STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

APPLICATION OF GECKO, INC., FOR A PRESSURE MAINTENANCE PROJECT AND QUALIFICATION FOR THE RECOVERED OIL TAX RATE PURSUANT TO THE "NEW MEXICO ENHANCED OIL RECOVERY ACT", LEA COUNTY, NEW MEXICO CASE NO. 11,663

)

)

)

)

)

ORIGINAL

REPORTER'S TRANSCRIPT OF PROCEEDINGS

EXAMINER HEARING

BEFORE: DAVID R. CATANACH, Hearing Examiner

November 21st, 1996

Santa Fe, New Mexico

This matter came on for hearing before the New

Mexico Oil Conservation Division, DAVID R. CATANACH,

Hearing Examiner, on Thursday, November 21st, 1996, at the

New Mexico Energy, Minerals and Natural Resources

Department, Porter Hall, 2040 South Pacheco, Santa Fe, New

Mexico, Steven T. Brenner, Certified Court Reporter No. 7

for the State of New Mexico.

* * *

INDEX November 21st, 1996 Examiner Hearing CASE NO. 11,663 PAGE APPEARANCES 3 **APPLICANT'S WITNESSES:** STEVE L. THOMSON (Geologist/chemical engineer; President, GECKO, Inc.) Direct Examination by Mr. Kellahin 4 Examination by Examiner Catanach 25 **REPORTER'S CERTIFICATE** 32 * * * EXHIBITS Applicant's Identified Admitted Exhibit 1 6 25 Exhibit 2 11 25 Exhibit 3 12 25 Exhibit 4 13 25 Exhibit 5 14 25 Exhibit 6 15 25 Exhibit 7 16 25 Exhibit 8 18 25 Exhibit 9 25 25 * * *

2

APPEARANCES

FOR THE DIVISION:

RAND L. CARROLL Attorney at Law Legal Counsel to the Division 2040 South Pacheco Santa Fe, New Mexico 87505

FOR THE APPLICANT:

KELLAHIN & KELLAHIN 117 N. Guadalupe P.O. Box 2265 Santa Fe, New Mexico 87504-2265 By: W. THOMAS KELLAHIN

* * *

1	WHEREUPON, the following proceedings were had at
2	10:40 a.m.:
3	EXAMINER CATANACH: At this time we'll call Case
4	11,663.
5	MR. CARROLL: Application of GECKO, Inc., for a
6	pressure-maintenance project and qualification for the
7	recovered oil tax rate pursuant to the "New Mexico Enhanced
8	Oil Recovery Act", Lea County, New Mexico.
9	EXAMINER CATANACH: Are there appearances in this
10	case?
11	MR. KELLAHIN: Mr. Examiner, my name is Tom
12	Kellahin. I'm with the Santa Fe law firm of Kellahin and
13	Kellahin. I'm appearing on behalf of the Applicant, and I
14	have one witness to be sworn.
15	EXAMINER CATANACH: Any additional appearances?
16	(Thereupon, the witnesses were sworn.)
17	MR. KELLAHIN: Mr. Examiner, our only witness is
18	Mr. Steve Thomson. Mr. Thomson is a petroleum engineer.
19	He's also the principal with the Applicant.
20	STEVE L. THOMSON,
21	the witness herein, after having been first duly sworn upon
22	his oath, was examined and testified as follows:
23	DIRECT EXAMINATION
24	BY MR. KELLAHIN:
25	Q. For the record, sir, would you please state your

1 name and occupation? My name is Steve Thomson. I'm a petroleum 2 Α. 3 engineer and also serve as President of GECKO, 4 Incorporated. On prior occasions, have you testified and 5 Q. qualified as an expert in the field of petroleum 6 7 engineering before the Division? 8 Α. Yes, I have. 9 Q. And pursuant to your technical degree and your employment responsibilities, have you made a study of and 10 11 are you familiar with the facts surrounding this Application? 12 Yes, sir, I am. 13 Α. 14 Based upon your familiarity with these facts, do 0. 15 you now have engineering conclusions and recommendations for the Division Examiner? 16 17 Α. Yes, sir. 18 MR. KELLAHIN: We tender Mr. Thomson as an expert 19 petroleum engineer. 20 EXAMINER CATANACH: He is so qualified. 21 Q. (By Mr. Kellahin) Mr. Thomson, let's take a moment, sir, and perhaps use Exhibit Number 1 as a way to 22 23 illustrate what you propose to accomplish. 24 First of all, tell us the significance of the 25 various colored dots on Exhibit 1.

1	A. Okay, Exhibit 1 is an enlargement of a commercial
2	landmap. The project area is highlighted in yellow.
3	The control wells are designated by colored dots.
4	There's two colors on the map. The blue wells represent
5	existing and producing Strawn wells. The red dots indicate
6	Strawn penetrations in the immediate area that are
7	dryholes.
8	Q. We're dealing in a portion of Lea County, New
9	Mexico, that the Division has designated to be a part of
10	the Casey-Strawn Oil Pool; is that not true?
11	A. That's correct. Actually on Exhibit 1, the two
12	dots in the highlighted area are in the Casey-Strawn Pool.
13	To the immediate east, the two blue dots are in the Shipp-
14	Strawn Pool.
15	Q. Okay. Are you familiar with all the wells shown
16	as Strawn oil wells on Exhibit 1?
17	A. Yes, sir.
18	Q. You were involved in drilling many if not all of
19	those wells, were you not?
20	A. Yes, sir.
21	Q. The project area is shown in the shaded area in
22	the northeast quarter of Section 35?
23	A. Yes, that's correct.
24	Q. Have you satisfied yourself with regards to the
25	title information that the ownership is common in the

northeast corner of Section 35? 1 2 Α. Yes, I am. And in fact, it is common, is it not? 3 0. It is, that's one state lease. 4 Α. 5 Q. Okay. In terms of satisfying the notice requirements, Mr. Thomson, did you within an area scribed 6 7 by a circle, the radius of which is a half mile, identify all the interest owners involved within that area? 8 Α. Yes, we have. 9 10 Q. Did you cause notification to be sent to all 11 those interest owners? 12 Α. Yes, we did. As a result of that notification, are you aware 13 Q. 14 of any objections being filed by any of those parties to 15 which you sent notice? Α. No, sir. 16 Describe for us the significance of the 17 Q. difference in the color-code for the well dots. 18 19 Α. Like I said previously, the red dots penetrated the Strawn formation but were either drilled and abandoned 20 or abandoned after marginal or nonexistent production 21 22 tests. The blue dots are commercial Strawn wells, and in fact they are currently producing. 23 Q. When we look at the north blue dot in the project 24 area, that's the GECKO State 1 well? 25

Α. Yes, that's right. 1 It appears to have a symbol on this display to 2 Q. show that that well was deviated or directionally drilled 3 at some point? 4 That's correct. 5 Α. 6 Q. Describe for us what happened. Α. Okay, the Number 1 well was originally drilled 7 and abandoned at the surface location. It was subsequently 8 plugged back and directionally drilled or kicked 9 10 approximately 465 feet due south of the surface location where it currently produces. 11 Q. At what current rate does it produce? 12 13 Α. It's approximately 15 to 17 barrels of oil a day and about 150 barrels of water a day. 14 The well to the south of that, the GECKO State 15 Q. 16 Number 2 well, what's the status of that well? Α. That well is currently producing. It produces 65 17 to 70 barrels of oil a day and about 100 barrels of water a 18 19 day. Have you identified sufficient technical data to 20 Q. reach an engineering conclusion as to whether or not these 21 two wells are producing in communication with each other in 22 the same Strawn pool? 23 24 Α. Yes, we have. Have you also satisfied yourself that these two 25 ο.

1	wells are in a separate Strawn reservoir from any of the
2	other penetrations shown on the map?
3	A. Yes, we have.
4	Q. And you have concluded that that is true?
5	A. Yes.
6	Q. All right. What's your plan?
7	A. Our plan is to convert the northernmost well, the
8	Number 1 well, to an injection well to serve as the support
9	for the pressure-maintenance project and continue to keep
10	the Number 2 well as a producing well.
11	Q. Give us a general summary of why you as a
12	petroleum engineer have reached the conclusion that it is
13	both feasible and appropriate to use the GECKO State 1 well
14	as an injection well and correspondingly use the GECKO
15	State 2 as the producing well in order to produce oil that
16	might not otherwise be produced.
17	A. Our conclusions are based on, number one, on the
18	producing rates and decline curves from the two wells, show
19	an immediate communication with the second well, Number 2
20	well was drilled. Our conclusion, I guess, that the wells
21	are in communication, the production data basically
22	supports our mapping and seismic data in the area that the
23	two wells are in direct competition in a single algal-mound
24	pod reservoir.
25	An examination of the production history of the

1	two wells shows an expanding GOR over the life of the
2	wells. We do not show an increase in the water rates from
3	the wells, or we our conclusion that it being a solution
4	gas drive reservoir with associated water production is
5	proved over time.
6	And we just believe that type of reservoir
7	responds very favorably to water injection to support
8	pressure.
9	Q. The current rules for the pool provide for 40-
10	acre oil spacing, do they not?
11	A. 80 acres.
12	Q. 80-acre oil spacing
13	A. 80 acres.
14	Q. And so what you've currently done is lay down the
15	two spacing units in the northeast quarter of the section?
16	A. Yes, they're laydown 80s.
17	Q. And what would be the producing allowable, the
18	maximum oil allowable on 80 acres for a well at this depth?
19	A. 445 barrels a day.
20	Q. Are you asking that the standard 80-acre
21	allowable be adopted as the project allowable for the
22	pressure-maintenance project?
23	A. Yes, we are.
24	Q. Are there any special gas-oil ratio issues
25	involved here in this production?

1	A. No, we're currently under any GOR limits, and
2	the pressure maintenance should, if anything, increase the
3	GOR.
4	Q. So you utilize in this pool the standard 2000-to-
5	1 gas-oil ratio?
6	A. Yes, that would be fine.
7	Q. Let's look at the size and shape of the
8	reservoir. If you'll turn to Exhibit Number 2, describe
9	for us first of all what we're seeing, second, how it was
10	prepared, and then third, your conclusions about the size
11	and the shape.
12	A. Okay. Exhibit 2 is at this point in time is
13	an integrated subsurface seismic isopach map, if you will.
14	The mapping was actually prepared prior to drilling the
15	five wells that we have drilled in the area. The drilling
16	did not cause us any reasons to change our mapping at all.
17	The control points, you can probably see, is the
18	unfilled circles running north, south, and east and west
19	across the map.
20	Basically what we've identified in this area is
21	four separate reservoir targets, the four of which we have
22	drilled. Two of them are in Section 36, one of them is in
23	Section 35, which is the project that we're talking about
24	today, and the other one is in Section 26.
25	Q. How have you satisfied yourself about the

1	northern boundary of the Strawn pod which would cover the
2	project area? How do we know that that represents the
3	northern edge?
4	A. I'm satisfied the reservoir is closed to the
5	north, principally by the Number 1 well that we originally
6	drilled as a dryhole from the surface location. The well
7	had no porosity and essentially did not penetrate the mound
8	at all at that location.
9	Deviating the well just 465 feet to the south and
10	making a commercial well confirms to me that that pod, if
11	you will, is closed to the north, exactly like it's mapped.
12	Q. Let's refer now to the production histories from
13	the two wells. If you'll take Exhibit 3 and Exhibit 4,
14	let's identify each, and then let me ask you some
15	questions.
16	A. Okay, Exhibit 3 is a production history from the
17	Number 1 well. Oil is in green, water is in blue, gas is
18	in red. What's added to the production history is a It
19	appears as a stairstep due to the computer plotting, but
20	basically what it is is a decline-curve projection of the
21	oil and gas from the well.
22	The projection is put into an economic
23	calculation that basically terminates the production at the
24	economic limit of the well.
25	Q. Exhibit 4 is what, sir?

1	A. Exhibit 4 is the same presentation from the
2	Number 2 well.
3	Q. And again, the stairstep shown on the computer
4	plot from 1996 up through the year 2000 is simply a
5	limitation of the computer drawing the line and does not
6	accurately reflect what you forecast to be a stairstep
7	production rate?
8	A. That's correct, it's actually plotted the
9	midpoint is plotted as constant for the entire year.
10	Q. All right, let's take Exhibit 3, and then
11	position Exhibit 4 below it. Exhibit 3 represents the
12	first well, and we're going to have to slide our display,
13	the bottom display, Exhibit 4, over one year, so we can
14	line these up; is that not true?
15	A. That's correct, you just match 1995 to 1995.
16	What you can see is, when the Number 2 well was completed
17	and brought on production, you can see almost immediate
18	response and a drop in the production rate from the Number
19	1 well.
20	Q. Okay, we look at Exhibit 3, then, it started
21	producing in 1994. By the spring of 1995, then, when the
22	Number 2 well comes on, you see a pretty steep drop in the
23	production rate for the Number 1 well?
24	A. Yes, that's correct.
25	Q. Any other evidence to the contrary in this area

1	to show that these wells, in fact, are not communicating
2	with each other?
3	A. No.
4	Q. No other explanation for the drop in the Number
5	1, but for the production in Number 2?
6	A. That's correct.
7	Q. Okay. Let's look at the reservoir in a geologic
8	sense. If you'll take the cross-section map, which is
9	marked Exhibit 5, let's look at the geologic relationship
10	as displayed on the log for these two wells and have you
11	describe for us what you see.
12	A. Exhibit 5 is just a two-well cross-section that
13	shows the two producing wells. It's flattened on depth
14	just because the structure The wells are essentially
15	structural equivalents, so the depth just serves also as a
16	structural hang point for the cross-section.
17	The Strawn in these two wells is developed very
18	similarly. The porosity in the Number 1 well ranges
19	it's color-coded here at 2 percent, it averages 5 to 6
20	percent. The porosity in the Number 2 well is quite a bit
21	better than that. It probably averages 6 to 7 percent, a
22	little bit better porosity development.
23	Other than that, the As the logs would
24	indicate, it's very similar and pretty much, I guess,
25	confirms that the wells are in the same reservoir and in

direct competition with each other. 1 Have both wells been perforated in such a fashion 2 ο. 3 that the entire productive Strawn interval in each well is 4 open to production? 5 Α. Yes, there's -- The bottom 10 feet of porosity in 6 each well is not perforated at this time. 7 No indication that the water production in the Ο. Strawn is confined to the lower portion of the Strawn, is 8 there, Mr. Thomson? 9 No, there's no evidence at all. 10 Α. 11 ο. Have you taken this information and for 12 illustration purposes provided a structure map to show the 13 relationship of these wells in the project area? 14 Α. Yes, that structure map is Exhibit Number 6, 15 showing the structure at the top of the Strawn. And the conclusion from the mapping is, the two wells are 16 17 structurally very equivalent. This being a stratigraphic trap, the actual structure is not important. 18 19 Why did you choose the GECKO State 1 well as the 0. proposed injection well? 20 We chose it for a couple of reasons, number one 21 Α. being that it was at the lower producing rate and had the 22 least favorable economics. 23 The second reason we chose it is because of the 24 nature of the well being kicked, it deviated, it's a little 25

bit harder -- I say a little bit. It's quite a bit harder 1 2 to produce. These wells produce by rod pump. It's quite a 3 bit harder to produce the well by artificial lift, because the deviated wellbore makes it a better candidate to be the 4 5 injection well and the Number 2 well a better candidate to be the producing well. 6 7 Q. And again, the northeast guarter, the 160 acres for the project area in Section 35, is part of the same 8 common lease, and therefore there's no need to form a unit 9 or some other contractual mechanism to consolidate this on 10 a project basis? 11 Α. That's correct. 12 13 Q. Let's turn to the isopach. If you'll look at 14 Exhibit 7, identify and describe that display. 15 Α. Exhibit 7, the base is the same structure map 16 that we saw in Exhibit 6, and what has been superimposed on 17 the structure map is an isopach map. 18 The isopach map is a lot smoother than the 19 isopach map we presented earlier. This is basically just 20 contouring the log character and not totally relying on the 21 seismic mapping. 22 But again, it shows -- The conclusion from the 23 isopach as well as the structure map is, both wells are 24 very favorably positioned within the reservoir and should 25 respond very well to the water injection.

1	Q. Can you estimate for us what has been the current
2	cumulative oil recovery for the two wells in the project
3	area, as to some point in time?
4	A. In preparing the Application, our cutoff was July
5	1st of 1996, and cumulative production from the two wells
6	was doing 141,000 barrels of oil.
7	Q. If nothing is done, what do you forecast to be
8	the remaining recoverable oil using primary recovery means?
9	A. We have forecasted 93,000 barrels of oil
10	additional, by primary.
11	Q. Do you have engineering estimates of what you
12	would forecast to be an estimate, additional incremental
13	oil to be recovered if the Division approves your project?
14	A. We have estimated 46,840 barrels as additional
15	recoverable oil under the pressure-maintenance program.
16	Q. Let's turn to the topic of the underground
17	injection control regulations and the Division Form C-108.
18	Are you familiar with that form, Mr. Thomson?
19	A. Yes, I am.
20	Q. In fact, you caused that form to be prepared, and
21	you certified it when you signed and filed it back in
22	October?
23	A. Yes, I did.
24	Q. As part of your efforts to compile and report the
25	information necessary on that form, did you make an area

1	study of the wellbore integrity of those wellbores that had
2	been drilled to or through the Strawn formation?
3	A. Yes, I did.
4	Q. If you'll turn to Exhibit 8, which is the C-108,
5	and turn to that portion behind the schematic for the
6	injection, and we have a tabulation of wellbore status,
7	you've included more wells on that tabulation than are
8	contained within the half-mile radius of review, have you
9	not, sir?
10	A. Yes, the tabulation is actually the two-mile
11	radius, not the half-mile.
12	Q. All right. Let's identify for the Division
13	Examiner very quickly those wells which would be within the
14	half-mile area of review. Go ahead and just go down the
15	list and show him which ones they are.
16	A. Okay, if we were numbering them, the first well
17	would be number 4 on the list, which is the Mesa West
18	Knowles Number 6.
19	Q. And that well is only 8600 feet, so it's too
20	shallow to hit the Strawn?
21	A. Yes, that's right. It was a Drinkard test and
22	did not penetrate the Strawn.
23	Q. All right. We go down the tabulation and we get
24	to the Lynn Durham well?
25	A. Actually, the one immediately preceding that, the

GECKO State 36 Number 2 --1 2 Q. Okay. -- which is currently a Strawn producer. 3 Α. And that's a well that you operate? 4 ο. 5 Yes. Α. And you've satisfied yourself that there's --6 Q. 7 That well is a recent well, is it not? 8 Α. Yes. 9 Q. Drilled pursuant to modern technology --10 Α. Right. 11 -- and has adequate casing and cement? Q. Yes, sir. 12 Α. 13 Q. All right, let's go down, then, to the Lynn 14 Durham well, the State 1. 15 Α. That's the next one on the list, drilled and 16 abandoned at 5080 feet, did not penetrate the Strawn. 17 Q. Okay, then the well below that is the GECKO State 26-1? 18 19 Α. 26-1, which was a well that was drilled and abandoned, but did penetrate the Strawn. 20 And this is a well that you drilled and 21 0. abandoned? 22 Α. 23 Yes. 24 And what's the approximate vintage of this well? Q. 25 When was this done?

1	A. 1995.
2	Q. Okay, so a modern well with modern drilling and
3	plugging procedures?
4	A. Yes, correct.
5	Q. Plugged pursuant to Division rules so that it
6	would not provide a source or a conduit to let injection
7	fluids migrate out of the Strawn reservoir?
8	A. That's correct.
9	Q. All right. Turn the page, then, and do we have
10	any other wells?
11	A. Yes, the last two or the all the wells on
12	this last page, actually, there's one well and a re-drill
13	of that well. Both wells' depth was 9217 and did not
14	penetrate the Strawn.
15	Q. Again, do you find any problem with either of
16	these wells?
17	A. No, sir, I don't.
18	Q. In addition, since preparing this information,
19	there has been another well drilled in the half-mile area
20	that is now about to be or has been plugged?
21	A. It has been plugged. It was drilled and
22	abandoned. That well
23	Q. Let's go back to Exhibit 1 and have you spot it
24	for us.
25	A. Okay, that well is in the northeast of the

northwest guarter of Section 35, a well drilled by -- I 1 think it was permitted under Dalen's name and actually 2 drilled under Enserch's name. 3 Δ 0. That well has now been abandoned? 5 Α. Yes. MR. KELLAHIN: Mr. Examiner, with your permission 6 Mr. Thomson will, subsequent to the hearing, provide you 7 8 data on that well so that you can update your tabulation, 9 because it's now not currently on the list. 10 EXAMINER CATANACH: Okay. 11 0. (By Mr. Kellahin) Any problem with the well that -- with the way that well was plugged and abandoned, Mr. 12 Thomson, to the best of your knowledge? 13 14 Α. Not that I'm aware of. It was a Strawn test that was drilled and abandoned. 15 16 Q. While we're directing our attention back to 17 Exhibit 1, I assume you've been on the surface of this area 18 on numbers of occasions as you've drilled and produced 19 these various wells? 20 Α. Yes, I have. Where would we find the closest known freshwater 21 **Q**. 22 source, and where is it located? 23 Α. The closest known freshwater source would be -that would be in the northwest guarter of the southeast 24 25 quarter of Section 35. It's a well currently being used --

1	It's a well that's pumped by a windmill. It's currently
2	being used for ranching purposes.
3	Q. How are you familiar with that well, the
4	windmill?
5	A. I've used that water source on three occasions to
6	drill wells in the area.
7	Q. When the Examiner looks on the C-108, there's a
8	water analysis of a freshwater source?
9	A. That's correct.
10	Q. Does that water analysis refer to this windmill?
11	A. Yes, it does.
12	Q. What's the approximate depth of that water well?
13	A. That particular well is probably about 100 to 110
14	feet deep. My experience with that well has only been down
15	to about 90 feet, is as far as I've been into it, and have
16	not attempted to find the total depth of that well.
17	Q. It's an Ogallala freshwater source?
18	A. Yes.
19	Q. Are all the wells in this area cased and cemented
20	in such a way to protect the Ogallala?
21	A. Yes, sir.
22	Q. And so the approval of this project would not be
23	a source for a problem for the windmill?
24	A. No, sir.
25	Q. What will be the source of the water that's used

1 for the injection well? Α. The source of the water will be the water that's 2 3 produced by the wells that GECKO operates in Sections 35 4 and 36. 5 Q. Do you have an estimate or a forecast of the 6 volume of produced Strawn water that you would put into the 7 injection well? Well, we're basing it on about 300 barrels a day 8 Α. of water that's available to us from the producing wells. 9 Q. At this time, do you plan to use any freshwater 10 11 as make-up water for the injection well? 12 Α. No, sir, we don't. 13 Q. Let's go back to the schematic of the injection 14 well, which is the third page into the C-108, and describe for us how you're going to set up and operate the GECKO 15 16 State 1 as an injection well. Okay, the current perforations in the well are 17 Α. 11,583 to 11,640. 18 19 What we plan to do is pull the tubing out of the What we'll do is, we'll inspect it and plastic-coat 20 well. the tubing. We'll purchase a packer and plastic coat the 21 packer. 22 We will acid-wash the perforations, just to make 23 sure they're nice and clean, and then we will run the 24 25 plastic-coated tubing and packer back in the hole to

approximately 50 feet above the perforations, set the 1 packer. 2 We will load the annulus with packer fluid that 3 will be corrosion-resistant and basically pickle the tubing 4 5 casing annulus, and pressure-test the annulus and maintain 6 a monitor on that annulus pressure. 7 To commence injection, you'll use existing 0. 8 perforations, then? You won't add additional perforations 9 to the well? 10 No, sir. Α. And you have a means at the surface to detect for 11 Q. 12 leaks in your tubing? Α. Yes. 13 14 Q. And any mechanical integrity failures on the 15 casing? 16 Α. Yes, any pressure communication of any kind. 17 Q. All right. In your opinion, Mr. Thomson, would 18 approval of this Application be in the best interests of 19 the prevention of waste and the protection of correlative 20 rights? Α. Yes, it would. 21 22 ο. Would it afford you and the interest owners in 23 the project area an opportunity to produce oil that might not otherwise be recovered? 24 25 Α. Yes, it will.

1	Q. And in your opinion, will you be able to do so
2	without violating the correlative rights of any offsetting
3	operator or interest owner?
4	A. Yes, we will?
5	MR. KELLAHIN: Mr. Examiner, that concludes my
6	examination of Mr. Thomson.
7	The last exhibit is my certificate of mailing.
8	It's Exhibit Number 9, in which we have sent notice of this
9	hearing to the parties identified to me by Mr. Thomson. I
10	have received no objection.
11	We move the introduction of Exhibits 1 through 9.
12	EXAMINER CATANACH: Exhibits 1 through 9 will be
13	admitted as evidence.
14	EXAMINATION
15	BY EXAMINER CATANACH:
16	Q. Mr. Thomson, I guess I've not seen one of these
17	pods waterflooded, or that had injected water into it.
18	I've seen one where they injected gas, but this is a little
19	different.
20	Does this reservoir have any water drive
21	associated with it?
22	A. Not in our opinion, it does not.
23	Q. It's all solution gas drive?
24	A. Yes.
25	Your observation is correct, and I don't know of

1	any either. In fact, I know of very few Strawn-age
2	waterfloods. The ones I do know about are not this
3	stratigraphy.
4	I know the gas injection project you're referring
5	to. I also know of another project that is being
6	initiated, but it's in the Paradox Basin, and that
7	particular project is going to straight CO_2 , skipping the
8	water phase.
9	Q. What makes you think this is going to work?
10	A. Basically, it's analogous in a rock sense to
11	Pennsylvanian-age carbonates in the Permian Basin. It's a
12	solution gas drive reservoir that very, very few
13	failures where you've had porosity and permeability, very
14	few times has a solution gas drive reservoir failed to
15	respond to water injection.
16	The connectivity of the two wells is excellent.
17	The porosity and permeability, both horizontal and
18	vertical, within these mounds is excellent.
19	So it I guess based on borrowing some
20	stratigraphic conclusions from other similar reservoirs, I
21	believe it will work.
22	Q. With such good horizontal communication, are you
23	afraid that you might have some water breakthrough?
24	A. Yes.
25	Q. So that could be a problem?

1	A. It could be a problem.
2	I think really what is a positive on that subject
3	is because the vertical permeability is so good that you
4	could actually You know, instead of just having a
5	lateral fingering and breakthrough, so to speak, you should
6	be able to have more of a fill-up vertically and
7	horizontally, which if you've got anything going for you,
8	you actually could create a floating effect, as well as a
9	push effect.
10	Q. What are you guys currently doing with your
11	water?
12	A. We Referring to Exhibit 1, if you have it
13	handy there
14	Q. Yes.
15	A there's a well in the northeast of Section 26
16	that's, I guess, designated on the map as an Apache drilled
17	and abandoned well. That is a saltwater disposal well
18	operated by Yates that we are transferring our water to.
19	Q. Have you Well, let's see. You've calculated
20	remaining reserves at 93,000 barrels of oil. Did you break
21	that down between the two wells?
22	A. Yes, I did.
23	Q. What does the Number 1 have remaining, primary?
24	A. July 1st, about 6000 barrels.
25	Q. Okay, so the Number 2 is the one that has the

1	vast majority of the remaining primary?
2	A. That's correct.
3	Q. At this rate, at its current rate of production
4	on the Number 1 well, when do you see that as being when
5	would you necessarily have to quite producing that well?
6	A. I guess on my calculations, it would have between
7	11 and 13 months of life left. At July 1st, it showed a
8	year and a half of economic life left.
9	Q. Okay. So your calculations show that by
10	instituting this pressure-maintenance project, you'll
11	recover the 93,000 barrels plus an additional 46,840
12	barrels?
13	A. Yes, sir.
14	Q. How did you arrive at that calculation or that
15	number?
16	A. Again, by reviewing all the Pennsylvanian and
17	relying a lot too on Permian age to carbonate waterfloods
18	in the Permian Basin.
19	Again, I did not find one that was a solution gas
20	drive that did not work where there was significant
21	porosity and permeability. And the ones that worked, the
22	worst case I could find was a .25-to-1 secondary-to-primary
23	ratio.
24	So for purposes of this Application, I used the
25	.25 to 1 basically as a worst case.

1	
1	I don't feel comfortable using a real optimistic
2	case, a), because of the lack of analogies and, b), because
3	of the depth of this project.
4	Q. Okay. I notice that pod that's in Section 36
5	extends into Section 35. You don't plan to drill any more
6	wells in that northeast quarter, do you?
7	A. We have not planned on drilling any more wells.
8	If this project worked gangbusters, that might renew
9	interest in that particular location.
10	Q. But it's your opinion that those two pods are not
11	in communication?
12	A. Absolutely. I did not see any interference at
13	all in Section 36 from drilling the second well in 35. And
14	the second well in 35 was the last well drilled out there.
15	Q. Okay, and this is a common single state lease; is
16	that correct?
17	A. The northeast quarter of 35?
18	Q. Yes.
19	A. Yes, sir.
20	Q. And GECKO is the only interest owner?
21	A. No, sir, we have three other partners in the
22	well.
23	Q. Okay, and they're All your partners are in
24	agreement to institute this project?
25	A. Yes, sir.

1	Q. Okay. The directionally drilled The Number 1
2	well was directionally drilled. You anticipate no problems
3	as far as using that for an injection well, due to the fact
4	that it's a directionally drilled well?
5	A. No, I've had I've had packer in, now, that
6	well, completing the well, and I don't see any problem with
7	running the packer in and getting it set, you know, having
8	good mechanical integrity.
9	Q. Do you think you've got a good cement job on that
10	well?
11	A. Yes, sir. There's approximately 5000 feet of
12	cement on top of the perforations.
13	EXAMINER CATANACH: I believe that's all I have,
14	Mr. Kellahin.
15	MR. KELLAHIN: All right, sir.
16	EXAMINER CATANACH: Anything further that you
17	have?
18	MR. KELLAHIN: Just the submittal of the missing
19	data on that insert, the P-and-A'd well, if you'd like us
20	to submit it to you.
21	EXAMINER CATANACH: And it was drilled under
22	Enserch?
23	MR. KELLAHIN: We think so. At least it was
24	plugged by Enserch.
25	EXAMINER CATANACH: Okay, and you'll submit

that --MR. KELLAHIN: Yes, sir. EXAMINER CATANACH: -- as soon as you get it? Okay, there being nothing further in this case, Case 11,663 will be taken under advisement. (Thereupon, these proceedings were concluded at 11:15 a.m.) * * *

CERTIFICATE OF REPORTER

STATE OF NEW MEXICO)) SS. COUNTY OF SANTA FE)

I, Steven T. Brenner, Certified Court Reporter and Notary Public, HEREBY CERTIFY that the foregoing transcript of proceedings before the Oil Conservation Division was reported by me; that I transcribed my notes; and that the foregoing is a true and accurate record of the proceedings.

I FURTHER CERTIFY that I am not a relative or employee of any of the parties or attorneys involved in this matter and that I have no personal interest in the final disposition of this matter.

WITNESS MY HAND AND SEAL November 28th, 1996.

STEVEN T. BRENNER CCR No. 7

My commission expires: October 14, 1998

Abvender 21 96, Daniel R Catand