 1400 barrels of oil per day, and
25	the GOR is 7000 to 1.

Have you prepared exhibits for presentation here 1 0. today? 2 Yes, I have. 3 Α. Let's go to what has been marked for 4 ο. 5 identification as Yates Exhibit Number 1. I'd ask you to 6 identify this exhibit and then review the information 7 thereon. This is basically a computerized land map of 8 Α. North and South Dagger Draws, showing the different 9 10 townships. The different well spot locations have different 11 The black spots represent wells operated by Yates 12 colors. 13 Petroleum, the blue well spots represent wells operated by 14 Conoco, the purple well spots represent wells operated by 15 And in general the yellow well spots represent Nearburg. all others, but in the case of South Dagger, the majority 16 17 of those operated by Marathon Oil. 18 The different proration units are shown in each 19 pool. In North Dagger they're 160s and in South Dagger 20 they're 320-acre proration units. You might note that in one of the various corners 21 22 of the different proration units are colored triangles. Those represent the two -- In the position of the corner --23 in other words, if it's the upper right-hand, versus upper 24 25 left-hand, versus lower left-hand -- determines who the

operator of the proration unit is. 1 The color of the triangle actually denotes 2 3 percentage ranges of that operator. And if we can look at 4 the bottom of the map, at the legend, it will point that 5 out. We might note, though, that there is an error on this If you read through above the triangles, it says 6 legend. 7 upper right for all. It should be --If we come down the left side of that block that 8 Q. has all the triangles in it, in the upper left-hand corner 9 it says "upper right". 10 11 Α. Right. Is that correct? 12 Q. Only in the top case. 13 Α. Okay. If we go directly below that to the blue 14 0. triangle where it says upper right, what should that say? 15 It should say upper left-hand corner of proration 16 Α. 17 unit -- Conoco-operator percentage. And on the bottom one 18 it should say lower -- I believe it is lower left-hand 19 proration unit, Nearburg is the operator. 20 0. Okay. And other than that, it's correct; is that right? 21 Yes, and as I stated before, the different colors 22 Α. show percentage ranges of the operator's percentage, blue 23 zero to 25 percent, green 26 to 50 percent, and yellow 51 24 25 to 75 percent and the red 76 to 100 percent.

Also, for each proration unit out of the major 1 operators in the different corners, the rough percentages 2 are shown, even if they are -- the different company is not 3 the operator. So you can look at three different corners 4 and show the percentage that Yates has, the percentage 5 Conoco has and the percentage Nearburg has. 6 7 ο. This is actually the in-house map that Yates uses 8 to keep track of the operators and spacing units in this 9 pool; is that not correct? 10 That's true. There's a lot of information on Α. here, and it's kind of busy. But once you get a hang of 11 it, it's a very good map that has a lot of information that 12 13 you can go to quickly with one glance. And this plat shows all wells and well locations 14 0. within the two pools? 15 Α. Yes, it is. 16 Also note that the dark black line is roughly the 17 outline of the Canyon dolomite or upper Penn dolomite here. 18 19 Also note that down in South Dagger, in Sections 14 and 23 of 20 South, 24 East, it also shows the Sawbuck 20 21 pilot waterflood project. 22 Q. All right, Mr. May, let's go to Yates Exhibit Number 2. Will you identify and review that? 23 Α. This is a net dolomite isopach of the Canyon or 24 upper Penn dolomite, throughout South and North Dagger 25

1 Draw.

2	The red dots represent the various wells within
3	the different pools within the colored area. The contour
4	intervals are 50-foot contour intervals, but we have
5	different colors which denote 100-foot contour intervals.
6	And you can note from the light blue to darker blues into
7	the green that goes from the edge to thin dolomite to
8	thicker dolomite, the green being the thickest.
9	The main thing I want to show with this exhibit
10	is that North and South Dagger Draw are in the same
11	continuous geologic body, the same the Canyon dolomite,
12	and that's one of the reasons why we have asked for both
13	South and North Dagger Draw to be the changes we have
14	we will ask for. That's why we've asked for both of them,
15	because it's in the same geologic unit.
16	And I do want to point out that even though it's
17	the same geologic body, there are variations within this
18	body as far as reservoir qualities go, but it is one
19	continuous dolomite body. In fact, this dolomite body even
20	continues down into Indian Basin, in that area, and I think
21	that's been pointed out in several hearings in the past.
22	Q. Mr. May, is Exhibit Number 3 an affidavit
23	confirming that notice of this Application has been
24	provided in accordance with Division rules?
25	A. Yes, it is.

And attached to that, do we have an exhibit 1 Q. identifying those individuals and a copy of the notice 2 letter? 3 Α. Yes. 4 5 To whom was notice provided? 0. It was provided to all the operators in the Α. 6 7 pools, all unleased mineral owners in the pools, and 8 operators in the upper Penn formation within a mile of the 9 pool boundaries. 10 Is Yates going to also call an engineering Q. 11 witness to review those portions of these Applications? 12 Α. Yes, we will. 13 Q. Were Exhibits 1 through 3 either prepared by you 14 or compiled at your direction? 15 Yes, they were. Α. 16 Can you testify as to the accuracy of Exhibits 1 Q. 17 through 3? 18 Α. Yes. MR. CARR: At this time we would move the 19 20 admission into evidence of Yates Exhibits 1 through 3. 21 EXAMINER STOGNER: Any objections? 22 MR. KELLAHIN: No objection. 23 EXAMINER STOGNER: Exhibits 1 through 3 will be admitted into evidence. 24 25 That concludes my direct examination MR. CARR:

of Mr. May. 1 Thank you, Mr. Carr. 2 EXAMINER STOGNER: Mr. Kellahin, your witness. 3 No guestions. 4 MR. KELLAHIN: EXAMINER STOGNER: Mr. Padilla? 5 MR. PADILLA: I don't have any. 6 7 EXAMINER STOGNER: Mr. Kendrick? MR. KENDRICK: No questions. 8 9 EXAMINER STOGNER: All right, Mr. Bruce has left the room. 10 I'm glad that's on the record. 11 MR. CARR: EXAMINATION 12 13 BY EXAMINER STOGNER: Mr. May, in -- Points of procedure. 14 ο. In Exhibit Number 1, up in the North Dagger Draw, you have solid well 15 symbols and hollow well symbols, and then you've got some 16 gas-well symbols. Could you maybe go into a little more 17 detail about what each depicts? 18 19 Α. Sure, the solid well symbols are the upper Penn The open well symbols are locations, proposed 20 producers. And the gas-well symbols, most of those gas 21 locations. 22 wells, I believe, are producing out of the Morrow 23 formation. So they are not out of the Upper Penn, the gas-24 well symbols. Like take, for instance, in Section 20 of 19-25, 25 Q.

1 you look down in the southwest corner, and in the northeast 2 quarter of the southwest quarter there is a solid gas-well symbol. 3 Okay, I should explain that. Probably what -- If 4 Α. 5 I remember correctly, that well may have originally been an old Morrow well and then was later recompleted to the Upper 6 The way the computer takes the data, a lot of times, 7 Penn. it doesn't wipe out the old data, so it overprints on the 8 older data. 9 Would it be fairly easy to say that if it's 10 Q. solid, then that means it's a producing oil well in that 11 12 pool? 13 Α. That is correct. 14 Okay. In Exhibit Number 2, you're showing the 0. continuity or the continuation of this trend that takes in 15 16 North Dagger Draw and the South Dagger Draw. If you extend that on down, doesn't that take in 17 18 another pool? 19 It takes in Indian Basin Pool, and also the Α. 20 Indian Basin Associated Pool. EXAMINER STOGNER: I feel it's necessary to take 21 administrative order at this time, Mr. Kellahin on -- I'm 22 sorry, Mr. Carr and Mr. Kellahin -- previous orders. 23 24 MR. CARR: Yes, sir. 25 EXAMINER STOGNER: If I remember right, the

development of this pool, at least setting the allowables, 1 2 has fairly well gone hand in hand. I can't remember the order numbers now, or even 3 the case numbers, but --4 MR. CARR: We can provide you with a list of 5 those. 6 7 And we have certainly no objection to your taking administrative notice of any of the previous cases --8 EXAMINER STOGNER: Would you please? And I 9 believe there is a pending order or a pending case to step 10 the allowable in the Indian Basin Associated Pool --11 12 MR. CARR: Yes. sir. EXAMINER STOGNER: -- to make that in line with 13 14 the current pool rules? MR. CARR: Mr. Stogner, if it's all right, we'll 15 prepare a list of those cases, and I'll review it with the 16 other attorneys in the case, and with their concurrence, 17 we'll submit it to you and try to have as complete a 18 listing as possible. 19 20 EXAMINER STOGNER: Okay. With that, I have no 21 other questions of Mr. May. MR. CARR: And at this time, then, that concludes 22 our geologic presentation, and we would call Mr. Robert 23 24 Fant. Mr. Carr? 25 EXAMINER STOGNER:

1	ROBERT S. FANT,
2	the witness herein, after having been first duly sworn upon
3	his oath, was examined and testified as follows:
4	DIRECT EXAMINATION
5	BY MR. CARR:
6	Q. Would you state your name for the record, please?
7	A. Robert Fant.
8	Q. Where do you reside?
9	A. Artesia, New Mexico.
10	Q. By whom are you employed?
11	A. Yates Petroleum Corporation.
12	Q. Mr. Fant what is your current position with Yates
13	Petroleum Corporation?
14	A. I'm a petroleum engineer.
15	Q. Have you previously testified before this
16	Division?
17	A. Yes, I have.
18	Q. At the time of that testimony, were your
19	credentials as an expert witness in petroleum engineering
20	accepted and made a matter of record?
21	A. Yes, sir, they were.
22	Q. Are you familiar with the Applications filed in
23	each of these cases on behalf of Yates Petroleum
24	Corporation?
25	A. Yes, sir, I am.

1	Q. Are you familiar with the engineering aspects of
2	the development of both of these pools?
3	A. Yes, sir.
4	Q. Are you the engineer responsible for Yates for
5	the engineering aspects of the development of the Dagger
6	Draw pools?
7	A. Yes, sir.
8	MR. CARR: Are the witness's qualifications
9	acceptable?
10	EXAMINER STOGNER: Any objections?
11	MR. KELLAHIN: No objection.
12	Q. (By Mr. Carr) Mr. Fant, initially could you
13	summarize the events which have resulted in these cases
14	being before Examiner Stogner on this date?
15	A. Well, you know, to look back on some of the
16	history, we've known and it's been known that wells within
17	these pools at times are capable of producing at high rates
18	immediately after completion.
19	The norm in history was that they would decline
20	very rapidly and usually within the first month they would
21	be below allowable, and so there was no conflict with
22	allowables.
23	But some of the recently drilled wells have not
24	experienced the rapid decline rates that were present in
25	some of the earlier rates. You know, this was this

1 began shortly before I took on the responsibilities of the 2 reservoir engineering in Dagger Draw. We completed some of these wells that were of this type. 3 And last summer I went to the OCD and discussed 4 5 the potential of running some tests, because I had some concerns about restricting wells and whether or not that 6 7 was good for ultimate oil recovery. And we knew at the time that the wells were producing at rates above 8 We discussed it with the OCD. The parameters 9 allowable. needed to run the tests were not -- we were not able to put 10 those together at the time, and so the tests basically were 11 12 never run. And you know, everybody was kind of expecting 13 these wells to pretty soon fall on their face and just go 14 15 on decline pretty rapidly. So, you know, there was knowledge that the wells were in an overproduced status. 16 The extent was not really known. 17 Recently, the ONGARD system kicked it out, and 18 Mr. Gum came and met with representatives of Yates 19 Petroleum, Mr. Collins, our new operations manager, to --20 you know, brought it to Brian's attention. 21 We formulated a plan at that point, and basically 22 23 that's brought us to this --What was the actual result of that meeting 24 ο. 25 between representatives of the Artesia Office of the OCD

1 and representatives of Yates?

A. Well, the first thing we did was, we filed these Applications. That was one of the first things we had -you know, I had been somewhat aware of this -- my concerns about how to produce the wells in Dagger Draw, for a while now, and so we immediately took this -- you know, filed these applications.

And upon meeting with Mr. Gum we curtailed the 8 9 production within these overproduced proration units to the 10 700-barrel-a-day allowable or, in some cases, they were curtailed -- they were not curtailed, in some cases they 11 12 were below, already below the 700-barrel-a-day allowable. 13 The ones that were still above that 700-barrel-a-day, we 14 curtailed to allowable so as to not increase the effects of 15 overproduction or the magnitude of the overproduction, pending the results of this hearing. 16

Q. Was it your understanding that Mr. Gum was also
visiting with other operators in the pool who had wells
that were overproduced?

A. Yes, it was our understanding.

20

Q. What can an operator do when they find themselves in this situation with wells that are substantially overproduced?

A. Really, they have two options: They can curtailproduction, or they can seek special relief from the

1	Division. And basically we had taken both of those steps
2	already.
3	Q. Have you prepared exhibits for presentation here
4	today?
5	A. Yes, sir, I have.
6	Q. And as you present this data this morning, are
7	you presenting new information about these pools, talking
8	about things that were not known before?
9	A. The basics of what I'm talking about has been
10	known for many years in Dagger Draw on an empirical basis.
11	It's been some basic tenets that people have talked about
12	since the early days of one of the first operators. You
13	know, we call them the Roger Hanks days. He was one of the
14	first operators in the pool and had a lot to do with some
15	of the early orders within the pool.
16	Q. When did the real production in this pool take
17	off?
18	A. Well, you know, it was discovered around 1972,
19	but it was the mid- to late-1980s before production
20	techniques and knowledge of the pool increased enough to
21	where significant development and, you know, massive
22	production rates were seen in this pool.
23	Q. And what was causing this delay in developing
24	this significant production?
25	A. Well, really, early in the life of the pool,

1 operators seemed to show a hesitancy to move large volumes 2 of fluid. You -- And as a result, they were seeing very, very high water cuts within -- for their production in 3 relation to -- many of them did not have the saltwater 4 disposal capacity, the pump technology. They were -- The 5 pump technology used at the time was not the same as the 6 7 technology we're using these days. 8 And consequently, they were simply not moving the 9 volumes of fluid necessary to get attractive oil cuts 10 within the wells and to get attractive economics for the 11 wells, and we finally moved into the stage of doing that. You're going to be presenting evidence this 12 Q. morning about the higher oil cuts that result from the 13 14 increased production, right? Yes, sir. 15 Α. Was that something that was understood back in 16 Q. 17 the early days of this pool? I believe there was some understanding of it, but 18 Α. I don't feel that the operators were willing to go out at 19 20 the time and, either through technology or through capacity 21 of their disposal systems, to actually move the fluids. Let's go to Yates Exhibit Number 4. 22 Q. 23 Α. Okay. 24 Would you identify this exhibit for Mr. Stogner 0. 25 and review the information on the exhibit?

Okay, Exhibit Number 4 is a plot entitled 1 Α. 2 Swabbing Oil Cut Versus Second Month Producing Oil Cut for 58 Wells in Dagger Draw. 3 I reviewed the drilling reports and determined 4 basically what was the oil cut during -- immediately after 5 completion, when we were swabbing on the well, and that oil 6 cut is represented on the X axis. And the oil cut is 7 simply just the percentage of the -- It's just oil volume 8 divided by oil-plus-water volume, and it's represented as a 9 10 percentage here. And basically when you're swabbing or flowing 11 these wells, we were generally producing at a rate of about 12 13 500 barrels of fluid a day, which represents a small 14 drawdown for production in the Dagger Draw reservoir. In 15 general, that's a small drawdown. 500 barrels of fluid a 16 day is a small amount of fluid for these wells to produce. That is the X axis. 17 When you look at the Y axis, that is the 18 19 producing oil cut reported for the second month of 20 production, and that represents high drawdowns and high 21 fluid rates. Why did you use the second-month production? 22 0. I used the second month because there's a 23 Α. tendency for the first month, in terms of oil cuts, to be 24 25 somewhat inaccurate. When you're completing the well in

1 these wells, you often -- you may recover 200 or 300 2 barrels of oil. You may swab them for a while, or they may flow well. 3 The water that's produced during the completion 4 5 phase, before the well is actually IP'd, is seldom reported. And so you can get -- But the oil is reported as 6 first -- when the first month of production. So you can 7 8 actually -- If you use the first month of production, you can get inaccurate numbers for what the oil cut for the 9 well actually is. 10 So that's why I've gone to the second month. Ι 11 wanted to look at a time period where depletion hasn't 12 become a major factor in the well, but -- And I didn't want 13 to use that first month, because I consider it inaccurate 14 at times. 15 Okay. Now, comparing those two things, what does 16 0. this exhibit show you? 17 Basically what this exhibit shows is that the oil 18 Α. cuts you see when you're swabbing, you almost always see a 19 20 significantly higher oil cut when the well is put on production. 21 You know, for example, you might have a 10-22 percent oil cut on -- when you're swabbing the well, but 23 the oil cut, you know, there's -- if you go up this 10-24 percent line, there's a well that's producing at over 66-25

percent oil cut when placed on production. 1 You know, there's no direct correlation. I can't 2 say that if you have a 5-percent oil cut on swab, you'll 3 get a specific oil cut on production. But you get that oil 4 cut, essentially, or higher. 5 There's a couple or three or four wells that fall 6 7 in the other direction, but they're -- I mean, really, 8 there's only two that fall significantly below that, you 9 know, and that would put it in the 90-plus percentile range on this particular thing, for -- over 90 percent of the 10 time, you see this effect. 11 What we've got here is production figures early 12 0. 13 in the life of each of these wells, right? 14 Α. Yes. 15 Q. And when you compare low producing rates on 16 swabbing or early flowing to high producing rates during 17 the first reliable month of production, you're seeing 18 that -- high production rates, you're also getting high oil 19 cuts; isn't that correct? Yes, sir. 20 Α. 21 Okay. Let's go to Exhibit Number 5. Would you Q. 22 explain what that is? 23 Exhibit Number 5 is a collection of plots for --Α. and basically what I'm plotting here is the oil cut on the 24 Y axis as a function of the oil rate, producing oil rate, 25

1	on the X axis. And this is a well that at one point
2	produced well above allowable.
3	Q. You're talking about the first well in this
4	exhibit?
5	A. Yes, sir, the
6	Q. We've got 17 here; is that right?
7	A. There's 17 wells in this exhibit, and I'm
8	basically going to talk about them in generic terms, but
9	I'm providing the 17 wells as multiple examples of the same
10	effect.
11	What I was trying to look at here is, we saw in
12	this in Exhibit Number 4 that there appears to be a
13	relationship between drawdown and oil cut. When you have
14	the higher drawdown you have a higher oil cut, or when you
15	have a higher producing rate you have a higher oil cut.
16	On these graphs We know that throughout time
17	in these wells, that as decline continues we have a smaller
18	amount of drawdown available to us. As reservoir pressure
19	decreases, the differential pressure between the reservoir
20	and the wellbore goes down, fluid rates go down.
21	So if this particular phenomenon that we saw in
22	Exhibit 4 continued throughout the reservoir, then if we
23	plot the oil rate I mean, if we plot oil cut versus oil
24	rate for these wells throughout their time, there should be
25	a relationship between oil cut and oil rate. In other

1	words, as oil rate goes down, oil cut should go down. And
2	that's You know, that's what I've looked at here.
3	These particular wells are some of the best wells
4	in the pool. They Basically, you know, my criterion for
5	primarily looking at these was to look at wells that had
6	produced at or near or above the allowable at some point
7	and to see if this relationship maintains itself throughout
8	time. And if the relationship we saw in Exhibit 4 holds
9	true, then the slope of these points, of a regression
10	through these points, should have a positive slope. And in
11	all 17 of these cases, it does. You know, the magnitude of
12	it changes a little bit.
13	In fact, there's an equation on here of the
14	regression through these linear regression, it's just a
15	statistical regression through them, and the equation is
16	plotted on there, and in all cases that I've shown you
17	here, it has a positive slope.
18	Q. Are most of these wells in the recently developed
19	portions of these pools?
20	A. Absolutely, these are within like the last two
21	years, primarily.
22	Q. We've got 17 wells here, but how many proration
23	units are actually overproduced that you operate at this
24	time?
25	A. There are 10 proration units that at this time

1	are overproduced. When it was brought to our attention
2	there were 11, but one of those has been corrected.
3	Q. When we look at these 17 wells, are these all in
4	North or South Dagger, or do you have wells that are
5	actually in each of these pools?
6	A. I believe this particular set of examples are in
7	North Dagger Draw. I just want to look through them here.
8	These particular wells that No, there's one in South
9	Dagger Draw, so this does incorporate both of them.
10	Q. Have you actually plotted the data, not just on
11	these 17 wells, but on all wells in these two pools?
12	A. Yes, sir, I have There's approximately three
13	hundred and six or seven wells for which I have data in
14	this pool, enough data to construct this type of plot, and
15	I have looked at the plot for every well in Dagger Draw. I
16	did not want to submit 300 examples; it might get a little
17	cumbersome.
18	Q. We will pursue that in a minute. But when you
19	have plotted these curves
20	A. Uh-huh.
21	Q on each of these wells, what are you looking
22	for? A positive or a negative slope?
23	A. In this instance, I'm looking to see if there is
24	a positive slope.
25	Q. And if you have a positive slope, does that

L

1	confirm that at high rate you have a high oil cut?
2	A. For that well, yes, sir, that confirms it.
3	Q. And why is that important? Why is it important
4	to have a higher oil cut?
5	A. Well, it's a conservation of reservoir energy.
6	And it's been presented many times. We want to produce the
7	maximum amount of liquid hydrocarbon oil for the minimum
8	amount of reservoir energy taken out of the reservoir. In
9	other words, we want to minimize the water production per
10	barrel of oil, or we want to maximize the oil cut.
11	Q. Now, Mr. Fant, each of these 17 plots has a
12	positive oil-cut slope, does it not?
13	A. Yes, sir.
14	Q. Does your next exhibit, Exhibit 6, indicate
15	whether or not you've been able to achieve a positive or
16	negative slope on each of the wells in the pool?
17	A. Yes.
18	Q. Let's go to that exhibit, and I'd ask you to
19	review it for the Examiner.
20	A. Okay.
21	MR. KELLAHIN: What's the exhibit number?
22	MR. CARR: Exhibit Number 6.
23	THE WITNESS: Exhibit Number 6 is the table of
24	wells, and it's six pages long. It's a table for each one
25	of the allowing for each one of the wells that I have

32

evaluated in Dagger Draw. They're listed alphabetically. 1 There may be some wells that are in the pools that are not 2 included here. That would simply be because I don't have 3 enough data to construct one of these plots. 4 And on this, when you look at this exhibit, we 5 have, going from left to right, we have well name, who the 6 7 operator is, its location by unit, section, township and 8 range. 9 And then we have a column that I have called the oil-cut slope, okay? And that is the slope of the line, as 10 you see -- the line similar to what we saw on Exhibit 5. 11 You know, each one of these plots has a slope to that line, 12 and that slope has been calculated for every well in Dagger 13 Draw and presented in this column. 14 The biggest thing I want to point out here is 15 that 95 percent of the time, that number is positive, 16 greater than zero. 95 percent of the time we have this 17 positive slope, like we saw over here in the Exhibit Number 18 5. 95 -- And actually it's a little over 95 percent. 19 But that much of the time, this relationship holds true in both 20 These wells are both North and South Dagger Draw, 21 pools. 22 these that are presented here in Exhibit 6. 23 Q. (By Mr. Carr) Exhibit 4 was an example of a 24 positive slope early in the life of these wells. That is, 25 when you produce them at high rates early, you have higher

oil cut; is that --1 2 Α. Absolutely. And Exhibit Number 6 is, in fact, confirmation of 3 0. 4 that over a longer producing period; is that right? 5 Α. Yes, this says that when you look at the effects 6 of depletion, when depletion is causing the lower rates, 7 that phenomenon holds true. 8 Q. Are you comfortable with saying that, in your opinion, during the life of this reservoir if you produce 9 10 at higher rates, you have a higher oil cut? Yes, sir. 11 Α. Is that a more efficient way to produce the oil 12 0. in each of these pools? 13 14 Α. Absolutely. Let's go to what has been marked Yates Exhibit 15 Q. Number 7. Can you identify that, please? 16 17 Α. Okay, Yates Exhibit Number 7 is very similar to 18 the plots presented in Exhibit Number 5. We have the same 19 oil rate on the X axis and oil cut on the Y axis. 20 However, in this particular instance, the data points plotted here are daily oil rates. They were -- You 21 know, Exhibit 5, the data points were for the month, they 22 23 were a monthly average. This is data specifically for the daily -- early life of the well. 24 25 Now, Mr. Fant, you've got two wells --Q.

	A. Yes.			
	Q in th	is exhibit?		
	Q. How are	these wells different from the wells		
	you've been talkin	g about previously?		
	A. Basicall	y, the wells we talked about previously,		
the changes in production rate were due primarily to				
natural decline, you know, what we were talking about in				
	Exhibits 5 and 6. The lower producing rates were due to			
	decline.			
	There's	another way that lower oil rates can be		
	achieved. We can	manually reduce the production rates, you		
	know, ourselves, and that			
	Q. Has that	occurred with these wells?		
	A. Absolute	ly.		
	Q. Why is t	he Diamond AKI restricted?		
	A. The Diam	ond AKI was drilled at an unorthodox		
	location. Under o	rder of the OCD, there is a 30-percent		
penalty off of the initial potential of that well. The				
	well is only allow	ed to produce at 70 percent of whatever		
	its initial potent	ial was.		
	Q. Is this	well actually restricted because of that		
Į	penalty?			
	A. Absolute	ly, that's what it was doing. When we		
	completed the well	, we placed a sub pump in it, and that		
	sub pump was produ	cing around 800 barrels of oil per day.		

1	And when you look at this, you look at 800 barrels of oil a
2	day, there's a cluster of points around that that are
3	ranging from, say, 27 to just over 30-percent oil cut, and
4	there appears to be a relationship there.
5	We went into this well, we had a very high
6	producing bottomhole pressure at the time, and we installed
7	a variable-speed drive unit, basically to spin the pump
8	faster and to cause the pump to produce more fluid. We did
9	that, and we increased production rates into the 1100-
10	barrel-a-day range, and we were up at the 32-percent-oil-
11	cut range.
12	We continued to increase the produced fluid
13	volume to slightly in excess of 1330 barrels a day. Okay,
14	that's produced oil.
15	At 1330 barrels of oil per day, we were at about
16	35-percent oil cut. The well was IP'd at 1330 barrels a
17	day. The IP is approximately I mean, with the penalty
18	and considering everything, the allowable for the well is
19	around 800 barrels a day. So we took this same variable-
20	speed drive unit, slowed the pump down, and watched what
21	happened as we slowed it down. We slowed it down to around
22	900 barrels a day, a little over 900 barrels a day, and we
23	were around 30-percent oil cut.
24	So what happened in this well was, we took it
25	from low rates to much higher rates, back to the middle,
1	and this relationship held almost perfectly throughout this
----	---
2	period. It's
3	Q. And that relationship is: high producing rates,
4	high oil cut?
5	A. Absolutely. That's, you know, what I'm here to
6	show today.
7	Q. What about the Aparejo APA Number 5 well, the
8	second page?
9	A. This particular instance, instead of installing a
10	variable-speed drive unit, we installed a different size
11	pump. That's another option that you can do. We went from
12	a series 1750 sub pump, which is the oil rate's around
13	50 barrels of oil per day to a series 3000 pump, and
14	then we had the regression through there.
15	And you can see this same type of relationship
16	holds true; at the higher fluid rates, we produce at a
17	higher oil cut. And that's something that's been known in
18	Dagger Draw empirically for many, many years, this is just
19	the data presentation to show what we've known for a while.
20	Q. Do you have any doubt in this pool that you've
21	produced the wells more efficiently and have higher oil cut
22	if you produce at higher rates?
23	A. No, sir, I do not have any doubt.
24	Q. All right. We've talked about oil production.
25	What is the impact of high producing rates on gas

1 production? And you may want to at this time refer to your 2 Exhibit Number 8. 3 Well, you know, I was concerned that maybe at the Α. 4 high rates we would get high GORs. But I refer back to the Diamond Number 1 and --5 6 Q. The same well as in the previous Exhibit, that has a 30-percent penalty? 7 8 Yes, sir, this is the same well. In fact, Α. Exhibit Number 8 refers to the same two wells that were 9 referred to in Exhibit Number 7. However, Exhibit Number 8 10 is oil rate on the X axis versus GOR on the Y axis. 11 We were concerned that, you know, the GOR might increase with 12 13 the increased rates. 14 However, the opposite is actually what happens 15 You can see that around the 800-barrel-a-day rate, here. 16 except for one data point, we're around the, you know, 17 upper 5000 to 6000 SEF per barrel of oil. When we 18 increased to the 1300 barrels a day, we were in the -- we were below 5000 on our GOR. And we backed it down to 900, 19 20 and we were back up in the 5000 to 6000 range. 21 So this particular well shows the relationship 22 that as you increase the drawdown or increase the producing rates, you decrease the GOR, and you again conserve energy 23 in the reservoir. 24 25 0. Mr. Fant, when we look At Exhibit Number 8,

1	you're showing basically fairly recent data; is that not
2	correct?
3	A. Yeah, this is data This again is daily oil
4	rates. You know, each one of these represents one day's of
5	production for that well.
6	Q. Is this information consistent with the
7	historical data on the pool?
8	A. Yes, sir, if you refer back to Exhibit I want
9	to say 6
10	Q. It's Exhibit 6.
11	A the right-hand column on this particular
12	exhibit is entitled "GOR Slope". And when you look at the
13	GOR slope, what we're seeing for the relationship we're
14	looking for in this case, that's shown by the Diamond, is a
15	negative slope. And when you look at the data here, in
16	excess of 75 percent of the time we see this negative
17	slope.
18	So again, it's a strong relationship over time,
19	as shown in Exhibit 6, and on an instantaneous basis as
20	shown in Exhibit 8.
21	Q. In this pool, is it fair to say that in most
22	instances, higher producing rates result in lower GOR?
23	A. Yes, sir.
24	Q. Have you studied interference data on the pool to
25	attempt to determine the appropriate number of wells for

1	each proration unit?
2	A. Yes, sir, I have done an extensive study on
3	interference throughout Dagger Draw.
4	Q. Both pools?
5	A. Both pools.
6	Q. Let's go to Yates Exhibit Number 9. Can you
7	identify that and review it for Mr. Stogner?
8	A. Yates Exhibit 9 is a set of four plots, there are
9	four plots, that basically I'm trying to familiarize with
10	my methodology for looking for interference between wells.
11	This is an example of interference between two wells, and
12	this is you know, that's what I'm showing you an
13	example of what I saw.
14	Q. And your work is not based on pressure tests or
15	interference tests; is that right?
16	A. No, there isn't enough pressure data to do it.
17	I'm basing my analysis on decline rates, fluid rates and
18	analyzing the decline curves of the wells. And, you know,
19	there is I want to say right here, there is some
20	interference between some wells, and that's not necessarily
21	a bad thing. I mean, you In order to efficiently
22	develop the field, you must reach some point of minor
23	interference. That must be reached.
24	But what we're looking at here, the first plot is
25	a plot of oil production for the two wells in concern. The

bottom line with the squares is the oil production for the Warren ANW Federal Number 1, and the diamond-shaped ones are for the Thomas AJJ Number 6, and then there's a line that goes up above that with circles on it, and that's the combination of the two.

So it's important to look at what are the wells
individually doing, plus what is the sum of the two wells?
Q. Are these wells offsetting each other?
A. These wells are direct 40-acre offsets to each
other.

Q. All right. What do these plots show?
A. Well, when you look at the first page, you see
that the Warren ANW Number 1 was basically producing along
at a moderate decline, at about 110 to 120 barrels a day,
in early 1995.

Then in June of 1995, the Thomas 6 was completed, 16 and you can see that the total oil rate for the -- combined 17 jumps way up. The Thomas 6 came in at over 500 barrels of 18 oil per day, and you see that in July of 1996 the slope of 19 20 this plot, of the Warren's oil production curve, seems to change, almost immediate. That's what we find in Dagger 21 22 Draw, is that interference is -- If it's going to occur, 23 boy it's almost immediate. And the Thomas 6 has somewhat 24 interfered with the Warren 1. The Warren 1 goes on a new 25 decline rate, and the Thomas 6 establishes its own decline

1 rate. Now, what's important to note about this is that 2 based upon these declines, we can estimate how much of the 3 reserves in the Thomas 6 are new reserves. And in this 4 5 particular instance 71 percent of the oil produced from the 6 Thomas 6 would not have been recovered by the Warren 1. 7 So yes, there is some interference, but it's not 8 totally redundancy. And it's important to note that if the 9 Thomas 6 had not been drilled, that the Warren 1 -- then the Thomas 6 would not have been able to recover that 71 10 percent of that oil. That would have been wasted. 11 Now, in comparing the effect of the Thomas well 12 0. on the Warren well --13 14 Α. Uh-huh. -- did you do that just for the purpose of this 15 ο. hearing today? 16 Oh, no, this was a study that I did back in 17 Α. 18 January and February of this year, at the request of our 19 management. We had a concern --20 ο. And how many wells did you study when you did 21 this? Every well, basically, in Dagger Draw, was 22 Α. included in this study, that I could -- that I had data 23 for. 24 25 Let's go to Yates Exhibit Number 10. Could you 0.

1	identify and review that, please?
2	A. Okay, Exhibit Number 10 is Basically what
3	we're looking at here is Sections 8, 9, 16, 20, 21, 28 and
4	29. This is the area the primary area of new
5	development.
6	Q. Is this where the proration units are that are
7	overproduced, most of them?
8	A. Oh, yes, sir. Our over The proration units
9	that are overproduced for Yates Petroleum are located in
10	Sections 21, 28 and 29. The only other overproduced
11	proration unit in North Dagger Draw would be in Section 27,
12	immediately to the east of Section 28.
13	Q. What does this exhibit show?
14	A. Basically, what I'm illustrating here is, in my
15	study, when you look at this area and this is the area
16	where the new development is going on each one of these
17	lines represents a place where I found some interference
18	between wells.
19	There are five solid lines on this page, and one
20	dashed line. That one dashed line represents one that we
21	don't I don't have enough data to confirm that there's
22	interference, but that's one that I suspect that there is.
23	So I wanted to, you know, be up front and go ahead and put
24	that one in here.
25	Q. All right. You have six examples of

interference? 1 Six cases where I have found it, yes. 2 Α. And you have analyzed the potential for 3 Q. interference between really all of the wells shown on this 4 plot, as well as elsewhere in the pool? 5 Yes, every well -- Basically we looked at every 6 Α. well and its direct offset, and if you evaluate this thing, 7 8 how many 40-acre offsets there are -- You know, how many 9 potential lines could there be on this page? 10 And how many could there be? Q. There could be 137. 11 Α. 12 Q. And you --That's how many cases I evaluated just on this 13 Α. piece of paper, and there's only six out of 137. 14 15 So what percent of the cases in this area are you 0. 16 finding signs of some interference? 17 Less than five percent, less than five percent of Α. the time does there appear to be -- in this area of new 18 development, does there appear to be any interference 19 20 between a well and its offset wells. When you look at these, are you able to calculate 21 ο. the extent of the interference? 22 23 Α. Yes, that's what I was speaking of earlier with 24 regards to Exhibit Number 9. In that case, only 29 percent 25 of the reserves were affected.

It's very important to note that the average 1 2 throughout -- in these six -- well, actually, basically the average in this area, when interference was seen, is around 3 20 percent. So what I'm saying there is that when 4 interference does occur, only about 20 percent of the 5 6 reserves are affected. 7 And when you look at the fact that interference 8 only occurs five percent of the time or less, and when it does occur, you're only looking at about 20 percent, you 9 have to multiply those two together to look at the 10

11 statistical effect of interference in this area, and it's 12 less than one percent. The effect of interference in this 13 area is less than one percent of the reserves.

14 Q. If we look at the Thomas well, 71 percent of the15 production was new production?

16 A. Absolutely.

Q. If we look at the other wells where there was
interference, do they remain economic on an incremental
basis?

A. Yes, the 40-acre locations in this area are
economic, they are tremendous money-making opportunities on
an incremental basis.

In fact, it's important -- One of the things I wanted to bring back about Exhibit Number 9 is that there's been statements people make that when you drill the 40-acre

1 wells after drilling the 80-acre wells, when you infill on 40s, that those wells aren't any good. 2 The Thomas 6 was a 40-acre infill location, 3 basically, and it's better than any of its offsets. It's 4 the best well in the area, and it was one of the last wells 5 6 drilled. You know, that -- Again, that just supports that 7 40 acres is the way they need to be developed. And that's what you're recommending for both the 8 0. North and South Dagger Draw Pools? 9 10 Α. Yes, sir. 11 Let's go to Exhibit Number 11, and I would ask 0. 12 you to refer to this exhibit and explain why it is Yates is seeking a 4000-barrel-of-oil-per-day depth bracket 13 allowable in North Dagger Draw. 14 Exhibit Number 11 is an oil- and gas-rate plot 15 Α. 16 for one well, the State K Number 3. In setting this for hearing and to determine what 17 we felt should be asked for in terms of allowables, it was 18 my intention to tie it back to something reality, something 19 relating to the field. I didn't want to just pull a number 20 out of the air; I wanted to get a number that related to 21 the field. 22 And in the case of the State K Number 3, this 23 well has produced approximately -- it's been above, it's 24 been below, but 900 to 1000 barrels of oil per day for 17 25

1	months. Nobody You know, if we had come in in early
2	1995, nobody would have believed us that this well would
3	have produced this long this much oil, for this length
4	of time.
5	Q. If you had four wells on the 160, as you could
6	A. Yes, sir.
7	Q on 40-acre spacing, what allowable would you
8	need to effectively produce that 160 spacing unit in North
9	Dagger Draw?
10	A. I believe we would need, based upon this, 4000
11	barrels a day.
12	Q. And that's the basis for the request?
13	A. That is the basis for the request.
14	Q. What about South Dagger Draw?
15	A. South Dagger Draw, basically the proration units
16	are not 160s, they're 320s; you could have eight wells on a
17	proration unit.
18	We've already seen in the Diamond Number 1 that
19	there are wells capable of in excess of 1000 barrels a day.
20	That's where that basically came up, to keep the two pools
21	on a par with each other in the oil production, which I
22	believe has been a historical goal that would require that
23	South Dagger Draw be 8000 barrels a day; that's the basis
24	for the numbers in the Application.
25	Q. Is the State K Number 3 overproduced?

Γ

Yes, sir. 1 Α. If we take a well like the State K Number 3 and 2 ο. we try and get it back in line under current allowable 3 limits, could Yates not just shut the well in for a period 4 of time and then put it back on production and then shut it 5 in again, so you could maintain high rates when producing, 6 7 and yet reduce the ultimate withdrawal or the total withdrawal from that well? 8 9 Α. That is something that was proposed to us at some 10 of our meetings with the OCD, that we could simply shut it 11 in for a day and produce it for a day, or shut it in for a couple of days and produce it for a couple of days. And 12 13 that's a valid thing that needed to be looked at, and so basically I went back and studied it. 14 15 It was a concern of mine that the first time you 16 go through that cycle, you get the effects of producing at 17 the high rates. But I was concerned that the second, 18 third, fourth, fifth, sixth, seventh and eighth time through this cycle, that the effects of doing that might 19 20 become diminished. And in fact, when we met with Conoco, I voiced 21 22 these concerns. We met with several of the operators in 23 the pool to discuss this option, and --24 Why don't we go to your Exhibit 13 --Q. 25 Α. Okay.

1	Q and take a look at the effects of cyclic
2	versus continuous production of these wells?
3	A. When you look at this, what I did was, I said
4	MR. CARR: There's no 12. There is no Exhibit
5	12
6	MR. KELLAHIN: All right.
7	MR. CARR: so we go to Exhibit 13.
8	MR. KELLAHIN: All right, I'm with you.
9	MR. CARR: Okay.
10	THE WITNESS: When we're looking at this and
11	What I did, if you have a well that's capable of 1000
12	barrels a day and you only produce it for half the time,
13	then your effective rate is 500 barrels of oil per day.
14	And so, you know, that's kind of using the State K 3 as an
15	example.
16	So what I looked at here, what I wanted to look
17	at was, what are the effects in the reservoir of using this
18	production method? And Exhibit 13 is two sets of plots,
19	and on the X axis we have time on production. And on the Y
20	axis is something I call cyclic production drawdown, and
21	what that is is, I'm comparing the drawdown with this
22	cyclic production method, versus the drawdown at just
23	putting it at half the rate. In other words, when I'm
24	producing in the cyclic method, when the well's on, it's on
25	at 1000 barrels a day. The standard 100 percent a line

1 through the 100 percent would be the 500-barrel-a-day rate.
2 Okay?

And what it shows is -- And I'm showing this for three depths in the reservoir. The small dashes are 50 feet in the reservoir, the solid line is what's happening 100 feet in the reservoir, and the longer dash is 150 feet in the reservoir.

8 And basically what it shows is, this top plot is 9 the well producing for a day and being shut in for a day, 10 producing for a day, shut in for a day, and that's what 11 creates these cycles.

The first time through the cycle, zero to one, we see we're at 200 percent of what the 500-barrel-a-day, which is what it should be. We're producing at 1000 barrels a day that first day. The reservoir doesn't know we're going to shut it in. We're producing at 1000 barrels a day, which is twice the drawdown you would see at 500 barrels a day.

But each one of these cycles, what you have to look at is what happens to the peak as we go through the cycle. And when you go to the -- what the peak drawdown is through the second cycle -- It's this peak right here at the end of -- right here at three days. And what you see is, you're a little less than 50-percent incremental from going to this method. After five days you're under 40

1	percent. And you get out here to nine days, you're under
2	30 percent for the 50 feet in the reservoir.
3	Now, 50 feet in the reservoir is not even off the
4	well pad in most instances. We're not talking at 50
5	feet in the reservoir, you're talking less than one percent
6	of the reservoir.
7	When you get You know, you can see that when
8	you're looking at 100 feet in the reservoir, after you go
9	through a few cycles, you're down below you know, at the
10	end we're down around just over 10 percent incremental
11	effect. And at 150 feet into the reservoir, after a few
12	cycles, we're down below 10 percent.
13	Basically over time, using this method of turning
14	it on, turning it off, turning it on, turning it off, you
15	would the effects would wear off, and fairly rapidly.
16	We're talking about 10 days here, and we essentially have
17	no more effects of it.
18	So what this says is that if we use this
19	production method, initially there should be really no
20	change in the oil cut. But as time goes on, it should go
21	down.
22	Q. (By Mr. Carr) And that's because the peak in the
23	drawdown is less during each subsequent cycle?
24	A. Absolutely.
25	Q. And is that a less efficient way to recover the

oil --1 Yes, sir. 2 Α. -- from this reservoir? 3 0. Yes, sir. 4 Α. 5 Is it actually a wasteful process, compared to Q. simply producing the well on a continuous basis at a higher 6 7 rate? 8 Α. Yes, sir, it will waste oil in the life of the 9 well. 10 The second plot is the same type of plot on a 12-11 hour cycle, 12 hours on and 12 hours off. 12 This is the production method we had to use to 13 restrict our wells that are out in the field, because we 14 don't have variable-speed drives for all of our wells. We 15 had to go out -- Well, there's time clocks on these wells, and basically the time clocks, they're either on -- they're 16 on for 12 hours, they're off for 12 hours. So basically 17 18 what this second -- And that's an operational constraint of how we have to run the wells. And what you see on this 19 second page is actually what was done, basically, to the 20 21 wells. Now, it's not exactly 50-50, you know, 12 hours on 22 and 12 hours off. It was -- The wells were adjusted to 23 make the allowable properly. 24 0. Let's go to your Exhibit Number 14. What is that? 25

Okay, well, if I may --1 Α. Okay. 2 Q. -- I just made a statement that using the 3 Α. production method we're using, we should see essentially no 4 5 change for a while, and then a reduction in the oil cut. 6 And what you see on Exhibit 14 is a plot of the 7 oil cut versus each -- versus time for these wells, since 8 we've changed the production style, since we have started 9 restricting them. And you could see that it kind of 10 bounces around in the early time frames. But again, 11 running a regression through the line, it basically went 12 flat for a while, and then it started down here in the late 13 time. This data is basically saying, what we were 14 anticipating from -- would happen based upon Exhibit 13, 15 16 Exhibit 14 is saying that's actually happening in the reservoir, in the -- or in the field. This is what's 17 18 happened. We are seeing -- you know, the oil cuts are beginning to come down. We were around 60-percent oil cut 19 20 prior to changing it. Now we're down closer to 58-percent 21 oil cut. And I expect that to continue to go down. 22 So basically, the -- this exhibit shows that the 23 Q. 24 points were pretty much scattered to begin with, but they 25 do pull into line as you get farther along in the --

1	A. And that
2	Q as you've carried it, and there is a definite
3	decline in the oil cut?
4	A. Yes.
5	Q. Mr. Fant, what conclusions have you reached from
6	your engineering work on this reservoir?
7	A. Basically all this you know, what I've
8	presented here today is that the higher producing rates,
9	i.e., higher drawdowns, give you a higher oil cut and a
10	lower GOR, and both of those are help you prevent waste.
11	Q. Why is that?
12	A. Basically, we're only going to get a certain
13	amount of fluid out of this reservoir, and if we're taking
14	reservoir energy out in the form of water and gas and not
15	getting the oil that we could, at the end of the life of
16	the field, there will be oil left in the ground. It's an
17	inefficient production method.
18	It's a standard principle of petroleum
19	engineering that you want to leave as much of the gas and
20	water in there for as long as you can. We'll get the gas
21	later. But the oil will be left behind, there will be some
22	oil left behind.
23	Q. Mr. Fant, what if the operators in the pool are
24	required to make up current overproduction? What impact
25	will that have on the waste issue?

54

1	A. Well, essentially, you know, some of the wells
2	might have to be shut in. Basically, wells would have to
3	be restricted or shut in, which would lower the ultimate
4	recovery.
5	And it could really impact us if Any time you
6	shut in a well, you run the risk of not getting it back.
7	Any time you shut it in for a long period of time, you run
8	a significant risk of that well not producing as well when
9	you bring it back on line.
10	Q. In your opinion, would cancellation of
11	overproduction in these pools impair correlative rights?
12	A. No, sir, basically the drainage data I was
13	showing you, interference data, was to show that basically
14	40 acres, especially in this area, this area where we have
15	the new development, where these rules will basically
16	impact the reservoir, 40 acres is proper. There's
17	essentially one percent or less interference between them.
18	And so basically they're correlative rights is not an
19	issue at this point. 40 acres is proper, and the wells are
20	not affecting really more than 40 acres.
21	Q. Do you see any real advantage being gained by an
22	operator on an offsetting property if they're able to
23	produce at higher rates?
24	A. No.
25	Q. In your opinion, will approval of these

Applications be in the best interests of conservation, the 1 prevention of waste and the protection of correlative 2 3 rights? Yes, sir. Α. 4 Were Exhibits 4 through 14, with the exception of 5 Q. 6 12, were they prepared by you? 7 Α. Yes, sir, they were. MR. CARR: Mr. Stogner, at this time we would 8 9 move the admission into evidence of Yates Petroleum 10 Corporation Exhibits 4 through 11, 13 and 14. 11 EXAMINER STOGNER: Exhibits 4 through 11, Exhibits 13 and 14, if there are no objections --12 13 MR. KELLAHIN: No objection. EXAMINER STOGNER: -- will be admitted into 14 15 evidence. MR. CARR: And that concludes my direct 16 17 examination of Mr. Fant. EXAMINER STOGNER: Thank you, Mr. Carr. 18 Mr. Kellahin, do you need a few minutes to 19 20 prepare your cross-examination? 21 MR. KELLAHIN: No, sir. EXAMINER STOGNER: Okay, your witness. 22 23 CROSS-EXAMINATION 24 BY MR. KELLAHIN: 25 Mr. Fant, who is the individual at Yates that is Q.

1	responsible for monitoring the production in North Dagger
2	Draw?
3	A. I guess I'm not sure Monitoring production
4	with regards to
5	Q determining how much that well has produced on
6	a daily basis?
7	A. On a daily basis, that would be the pumper who
8	goes out and determines what they produce.
9	Q. And who does he report to?
10	A. He would report to the production
11	superintendent or no, excuse me, probably the production
12	foreman, is who he would report to.
13	Q. Who's Mr. Brian Collins?
14	A. Mr. Brian Collins is the operations manager.
15	Q. All right. The operations manager, then, is
16	ultimately going to be responsible in Yates for monitoring
17	the production in both North Dagger Draw and South Dagger
18	Draw; is that not true?
19	A. It would move to his office, yes, sir.
20	Q. All right. And he is the person in Yates that
21	has the responsibility to tell the pumper or the field
22	personnel to either produce the well more or restrict that
23	production?
24	A. Yes, sir.
25	Q. Those would be his decisions?

1	A. I would be I would think that's a fair
2	characterization; those are his decisions.
3	Q. All right. When did Mr. Brian Collins become
4	responsible for the Yates production in both those pools?
5	A. Basically, that would have been the first week in
6	March, the week that the OCD came and spoke with us.
7	Q. This is the first week of March of 1996?
8	A. 1996, this year, yes, sir.
9	Q. All right. Who was Mr. Collins' predecessor in
10	that particular capacity?
11	A. That would have been Mike Slater.
12	Q. Mike Slater?
13	A. Yes, sir.
14	Q. Do you know how long Mr. Slater had that
15	responsibility for Yates before he was replaced by Mr.
16	Collins?
17	A. I don't know Mike's original time that he was in
18	that position, no.
19	Q. Would Mr. Slater's responsibility for monitoring
20	production in both of these pools have been for a period of
21	time sufficient to cover the overproduction in North Dagger
22	Draw before he was replaced by Mr. Collins?
23	A. Yes.
24	Q. All right. So those two individuals, then, would
25	have monitored production?

1	A. Yes, basically, I believe so.
2	Q. Why was Mr. Slater replaced by Mr. Collins?
3	A. Mr. Slater retired.
4	Q. All right. And who do you report to, sir?
5	A. I report to Pinson McWhorter.
6	Q. All right. Would Mr. Slater and then Mr. Collins
7	be the representatives at Yates who would be responsible
8	for compliance with the production limitations in North
9	Dagger Draw?
10	A. I don't know that You know, I guess I'm kind
11	of confused on that. They are the operations managers. As
12	to, you know, from a legal standpoint, whether they are not
13	you know, I really don't know. But basically Brian
14	Collins is now the operations manager, and Mike Slater was.
15	They would have the ability to make those decisions, I
16	would think.
17	Q. You described for us your knowledge of the
18	production limitations that are currently established by
19	Division rules for both North and South Dagger Draw.
20	A. Yes, sir.
21	Q. All right. Is it fair to assume that Mr. Slater
22	and then Mr. Collins would know those production
23	limitations as well?
24	A. Yes, sir.
25	Q. And did you and those individuals rely upon

1	ONGARD to give you production data for your wells?
2	A. I do not rely on it. I do not know what they
3	rely on. I would think not.
4	Q. And in fact, Yates relies upon its own production
5	information for those wells?
6	A. Yes, sir.
7	Q. And that's the information you get from your
8	pumper and field personnel, reported to Mr. Collins and Mr.
9	Slater?
10	A. Yes, sir.
11	Q. All right. Who in Yates made the decision to
12	overproduce these particular wells in North Dagger Draw?
13	A. That would have been a decision made at a level
14	other than mine, and I was not privy to that decision being
15	consciously made by anybody.
16	Q. Do you know when that decision was made?
17	A. No, sir.
18	Q. All right. When is the first date of
19	overproduction in North Dagger Draw for any of your wells
20	or spacing units?
21	A. I know that there was a spacing unit back in the
22	early 1990s that was overproduced for a while, and we
23	brought that proration unit back into line. But now I
24	can't I don't believe I can accurately assess that.
25	Q. You focused your attention on a portion of North

60

Dagger Draw that has an area where there is new wells of a 1 vintage dating from after -- about March and April of 1995. 2 Am I about correct on the time frame? 3 I would say it actually goes back to around Α. 4 August of 1994. 5 All right, August of 1994, you start picking up 6 ο. 7 some wells in this new area in North Dagger Draw that I think you characterized as being portions of Sections 21, 8 the west half of 27, 28 and 29? 9 10 Α. Yes. 11 Q. All right. The operators in that area are Yates 12 and Nearburg, are they not? 13 Α. And Conoco. Is there an explanation as to why the area 14 Q. Okay. of overproduction for those spacing units is concentrated 15 within that geographic area? 16 I believe it relates to reservoir quality in the 17 Α. The reservoir quality is far superior to many other 18 area. 19 places in the reservoir. Did the initiation of overproduction in that area 20 Q. have anything to do with competition between Yates and 21 other operators for withdrawal of oil from that area of the 22 23 pool? I don't believe so. 24 Α. When did you commence your study with regards to 25 Q.

1	examining the phenomenon that you have seen where the
2	early-time performance of these wells in this area exhibits
3	an effect where at higher withdrawal rates you have a
4	higher oil cut?
5	A. Well, that's really hard to say, because as I
6	told the Commission earlier, this is a this is something
7	that people have talked about for years, so I
8	Q. I didn't make my question clear.
9	When did you first commence your formal
10	investigation of the presentation you've just given us this
11	morning?
12	A. Of this particular presentation
13	Q. Yes, sir.
14	A I began it a few before around the
15	beginning I'd say around the beginning of March would be
16	the time frame.
17	Q. All right. Do you know whether or not it was the
18	Oil Conservation Division that brought to Yates's attention
19	the overproduction that was occurring in this new
20	development area of North Dagger Draw?
21	A. I know that the OCD brought it to our attention.
22	Q. All right. And in response to that, then, did
23	you then commence your study that you've brought us today?
24	A. I would guess that's a fair characterization,
25	yes.

1	Q. The area of overproduction within portions of
2	these four sections
3	A. Uh-huh.
4	Q the first well within that area that exhibited
5	this phenomenon where early-time performance shows at
6	higher rates a higher oil cut occurred when, sir?
7	A. I guess I'm not exactly I never looked to say,
8	okay, which well, when did this first occur? I didn't
9	study it from that standpoint.
10	Q. All right. As we sit here this morning, do you
11	have a number to tell us what the total cumulative
12	overproduction Yates has accumulated in North Dagger Draw
13	for its spacing units? Do you know what that number is?
14	A. I do not have a specific number, no.
15	Q. Do you have that number by spacing unit?
16	A. Not with me, no. And it would have to be
17	calculated, because we have changed our practices, and some
18	days the well many of these days since then, the wells
19	have been under allowable.
20	Q. What is Yates's explanation for the
21	overproduction of the allowable limitations in North Dagger
22	Draw?
23	A. I am not in a position to offer an explanation
24	for that.
25	Q. All right. Who would be the person responsible

at Yates that could provide us with that explanation? 1 Well, unfortunately I believe he retired from Α. 2 Yates. 3 4 Q. Who is the person at Yates responsible for deciding to request an oil allowable in North Dagger Draw 5 of 4000 barrels a day? 6 7 Α. I don't know that there would be a -- If you're 8 specifically saying who recommended 4000 barrels a day, 9 that would be myself --10 Q. All right. 11 -- based upon the technical information. Α. 12 And the basis for the 8000 barrels of oil a day Q. 13 for a 320 spacing unit in South Dagger Draw is also your recommendation? 14 A. Yes, sir. 15 16 ο. The recommendation for South Dagger Draw is 17 simply a multiplication of the allowable from North Dagger 18 Draw; is that not true? 19 Α. That was the basis for it, to keep the two on par 20 with each other, yes. 21 When we look at South Dagger Draw, do you have 0. 22 available to you now technical data that would support the 23 8000 barrels of oil a day on a 320 spacing unit in the 24 South Dagger Draw Pool? 25 I've already stated that the Diamond is a well Α.

1	capable of in excess of 1000 barrels a day. So if you
2	develop it on 40s, the Diamond, which is in South Dagger
3	Draw, that well would be if you developed those
4	proration units fully, then it would you would come to
5	and if you produce those wells at 1000 barrels a day,
6	that would be eight wells, 1000 barrels a day, 8000 barrels
7	a day.
8	Q. All right, let me make sure I understand the
9	assumption. When you look in Section 20 Township 20
10	South, Range 24 East, you're looking at Section 34, and you
11	find down in Unit Letter M, I believe, the Diamond well, in
12	the southeast of the southwest of 34, that's the one you're
13	talking about?
14	EXAMINER STOGNER: Excuse me, where is that
15	again?
16	MR. KELLAHIN: We're in South Dagger Draw. We're
17	in 20 South, 24 East, Section 34.
18	THE WITNESS: Uh-huh.
19	Q. (By Mr. Kellahin) It is the section just above
20	the irregular short township in there, or sections in
21	there, and then we're looking at the southeast-southwest of
22	34, and that's the Diamond well, is it not, Mr. Fant?
23	A. Yes.
24	Q. All right. And that's the well that was the
25	subject of a penalty presentation here before the Division,

1	and that well resulted in having a penalty, a production
2	penalty, of about 30 percent, if I remember right?
3	A. Absolutely.
4	Q. All right, that is the single example that you
5	have in South Dagger Draw by which, then, you have
6	calculated that if the Diamond well, at about 1000
7	barrels or plus, I think it's at 1300 a day?
8	A. Its maximum rate, yeah.
9	Q. Maximum rate was 1300 a day, and if you multiply
10	that by what are you looking for? eight wells in a
11	320 spacing unit, then that would be your basis of your
12	argument for an 8000-barrel-a-day oil allowable in that
13	pool?
14	A. That is one of the examples; that's the only one
15	I have presented specifically. There are other wells in
16	South Dagger Draw that have produced well in excess of 1000
17	that have produced in excess of 1000 barrels a day.
18	Q. I understand that. I'm forecasting for future in
19	terms of a rule change, whether there are any other wells
20	in the pool that have the capacity for an existing spacing
21	unit to produce more than 1400 current oil allowable.
22	A. There's currently wells overproduced in There
23	are proration units currently overproduced in South Dagger.
24	So obviously there is a capacity to do it, because there
25	are proration units that are overproduced.

1	Q. If we increase the oil rate in South Dagger Draw
2	to 8000 a day, and the gas-oil ratio stays at 7000, the GOR
3	stays at 7000, we would have the gas allowable for that
4	pool in a spacing unit of 56 million a day, 56 million MCF
5	a day, right?
6	A. Well, 56 million standard cubic feet per day,
7	yes.
8	Q. Yes. Do you have an opinion as to whether or not
9	there is any spacing unit that has the capacity to reach
10	that gas allowable in that pool?
11	A. Not at this point, no, sir, I don't.
12	Q. In your opinion, would that be an excess gas
13	allowable in South Dagger Draw?
14	A. If the objective is the maximization of liquid
15	hydrocarbon recovery, I would say no.
16	Q. Is it not reasonable to attempt to conserve the
17	gas energy in the reservoir in South Dagger Draw, in order
18	to have that drive mechanism available to maximize oil
19	recovery?
20	A. Absolutely, and that's what we've presented here,
21	that as you produce at the high rates, you have lower GORs,
22	so you are maximizing energy when you do that.
23	Q. You haven't told me the gas effect, though, with
24	regards to that test. My question is, do we have a spacing
25	unit in South Dagger Draw at your optimum rate that needs

the 56-million-MCF-a-day gas allowable? 1 I do not know that the 56 million would be 2 Α. 3 needed. 4 0. All right --5 I'm simply saying, the oil rates are needed to Α. 6 maximize oil recovery. 7 All right. What is your recommendation on the ο. 8 gas rate? 9 I am not presenting a recommendation on the gas Α. 10 rate. 11 All right. When we look at North Dagger Draw and 0. 12 South Dagger Draw, there is no active water drive in either 13 reservoir; is that not true? I believe that the -- that water drive is not a 14 Α. 15 significant -- any significant drive mechanism in these 16 reservoirs. 17 All right. We simply have a finite volume of 0. 18 fluids, then, that are going to be produced out of the reservoir? 19 20 Α. I believe so. 21 And it's going to be produced on some depletion Q. 22 -- gas-expansion depletion method; is that not right? 23 That is what the production history suggests. Α. 24 All right. Is it not true that in a reservoir of Q. 25 this type where that is the depletion mechanism, that the

1	reservoir is not sensitive to the rate of withdrawal?
2	A. That is a basic theory promoted for homogeneous,
3	single-porosity systems. I do not believe that can be held
4	true for dual-porosity systems such as we have in Dagger
5	Draw.
6	Q. All right, let's make sure that we set up the
7	question so that you can tell me your opinion.
8	If you're looking at a homogeneous reservoir
9	where the depletion mechanism is gas expansion, then it
10	would not be rate-sensitive; is that not true?
11	A. I believe I've testified to that before the
12	Commission before.
13	Q. All right. And so what you have by increasing
14	the rate of withdrawal is not an increase in ultimate
15	recovery of hydrocarbons; you simply accelerate the rate of
16	withdrawal?
17	A. Are you speaking in the case of a homogeneous
18	system?
19	Q. Yes, sir.
20	A. In the case of a homogeneous system, I would say
21	that that is an accurate statement.
22	Q. All right. When we get into North Dagger Draw,
23	you have a theory of a dual-porosity system, where you have
24	oil stored in a matrix and then oil stored in a vuggy
25	system or a larger-porosity system, you've got a dual-

porosity system under your concept? 1 At least a dual-porosity system, I would say at 2 Α. this point. 3 All right. And you're arguing that these new 4 0. 5 wells at the higher rate allow you to gain some advantage in terms of how you deplete the dual-porosity system? 6 7 That's what the data suggests. Α. All right. When we look at the data that 8 ο. 9 justifies, in your opinion, the increase, the data is 10 concentrated within the area described as Sections 21, west half of 27, 28 and 29. That's the data pool that you've 11 12 examined, is it not, sir? No, sir, I believe if you look at Exhibit 6, I've 13 Α. examined every well in Dagger Draw. 14 I understand. When you look at the 17 examples, 15 ο. 16 if I remember right from the earlier exhibit, you're looking at the early-time performance of 17 wells, and 17 those are concentrated within the area that I've described? 18 Well, those 17 particular wells, that's the 19 Α. lifetime performance of those wells thus far. 20 It's not 21 just early time; that's the lifetime, on those particular 22 wells, that's monthly production data. And those wells that I have -- Those are the 23 wells that I have given examples of, but those are simply 24 primarily intended to be examples to show you what I was 25

analyzing in the numbers that are presented in Exhibit 6.
And Exhibit 6 was intended to show that although those are
some of the ones that I had presented individual plots on,
I have studied all of the wells.
And that was my intention, to make it a fieldwide
study, not just that area. The reason those wells One
of the reasons those wells happened to come from that
primary area is because that's an area that has some of the
best wells in the field, basically.
Q. Let's look at Exhibit 4, then.
A. 4, okay, that's the first one I gave you.
Q. Yes, sir. Am I correct in understanding it was
your testimony that the swabbing oil cuts that you obtained
in these wells that you described are always going to be
lower than the pumping oil cut?
A. I would not say the word "always", but almost
always.
Q. Okay. When I look at Exhibit 4, then, I'm
looking only at data that describes the swabbing oil cut in
the second month of production with regards to the 58 wells
shown on this summary. I'm reading the caption and trying
to figure out if that's
A. Swabbing oil cut versus second-month producing
oil cut.
Q. Yes, sir. Did I say that right?

1	A. Well, I may have heard it wrong, I apologize.
2	Q. Let me do it again.
3	A. Okay.
4	Q. When I look at Exhibit 4, am I looking at, for
5	the 58 wells, the swabbing oil cut in the second month of
6	production for those wells?
7	A. No. The swabbing oil cut is the oil cut
8	immediately after basically perforating and trying to do
9	some stimulation and taking out the load water.
10	See, that's You know, we can't do it for all
11	the wells; we can only do it for some of the wells. We
12	have to be able to have load recovery.
13	Q. Well, when I look at the horizontal axis I've got
14	a percentage here. It says Average Swabbing Oil Cut for
15	the Well.
16	A. Yeah.
17	Q. Is that taken out of the second month?
18	A. No, you only swab the well when you're completing
19	it
20	Q. All right.
21	A I mean, while the pulling unit while the
22	completion unit is sitting over the well. I mean, that's
23	basically the earliest production data we have for the
24	well.
25	Q. All right. What is your argument for using the
L	
1 swabbing oil cut? Quite simply, when you swab a well, you are very 2 Α. limited in how much rate you can achieve, in other words, 3 how much average drawdown you can put on the reservoir. 4 When you're swabbing one of these wells, you're 5 6 swabbing at a produced fluid rate of about 500 barrels a That's the key there, that's a minimal drawdown. 7 dav. Whereas -- You know, 500 barrels a day, of fluid a day --8 We're not talking oil, we're talking fluid a day, that's 9 10 oil and water. And when you're swabbing at those rates, that's a very minimal drawdown on Dagger Draw reservoir. 11 500 barrels of fluid a day may sound like a lot, but for 12 13 wells in Dagger Draw, that's not a very significant -- that probably represents, in general, less than a 25-percent 14 15 drawdown. Q. Here's what I'm trying to understand. I'm trying

16 17 to understand the fact that in the early few months of 18 these wells, as I understand your testimony, they 19 characterized wide fluctuations in performance, which I would equate to be an unstabilized wellbore condition. 20 That would be another 21 Α. Oh, I don't believe so. 22 reason for using the second month. You have achieved --Your wellbore conditions have stabilized in the second 23 month. When you're moving fluids of this volume, your 24 25 wellbore conditions stabilize very rapidly.

Q. All right. So your argument is that in the
second month we now have a stabilized wellbore condition in
these wells?
A. We have that is that is indicative of the
early before hopefully before depletion sets in on
the well.
Q. All right. In all these examples, then, in the
second month, have these wells been fully drawn down where
you're having the maximum capacity in the well to move
reservoir fluids in that well?
A. These wells in the second month of production are
producing at their at the maximum capacity of the pump.
Sometimes the reservoir will put more fluid out than the
pump can handle, and you're limited there by the pump
capacity.
Q. All right, are those wells all pumped off, then,
so that you do not have a limitation in the capacity of the
reservoir to put fluids in the wellbore?
A. No, these most Many of these wells would
not be absolutely pumped off
Q. Okay.
A and that just further supports my position.
Q. All right. I noticed you have plotted the data
in a summary fashion. Do you have available for these
wells the actual volumes of oil, gas and water on a daily

74

	75
1	basis?
2	A. Are you talking about Exhibit 4?
3	Q. Yes, sir, we're still on Exhibit Number 4.
4	A. The data certainly exists. It is the
5	producing rates I have the data in a spreadsheet for the
6	producing volumes, produced oil and produced water, and
7	then the swabbing oil cut. Those were simply calculated.
8	Q. Yes, sir. I want to look at the raw data by
9	which we generate this display. And my question for you,
10	sir, is that data available in a public source so that my
11	reservoir engineer can make his own calculation? Or is
12	that something
13	A. The second-month producing data is certainly
14	available. I mean, that's just straight out of Dwight's or
15	ONGARD or whatever.
16	Q. The data on all these spacing units that have
17	wells that are overproduced, is all that data available in
18	a fashion where my engineer can look at it in terms of
19	volumes produced on a daily basis?
20	A. Absolutely. We gave him that data
21	Q. All right, so it's
22	A that provided them with up through
23	February. After our meeting last week they wanted to do a
24	data exchange, and I gave them the data up through
25	February, because I did not have the data for March as of

that time. 1 2 ο. All right. Before we leave Exhibit 4, then, am I 3 correct in understanding that you've excluded the first month's production because in that first month's production 4 we've got some unreliable information because the well is 5 6 not stabilized? 7 I wouldn't say it's because the well is not Α. 8 stabilized. I believe it's because when you're swabbing on 9 a well, okay, you're going to produce oil into a tank, okay? You're going to sell that oil, and that oil is going 10 to be reported to the State. 11 12 The water that goes into those tanks is going to 13 be drawn off by a transport and taken to maybe a saltwater disposal system. But the water you produce on completion 14 15 is not going -- may not be reported to the State. I mean, 16 it's not huge volumes, but because of how that stuff is 17 handled, that water production may not be reported. 18 So I was concerned -- And what that would have done was made -- that would have made this relationship 19 20 look even stronger, and I wanted to look at what the real 21 data said. All right. When we look at Exhibit 5 --22 0. 23 Α. Okay. 24 -- you're demonstrating an oil cut versus an oil Q. rate for the wells shown on Exhibit 5, and each one is 25

tabulated individually? 1 Yes, sir. 2 Α. All right. When I look at the top one, so I 3 Q. understand your method, the Aparejo Com 3 --4 Α. 5 Yes. -- when I start with the first data point, what 6 0. 7 is the time component that we're dealing with here? 8 Α. Which data point are you speaking of? 9 The first data point that's shown when we move Q. 10 along the horizontal curve at the oil rate, and I've got an oil rate of something -- oh, about 350 barrels a day, I 11 12 guess. At the starting point of the curve. Okay. My estimate, that would -- I cannot 13 Α. specifically state that for this well, but it is my 14 estimate that that would be the most recent data. 15 16 Q. Yes, sir, and approximately what is the date? 17 Oh, this would be -- let me see, this would be --Α. That would have been February's data --18 19 ο. All right. -- because --20 Α. 21 The time frame is what I'm trying to establish, Q. For these wells, I'm looking at a time frame of 22 Mr. Fant. 23 how much production? Each one of these dots represents one month's 24 Α. 25 worth of data.

All right. And for example, this is probably 1 Q. what -- on this well is approximately what month? 2 Well, the most recent on these -- any of these 3 Α. plots would have been February's data, because that's what 4 is in my database to generate these curves. 5 All right. So when you look at the last data 6 0. 7 point on the far right of this plot, is that the February of 1995 date? 8 9 Α. That would be -- I don't know why it would be 10 February of 1995. It would most likely be the initial 11 completion of the well. 12 Q. I'm confusing you and myself. I'm trying to 13 understand, when I look at this plot, and I've got rate 14 versus oil cut --15 Α. Uh-huh. -- what's the time frame in which this took 16 0. 17 place? 18 Α. This is the life of the well. All right. So -- Is the data available in a 19 0. 20 public source that I can go and compare these data points, 21 and I can know the actual volumes being produced on that day and have a time frame with which this is accomplished? 22 Absolutely, I've given them that data. 23 Α. I've 24 given them the incremental data between what the public sources have and up to what I've used here, the October --25

1 Q. All right. 2 A it would basically be, I think, October-t 3 February data. 4 Q. And so we now have the data by which we can 5 determine the actual volumes that are shown on your cu 6 here, when we look at Exhibit 5? 7 A. Yes. In fact, that can be generated straigh 8 from the curves. 9 Q. All right. Explain to me in Exhibit 5 what 10 causes you to conclude that this phenomenon is nothing 11 than simply rate acceleration. How is this going to a 12 us more ultimate oil? 13 A. It's not just this exhibit. 14 Q. Okay. 15 A. It's the knowledge that occurs over time. The shows that it occurs over time, and it's the rest of the shows that it occurs over time, and it's the rest of the shows that it occurs over time, and it's the rest of the shows if we slow the well down. 19 And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. 21 Q. You have a display that shows some known 22 Q. You have a display that shows some known 23 to us. We were looking at an area that included the and of overproduction, and then north you looked at the Warea <th></th>	
 A it would basically be, I think, October-t February data. Q. And so we now have the data by which we can determine the actual volumes that are shown on your cu here, when we look at Exhibit 5? A. Yes. In fact, that can be generated straight from the curves. Q. All right. Explain to me in Exhibit 5 what causes you to conclude that this phenomenon is nothing than simply rate acceleration. How is this going to a us more ultimate oil? A. It's not just this exhibit. Q. Okay. A. It's the knowledge that occurs over time. The shows that it occurs over time, and it's the rest of the exhibits that show that it will occur on an instantanee. basis if we slow the well down. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you present of overproduction, and then north you looked at the Way. 	
 February data. Q. And so we now have the data by which we can determine the actual volumes that are shown on your cu here, when we look at Exhibit 5? A. Yes. In fact, that can be generated straigh from the curves. Q. All right. Explain to me in Exhibit 5 what causes you to conclude that this phenomenon is nothing than simply rate acceleration. How is this going to a us more ultimate oil? A. It's not just this exhibit. Q. Okay. A. It's the knowledge that occurs over time. This shows that it occurs over time, and it's the rest of the exhibits that show that it will occur on an instantaneous basis if we slow the well down. And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you present to us. We were looking at an area that included the and of overproduction, and then north you looked at the Wand 	I think, October-to-
4 Q. And so we now have the data by which we can 5 determine the actual volumes that are shown on your cu 6 here, when we look at Exhibit 5? 7 A. Yes. In fact, that can be generated straight 8 from the curves. 9 Q. All right. Explain to me in Exhibit 5 what 10 causes you to conclude that this phenomenon is nothing 11 than simply rate acceleration. How is this going to a 12 us more ultimate oil? 13 A. It's not just this exhibit. 14 Q. Okay. 15 A. It's the knowledge that occurs over time. The shows that it occurs over time, and it's the rest of the exhibits that show that it will occur on an instantaneous basis if we slow the well down. 19 And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. 21 Q. You have a display that shows some known 22 interference. I think it was Exhibit 10 that you preserve 23 to us. We were looking at an area that included the axis of overproduction, and then north you looked at the War	
 determine the actual volumes that are shown on your cullibre, when we look at Exhibit 5? A. Yes. In fact, that can be generated straight from the curves. Q. All right. Explain to me in Exhibit 5 what causes you to conclude that this phenomenon is nothing than simply rate acceleration. How is this going to a us more ultimate oil? A. It's not just this exhibit. Q. Okay. A. It's the knowledge that occurs over time. The shows that it occurs over time, and it's the rest of the exhibits that show that it will occur on an instantaneous basis if we slow the well down. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you present to us. We were looking at an area that included the area of overproduction, and then north you looked at the War and an area that included the war and a since the show at the war and the show at the war and the show at the war and a since the show at the war and a since the shows that included the area of overproduction, and then north you looked at the War and a since the show at the war and the show at the war and the show at the war and a since the show at the war and a since	ca by which we can
 here, when we look at Exhibit 5? A. Yes. In fact, that can be generated straight from the curves. Q. All right. Explain to me in Exhibit 5 what causes you to conclude that this phenomenon is nothing than simply rate acceleration. How is this going to a us more ultimate oil? A. It's not just this exhibit. Q. Okay. A. It's the knowledge that occurs over time. The shows that it occurs over time, and it's the rest of the exhibits that show that it will occur on an instantance basis if we slow the well down. And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you presended to us. We were looking at an area that included the and of overproduction, and then north you looked at the Water 	re shown on your curve
 A. Yes. In fact, that can be generated straight from the curves. Q. All right. Explain to me in Exhibit 5 what causes you to conclude that this phenomenon is nothing than simply rate acceleration. How is this going to a us more ultimate oil? A. It's not just this exhibit. Q. Okay. A. It's the knowledge that occurs over time. The shows that it occurs over time, and it's the rest of the exhibits that show that it will occur on an instantaneed basis if we slow the well down. And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you preserved to us. We were looking at an area that included the are 	
 from the curves. Q. All right. Explain to me in Exhibit 5 what causes you to conclude that this phenomenon is nothing than simply rate acceleration. How is this going to a us more ultimate oil? A. It's not just this exhibit. Q. Okay. A. It's the knowledge that occurs over time. The shows that it occurs over time, and it's the rest of the exhibits that show that it will occur on an instantaned basis if we slow the well down. And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you preset to us. We were looking at an area that included the and of overproduction, and then north you looked at the Was 	e generated straight
 9 Q. All right. Explain to me in Exhibit 5 what 10 causes you to conclude that this phenomenon is nothing 11 than simply rate acceleration. How is this going to a 12 us more ultimate oil? 13 A. It's not just this exhibit. 14 Q. Okay. 15 A. It's the knowledge that occurs over time. The 16 shows that it occurs over time, and it's the rest of the 17 exhibits that show that it will occur on an instantaneed 18 basis if we slow the well down. 19 And again, if we take excess water out of the 10 reservoir, we're going to leave other fluids behind. 21 Q. You have a display that shows some known 22 interference. I think it was Exhibit 10 that you present 23 to us. We were looking at an area that included the and 24 of overproduction, and then north you looked at the Wate 	
 10 causes you to conclude that this phenomenon is nothing 11 than simply rate acceleration. How is this going to a 12 us more ultimate oil? 13 A. It's not just this exhibit. 14 Q. Okay. 15 A. It's the knowledge that occurs over time. The 16 shows that it occurs over time, and it's the rest of the 17 exhibits that show that it will occur on an instantaneed 18 basis if we slow the well down. 19 And again, if we take excess water out of the 20 reservoir, we're going to leave other fluids behind. 21 Q. You have a display that shows some known 22 interference. I think it was Exhibit 10 that you presended 23 to us. We were looking at an area that included the and 24 of overproduction, and then north you looked at the Wate 	in Exhibit 5 what
11 than simply rate acceleration. How is this going to a 12 us more ultimate oil? A. It's not just this exhibit. Q. Okay. A. It's the knowledge that occurs over time. Th 15 shows that it occurs over time, and it's the rest of th 17 exhibits that show that it will occur on an instantaned 18 basis if we slow the well down. 19 And again, if we take excess water out of the 20 reservoir, we're going to leave other fluids behind. 21 Q. You have a display that shows some known 22 interference. I think it was Exhibit 10 that you prese 23 to us. We were looking at an area that included the an 24 of overproduction, and then north you looked at the Wan	enomenon is nothing more
 us more ultimate oil? A. It's not just this exhibit. Q. Okay. A. It's the knowledge that occurs over time. The shows that it occurs over time, and it's the rest of the exhibits that show that it will occur on an instantaneed basis if we slow the well down. And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you preserved to us. We were looking at an area that included the area of overproduction, and then north you looked at the Waten and the area that included the waten and the area that included the area of overproduction. 	v is this going to get
 A. It's not just this exhibit. Q. Okay. A. It's the knowledge that occurs over time. The shows that it occurs over time, and it's the rest of the exhibits that show that it will occur on an instantaneed basis if we slow the well down. And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you preserved to us. We were looking at an area that included the an of overproduction, and then north you looked at the Water The And The	
 Q. Okay. A. It's the knowledge that occurs over time. The shows that it occurs over time, and it's the rest of the exhibits that show that it will occur on an instantaneed basis if we slow the well down. And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you preserved to us. We were looking at an area that included the and of overproduction, and then north you looked at the Water and the way with the shows at the way was a state of the way was a state of the state	- •
 A. It's the knowledge that occurs over time. The shows that it occurs over time, and it's the rest of the exhibits that show that it will occur on an instantaneed basis if we slow the well down. And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you preserved to us. We were looking at an area that included the area of overproduction, and then north you looked at the War and a the way a the shows at the way and the shows at the way are a show a show at the way are a show and the show at the way are a show a show a show at the way are a show a show a show a show a show at the way are a show a show a show a show a show at the way are a show a	
16 shows that it occurs over time, and it's the rest of the exhibits that show that it will occur on an instantaneed basis if we slow the well down. 19 And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. 20 Q. You have a display that shows some known interference. I think it was Exhibit 10 that you preserve to us. We were looking at an area that included the another of overproduction, and then north you looked at the Water and the way is a state of the weight.	ccurs over time. This
 exhibits that show that it will occur on an instantanee basis if we slow the well down. And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you press to us. We were looking at an area that included the an of overproduction, and then north you looked at the Water 	it's the rest of the
 basis if we slow the well down. And again, if we take excess water out of the reservoir, we're going to leave other fluids behind. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you press to us. We were looking at an area that included the an of overproduction, and then north you looked at the Was 	ir on an instantaneous
19And again, if we take excess water out of the20reservoir, we're going to leave other fluids behind.21Q. You have a display that shows some known22interference. I think it was Exhibit 10 that you press23to us. We were looking at an area that included the an24of overproduction, and then north you looked at the War	
 reservoir, we're going to leave other fluids behind. Q. You have a display that shows some known interference. I think it was Exhibit 10 that you press to us. We were looking at an area that included the an of overproduction, and then north you looked at the War 	ess water out of this
Q. You have a display that shows some known interference. I think it was Exhibit 10 that you prese to us. We were looking at an area that included the an of overproduction, and then north you looked at the War	er fluids behind.
interference. I think it was Exhibit 10 that you present to us. We were looking at an area that included the an of overproduction, and then north you looked at the War	lows some known
to us. We were looking at an area that included the an of overproduction, and then north you looked at the War	t 10 that you presented
of overproduction, and then north you looked at the War	hat included the area
	ou looked at the Warren-
25 Thomas relationship.	

1	A. Yes.
2	Q. Do you have the data to show for Exhibit 10 what
3	is occurring in the west half of Section 27, which are the
4	two Nearburg spacing units that also have exceeded their
5	oil-allowable limits?
6	A. I did not have enough data to present those.
7	Those wells are actually quite far from our well from
8	our wells. And so I do not I do not have that data
9	prepared.
10	Q. You've observed interference effects in North
11	Dagger Draw, and here's an illustration on Exhibit 10 of
12	that interference effect.
13	Am I correct in understanding your argument that
14	this is okay because you think 40 acres is the proper well
15	density for North Dagger Draw?
16	A. What I'm saying in this instance is that if the
17	Thomas 6 had not been drilled, 71 percent of the reserves
18	that come out of that well would never have been recovered
19	by any well. They would have been left in the ground.
20	Q. We're going to get to that point in a minute. My
21	first question is, for you, when we look at the argument of
22	interference, you're contending that the well density of 40
23	acres per well is an appropriate well density?
24	A. Yes.
25	Q. All right. If the proper well density is 80

1	acres, then is there still a basis for increasing the oil
2	allowable?
3	A. Certainly.
4	Q. All right.
5	A. State K 3 obviously shows that wells are capable
6	of in excess of 700 barrels a day, and if you and if 80
7	acres if it were, even if 80 acres were, but I don't
8	believe it is, then you would need at minimum 2000 barrels
9	a day to properly produce that spacing unit.
10	Q. If you look at Exhibit 10, then the State K 3 is
11	in Section 28. It's the well in the northeast of the
12	southwest of the Section 28?
13	A. Yes, sir.
14	Q. All right. And what's the rate on that well?
15	A. Well, right now that well is producing at just
16	right around 700 barrels a day.
17	Q. If it's unrestricted, what is its capacity?
18	A. It's about 1000 barrels a day.
19	Q. All right. When you look at the area for which
20	it's competing in the reservoir with other wells, it in
21	fact has a substantial area where it has no direct
22	competition?
23	A. In one direction. But in the other direction it
24	has multiple wells that it would be in direct competition.
25	Q. I see no 40-acre offset to the west, to the south

or to the southwest in regard to that. 1 That's right, but they are to the east, north, 2 Α. 3 northwest and southwest. When that well was drilled, did it encounter Q. 4 original reservoir pressure; do you know? 5 6 Α. It depends on what you define as original reservoir pressure. It was about -- a little over --7 8 Q. Oh, give or take 13 -- 3100 --9 Α. No, it was about 2000 p.s.i. All right. Am I correct in remembering that the 10 ο. original reservoir pressure in North Dagger Draw is about 11 12 3100 pounds, give or take? I've never seen it reported at 3100. 13 I've seen Α. 14 some wells that have reported DSTs 2900. 15 Q. All right. What was the pressure on the State K 16 3? It was about 2100, 2200 p.s.i. 17 Α. 18 Q. And what does that indicate to you? That indicates that it was 2100, 2200 p.s.i., 19 Α. 20 that --21 Q. It's therefore partially depleted when it was 22 initially produced? I don't believe that can be absolutely drawn in 23 Α. this case. 24 25 Well, how do you explain the pressure Q.

differential of 800 or 900 pounds? 1 2 Α. I am not absolutely convinced that that other 3 well and this well are hydraulically connected. In fact, 4 the data suggests that they're not hydraulically connected. If we have a reservoir with limited volumes to 5 Ο. produce out of that reservoir, and it's occurring by 6 7 pressure depletion, and this well comes in at less than 8 original reservoir pressure, what happened to the pressure? We don't know what original pressure was right 9 Α. 10 there. We don't have that measurement. My data has shown 11 that that reservoir is compartmentalized, and therefore you can't absolutely make that statement. 12 13 Do you have pressure data for the wells drilled Q. in Sections 21, 28 and 29? 14 15 Α. 21, 28 -- We would have some pressure data, yes. 16 Have you examined that as a reservoir engineer to Q. 17 see if there's a pressure relationship with what are 18 happening in these wells? 19 Α. I've not examined it in relation to this study --20 Okay. Q. 21 -- no. Α. 22 That has not yet been done? Q. 23 No. Α. All right. What kind of pressure data do you 24 Q. 25 have?

1	A. Basically, if we have any pressure data, there's
2	a little bit on DSTs, and that's about it.
3	We do have one monitor well in the field.
4	Q. A monitor well?
5	A. Yes.
6	Q. What do you mean by that, sir?
7	A. Old well Well, it was a poor well, went
8	uneconomic. They wanted us to plug it, we wanted to keep
9	it. So we temporarily abandoned it for purposes of
10	monitoring.
11	Q. Do you monitor it for pressure?
12	A. Yes, sir.
13	Q. And where is that well located, sir?
14	A. I'd have to refer to go back to Exhibit 1 to
15	make sure It's in Section 20, the Ross EG Federal Number
16	7.
17	Q. All right.
18	A. It would be the southeast of the northwest of 20.
19	Q. I don't want to mischaracterize your position on
20	pressure, Mr. Fant. Is there a consequence and importance
21	to this reservoir with regards to pressure and the decline
22	of pressure?
23	A. I believe that the decline in pressure causes
24	this phenomenon that we're seeing here, yes.
25	Q. What phenomenon?

1	A. The phenomenon that you as pressure declines,
2	your drawdowns decline, your producing rates decline, and
3	your oil cut goes down.
4	Q. All right, sir. When I look at that over the
5	life of the production of the pool, where am I to achieve
6	the best advantage for producing the greatest amount of
7	oil? Is it going to be when the pressure in the reservoir
8	is less, or early in the life of the reservoir, when the
9	pressure is higher?
10	A. The only times where it's really going to have a
11	major effect is in the early life of the wells, because in
12	the early life of the wells, under the current rules, the
13	wells have to be restricted.
14	When the pressure declines such that the wells go
15	on decline and you're on decline, there's nothing you can
16	do at it. You produce them at the highest drawdown. When
17	the wells are below 700 barrels a day, there's nothing that
18	can really be done about it; you produce the wells as fast
19	as you can.
20	But what I'm talking about is what occurs above
21	that point, the waste that we would cause by restricting
22	wells capable of in excess of what the current allowables
23	allow.
24	Q. Well, let's identify the waste issue. Have you
25	established a production decline of any of these wells

1	within the overproduction area? It's too early, isn't it?
2	A. No, some of the wells Some of the wells do
3	have decline, because you've got to remember, some of these
4	proration units, it's not necessarily a well that's
5	overproduced but the proration unit that's overproduced.
6	And so some of the wells in these areas are on decline,
7	yes, sir.
8	Q. That's what I'm looking for, an individual well
9	to establish, either by P over Z or some production rate,
10	an ultimate recovery as forecast in a conventional
11	engineering way for an individual well.
12	A. Well, P over Z would not be possible with the oil
13	wells. But we could We can forecast ultimate recovery
14	for the wells that are on decline.
15	But you've got to remember, if they're on decline
16	that means they're below the 700-barrel-a-day allowable.
17	It's too late to worry about it. Once you've gone to that
18	point to establish it, you've already wasted the oil.
19	Q. On the new wells, have you established the
20	decline so we can estimate their oil recovery?
21	A. Well, if you refer to Exhibit I want to get
22	the right one. Let's see. This would be Exhibit 11. We
23	can't establish a decline for this well. I mean, if you
24	put a decline on that, the well would produce an infinite
25	amount of oil

ſ

1	Q. When we look at
2	A and we know that not to be true.
3	Q. All right, this is the State K 3?
4	A. Yes, sir.
5	Q. All right. When I look at the oil-a-day column,
6	the 700 allowable is what? Three lines below the
7	thousand, and this well has never been produced within the
8	allowable range, even for the single well?
9	A. Yes.
10	Q. It's always exceeded the allowable?
11	A. Yes.
12	Q. Why did you do that?
13	A. I didn't do that.
14	Q. Have you taken your wells and conducted what I
15	would characterize to be some kind of step rate production
16	test where you produce it for a sufficient period of time
17	to get a stabilized data point, then restricted it and
18	produced it for long enough to see what consequence you
19	have on the oil volumes recovered?
20	A. Well, that's This particular well, no, that's
21	what I went and talked to Mr. Gum last summer, was running
22	such tests. The conditions that needed to be met to run
23	those were not able to be met.
24	Q. Why I'm sorry, who was setting the conditions
25	for running an actual field test of these wells to see what

happened? 1 Α. 2 Mr. Gum was. And you could not satisfy his conditions? Q. 3 The conditions, we did not feel they could be met 4 Α. at that time, no. 5 What were the conditions that you felt you could 6 Q. 7 not meet? Α. We had to gain the approval to produce -- to 8 9 continue to produce at excess rates, even higher than this, from all the operators in the area, and we did not feel at 10 that time -- There were significant disputes and 11 disagreements between the operators, and we did not feel 12 13 that it would be possible to run such tests, to obtain agreement between everybody. 14 Well, weren't these wells being produced at 15 Q. 16 capacity anyway? Capacity is not really what -- This well was 17 Α. being produced at pump capacity, not necessarily reservoir 18 19 capacity. I'm having trouble understanding what it is that 20 0. you wanted to do that you could not achieve. 21 22 Α. We could not get agreement -- We did not feel we 23 could get agreement between the operators. 24 To produce them any higher than the rates that Q. were being produced then? 25

1	A. Yeah, we could go in and physically put in a
2	bigger pump.
3	Q. Did you ever ask the operators if they wanted to
4	conduct a field test with your cooperation?
5	A. I did not at that time. I consulted other people
6	within the company. That would not have been my my
7	realm of work. I
8	Q. All right, it didn't happen.
9	When we go down and look, could you have taken
10	that current rate and then restricted it below that for a
11	period of time to give us another data point to see the
12	consequence?
13	A. That could have been done.
14	Q. And you did not do that?
15	A. No.
16	Q. All right.
17	A. But we did do it in other wells.
18	Q. All right. Identify for me the wells, so that we
19	have a list of the ones that there was what I would
20	characterize to be a step-rate performance test at
21	different rates.
22	A. Well, the two best examples would be the two that
23	I've presented, the Diamond AKI Number 1, and the Aparejo
24	Number 5.
25	There is one other well, and it's very important.

1	If you go to the exhibit okay, here it is, Exhibit
2	Number 5, and you go back five pages within that, and look
3	at the Boyd X Number 5. This is an important one to
4	understand. I probably should have brought it out earlier,
5	but I appreciate The Boyd X Number 5, the type test
6	you're talking about was run on this well, because when the
7	well was drilled Well, there were two wells on that
8	proration unit.
9	We did not We, Yates Petroleum, did not want
10	to drill another well on that proration unit. That
11	proration unit was above allowable, and we did not want to
12	drill.
13	We were forced into drilling this well, based
14	upon issues from our partners. They basically required
15	They sent an AFE through, and your choices under the JOAs,
16	you either drill it or
17	Q. Is this the Boyd 5?
18	A. The Boyd X Number 5.
19	Q. Oh, this is the fight with Nearburg?
20	A. Yes, sir.
21	Q. All right.
22	A. They were concerned about this well.
23	Q. All right. So you've got what I'm asking for in
24	terms of what we've characterized to be a step-rate test on
25	the Boyd X 5.

The Boyd X 5 is one of those. These low-rate 1 Α. restrictions are manual restrictions. It's not a bunch of 2 3 individual ones, but we have -- when the well was brought on, on the right side, for the first -- It had good 4 production for an entire month, and then we have the two 5 6 rates down here. 7 This well supports both the type tests you're 8 talking about running, and it shows that the phenomenon 9 exists, plus it furthermore supports my exhibit, the nextto-the-last exhibits, my Exhibit Number 13, because the 10 phenomenon I talked about in Exhibit 13 is exhibited -- is 11 12 illustrated on this plot. All right. The Boyd X 5 is on what exhibit 13 Q. 14 you're looking at? What's that exhibit number? Well, the Boyd X 5 data --15 Α. 16 Q. Yes, sir. 17 -- is on Exhibit Number 5. Α. 18 Q. Exhibit 5. What's the time frame Does the time 19 frame show on that display? 20 Well, again, the most recent data is the February Α. 21 data. 22 All right. I don't have the exhibit, but my Q. 23 question is -- what's the -- is the time frame shown on the 24 display so my engineer can verify what you're showing? Is 25 there --

STEVEN T. BRENNER, CCR

1	A. Again, there's not a time frame, this is not
2	necessarily time-frame data, but the most recent data.
3	He's been presented with all the data that I used to
4	construct this plot.
5	Q. That's my question, all right. So I've got the
6	data?
7	A. Uh-huh.
8	Q. The Boyd X 5 is an example of a well we could
9	examine to get a step-rate test on, if you will?
10	A. Roughly speaking, yes, because the well was
11	produced at very high rates and then manually restricted to
12	produce at very low rates, because we were overproduced
13	we were forced into drilling this well
14	Q. I understand the argument, Mr. Fant.
15	A and we did not want to increase the
16	overproduction problem any more.
17	Q. All right. And you've got some data that you
18	argue would be an example for the Diamond well?
19	A. Yes
20	Q. All right.
21	A that data is
22	Q. You already showed us that.
23	A. Yeah.
24	Q. And the raw data is available to my engineer?
25	A. That is daily production rates, and I don't think

92

1	that raw data The raw data that constructed that plot is
2	not public data, because that is that's daily production
3	rates, and there's no forum for presenting daily production
4	rates.
5	Q. All right. If my engineer needs that, there's no
6	reason he could not have the actual production data?
7	A. I don't see why not, because the actual
8	production data can be derived from the graph.
9	Q. All right, other than those two wells, give me
10	another example of a well we can examine that will give us
11	that kind of information. The Boyd X 5, the Diamond? Are
12	there any others?
13	A. Well, you know, I presented you with the Aparejo
14	5, and it's the same kind of deal as the Diamond.
15	Q. All right, I've got the Aparejo 5, I've got
16	three. Are you aware of any others?
17	A. To my knowledge, there I don't know of any
18	others that we've specifically run these type of tests in.
19	And again, the Boyd 5 was not we did not go out there
20	with the intentions of running that test. It was simply,
21	that's how that was the production life of the well.
22	Q. I understand. I don't care how it was done; it's
23	there and we could utilize it?
24	A. Uh-huh.
25	Q. All right. I'm interested in your argument on

1 cycling production --

2	A. Yes, sir.
3	Q where you've taken the wells in the
4	overproduction area, and in order to honor Mr. Gum's
5	requirement, as I understand it, to at least not accrue
6	additional overproduction, you have managed those wells in
7	a spacing unit so that you're not now currently exceeding
8	the 700 barrels a day?
9	A. Yes, sir.
10	Q. And the method for managing that is to take a
11	well and cycle its production so that for a certain period
12	of hours it's off production, and then it's back on
13	production?
14	A. Yes, sir, that's the physical way that it's done.
15	Q. All right. Within a spacing unit that has a
16	single well We don't have any in that area that there's
17	a single well spacing unit?
18	A. Oh, yes, the State K Number 3.
19	Q. All right, let's do that one first, the State K
20	Number 3. It's overproduced. In order to get it back to
21	the 700 a day, you have restricted that well?
22	A. Yes, sir.
23	Q. And to stay within the 700 a day, the method is
24	to cycle it on what time sequence or interval?
25	A. I don't have the specific clock numbers that are

there, but it's approximately on 70 percent of the time and 1 off 30 percent of the time. That was my recommendation to 2 them, to -- you know, it's a starting point. Then you --3 but you have to -- I mean, they have to adjust things to --4 5 You know, they have a target rate, and then they adjust it to fit that. 6 7 Here's what I'm trying to understand: Q. Are you 8 working with Mr. Collins, then, for the two of you to 9 determine how that well is produced, or are those his 10 decisions? That decision is strictly Mr. Collins'. 11 Α. I made recommendations on how much they would need to be cut back 12 13 to get them in, but that is an operational consideration as 14 to physically how it's done. I'm not -- then I'm understanding what your 15 ο. recommendation is -- What recommendation did you make? 16 Well, the recommendation I made was simply that 17 Α. this well is a 1000-barrel-a-day well. 700 barrels a day 18 is 70 percent of 1000. Consequently, you know, it needs to 19 20 be cut back 30 percent what it's doing. How they achieve 21 that is -- I mean, there's a lot of operational constraints 22 that have to be taken into account. 23 ο. Have you tested any of these wells to determine whether or not it could be efficiently done by simply 24 25 shutting the well in for a period of consecutive days and

then producing it on at full capacity to meet the allowable 1 on a monthly basis, if you will? 2 That's a good point, and that was -- that's again 3 Α. what Mr. Gum had proposed to us. There are distinct --4 These wells are produced by electrical submersible pumps. 5 That's the only mechanism we have to produce these fluid 6 7 volumes. 8 Now, when you shut in an electrical submersible pump for a significant period of time -- now, what I'm 9 talking about there is, say, a week -- You shut a pump in 10 for a week, the probability of it turning back on goes way 11 down. 12 The pump can malfunction? 13 ο. The pump can malfunction due to gas impregnation 14 Α. of the cable, scaling up of the pump, or paraffin and 15 asphalting, you know, hydrocarbon-type deposits on the 16 It may not come back on. 17 pump. This is stuff we have discussed with the ESP 18 company that provides these things, this service to us, and 19 it's not feasible to shut it in for extended periods of 20 21 time. 22 That's why on these particular examples I looked at 12-hour cycling and one-day cycling. You can take it to 23 two- and three-day cycling, but the effects wear off 24 25 rapidly. You could go to two- or three-day cycling, but

1	still your effects are going to wear off fairly rapidly.
2	Q. Do we have a test in the overproduction area to
3	see what the consequences are of taking a well in a
4	multiple-well spacing unit and simply shutting that well
5	in, in order to achieve the allowable limit?
6	A. We don't have the test, but again, as I
7	testified, anytime you shut in When we shut that well
8	in, if we're talking about shutting in, we have to
9	temporarily abandon that well. And anytime you temporarily
10	abandon a well, you run the risk of never getting back into
11	it. In other words, these wells can't simply just be shut
12	in and then turned on a month later.
13	Q. Your examples of this phenomenon are all on new
14	wells which are the vintage of mid-1994 on?
15	A. My Exhibit Number 6 is intended to illustrate
16	that this phenomenon exists for 95 percent of the wells
17	that have ever been drilled in Dagger Draw.
18	Q. All right.
19	A. So I would say, no, that this phenomenon I've
20	studied every well in Dagger Draw.
21	Q. Okay, let me understand how you prepared Exhibit
22	6. You've got the wells by name, by operator, and then we
23	have an oil cut and the GOR slope.
24	A. Uh-huh.
25	Q. What is the database that allowed you to prepare

1	this summary and the calculation?
2	A. I have for Dagger Draw a database by well,
3	monthly production, all historically available monthly
4	production for those wells. Yates For the wells that
5	are Yates, this database is up to date through February.
6	For other operators, the database is up to date through
7	October. And that The other operators, the database I
8	use is Dwight's, public data.
9	Q. All right. So then we're going to have volumes
10	of oil, gas and water from which my engineer can make his
11	own calculation of an oil-cut slope and a GOR slope?
12	A. Certainly.
13	Q. All right.
14	A. It's the same data, and I've provided them with
15	the incremental data for Yates Petroleum.
16	Q. All right. The time frame in which you selected
17	to calculate the slope, was that for the full performance
18	of the well?
19	A. For all of the performance for which I have data,
20	which would be for Yates Petroleum wells it would be the
21	beginning of the well, up through February. For wells
22	operated by other operators it would have been the
23	beginning of the well, up through October of last year.
24	And furthermore, I've tried to restrict it to one
25	to wells in which I had at least three data points,

because I was taught in school that two data points don't 1 define a line. 2 The Diamond AK 1 on Exhibit 7 is the only example 3 0. I can find in -- what, South Dagger Draw? Is that your 4 5 data point in South Dagger Draw, is the Diamond 1? 6 Α. Well, if you also look at Exhibit Number 5 No. 7 and look at the second well, the second page of Exhibit 8 Number 5, which is the collection of -- the big collection 9 of plots, this one here --10 0. All right. -- then turn to the second page, Bone Flats 12 11 Α. 12 Federal Com Number 2 is a well in South Dagger Draw. 13 Okay. So when we go through the information, 0. we've got the Bone Flats 12 2 and the Diamond AK 1. 14 These, 15 in today's presentation, are the two examples out of South 16 Dagger Draw? 17 Α. Those are the ones that have been presented again in this table here. 18 19 Exhibit 6? 0. 20 Exhibit 6, yes, thank you. Again, wells in South Α. 21 Dagger Draw for which I have data are in this exhibit, and 22 they are included in the 95 percent that have a positive 23 slope. 24 Q. All right. Let me go to Exhibit 7, then, and see the method here on the Diamond AK 1 and see what's 25

happened. 1 2 The data points, the diamonds that are shown on the plot --3 4 Α. Yes. 5 -- those represent data points taken on what time Q. interval? 6 7 Α. These are daily producing rates. Each one of 8 these represents the production for one day. 9 Q. This is a daily plot, then. Each diamond is a day? 10 11 Each diamond is a day. Α. 12 Q. Okay. 13 Α. They are not absolutely consecutive, I will say that --14 15 Q. All right. 16 -- because there are time periods where we are Α. 17 hooking up the variable-speed drive and the well is not producing. 18 When we look at the Diamond AK 1, which is down 19 Q. in South Dagger Draw --20 21 Α. Uh-huh. 22 Q. -- is it your position that early-time 23 performance of that well is unstabilized? Do we have that 24 condition occurring down in the Diamond area? 25 Well, I'm not real sure what you're meaning by Α.

the term "unstabilized". 1 Q. Well, let's talk about it so you and I are on the 2 same page. In the first few weeks or months of the well --3 Uh-huh. 4 Α. -- there are -- the wellbore is conditioning 5 ο. itself, if you will, and -- I'm a layman, you'll have to 6 help me, but --7 8 Α. Yeah. 9 -- I understand that early-time performance is Q. 10 suspect for you and other engineers because it hasn't stabilized, and you don't have reliable oil, gas and water 11 rates? 12 13 Well, the problem with using that Α. 14 characterization in Dagger Draw is, Dagger Draw is a highly 15 permeable reservoir, and what people are normally speaking of in that -- they're talking about the transient rate 16 17 effects that occur. There's two things you can talk about: transient 18 effects in the reservoir, or you can talk about wellbore 19 20 storage effects. Wellbore storage effects in Dagger Draw 21 wear off in hours --22 Q. Okay. -- because we produce those fluid volumes that 23 Α. that wellbore can contain in minutes at these production 24 Dagger Draw, the wellbore storage is not a 25 rates.

1 | significant time component.

2	But the interesting thing here is, yes, you can
3	change you change the rate, but again that same effect
4	of wellbore storage and transient effect is still going on
5	in the reservoir.

So, you know, the important thing is, if you're 6 7 going to use daily rates, use all daily rates. If you're going to use monthly rates, use all monthly rates. That's 8 the important thing, is to compare apples and apples, daily 9 rates to daily rates, monthly rates to monthly rates. 10 And that's why I presented these as two separate exhibits. 11 Exhibit 5 is monthly data, Exhibit 7 is daily data. 12

And that's what I'm just trying to clarify for 13 ο. myself, is that Exhibit 7 has got daily rates on it. 14 Your argument for using that is the transient effects that we 15 might see in a reservoir are not an issue of concern for 16 you when you examine the performance of the Diamond well? 17 Well, my basic issue for using these is to show 18 Α. that basically -- using the daily rates, is to show that an 19 20 instantaneous change in producing rate in daily, day-to-day in the life of these wells, is essentially an instantaneous 21 22 change.

And instantaneously changing the producing rates, this phenomenon exists. It exists on an instantaneous change, and then Exhibit 5 shows -- 5 and 6 show that those

1 changes occur over time also. 2 So that -- It's just showing that if this --Every time we look for this phenomenon, it shows up. You 3 know, that's the reason for presenting those two sets of 4 5 data. 6 ο. When I look at Exhibit Number 13, we're looking 7 at the 24 cycle? 8 Α. Yes. And then the second page is a 12-hour cycle? 9 Q. 10 Yes, sir. Α. Is there anything I see on this exhibit that 11 Q. supports your theory that producing the wells in a 12 restricted fashion is going to reduce ultimate recovery? 13 14 That's not apparent in this exhibit, is it? Α. Which type of restricted production are you 15 talking about in that particular statement? 16 I'm talking about taking all the wells back to 17 Q. 18 700 barrels a day and keeping them there and denying your 19 request. How are we going to take them back? 20 Α. 21 How are you going to take what back? Q. 22 How are we going to restrict the wells? Α. 23 That's up to you, managing your production, to Q. 24 abide by the 700 barrels a day. 25 Okay. Α.

1	Q. And my question for you, if you do that, what is
2	your argument that you're not that you're reducing
3	ultimate oil recovery in the pool?
4	A. Again, this exhibit, just to tie it
5	Q. Yeah.
6	A just to answer your question, this exhibit is
7	not is intended to show that the cyclic production
8	method is essentially, over time, going to be equivalent to
9	slowing the well down. Just, you know, putting a
10	continuous restriction In other words, if we had a
11	variable-speed drive, just slowing the well down. Just
12	like we did on the Diamond AKI Number 1, slowed it down,
13	the oil cut went down.
14	Therefore, if the oil cut goes down and also the
15	GOR goes up, which the data suggests it will, those two
16	things, producing any reservoir in a state where you are
17	increasing your water cut and increasing your GOR is a
18	wasteful process in a depletion system, because it will
19	lower your ultimate recovery.
20	We're only going to get a certain amount of fluid
21	out of this reservoir. If we're taking out excess gas and
22	excess water now, then at the end of the life of the well,
23	that's oil, gas and water that we will not recover. I
24	don't care about not recovering the water at the end of the
25	life of the well, but it's oil that we will not recover at

1	the end of the life of the well.
2	Q. All right. And you make that argument based upon
3	Your contention is, by looking at that oil cut and
4	finding that at higher rates you get a higher oil cut
5	A. Yes, sir.
6	Q you contend that that is going to increase
7	ultimate oil recovery from the pool?
8	A. Yes, sir.
9	Q. All right. If the Commission accepts that
10	contention and provides for an increased oil allowable in
11	North Dagger Draw, your recommendation is 4000 barrels a
12	day?
13	A. That is my recommendation, based upon the data.
14	Q. And based upon What data demonstrates the need
15	of the 4000 barrels a day in a 160-acre spacing unit?
16	A. First of all, the data suggests that 40 acres is
17	the proper spacing.
18	Q. All right.
19	A. Secondly Well, I've got to find the right
20	Q. Let me see if I can summarize it for you, and you
21	tell me if I've done it right.
22	If we're assuming that the newer wells with this
23	capacity is on average about 1000 barrels a day
24	A. Uh-huh.
25	Q is that what you're saying?

And then in 160 acres we might have four of these 1 2 wells that would do that, you simply multiplied it and got 3 the 4000; that's what's --That's where the number came from, yes, sir. Α. 4 5 0. If they accept that and then everybody in the 6 pool has an equal opportunity to test your theory and see 7 if they can in fact enjoy that privilege, what is your argument as to why the Division should cancel all the 8 9 overproduction for you and whatever other operators that 10 have exceeded that limit? Why should we cancel the 11 overproduction? Basically, first of all, 40-acre drainage is what 12 Α. these wells are affecting, 40 acres is what --13 14 Q. All right, let me interrupt --15 Α. This my argument. 16 All right. 0. 40-acre drainage, that's what the wells are 17 Α. draining. If they're only draining 40 acres --18 -- you ain't hurting anybody? 19 ο. 20 -- you ain't hurting anybody. Α. 21 All right. Q. Furthermore, the wells have been produced thus 22 Α. far at the efficient method, thus far they have been 23 24 produced at the efficient method. 25 Furthermore, restricting them to get -- to do

1	that, would cause waste. So correlative rights are not an
2	issue, and waste is at issue. That's why we believe that
3	the overproduction should be canceled.
4	Q. All right. If your theory is that you're only
5	affecting 40 acres and therefore the overproduction is
6	going to be production you would have already gotten over
7	time, and you're not draining it from anybody else
8	right?
9	A. The production The overproduction is simply
10	oil that's from the 40 acres for that well.
11	Q. Okay. In order to balance with the pool, though,
12	what's wrong with simply shutting that well in, making up
13	the overproduction, and restoring the well back to
14	production later, at whatever you want to take it to, to
15	stay within the new limit of 4000 a day? Why can't you
16	postpone the time in which you commence producing this well
17	at the higher rate, sir?
18	A. Because you can't It's not a good practice to
19	just shut in oil wells for extended periods of time.
20	Q. Would it have anything to do with the fact that
21	if that well is shut in because of pressure depletion in
22	the reservoir, that oil production which you might
23	otherwise get would have gone to another offsetting well?
24	A. I do not believe so.
25	Q. Okay. So the only reason not to shut it in is

L

1	that you think there may be some operational problems in
2	restoring it to production, and because you conclude that
3	that production has been drained from only a 40-acre tract?
4	A. I want to make sure I heard that correctly.
5	That well, I mean, forgive me
6	Q. I'll do it again. The reason for not shutting
7	the well in is that there's an operational concern about
8	what may happen in the field with the ability to restore
9	that well to production, because you said there was
10	operational problems, if you will
11	A. Uh-huh.
12	Q as opposed to reservoir conditions that might
13	preclude that well from returning to its level of capacity
14	prior to shut-in. Is that a correct statement?
15	A. I don't believe that's the only thing. There are
16	historical precedences that shutting in oil wells,
17	regardless of what's going on from the offset wells, but
18	shutting in oil wells is not a good idea to do it for an
19	extended period of time.
20	Q. Define "extended" for me, sir.
21	A. A month or more.
22	Q. All right.
23	A. You know, in this particular reservoir you're
24	looking at "extended" being from an operational
25	standpoint, you're looking at "extended" being like over a
week, because if we're talking about over a week, it would 1 require going in, pulling the sub pump, and temporarily 2 abandoning the well. 3 Q. Yes, sir. 4 5 Α. And then you might -- you might get back into 6 that well, you might not. There would be tremendous 7 expenses associated with it, for no benefit. Now, from the reservoir standpoint, I consider 8 9 extended shut-ins to be on the -- in general, on the one-10 month basis, that's just -- you know, that' something that the OCD and people -- you know, a month is a magic time 11 frame in the oil and gas industry, because that's the 12 13 period over which we report production. 14 But shutting them in -- I mean, there's leasehold 15 problems, you've got to make sure that you don't lose these 16 leases for some -- for that reason. There is the operational problems of, we cannot just shut these wells in 17 and come back a month later and turn them on. The odds 18 19 are, they will not turn on. And then, you know, require 20 the abandonment. 21 And so yes, there are reservoir conditions, there 22 are land conditions, and the basic premise of it is, it doesn't affect anything. We're talking 40-acre drainage in 23 this area. 24 25 Q. All right. When you look at 40-acre drainage,

have you and Mr. May attempted to calculate drainage areas 1 in a conventional way, using a ϕ h map or a net pay isopach 2 and trying to take an estimated ultimate recovery and 3 backing it into a drainage calculation? 4 That's an interesting point. One of the first 5 Α. things I was concerned about when I started working Dagger 6 7 Draw was, how did we get this much fluid out of this rock? And so I began a study with Schlumberger. Some points were 8 9 actually pointed out to me by Nearburg. 10 But basically what we're finding is, we can't characterize at this point the ϕ h of reservoir, because we 11 12 can't characterize the porosity, probably. And if you can't do that, then you can't do the other. 13 14 So trying to do that right now with the tools 15 that are available would be grossly in error, I believe, and that's why I have not done it. 16 17 Q. All right. When you look at trying to estimate drainage, then, you have examined some interference data 18 19 that's on one of these exhibits, and you have some examples 20 where you contend that there are relatively few, in which we had the Thomas and the Warren as an example? 21 22 Α. Yes, that was presented to show methodology. 23 Q. Yeah, and the methodology was, one, to show an effect of rate so that -- The older well, I think, was the 24 25 Warren well?

1 Α. Yes, sir. You bring the Thomas well on later, and we see 2 Q. the Warren well's rate of oil production decline at a 3 4 steeper angle? 5 Α. Change, definitely. Its changed to a steeper -- All right. 6 Q. 7 Did you also examine the issue of interference 8 from a pressure standpoint? 9 Α. The data is not there to -- you know, as I presented in my direct, no, that's not there. 10 11 Q. Okay. So your argument on drainage is that the only useful way to get to the drainage conclusion is to 12 look at the offsets and see if the performance of the newer 13 well has changed the slope of the oil production rate on 14 the offsetting wells? 15 Yeah, absolutely. If it doesn't change them, 16 Α. 17 then there's no interference. So -- And that would be the basis, then, for your 18 ο. 19 conclusion that you have only 40-acre drainage areas in the 20 North Dagger Draw? 21 Α. That's my conclusion, yes, that 40 acres is the proper drainage, the proper spacing for this area of North 22 23 Dagger Draw, yes, sir. That's how you went about it? 24 Q. 25 Α. Uh-huh.

1	Q. When we get to South Dagger Draw, did you apply
2	that same method?
3	A. Yes, the wells are not spaced out quite as
4	closely, but where I was able to, yes, I applied that
5	method.
6	Q. And do we have an exhibit somewhere here this
7	morning that gives us examples of areas where you've
8	examined to look for the interference of rate of one well
9	against another?
10	A. Honestly no, because You know, obviously no, I
11	do not have that example presented here today; I've not
12	presented it.
13	But again, you've got to go back to The
14	primary reason for that drainage-area study was our
15	development in North Dagger Draw.
16	Q. All right.
17	A. I mean, that was the primary reason for it, and
18	that was Although we were looking through the whole
19	thing, you know, this data as presented here had only been
20	prepared for the areas of new development in North Dagger
21	Draw. That's where most of our development is.
22	MR. KELLAHIN: That's all the questions, I have,
23	Mr. Examiner.
24	EXAMINER STOGNER: Thank you, Mr. Kellahin.
25	Mr. Padilla?

1 MR. PADILLA: I have a few questions, Mr. 2 Examiner. 3 EXAMINATION BY MR. PADILLA: 4 Q. Mr. Fant, when you talk about 40-acre spacing or 5 6 40-acre drainage, you also go back to development on a 40-acre basis. How far back? 7 Forgive me, I'm not really understanding what 8 Α. you --9 10 In other words, you're talking about 40-acre 0. drainage today. 11 Uh-huh. 12 Α. In fact, 40-acre drainage has been the case in 13 0. the North Dagger Draw for a number of years? 14 Yes, sir. Yes, sir. 15 Α. And when you look at your Exhibit Number 5, all 16 ο. of those wells are on 40-acre drainage; is that right? 17 Well, not all of these have been -- They're on 18 Α. 40-acre locations, but not all of these are fully developed 19 on 40 acres all around them, just as Mr. Kellahin pointed 20 The State K 3 is developed on 40 acres on half of its 21 out. 22 offsets and not on another half. 23 Q. But where you do have even that situation, your testimony is that you're not draining more than 40 acres? 24 Yeah, I'm seeing no interference between the 25 Α.

1	State K 3, even in that instance, between the State K 3 and
2	its adjacent 40-acre offsets or its 80-acre offsets
3	surrounding it, and
4	Q. So in fact, there's no effect on the correlative
5	rights of the owners of the undeveloped acreage in those
6	situations?
7	A. Yes, that is my basic point here, yes.
8	Q. And you can take any situation for any of these
9	drainage areas, you can go back to the mid-1980s and
10	essentially reach the same conclusion?
11	A. There are areas in this field where there is more
12	interference between the wells.
13	Basically, the rules that will be changed here
14	will affect the areas of new development, and so that's why
15	my focus was on these areas of new development.
16	A place that's already developed on 40-acre
17	you know, has all the 40 acres and all the wells have
18	declined down to 50 barrels a day, the rule changes are
19	basically moot.
20	The difference is that in this area, we're seeing
21	40-acre drainage, and it's important to be able to
22	optimally develop the field, not only develop it, but
23	produce it optimally.
24	Q. In terms of drainage, your testimony isn't any
25	different than Mr. Boneau's testimony has been in earlier

1	hearings involving the North Dagger Draw Pool?
2	A. Dave? I'm not sure You know, in all honestly,
3	I'm not sure what Dave exactly presented, and I'm I
4	you know I was not involved in
5	MR. KELLAHIN: We have that problem too, Mr.
6	Fant, on occasion.
7	THE WITNESS: What?
8	MR. KELLAHIN: I shouldn't have said that.
9	THE WITNESS: I talked to him, yeah, but what he
10	said I'm not always sure. He can talk over my head.
11	MR. CARR: I'm going to object to Mr. Kellahin's
12	editorial comments.
13	EXAMINER STOGNER: So noted.
14	THE WITNESS: But Dr. Boneau You know, I'm
15	really hesitant, without knowing what he said, to answer
16	that in either way. I don't mean to be evasive, but
17	Q. (By Mr. Padilla) But really, generally, in terms
18	of 40-acre development on a 40-acre basis is something that
19	I think Mr. Boneau advocated at some point.
20	A. Yes, obviously we've developed a few wells on 40
21	acres.
22	Q. And Conoco has advocated 40-acre drilling,
23	essentially, except that the bits of land may be as I
24	understand it, the area was not downspaced?
25	A. No, we're You know, we're not touching or

1	intending to touch the 160-acre-proration-unit issue or the
2	320-proration-unit. The land issues involved with that
3	would be phenomenal, to go back and actually break those
4	proration units up. That would be But we do believe
5	that 40-acre development is proper for the reservoir.
6	Q. Mr. Fant, what was the fight with Nearburg on the
7	Box X Number 5?
8	A. The Boyd X?
9	Q. Boyd, I'm sorry.
10	A. That related back to an issue, as I remember, and
11	forgive me, I'm an engineer, and it was a land issue as to
12	whether or not we had given them notice on that well,
13	whether or not we would participate in that well.
14	They had sent a proposal to us, we responded,
15	there was some mix-up as to the date as to which the
16	response was made, and there's only 30 days allowed for
17	that response. And so they had a position that we were
18	nonconsent in the well, which in Dagger Draw, you know, is
19	a 200 percent you know, cost plus 200 percent. So
20	you're talking about a lot of money.
21	MR. CARR: Wasn't that a dispute over whether you
22	had paid your share under a pooling order?
23	THE WITNESS: Well, yeah, and whether or not we
24	actually notified them as to whether or not we were going
25	to participate.

Again, it was a land-legal issue that was 1 2 eventually settled. They were concerned about -- They 3 wanted that well drilled at that time, because it was still -- there was still a dispute as to who would own it, and 4 5 they wanted it drilled. And so we drilled it, we won -- The case was 6 7 settled in our favor, there was no nonconsent and we -- and -- you know, but the well had been drilled, and basically 8 9 Nearburg had requested that that well be drilled. 10 Q. (By Mr. Padilla) But that was the subject of the compulsory pooling hearing before --11 12 MR. CARR: I was wrong on that. 13 THE WITNESS: No, I don't believe that one was 14 the subject of a compulsory pooling, because the Boyd X 15 Number 3 had been drilled several years before -- or not 16 several years but a year or so, two, before, and the Boyd X 17 3 established Yates Petroleum as the operator of that 18 proration unit. 19 Mr. Stogner, Mr. Kellahin advised me MR. CARR: 20 that I misspoke. 21 It involved proposing a well under a joint 22 operating agreement and whether or not, after it was 23 proposed by Nearburg, Yates had responded within the time 24 frame set in that agreement, so it was a question 25 surrounding that kind of --

MR. KELLAHIN: If it will aid you, Ernie, we can 1 give you that kind of information. It was a contractual 2 3 dispute. 4 MR. PADILLA: I don't think I have any other 5 questions. 6 EXAMINER STOGNER: Thank you. Mr. Kendrick? 7 MR. KENDRICK: I have no questions. 8 9 EXAMINER STOGNER: Mr. Bruce? MR. BRUCE: Just one. 10 EXAMINATION 11 12 BY MR. BRUCE: Mr. Fant, would these principles you've 13 0. enunciated today about increasing oil rate and decreasing 14 15 GOR apply generally to oil wells throughout the Dagger Draw 16 and Indian Basin areas? 17 Α. I'm -- I have not studied in the Indian Basin, so 18 I'm not comfortable making that assessment, to make any 19 direct statement. 20 I would think that on an But yes, they are. 21 intuitive basis, it should be maybe inspected. I do not deal with Indian Basin or the Indian Basin Associated Pool. 22 23 I'm not responsible for those. 24 MR. BRUCE: Thank you. 25 EXAMINER STOGNER: Mr. Carroll?

EXAMINATION 1 2 BY MR. CARROLL: Mr. Fant, do you know the amount of the ο. 3 approximate overproduction, according to Yates' records? 4 The approximate overproduction for the ten 5 Α. 6 proration units would be approximately 1 million barrels, 7 slightly over, maybe 1 to 1.1. But since we've restricted the wells, it's probably closer to a million barrels. 8 9 Q. That's for North Dagger Draw? 10 Α. That's for proration units in 21, 28 and 29. Not 11 all of them, but some of the proration units in 21, 28 and 12 29. You mentioned Section 27 earlier, that there was 13 ο. overproduction there? 14 Yes, that is operated by Nearburg --15 Α. Oh, okay. 16 Q. -- Production Company. And there, I believe, is 17 Α. one proration unit in South Dagger Draw that I know of 18 19 that's overproduced. And what's the amount of that overproduction? 20 ο. I do not know the amount, but it's operated by 21 Α. 22 Marathon. You know, that's just the facts. 23 ο. Okay, Mr. Fant, you testified that Yates is aware 24 of the pool rules for the North Dagger Draw and was aware 25 that the wells it operated were capable of producing in

STEVEN T. BRENNER, CCR

1 excess of the allowable.

2	When you became aware of that, why did you not
3	seek relief from the Division to allow that overproduction?
4	A. That question has been posed to me before, and
5	basically if I had come in here 18 months ago, when we
6	initially had wells of this capability, I don't believe
7	anyone would have believed me that this was a long-term
8	effect. That's part of it.
9	Everybody in our company and everywhere else has
10	been We've been amazed by the productivity of these
11	wells. And, you know, I'm not trying to say, you know,
12	everything's, you know, perfect about the way we did
13	everything. But if I had come in here even a year ago,
14	nobody would have believed me. I don't believe I would
15	have believed me, in terms of long-term productive
16	capabilities and the needs for higher rates, because these
17	wells maintain these productive rates for these extended
18	periods of time.
19	Q. Well, I guess nevertheless, the rules were still
20	in effect, and Yates disregarded the rules and produced
21	these wells in excess of the allowable.
22	A. I'm not going to deny that.
23	Q. And what happened last summer when you met with
24	Mr. Gum regarding the test? You said that Mr. Gum wanted
25	you to get the other operators' approval to

1 Α. To run the test. -- to produce these wells in excess of the 2 Q. 3 allowable? Did you contact the other operators? I did not. I don't think anybody else did. 4 Α. It 5 was discussed internally. This was in the midst of the 6 Boyd X 5, and I'm sure you remember a few force-pooling 7 hearings that we had between ourselves and Nearburg, and 8 Nearburg was the major offset operator that we would have 9 been dealing with, and we were not even on talking terms. 10 It was a bad situation. I'm not saying that everything was 11 done right; I'm just saying that it was not pursued for 12 that reason. Mr. Fant, what would be your recommendation if 13 Q. the Division required that Yates make up this 14 overproduction? How would it be made up and over what 15 period of time that the make-up be allowed to -- be made 16 17 up? My problem there is that that's a recommendation 18 Α. 19 that I can't make, as far as how, exactly, we would do that 20 within Yates Petroleum. That's something that would be 21 controlled on a level above mine, as to what would actually 22 be proposed. 23 I would be willing to say it would take probably 24 on the order of years. Years? 25 Q.

1	A. I'm just being honest with you.
2	Q. And it was your testimony that restricting
3	production on these wells would result in waste?
4	A. Yes.
5	Q. And that there is no impairment of correlative
6	rights due to overproduction in these wells?
7	A. That's correct.
8	Q. So if the Division didn't require the makeup of
9	the overproduction but still wanted to somehow penalize
10	Yates for disregarding its rules, do you have any
11	recommendation as to what alternative method of penalty
12	there would be that we could impose?
13	A. Again, you know, I don't feel comfortable I
14	don't feel I'm in a position to make those recommendations.
15	That would be I've not discussed You know, these
16	other things I've discussed with management of what we're
17	talking about, and I would not feel comfortable making any
18	recommendations and speaking for the family on that
19	account. I just don't feel You know, I'm sorry, I just
20	don't feel comfortable making any recommendations of that
21	nature, on the record.
22	Q. I don't know if you know the answer to this
23	question. Is it the same working interest percentages in
24	Section 21 and 28?
25	A. Oh, well, we could refer back to this exhibit, I

believe Number 1, and we can see that, no, they're -- the 1 2 percentages are dramatically different. 3 You can look in the upper right-hand corner and that will show you what Yates Petroleum's interest is. 4 In the upper left that will tell you what Conoco's is. 5 The 6 lower left, that will tell you what -- approximately what 7 Nearburg's is. And those are the three main operators in the 8 9 North Pool, and that's what drove the -- making this map 10 and presenting them, is those particular situations. Now, Mr. Fant, when a well is shut in for repairs 11 Q. 12 for, let's say, 24 to 36 hours, what is the well performance after that, after that shutdown? 13 14 Α. Well, it's generally basically -- You know, 15 that's a very short period of time. We generally have one 16 day of high water production, and then it's back on, you know. 17 You know, for the most part, our wells are down 18 for less than 24 hours. We -- you know, these are so --19 20 These wells are so productive that you don't want to leave 21 them down for any significant period of time. 22 MR. CARROLL: That's all I have, Mr. Examiner. 23 EXAMINATION 24 BY EXAMINER STOGNER: 25 Should it be necessary to shut these wells in Q.

1 for, as you quoted, years --Well, shutting -- if we shut them --2 Α. Well, I haven't finished my question. 3 Q. -- in, it would not take years --4 Α. Let me finish it first. If you shut these wells 5 ο. 6 down for, as you said, years, would they suffer or would 7 that property suffer from any drainage from offset wells that have met the allowable and are continued to produce at 8 a 700 -- or, for that matter, 4000-barrel rate? 9 Forgive me. I may have misled earlier. If the 10 Α. wells were completely -- If everything was completely shut 11 in, it would be under a year for things to get back in 12 That was maybe a misconstrued -- something I did not 13 line. 14 state properly. 15 My contention is, I don't believe -- I really don't believe -- I believe that 40 acres is what these 16 17 wells are draining, and I think that they would -- that -from a drainage standpoint, I don't believe that would 18 19 occur. How about pressure decrease? 20 Q. 21 Α. Well, I have one well -- I mentioned the Ross 22 Number 7 -- I've been monitoring for over a year, and it has essentially not dropped. 23 24 So you're not concerned about pressure, Q. 25 depletion?

Yeah, that's what -- You know, pressure and 1 Α. 2 depletion are much the same, and, you know, I don't -- I don't believe -- You know, it's my position that these 3 wells are basically affecting, generally -- I mean, there's 4 going to be instances, just as we found five percent that 5 did have some interference across that distance. 6 But for 7 the most part, no. 8 Q. Okay. If a well was shut in for a year, are you saying that it would have the inability to come back on, 9 given the proper recompletion? 10 There is always the danger that you're going to 11 Α. have deposition of scales and stuff in places that it can 12 damage that. It may -- you might be able to -- You should 13 be able to recover it, the wells, but that's not -- there 14 is no guarantee on being able to get back into a well, both 15 16 from a reservoir standpoint and just a mechanical standpoint. 17 18 ο. Are there ways to, say, quote, mothball, like 19 antiscalers or scale prevention --Well, certainly --20 Α. -- if you shut a well in for a year? 21 ο. 22 Well, certainly if we were required to shut these Α. wells in, which we would certainly hope that we would not, 23 the first thing we would do is, we would temporarily 24 25 abandon the wells, under OCD rules, which would require the

1 -- you know, and for ourselves we would put scale prevention and things of that nature down in the wellbore 2 3 and beneath the wellbore. But it still would not -- We cannot control what 4 goes on beneath the packer -- well, beneath the bridge plug 5 6 in a temporarily abandoned well. Mother Nature takes over 7 down there. We can control what happens above it, but we can't control what happens below. 8 Was it your testimony about -- I'm a little 9 ο. confused on the relationship on the increased oil versus 10 Does that -- Do we see that the more oil that's 11 the GOR. produced, the GOR goes down? Is that your contention? 12 13 Α. Yes, sir, that's what the data shows. 14 What happens to the gas that's left in -- left in 0. 15 the reservoir? Does it form a cap, or does it go into 16 solution? Well, I do not believe that we have enough 17 Α. vertical migration of fluids in this reservoir to actually 18 form a secondary gas cap, within the production time 19 20 frames. 21 It becomes free gas within the reservoir, in that 22 you're leaving more gas behind. For every barrel of oil that you take out, the gas that remains in the reservoir 23 aids in the gas expansion, the solution gas drive 24 production mechanism. And keeping that gas in the 25

1	reservoir maintains that production mechanism over a longer
2	period of time.
3	Q. Are you familiar with the term "illegal oil"?
4	A. No, sir, I'm not.
5	Q. "Illegal oil shall mean crude oil production in
6	excess of the allowable as fixed by the Division."
7	Now that you are, any oil that's overproduced,
8	you said up to 1, 1.1 million, would you consider that
9	illegal oil, under our terms?
10	A. By that definition, I would say that that is
11	true.
12	Q. You had mentioned that perhaps if the wells were
13	shut in, there could be a chance of lease expiration, or
14	the lease running out or something to that matter?
15	A. I can't I'm not I can't speak for any
16	specific lease, sir.
17	What I do know is that most leases that I have
18	dealt with historically contain evergreen clauses that
19	speak of the lease remaining in effect so long as
20	hydrocarbons are produced.
21	And so total You know, total shut-in could
22	mean no hydrocarbons produced. And, you know, I don't know
23	the actual ramifications, but it is a concern that I needed
24	to consider.
25	Q. When is your How far back do you know of any

1

1 well -- or proration unit, rather -- being overproduced, in an overproduced status? 2 Are you -- Specifically in relation to the ones 3 Α. that are overproduced right now? 4 5 Q. At any time. At any time? One proration unit was 6 Α. 7 overproduced, I want to say, in 1992, and that proration unit was in Section 1 of -- What is this? 20 South, 24 8 East. 9 10 And it was the northeast guarter section of that 11 one, and when brought to -- when the issue came up, the 12 well was -- the proration unit was restricted and brought 13 back into line. That's the earliest that I have actual 14 data. 15 Many of these have been overproduced at a time, and then simply through natural decline, you know, a month 16 17 later, they're not, which is what has been typically used 18 to keep wells -- for wells -- for proration units to get 19 back into their status. 20 Going back up to Sections 21, 28 and 29 --0. 21 Α. Yes, sir. -- do you know when any or all of these proration 22 0. 23 units, when they became overproduced? The earliest one I would believe to be 24 Α. 25 overproduced would have been the southwest quarter of

Section 28, the State K 3, basically last October --1 October a year ago, forgive me, 18 months ago. 2 October of 1993? 3 Q. 4 Α. 1994, excuse me, sir. I'm sorry, 1994. Do you know if any of the 5 Q. others were overproduced prior to that? 6 The -- I know that -- Yeah, forgive me, the 7 Α. 8 northeast quarter section of 29 had been overproduced for a 9 while, but had been -- had gotten back to a nonoverproduced 10 status. 11 And then a few months ago, the Binger Number 2 was drilled, and it went back up again. 12 EXAMINER STOGNER: Are there any other questions 13 14 of this witness? MR. CARR: No further questions. 15 16 MR. KELLAHIN: No, sir. EXAMINER STOGNER: Let's take a 15-minute recess 17 18 at this time. (Thereupon, a recess was taken at 10:48 a.m.) 19 (The following proceedings had at 11:10 a.m.) 20 EXAMINER STOGNER: This hearing will come to 21 22 order. 23 Mr. Carr, do you have anything further to 24 present? 25 MR. CARR: No, sir, I do not. That concludes our

1	presentation, Mr. Stogner.
2	EXAMINER STOGNER: Mr. Kellahin?
3	MR. KELLAHIN: Mr. Examiner, we have a
4	presentation to make. I'd like to recommend a procedure
5	and see if it's acceptable to the parties.
6	I would like to present Mr. Hardie this morning
7	to focus on North Dagger Draw. He has done some work in
8	South Dagger Draw, but that's not yet completed. I would
9	like to focus on North Dagger Draw.
10	I'm going to present Mr. Beamer, who is our
11	petroleum engineer. You need to recognize that he has not
12	had time to complete his reservoir study. He's going to
13	describe for you his concerns so that at least we'd have
14	those out in front of the participants, so they can see our
15	point of view.
16	I anticipate that we can make this presentation
17	within the next hour. At that point, I would seek your
18	approval and the concurrence of counsel to ask that this
19	matter be continued but put to an expedited schedule so
20	that we can come to some sort of conclusion, but I feel
21	compelled to ask for a continuance in order to give my
22	reservoir engineer some time to study his properties and
23	his concern. So that's my agenda and that's what I'm
24	proposing to you, sir, for approval?
25	EXAMINER STOGNER: Mr. Carr?

MR. CARR: As you're aware, Mr. Stogner, early 1 2 this week, perhaps late last week, Mr. Kellahin contacted 3 me on behalf of Conoco and expressed concern about their 4 ability to be ready, and he filed, in fact, a motion with 5 the Division requesting a continuance of the case. At that time I advised the Division that Yates 6 was prepared to present its case whenever the Division 7 desired, that the problem was a serious problem for us, we 8 had met with Mr. Gum, we had committed to him to pursue it 9 10 on an expedited basis, that we were prepared to present our side of the case anytime and any place the Division desired 11 12 that we show up and put our case on, and that we were not trying to take advantage of any other operator in the pool 13 14 in terms of pushing things forward on any kind of a time frame, and that we recommended that the Division review 15 requests of other operators for extension of time based on 16 17 their expressed need for the continuance, and that we would not take a position on that but ask you to look at what 18 19 they were asking for and, if it was reasonable, whatever 20 you desire is fine with us. EXAMINER STOGNER: Mr. Carr, should it be 21 22 necessary to continue this --23 MR. CARR: Yes, sir. EXAMINER STOGNER: -- because I think it was 24 25 necessary pursuant to your arguments in answer to Mr.

Kellahin's request for Conoco, to get this matter set today 1 and start hearing it today --2 MR. CARR: Absolutely, we were happy when you 3 4 did. EXAMINER STOGNER: -- should, subsequent to this, 5 it be necessary to continue it to a later date, May 30th or 6 7 another date past that, is it your contention -- and I 8 understand that Yates has voluntarily -- or has seen to it that the proration units are now meeting their allowable, 9 10 will continue to do so until such time as we issue an order --11 Yes, sir, they would do that. 12 MR. CARR: 13 EXAMINER STOGNER: Okay. MR. CARR: They would stay at the 700-a-day or 14 below. 15 16 EXAMINER STOGNER: Mr. Kellahin, why don't you go 17 ahead and proceed? 18 MR. KELLAHIN: All right, sir. 19 EXAMINER STOGNER: And we'll take your motion 20 under consideration subsequent to your presentation. 21 MR. KELLAHIN: Mr. Examiner, I have passed out to 22 the Division and to opposing counsel a copy of Mr. Hardie's 23 geologic presentation, and I've also included Mr. Beamer's 24 tabulation of data that he's got, and so you should have a 25 full set of our documents for today's exhibits.

1	BILL HARDIE,
2	the witness herein, after having been first duly sworn upon
3	his oath, was examined and testified as follows:
4	DIRECT EXAMINATION
5	BY MR. KELLAHIN:
6	Q. Mr. Hardie, for the record, sir, would you please
7	state your name and occupation?
8	A. My name is Bill Hardie. I'm a senior geologist
9	with Conoco, Inc., in Midland, Texas.
10	Q. You have to speak up in here, Mr. Hardie. That
11	microphone is not going to help you; it's for the court
12	reporter and does not amplify your voice.
13	A. Okay.
14	Q. On prior occasions, sir, have you testified as a
15	petroleum geologist, in particular with regards to geologic
16	issues in North Dagger Draw and South Dagger Draw?
17	A. Yes, I have.
18	Q. And in fact, you've done so on a number of
19	occasions?
20	A. Yes.
21	Q. Have you prepared for consideration by the
22	Division Examiner a geologic presentation of your opinions
23	and conclusions concerning North Dagger Draw?
24	A. Yes, I have.
25	Q. And you have those here today?

1	A. Yes.
2	MR. KELLAHIN: We tender Mr. Hardie as an expert
3	petroleum geologist.
4	EXAMINER STOGNER: Are there any objections?
5	MR. CARR: No objection.
6	EXAMINER STOGNER: Mr. Hardie is so qualified.
7	Q. (By Mr. Kellahin) Mr. Hardie, let me have you
8	turn, sir, to what is marked as Conoco Exhibit Number 1.
9	Help us get oriented as to the identity of the exhibit, how
10	the information is displayed, and then we'll talk about
11	what it in fact shows.
12	A. This is an isopach map, a thickness map, of the
13	Cisco/Canyon dolomite reservoir across the North Dagger
14	Draw-Upper Penn Pool. Now, the contours are such that
15	they're color-coded such that the thinner intervals are
16	dark blue, and then it grades up through greens and finally
17	into yellow as it gets thicker and thicker.
18	Shown in the heavy red line is the outline of the
19	North Dagger Draw-Upper Penn Pool. Also shown are is a
20	lighter pink line within the North Dagger Draw Pool that
21	shows the area of proration units that are in violation of
22	the allowable, and those consist of all or parts of
23	Sections 21, 27, 28 and 29, in Township 19 South, Range 25
24	East. Those are, again, shown with the lighter pink
25	outline. They form a contiguous block in the middle of the

L

pool. 1 The well --2 We're looking, then, at -- There may have been 3 Q. some nomenclature changes, perhaps, in the pool boundary, 4 but to the best of your knowledge this represents the pool 5 boundary for North Dagger Draw as to what point in time? 6 As to the latest records that we had available in 7 Α. our office. 8 Approximately, what's --9 ο. Yeah, the pool is constantly growing because of 10 Α. all the development, so this may not accurately reflect the 11 pool conditions today. It may in fact be bigger. 12 13 Well, but within the last month, is this accurate Q. to that extent, or is this vintage earlier than that? 14 I'd say within a couple of months. 15 Α. All right. When we look at the North Dagger Draw 16 Q. reservoir, you have mapped what you call the Cisco dolomite 17 18 isopach? That's correct. Α. 19 20 Q. And what does that mean? That is the reservoir itself. We're fortunate in 21 Α. this -- in the Upper Penn Pool, that the producing facies 22 is dolomite -- dolomitized, and you can essentially isopach 23 or map the dolomite and determine how much reservoir you 24 25 have available.

135

When we look in the area of the overproduction Q. 1 2 that you've described in the pink area, what is the reservoir quality when you examine the dolomite thickness 3 in that area, as compared to the rest of the reservoir? 4 In terms of thickness, the violation area that 5 Α. 6 I'll call that, is centered in the -- along the axis of the 7 fairway. 8 I would point out, however, and this will come up 9 in later testimony, that the worst violations within that 10 violation area occur in the south half of Section 29 and 11 the south half of Section 28, which --We are moving into an area which is thinner, 12 ο. 13 then? That is correct. 14 Α. And it goes to a blue area in the south half of 15 Q. that violation area, where you have less reservoir 16 thickness? 17 That is correct. 18 Α. 19 Q. All right. Is there a structural component of 20 the reservoir in the violation area? 21 Α. Yes, there is. 22 Q. All right. 23 Α. It's on the next exhibit. 24 When you isopach the dolomite here, from a Q. 25 geologic perspective is there geologic support for any

engineering conclusion or opinion that you have pressure 1 2 communication across the pool? There's a strong indication that wells that are Α. 3 violating the allowable are producing out of the exact same 4 5 reservoir zones as wells that are not in adjacent areas. 6 So they are in -- They're in the same reservoir zones, 7 they're competing for. Let's look at Exhibit Number 2, then. Would you 8 0. identify and describe that exhibit? 9 10 Α. Exhibit Number 2 is a structure map on the top of the Cisco dolomite reservoir, so we're looking at an 11 elevation on the top of the field itself. A lot of the 12 same components are on this map as well. 13 All right, let me make sure I understand what 14 0. You have an approximation of a contour line 15 vou've done. 16 in red that is similar to the isopach line of the 17 dimensions of the reservoirs currently known? 18 A. The heavy red line along the boundaries of the 19 reservoir on this map represents the zero dolomite line. 20 Q. Okay. Within that, then, you have displayed the structural components of the reservoir? 21 22 Α. That is correct. Apart from that, explain to us the other color 23 Q. The pool boundary now is blue on this display? 24 codes. That's correct. 25 Α.

1	Q. What are the other color codes?
2	A. On this one, the thin green line represents the
3	area of allowable violations.
4	Also, I'm showing Conoco's acreage position to
5	some degree with colors. The solid yellow color indicates
6	that Conoco operates the acreage. The crosshatched yellow
7	indicates that we have a working interest in that acreage
8	but do not operate it.
9	Q. Within the violation area, then, Conoco would
10	have a working interest, but they're not the operator of
11	any spacing unit or any well?
12	A. That is correct.
13	I'm also showing by the color of the well symbols
14	some of the newer drilled locations, so it can give you at
15	least a sense of how the field is developing. The black
16	well symbols, the black oil well symbols, are wells that
17	were drilled early in the history of the field. The red or
18	pink well symbols are those that have been drilled in the
19	last year and a half or so.
20	So that gives you a feel for where the
21	development, the recent development, is occurring. And as
22	you can see, most of it is occurring in the violation area.
23	Q. The open pink circles are locations and not
24	actual wells at this point?
25	A. That is correct, those are staked and permitted
•	

1 | locations.

3

2 Q. Okay.

A. Not drilled.

Q. What's your knowledge of the chronology and
history with regards to the sequence in which these wells
were drilled, particularly as development occurred in the
violation area?

In the violation area, I think -- my knowledge 8 Α. 9 isn't perfect, but there was a significant stepout drilled by Nearburg in the -- I believe it was in the south half of 10 If I'm not mistaken, it's what I have labeled 11 Section 28. 12 as the Nearburg K 1. And that was, at that time, one of the farthest eastern stepouts drilled in this reservoir, 13 14 and it was a very successful well.

15 Q. What's the approximate vintage, then, we're 16 talking about?

17 A. I'm guessing that was two years ago.

18 0. All right. Prior to that time it was generally 19 assumed among the geologists that as you moved east, then, 20 you were going to move out of this dolomite reservoir? 21 Α. Not necessarily move out of the dolomite, as you are going to go dip down structurally and go into the water 22 23 leg, so that -- You would find reservoir, but it would be water wet. 24

Q. As a point -- As a result of that new information

1	from the Nearburg well in 28, then, what happened?
2	A. That well was a significant stepout. It proved
3	that in fact the reservoir did not dip down as much as
4	operators had previously thought, and it basically set off
5	a lot of drilling activity in what has now become the
6	violation area.
7	Q. Okay, anything else about Exhibit Number 2,
8	before we go to the next display?
9	A. Just, if I would point out the relationship
10	between the area that's in allowable violation is slightly
11	lower than the older portion of the field, but otherwise
12	fairly similar in structural elevation from the older part
13	of North Dagger Draw.
14	Q. Is there any structural component to the
15	reservoir that would geologically limit the pressure
16	communication in the reservoir?
17	A. As This will become a little more apparent
18	when we look at some of the cross-sections I have
19	developed. But as you move to the flanks of the field,
20	reservoir barriers, which we look for, typically being a
21	thick shale, those begin to appear.
22	Toward the heart of the field, the axis of the
23	dolomite fairway, there's pretty strong indication that
24	there's good vertical communication, because these
25	reservoir barriers, the little shales that we look for,

become very thin and have in many cases been compromised by 1 vuggy porosity or fractures or whatever. 2 Within the violation areas and those spacing 0. 3 units adjacent to that area, do we have any geologic 4 5 feature that would limit or restrict fluid movement? There are some, and I think we can discuss those 6 Α. 7 at length when we get to the cross-sections. All right, let's do that. Let's look at Exhibit 8 0. Number 3. 9 You may want to refer to one of the maps when 10 Α. you're looking at the cross-section, so you can see where 11 they -- the wells that they pass through. 12 Let's leave Exhibit 2, then, as our locator map, 13 0. and we're going to look at Exhibit 3, which is your first 14 cross-section, it's the A-A' cross-section. You're running 15 northwest, then, towards southeast and then finally south. 16 17 What's the purpose of constructing the crosssection in this manner, Mr. Hardie? 18 I prepared these two cross-sections, this one and 19 Α. the one we'll look at next, to show the stratigraphic 20 relationships between the areas of the reservoir that are 21 obeying the pool regulations and those areas which are 22 violating the pool regulations, to see if there's any 23 stratigraphic component or any major stratigraphic 24 25 differences across those areas.

1	Q. And what did you conclude?
2	A. That there are lots of stratigraphic changes in
3	the field, and there are some that occur across the
4	violation area.
5	Q. Are there any stratigraphic changes of
6	significance, such that the wells in the violation area
7	would not affect those wells that are not in that violation
8	area?
9	A. No, in fact, it's quite the contrary. The
10	stratigraphic relationships that we see indicate that the
11	violation wells would drastically affect offsetting
12	production.
13	Q. Give us an example of how you reach that
14	conclusion.
15	A. Okay, let me first of all describe what the
16	cross-section is showing.
17	The color codes that I have used, purple
18	indicates the dolomite; this is the reservoir at Dagger
19	Draw. Blue indicates limestone; that's a nonreservoir
20	lithology. And of course the shale is shown in brown,
21	again a nonreservoir lithology.
22	Also shown on this cross-section is a dashed red
23	line that runs across at an elevation of minus 4300 feet
24	subsea. This is a significant elevation in that it's
25	highly unlikely that you would be able to complete an

1 economic oil producer below that point.

2 So when you're looking at what's available in 3 terms of reservoir, to complete, you need to be looking 4 above that dashed red line, and you need to be looking for 5 the purple dolomite.

6 As you look at this cross-section, it's drawn from the Yates Patriots 2 and 3 on the left or the 7 northwest side, then it passes through the allowable-8 violation area, beginning first of all with the Lorene 9 Number 1, and then the violation area continues through the 10 Ross Number 1 "IZ", the State "K" Number 3, and the Tackitt 11 12 Number 3. And then as we're moving to the right, we 13 encounter Mewbourne's Number 1 "B" State, which is a well 14 that is in compliance.

As you move from northwest to southeast in this cross-section, you're moving from the thickest part of the reservoir to its feather edge. And as you can see, the dolomite gets thinner as you move to the southeast, mainly because of the development of these limestone stringers that occur, and those are nonproductive rock.

So as you look at what's available to complete above that datum of minus 4300 feet, you can see that it gets significantly thinner in the area of violation. And our contention is that there's not nearly as much reservoir there to drain as you have in other parts of the field, so

that a violation in that area has dramatic effects on 1 correlative rights, in that it can drain offsetting 2 3 acreage. 4 Q. For the wells shown on Exhibit Number 3, what wells geologically are at the greatest risk of being 5 6 affected by those wells that are producing in the violation 7 area? Obviously on this cross-section, the one that is 8 Α. at the greatest risk is Mewbourne's Number 1 "B" State. 9 It has a relatively thin dolomite interval available to 10 produce, and that same interval is being overproduced in 11 the adjacent well to it, the Yates Number 3 Tackitt. 12 13 Otherwise, as you move on the other side of the 14 cross-section, the Yates Number 2 and Number 3 Patriot 15 wells are obviously being affected by the overproduction. 16 They're completed in the same zones, and any pressure -excessive pressure depletion that may occur due to 17 overproduction, would have a detrimental effect on those 18 19 flanking wells as well. 20 Are you ready to turn to the next cross-section? 0. 21 Α. Sure. Let's look at Exhibit 4. 22 0. Exhibit Number 4 is similar, except that in this 23 Α. 24 one, we're running from the Patriot Number 5, at the 25 northeast end, through the violation area and into Conoco's
1	acreage at the southwest end, or the left-hand side of the
2	cross-section.
3	So that we begin in the cross-section at the
4	left-hand side with the Number 5 Patriot. The Number 2
5	Hinkle lies within that area, the Number 1 Hinkle, and the
6	Yates Number 3 State "K" are all violation wells. And then
7	as we move to the right, we enter Conoco's acreage, the
8	Number 1 Savannah, which is in compliance.
9	Again, we see a similar relationship as we're
10	moving to the flanking edge of the field. In this case,
11	instead of encountering limestone stringers, we're
12	encountering shale stringers, which limit the amount of
13	reservoir available to us.
14	In the case of the Conoco's Savannah, we do have
15	a localized thickening of that upper zone, but still it's a
16	limited zone that's being produced in this area. In this
17	case it's approximately 50 to 60 feet thick, and we're
18	pulling amounts of oil in violation out of that 60-foot
19	zone, and I contend that that is detrimentally affecting
20	the correlative rights of the offset operators.
21	Q. Are you ready to look at the next display?
22	A. The next one
23	Q. I believe that's the end of yours, isn't it?
24	A. Yeah, that is.
25	Q. Summarize for us your concerns as a geologist

Г

with regards to the issues that are before the Division 1 2 Examiner today. My concerns are that although we do see the 3 Α. 4 ability of these wells to make phenomenally high rates, at the same time we're seeing the reservoir thickness decrease 5 in this violation area. 6 7 I would contend that the reason we're seeing 8 these high rates sustain is because we're not yet on 40-9 acre development, that these wells in violation are 10 draining very large areas, and that they are prematurely depleting not only the acreage that they drain, but the 11 adjacent acreage that is operating under the prescribed 12 pool regulations. 13 MR. KELLAHIN: That concludes my examination of 14 Mr. Hardie. 15 We move the introduction of his Exhibits 1 16 through 4. 17 No objection. 18 MR. CARR: EXAMINER STOGNER: Exhibits 1 through 4 will be 19 20 admitted into evidence. 21 Thank you, Mr. Kellahin. 22 Mr. Carr, your witness. 23 CROSS-EXAMINATION BY MR. CARR: 24 25 Mr. Hardie, you've studied the Dagger Draw area Q.

1 for years, have you not? 2 Α. Yes, I have. 3 In fact, because of Conoco's interests in the Q. area, Conoco has had geologists and engineers monitoring 4 5 the development of this reservoir. Fair statement? 6 Α. Yes, we do. 7 This has become a reservoir that continues to 0. grow, isn't it? The more we know, there seem to be more 8 things to discover? Is that a fair statement? 9 10 Α. That's absolutely correct. It's not a simple reservoir? 11 Q. It's one of the most complex that I have 12 Α. 13 encountered. When we look at the reservoir, we're really not 14 0. looking at a homogeneous reservoir, are we? 15 16 Α. No, we're not. We have multiple porosities, do we not? 17 Q. Matrix 18 and vugs and fractures and almost everything you could hope 19 to find, here it is? 20 Α. That's been well documented, yes. 21 Q. And your study so far has focused, at least for 22 presentation here today, on the North Dagger Draw; is that 23 right? 24 What I've shown so far is strictly North Dagger Α. 25 Draw.

1	Q. You are preparing also a study on the South
2	Dagger Draw?
3	A. Yes.
4	Q. I mean, basically, you've studied this for years.
5	Are you anticipating that you're going to see something
6	dramatically different in South Dagger Draw?
7	A. Very much so.
8	Q. So what we have here is a common, perhaps,
9	formation that there are irregularities in it as you move -
10	- or differences as you move from one portion of it to
11	another?
12	A. Very significant differences, yes.
13	Q. Now, in your study, are you comfortable telling
14	the Commission that there is a or are you trying to
15	state that there is a real correlation between reservoir
16	thickness and reservoir quality?
17	A. That is a natural relationship. The more
18	reservoir thickness you have, that increases reservoir
19	Q. So as you
20	A potential, the potential to produce more
21	reserves.
22	Q. As you go about your study here, are you assuming
23	that the thicker the section, the more you're going to be
24	able to recover; is that a
25	A. All other things being equal, that is correct.

1	Q. And what do you mean by "all other things being
2	equal"?
3	A. All of the
4	Q. Are you assuming for that a homogeneous zone?
5	A. No, I'm not. This is not a homogeneous
6	reservoir.
7	Q. So even in a heterogeneous area, you're saying
8	that thickness and quality are positive correlations?
9	A. No, that is not What I'm saying is that if
10	your porosity and permeability is the same, then thickness
11	is important.
12	Q. If they are the same?
13	A. That is correct.
14	Q. And yet in this reservoir they're not necessarily
15	the same?
16	A. No, they're not, there's no question that in the
17	violation area, although you have thinner reservoir, there
18	is higher porosity and obviously greater permeability.
19	Those are the three components that determine not only the
20	rate that a well produced, but also the ultimate reserves.
21	I would contend, however, that if all you had is
22	higher permeability, that just means you're going to get
23	those reserves quicker, that at some point that flat-line
24	production curve that you see in these high-rate wells is
25	going to drop very dramatically.

1	Q. Is it your testimony that in the area that's
2	overproduced, you find a homogeneous reservoir in that
3	area?
4	A. No.
5	Q. Do you find common porosity throughout that area?
6	A. The porosity varies as you move laterally along
7	any part of the field.
8	Q. When porosity varies laterally, even through this
9	area, it would affect the amount that can be recovered well
10	by well; is that not true?
11	A. That is correct.
12	Q. And when you make a general statement that
13	because of what you see in the reservoir, correlative
14	rights are being impaired, you would also have to know what
15	can be withdrawn from that reservoir; isn't that true?
16	A. That is correct, that's one of the
17	Q. And
18	MR. KELLAHIN: Let him finish his answer, Mr.
19	Carr, if you please.
20	THE WITNESS: One of the reasons that we feel a
21	volumetric calculation across this area is of ultimate
22	importance in determining whether or not the allowable
23	violations are causing damage to the point where these
24	wells need to be shut in.
25	Q. (By Mr. Carr) So you're saying additional study

1	is needed?
2	A. Absolutely, and that's what we requested,
3	beginning before this hearing began.
4	Q. And when you say the correlative rights are being
5	adversely affected, that is conditioned on what you may
6	learn in an additional study?
7	A. That is correct, but everything that we've seen
8	so far indicates that the correlative rights are being
9	violated.
10	Q. But my question was
11	A. The quick look that we have taken to this point
12	indicates that there's a strong chance that correlative
13	rights are being violated.
14	Q. But my question was if you'll answer the
15	question that I asked, then we'll get through this my
16	question was, before you know, you think additional study
17	is needed?
18	A. Before we can quantify the amount of drainage
19	that's occurred and the amount of violation of correlative
20	rights, we need to do additional study.
21	Q. Are you assuming up front that there's a
22	violation of correlative rights before this study is
23	undertaken?
24	A. I'm telling you that all the evidence I've seen
25	to date in the short period of time that I've been able to

look at the new well data available and the production 1 curves, that it's very likely, strongly likely that a 2 3 violation of correlative rights has occurred. My question was, before you can say there's a Q. 4 correlative-rights violation, is more study needed? 5 I say there is more study needed to determine the 6 Α. amount of violation that has occurred. 7 8 Q. Okay. But you can say today that there's a 9 violation occurring? I can say that with a 90-percent certainty there 10 Α. is a violation occurring. Before I come to State 11 proclaiming the amount of violation that has occurred, the 12 amount of reserves that have been withdrawn from Conoco's 13 acreage illegally, I think there's more study that needs to 14 be done. 15 16 Q. And so when you make your statement here that there's a correlative-rights problem, you still think it 17 needs to be further refined with some additional work? 18 That is correct. 19 Α. And if you're -- we happen to have the 10-percent 20 Q. 21 situation because of porosity variations, then next time you would reserve the right to amend that position; is that 22 23 right? 24 I'm not making any comments now as to the amount Α. 25 of reserves that have been drained from the adjacent

1 acreage. Wouldn't you need to know that before you can 2 ο. really make a statement on --3 4 Α. Absolutely. -- correlative rights violations? 5 0. Well, I need to know that before I can come to 6 Α. 7 the State and proclaim that X amount of reserves have been 8 drained from our acreage illegally. 9 Q. And you need to know that before you can come in 10 here and just proclaim that there are serious correlativerights violations? 11 I can tell you that the initial look at the data 12 Α. 13 that we have performed indicates there's a very strong possibility that correlative rights have been violated. 14 I just want to know if you've reached your 15 Q. 16 conclusion before you do the study or if you need to make the study. That's the question. 17 MR. KELLAHIN: I'm going to object, Mr. Examiner. 18 19 Mr. Carr has asked the same question five times now, he's got the same answer back. I don't share his confusion over 20 the answer. I think we're beyond this point at this time. 21 22 MR. CARR: My question is very simple, and if I 23 could get it answered I wouldn't have to ask it again. 24 MR. KELLAHIN: He's arguing with the witness. 25 MR. CARR: The question is --

MR. KELLAHIN: He's had his answer. 1 MR. CARR: Mr. Kellahin, I'm explaining this to 2 the Examiner, this is not the form of a question. Some of 3 us ask questions, some of us narrate. I'm trying to ask a 4 question. 5 I'd like to have an answer as to Q. (By Mr. Carr) 6 7 whether or not additional study is needed before we can make the bald assertion that there's a correlative rights 8 9 that needs OCD intervention, and the answer can be yes and 10 the answer can be no. MR. KELLAHIN: That's a argumentative question, 11 12 and I object to the form. EXAMINER STOGNER: Let's move on, Mr. Carr. 13 Q. (By Mr. Carr) Are you intending to conduct 14 additional study if in fact the case is continued? 15 I am expecting to conduct continuing study, 16 Α. whether or not the case is continued. This is a matter of 17 great concern to Conoco management. 18 When you look at the amounts of reserves that 19 have been pulled adjacent to our acreage in excess of the 20 allowable, it amounts to almost a quarter of a million 21 22 barrels of oil, and they, I'm sure --23 Have you calculated that? Ο. That is just the amount of excess oil that has 24 Α. 25 been produced in the proration units adjacent to Conoco's

1 acreage. And was it your testimony that that has been 2 Q. drained from that quarter million --3 That is the amount that has been produced in Α. 4 excess --5 Q. 6 Okay. -- and the additional study would ultimately 7 Α. attempt to conclude how much of that has come from Conoco's 8 acreage. 9 Now, Mr. Hardie, my question was, between now and 10 0. when we hear this again, if there is another hearing, 11 whether or not you intend to do additional study. And I 12 understand your answer to have been yes; is that right? 13 That is correct. 14 Α. And it's also my understanding that when you said 15 Q. that there had been a guarter of a million barrels 16 withdrawn from this area, that you were not saying that 17 that had all been drained from Conoco acreage; is that 18 right? 19 I'm saying that's the amount that's in excess of 20 Α. the allowable, and that a portion of that has likely come 21 22 from Conoco's acreage. You're not saying that a million, or whatever 23 0. number, has all come from Conoco's acreage? 24 That will be determined upon further study. 25 Α.

1	MR. CARR: That's all I have.
2	EXAMINER STOGNER: Thank you, Mr. Carr.
3	Mr. Padilla?
4	MR. PADILLA: I don't have any questions.
5	EXAMINER STOGNER: Mr. Kendrick?
6	MR. KENDRICK: I have no questions.
7	EXAMINER STOGNER: Mr. Bruce?
8	MR. BRUCE: No, sir.
9	EXAMINER STOGNER: Mr. Kellahin?
10	MR. KELLAHIN: No, sir.
11	EXAMINER STOGNER: Any redirect?
12	MR. KELLAHIN: No.
13	EXAMINATION
14	BY EXAMINER STOGNER:
15	Q. When I look at your cross-section, the little
16	dotted red line, again, what is that?
17	A. That is a datum that is set at a subsurface
18	elevation of minus 4300 feet.
19	Q. So it's just an arbitrary line that
20	A. It's somewhat
21	Q. Somewhat arbitrary, but
22	A. Somewhat arbitrary. It's very unlikely that you
23	would find oil reserves below that line.
24	Q. That's just a line, but it really doesn't depict
25	any kind of geological change?

1	A. No, it does not.
2	EXAMINER STOGNER: Okay, you may be excused.
3	Mr. Kellahin?
4	ROBERT E. BEAMER,
5	the witness herein, after having been first duly sworn upon
6	his oath, was examined and testified as follows:
7	DIRECT EXAMINATION
8	BY MR. KELLAHIN:
9	Q. Mr. Beamer, for the record, sir, would you please
10	state your name and occupation?
11	A. My name is Robert E. Beamer. I'm a petroleum
12	engineer for Conoco, Incorporated, Midland, Texas.
13	Q. Mr. Beamer, on prior occasions have you testified
14	before the Division and qualified as a petroleum engineer?
15	A. Yes, I have.
16	Q. Have you compiled information with regards to the
17	data available to you concerning those wells producing in
18	the North Dagger Draw in what Mr. Hardie characterized to
19	be the violation area?
20	A. Yes, I have, and it's summarized on Exhibit 5.
21	Q. All right. At this point, sir, have you been
22	able to conduct and complete a reservoir study with regards
23	to the impact that the overproduction in the violation area
24	may have had on adjoining Conoco-operated spacing units in
25	the same pool?

	158
1	A. No, I have not had time to do that.
2	MR. KELLAHIN: All right, sir. We tender Mr.
3	Beamer as an expert petroleum engineer.
4	MR. CARR: No objection.
5	EXAMINER STOGNER: Mr. Beamer is so qualified.
6	Q. (By Mr. Kellahin) Let's turn to Exhibit 5, sir.
7	Exhibit 5 represents what?
8	A. Well, this is a blown-up section of the maps that
9	were shown earlier as Exhibits 1 and 2, with the violating
10	proration units outlined in red, which should which
11	would correspond to that same outline on the previous
12	Exhibits 1 and 2.
13	Q. All right. So when we look at Exhibit 5 and
14	let's start up in the northwest of 21 that spacing unit
15	is labeled or identified with the number 1?
16	A. We've We're using that as a reference number,
17	which we'll tie to other exhibits that we'll talk about.
18	Q. All right. We're going to show Exhibit Number 6
19	here, and that number, then, ties back in to that exhibit,
20	so let's do this together. If you'll start with Exhibit 5,
21	let's also go to Exhibit 6
22	A. Yes, sir.
23	Q and we'll look at them together.
24	A. Okay.
25	Q. When you look at Exhibit 5, and our example is

the northwest guarter of 21, it's identified as Yates. 1 What does that mean, then, to you? Is that a Yates-2 operated spacing --3 Α. The operator of the northwest guarter of that 4 section is Yates Petroleum. 5 All right. Below the name, then, is the number 6 Q. 7594. What does that mean? 7 8 Α. That's my calculated amount of overproduction for 9 this particular proration unit, which --10 0. And then below that is a date. It says 2-1 of 11 1996. What does that mean? That's the effective date for which I had 12 Α. production data. 13 14 All right. Within that spacing unit, you've got Q. a color-code identifying four wells, and you've named all 15 four wells. What is the color code? 16 17 Well, the black wells are older developed wells. Α. I believe Bill has commented on the color code. 18 So you've used the same color code as Mr. Hardie, 19 Q. 20 then? Yes, I have. 21 Α. 22 All right, let's take Exhibit 6, now, and turn to Q. the first page of Exhibit 6, and find the first numbered 23 spacing unit, Number 1, and this equates to the northwest 24 25 of 21, right?

1	A. Yes.
2	Q. All right. When we look at the tabulation, what
3	is the source of the tabulation of the data shown on
4	Exhibit Number 6?
5	A. The source is either from Dwight's historic
6	database or from data supplied by Yates Petroleum for
7	months October of 1995 through the current available
8	month of February, 1996.
9	Q. All right.
10	A. And then I combined the two data sources into a
11	spreadsheet to compute the over- or under-balance
12	situation.
13	Q. All right. Let's see how you've organized the
14	spreadsheet. If you start on the first row and read from
15	left to right, you've got the spacing unit identified by an
16	acreage. The next column over is the month by production,
17	and then you have oil, gas, water. And it shows wells; I
18	assume that's the number of wells in the spacing unit at
19	that time?
20	A. That we're producing at that time, yes, sir.
21	Q. And then the next column is allowable. That
22	allowable is what, sir? How do you get that calculation?
23	A. That's 700 barrels a day, times the number of
24	producing days in a month.
25	Q. All right. And then the last column on the far

right is a number with a minus in front of it. What does 1 2 the minus signify? For that particular month, that proration unit 3 Α. produced 13,389 barrels less than the allowable. 4 All right. So it's an over/under calculation? 5 ο. 6 Α. It's simply the oil barrels produced, which are 7 shown under oil, less the allowable. 8 0. Okay. And as we read down, then, the far right column, that spacing unit has not exceeded its allowable 9 until we look at the shaded area you've shown on the 10 spreadsheet? 11 Α. The shaded area, plus I have bolded the 12 overproduction numbers so that they would be -- they would 13 14 stand out from the underproduction. All right. 15 Q. And then carrying from that first month of 16 Α. violation forward, then I have added through the current 17 data available, to arrive at a sum overbalance production 18 for this particular unit of 7594 barrels. 19 20 Q. All right. When you go to the shaded area on 21 this display and look at the row just above the first 22 arrow, and we're looking at -- What's that? June of 1995? 23 Α. Yes. And you read across and you find that the 24 Q. 25 operator, Yates, has now added a second well to that

STEVEN T. BRENNER, CCR

1	spacing unit
2	A. Yes.
3	Q and then we move into the shaded area, and the
4	two wells in combination, then, for that period as shown as
5	overproduction?
6	A. Yes.
7	Q. All right.
8	A. And then on the back of this Exhibit 6
9	Q. Let's turn to the back of Exhibit 6, then, and
10	look at the back of the first page. What have you shown on
11	the back of the first page?
12	A. Well, that's a plot of the data presented in the
13	table on a daily basis.
14	Q. All right. So we can look to the back of each of
15	these tables in Exhibit 6, and we can see the oil plot and
16	the water plot and the gas plot?
17	A. Yes.
18	Q. All right. Have you gone through the same method
19	for each of the 13 spacing units that are shown identified
20	on Exhibit 5 as within the violation areas?
21	A. Yes, I have, and they're identified as Exhibits 6
22	through 18.
23	Q. So as we go through the binder of exhibits, after
24	Exhibit 6, you've numbered 7 through 19
25	A. Through 18.

1	Q 18, and each one of those, then, pertains to a
2	specific spacing unit?
3	A. That's correct.
4	Q. All right. Let's go to Exhibit 9 and look at
5	that as an example for the production on the Yates-operated
6	spacing unit in the northwest quarter of 29.
7	A. Yes.
8	Q. Take us down in a summary and a brief fashion and
9	show us what's happened as they've added wells and how
10	they've handled that management of well production in
11	relationship to the allowable.
12	A. Well, they were under the allowable restriction,
13	through October of 1993, at which time a third well was
14	completed, which I believe was the Voight Number 3.
15	At that time, they went into an overproduction
16	situation, which carried forward through August of 1994,
17	and I think probably the production plot would show this
18	maybe more easily.
19	You can see how the new wells peak in production
20	and then decline to a point at which they fall below the
21	allowable production, at which time, then, the operator
22	would drill and complete an additional well. The total
23	proration unit production would exceed allowable rates,
24	which are identified by the solid black line, until decline
25	occurred to the point where they fell below the allowable

situation and the fourth well in this particular proration 1 unit was added. 2 Currently, that spacing unit is no longer 3 capable, from the appearance of this plot, of meeting its 4 allowable production. 5 Let's turn to Exhibit 12, then, and look at 6 ο. 7 spacing unit number 7. It's going to be the southeast quarter of 29. 8 Yes, sir. 9 Α. As we move down into May of 1995 on that table, 10 ο. Yates has got two wells operating, and that spacing unit's 11 12 overproduced its allowable? Is that the way you read this? 13 Α. In May of 1995 a second well was completed, the Boyd Number 6, which put the spacing unit into an 14 overproduction situation, and that has carried forward 15 through this most recent month of data that I have of 16 February, 1996. 17 All right. Look at the data point for the row 18 ο. that's identified as November of 1995 on Exhibit Number 12. 19 Yes. 20 Α. They have two wells in the spacing unit, the 21 ο. spacing unit has overproduced its allowable, and yet they 22 add a third well in December, and the overproduction is 23 increased. 24 25 Yes, the Boyd Number 5 was added in December of Α.

1	1995. And from the production plot, it's apparent that
2	they are right are currently at allowable limits, and
3	probably for these three wells would decline below that.
4	Q. Let's turn to the last page of this binder, if
5	you will it's Exhibit Number 19 and have you explain
6	what you've done with this exhibit.
7	A. This is, very simply, just a summary of each of
8	the proration unit overbalance situations, totaling And
9	again let me explain. The map reference number refers to
10	the numbers in blue on the Exhibit 5 map, identified then
11	by quarter section, and then showing the cumulative
12	overproduction situation, for the Yates data it's through
13	February, 1996, and for the Nearburg units, they provided
14	data through March of 1996.
15	Simply a summary of the data, showing the Yates
16	overproduction, my estimate of about 988,000 barrels of
17	oil, and the Nearburg units of about 165,000 barrels of
18	oil.
19	Q. Turning to Exhibit 20, identify and describe what
20	you've tabulated for the Examiner on Exhibit 20. And that
21	would be that's a separate exhibit set, is it not?
22	A. Yes, it is. I did the same type of calculation
23	for the Conoco-operated units that are affected here, both
24	occurring in the north half of Section 32.
25	The northeast of Section 32, our Savannah State

1	Number 1 well, which was completed in September of 1995, we
2	show, has never exceeded allowable rates.
3	In the northwest section of 32, the first month
4	of production for our Joyce Federal Number 1 well did
5	exceed allowable rates by 2800 barrels, but natural decline
6	since then has eliminated that overproduction situation,
7	and our wells are not capable of meeting allowable rates at
8	this time.
9	Q. As a reservoir engineer, have you studied the
10	Dagger Draw prior to examining the overproduction issue
11	that's presented to the Division today?
12	A. Yes, I've been involved with Dagger Draw
13	production, now, for about a year and a half.
14	Q. All right. Describe for me, from your
15	perspective as a reservoir engineer, the concerns that you
16	have for your company concerning the excess fluid
17	production that's occurred in the violation area and
18	whether or not that has a probability of giving Yates and
19	Nearburg any type of unfair competitive advantage in
20	recovering the reserves out of the pool.
21	A. Well, I look at this reservoir as essentially a
22	closed system. Pressure depletion will occur as a result
23	of fluid withdrawals in these offending leases, by
24	overproducing them significantly, 1.1 million barrels.
25	That's oil only. When you consider barrels of water and

1 the gas associated with it, we're probably looking at four 2 barrels of additional reservoir fluid for every barrel of 3 oil produced.

That's a significant effect on pressure depletion, and I'm suggesting that that overproduction probably has caused a pressure sink in their favor. In other words, would tend to have fluids migrate from nonoffending leases to the pressure sink.

9 Q. Do you have any comments or concerns about Yates' recommended allowable increase for the North Dagger Draw of 10 taking that oil allowable from 700 barrels a day per 11 spacing unit, up to the 4000 barrels of oil per day? 12 Well, my -- Of course, my first concern is that Α. 13 it's based on probably the best well in the field. I'm not 14 convinced that if that southwest quarter section of 28 were 15 developed completely on 40-acre spacing, that that well or 16 any successive wells in that section could ever approach 17 18 that rate per well. I think it's a little excessive. Q. At this point, if the Division were to adopt a 19

4000-barrel-of-oil-per-day allowable, this pool would be
unrestricted as to an oil allowable, would it not?
A. I think it essentially would be unrestricted,
yes.
Q. Do you have a recommendation yet as to what

Conoco proposes as the allowable level for this pool?

25

1	A. At this time, no.
2	Q. Describe for me why you are here today as a
3	reservoir engineer, Mr. Beamer, and what concerns that you
4	have on behalf of your company concerning this Application.
5	A. Our concern is that we're in a competitive
6	reservoir, a regulated competitive reservoir. All parties
7	have not been playing by the same rules, and it is possible
8	that we have had some drainage, and our management is
9	concerned that the regulations be applied uniformly and
10	that any allowable increase that might result as a matter
11	of these hearings be deferred from these particular
12	proration units until the overbalanced situations are
13	corrected.
14	Q. Based upon your knowledge up to this point
15	you've heard Mr. Fant's testimony do you think that
16	reserves would be lost if these offending units' production
17	were shut in until the overbalance is made up?
18	A. Total field reserves?
19	Q. For the violating spacing units, just shut them
20	in?
21	A. I think from my past analysis of North Dagger
22	Draw and I haven't had an opportunity yet to go through
23	an interference-type analysis similar to what Bob has
24	presented this morning, but I think it's highly likely that
25	wells in North Dagger Draw will drain or can drain in

1 excess of 40 acres. It's possible, yes, by shutting in wells for a prolonged period of time, that some drainage 2 3 could occur. 4 On the other hand, some of the excess production 5 produced to date may already have been produced from other 6 than the wells' particular 40-acre drainage radius. Is your company in favor of or in opposition to 7 Q. canceling the overproduction in the violation area? 8 We're in opposition to that. 9 Α. MR. KELLAHIN: I have no further questions of Mr. 10 11 Beamer. We move the introduction of his exhibits. 12 They 13 are marked 5 through 20. 14 EXAMINER STOGNER: Any objection? MR. CARR: No objection. 15 16 EXAMINER STOGNER: 5 through 20 will be admitted 17 into evidence. 18 Thank you, Mr. Kellahin. Mr. Carr, your witness? 19 20 CROSS-EXAMINATION BY MR. CARR: 21 Mr. Beamer, are you the engineer in charge now of 22 Q. 23 Dagger Draw for Conoco? 24 Α. As far as the reservoir engineering aspects are 25 concerned, yes.

1 Q. And did you tell me that you've been working on 2 the project for about a year and a half? 3 Α. Yes, roughly a year and a half. 4 Q. Is it your primary assignment, or do you have 5 other things you're also looking at for Conoco? I have other responsibilities. 6 Α. 7 In terms of your responsibilities for Conoco as Q. it relates to this reservoir, is it important for you to 8 9 stay abreast of what's actually going on, on the tracts, 10 not just Conoco, but all tracts in the reservoir? 11 Α. We try to stay abreast, yes. 12 ο. If I look at your exhibits, it appears that 13 Conoco has an interest in overproduced tracts 1, 2, 3, 5, 8 and 9. 14 15 Α. Yes. 16 Were you aware that those tracts were Q. 17 overproduced? Α. I cannot say that I was aware of the 18 overproduction until I started looking at data specifically 19 for this hearing. 20 21 And so in terms of the way Conoco is monitoring ο. 22 the reservoir, you weren't really aware that there were 23 wells substantially or -- substantially overproduced --24 I wasn't aware of any significant violations Α. 25 until we began preparing.

And there were no complaints to Yates or other 1 Q. operators about these production practices by Conoco? 2 Α. No. 3 If I understood your testimony, there are a 4 ο. number of things that you really ought to take a look at 5 before you can make a real informed call on what needs to 6 be done with the reservoir; is that fair to say? 7 Α. Yes. 8 You need to look at pressure depletion or study 9 ο. that. Was that one of the things you mentioned? 10 Yeah, and that's going to be qualitative, I 11 Α. 12 think. 13 Q. How much time does it take, now, I mean being 14 realistic, for you to make these studies? I will have to rely on a technique similar to 15 Α. what Bob has done in looking at the effect of offsetting 16 wells on existing oil production, and that does require 17 time to establish changes in decline rates. 18 In terms of any recommended change in allowable 19 Q. rate, that's something that also needs additional study in 20 21 terms of what Conoco is prepared to recommend; is that fair 22 to say? I think so, yes. 23 Α. And you were concerned that what's being 24 Q. 25 recommended right now is in fact trying to set the

1 allowable based on the best well in the pool, so it would be an unrestricted from an oil production --2 In my opinion, it would be. 3 Α. Are you aware of what considerations came into 4 Q. 5 play back when the 700 allowable was set? Well, obviously I wasn't involved with it, and my 6 Α. 7 recall on that is not good enough to discuss it right now, 8 but --You don't know whether or not at that time 700 9 ο. was believed to be what a well -- I mean, setting it at a 10 rate that wouldn't restrict the oil? 11 I don't know what the basis of that was. 12 Α. Would you agree with me that in terms of managing 13 0. this reservoir, producing oil cuts is an important thing to 14 try and achieve, from a waste point of view? 15 I understand -- Yes. Α. 16 And that trying to, while you produce the 17 Q. reservoir, to hold down the gas-oil ratio also is an 18 important thing in terms of efficient production of the 19 reserves under there? 20 Yes, I understand that. I need some time to 21 Α. 22 evaluate this data that's been presented, yes. 23 Q. But it is important to try and keep the gas-oil ratio down to maximize your recovery, generally speaking, 24 25 is it not?

T	A. Yes, yes.
2	Q. It was Conoco's recommendation, if I understood
3	you, that any change in special pool rules be deferred
4	until after production is made up, till the overproduced
5	wells are back in line; is that right?
6	A. Yes.
7	Q. Wouldn't you think it would be important to go
8	ahead and look at an allowable change if, in fact, it would
9	take oil cuts down and keep gas-oil ratio oil cuts up,
10	gas-oil ratios down, independent of whether or not some
11	wells are overproduced or not, or otherwise?
12	A. I'm not convinced that the ultimate recovery from
13	this pool will change.
14	Q. Have you studied that?
15	A. No, but based on my knowledge and understanding
16	of this type of pool, a closed system, not supported by any
17	aquifer, North Dagger Draw is not supported, really by any
18	gas cap, this I don't think there's any significant
19	difference in ultimate recovery.
20	Q. Have you been involved as the engineer and I
21	assume you have on what wells Conoco has drilled in this
22	reservoir?
23	A. In recent In the last year and a half, yes.
24	Q. And some of those wells, when they come on, have
25	they initially come on at a rate above the allowable and

then experienced a fairly rapid decline? 1 Unfortunately, that's true. 2 Α. 3 So for short periods of time they have been Q. overproduced? 4 In fact, it's summarized on Exhibit 20. 5 Α. Yes. And my question is, when we talk about making up 6 Q. 7 overproduction, you're saying nothing should be done on allowable until Yates gets back into line on these wells; 8 is that what you're saying? 9 10 Α. Or Yates or Nearburg. Or Marathon? 11 0. Well, Marathon doesn't operate in this North 12 Α. 13 Dagger Draw. But in South Dagger Draw, you would make that 14 0. recommendation, would you not --15 16 Α. Yes. -- for everything? 17 Q. 18 Α. Yes. 19 Q. And you're making that recommendation irregardless of what the data shows about what's needed to 20 efficiently change -- to change these rules to efficiently 21 produce the reservoir? 22 23 Α. Yes, because I don't believe that the ultimate 24 recovery from the reservoir is going to be appreciably 25 different.

MR. CARR: That's all I have. 1 Thank you, Mr. 2 Beamer. EXAMINER STOGNER: Mr. Padilla? 3 MR. PADILLA: I don't have any questions. 4 5 EXAMINER STOGNER: Mr. Kendrick? MR. KENDRICK: I don't have any questions. 6 7 EXAMINER STOGNER: Mr. Bruce? 8 MR. BRUCE: No, sir. EXAMINER STOGNER: No questions. Mr. Carroll? 9 MR. CARROLL: No, sir. 10 11 EXAMINATION BY EXAMINER STOGNER: 12 13 In the tabulation of your Exhibits 6 through 19, ο. 14 this was taken off the Dwight's or information supplied to you by Yates? 15 By either Yates or Nearburg, that's right. 16 Α. 17 Yates or Nearburg. Q. Yes. 18 Α. 19 Of the information that was supplied by Yates or Α. 20 Nearburg, what form was that? Yates sent me a floppy of the digital data, which 21 Α. I then downloaded into a spreadsheet. 22 23 Nearburg fax'd me a hard copy record of their monthly production from October of 1995, for their wells 24 25 operated in Section 27.

	1/6
1	Q. Now, were you aware or do you know if that
2	information that Nearburg and Yates supplied to you was the
3	same information which they would supply on the C-115?
4	That's the monthly production report.
5	A. It's my understanding that it is the same
6	information.
7	Q. Now, you didn't include the casinghead gas
8	allowable. Did you omit that because there is no
9	overproduction in the casinghead gas allowable?
10	A. I'm not aware of any overproduction on the gas.
11	Q. Okay.
12	A. I believe these units have a GOR restriction of
13	10,000 to 1, and I think that the production plots will
14	show that the gas rates are nowhere near the allowable
15	rates.
16	Q. Okay. Now, going back to the GOR limit at this
17	point
18	A. Yes.
19	Q the study that you're proposing, would you
20	also are you recommending that we review, or at least
21	the gas-oil ratio limitation be looked at also?
22	A. For South Dagger Draw, for South Dagger Draw
23	specifically, yes.
24	Q. For South Dagger Draw, but not the North?
25	A. No, because I think it's a moot point.

1	Q. What is the difference between the two of them?
2	A. South Dagger Draw is affected by a significant
3	gas cap, and we're concerned with excessive withdrawals
4	from that gas cap, as it will affect a very thin oil leg.
5	Q. Are you responsible for the Conoco-operated wells
6	in this area
7	A. In what regard?
8	Q. Well, let me finish.
9	A. Okay, I'm sorry.
10	Q of reviewing its production and make sure that
11	they are kept within the limitations?
12	A. That's a combined effort. Primarily, our
13	production engineer is the one who has typically been
14	watching our production over/under situation.
15	We've recently changed production engineers, just
16	within the past month, but I can comment on our Joyce
17	Federal Number 1.
18	Q. Which one is that?
19	A. That's in the northwest quarter of Section 32.
20	That's the first well that Conoco has drilled in this newly
21	developed area, followed, then, by the Joyce 2 and the
22	Savannah State Number 1 well, which was the better of our
23	three wells, as far as IP. Our production engineer was
24	very concerned that we were about to exceed the monthly
25	allowable rate on that well. It didn't, but we were

1	watching it on a daily basis, and he was corresponding with
2	the field foreman in that regard.
3	Q. So in None of those wells that you just
4	referred to in Section 32 had to be artificially
5	restricted?
6	A. No, natural decline took care of any
7	overproduction possibilities there.
8	Q. And you don't know of any there again, Conoco-
9	operated wells any need to artificially restrict to keep
10	in line with the allowable?
11	A. No, we wish we had the problem.
12	EXAMINER STOGNER: Okay, no other questions.
13	MR. KELLAHIN: That concludes our presentation,
14	Mr. Examiner.
15	EXAMINER STOGNER: Mr. Padilla, do you have a
16	presentation at this time?
17	MR. PADILLA: I don't.
18	EXAMINER STOGNER: Mr. Kendrick?
19	MR. KENDRICK: I do not.
20	EXAMINER STOGNER: Mr. Bruce?
21	MR. BRUCE: No, sir.
22	EXAMINER STOGNER: Do you have any redirect, or
23	do you wish to recall anybody, Mr. Carr?
24	MR. CARR: No, Mr. Stogner, I do not.
25	EXAMINER STOGNER: Okay, Mr. Kellahin, do you

178

1	propose to make your motion again at this time?
2	MR. KELLAHIN: I would renew my request, Mr.
3	Examiner, that subject to your discretion, that if you
4	desire to have Conoco present a reservoir-engineering
5	presentation with regards to trying to quantify the
6	magnitude of drainage, it will be a task to perform that we
7	have not yet undertaken, and we would need time to do that.
8	If you don't think that information is necessary
9	for deciding this matter, then we have nothing else to
10	present.
11	(Off the record)
12	EXAMINER STOGNER: Mr. Carr?
13	MR. CARR: Sir?
14	EXAMINER STOGNER: Do you have any response?
15	MR. CARR: No, sir, I would just note that there
16	is as you noted, when you ruled on this motion, that
17	this is an important issue, that time is of the essence and
18	that if there are continuances of this, we would hope it
19	would not go beyond June of this year.
20	EXAMINER STOGNER: Mr. Kellahin, I believe I've
21	heard enough in this case that any additional information
22	wouldn't necessarily be a burden, but I believe enough
23	information has been presented by both parties, that an
24	adequate decision can be made.
25	So I'm going to at this time take this under

ſ

2	MR. KELLAHIN: I need to ask you how you would
3	like us to handle the question of South Dagger Draw. We
4	are concerned that the gas allowable, if calculated for
5	South Dagger Draw, would result in an artificially too high
6	gas limit of 56 million MCF a day, and we have our concerns
7	about that topic.
8	If you would like me to address that issue before
9	you take both cases under advisement, I might do that in
10	just a few minutes with Mr. Beamer, and then you would have
11	our point on that question.
12	EXAMINER STOGNER: If you feel that would be a
13	responsible thing to do at this time, yes.
14	MR. KELLAHIN: All right, let me do that, sir.
15	EXAMINER STOGNER: How much time do you need?
16	MR. KELLAHIN: I can do it in just a few minutes.
17	Stay up there, Bob.
18	(Off the record)
19	MR. KELLAHIN: Thank you, Mr. Examiner.
20	EXAMINER STOGNER: We're back on the record.
21	DIRECT EXAMINATION (Case No. 11,526)
22	BY MR. KELLAHIN:
23	Q. Mr. Beamer, I've handed to you, and I've provided
24	to opposing counsel and to the Division, what are
25	identified as Conoco exhibits for the South Dagger Case.
1 They are numbered Exhibits 1 through 21. They include the geologic workup that Mr. Hardie 2 has done, and I don't propose to call Mr. Hardie, but I've 3 4 simply shared them with Counsel, and they may examine them 5 if they desire. 6 Α. Yes. I want to focus with you, sir, on the principal 7 ο. concern Conoco has in South Dagger Draw. 8 And if you'll take a moment, look at Exhibit 1, 9 10 which is our locator map, Mr. Fant talked about the Diamond 11 well in South Dagger Draw. It's in Section 34 of Township 12 20 South, Range 24 East. The proximity of that well is adjacent to Conoco-operated tracts in South Dagger Draw; is 13 that not true? 14 And in fact, let me point out that this 15 Α. Yes. 16 particular base map was constructed for a hearing presented here in September, 1995, so the well status code is not 17 18 necessarily correct on this map. 19 The Diamond 1 well that Mr. Kellahin is referring 20 to has been completed and should be so noted as a solid red 21 dot. All right. When we turn to the package of 22 ο. documents marked 7 through 21, what is contained within 23 that material? 24 Again, I'm presenting production data per 25 Α.

proration unit, as defined in the South Dagger Draw field, and I have started these exhibits with the bottom half, or bottom row of sections in Township 20 South, Range 24 East, beginning with the Conoco-operated section in the proration unit occupying the east half of Section 34 and then going south through the rest of the South Dagger Draw field, outlined area.

8 Anyway, these, then, are production plots by 9 proration unit, showing oil, water and gas production, as a 10 function of time.

Q. You described a while ago, just before the break, that in South Dagger Draw you were concerned about the gasoil ratio, and the ultimate gas allowable allowed for the wells in that pool, because in your opinion there was a thin oil leg and a very large or a big gas cap that you had to contend with. Is that a fair characterization of what you were describing?

- 18 A. Yes.
- 19 Q. All right.

A. The Indian Basin gas field is contiguous to this
area and produces gas only from the updip limits of this
reservoir.

Q. And the South Dagger Draw Pool we're looking at
is designated as an associated oil and gas pool by the
Division?

1	A. Yes, it does produce oil and associated gas.
2	Q. And the rules in South Dagger Draw are 320
3	spacing, currently 1400 barrels of oil a day per spacing
4	unit, you've got a GOR of 7000
5	A. 7000 to 1.
6	Q giving you a gas allowable of 9.8 million?
7	A. That's correct.
8	Q. All right. If the Division increases the oil
9	allowable to 8000 barrels of oil in that pool, do you have
10	any concerns about increasing the oil allowable to that
11	level?
12	A. Well, we've already mentioned that assuming the
13	GOR limit is retained, that it's 7000 to 1, that would
14	allow gas withdrawals from this from any spacing unit to
15	56 million cubic feet a day, which we would oppose as being
16	excessive, because that high a gas rate would probably come
17	from the overlying gas cap.
18	Q. What's the current gas limit in the gas pool
19	under the prorated Indian Basin-Upper Penn gas rules?
20	A. It's my understanding that that currently is
21	regulated to 6.5 million cubic feet per day, per 640-acre
22	spacing unit, which really creates quite an imbalance.
23	Q. Describe for us that concern at the Indian Basin
24	Gas Pool and it's shown on Exhibit Number 1 as you
25	move down to the west and south, you're getting into the

STEVEN T. BRENNER, CCR (505) 989-9317

L

1	gas cap, are you not?
2	A. Yes.
3	Q. All right. And the proximity of the western edge
4	of South Dagger Draw and the eastern edge of Indian Basin
5	creates an imbalance, then, between wells in one pool,
6	having a 56-million-MCF gas allowable, and those spaced on
7	640 adjacent to that with only a gas allowable of 6.5
8	million a day?
9	A. Yes, it does.
10	Q. So summarize for us your problem.
11	A. Those high gas rate withdrawals will
12	significantly affect pressure, and we are producing oil
13	from that same reservoir system in our Preston Federal
14	lease area, and also the Diamond Number 1 is completed in
15	that zone. We think that excessive withdrawals and more
16	rapid pressure decline will result in a waste of or a
17	loss of oil reserves.
18	Q. What's your recommendation with regards to the
19	gas allowable, then, with South Dagger Draw? What are you
20	suggesting that we do?
21	A. Well, it's somewhat dependent upon an adjusted
22	oil rate allowable. But we would contend, then, and in
23	conversations with Marathon privately in Midland, it's
24	their desire that gas limits be set at about 14 million
25	cubic feet per day, which, if for any reason the oil

1	allowable were set at 4000 a day per 320-acre spacing unit,
2	would result in a limiting GOR of 3500 cubic feet per
3	barrel. Again
4	Q. Well, let's talk about that so no one is
5	confused. If you make the calculation under the Yates
6	proposal, your concern is the gas allowable limit becomes
7	56 million a day?
8	A. Well, that's right.
9	Q. And you have had conversations with Marathon
10	where you are in agreement that if the allowable on the gas
11	side does not exceed 14 million a day
12	A. Yes.
13	Q you are presently comfortable with that level?
14	A. That's right.
15	Q. And you have no opinion as to what to do to
16	accomplish that in terms of adjusting the oil rate?
17	A. Not really. And to be honest, Marathon is really
18	the operator to benefit or to not benefit from allowable
19	changes in this pool. They are the major operator in this
20	developing area of the field.
21	Conoco does have some additional development work
22	to do, as does Yates, but it's apparent just from this map
23	that Marathon operates the significantly underdeveloped
24	area.
25	Q. When we look at South Dagger Draw at I guess

1	one way to back into it, if it's 4000 barrels a day in
2	South Dagger Draw, and you multiply that by 3500 GOR,
3	you'll get the 14 million a day?
4	A. Yes.
5	Q. All right. Why are you so concerned about the
6	oil-allowable rate in North Dagger Draw, and do not have
7	the same level of concern as you move down towards the gas
8	cap and move through South Dagger Draw?
9	A. I'm not suggesting I don't have the same level of
10	concern. I don't have enough data at hand yet. Many of
11	these wells are so new that established declines have not
12	been set, and we haven't been able to evaluate these yet.
13	Besides this Diamond 1 well, there are some new
14	Marathon wells, and also some new Yates wells on this
15	Mojave lease in Section 35 of the 23 East, that we just
16	haven't had time to evaluate, and in fact I don't think
17	anybody has, to know what those performance curves are
18	going to look like.
19	Q. I want to make sure I understand. With regards,
20	then, to adjusting the allowables South Dagger Draw, it's
21	your position that neither you nor anyone else has enough
22	data yet to justify increases of the magnitude that Yates
23	has requested in that pool?
24	A. That's my opinion.
25	Q. Do you have an opinion as to whether the oil rate

1	in South Dagger Draw ought to be increased above the 1400 a
2	day? Is there still not enough data on that issue?
3	A. I don't have enough data at hand to evaluate
4	that.
5	MR. KELLAHIN: All right, sir.
6	Thank you, Mr. Examiner, that's all the questions
7	I have of Mr. Beamer.
8	We would move the introduction of Exhibit 1, and
9	then we would move the introduction of his plots, Exhibits
10	7 through 21.
11	MR. CARR: No objection.
12	EXAMINER STOGNER: Exhibit 1 and 7 through 21 in
13	Case 11,526 will be admitted into evidence at this time.
14	And are you just putting the remainder of those
15	in the record?
16	MR. KELLAHIN: No, sir, they can't be in the
17	record; I haven't authenticated them. But I've given them
18	to Counsel. If there's ever a need to look at them,
19	they're there. I would ask that if you want to retain them
20	that you not utilize them in making your decision, because
21	I have not authenticated them with a geologist.
22	EXAMINER STOGNER: Okay, if that be the case,
23	then when this proceeding is over today if you will
24	recollect those
25	MR. KELLAHIN: Yes, sir.

EXAMINER STOGNER: Mr. Carr, your witness. 1 2 MR. CARR: Thank you, sir. (Case No. 11,526) 3 CROSS-EXAMINATION BY MR. CARR: 4 Mr. Beamer, you indicated that in conversations 5 ο. with Marathon, they were indicating that they desired an 6 7 increase to 14 million per day for the gas allowable for 8 this reservoir; is that what you said? 9 Α. Yes. 10 Q. And did you say that you concurred with that? We have no objection to that. 11 Α. Would that better serve efficient production of 12 Q. 13 the hydrocarbons from the reservoir, in your opinion? 14 Α. It's a better preservation of energy than an allowable increase to 56 million. It's a compromise. 15 16 Q. But you -- Would you recommend that, or do you 17 just take no position on that? Α. Really, I take no position on that. We could 18 concur with that, we would have no real problem with that. 19 20 Q. Do you have any idea of what sort of study or 21 work has gone into developing that number? 22 Α. No. 23 ο. Is it your recommendation in the South Dagger 24 Draw, as it was in the North, that there be no changes in 25 the pool rules, pending all wells being back -- the

188

1 overproduced wells getting back into balance? 2 I think that should be the case, yes. Α. 3 Q. Even if an increase in the gas production rate to 14 million a day would be in the best interests of 4 5 producing the reservoir, you still think that action should 6 be deferred until all the wells are back in balance? 7 A. I'm really not aware of an overbalanced situation 8 in South Dagger Draw. I would have to look a little more 9 closely at that. But yes. And in fairness to you, you really do need time 10 Q. 11 to study this if you're going to be --12 Oh, yes. Α. -- asked to make sweeping conclusions about the 13 Q. reservoir? 14 15 Α. Absolutely, yes. MR. CARR: That's all I have. 16 17 EXAMINER STOGNER: Mr. Padilla, your witness. I don't have any questions. 18 MR. PADILLA: 19 EXAMINER STOGNER: Mr. Kendrick? MR. KENDRICK: No questions. 20 EXAMINER STOGNER: Mr. Bruce? 21 22 MR. BRUCE: No questions. 23 MR. CARROLL: Pass. EXAMINER STOGNER: I have no questions of this 24 25 witness at this time -- or now, or any time.

MR. KELLAHIN: That concludes our presentation, 1 Mr. Examiner. 2 3 EXAMINER STOGNER: Is there any need for closing 4 statements? MR. KELLAHIN: No, sir. 5 6 MR. CARR: No. I would note that, unlikely as 7 this seems, Nearburg concurs with Yates. 8 EXAMINER STOGNER: I'm sorry, what was that? 9 (Laughter) 10 MR. CARR: I would like to note for the record 11 that Nearburg Exploration Company concurs in this matter 12 with Yates. They would like there to be no more than four 13 wells -- there to be no more than four wells authorized per 14 160 spacing unit in North Dagger Draw, and that as to the 15 overproduction they would hope there would be a reasonable 16 way to make it up, if the Division feels it must be done, 17 recognizing that while some units are overproduced, there 18 are some immediately offsetting, operated by the same 19 individuals, that are underproduced. 20 They do concur with the recommendation of Yates 21 Petroleum Corporation. 22 (Off the record) 23 EXAMINER STOGNER: Thank you, Mr. Carr. Mr. Kellahin? 24 25 MR. KELLAHIN: No, sir, I have nothing further.

EXAMINER STOGNER: Mr. Padilla? 1 2 MR. PADILLA: I don't have anything. 3 EXAMINER STOGNER: Mr. Kendrick? 4 MR. KENDRICK: Nothing further. 5 EXAMINER STOGNER: Mr. Bruce? MR. BRUCE: 6 No. 7 EXAMINER STOGNER: With that, then, both Cases 8 11,525 and 11,526 will be taken under advisement. 9 (Thereupon, these proceedings were concluded at 12:31 p.m.) 10 11 * * 12 13 14 15 16 I do hereby certify that the foregoing is a complete record of the proceedings in 17 the Examiner undring of Case Nos 1152 Sand 11526 heard by no/Dn 2/Mar 1996 . 18 _, Examiner 19 Oil Conservation Division 20 21 22 23 24 25

191

CERTIFICATE OF REPORTER

STATE OF NEW MEXICO)) ss. COUNTY OF SANTA FE)

I, Steven T. Brenner, Certified Court Reporter and Notary Public, HEREBY CERTIFY that the foregoing transcript of proceedings before the Oil Conservation Division was reported by me; that I transcribed my notes; and that the foregoing is a true and accurate record of the proceedings.

I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the final disposition of this matter.

WITNESS MY HAND AND SEAL May 14th, 1996.

STEVEN T. BRENNER CCR No. 7

My commission expires: October 14, 1998