CASE NO. 22

Ì

۔ ا

BEFORE THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO

THE PETITION OF ANDERSON PRICHARD OIL CORPORATION AND STANO-LIND OIL & GAS COMPANY, FOR THEMSELVES AND FOR OTHER OPERATORS IN THAT PART OF THE LANGLIE POOL, LEA COUNTY, LYING GENERALLY IN SECTIONS 4, 5, 8 AND 9, T. 25 S., R. 37 E., N.M.P.M., FOR AN ORDER BY THE COMMISSION REGARDING THE UNITIZATION, RE-PRESSURING, OR OTHER CONSERVATION MEASURES AS TO THAT PORTION OF SAID POOL IN ORDER TO INCREASE THE ULTIMATE RECOVERY THERE-FROM.

> TRANSCRIPT OF PROCEEDINGS AT HEARING IN THE CITY HALL BUILDING SANTA FE, NEW MEXICO DECEMBER 11, 1940.

Pursuant to order of the Commission, duly made and entered, setting December 11, 1940, at nine o'clock A. M., for hearing in the above entitled matter, said hearing was convened at nine o'clock A. M. of December 11, 1940, in the City Hall Building, Santa Fe, New Mexico, the Commission sitting as follows:

HON. FRANK WORDEN, Commissioner of Public Lands, Secretary Hon. A. Andreas, State Geologist, Member Hon. Carl B. Livingston, Attorney for the Commission

APPEARANCES:

NAME

J. O. Seth Frank Gray G. H. Card J. C. Gordon Ernest A. Henson C. C. Cragin Allen B. Gibson Delmear R. Guinn S. P. Hannifin Ed. Downing J. G. Benton R. A. Earle Glenn Staley Edger Kraus J. L. Griffith D. R. McKeithan C. A. Daniels Weston Payne W. H. Brown Henry Gedford Joe Griffith Ray Yarborung Tom Davis Ray Rodgers

COMPANY

Stanolind Anderson-Prichard Oil Corp. Stanolind O. & G. Co. The Illinois Oil Co. U.S.Geol. Survey El Paso Natural Gas Co. Cities Service Oil Co.								
Magnolia Petroleum Co.								
Westates Pet. Corp.								
Proration Office Atlantic Pet. Co. Humble O. & R. Co. Phillips Pet. Co.								
Anderson Prichard Oil Corp.								
Gulf Humble O.C.L. O.C.L. State of New Mexico								

ADDRESS

Santa Fe, N. M. Hobbs, N. M. Ft. Worth, Texas Dallas, Texas Roswell, N. M. El Paso, Texas Hobbs, N. M. Hobbs, N. M. Roswell, N. M. Kermit, Texas Jal, N. M. Long Beach, Cal. Hobbs, N. M. Carlsbad, N. M. Roswell, N. M. Bartlesville, Okla. Amarillo, Texas Oklahoma City, Okla. Oklahoma City, Okla. Roswell, N. M. Roswell, N. M. Hobbs, N. H. Hobbs, N. M. Santa Fe, N. M.

The hearing was called to order by Mr. Frank Worden, who announced that the Chairman of the Commission, the Honorable John E. Miles, Governor of New Mexico, was out of the state. At the request of Mr. Worden, Mr. Livingston read the call of the hearing as follows:

> "NOTICE FOR PUBLICATION STATE OF NEW MEXICO OIL CONSERVATION COMMISSION

The Oil Conservation Commission, by law invested with jurisdiction as the oil and gas regulatory body of the State of New Mexico, hereby gives notice of the following public hearing to be held at the Capitol, Santa Fe, New Mexico:

Case No. 22

1

The petition of Anderson-Prichard Oil Corporation and Stanolind Oil & Gas Company, for themselves and for other operators in that part of the Langlie Pool, Lea County, lying generally in Sections 4, 5, 8 and 9, T. 25 S., R. 37 E., N.M.P.M., for an order by the Commission regarding the unitization, repressuring, or other conservation measures as to that portion of said Pool in order to increase the ultimate recovery therefrom. This case is set for 9:00 A. M., December 11, 1940.

Any person having any interest in the subject of the said hearings shall be entitled to be heard.

Given under the seal of said Commission at Santa Fe, New Mexico, on November 25, 1940.

OIL CONSERVATION COMMISSION

By (Sgd.) FRANK WORDEN Commissioner of Public Lands

By (Sgd.) A. ANDREAS State Geologist"

BY MR. WORDEN: The Commission is ready to proceed.

BY MR. SETH: We would like to produce witnesses on behalf of petitioners. (Witnesses called and sworn, and Exhibits 1, 2 and 3 marked for identification)

W. K. DAVIS

being called as a witness on behalf of the petitioners, and having been first duly sworn, was examined by Mr. Seth, and testified as follows:

DIRECT EXAMINATION

Q Will you please state your name?

A W. K. Davis

Q What is your profession?

A Geologist.

Q And by whom are you presently employed?

-2-

A The El Paso Natural Gas Company.

1

- Q Will you state briefly your training and experience?
- A Two and one-half years field experience in geology; four years college work.
- Q Are you familiar with the portion of the Langlie Pool in Lea County involved in this yearing?
- A I am.
- Q Have you worked in that portion of the pool since you have been employed by the El Paso Natural Gas Company?
- A I have.
- Q Mr. Davis, referring to Petitioner's Exhibit No. 1, here on this eases, this solid color, what does that represent?
- A That is the acreage that will participate in the unit.
- Q That will be the acreage that will actually participate if the agreement is apprived?
- A Right.
- Q And these shaded lines?
- A That is the acreage that will have the opportunity to participate in case of future development.
- Q And these lines on this exhibit, what do they represent?
- A Contours on top of the Langlie Pool at ten foot intervals.
- Q This 260, 270, 280, does that indicate --
- A Sub-sea -- the formation encountered.
- Q The smaller figures then indicate it is closer to sea level -- the lower figures indicate it is higher?
- A Right.
- Q What type of structure is the oil produced in this portion of the Langlie Pool coming from?
- A The zone contour map extends south from the main Langlie field with a dip of approximately 100 feet to the mile to the south and east and west.
- Q Why is the production limited on the down slope of that area?
- A As you see, going down slope the character of the zone changes from a sand to an impervious sandy shale, and it, more or less, is so tight there is no commercial production.
- Q Have there been wells drilled to the south and east?

A	Yes, two wells to the south and one to the east. In each case they								
	penetrated the Langlie producing zone, and found them not productive								
	and plugged, and completed them as gas wells.								
ହ	That refers to the two wells immediately south?								
A	Yes, sir.								
Q	And they plugged that? The one to the southeast, marked "5", is a plain								
	dry hole?								
A	I believe it is a dry hole, yes, sir.								
ହ	Would the condition of the zone you have testified about you								
	stated, I believe, the sand on the dip to the south and east changed								
	to sandy shale?								
A	Yes, sir.								
Q	What would that indicate as to a favorable or unfavorable condition								
	for a repressuring project?								
A	It would indicate a favorable condition, in that it would eliminate								
	input gas by horizontal reinjection in each direction.								
Q	And as already shown by production, as being in place until disturbed?								
A	It is evident the cap immediately above the Langlie zone is im-								
	pervious enough to form an excellent reservoir.								
ୢୖୢ	The fact that the oil has remained there throughout an indefinite								
	time would indicate the cap is impervious?								
A	That is right.								
Q	Will you refer to Exhibits 2 and 3 and explain what those mean?								
A	Exhibit A-A, No. 2, is a north-south cross section in this area.								
ନ୍	Is it indicated by A-A on Exhibit No. 1?								
A	Yes.								
Q	What is No. 3, marked "Cross B-B"?								
A	A cross section east and west across the area.								
ନ୍	Across on the line marked "B-B" on No. 1?								
А	Yes, sir.								
Q	Do these exhibits show the condition in each well drilled in?								
A	Yes, sir, they are developed from the sample determination of the								
	formation on the well.								
ଦ	I don't know whether the map shows it or not, but will you explain								
	the colors on the exhibit?								

A The green represents solid formation; the brown represents the

.

٠

1

the anhydrite; the blue, the lime; the red is the shale or sand.

- Q They are marked in here in straight lines. Is that brought in merely on a percentage basis?
- A The samples are determined by percentage.

1

- Q In this well is it solid or anhydrite down to where it is entirely blank?
- A In most cases the samples were not taken, but markers were generally used over the entire field up to the solid section.
- Q Are there two zones in that area?
- A Principally the main sand body, as correlated on this cross section, and probably two or three sand members comprise this.
- Q Are you speaking now of the Langlie zone?
- A Yes sir.
- Q Is that indicated approximately by the exhibit marked "Top Langlie Sand"?
- A The marker used principally in that area was in regard to contour work, etc.
- Q Now, this shows the Yates Sand and the Langlie Sand. Which is the oil producing sand?
- A The Langlie Sand is the oil producing sand.
- Q What, if anything, is produced from the Yates Sand?
- A The Yates is principally a gas producing horizon.
- Q Are any wells in the area producing from it?
- A Several that were capable. I don't believe there are any producing gas at the present time.
- Q What would you say is the approximate thickness of the Langlie Sand?
- A The average thickness of the area would probably be around 13 to 14 feet.
- Q Go back to Exhibit No. 1. You stated the solid color areas are the ones that would participate in this agreement at this time?
- A Yes, sir.
- Q The areas shown by the diagonal lines is, in your judgment, areas that might come into the unitization, if and when drilled?
- A That is right.
- Q There has been no drilling as yet in the area shown by the diagonal

-5-

lines?

A No, sir.

Q

Are you familiar with the ownership in the area there at that place?

ſ

- A Yes, sir.
- Q You might state first the ownership, as distinguished from the leases. I will ask you, is all the area, except eighty acres, owned by the United States?
- A Yes, sir, it is.
- Q That includes both the participating area and the area that might possibly come in?
- A Yes, sir.
- Q What about the eighty acres?
- A It is owned by Burleson, in Sec. 8.
- Q Is that the area over here -- what part of Sec. 8?
- A The E_{2}^{1} of the NW₄ of Sec. 8, T. 25 S., R. 37 E.
- Q The operating ownership, can you give that of the whole area?
- A The Anderson Prichard and the Illinois Oil Company each own onehalf in the half of the working interest in the Wells lease in Sec. 5, and Anderson-Prichard Oil Company and the Olsen Company each own one-half of the working interest in the Jal lease in Sec. 8.
- Q That is the fee land?
- A No, sir, that is government land. Anderson-Prichard owns all the working interest in the Langlie lease in Sec. 8, and also the Stuart lease in Sec. 9. Stanolind Oil Company owns all the working interest in the Langlie lease in Sec. 9. The Western Gas Company and Clay Brothers Drilling Company each own one-half of the working interest in the Eurleson lease in Sec. 8.
- Q Is that the fee land?
- A That is the fee land.
- Q Mr. Davis, from your experience in this pool, and your qualifications as a geologist, do you believe that the proposed unitization and repressuring project would be workable?
- A The geological conditions are favorable for repressuring in this area.
- Q Do you believe repressuring and unitization operations would tend to increase the ultimate recovery from this area?
- A I do.
- Q Have you with you the history of each of the wells in this area?

A I have. (Witnesses produces report, marked "Petitioner's Exhibit No. 4).

Q That includes the log?

- A No, sir, it does not include the log in each case. The drilling time and information as the well is drilled.
- Q And the well history?
- A Right.
- Q And the bottom hole pressure survey?
- A Yes, sir, the gas-oil ratio survey.
- Q And the equipment of each well?
- A Yes, sir.

Q The ownership and overriding royalty interest?

- A Yes, sir.
- Q Have you collected that from each of the wells involved in this area?
- A I have.
- Q That comes from the company records and the Commission records at Hobbs and similar sources?

A Yes, sir.

BY MR. SETH: For the convenience of the Commission we have collected all of this, and we would like to introduce it as to each well, as Exhibit No. 4.

BY MR. WORDEN: Alright.

- Q Have you anything further, Mr. Davis, that you think -- Did you state there was no gas production in the Yates?
- A I meant to refer to the fact that there is no gas being produced from the wells at the present time.
- Q And there is no oil in the sand either?
- A No, sir.
- Q There is gas being produced in the Yates sand?
- A Not in that immediate area.
- Q Isn't there one well producing gas?
- A It may be used for lease purposes.
- Q But no oil being produced, in any event?

A No, sir.

-7-

BY MR. LIVINGSTON:

ſ

- Q Mr. Davis, I believe you testified as to the land ownership. All the land embraced in the proposed unitization area is either United States government land or privately owned land?
- A That is right.
- Q And there is no state land within that area?
- A No, sir.

BY MR. SETH:

- Q This map, Exhibit No. 1, shows all the producing wells, does it not? A Yes, sir.
- Q And shows all the producing wells in the area immediately adjoining?A That is right.
- Q There is one well in the NW_4^1 SW_4^1 of Sec. 4; that unit on which that well is located is the only unit with a producing well that adjoins this area?
- A That is right.
- Q Who owns the working interest in that?
- A It is government owned acreage, and the working interest is owned by Anderson-Prichard.
- Q Now, those Exhibits Nos. 1, 2 and 3, and the Exhibit No. 4, the well history, represent the facts as they exist on the ground, that you have gathered from all available sourche, is that true?
- A They do.
- BY MR. ANDREAS: Is there any objections to the unitization of this particular tract? (Question asked of all representatives present, and no one answered).

If there is no objection, I think we are ready for the other witnesses.

Witness dismissed.

WESTON PAYNE

being called as a witness on behalf of the Petitioners, and having been first duly sworn, was examined by Mr. Seth, and testified as follows:

DIRECT EXAMINATION

Q State your name please.

1

A Weston Payne.

- Q What is your profession?
- A I am a petroleum engineer privately employed as manager of production by Anderson-Prichard Oil Company.
- Q Have you had any training along the lines of your employment?
- A Yes, I was graduated in engineering in 1916, and I have had twentythree years of varied experience in the operation and management of oil properties.
- Q And how many years have you been in contact with this area here involved in this hearing and shown on Exhibit No. 1?
- A I have been familiar with the area since its discovery, Anderson-Prichard having drilled the discovery well in the area.
- Q Will you describe briefly the movement of oil in a reservoir?
- A Oil moves from the reservoir into the penetrating well by reason of one or more of several forces, these forces being gas pressure, by reason of water encroachment, the force of gravity and compaction of loosely consolidated rocks, from the withdrawal of pressure. These forces tend to move oil from the areas of high pressure to the areas of low pressure. However, they are resisted by other forces which exist within the reservoir, such as the pore friction, capilarity and adhesion; the prominence of which depends upon the physical character of the oil and gas, such as viscosity, surface tension, density, etc.
- Q What is known as primary recovery, in an oil pool?
- A Primary recovery in a pool indicates that portion of the oil which is recovered by natural forces and without assistance of artificial energy.
- Q The flow?
- A Yes, oil actually produced in the bore hole and lifted to the surface without the use of outside energy.

-9-

- Q Describe the condition that exists when primary recovery is exhausted?
- A At such time when primary recovery in a pool is exhausted the force impelling the oil and the force which retards the oil are in equilibrium, therefore no motion can take place, therefore no movement of oil takes place.
- Q What is the force that is producing the oil in this pool,- water drive or gas drive?
- A The prevailing force is gas pressure.
- Q Any indication of water drive?

IT

- A If so, only to a very minor extent.
- Q Is it possible to recover oil left after the primary force is exhausted and when, as you state, the forces are in equilibrium?
- A Yes, it is possible to recover a portion that is left upon the exhaustion of primary means by the injection of artificial energy; it might be gas energy; it might be in the form of water; it might be a combination of the two.
- Q What means do you recommend for the secondary recovery of this Langlie area under consideration?
- A I think at the present stage of this pool, what is commonly known as repressuring would have a tendency to be best applied in this area.
- Q Describe briefly how this would operate.
- A It is proposed to select key wells, or wells in which the high pressure gas would be injected; and inject gas into such well or wells; then by a careful analysis of pressures in the surrounding areas, observe the effect of such repressuring with the hope of at least maintining present pressures, or eliminating a further decline in bottom hole pressure. The theory of repressuring becomes beneficial chiefly through its ability to maintain at a maximum the drainage control of a given area. By "drainage control" is meant th e the area of influence of a given well. In the original discovery of a pool, a given well has a much larger area of drainage influence, due to large bottom hole pressure, and consequently a large energy factor. As the bottom hole pressure of a reservoir decreases, the drainage influence decreases, and the well declines in production,

-10-

due chiefly to these outstanding factors. The fact there is decreasingly less oil in a given area, and the fact that the drainage influence of a well is gradually diminishing, so by consolidating a group of wells and apply the theory of repressuring, you gain control, not only over the unit of forty acres, but over the whole area in which the project is located, and have control -- as well as control of the withdrawals from the reservoir, and you gradually will have more favorable conditions than the conditions that existed under normal individual well operations.

1

- Q This repressuring, it may be a considerable period of time before it affects the field?
- A As far as we know, there is no way to tell the effective date. Unfortunately we do not have as much control information in this particular pool, due to lack of core samples. All we do know positively is that the physical conditions favor such a project. We can't tell whether the effects will be noticed within thirty days' time or six months time, but we believe eventually the effects will become known, and will result in a beneficial condition.
- Q The amount of gas used, and the pressure under which it is injected into the area would have to be determined by experiment, -- trial and error?
- A That is right. We are hoping -- in starting the project we would hope to gain and save the information as developed, in order to determine the best direction to take.
- Q It is understood by everyone that these operations are at all times subject to the supervision of the Commission, so far as state land is concerned?
- A Yes, sir, that is right. And this experiment will be conducted in a manner which -- the information of which we hope to make public to anyone interested.
- Q Can you state the perticular advantages you hope from the repressuring of this particular area?
- A Based upon experience in similar projects, we think it reasonable to expendent to increase the ultimate recovery of this area, in percentages varying from fifteen to twenty per cent.

Q Why?

- A Well, experiments in projects similar to this one have developed such recoveries.
- Q This increase in from fifteen to twenty-five per cent in ultimate recovery, which you think may result, would more than offset the expense

of this repressure operation?

1

- A Yes, we consider it an economical problem.
- Q This idea of repressure, is it in any way new?
- A No, there have been various types of repressure operations during the past ten years. There have been some outstanding projects, and some not publicly known.
- Q Can you state where they have been?
- A Yes, in the State of Oklahoma there have been such projects. In the Burbank Field, the Green Pool in Texas, and there have been numerous ones in the Kansas pools, and in some of the pools in Illinois -- two or three projects, and also several projects in operation in California, and in the Kona Pool.
- Q Have they been, in the main, successful?
- A Yes, those projects have been, on the average, successful.
- Q Have you tabulated information on the past decline of bottom hole pressure in this area?
- A I have selected a few key wells to show the rate of decline.
- BY MR. SETH: I would like to affer Petitioners' Exhibits Nos. 1, 2, 3 and 4 in evidence.
- Q Now, this Exhibit No. 5, these lines, I notice are different colors?
- A Yes, those colors indicate different wells.
- Q Take the red lines first.
- A The development of the red line represents No. 1 well, indicating the pressures on a vertical scale, and the accumulated recovery on a horizontal scale. These charts are made to indicate the rate of decline of bottom hole pressure with various amounts of withdrawal. The red line in the bottom group represents the rate of decline in potential in the same wells. The top charts represent the decline of bottom hole pressure, and the bottom in potential.
- Q During this period -- the bottom figures represent the total potential of the well during that period?
- A Yes, sir.

Q Take No. 1 -- what was the rate of decline?

1

- A The bottom hole pressure declined from about 1150 to 830, and its potential declined from 200 barrels to 60 barrels. During the period of production about 58,000 barrels of oil were produced.
- Q Take the second one, the green, No. 3, Langlie.
- A The greenindicates No. 3 Langlie. The top indicates the decline in bottom hole pressure from 950 to 680 pounds, and the potential, the bottom curve indicates a decline in potential from 480 barrels to 310 barrels.
- Q And during that period the well produced 29,000 barrels of oil?
- A Yes, sir.
- Q You have shown No. 4 Langlie and No. 2 Wells?
- A Yes, sir, these wells were considered because they are tight wells. In the area, although there is some variation in the decline of the wells, there is no wide variation.
- Q One well has gotten down to a bottom hole pressure of about 575?
- A That is correct.
- Q Each of the four showed a rapid decline in bottom hole pressure?
- A Yes, they have showed a rapid decline.
- Q And in potential?
- A And potentials.
- BY MR. SETH: We offer Exhibit No. 5 in evidence.

BY MR. ANDREAS: Over what period of time was that?

- A I do not have the time, but it represents from the discovery well, shallow production, to the present.
- BY MR. ANDREAS: Approximately?
- A Approximately five years.
- BY MR. SETH:
- Q When was the discovery well drilled in that pool?
- I I believe in 1935 -- I am not certain.
- Q And the other wells were drilled some time afterwards?
- A Yes, sir, they were drilled during the ensuing years.
- Q At what pressure were the well or wells in this area first produced naturally?
- A They first produced naturally at pressures varying from 500 pounds to 700 pounds, depending upon the gas-oil ratio. A well with a low,--

extremely low gas-oil ratio ceases to produce at relatively high pressure. As a matter of fact, one well in the group does not produce satisfactorily naturally at better than 700 pounds bottom hole pressure, while another well will flow at 500 pounds or slightly over.

- Q When a well reaches that state, in the absence of repressuring, what steps will become necessary to continue production of oil?
- A I don't understand --

1

- Q When a well reaches that stage where it will not flow, what steps would be indicated to make it produce?
- A There are two stages in the cycle of production of oil. At one stage energy is required to bring the oil to the surface, or into the bore hole, and the other type is necessary to lift the oil to the surface. In the case of the natural flow, nature produces the energy, but there comes a time when the well is only capable of providing energy to move the oil into the bore hole; therefore, in order to lift such oil to the surface, artificial means must be resorted to, such as some type of pumping, gas lift, etc.
- Q Is that an expensive undertaking?
- A Yes, rather expensive, from the standpoint of first cost as well as maintenance.
- Q Mr. Payne, several times in your testimony you have referred to pounds of pressure. I take it that means pounds per square inch?
- A Yes, sir.
- Q For what period of time has this Langlie repusesure been under considera-
- A We have seriously considered some form of artificial recovery in this area for better than two years.
- Q Has it been considered by all interested parties, as well as the United States?
- A Yes, say for the past year and a half there has been a concerted effort among all of the operators as well as the federal government toward accomplishing some form of secondary recovery.

-14-

- Q mave the operators reached an agreement?
- A Yes, with the exception of one, the operators who participate in the ownership of these leases have executed a unit or communitization agreement.
- Q Have you that agreement?

1

- A I have before me the original copy of the Langlie area unitization agreement.
- Q Signed by all the operators, the owners of working interests in the pool with the exception of one?
- A Yes, it is. The agreement is executed by the Anderson-Prichard Oil Company, the Illinois Oil Company, the Western Gas, the Olsen Oil, the El Paso Natural Gas Company, and the Stanolind Oil & Gas Company.
- Q What is the one outfit that has not signed?
- A The only one that does not appear is the Herschbach Drilling Company.
- Q Are they the owners of one half of the working interest in the patented land?
- A Yes, Herschback Drilling Company and the Clay Brothers own the chief interest in the Burleson No. 1 and No. 2.
- Q Who owns the other half interest?
- A The other half interest is owned by the El Paso Natural Gas Company and the Western.
- Q Have they signed the agreement?
- A They have signed the agreement.
- Q How is it proposed to handle the interest of the one-half working interest that has not signed?
- A It has been suggested that inasmuch as this lease does not enter into the agreement in its entirely, that the operation of the same be maintained on the present basis, and not intermingled, or comingled with the other leases in the area.
- Q That is, that the owners of the one-half working interest be permitted to produce one half of the allowable for those two particular wells?
- A That is right.
- Q Has that agreement been the subject of many meetings and extended discussions?
- A Yes. The members of this group of properties have endeavored for the past six months to work out an amicable solution of this problem.

BY MR. WORDEN: Have you a copy of that agreement you refer to?
BY MR. SETH: If the Commission please, we would like to retain the original signed agreement. We will, however, furnish the Commission with copies of this agreement, not signed, and we will, within a few days, furnish the Commission copies of this with the signatures typed in.

Q There has been no change since this was mimeographed?

A No, sir, so far as I know there has been no change.

IT

BY MR. SETH: We would like to retain the original for the time being, but will submit a copy to the Commission.

Q Have you been familiar with the making of this agreement?

- A Yes, sir, I have attended practically all of the meetings.
- Q Do you believe the provisions of that agreement will be fair and equitable to all concerned?
- A Yes, we think so. We have attempted to prepare an agreement that would accomplish purposes contemplated, and accomplish the same in a fair and equitable manner.
- Q In a general way, what do you contemplate to do down there if this is approved by the Commission?
- A Well, the first steps would be to select an operating committee among the operators, and the operating committee, in turn, will select an operator for the operation of these joint properties.
- Q Would that operator or committee select a well or wells to be used for input?
- A Yes, the committee would not only select the input wells, but control all important steps in the operation of this property.
- Q There might be involved closing in some existing wells, in addition to those used for input wells?
- A Yes. We are hoping permission will be granted to shift production in a manner which would tend to conserve the reservoir energy and ultimately produce the largest quantity possible of oil. If it is found that a certain well does not respond, and is a producer, we are hoping to be given permission to transfer the allowable of such wells to other wells; and in the case of the injection wells, which are incapable -- there will be several injection wells, as well as producers -- we are hoping to have permission to transfer such

allowable to other wells within the group.

I

- Q It is intended to make these shifts and work out a plan of production in consultation with the State Geologist, this Commission and the officials of the Department of the Interior?
- A Yes, that is true. We expect the operating committee to keep in close touch with the Conservation Commission and federal government officials.
- Q It is clearly recognized that this agreement is at all times subject to the final control of this Commission and the Department of the Interior of the United States?
- A That is correct.
- Q And are all of these contemplated shifts provided for in the contract?
- A I am not certain they are announced specifically. The operating agreement provides for the manner in which these properties will be operated.
- Q It is left largely in the control of the operating committee?
- A Subject to this contract. I might state there are two agreements: The agreement just introduced, - the unitization agreement, which has been approved by all of the participants except the Herschbach Drilling Company; and there is another agreement being circularized for approval by all in the operators' agreement, which sets out the terms and methods under which these properties will be operated.
- Q Copies of that were likewise filed with the Commission at the time the hearing was requested?
- A Yes, sir.
- Q And acomplete copy, when signed, will likewise be filed?
- A That is correct.
- Q The idea underlying the unitization agreement is that the current allowable by the Commission be allocated to the unit as a whole to be produced under this agreement?
- A Yes, we are hopeful of being granted permission to consider the allowable of the unitized group in its entirety, rather than being considered as individual units, as has been done heretofore.
- Q But the total will be merely the current allowable for each well in the unit?

-17-

- A Yes, the total allowable for the unit would be the sum of the allowable, - the marginal wells plus the top wells.
- Q The total allowable of the unit would be the total allowable of the wells in the unit, and the allowable of each well determined in accordance with the established practice of the Commission?
- A Well, we wouldn't go so far as to suggest the manner of determining, but it would be determined by the Commission.
- Q In the usual manner?

IL

- A Yes, sir.
- Q It might be possible, of course, if this project is successful,- it might make the marginal well a top allowable, but that would be determined after tests?
- A Yes, the more successful this project will ultimately be, the more likelihood there would be of changing the ability of the individual wells to produce. We hope to improve the flow conditions, and in so doing, we might increase or decrease the flow of a given well.
- Q No additional allowable is sought by reason of this repressure project?
- A No, we will not ask any additional allowable be granted.
- Q The back allowable -- some has accumulated?
- A Yes, these wells, in past operations, have accumulated some back allowable.
- Q And in the petition you are requesting that the back allowable may be produced, if a market is found, under the same conditions as current allowable?
- A That is correct.
- Q If the back allowable can be produced, and a market can be found, is it to be produced on a per day, per month basis -- what would you say, roughly?
- A I think the rate of production of this allowable would depend somewhat on conditions found to exist after the plan becomes operative, but in no case, to produce the back allowable at a rapid rate, probably not to exceed five barrels per well per day.
- Q Is this back allowable set up in the regular monthly proration schedules of the Commission?
- A Yes, that is correct.

-18-

- Q Do you believe that production as a unit, in the same manner as current production of selected wells, would be better than attempting to produce each individual well?
- A I think conditions will be developed by this project which will be much more beneficial to the area as a whole than could hoped to be developed by single well operation, yes.
- Q If the unit and repressure agreement is approved, all oil produced from the well, either current or back allowable, should be produced ---
- A I might state in connection with secondary recovery -- we refer to that here as repressure -- the introduction of artificial energy has a tendency to speed up recovery in a given reservoir and also reduce unit cost of production of such oil, and of course, of most importance, it is capable of developing an increase in the ultimate recovery of a reservoir.
- Q This back allowable, -- in connection with that, are the petitioners asking for anything more than what back allowable has been already allocated to wells in this area?
- A No, we are merely asking whatever back allowable has accumulated to individual wells be granted the unit as a whole.

BY MR. ANDREAS:

- Q In event some marginal wells at the present time are not able to produce their allowabbe, you think that should be given other wells?
- A I don't think I understand.

Π

- Q We will say there is a marginal well in the area, which you do have, and the repressure program does not benefit that particular well; it does have, say, 2,000 barrels of back allowable; it is not benefitted, therefore, it should not be entitled to get that back allowable through entering into this unit?
- A We consider -- I don't think there is any way of pre-determining the uniformity of success. There will probably be areas that will receive small benefit, and areas of large benefit. We believe the project will benefit the area in general.
- Q I grant that. I don't see, if a well was not benefitted and was a marginal well with back allowable which it could never produce, that the back allowable should not be given to other wells.

-19-

- A The main reason, we think, should once this project be undertaken -the idea of individual wells clearly becomes douded and it will be difficult to determine what the individual well will produce.
- Q After the program is once started you will soon find out whether they have been benefitted. If they have not been benefitted, certainly that back allowable could never be produced by that well.
- A There might be, and probably will be cases where the well will eventually be brought back to top allowable.
- BY MR. WORDEN: How did the marginal well get the back allowable? It should be taken off the record.

BY MR. SETH:

- Q It got it before the period when it was determined to be a marginal well?
- A Right.
- Q This whole matter, in your judgment, is going to depend on the success of the project, and will take months to work out?
- A Yes, we think it will. There is no definite way to determine the time required.
- Q Is there the available gas for carrying it out?
- A Yes, sir, the mechanics of supplying gas are practically finished at present.
- Q Gas is there to be used?

T

- A Gas is there to be used; the line is laid to the corner of the unit group.
- Q Do you know whether the unitization agreement, at lease in principle, has been approved by the Secretary of the Interior?
- A It has been approved by verbal discussions in principle, yes, sir.
- Q Do you recommend it, from your professional training and experience, as a conservation measure to increase the ultimate recovery of oil from this area?
- A Yes, we consider it a worth-while undertaking and deserving of every effort to put it into effect.
- Q The companies are willing to spend the necessary money to put it in operation?
- A Yes, sir, they have agreed.
- Q Do you know the number, or approximate amount of back allowable

-20-

credited to those wells in that area at this time?

1

- A I think it is approximately 14,000 barrels, by Mr. Staley's figures.
- Q Could you tell the Commission -- give us some reason why that has accumulated -- why those runs have not been made in that area?
- A I don't know the exact reasons. I imagine some has accumulated by reason of pipe line restrictions; probably some may be the inability of the individual wells to produce oil.
- Q Have you in the past had trouble getting the pipe line people to run oil, or inability to produce oil?
- A I would say it is a combination of the two. There has been a certain amount of pipe line restrictions.

BY MR. WORDEN:

- Q Do you feel like the marginal wells that have been credited with more production than they were able to produce, do you feel they should come in and have the opportunity to make up the allowable, the same as where the pipe line and and market conditions have regulated that, and the back allowable has increased through that?
- A I feel we are entitled to the back allowable, due to the fact that we are creating an improved condition in the operation of these leases, which will enable them ultimately to produce more oil. We feel we are entitled to whatever back allowable was originally granted to the individual wells. Why that back allowable should be withheld -- it has never been cancelled -- now that we are changing from a 40-acre unit to communitization unit, and so long as the communitization unit is capable of producing oil conservatively, we feel we are entitled to it.
- Q Wouldn't that put the committee, or proration in the same position as to every other marginal well in the State of New Mexico, provided we made the allowable available in this particular field? Wouldn't we be establishing a precedent under which anybody who had a marginal well could come in and get the back allowable?
- A I think not, for the reason that there is a distinction in what we are doing in that we are endeavoring to increase the ultimate recovery in a given area, -- a few operators taking the gamble -- we are taking the risk of damaging our properties permanently, but we feel the risk is justified, and for that reason, we feel the thing must be

-21-

considered under all the circumstances.

1

- Q I was just trying to get clear in my own mind what effect the decision might have on others.
- A It seems to me this type of project we are suggesting is modern -ten years from now we will not look upon it with any particular doubt. Something is being developed rapidly. It is an improved method of operation. Naturally, we feel we will be benefitted from such operation, and if we are, the State of New Mexico will reap benefits.
- BY MR. ANDREAS: I see no objection where it was due to the inability of the pipe line operation, but to pick a well that could not make it, I don't see that you would be entitled to that.
- BY MR. WORDEN: If you could bring a well up to the point where it will produce, you would be entitled to it, but if you could not bring the well up --
- A We feel we are correct in asking for it, due to the fact that the unit operation of the area is being changed.

BY MR. SETH:

- Q If these wells were put on pump and thereby could make the back allowable, under existing practice there would be no objection to making that up?
- A No. A well declines on natural production, and as a rule is capable of producing more oil artifically than it can produce naturally, and in all probability there are marginal wells that would probably be capable of producing larger quantities of oil than they now produce.
- Q The plan is a substitute for pumping, which you all hope will be more efficient and assist in ultimate recovery?
- A That is right.
- Q The input well itself might have a large amount of back allowable accumulated in various ways?
- A Yes.
- Q And that necessarily would have to be distributed to other wells in the area?
- A Yes, the injection well could no longer serve as a producing well.
- Q Including the back allowable it has?
- A Yes, sir.
- Q And the current allowable and back allowable, although produced from

some other well, the owner will get the benefit?

- A Yes, he would be compensated by the distribution to other wells.
- Q And the input well, if used for a long time, would undoubtedly be frozen?
- A That is right. It would lose its identity as a producing well.
- Q No further satisfactory tests could be made?

1

- A No, it would not be practicable to test a well as a producer of oil because it would spoil any advantage you might have accumulated by reason of the injection.
- Q And the owners of the intake wells would have to take that chance?
- A Yes, sir.
- Q About what per cent of the oil is left in the ground by ordinary methods of production?
- A When you exhaust the primary means?
- Q Both ways.
- A Well, on an average there is prebably 60 to 75% of the original oil in place in the ground upon the exhaustion of primary means. We think it reasonable to expect a recovery of from 15 to 25% of that remaining oil be secondarily recovered.
- Q You think this percent secondarily recovered by this plan would exceeed what would be obtained by ordinary means?
- A Yes, I feel it would exceed it by from 15 to 25%.

BY MR. SETH: I believe that is all.

Witness dismissed.

C. C. CRAGIN

being called as a witness on behalf of the petitioners, and having been first duly sworn, was examined by Mr. Seth, and testified as follows:

- Q State your name.
- A C. C. Cragin.
- Q You are manager of the mEl Paso Natural Gas Company?

A Yes.

Q Have you been familiar with the megotiations leading up to the repressuring matter now before the Commission?

A Yes.

- Q Your company proposes to furnish the gas to be used in the repressure plan?
- A Yes.
- Q Is the gas available?

1

- A Yes.
- Q Would the gas be used in this plan that would ordinarily be used in some industry?
- A It is gas that is now going to waste, gas from these leases and others.
- Q Would the gas used have the natural gasoline extracted before using? A Yes.
- Q Has your company equipment in readiness to start on this project?
- A Yes, we have a compression station, completed since last May. Two of these compressors we have are capable of putting in gas up to 2,000 pounds per square inch, a capacity of 3,000,000 cubic feet per day.
- Q It would be a matter of small moment to connect up with the input well?
- A We are all ready to go. The pipe line is all ready to shoot.
- Q Your company has a working interest in some of the leases?
- A We have half a working interest with Herschbach Drilling Company in the NW_4^1 of nSec. 8.
- Q The $E_{\overline{2}}^{1}$ of the NW_{4}^{1} ?
- A The E_2^1 is the only producing area. We have the whole quarter section.
- Q Do you believe this repressure arrangement should be approved?
- A Yes.
- Q Have repressure contracts, with these contractors been approved by the Department of the Interior?
- A Yes, in the summer of 1939 some 6,000 acres of gas rights, from the Anderson Prichard Company, Anderson himself and Prichard personally, the Olson Oil Company, and the Illinois Oil Company, together with holdings we owned, under the rules of the Department of the Interior; so we put in an application setting forth all the aims and objectives
- of this repressure program, and part of the sale agreement, which was labled a cooperative agreement at the suggestion of the Department, as an exhibit of that application we presented our repressure contract, in which we agreed to repressure, as an experiment, Area A

-24-

shown in pink on No. 1, and if that was successful, we would offer a similar contract to all producers on the whole south Langlie structure for repressuring the whole area, except the extreme end and a very little area which we figured too far gone. Set forth in the contract was the schedule of rates for repressuring, figuring the amounts used,

||

I would like to make a statement in connection with the questions to Mr. Payne by Mr. Worden. Recently the pressure in the southern and southeastern Langlie area, in Township 26, declined, a good many wells, below the line where it required us to put in a pressure station. It was a big producer at first, but it accumulated back allowable when it began to dedine, and we have had a satisfactory operation since, and increased the production in one well two and a half times and brought the production of the well up to 70 barrels a day. In many we want to apply the back allowable. All we want to ask to do is the same that you have already done.

- That contract, you were requested to attach the application for Q excess acreage, that was approved?
- Our application, a waiver of limitation of acreage was approved by A the Secretary of the Interior.
- As I understand, this plan covers substantially this area? Q
- Yes, sir. A
- And even if not successful, you are obligated to furnish gas for Q repressuring?
- Yes, sir. A

Witness dismissed.

ERNEST A. HANSON,

being called as a witness on behalf of the petitioners, and having been first duly sworn, was examined by Mr. Seth, and testified as follows:

DIRECT EXAMINATION

- State your name. Q
- Ernest A. Hanson. A
- What is your official position? Q
- Supervisor of the U. S. Geological Survey. A
- Does this Lenglie Pool come under your supervision? Q 25-

- A The oil and gas, yes, sir.
- Q It is within your jurisdiction?

1

- A Yes, sir.
- Q You have been familiar with the negotiations that have lead up to this unitization agreement?
- A Yes.
- Q You have sat in at many of the meetings in this connection?
- A Yes.
- Q Can you state the attitude of the Interior Department, in general, towards repressure agreements involving land belonging to the United States?
- A I could not speak for the Department on that matter, but as a field officer of the Department, interested in the technical features of the field administration, statutes and regulations, I feel it is a very constructive effort towards conservation.
- Q You know the Department approved the arrangement Mr. Czagin just testified about?
- A Yes, the agreement was approved about a year ago.
- Q And ever since that approval, this unitization agreement has been under consideration?
- A Yes, sir.
- Q And Mr. Cragin's company is obligated to furnish the necessary gas?
- A Yes, sir.
- Q It is equipped to carry out this agreement?
- A Yes, fully equipped.
- Q And you, individually, would you recommend approval of this unitization agreement and the repressure plan?
- A I would recommend their approval, yes.
- Q And would recommend the approval by your superior officer?
- A Yes, sir.

Witness dismissed.

BY MR. SETH: If the Commission please, I will state, as attorney for the Stanolind, they heartily favor this agreement.

-26-

GLENN STALEY,

Being called as a witness for the petitioners, and having been first duly sworn, was examined by Mr. Seth, and testified as follows:

DIRECT EXAMINATION.

- Q State your name.
- A Glenn Staley.
- Q What position do you hole?

1

- A Proration umpire.
- Q Have you been holding such position in Lea County since the Langlie Pool was brought in?
- A I have.
- Q Can you state to the Commission the amount of back allowable now carried on the monthly proration sheet to the credit of the wells in this pool?
- A I think it is in the neighborhood of 14,000 barrels. We have a tabulation on it.
- Q You have that tabulation?
- A Yes sir.
- Q I hand you Petitioners' Exhibit No. 6, and ask if that is the tabulation?
- A It is.
- Q Is that correct?
- A That is.
- Q That shows the amount on the first page, the total amount of shortage to the credit of each well?
- A It does.
- Q And it totals 14,651 barrels?
- A Yes, sir.
- Q Then the following sheets give in detail from month to month, for each well in the area?
- A That is correct.

BY MR. SETH: We offer this in evidence.

Witness dismissed.

BY MR. SETH: That is all we have to offer.

1

BY MR. HANSON: There are some new technical considerations and some new administrative problems which, no doubt, will affect the Commission and ourselves, and if desirable, we would like very much to meet with you and thresh out some of the difficulties.

BY MR. WORDEN: We would be very glad to.

BY MR. HANSON: Thank you.

WESTON PAYNE,

being recalled as a witness on behalf of the petitioners, was examined by Mr. Seth, and testified as follows:

DIRECT EXAMINATION

- Q Mr. Payne, will you state, if you know, the ownership of the $NW_{\frac{1}{4}}^{\frac{1}{2}}$ A Anderson-Prichard.
- Q Do you know who owns the area immediately west, the $N_{\overline{Z}}^{1}$ SE¹₄ of Sec. 5?
- A There is a tract in that section owned by Italo.
- Q But that land is really government land?
- A Yes, sir, all government land.
- Q Who did you state owns the lease?
- A I talo owns a portion of the Wells Tract. Mr. Gray could testify as to that.
- Q Have you a map showing the land ownership?

(Witness hands Mr. Seth a map).

I hand you Exhibit No. 7, and ask if that is the map showing the land ownership?

- A Yes sir.
- Q with the exception of the W_2^{\perp} NW₄ of Sec. 4 and the E_2^{\perp} NE₄ of Sec. 5, does it show the land ownership with that exception?
- A Yes, sir.
- Q It is all government permits?
- A Or state lands.

BY MR. SETH: We offer that in evidence.

BY MR. WORDEN: If there is nothing further on Case No. 22, the Commission will recess until two o'clock, P. M. to take up Case No. 23.

Pursuant to recess taken, the Commission convened at two o'clock in the afternoon of December 11, 1940, Mr. Worden presiding, and the following proceedings were had:
BY MR. WORDEN: At the finish of taking testimony, we recessed until two o'clock in order to give anybody in Case No. 22 an opportunity to present anything they wished to bring up. Is there anybody present who has anything further to be taken up in Case No. 22?
BY MR. SETH: We are through.

BY ME. WORDEN: We will close that case, then.

1

PETITIONERS' EXHIBIT No. 4

"ANDERSON PRICHARD OIL CORP.

LANGLIE #1

WELL INFORMATION

Casing Record

ſ

Special Equipment

Tubing Record

GEOLOGICAL INFORMATION

Elevation

Top Anhydrite

Base Salt

Top Brown Line

Top Top Yates Sand Gas Shows

Total Depth

Oil Zones

Drilling Time

Special Tests

GENERAL INFORMATION

Royalty Division Accumulated Production to January 1, 1940

Initial Production

None 2" at 3466: 3162 DF 3158 Gd 1140 2640 2680 2830 2700-90, 2865-75, 2898-2920, 3409-30, 3135-39, 3197-5218.

10" - 708' - none 8-5/8" OD - 1200' - 66 sacks

 $5\frac{1}{2}^{n}$ OD - 3194^{*} - 300 sacks

3485 PB 3469

3332-39 3440-51

None- Cable Tools

attached

Attached

91,842

60 BO/24 hrs. natural, shot 30 qts. 3400-3450 no change in either gas or oil.

WELL HISTORY

1

Langlie #1

This well was spudded in 1-21-35 with cable tools and drilled to 2875; at which point a sudden flow of gas blew the tools up to 2869; where they stuck. While fishing for them a blind box and the lower half of a set of drilling jars was lost on top of them and could not be fished out so a whipstock was set at 2447;. The tools went back into the old hole after drilling past the whipstock so another whipstock and 60; of 6" drill pipe was cemented in the holetop of whipstock was 2350;. A Rotary was then moved in which successfully drilled past the cable tools to a depth of 3194; where $5\frac{1}{2}$ " OD casing was cemented. Cable tools were used from that depth to 3485; the total depth.

An estimated 2,000 MCF gas was encountered at 3212' which quickly blew down to an estimated 250 MCF. A slight show of oil was encountered at 3332' and another show of gas from 3409-12'. After drilling sand from 3440' -51 the well sprayed 2.9 BOPH. It was then drilled on down to 3485' and encountered salt water at 3483 (-321) so was plugged back to 3470' with lead wool and from 3470' to 3468' with solid lead plug with iron mandrel which successfully shut off the water. The well was shot 8-25-35 with 1 quart of SNG per foot from 3400' to 3420' and from 3440' to 3450' which did not change the production of either oil or gas.

No further work was done on the well until August 1939 at which time it was cleaned out to bottom.

LANGLIE #1

WELL EQUIPMENT

3199'	5쿨" OD 17쀼 Ygstn R-2 Gd C Blk Smls Casing							
1214'	8 5/8" OD 32# Blk LW (SH) Casing							
700 1	103544" OD 40# Blk LW (SH) Casing							
1 set 6 5/8 "-1" x 8" x 45" Anchor Clamps								
l set	$10 \ 3/4^{\text{m}} \ 0D-1\frac{1}{4}^{\text{m}} \ge 8^{\text{m}} \ge 45^{\text{m}} \text{ Anchor Clamps}$							
1	42" 2000# Type 1079 Durogauge Pressure Gauge							
1 52" Od 3000# test OCT Type T-16-C Stripper Tubing Hea								
	2 3/8" OD Tubing							
1 8 5/8 " OD x $5\frac{1}{2}$ " OD Rector Type Hp Braden Head with St								
1	10 3/4" x 8 5/8" OD ditto							
1 10 3/4" x 8 5/8" OD ditto 1 10 3/4" OD x 10'10" Std Blk LW Casing Nipple								
1	2 3/8" OD x 4: 4.7# EUE 10 thd API Gd C Blk Smld Tub Nipple							
2	2 3/8" OD x 6' ditto							
1	2 3/8" OD x 10' ditto							
3462 '	2 3/8" OD 4.7# EUE 10 thd API Blk Smls Tubing							
. 3	2" 3000# test Westcott AS NRS SE Gate Valve							
1	2" 3000# test McClatchie Hydro Seal Plug Valve							
1	3" 3000# test Westcott AS SE NRS Gate Valve							
1	3" 3000 test WKM Gate Valve							

Royalty Interest

Langlie #1, #2, #3, #4,

Commissioner General Land Office Roswell, New Mexico

1

P. J. Langlie 10 South 1st. St., Alhambra, California

W.M. Klages 1411 So. Catalina Ave. Los Angles, California

F. A. Andrews 233 S. Van Ness Ave. Los Angeles, California

Marshall & Winston, Inc. 480 L. W. Hellman Bldg., Los Angeles, California

Oil Royalties Corporation 422 I. N. Van Nuys Bldg., Los Angeles, California

L. W. Gregory c/o Washington & Western Branch of Bank of America 2201 West Washingtom Los Angeles, California

Lo W. Gregory

SUSPENSE

A. K. Barnes First National Bank Bldg. Denver, Colorado

First National Bank of Chicago Chicago, Illinois

5% of 8/8 Government Royalty

2% of 8/8 Permittee Royalty of Pipe Line Runs

1% of 8/8 Premittee Royalty of Pipe Line Runs

4-15/18% of 8/8 Permittee Royalty of Pipe Line Runs

 $\frac{1}{2}$ % of 8/8 Permittee Royalty of Pipe Line Runs

1% of 8/8 Permittee Royalty of Pipe Line Runs

4/9% of 8/8 Permittee Royalty of Pipe Line Runs

2/9% of 8/8 Permittee Royalty of Pipe Lines Runs

1/64 of 8/8 Overriding Royalty of Pipe Line Runs

85.9375% of Working Interest

ANDERSON * PRICHARD OIL CORP.

LANGLIE #2

WELL INFORMATION

Π

Casing Record 13" OD - 248 - 250 sacks $9-5/8^{*}$ OD - 27071 - 500 sacks. 7^{*} OD - 32501 - 200 sacks Special Equipment 7^{H} OD x 2-7/8 OD Guiberson Type C Control Head Hook Wall Packer set at 3180'. Tubing Record 22" at 3420'. GEOLOGICAL INFORMATION Elevation 3170 DF 3160 Gd Top Anhydrite 1102 Base Salt 2660 Top Brown Lime 2710 Top Yates Sand 2835 Gas shows 2800 3000 Total Depth 3466 Oil Zones 3440-3455 Drilling Time Attahhed Special Tests Attached GENERAL INFORMATION

Royalty Division

Attached to Langlie #1 Well Record

Accumulated Production to January 1, 1940.

46,343

Initial Production

162 BOPD natural, shot 80 qts. 3436-3466 then flowed 15 BOPH.

WELL HISTORY, LANGLIE #2

ſ

The well was spudded 7/14/37 and drilled with rotary to total depth. Shows of gas were encountered at 2930 and 3000'. After cementing 7" casing at 3250, the well was drilled to 3331 using oil for circulating fluid, and blown dry with gas, and showed no gas or oil; at 3417 the well showed a small amount of gas; and after unloading at 3466 it flowed 54 barrels oil in 8 hr. thru 7" casing with $3\frac{1}{2}$ " OD drill pipe in hole, so tubing was run to 3460 and the well was completed.

After running tubing and completing the well, gas started leaking thru the 13" Braden head, and an investigation showed pressure between the 9-5/8" and 7" casing. To repair this condition a Baker cement retainer was set in the 7" casing at 3140, and circulation was established between the 7" and 9-5/8" casings by gun perforating 10 holes in the 7" at 2800 to 2803. 12" mud was circulated between the two strings and 80 sax cement pumped in thru perforations. This was allowed to set 72 hurs., and when the cement was drilled out, the 7" casing was blown dry. After setting for about 1 hour the cement around the perforations suddenly gave way, and an estimated 20 million feet gas came thru the perforations. A squeeze cement job was then started, but before pumping in any cement it decided to determine what pressure would be required to pump fluid into the formation. Pressure was built up to 1000" at which point the cement retainer gave way. Tubing was lowered to test to see if the retainer was still in place. The tubing was first lowered to 3170 which showed that the retainer had gone down the hole. Then, when picked up, it stopped at the point where the retainer had been set, pulled loose, and then when lowezed again would not go past the spot where the retainer had been set. It was then thought that the retainer had reset itself, so to protect it 10 sax of cement were spotted on top of it. After setting 48 hrs, tubing was lowered to find the top of the cement plug, but went down to the point at which the retainer had been set. It was then found that by turning the tubing it would go down, and was finally worked down to a point below the 7" casing shoe, no cement being found. Another retainer was then set at 3170', and 15 sax of cement was spotted on top of it. This plug was allowed to set 60 hrs. Mud was then circulated out with clear water, and the gas from the perforations was permitted to blow for 6 hrs. The gas was then killed with clear water and the water circulated out the mud. Another retainer was then run in the hole to 2760, the mud circulated out with clear water and the gas allowed to partially unload the hole. When gas showed up on the surface, the retainer was set at 2760, and clear water pumped into the formation thru the perforations. The formation started taking water at 1800" pressure, but after 5 or 6 barrels had been pumped in, dropped to 800". After pumping in about fifteen barrels of water the cement (54 sax) was pumped in. 1000" pressure was required to pump the cement into the formation. This cement wasallowed to set 80 hrs. and when the retainer was drilled out, the plug was found at 2760 to 2800', which showed definitely that the formation back of the perforations had taken cement. After drilling out this cement the hole was blown dry and allowed to set 2 hrs. This test showed the gas from the perforations completely sealed off. The cement retainer below the perforations was then drilled out and the hole cleaned out to the bottom.

The well was then shot with 80 qts. of SNG from 3436' to 3466'. After cleaning out to bottom tubing was run to 3420' with hook wall pakeer set at 3180'. The well was completed 9-27-37 flowing 113 BO the last 12 hours of a 48 hour test with Gas/Oil ratio of 1920.

-

				Ter	nalia	#2		
					nglie	<u>#</u> 2		
1230	1240	40	1800	1810	30	2370	2380	70
	50	30		20	4 0		90	50
	60	25		30	30		2400	25
	70	25		40	30	2400	10	20
	80	20		50	30		20	20
	90	23		60	32 50		30	20
1300	1300 10	15 27		70 80	50 45		4 0 50	35
1000	20	20		90	40		60	20 25
	30	30		1900	50		70	30
	40	20	190 0	10	15		80	20
	50	27		20	20		90	55
	60	11		30	12		2500	95
	70	15		40	8	2500	10	62
	80	18		50	6		20	35
	90	13		60	9		30	60
1400	1400	20		70	10		40	43
1400	10 20	20 25		80 90	8 7		50	32
	20 30	20		2000	40		60 70	55 45
	40	15	2000	10	4 5		80	*0 35
	50	15	2000	20	15		90	40
	60	19		30	20		2600	45
	70	30		40	12	2600	10	50
	80	33		50	43		20	55
	90	20		60	40		30	55
	1500	20		70	19		40	50
1500	10	15		80	14		50	40
	20	3 0 25		90	25		60 80	50
	30 40	25 65	2100	2100 10	20 21		70 80	45 50
	50	45	2100	20	22		90	50
	60	80		30	20		2700	
	70	60		40	10	2700	10	85
	80	20		50	40		20	95
	90	20		60	60		30	90
	1600	35		70	35		40	105
1600	10	25		80	25		50	135
	20 30	50 30		90 2200	35 45		60 70	103 120
	40	30	2200	10	40		80	130
	50	35	0000	20	25		90	105
	60	65		30	10		2800	15
	70	75		40	20	2800	10	105
	80	65		50	20		20	145
	90	30		60	30		30	125
	1700	20		70	20		40	131
1700	10	17		80	70		50	111
	20	28		90	45		60	168
	30 40	30 12	2500	2300	25		70	130
	40 50	29	2300	10 20	20 20		80 90	165 175
	60	44		20 30	35		2900	90
	70	55		40	90	2900	10	90
	80	130		50	45		20	125
	90	70		60	60		30	197
	1800	40		70	60		4 0	52

.

Drilling Time in Minutes Langlie #2								
			Lang.	110 #2				
2940	2950	144	3231	3232	32	3287	3288	15
	60	124	Υ	33	35		89	10
	70	85		34	25		90	10
	80	105		35	30		91	10
	90	110		36	35		92	15
	3000	155		37	30		93	32
3000	10	140		38 39	20 20		9 4	38
	20 30	105 130		39 40	12		95 96	38 32
	30 40	140		41	18		97	32 40
	1 0 50	193		42	20		98	3 0
	60	172		43	25		99	45
	70	80		4 4	18		3300	20
	80	40		45	14	3300	1	23
	90	60		4 6	18		2	22
	310 0	20		47	17		3	20
3100	10	25		47		• L• M•	4	18
	16	60		48	21		5	30
	20	4 0		49	14		6	10
	30	160		50	23		7	10
	4 0 50	155 208		51 52	10 10		8 9	7 9
	60	137		53	10		10	9
	70	180		54	20		11	12
	80	210		55	20		12	
	90	215		56	15		13	10
	3200	135		57	10		14	10
3200	1	10		58	10		15	9
	2	5		59	10		16	12
	3	17		60	10		17	13
	4	18		61	5		18	17
	5	17		62 67	10		19	13
	6 7	22		63 64	13 10		20 21	17
	8	12 16		65	10		21	23 22
	9	27		66	30		23	19
	10	30		67	25		24	18
	11	24		68	30		25	21
	12	20		69	35		26	27
	13	26		70	40		27	30
	14	27		71	35		28	43
	15	24		72	32		29	45
	16	24		73	32		30	55
	17	18		74	30		31	55
	18	24		75	26		32	45
	19 20	27 24		76 77	32 27		33 34	35 22
	20	30		78	22		35	16
	22	28		79	18		36	16
	23	28		80	19		37	9
	24	23		81	31		38	8
	25	36		82	45		39	9 6
	26	30		83	40		40	6
	27	28		84	35		41	6_
	28	35		85	37		42	5
	29	35		86 87	3 3 20		43 44	5 4
	30 31	32 28		01	4U		44 45	4 10
	91	20					-10	TO

Drilling Time in Minutes

-

Ţ

Drilling	Time	in	Minutes
L	inglie) F	2

_

,

3345	3346	7	3404	3 4 05	25	3461	3462	5
	47	7		6	20		63	6
	48	13		7	23		64	5
	49	22		8	27		65	13
	50	23		9	30		66	28
	51	19		10	18			
	52	27		11	22			
	53	45		12	20			
	54	30		13	3			
	55	25		14	2			
	56	30		15	1			
	57	30		16	10			
	58	23		17	17			
	59	14		18	30			
	60	6		19	33			
	61	22		20	21			
	62	25		21	27			
	63	22		22	32			
	64	27		23	37			
	65	44		24	28			
	66	9		25	20 30			
	67	6		26	42			
	68	4		27	27			
	69	7						
		7		28	15			
	70			29	22			
	71	12		30	28			
	72	43		31	6			
	73	21		32	28			
	74	22		33	26			
	75	28		34	29			
	76	8		35				
	77	12		36	21			
	78	20		37	22			
	79	10		38	8 3			
	80	5 5		39	25			
	81	5		40	20			
	82	3		41	30			
	83	7		42	20			
	84	15		43	8			
	85	10		44	4			
	86	15		45	3			
	87	20		46	3			
	88	24		47	5			
	89	22		48	8			
	90	27		49	6			
	91	19		50	18			
	92	18		51	24			
	93	29		52	20			
	94	14		53	31			
	95	16		54	21			
	96	19		55	22			
	97	10		56	23			
	98	24		57	34			
	99	18		58	30			
	3400	25		59	33			
3400	1	13		60	31			
	2	22		61	6			
	3 4	30						
	4	24						

Π

↑

OPEN FLOW TESTS

Langlie #2

October - 1937

August	- 1939		
lst	24 hrs.	65	Bbls.

lst 12 hrs.	13 BOPH	
2nd 12 hrs.	11 *	
3rd 12 hrs.	11 *	
4th 12 hrs.	10 *	
November - 1937		
lst 6 hrs.	80 Bbls.	•
January - 1938		
lst 12 hrs.	14 BOPH	
2nd 12 hrs.	8 **	
3rd 12 hrs.	9 #	
4th 12 hrs.	8 *	
March - 1938		
lst 8 hrs.	14 BOPH	
Next 12 hrs.	8 *	
Next 6 hrs.	8 "	
Next 6 hrs.	8 *	
Next 3 hrs.	8 "	
December - 1938		
lst 24 hrs.	130 Bbls.	
2nd 24 hrs.	110 "	
3rd 24 hrs.	103 "	

BOTTOM HOLE PRESSURE SURVEYS

LANGLIE # 2

Date of Survey	Pressure	Bbls. Produced Between Surveys
2-5-39	620 #	
3-31-39	555 #	2937
7-15-39	540 #	5408
8-18-39	522 #*	
8-19-39	540 #*	
8-20-39	550 #+	
8-30-39	580 #*	
9-28-39	535 #	3323
1-1-40	525 #	5143

* Not regular survey

 $\left[\right]$

-40-

LANGLIE #2

WELL EQUIPMENT

1	3" 6000# test Hughes CS Tee Type Adj. Flow Bean
3256 1	7" OD 24# API Gd B Blk Smls Casing
2714'	9 5/8* 0D 40# ditte
2321	13" OD 40# Blk LW Casing
l set	13^{H} OD- $1\frac{1}{4}^{\text{H}}$ x 8" x 43" Anchor Clamps
2	3" x 16" OCT Tie Down Clamps
1	7" OD HOWCO Float Collar
1	9 5/8" OD Baker Backblue Float Collar
2	42" 3000# Type 1056 Ash Amer Pressure Gauge
1	9 5/8" OD x \$7" OD 6000# test Type H Rector Braden Head
1	13" OD x 9 5/8" OD 3000# test Type M Rector Braden Head
1 1	7" OD x 12" 24# Blk Smls Csg Nipple
1	2 7/8" OD x 4' 6,50# Blk Smls Tubing Nipple
1	2 7/8" OD x 10' ditto
1	7" OD x 2 7/8" OD Type C Control Head Packer
1	7" OD 3000# test CIW Type ML Tubing Suspender & Blowout
	Preventor with $2\frac{1}{2}^{N}$ Rams
1	7" OD HOWCO Guide Shoe
1	9 5/8" OD Baker Bakblue Guide Shoe
3425'	2 7/8" OD 6.50# API Gd B Blk Smls Tubing
1	2" 3000# test Hammer Plug Valve
3	2" 3000# test AS NRS SE Gate Valves
1	$2\frac{1}{2}$ Otis Type C Tubing Closing Valve
1	3" 3000# test WKM Gate Valve

.

ANDERSON - PRICHARD OIL CORP.

LANGLIE # 3

WELL INFORMATION

1

9-5/8" OD - 1191' - 500 sacks Casing Record 7" OD - 3265' - 350 sacks Special Equipment Nixon Surface Control Gas Life Installed with Guiberson Type C-1 Control Head Hook Wall Packer set at 3222' Tubing Record 2¹/₂" at 3472'. GEOLOGICAL INFORMATION Elevation 3181 Top Anhydrite 989 Base Salt 2720 Top Brown Lime 2770 Top Yates Sand 2860 Gas Shows 2862-2881 Total Depth 3479 Oil Zones 3445-3455, 3470-3479 Drilling Time Attached Special Tests Attached GENERAL INFORMATION

Royalty DivisionAttached to Langlie #1 Well RecordAccumulated Production to January 1, 1940.
39.254Initial Production116 BOPD, shot 56 qts. 3469-3479,
3445-3469 then flowed 216 BOPD.

^_

1

Langlie # 3

150	160	20	740	750	90	1990	1740	45
160	170	20 25	750	750 760	20 25	$1330 \\ 1340$	1340 1350	45 30
170	180 190	40	760 770	770	35	1350	1360	20
190	200	4 0 15	780	780 790	40 45	1360 1370	1370	35
200	210	20	790	800	45 55	1370	1380 1390	25 18
210	220	30	800	810	50	1390	1390 1400	18 15
220	230	30	810	820	35	1400	1410	14
230	240	22	820	830	50	1410	1420	15
240	250	22 N.B.	830	840	30	1420	1430	22
250	260	13	840	850	30	1430	1440	12
260	270	12	850	860	40	1440	1450	15
270	280	12	860	870	60	1450	1460	18
280	290	13	870	880	60	1460	1470	14
290	300	13	880	890	50	1470	1480	16
300	310	12	890	900	60	1480	1490	16
310	320	12	900	910		3.at 1490	1500	15
320	330	13	9 4 0	920	40 9]		1510	17
330	340	15	920	930	40	1510	1520	16
340	350	15	930	940	40	1520	1530	15
350	360	15	940	950	6 0	1530	1540	16
360	370	15	950	960	40	1540	1550	18
370	380	15	960	970	50	1550	1560	18
380	390	15	970	980	55	1560	1570	16
390	400	15	980	990	60	1570	1580	20
400	410	15	990	1000	55	1580	1590	15
410	420	15	1000	1010	60	1590	1600	24
420	430	15	1010	1020	60	1600	1610	22
430	440	15	1020	1030	60 60	1610	16 3 0	24
440 450	450 460	15 30	1030 1040	1040	60 45	1620	1630	30
460	470	30 M.B.	1040	1050 1060	45 105	1630	1640	30
470	480	30 m .5.	1060	1030	105	1640 1650	1650	32 *0
480	490	30	1000	1080	65	1660	1660 1 67 0	3 0
490	500	30	1080	1090	65	1670	1680	50 45 N. B.
500	510	30	1090	1100	80	1680	1690	45 N. B. 35
510	520	60	1100	1110	100	1690	1700	30
520	530	60	1110	1120	90	1700	1710	25
530	540	60	1120	1130	70	1710	1720	30
540	550	30	1130	1140	75	1720	1730	25
550	560	30	1140	1150		B. 1730	1740	15
560	570	60	1150	1160		1531740	1750	28
570	580	60 N.B.	1160	1170	60	1750	1760	30
580	590	40	1170	1180	140	1760	1770	
590	600	55	1180	1190	140	1770	1 78 0	25
600	610	45	1190	1200	35	1780	1790	30
610	620	45	1200	1210	20	1790	1800	22
620	630	20	1210	1220	10	1800	1810	11
630	640	20	1220	1230	25	1810	1820	15
640 650	650	20	1230	1240	30	1820	1830	10
650 660	660 670	20	1240	1250	20	1830	1840	12
660	670 680	20	1250	1260	25	1840	1850	20
670	680 600	20	1260	1270	28	1850	1860	14
680 600	690 700	20 20	1270	1280	34	1860	1870	15
690 700	700	20	1280	1290	3 0	1870	1880	227
700 710	710 720	20 20	1290 130 0	1300 1310	20 22	1880 1890	1890	10
110	140	20	TOOD	TOTO	60	1030	1900	10

				nglie #3					
1900	10	15 11							
10 1920	20 1930	16	2520	2530	25	3130	3140		
30)	40	15	30	40	20	40	50	110 N. B.	
4 0	50	16	40	50	20	50	60	215	
50	60	10	50	60 50	20	60	70	165	
60 70	70 80	7 25	60 70	70 80	20 20	70 80	80 90	180 180	
80	90	50	80	90	20	90	3200	100	
90	2000	40	2600	2610	10	3200	10	170	
2000	10	15	10	20	15	10	20	120	
10	20	15	20	30	15	20	30	270 N.B. at	
20 ·	30 40	14 16	30 40	40 50	20 15	30 <u>4</u> 0	40 50	180 32 36 195	
30 40	40 50	18	4 0 50	60	20	50	60	240	
50	60	11	60	70	20	60	70	240	
60	70	15	70	80	40	70	71	20	
70	80	15	80	90	60	71	72	85	
80	90	15	90	2700	40	72	73	15	
90 2100	2100 10	14 15	2700 10	10 20	55-1 95	N.B. 73 74	74 75	10 10	
10	20	13	20	30	110	75	76	10	
20	30	15	30	40	85	76	77	10	
30	40	20	40	50	100	77	78	10	
40	50	21	50	60	105	78	79	10	
50 60	60 70	15 18	60 70	70 80	70 75	79 80	80 81	10	
70	80	18	80	90	85	80 81	82	15 15	
80	90	25	90	2800	70	82	83	20	
90	2200	20	2800	10	105	83	84	30	
2200	10	13	10	20	105	8 <u>4</u>	85	25	
10	20 30	15 12	20 30	30 40	95 90	85 86	8 6 87	20 35	
20 30	40	16	40	4 0 50	50 75	87	88	25	
40	50	16	50	60	75	88	89	35	
50	60	20	60	70	35	89	90	35	
60	70	21	70	80	35	90	91	15	
70	80	14	80	90 2000	110 1		92	5	
80 90	90 2300	15 20	90 2900	2900 10	45 35	92 93	93 94	5 6	
2300	10	25	10	20	30	94	95 95	5	
10	20	20	20	30	45	95	96	6	
20	30	32	30	40	60	96	97	1 3	
30	40	20 5 5	40	50 60	25	97	98	15	
40 50	50 60	55 25	50 60	60 70	65 120	98 99	99 3300	15 15	
60	70	50	70	80	150	3300	1	15	
70	80	30	80	90	85	1	2	22	
80	90	30	90	3000	95	2	3	28	
90	2400	31	3000	10	85	5	4	33	
2400	10	34 25	10	20 30	120	4 5	5	30 55	
10 20	20 30	25 30	20 30	30 40	60 55	ວ 6	· 6 7	25 21	
30	40	30	40	50	8		8	21	
4 0	50	25	50	60	125	8	9	25	
50	60	25	60	70	80	9	10	25	
60 70	70 80	20 25	70 80	80 90	35 30	10 11	11 12	30 30	
80	90	20 50	90	3100	30 35	12	12	25	
90	2500	65	3100	10	90	13	14	15	
2500	10	45	10	20	35				
10	20	20	20	30	70				

Drilling Time In Minutes

~

.

Drilling Time In Minutes Langlie #3								
3314	3315	10	3373	3 374	20	3439	3440	3
15	16	10	74	75	20	40	41	4
16	17	12	75	76	20	41	42	5
17	18	33	76	77	20	42	43	6
18	19	25	77	78	20	43	44	8
19	3320	30	78	79	20	44	45	9
3320	21	30	79	3380	15	45	46	21
21	22	35	3380	81	11	46	47	13
22 23	23 24	15	81	82	19	47	48	21
23	2 4 25	10 8	82 83	83 84	20 25	48 49	49 3450	19
25	26	17	84	85	20	45 3450	51	18 24
26	27	15	85	86	15	51	52	22
27	28	20	86	87	20	52	53	23
28	29	20	87	88	20	53	54	23
29	3330	15	88	89	20	54	55	23
3330	31	20	89	3390	10	55	56	8
31	32	15	3390	91	5	56	57	14
32	33	10	91	92	20	57	58	15
33	34	15	92	93	30	58	59	15
34 35	35 36	15	93	94	35	59	3460	20
35 36	30 37	10 10	94 95	95 96	20 20	3460	61	20
37	38	15	96 96	90 97	20 40	61 62	62 63	15
38	39	10	97	98	10	63	64 64	24 28
39	3340	15	98	99	15	64	65	16
3340	41	30	99	3400	22	65	66	24
41	42	30	3400	1	5	N.B. 66	67	30
42	43	30	1	2	5	67	68	30
43	44	30	2	3	5	68	69	20
44	45	36 25)		4	15	69	3470	13
45	46	10	4	5	15	3470	71	8
46	47	15	5	6	15	71	72	10
47	4 8	10	6	7	10	72	73	4
48	4 9	20	7	8	12	73	74	3
49 3350	3350 51	15 15	8	9 3410	16	74	75	5
51 51	52	20	9 3410	3410 11	20 12	75 76	76 77	7
52	53	15	11	12	20	78 77	78	5 7
53	54	15	12	13	20	78	70 79	30
54	55	15	13	14	25	10	13	50
55	56	15	14	15	15			
56	57	10	15	16	15		•	
57	58	5	16	17	15			
58	59	5	17	18	10			
59	3360	5	18	19	10			
3360	61	20	19	3420	10			
61 62	62 63	20	3420	21	10			
63	64	15 20	21 22	22 23	10			
64	65	20 15	22	23 24	10 10			
65	66	16	24	25	15			
66	67	10	25	26	15			
67	68	10	26	27	15			
68	69	5	27	28	15			
6 9	3370	5		5428-3435	-			
3370	71	5 ·	3435	3436	15			
71	72	10	36	37	5			
72	73	10	37	38	3			
			38	39	3			

•

1

、

OPEN FLOW TESTS

1-

LANGLIE #3

January - 1938 1st 12 hrs. 7 BOPH 2nd 6 hrs. 5 "
 3rd
 6 hrs.
 5 #

 4th
 12 hrs.
 6 #

 5th
 6 hrs.
 4 #

 6th
 6 hrs.
 5 #
 March - 1938 lst 8 hrs 8 BOPH Next 12 hrs. 6 " Next 6 hrs. 6 " Next 6 hrs. 5 " Next 12 hrs. 5 " Next 6 hrs. 5 # **July - 1938** 1st 6 hrs. 13 BOPH Next 14 hrs. 6 " Next 10 hrs. 6 " Next 14 hrs. $5\frac{1}{2}$ " Next 4 hrs. $5\frac{1}{2}$ " December - 1938 lst 24 hrs. 140 Bbls. 2nd 24 hrs. 126 # 3rd 24 hrs.

96 #

August - 1939

lst 3 hrs. 31 Bbls. 12 * 103 * 2nd 3 hrs. lst 24 hrs. 103 2nd 24 hrs. 72 11 # 3 BOPH last 6 hours

December - 1939

lst 3 hours 23 Bbls. 2nd 3 hours 7 # lst 24 hours 74 # 2nd 24 hours 58 # 3 BOPH last 6 hours

BOTTOM HOLE PRESSURE SURVEYS

LANGLIE # # 8

Date of Surveys	Pressure	Bble. produced Between Surveys
2-5-39	865 #	
3-31-39	805 #	3223
7-15-39	750#	5482
8-3-39	807 #*	
9-28-39	765 #	4612
1-1-40	7 10#	54 09

* Not regular surveys- well shut in 15 days

WELL HISTORY

IT

Langlie #3

This well was spudded 10-28-37 and drilled to total depth with rotary drilling equipment. Drillers logged a show of gas from sand 2862'-2881'. After comenting 7" casing at 3265' oil was used for circulation fluid and the well drilled to its total depth without testing. At total depth (3479') $2\frac{1}{2}$ " tubing was set at 3422'. Flowing thru open tubing it flowed 116 BO in 24 hrs. with 325 MCF gas per day. It was then shot with 2 quarts SNG per foot from 3469' to 3479' and $2\frac{1}{2}$ quarts SNG per foot from 3445' to 3469'. The well was killed with oil before running the shot but unloaded a few minutes before the shot exploded so actually was shot dry. After cleaning out to bottom, $2\frac{1}{2}$ " tubing was set at 3464'. Flowing thru open tubing it produced 216 BO in 24 hrs. with 1,100 MCF gas per day. Choked to 11/64" it produced 90BO in 24 hrs. with 233 MCF gas per day. Completed 11-30-37

No other work was done on the well until 1-25-40 at which time it went dead. Tubing was then pulled and the well cleaned. out to bottom, approximately 50' of cavings haveing been found in the hole. Tubing was reset at 3477' with a Buiberson Type G-1 Control Head hook Wall Packer set at 3222'. A Nixon Type 103 Surface Control Flow Valve was set at 3211' and a Nixon Type 107 SC Flow Valve set at 2586'. A standing was set below the packer at 3466'. The wall was then unloaded with outside gas after which it flowed 94 BO in 1 hr. thru 25/64" choke on its own gas. The following day, 1-31 -40 it flowed 102 BO on its own gas.

LANGLIE #3

WELL EQUIPMENT

1	3" 6000# test Hughes CS Tee Type Adj Flow Bean
3277 1	7" OD 24# API Gd B Blk Smls Casing
1181	9 5/8" OD 36# ditto
l set	9 5/8" OD-1 $\frac{1}{4}$ " x 8" x 43" Anchor Clamps
1	7" OD HOWCO Float Collar
1	9 5/8" OD Baker Bakblu Bloat Collar
1	5" 2000# Style AH Crosby Press Gauges
1	9 5/8" OD x 7" OD Type HP Rector Braden Head
1	A mast for Nixon Lift
1	7" OD x 30" 24# Blk Smls CSg Nipple
1	2 7/8" OD X 4' 6.50# Blk Smls TOg Kipple
1 1	2 7/8" OD x 6' Ditto
1	7" OD 3000# test CIW Type NL Tubing Suspender
	& Blowout Preventor with 21" Rams
1	7" OD HOWCO Guide Shoe
1 1	9 5/8" OD Baker Bakblu Guide Shoe
1	3" 3000# test Female Thread Tee
34661	2 7/8" OD 6.50# API Gd B Blk Smls Tubing
2	2" 3000# test As NRS SE Gate Valves
1	3" 3000# test Orbit OS & Y SE Gate Valve
1	7" OD x 22" Guiberson Hook Wall Control Head Packer

The following equipment installed by Wilson Supply Co. and to be purchased when the equipment is put in use.

1	Nixon Intermitter
1-	Nixon Wire Line Hoist & Turbine Motor
35001	Wire Line
1	2" Wire Line Stuffing Box
l set	Nixon 14" Weight Bars
1	2" Standing Valve
. 1	2" Upset all Steel Flow Valve with 1 Port
1	2" ditto 3 Ports
1	Nixon Measuring Device

ANDERSON - PRICHARD OIL CORP.

-

LANGLIE #4

Well INFORMATION

Casing Record	9-5/8" OD - 1157' - 5 sacks 7" OD - 3280' - 400 Sacks
Special Equipment	None
Tubing Record	2 <mark>글</mark> " at 3452 ·
GEOLOGICAL INFORMATION	
Elevation	3176
Top Anhydrite	1120
Base Salt	2620
Top Brown Line	2720
Tope Yates Sand	2860
Gas Shown	2868-73, 2982-99
Total Depth	3477
Oil Zones	3400-3477
Drilling Time	Attached
Special Tests	Attached
GENERAL INFORMATION	
Royalty Division	Attached to Langlie #1 Well Record
Accumulated Production to Janu	ary 1, 1940 30,283
Initial Production	7 BOPH, shot 270 ets. 3392-3477

Initial Production

7 BOPH, shot 270 qts. 3392-3477 Then flowed 20 BOPH. .

Π

WELL HISTORY

LINGLIE #4

This well was spudded 5-11-38 and drilled to total depth 3477' with rotary drilling equipment. Drillers logged gas shows in sands 2868' to 2877' and 2982' to 2999'. 7" Od-22# casing was cemented at 3280' with 300 sacks common cement but when plug was drilled pressure on casing could not be built up past 900# so hole was bailed. After Bailing 10 hrs. there was still 600' fluid in the hole and some gas was showing so a Baker Cement Retainer was set at 3260' and 100 sacks cement was squeezed into formation. The last Cement went in at 1250# pressure. After setting 72 hrs. The retainer and cement was drilled out and the casing tested with 1000# pressure. There was no decrease in pressure during the 30 minute test.

Oil was used for circulating fluid from 3280' to bottom. No tests were made until the well had been drilled to its total depth. At TD 3477', $2\frac{1}{2}$ " tubing was set at 3441' and the well swabbed in. It flowed 42 BO in 6 hours with 250 MCF gas. It was then shot with 270 quarts SNG from 3398' to 3477'. After cleaning out to bottom $2\frac{1}{2}$ " tubing was set at 3451'. The well was then tested for 27 hours thru 1" choke on tubing. During the last 13 hours of the test it flowed steadly at the rate of 20 BOPH with 960 MCF gas per day. Choked to 85 BOPD, gas/oil ratio decreased to 700. Well was completed 5-15-38.

Drilling	Time	In	Minutes
Le	nglie	•#	1

_

ļ

				Langlie #	4					
300	310	30	2270	2280	20		2860	2870	165	
310	320	30	2280	2290	20		2870	2880	60	
20	30	4 0	90	2300	20		80	90	90	
30	40	95	2300	10	60		90	2900	65	
40	50	45	10	20	40		2900	10	180 N	•B•
50 60	60 70	40 50	20 30	30	20		10	20	45	
70	80	48	30 40	4 0 50	15 15		20 30	30 40	35	
80	90	42	50	60	20		30 40	4 0 50	80 45	
90	400	35	60	70	45		50	60	135	
400	10	37	70	80	15		60	70	210	
10	20	38	80	90	15		70	80	230	
20	30	35	90	2400	30		80	90	60 N	•B•
30	40	30	2400	10	15		90	\$000	45	
4 0 50	50 60	20	10	20	30		3000	10	95	
60	70	15 20	20 30	30 40	30		10	20	70	
70	80	30	40	4 0 50	20 40		20 30	30 40	163 200	
80	90	30	50	60	65	•	40	1 0 50	190	
90	500	126 N		70	25		50	60	55	
500	10	50	70	80	60		60	70	45	
10	20	20	80	90	90		70	80	45	
20	30	25	90	2500	70		80	90	30	
30	40	45	2500	10	25		90	3100	94 N	•B•
40 50	5 9 60	30	10	20	15		3100	10	230	
60	70	40 30	20 30	30 40	40		10	20	205	
70	80	30	40	1 0 50	40 30		20 30	30 40	245 180	
80	90	25	50	60	35		40	±0 50	90	
90	600	95	60	70	35		50	60	135	
			70	80	35		60	70	120	
2000	2010		B. 80	90	30		70	80	165	
10	20	30	90	2600	35		80	90	210	
20	30	20	2600	10	50		90	3200	185	
30 40	4 0 50	25 25	10 20	20 30	35	N.B.	3200	10	190 N	•B•
1 0 50	60	20	20 30	30 40	30		10 20	20 30	225 155 N	n
60	70	25	40	50	50		30	40	220 A	•D•
70	80	20	50	60	50		40	50	335	
80	90	20	60	70	4 5		50	60	285	
90	2100	25	70	80	100		60	70	220	
2100	10	20	80	90	65		70	80	200	
10 20	20	25	90	2700	160		80	85	200	
20 30	30 40	90 20	2700 10	10 20	100 80		85 86	86	15	
40	4 0 50	20 25	20	30	110		87	87 88	17 23	
50	60	30	30	40	115		88	89	22	
60	70	12	4 0	50	105		89	90	21	
70	80	50	50	60	135		90	91	17	
80	90	15	60	70	130		91	92	18	
90	2200	10	70	80	120		92	93	22	
2200	10	10	80	90	120		93	94	25	
10 20	20	10	90 2800	2800	125		94 05	95	25	
20 30	30 40	45 35	2800 10	10 20	120 135		95 96	96	25	
40	4 0 50	35 35	20	20 30	165		90 97	97 98-	15 15	
50	60	85	30	40		N.B.	98	99 99	15	
60	70	80	40	50	120		99	3300	20	
			50	60	180					

l.

Drilling Time In Minutes

1

-

Langlie #4

3300	3301	15					3415	3416	17
1	2	10	3357	3358	15		16	17	13
2	3	15	58	59	21		17	18	17
3	4	10	59	3360	12		18	19	19
4	5	8	3360	61					
		7			10		19	3420	16
5	6		61	62	7		3420	21	10
6	7	7	62	63	9		21	22	4.
7	8	6	63	64	14		22	23	2
8	9	10	64	65	15		23	24	2
9	3310	17	65	66	18		24	25	17
3310	11	23	6 6	67	25		25	26	6
11	12	22	67	68	30		26	27	22
12	13	18	68	69	25		27	28	25
13	14	12	69	3370	20				
14	15						28	29	40
		10	3370	71	20		29	3430	45
15	16	10	71	72	20		3430	31	45
16	17	1 0	72	73	27		31	32	45
17	18	7	73	74	18		32	33	45
18	19	3	74	75	20		33	34	33
19	3320	3	75	76	20		34	35	32
3320	21	6	76	77	20		35	36	33
21	22	6	77	78	23		36	37	24
22	23	7	78	79	20		37	38	13
23	24	9	79	3380	32		38		
24	25	9	3380	81	25			39	7
							39	3440	8
25	26	9	81	82	15		3440	41	5
26	27	9	82	83	15		41	42	27
27	28	6	83	84	25		42	43	33
28	29	4	84	85	30		43	44	18 N.B.
29	333 0	6	85	86	30		44	45	7
3330	31	11	86	87	35		45	46	10
31	32	23	87	88	20		46	47	8
32	33	26	88	89	18		47	48	10
33	34	16	89	3390	50		48	49	10
34	35	22	3390	91	9				
35	36	26	91				49	3450	20
				92	3		3450	51	19
36	37	22	92	93	5		51	52	21
37	38	29	93	94	10		52	53	7
38	39	31	94	95	28		53	54	7
39	3340	30	95	9 6	36	N.B.	54	55	11
3340	41	30	96	97	15		55	56	5
41	42	30	97	98	9		56	57	3
42	43	16	98	99	5		57	58	5
43	44	14	99	3400	12		58	59	5
44	45	35	3400		12				
45	46	38 38		1			59	3460	4
			1	2	11		3460	61	5
46	47	47	2	.3	16		61	62	6
47	48	45	3	4	15		62	63	22
48	49	20 N.B		5	16		63	64	12
4 9	3350	15	5	6	14		64	65	17
3350		51 5	6	7	4		65	66	11
51	52	7	7	8	4		66	67	16
52	53	16	8	9	16		67	68	13
53	54	17	9	3410	10		68	69	6
54	55	18	3410		12		69	3470	10
55	56	17	11	12	10		~~	0110	
56	57	17	12	13	6				SLM
	01	1					72	73	10
			13	14	12		73	74	7
			14	15	18				
3474	3475	8							
3475	3476	9							
3476	3477_	6							
3477	3477늘	4							
	~								

.

OPEN FLOW TESTS

LANGLIE #4

~

August - 1938

1

30	BOPH
25	**
24	Ħ
23	Ħ
21	n
18	Ħ
18	-
17	
16	11
16	Ħ
18	Ħ

August - - 1939

lst 3 hrs.	78	Bbls.
2nd 3 hrs.	45	Ħ
Next 18 hrs.	225	tt
lst 24 hrs.	348	Ħ
9 BOPH last 6	hours.	

December - 1939

lst 3 hrs.	71	#
2nd 3 hrs.	45	Ħ
lst 24 hrs.	310	Ħ

BOTTOM HOLE PRESSURE SURVEYS

LANGLIE # 4

Date of Surveys	Pressure	Bbls. Produced Between Surveys
1-21-39	936 #	· · · · · · · · · · · · · · · · · · ·
3-31-39	891 #	3949
6-29-39	780 #	4 880
8-18-39	780 #*	
8-20-39	809 #*	
8-30-39	850 ∦∗	
9-28-39	780 #	3766
1-1-40	710#	5356

* Not regular surveys

1

LANGLIE # 4

WELL EQUIPMENT

1 3285'	3" 6000# test Hughes CS Tee Type Adj Flow Bean 7" OD 22# API Gd B Blk Smls Casing
1144'	9 5/8" OD 36# Ditto
l set	$9.5/8"$ OD - $1\frac{1}{4}" \times 8" \times 43"$ Anchor Clamps
2	5" 2000# Type 1056 Ash Amer Press Gauges
1	9 5/8" OD x 7" OD 6000# test Type 🃭 HP Rector Braden Head
1	7" OD HOWCO Float Collar
1	9 5/8" OD Baker Bakblue Float Collar
1	7" OD x 24" 24# Blk Smls Cag Nipple
1	2 7/8 OD x 4' 6.50# Blk Smls Tbg Nipple
1	7" OD 3000# test vCIW Type M1 Tubing Suspender
	& Blowout Preventor with 22" Rams
1	7" OD HOWWCO Guide Shoe
1	9 5/8 OD Baker Bakblu Guide Shoe
3423 '	2 7/8 OD 6.50# API Gd Blk Smls Tubing
1	3" 3000# test Kerotest FS RJ Flg Union
2	2" 3000# test McClitchie Lub Plug Valves
1	3" 3000# test Orbit OB& Y SE Gate Valve

LANGLIE # 1-2-3-4

SURFACE EQUIPMENT

l	3" IBBW Essex Pat. Lock Stop Cock
1	4" IBBW Essex Pat. Lock Stop Cock
—	2" 3.75# Std Blk LW Line Pipe
3211*	3" 7.7# ditto
793*	4" 11# ditto
56	6' T Iron Line Posts
	Corner Posts
3	Gate Posts
4	# If 3' x 11' Nat'l Oil & Gas Separator Complete
4	10' x 15' 210 bbl. Nat'l Type 2 Welded Steel Tanks
4	250 bbl. 1 Ring 12 ga. Bolted Steel Tanks
4sets	Walkway Brackets for 10' x 15' tanks
4 sets	ditto 250 bbl. tanks
1	16: Steel Stairway
1	8' ditto
1051	26" Steel Walkway
8	2" Class 125 CI SE Lub Plug Valves
26	3" Glace Std IBBM Nrs SE Gate Valves
9	3" Class 125 CI FF Lub Plug Valves with CFBO
6	3" Class 125 CI SE Bub Plug Valves
4	4" Std IBBM Nrs SE Gate Valves
8	4" Class 125 CI SE Lub Plug Valves
1	4" loz. Press-2oz. Vac Statite Vent Valve
1	4" 14 oz, National Stack Valve

ANDERSON - PRICHARD OIL CORP.

[

-

•

JAL # 1

9-5/8" OD - 1208' - 500 sacks 7" OD - 3284' - 350 sacks
None
2불" at 3395'
3203
1050
2740
2750
2870
2800-2993, 3004-3290, (well unloaded at 3290 & flowed 4000 MCF gas with no oil.
3455
33 70-3390, & 3440-3445
Attached
Attached
Attached
1, 1940 42,249
330 BOPD natural

WELL HISTORY

11

JAL #1

This well was spudded 10-29-37 and drilled to TD 3455; with rotary drilling equipment. Drillers logged shows of gas from lime and sand 2800; to 2993; and 3004; to 3290;. At 2993; A Drill Stam Test was made from 2800; to 2993;. The testing tool was open 15 minutes and showed a very small show of gas. Another Drill Stem Test was made from 3004; to 3290;. The tester was open 35 minutes and showed 244 MCF gas per day. At 3290; the well was unloaded by gas lift and at the end of a 5 hour test was making 4000 MCF gas per day with no oil.

After cementing 7" casing at 3284' the well was drilled to its total depth with oil. At 3360' the drilling fluid was unloaded with outside gas. A 3 hour test showed no gas or oil at that depth. At total depth of 3455' it flowed 78 BO in 3 hours thru casing with $3\frac{1}{2}$ " OD drill pipe in the hole. On 10-28-37 $2\frac{1}{2}$ " tubing was set at 3395'. Flowing thru open tubing it produced 86 BO the last 6 hours of a 30 hour test with gas at the rate of 541 MCF gas per day. Completed 10-30-37.

	Drilling Time In Minutes								
			and the second s	al f 1					
250	960	30	840	850	18	1 4 7 7	1497	ce	
250 260	260 270	30 20	850	860	48	1477 1487	1487 1497	55 55	
200	280	15	860	870	30	1497	1507	25	
280	290	15	870	880	45	1507	1517	19	
290	300	30	880	890	65	1517	1527	6	
300	310	18	890	900	45	1527	1537	17	
310	320	22	90 0	91 0	33	1537	1547	23	
3 20	330	20	910	920	37	1547	1557	15	
330	340	22	920	930	33	1557	1567	50	
340	350	23	930	94 0	4 0	1567	1577	45	
350	360	23	940	950	45	1577	1587	30	
360	370	20	950	960	33	1587	1597	30	
370	3 80	25	960	97 0	40	1597	1607	30	
380	390	22 27	970 980	980 990	47	1607	1617	20	
390 400	400 410	30	9°0 990	1000	41 50	1617 1627	1627 1637	4 0	
400 410	410	32	1000	101 0	55	1627	1647	35 22	
420	430	30	1010	1020	54	1647	1657	26	
430	440	45	1020	1030	50	1657	1667	32	
440	450	30	1030	1040	57	1667	1677	35	
450	460	30	1040	1050	55	1677	1687	37	
460	470	20	1050	1060	36	1687	1697	17	
470	480	26	1060	1070	73	1697	1707	13	
480	490	30	1070	1080	62	1707	171 7	16	
490	500	21	1080	1090	100	1717	1727	15	
500	510	27	1090	1100	85	1727	1737	14	
510	520	34	1100	1110	84	1737	1747	12	
520	530	48	1110	1120	90	1747	1757	13	
530	540 550	27	1120	1130	50 75	175	1767	18	
5 4 0 550	550 560	36 32	1130 1140	1140 1150	35 55	1767	1777	21	
560	570	32 38	1140	1160	48	177 7 1787	1787 1797	38	
570	580	31	1160	1170	4 0 64	1797	1807	18 15	
580	590	37	1170	1180	64	1807	1817	15	
590	600	26	1180	1190	82	1817	1827	10	
600	610	21	1190	1200	55	1827	1837	12	
610	620	12	1200	1210	25	1837	1847	13	
620	630	18	1210	1215	10	1847	1857	12	
630	640	2 2	1215	1217	5	1857	1867	13	
640	650	58	1217	1219	4	1867	1877	19	
650	660	60	1219	1221	5	1877	1887	10	
660	6 7 0	40	1221	1223	4	1887	1897	10	
670 680	680 680	47	1223	1225	5	1895	1907	7	
680 6 9 0	690 700	43 40	1225 122 7	1227 1229	4	1907	1917	7	
700	710	40 42	1229	1225	3 4	1917 1927	1927 19 37	6 6	
710	720	33	1223	1233	3	1927 1937	1937 1947	16	
720	730	57	1233	1235	4	1947	1947	9	
730	740	26	1235	1237	5	1957	1967	8	
740	750	39	1237	1239	6	1967	1977	8	
750	760	35	1239	1241	5	1977	1987	7	
760	770	32	1241	1243	3	1987	1997	10	
770	780	31	1243	1245	3	1997	2007	22	
780	790	34	1245	1247	2	2007	2017	5	
790	800	18	1247	1249	2	2017	2027	18	
800	810	20	1249	1251	3	2027	2037	23	
810	820	33	1251	1252	2	2037	2047	58	
820 830	830 8 4 0	40 60	1467	1477	40	2047	2057	11	
000	0.50	00							

-

[!

-60-

η

Drilling Time In Minutes

0058		0000	~	0040	L .	0050		#00F	1	8080	
2057	to		6	2640	τo		20	3000	τo	3070	55
		77	11			60	22			75	100
		87	9			70	25			80	75
		97	11			80 90	3 0 28			85	110
		2107	9 29				20 30			90	85
		17	29 26			2700				95	55
		27	28 16			10 20	41 55			310 0	22
		37 47	29			20 30	56			5	41
		57	29 18			40	73			10 15	24 22
		67	17			50	64			20	60
		77	17			60	65			20 25	
		87	16			70	95			25 30	120
		97	18			80	96			30 35	22 16
		2207	19			90	30 73			40	17
		17	32			2800	105			45	73
		27	18			10	132			50	
		37	15			20	86			55	107
		47	45			30	82			60	115
		47 57	40 20			40	80			65	120
		67	20			4 0 50	80 87			70	130 150
		80	105			60	91			75	130
		90	28			70	7 9			80	130 90
		2300	25			80	53			90	90 75
		10	15			90	20			95	97
		20	22			2900	120			3200	75
		30	63			10	25			5	73
		40	50			20	60			10	77
		50	25			25	52			15	86
		60	20			30	23			20	124
		70	25			35	20			25	125
		80	45			40	20			30	115
		90	45			45	67			35	130
		2400	15			50	77			40	130
		10	10			55	25			45	148
		20	7			60	8			50	127
		30	19			65	7			55	89
		40	14			70	8			60	115
		50	46			75	40			65	150
		60	16			80	45			70	142
		70	13			85	25			75	142
		80	10			90	2 8			80	135
		90	20			95	25			85	135
		2500	30			3000	40			90	120
		10	30			5	51			91	12
		20	72			10	55			92	20
		30	13			15	52			93	18
		40	14			20	48			94	18
		50	15			25	32			95	20
		60	12			30	43			96	19
		70	12			35	65			97	14
		80	16			40	92			98	24
		90	11			45	48			9 9	21
		2600	10			50	25			3300	26
		10	13			55	40			1	23
		20	10			60	62			2	35
		30	11			65	83			3	30
		40	14							4	25

Drilling Time In Minutes

-

3304 to 3305	15	3361 to 3362	20	3418 to 3419	57
6	2015	63	30	20	6
7	20	64	20	21	42
8 9	22	65	30	22	4 0
3310	20 28	66	25	23	30
11	20	87	12	24	30
12	13	68 69	14	25	35
13	22	3370	10 5	26	23
14	37	71	5	27 28	14 8
15	41	72	5	28	19
16	41	73	7	3430	19
17	26	74	6	31	23
18	34	75	7	32	16
19	4 0	76	7	33	10
3320	26	77	10	34	22
21	41	78	10	35	19
22	3 9	79	11	36	22
23	20	3380	15	37	30
24	22	81	7	38	29
25	23	82	10	3440	15
26	20	83	10	41	4
27	18	84	26	42	2
28	19	85	54	43	1
29	24	86	48	44	1
3330	19	87	4 8	45	2
31	20	88	28	4 6	18
32	22	89	37	47	31
33 34	45 48	3390	47	48	23
35	40 45	91	20	49	11
36	40 27	92 93	22	3450	25
37	18	93 94	14 21	51	25
38	15	95	28	52	15
39	15	96	20 27	53	13
3340	32	97	27	54 55	22
41	36	98	27		22
42	36	99	23		
43	41	3400	29		
44	27	1	12		
45	36	2	6		
46	33	3	5		
47	17	4	8		
48	20	5	23		
49	25	6	30		
3350	22	7	33		
51	8	8	40		
52 53	6	9	25		
54 54	36 18	10	23		
55	11	11 12	27 12		
56	9	12 13	12 13		
57	11	13	13		
58	14	15	37		
59	13	16	33		
60	13	17	57		
61	20	18	55		
		60.01 B			

OPEN FLOW TESTS

1

Ħ

JAL #1

November - 1937 August - 1939 lst 6 hrs. 31.15 Bbls. 2nd 6 hrs. 16.88 " 3rd 6 hrs. 14.81 " lst 3 hrs. 86 Bbls. 23 * 2nd 3 hrs. 208 " lst 24 hrs. 4th 6 hrs. 14.62 " 5th 6 hrs. 11.82 " 6th 6 hrs. 12.30 " Ħ 100 2nd 24 hrs. Flowed 4 BOPH last 6 hrs. January - 1938 December - 1939 lst 12 hrs. 12 BOPH lst 3 hrs. 39 Bbls. 12 BOF 8 11 9 11 6 11 7 11 2nd 6 hrs. 3rd 6 hrs. 24 [#] 102 [#] 2nd 3 hrs. lst 24 hrs. 2nd 24 hrs. 4th 12 hrs. 77 5th 6 hrs. 6th 6 hrs. 3 BOPH last 6 hrs. March - 1938 lst 8 hrs. 6 BOPH Next 12 hrs. 5 n 5 n Next 6 hrs. Next 6 hrs. 4 * 5 * Next 12 hrs. 5 * Next 6 hrs. December - -1938lst 24 hrs. 84 Bbls. 2nd 24 hrs. 3rd 24 hrs. 70 **n** 63 **n**

BOTTOM HOLE PRESSURE SURVEYS

_

JAL #1

Date of Surveys	Pressure	Bbls. Produced BetweenYSurveys
2-3-39	720 #	
3-31-39	730 #	3416
6-29-39	595 #	4683
8-30-39	680 #*	
9-28-39	710 #	3739
12-29-39	595 #	5211

* Not regular survey - well shut in 15 days.

71

JAL # 1

WELL EQUIPMENT

1

1	3" 6000# test Hughes CS Tee Type Adj Flow Bean
3288 '	7" OD 24# API Cld Gd C Blk Smls Casing
1190'	9 5/8" OD 36# API Old Gd C Blk Smls Casing
2	2" x 18" OCT Tie Down Clamps
l set	9 5/8" OD 14" x 8" x 43" Anchor Clamps
1	4 ¹ / ₂ " 2000# Type 1079 E Ash Amer Press Gauge
1	5" 3000# Pressure Gauge
1	9 5/8" OD x 7" OD 3000# test Type M Rector Braden Head
1	7" OD HOWCO Float Collar
1	9 5/8" OD Baker Bakblu Float Collar
1	2/7/8" OD x 4' 6.50# Blk Smls Tbg Nipple
1	7" OD 3000# test CIW Type ML Tubing Suspender &
	Blowout Preventor with 2 ¹ / ₂ " Rams
1	7" OD HOWCO Guide Shoe
1	9 5/8" OD Baker Bakblu Guide Shoe
34001	2 7/8" OD 6.50# 10 thd API Gd B Blk Smls Tubing
4	2" 3000# test NRS SE Gate Valves
1	2늘" Otis Tubing Closing Valve
1	3 ^m 3000# test WKM NRS SE Gate Valve

•

ROYALTY INTEREST

Jal #1 & #2

Commissioner General Land Office Roswell, New Mexico

Stanolind Oil & Gas Company (Until \$500,000.00 has been paid from this and other properties per contract 7/16/36 & 11/16/38) Philcade Building Tulsa, Oklahoma

A. K. Barnes First National Bank Bldg. Denver, Colorado

R. Olsen Oil Company 2811 Ramsey Tower Oklahoma City, Oklahoma

First National Bank of Chicago Chicago, Illinois Sliding Scale Government Royalty

1/16 of 8/8 of Pipe line Runs

1/64 of 8/8 Overriding Royalty of Pipe Line Runs

50% of Working Interest

50% of Working Interest

T

ANDERSON - PRICHARD OIL CORP.

.---

JAL # 2

Well INFORMATION

Casing Record	9-5/8" OD - 1150' - 500 sacks 7" OD - 3281' 0 250 sacks
Special Equipment	Guiberson Hook Wall Packer set at 3200'
Tubing Record	$2\frac{1}{2}$ " at 34#7'.
GEOLOGICAL INFORMATIO	
Elevation	3181
Top Anhydrite	1080
Base Salt	2700
Top Brown Lime	2720
Top Yates Sand	2870
Gas Shows	2893-97, 2900-03.
Total Depth	3479
Oil Zones	3430-35, 3470-75.
Drilling Time	Attached
Special Tests	Attached

GENERAL INFORMATION

Royalty Division	Attached to Jal #1 Well Record
Accumulated Production to Janua:	ry 1, 1940 32,378
Initial Production	105 BO/16 hrs. shot 240 qts. 3400-3479 then flowed 24 BOPH.

WELL HISTORY

Γ

Ga 1#2

This well was spudded 3-17-38 and drilled to TD 3479' with rotary drilling equipment. Shows of gas were logged in sand 2893' to 2897' and 2900' to 2903'. After Cementing 7" casing at 3281' oil was used for circulating fluid down to total depth. No tests were made until the well had been drilled to its total depth. At 3479' $2\frac{1}{2}$ " tubing was run to 3450'. The well would not flow after swabbing out drilling fluid but fluid stood within 500' of top of hole. 30 BO was swabbed in 6 hours. It was then shot with 240 qts. SNG from 3402' to 3479'. After cleaning out to bottom tubing was set at 3447' with Guiberson Hook Wall Packer set at 3200'. The well was then swabbed in and tested for 15 hours thru open tubing after recovering drilling fluid. At the end of the test it was flowing at the rate of 22 BOPH with 600 MCF gas per day.

Bealding Time In Minutes

		<u></u>	L #2		-				
800 to 810) 35	1390 to	1400	10	2560	to	2570	65	
20			10				80	65	
30		2000 to		4			90	65	
4(20	15			2600	90	
50			30	10			10	30	
6(40 50	15 15			20 30	20 20	
70 80			60	15				20 25	
90			70	15			50	35	
900			80	15			60	25	
10			90	20			70	45	
20			2100	15			80	30	
30			10 20	20 25			90	40	N.B.
40 50			20 30	25 10			2700	.0 195	N.D.
60			40	10			20	240	
70			50	15			30	265	
80			60	15			40	9 5	
90	60		70	15			50	80	
100			80	10			60	120	
10			90	15			70	130	
20			2200 10	10 10			80 90	9 5 130	
30 40			20	10			2800	120	
5			30	29			10	135	
6			40	34			20	135	
7			50	30			30	130	
8			60	82			40	• • •	
9			70	73			50	100	
110 1			80 90	30 30			60 70	70 35	
2			2300	18			80	125	
3			10	47			90	135	
4			20	30			2900	105	
5			30	30			10	80	
6			40	45			20	205	
7			50	15			30		N.B.
8			60 70	20			40	95	
9 120			70 80	80 40			50 60	45 50	
120			90	40 45			70	85	
2			2490	20			80	140	
3			10	15			90	90	
4			20	25			3000	60	
5			30	35			10	85	
6 7			4 0 50	30 45			20	100	
8			60	45 45			30 40	155	N.B.
9			70	65			1 0 50	105	N • D •
130			80	45			60		N.B.
1	0 10		90	10			70	180	
2			2500	60			80	65	
3			10	60 75			90	100	
4 5			20 30	75 60			3100 10	35 105	
6			40	60			20	85	
7			50	60			30	180	
8	0 15		60	60			40		N.B.
9	0 15								

1

ومعجر

				JAI	# 2				
3140 to		120	3 354	to	3355	18	3411	to 3412	15
	60	130			56	19		13	23
	70 80	140 N.B.			57 58	19 14		14 15	12 20
	00	H.D.			59	8		15	20 4
3282 to	3285	25			3360	8		10	22
0.000 00	90	75			6 1	4		18	25
	95	60			62	5		19	23
	330 0	80			63	12		3420	10
	5	105			64	14		21	12
	6	25			65	24		22	15
	7 8	40			66	16		23	12
	0 9	45 20			67 68	14 24		24 25	13 8
	10	15			69	12		26	12
	11	10			3370	16		27	10
	12	12			71	9		28	10
	13	15			72	9		29	20
	14	20			73	5		3430	10
	15	11			74	3		31	10
	16	12			75	9		32	21
	17	12			76	12		33	13
	18 19	10			77	10		34	6
	3320	9 7			78 79	15 15		35 36	2 1
	21	7			3380	16		37	1
	22	9			81	19		38	4
	23	17			82	30		39	11
	24	27			83	30		3440	7
	25	26			84		N.B.	41	27
	26	30			85	17		42	18
	27	23			86	20		43	21
	28	20			87	20		44	23
	29 3330	20 15			88 89	20 9		45 46	18
	31	17			3390	19		40 47	17 14
	32	16			91	19		48	24
	33	16			92	20			~1
	34	20			93	9			
	35	22			94	15			
	36	18			95	17			
	37 38	20			96	23			
	30 39	16 18			97 98	15 15			
	3340	34			99	15			
	41	15 N.B			3400	15			
	42	10	•		1	13			
	43	15			2	12			
	44	15			3	15			
	45	15			4	5			
	46	15			5	4			
	47 48	16 15			6 7	2 2			
	40 49	19			8	12			
	3350	20			9	20			
	51	15			3410	15			
	52	10			11	10			
	53	10							
	54	15							

JAL # 2

CPEN&FLOW TESTS

-

JAL # 2

August - 1938 336 Bbls. lst 24 hrs. December - 1938 384 Bbls. lst 24 hrs. 2nd 24 hrs. 305 * August - 1939 90 Bbls. 40 " 33\$ " 87 " lst 3 hrs. 2nd 3 hrs. 1st 24 hrs. Next 8 hrs. December - 1939 73 Bbls. 1st 3 hrs.
2nd 3 hrs.
1st 24 hrs.
2nd 24 hrs. 37 " 281 " 228 " 7 BOPH Last 6 hrs.

BOTTOM HOLE PRESSURE SURVEYS

JAL # 2

Ţ

Date of Survey	Pressure	Bbls. Produced Between Surveys
1-21-39	814 #	
3-31-39	847 #	4255
6-29-39	745 #	4590
8-30-39	835 #*	
9-28-39	780 #	3833
12-29-39	695 #	5286

* Not regular snrvey - well shut in 15 days.

-72-

.

JAL #2

.

.

.

WELL EQUIPMENT

1	3" 6000# test Hughes CS Tee Type Adj Flow Bean
3282'	7" OD 22# API Gd B Blk Smls Casing
1140'	9 5/8" OD 36# ditto
1 set	9 5/8# OD-14" x 8" x 43" Anchor Clamps
1	41 3000# Type 1079 D Ash Amer Press Gauge
1	9 5/8 OD 6000# test Type H Rector Braden Head
1	7" HOWCO Float Collar
1	9 5/8 Baker Bakblu Float Collar
1	7" OD x 24" 24# Blk Smls Csg Nipple
1	2 7/8" OD x 4: 6.50# Blk Smls Tubing Nipple
1	7" OD x 2 7/8" OD Guiberson Type G-1 Hook Wall
	Control Heal Packer
1	7" OD 3000# test CIN Type ML Tubing Suspender
	& Blowout Preventor with 22" Rams
1	7" HOWCO Guide Shoe
1	9 5/8" Baker Bakblu Guide Shoe
3444 '	2 7/8" OD 6.50# API Gd B Blk Smls Tubing
1	2" 3000# test Hammer Lub Plug Valve
1-	22" 3000# test WKM NRS SE Lub Conduit Gate Valve
1	3 ^m 3000# Test Orbit OS & Y SE Gate Valve
	-

Π

JAL # 1-2

-

Π

SURFACE EQUIPMENT

1	9' x 16' Cattle Guard
1103'	2" 3.75# Std Blk LW Line Pipe
	3" 7.7# ditto
3551	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··
22	6' Iron Line Posts
2	Corner Posts
1	Gate Post
2	#5 IF 3' x 11' Nat'l Oil & Gas Separator Complete
4	10' x 15' 210 Bbl Type 2 Nat'l Welded Steel Tanks
4	Steel Walkway Brackets
1	16' Steel Stariway
441	26" Steel Walkway
3	2" Class 125 CI SE Lub Plug Valves
. 1	2" 3000# test Hughes CS NRS SE Gate Valve
2	3" Std IBBM NRS SE Gate Valve
4	3" Class 125 CI SE Lub Plug Valves
5	3" Class 125 CI FE Lub Plug Valves with CFBO
2	4" Std IBBM NRS SE Gate Valves
4	4" Class 125 CI SE lub Plug Valves
1	4" 14 oz. National Stack Valve

ANDERSON - PRICHARD OIL CORP.

×.....

WELLS #1

WELL INFORMATION

.

Casing Record	16" OD - 99' - 30 sacks 8-5/8" OD - 1170' - 100 sacks 5 ¹ / ₂ " OD - 3270' - 300 Sacks
Special Equipment	Packer at 3201
Tubing record	2" at 3441
GEOLOGICAL INFORMATION	
Elevation	3210
Top Anhydrite	1080
Base Salt	2660
Top Brown Lime	2690
Top Yates Sand	2850
Gas Shows	2790-2931 & 2965
Total Depth	3500
Oil Zones	3458-3478 & 3482-86
Drilling Time	Attached
Special Tests	Attached

General Information

Royalty Division	Attached
Accumulated Production to Ja	nuary 1, 1940
	49, 399
Initial Production	39 BOPD natural, shot 90 qts. 3454- 3500 then flowed 66 BO/5 hrs.

-

WELL HISTORY

1

Wells #1

This well was spudded 7-27-37 and drilled with cable tools to 2970. Shows of gas were logged at 2790, 2931 and 2965 with hole loaded with water. At 2931 the hole was bailed dry and showed estimated 250 MCF gas per day. The hole was not unloaded below that depth but sufficient gas was encountered at 2965 to blow the tools up the hole. Rotary equipment was used from 2970 to total depth and after cementing $5\frac{1}{2}$ " casing at 3270 oil was used for circulating fluid. Tests made by blowing the hole dry with gas at 3313, 3359, and 3444 showed no oil or gas. At 3474 the well produced $2\frac{1}{2}$ BOPH on 2 hour test thru casing with drill pipe in hole. Flowing naturally at 3500' it produced 39 BO in 24 hours by heads every 3 or 4 hours.

The well was then shot with $l\frac{1}{2}$ qts. SNG per foot from 3454-75; 2 qts. per foot from 3474-84; and $2\frac{1}{2}$ qts. per foot from 3484-3500. After cleaning out to bottom $2\frac{1}{2}$ " tubing was run to 3427. Flowing thru open tubing it produced 66 BO in 5 hours by heads. Flowing thru 1/8" choke or tubing it produced 143 BO in $17\frac{1}{2}$ hours. Producing at rate of 120 BOPD gas gauged 166 MCF per day.

On 9-19-37 the $2\frac{1}{2}$ ⁿ tubing was pulled and 2^w run back to 3441 with Guiberson Type G-1 Control Head Hook Wall Packer set at 3202. After making this change the well flowed continuously thru 3/4^w choke or tubing.

Drilling Time In Minutes

~

			W	ells #1				
3090	3100	275	3274	3275	35	3383	3334	60
	10	75		76	30		35	35
	20	180		77	10		36	35
	30	340		78	10		37	35
	40			79	10		38	30
	50	540		80			39	30
	60			81	35		40	30
	70	285		82	25		41	20
	80	255		83	25		42	20
	90	540		84	25		43	30
	3200	470		85	20		44	50
3200	1	40		86	35		45	20
	2	70		87	30		46	30
	3	60 80		88	3 0		47	30
	4 5	80 80		89 90	35 60		48	50
	6	40		90	4 0		49	4 0
	7	1 0 50		92	105		50 51	
	8	25		93	45		52	20
	9	35		94	50		53	20 5
	10	130		95	60		54	15
	11	50		96	40		55	10
	12	60		97	45		56	10
	13	60		98	30		57	5
	14	35		99			58	10
	15	15		3300	25		59	5
	16	20	3300	1	20		60	5
	17	30		2	25		61	5
	18	25		3	15		62	5
	19	70		4	30		63	10
	20	50		5	20		64	5
	21	45		6	25		65	10
	22	45		7	30		66	20
	23	60 55		8	25		67	15
	24 25	55		9	30 25		68	10
	25 26	60 50		10 11	25 30		69	15
	27	75		12	10		70	10
	28	50		13	15		71 72	15
	29	70		14	60		73	20 15
	30	95		15	35		74	5
	31	65		16	25		75	15
	32	85		17	30		76	20
	33	85		18	50		77	9
	34	55		19	25		78	31
	35	65		20	35		79	11
	36	60		21	20		80	9
	37	60		22	25		81	12
	38	60 50		23	25		82	13
	39	50		24	35		83	17
	40	95 85	مد	25	25		84	11
	41	85	2ű	25	20		85	13

Wells #1

1

			Wells #1			
3385	3386	10	3427	17	3469	1
	87	11	28	16	70	ī
	88	9	29	14	71	2
	8 9	11	30	13	72	3
	90	7	31	13	73	2
	91	10	32	18	74	6
	92	7	33	11	75	12
	93	10	34	9	76	7
	94	8	35	13	77	9
	95	15	36	4	78	7
	96	15	37	2	79	10
	97	15	38	2	80	12
	98	10	39	2	81	16
	99	15	40	9	82	11
- /	3400	10	41	16	83	5
3400	1	5	42	16	84	4
	2 3	5	43	14	85	4
	3	5	44	20	86	4
	4	5	45	18	87	12
	5	10	46	30	88	17
	6	10	47	11	89	31
	7	10	48	9	90	13
	8	16	49	23	91	25
	9	13	50	22	92	22
	10 11	12 15	51	24	93	18
	12	13	52 53	27	94	18
	12	14	55 54	23 32	95	22
	14	11	55	36	96	30 95
	15	14	56	34	97	25
	16	16	57	30 30	98 99	20 75
	17	8	58	30	3500	35
	18	10	59	5	3500	35
	19	15	60 60	5		
	20	13	61	4		
	21	15	62	5		
	22	10	63	5		
	23	9	64	4		
	24	12	65	3		
	25	16	66	ĩ		
	26	13	67	ī		
	-		68	1		
				-		

Drilling Time In Minutes

-

1

OPEN FLOW TESTS

WELLS #1

October - 1917

lst	12	hrs	11	BOPH
2nd	12	hrs	6	Ħ
3rd	12	hrs	6	11
4th	12	hì S	6	Ħ

November - 1937

lst	6 hrs	5.87	BOPH
2nd	6 hrs	5.40	Ħ
3rd	6 hrs	5.40	Ħ
4th	6 hrs	5.42	11
5th	6 hrs	5.40	Ħ
6th	6 hrs	5.42	
7th	6 hrs	5.40	11:
8th	6 hrs	5,42	11
9th	6 hrs	5,42	
10th	6 hrs	5.42	- 11
llth	6 hrs	5.42	Ħ
12th	6 hrs	5.42	n
13th	6 hrs	5.40	Ħ
14th	6 hrs	5.40	Ħ

January - 1938

•

lst	12	hrs	8	BOPH
2nd	6	hrs	6	Ħ
3rd	6	hrs	6	Ħ
4th	12	hrs	5	Ħ
5th	6	hrs	5	Ħ
6th	6	hrs	5	Ħ

July - 1938

_

lst 6 hrs	10	BOPH
Next 14 hrs	7	
Next 10 hrs	5호	11
Next 14 hrs	5	11
Next 4 hrs	5	Ħ
September - 193	39	
lst 3 hrs	37	Bbls.
2nd 3 hrs	16	Ħ
Next 18 hrs	66	
lst 24 hrs	119	11
2nd 24 hrs	69	
$2\frac{1}{2}$ BOPH last 6	hrs	
December - 1939	9	
lst 3 hrs	6	Bbls.
2nd 3 hrs	11	11
lst 24 hrs	75	Ħ

2nd 24 hrs 72 3 BOPH last 6 hrs.

•

11

BOTTOM HOLE PRESSURE SURVEYS

WELLS #1

Date of Survey	Pressure	Bbls. Produced Between Surveys
3-30-39	1136 #	
8-18-39	1080 #*	
8-19-39	1093 # *	
8-20-39	110 5#*	
8-30-39	1120 #*	
9-27-39	1050#	9476
12-28-39	1065#	5191

*Not Regular Survey.

WELLS #1

WELL EQUIPMENT

ſŢ

1 2" 6000# test Hughes Type T Adj Flow Bean	
3287: 5½" OD 17# Ygstn API Gd C Blk Smls Casing	
1168' 8 5/8" OD 32# 8 thd Ygstn API Gd C Blk Smls Casing	
88* 16" OD 70# 8 thd Std Blk LW Casing	
1 set 8 5/8"OD 1" x 6" x 43" Anchor Clamps	
1 5" 2000# test Durogauge Press Gauge	
1 $5\frac{1}{2}$ " OD x 2" Hinderliter Type HZ Comp Tubing Head less	
slips and BO Preventor	
1 8 5/8" OD Type L Rector Head	
1 5 ¹ / ₂ " HOWCO Float Collar	
1 8 ⁵ /8" OD Baker Bakblu Float Collar	
1 $5\frac{1}{2}$ " OD x 8" Gd C Blk Smls Csg Nipple	
1 52" OC x 30" Gd C Blk Smls Gsg Nipple	
1 8 5/8" OD x 32 # Gd C Blk Smls Csg Nipple	
1 $5\frac{1}{2}$ " OD x 2 3/8" Od EUE Guiberson Type G-1 Control Head H)a alram
	acker
1 5 ¹ / ₂ " OD HOWCO Guide Shoe	
1 8 5/8" OD Baker Bakblu Guide Shoe	
3450' 2 3/8" OD 4.50# Ygstn API Gd C Blk Smls Tubing	
1 2" 3000# test WKM Gate Valve	
1 2" 3000# test Hughes CS SE NRS Gate Valve	
1 $5\frac{1}{2}$ ")D 3000# test Hughes CS SE NRS Comb D & FL Gate Valve	-
T of the medical dear claim of ministralities white the second value of the second value of the second of the seco	.8
1 set 2" Wedges for $5\frac{1}{2}$ " x 2" Hinderliter Tubing Head	

Page #1

ROYALTY INTEREST

١

WELLS #1 & #2

Commissioner General Land Office Roswell, New Mexico

1

E. J. Wells 7823 12th Street N.W. Weshington, D. C.

Indian Petroleum Corp 391 Sutter Street San Francisco, California

Red Feather Oil Co. 701 Symes Bldg. Denver, Colorado

Ella M. Bivens San Clemente, California

L. E. Armstrong Rawlins, Wyoming

C. M. Bowen Rawlins, Wyoming

Bessie Chenstein 3400 E. 1st Street Long Beach, California

J. W. Pauson 391 Sutter Street San Francisco, California

W. L. McLaine Higgins Building Los Angeles, California

Martin J. Weil, Mary W.Behrendt & Elizabeth Ann Weil c/o A. L. Weil Higgins Building Los Angeles, California

Alice G. Henry, Executrix of Estate of Fred T. Henry, Deceased 802 Midland Savings Bank Bldg. Denver, Colorado

Sliding Scale Government Royalty

.0033928 of 8/8 Permittee Royalty of Pipe Line Runs

.0367051 of 8/8 Permittee Royalty of Pipe Line Runs

.0031250 of 8/8 Permitte Royalty of Pipe Line Ryms

.0008928 of 8/8 Permittee Royalty of Pipe Line Runs

.0013189 of 8/8 Permittee Royalty of Pipe Line Runs

.0013189 of 8/8 Permittee Royalty of Pipe Line Runs

.0013189 of 8/8 Permittee Royalty of Pipe Line Runs

.004464 of 8/8 Permittee Royalty of Pipe Line Runs

.0004464 of 8/8 Permitte Royalty of Pipe Line Runs

.0004464 of 8/8 Permittee Royalty of Pipe Line Runs

.0005884 of 8/8 Permittee Royalty of Pipe Line Runs

Page #2

ROYALTY INTEREST

WELLS #1

The Illinois Oil Company 50% of Working Interest c/o First National Bank of Chicago Chicago, Illinois (210 Guardian Life Bldg., Dallas, Texas)

First National Bank of Chicago 50% of Working Interest Chicago, Illinois

ANDERSON-PRICHARD OIL CORP.

WELLS #2

WELL INFORMATION

IT

Casing Record	9-5/8" OC - 1163' - 500 sacks 7" OD - 3303' - 300 Sacks
Special Equipment	None
Tubing Record	2 ¹ at 3488
GEOLOGICAL INFORMATION	
Elevation	3207
Top Anhydrite	1095
Base Salt	2710
Top Brown Lime	2730
Top Yates Sand	2900
Gas Shows	2788-3099 ($1\frac{1}{2}$ million)
Total Depth	3506
Oil Zones	3400-20 & 3470-80
Drilling Time	Attached
Special Tests	Attached

GENERAL INFORMATION

Attached to Wells #1 Well Record

Accumulated Production to January 1, 1940 27,109

Initial Production

Royalty Division

120 BOPD natural, shot 340 qts. 3398-3506 then flowed 480 BOPD

WELL HISTORY

Wells #2

This well was spudded 6-6-38 and drilled with rotary equipment to total depth, 3506'. A show of gas was logged in sand 2909-2925. A drill stem test was made from 2708' to 3099'. The tester was open 21 minutes and showed 1 million gas and 270' drilling fluid with no oil. After cementing 7" casing at 3303' oil was used for circulating fluid. No tests were made until the well had been drilled to its total depth of 3506'. Flowing thru 7" casing with $3\frac{1}{2}$ " OD drill pipe in the hole it produced 5 BOPH (by heads every $2\frac{1}{2}$ hours) with 100 MCF gas per day. It was then shot from 3398' to 3506' with 340 quarts SNG. After cleaning out to bottom $2\frac{1}{2}$ " tubing was set at 3489'. Flowing thru open tubing it produced 340 BO in $13\frac{1}{2}$ hours, the gauge during last hour of test being 20 bbl. Gas/Oil ratio 1300. Production settled to 12 BOPH the last 14 hours of BO hour test. Completed 7-5-38.

WELLS #2

~

NB

71

DRILLING TIME

250 to 60		720 to 760	4 0	1230 to 40 24	
70	18	70	45	50 25	
80	20	80	30	60 25	
90	20	90	35	70 26	
300	17	800	55	80 21	
10	20	10	60	90 20	
20	20	20	90	1300 19	
30	23	30	40	10 20	
40	20	40	40	20 20	
50	22	50	50	30 25	
60	20	60	40	40 40	
70	20	70	45	50 35	
80	25	80	45	60 25	
90	35	90		70 65	
4 00	30	900	30 30		
	35		31		
10		10	36		
20	40	20		1400 50	
30	35	3 0	30	10 25	
40	30	40	35	20 14	
50	30	50	30	30 20	
60	30	60	36	40 20	
70	25	70	30	50 15	
80	30	80	34	60 35	
90	25	90	48	70 45	
500	30	1000	42	80 60	
10	45	10	43	90 30	
20	60	20	55	1500 30	
30	70	30	60	10 27	
40	40	40	43	20 41	
50	40	50	35	30 30	
60	35	60	40	40 32	
70	45	70	45	50 40	
80	30	80	50	60 53	
90	40	1 90	35	70 90	
600	25	1100	80	80 15	
10	20	10	130	NB 90 20	
20	12	20	30	1600 7	
30	23	30	55	10 11	
40	20	40	75	20 12	
50	35	50	70	30 15	
60	30	60	88	40 15	
70	30	70	114	50 10	
80	25	80	30	60 20	
90	25	90	35	70 15	
700	23	1200	20	80 30	
10	30	10	19	90 45	
20	40	20	18	1700 13	
30	55	30	22	10 12	
40	35				
50					
	40				

40

.

-83-

.

DRILLING TIME, WEELS #2

-

.

				0.000 1 10	50
1710 to 20	15	2240 to 50	75	2700 tol0	50
30	10	60	4 5	20	100
40	5	70	35	30 40	130 115
50	10	80 90	30 15	50	105
60 70	20 30	50	10	60	100
80	20	2300	xx 45	70	95
90	18	10	65	80	185
1800	20	20	90	90	155
1000	17	30	55	•••	
20	23	40	35	2800	118
30	27	50	30	10	105
40	20	60	20	20	140
50	20	70	20	30	110 NB
60	20	80	20	40	95
70	27	90	70	50	80
80	25			60	75
90	35	2400	20	70	65
1900	25	10	22	80	30
10	45	20	23	90	35
20	40	30	30		
30	30	40	35	2900	75
40	60	50	40	10	62
50	60	60	35	20	58
60	60	70	25	30	30 50
70	50	80	45 NB	40	50 4 5
80	90 NB	90	15	50 60	45 60
90	40	2500	20	70	160
2000 10	40 20	10	10	80	120
20	35	20	35	90	120 NB
30	30	30	50		
40	45	40	40	3000	60
50	30	50	20	10	65
60	20	60	15	20	54
70	19	70	15	30	50
80	22	80	10	40	70
90	20	90	10	50	50
			_	60	60
2100	35	2600	10	70	85
10	35	10	17	80	
20	20	20	7	90	170 NB
30	25	30	10	53.00	
40	28	40	20	3100	-
50	27	50	13	10	4 0
60 70	30 35	60 70	14 22	2 - 30	75 30
70 80	35 35	80	20	40	50 50
90	35	90	70	50	105
50	90	2700	40	60	160
2200	30	0100		70	125 NB
10	25			80	90
20	20			90	70
30	40			3200	128
40	25			· · ·	

DRILLING TIME AT WELLS #2

.

3200 to 3210	137	3364 to 3365	4
20	150 N.B.	66	7
30	150	67	10
40	100	68	10
50	220	69	10
60	220	70	17
70	340 N.B.	71	28
80	125	72	56
90	130	73	34
3300	100	74	53
05		75	34
10	65	76	23
20	240	77	42 N.B.
30		78	20
31	10	79	25
32	15	80	25
33	25	81	25
34	20	82	12
35	15	83	28
. 36	10	84	25
37	10	85	25
38	15	86	25
39	15	87	20
4 0	12	88	20
41	12	89	
42	10		20
		90	5
43	10	91	10
44	10	92	20
45	9	93	28
46	11	94	27
47	12	95	25
48	9	96	24
49	10	97	21
50	9	98	25
51	7	99	12
52	7	3400	10
53	8	01	9
54	14	02	1
55	19	03	15
56	35	04	20
57	25	05	20
58	37	06	28
59	33	07	35
60	11	08	38
61	10	09	20 N.B.
62	14	10	15
63	10	11	16
64	5	12	29
		13	20
		14	15
		15	15
		16	21
		17	19
		18	12

 \uparrow

DRILLING TIME AT WELL #2

3414 to 3	415	15	3460	to	3461	20
0121 00 0	16	21	0100	••	62	17
	17	19			63	2
	18	12			64	2
	19	22			65	2
	20	20			66	ĩ
	21	8			6 7	10
	22	6			68	10
	23	15			69	16
	24	17			70	10
	25	16			71	17
	26	21			72	43
	27	13			73	36
	28	18			74	30
	29	17			75	36
	30	6			76	38
	31	18			77	14
	32	11			78	31
	33	15			79	34
	34	15			80	26
	35	15			81	29
	36	5			82	6
	37	2			83	7
	38	2			84	8
	39	6			85	22
	40	40			86	30
	41	20			87	35
	42	20			88	20
	43	30			89	30
	44	46			90	25
	45	45			91	30
	46	20			92	20
	47	55 N.B.			93	20
	4 8	19			94	15
	49	21			95	20
	50	18			96	35
	51	21			97	21
	52	14			98	7
	53	11			99	2
	54	17			3500	2
	55	18			01	3
	56	18			02	6
	57	15			03	4
	58	20			04	5
	59	12			05	4
	60	16			06	12

OPEN FLOW TESTS

WELLS #2

August - 1938

1

December - 1939

....

lst 3 hrs 89 BBls. 2nd 3 hrs 66 " lst 24 hrs.376 " 2nd 24 hrs 323 " 14 BOPH last 4 hrs

February - 1939

lst 6 hrs 35 BOPH Next 17 hrs $17\frac{1}{2}$ " Next 7 hrs 18 "

1st hour 55 BOPH

12

tt

11

Ħ

11 11

> # 11 11

> > 11

Next hour 42

Next 5 hrs 30

Next 8 hrs 23 Next 2 hrs 24 Next 5 hrs 20

Next 3 hrs. 19

Next 6 hrs 17 Next 10 hrs $16\frac{1}{2}$ Next 10 hrs $16\frac{1}{2}$

Next 3 hrs 16

September - 1939

lst 3 hrs 106 Bbls. 2nd 3 hrs 64 " Next 18 hrs290 " lst 24 hrs 460 " 2nd 24 hrs 198 " 12 BOPH last 6 hours

BOTTOM HOLE PRESSURE SURVEYS

	WELLS #2			
Date of Survey	Pressure	Bbls. Produced Between Surveys		
1-21-39	1082 #			
3-30-39	1092#	3645		
6-30-39	992 #	3597		
9-27-39	1033 #	3 878		
12-28-39	100 5#	5191		

WELLS #2

_

WELL EQUIPMENT

l	3" 6000# test Hughes CS Adj Flow Bean
3309 '	
1156'	9 5/8" OD 34.75# Lapweld Casing
l set	$9/58^{m}-1\frac{1}{4}^{m} \ge 8^{m} \ge 43^{m}$ Anchor Clamps
2	42# 3000# Type 1056 Amer Ash Press Gauges
1	7" OD x 2 7/8# OD EUE OCT Type T-16 Mondrel Type Tubing Head
1	9 5/8" OD x 7" OD AWI & MW Type C Improved Braden Head
1	7" OD HOWCO Float Collar
1	9 5/8" OD Baker Bakblu Float Collar
1	7" OD X 24# 24" API Gd C Blk Smls Csg Nipple
1	2 7/8" OD x 4' 6.50# EUE API Gd C Blk Smls Tubing Nipple
1	2 7/8" OD x 10' 6.50# EUE Smls Tubing API Gd C Nipple
1	7" OD HOWCO Guide Shoe
1	9 5/8" OD Baker Bakblu Guide Shoe
34831	2 7/8" OD 6.50# EUE Ygstn Api GdC Rg 2 Blk Smls Tubing
1	2" 3000# Test Eureka Plug Valve
1	3" 3000# test Orbit OS & Y SE Gate Valve
1	3" 3000# test Eureka CS Plug Valve

WELLS #1-2 LEASE

SURFACE EQUIPMENT

2	6" x 4" Std Blk Smls Swg Nipples
1	7" x 3" ditto
	2" 3.75# Std Blk LW Line Pipe
	3" 7.7# ditto
498'	4" 11# ditto
1	7" OD Std Blk Smls Bull Plug
25	6' T Iron Line Posts
2	Gate Posts
4	Corner Posts
2	#5 IF 4' x 11' Nat'l Oil & Gas Separator Complete
5	8' x 15' 250 bbl. API Bolted Steel Tanks
5 se	ets Walkway Brackets
1	8' Steel Stariway
81'	25" Steel Walkeay
9	2" Class 125 CI SE Lub Plug Valves
17	3" Class 125 CI Fe Lub Plug Valves with CFBO
2	3" Std IBBM NR S Se Gate Valves
5	4" Class 125 CI SE Lub Plug Valvew
2	4" Std IBBM NRS SE Gate Valves

ANDERSON - PRICHARD OIL CORP.

STUART #3

WELL INFORMATION

Casing Record 7-5/8" OD - 1165' - 350 sacks $5\frac{1}{2}"$ OD - 3281' - 300 sacks

Special Equipment Nixon Surface Control Gas Lift Installation with packer ser at 3235'.

Tubing Record

1

2" £t 3484'.

-

GEOLOGICAL INFORMATION

Elevation	3199
Top Anhydrite	1108
Base Salt	2690
Top Brown Lime	2720
Top Yates Sand	2850
Gas Shows	2980-3000
Total Depth	3499
Oil Zones	3420-28, 3480-99.
Drilling Time	Attached
Special Tests	Nons

GENERAL INFORMATION

Royalty Division	Attached
Accumulated Production to January	1, 1940 15,096
Initial Production	60 BO/48 hrs. natural by heads, shot 270 qts. 3364-3499 then flowed 104 BO/11 hrs.

WILL HISTORY

STURET #3

This well was spudded 10-7-38 and drilled to total depth of 3499' with roatry drilling equipment. Shows of gas were logged 2900' to 2982' and from 3048' to 3085'. After Cementing $5\frac{1}{2}$ " casing at 3281' oil was sued for circulating fluid. No tests were made until the well had been drilled to 3499'. 2" tubing was then run to 3499' and the well swabbed dry. After setting 2 hours $2\frac{1}{2}$ BO was swabbed out. After this test the tubing was left open and after standing 48 hours the well flowed 60 BO and died. It was then shot from 3389' to 3499' with 270 qts. SNG. After cleaning out to bottom 2" tubingwas set at 3470' and the well swabbed in. Flowing thru open tubing it produced 104 BO in 11 hrs. Flowing thru $\frac{1}{4}$ " choke on tubing it produced 95 BOPD with 100 MCF gas per day. Completed 11-10-38.

On 9-3-29 this well was put on gas lift because it would no longer flow on its own gas. A surface intermitter was installed and operated until 1-1-40. With this installation the well produced from 35 to 50 BOPD with an input gas/cil ratio of approximately 2500. On 1-5-40 the well was cleaned to bottom. On 1-2-40 tubing was pulled and operations to clean the well were started. Tubing was run back to 3471' with a standing valve at 3444' and a Guiberson Type G-1 Control Head Hook Wall Packer set at 3225'. A Nixon Type 103 flow valve was set at 3188' and a Type 107 Nixon Valve was set at 2695'. At the present time the well is operating an 300# input pressure, the flow valves being open 2 minutes out of each our. Production averages 40 BOPD and the input gas/cil ration is approximately 450.

DRILLING TIME IN MINUTES STUART #3

•---

ſŢ

250	to 260	10	840	to 850	30	1400 to	1410	15
	70			60	35		20	35
	80	10		70	30		30	5 0
	90	5		80	40		40	30
	300	10		90	50		50	25
300	10	10	.	900			60	15
	20	10	900	10	50		70	15
	30	10		20	30 N.B	•	80	15
	40	15		30	17		90	15
	50	15		40	23	3.600	1500	25
	60	10		50	15	1500	10	25
	70	15		60 70	15		20	25
	80	10		70	25		30	15
	90	15		80	17		40	15
400	400	15		90	18		50	55
4 00	10 20	10	1000	1000 10	3 0 15		60 70	3 5
	20 30	20 15	1000	20	45		70 80	70 55
	40	15		20 30	30		90	25
	1 0 50	20		40	35		1600	30
	60	15		- 50	30	1600	10	15
	70	18		60	25	1000	20	25
	80	22		70	25		30	35
	90	25		80	30		40	35
	500	15		90	30		50	25
500	10	30		1100	10		60	15
	20	35	1100	10	35		70	40
	30	20		20	90		80	60
	40	32		30	90		90	60
	50	23		40	70		1700	25
	60	45		50	85	1700	10	35
	70	30		60	135		20	50
	80	10 N.B.		70	125		30	50 N.B.
	90	10		80	60		40	35
	600	15		90	70		50	30
600	10	15		1200	60		60	30
	20	20	1200	10	35		70	4 0
	30	35		20	20		60	65
	40	15		30	25		90	60
	50	20		40	20		1800	25
	60	15		50	13	1800	10	20
	70	15		60 70	12		20	12
	80	25		70	11		30	12
	90 700	10 10		80 90	19 15		4 0	21
700	10	15		1300	20		50 60	10 10
100	20	10	1300	10	15		70	10
	30	10	1000	20	15		80	20
	40	20		30	25		90	10
	50	20		40	15		1900	15
	60	30		50	10	1900	10	15
	70	35		60	10	-	20	20
	80	25		70	10		30	25
	90	25		80	15		40	15
	800	15		90	18		50	15
800	10	25		1400	22		60	15
	20	25					70	15
	30	30					80	15
	40	25						

11

DRILLING TIME IN MINUTES STUART #1

_

1980	to 1990	15	2540 to		15	3100	to 3110	210
	2000	50		60	15		20	55
2000	10	60		70	15		30	70
	20	20		80	20		40	230 N.B.
	30	30		90	25		50	180
	40	18 49 W D	8600	2600	25		60	205
	50 60	42 N.B.	2600	10	20 20		70	210
	60 70	20 70		20	20		80	295
	70 80	30 35		30	25 * 0		90 7 8 9 0	290
	90	25		40 50	3 0	7900	3200	240
	2100	25		50 60	20 30	3200	10	225
2100	10	25		70	30		20	280
2100	20	20		80	30 N.B.		30	270
	30	20		90	35 N.D.		4 0	210 240 N D
	40	25		2700	40		50 60	240 N.B. 160
	50	30	270 0	10	100		70	125
	60	20	2100	20	160		80	125
	70	25		30	175		85	180
	80	10		40	130		86	30
	90	15		50	155		87	30
	2200	30		60	90 N.B.		88	40
2200	10	30		70	115		89	18
	20	25		80	140		3290	17
	30	40		90	130		91	17
	40	25		2800	125		92	22
	50	25	2800	10	135		93	25
	60	35		20	100		94	35
	70	35		30	140		95	36
	80	60		40	150		96	32
	90	55		50	130 N.B.		97	30
	2300	50		60	105		98	34
2300	10	35		70	90		99	37
	20	20		80	105		3300	13
	30	20		90	100	3300	1	28
	40	20		2900	160		2	30
	50	95	2900	10	45		3	40
	60 70	90 40		20	28 92		4	45
	80	40 35		30 40	120		5	50
	90	85		4 0 50	85		6	60 10
	2400	75		60	165		7 8	10
2400	10	25		70	140 N.B.		9	15
0.200	20	55		80	135		9 10	35
	30	35		90	115		11	40 35
	40	25		3000	135		12	40
	50	40	3000	10	125		13	40
	60	30		20	190		14	25
	70	40		30	50		15	20
	80	40 N.B.		40	35		16	25
	90	40		50	95		17	30 N.B.
	2500	95		60	95		18	30
2500	10	100		70	30 N.B.		19	30
	20	50		80	30		3320	30
	30	20		90	55	3320	21	30
	40	15		3100	70		22	15

Π

DRILLING TIME IN MINUTES STUART #3

3322 to 3323	14	3380 to	3381	22	3437 ta	3438	52
24	14	0000 00	82	18	0101 00	39	43
25	16		83	15		3440	20 N.B.
26	23		84	15		41	15
27	32		85	12		42	22
28	35		86	19		43	5
29	40		8 7	21		44	13
3330	30		88	4 5 26		4 5	20
31 32	27		89 3390	26 17		46 47	20 10
32 33	24 20		91	26		4 8	5
34	22		92	34		49	23
35	22		93	43		3450	15
36	30		94	35		51	4
37	4 0		95	20		52	3
38	30		96	25		53	7
39	25		97	25		54	18
3340	25 75 N D		98	25		55	16
41	35 N.B.		99 34 00	15 15		56 57	9
4 2 4 3	30 15	3400	1	15		58	20 23
43 44	20	0400	2	15		59	24
45	11 11		3	21		3460	13
46	14		4	14		61	6
47	20		5	15		62	7
48	20		6	25		63	17
49	12		7	27		64	25
50	10		8	28		65	25
51	16		9	35 70 N D		6 6	30
52 53	15 18		10 11	30 N.B. 25		67 68	30
55 54	14		12	12		69	35 15
55	20		13	8		70	20
56	23		14	15		71	17
57	17		15	9		72	27
58	10		16	9		73	25
59	12		17	17		74	30
60	18		18	10		75	30
61	25		19	15		76	15
62	20		20	15		77	20
63 64	25		21 22	7 6		78	10
65	23 15		23	7		79 80	10
66	15		24	4		81	3
67	15		25	6		82	2
68	25		26	10		83	5 5 2 5 4 8 8 8 8 8 8 8 8 8
69	15		27	10		84	4
70	30		28	6		85	8
71	35		29	24		86	8
72	45 25		30 31	25 25		87	8
73 7 4	25 25		31 32	25 30		88 89	25
75	30 N.B.		33	4 0		90	20 30
76	14		34	30	•	91	30
77	19		35	28		92	43
78	14		39 36	93 39		9330	39
79	14		37	53		94	30
80	24					95	22
				MTHIMPO			
		DUTTTING	L TTME TW	MINUTES	STUART #5		
3495 to 3496	22						
97	47						
98	4 0						
99	40						

- 98 99

BOTTOM HOLE PRESSURE SURVEYS

STUART #3

		Bbls.Produced
Date of Survey	Pressure	Between Surveys
3-9-39	1050#	
9-27-39 -	890 #	6367

STUART #3

WELL EQUIPMENT

3282'	52" OD 15# API Gd B Blk Smls Casing
1161'	7-5/8" OD 15.7# Armoo Slip Joint Casing
1	$7-5/8"$ OD - 1 $\frac{1}{4}$ x8x43 Anchor Clamp
1	52" OD x 2-3/8" OD 3000# test OCT Type T-16-C
	Stripper Tubing Head.
1	7-5/8" OD x 52" OD 3000# test Al&MW New Improved Type
	C Braden Head
1	52" OD HOWCO Float Collar
1	7-5/8" OD Baker Bakblu Float Collar
1	5 ¹ OD x 12" 17# API Gd C Blk Smls Casing Nipple
1	7-5/8" OD x 12" 26# API Gd C Blk Smls Casing Nipple
1	2-3/8" OD x 4' 4.70# API Gd C Blk Smls Tubing Nipple
1	2-3/8" OD x 10' 4.70# API Gd C Blk Smls Tubing Nipple
	2-3/8" OD 4.70# EUE API Gd B Blk Smls Tubing
631	2-7/8" OD 6.50# EUE API Gd B Blk Smls Tubing
1	2" 3000# test Orbit CS SE OS&Y Gate Valve
1	2* 3000# test Eureka CS SE Plug Valve
2 1	3" 3000# test Eureka CS SE Plug Valve
1	52" OD HOWCO Guide Shoe
1	7-5/8" OD Baker Bakblu Guide Shoe
1	$5\frac{1}{2}$ " OD x 2" Guiberson Hook Wall Packer
1	Nixon A Mast.
1	Nixon Intermitter
1	Nixon Wire Line Hoist & Turbine Motor
3500*	Wire Line
1	2" Wire Line Stuffing Box
	Nixon l ¹ / ₄ " Weight Bars
1	2" Standing Valve
1	2" upset All Steel Flow Valve w/ 1 Port
1	2 ^m upset All Steel Flow Valve w/ 3 port
1	Nixon Measuring Device

STUART #3

SURFACE EQUIPMENT

1

1	Grove Universal Gas Regulator
64851	2" c.75# Std Blk LW Line Pipe
7981	3n 7.7# n n n n n
147'	4" 11# " " " " "
1	#5 IF 3' x 11' National Oil & Gas Separator Complete
2	10' x 15' 210 bbl. Type 2 National Welded Steel Tanks
2	sets Walkway Brackets
1	Steel Stairway for 15' Tank
16'	26" Steel Walkway
1	2" Class 125 CO Se Lub Plug Valve
4	2" 3000# test CS NRS SE Gate Valves
2	3" Class 125 CO FE Lub Plug Valves with CFBO
2	3" Class 125 CI SE Lub Plug Valves
1	3" Std IB SE KC Gate Valve
2	4" Class 125 CI SE Lub Plug Valve
1	4" Std IBBM MRS SE Gate Valve
39*	7" OD 24# API Gd B Blk Smls Csg (Drip)
1	Type B Foxboro Orfice Meter (0-1000#) Static (0-100")Differential
67 1	2 3/8" OD 4.70# API Gd B Blk Smls Tubing
1	4" 3000# test Jarecki Flg Union
3	2" 3000# test Eureka CS SE Plug Valves
2	
1	42" 1000# Ash Amer Press Gauge

_

ROYALTY INTEREST

STUART #3

Commissioner General Land Office Roswell, New Mexico

A. K. Barnes First National Bank Bldg. Denver, Colorado

First National Bank of Chicago Chicago, Illinois

Sliding Scale Government Royalty

1/64 of 8/8 Overriding Royalty of Pipe Line Runs

100% working Interest

-95-

STANOLIND OIL & GAS COMPANY - LANGLIE A-1

WELL INFORMATION

1

Casing Record - 8-5/8" 28# - 400 sacks. $5\frac{1}{2}$ " 17# - 3244! - 400 sax Special Equipment - Special long Guiberson Okum packer set at 3449! Tubing Record - $2\frac{1}{2}$ " EUE - 3467! TD

GEOLOGICAL INFORMATION

Elevation	3156 *
Top Anhydrite	1090'
Base Salt	26701
Top Brown Lime	26901
Top Yates Sand	28401

Shows 2900' -20 Dead oil stain 3040' -50 Porous slightly stained 3200' -10 Slightly Stained 3220' -30 Grey sand slightly stained 3290' Top Pay 3452' -62 Main Pay 3467' Total Depth

Drilling time Attached

Special Tests - none

GENERAL INFORMATION

Royalty Division - attached

Accumulated production to January 1, 1940----- 39,400

Bottom Hole Pressure data

Test taked 4-19-30 BHP 407# at -274' flowed 66.57 barrels of oil 48 hrs. with BHP of 235#. Initial production 37 barrels oil per hour through 1" choke w/ natural.

Well History

Langlie A-1 was completed May 27, 1937, at a total depth of 3467: (-310'). On production test it flowed at the rate of 37 barrels oil per hr through a 1" choke 2/1,763 MCF gas. This well has never been shot. The first appearance of water was noticed December 10, 1937. The water gradually increased until it was making 40% as of October, 1938.

In order to shut off the water a Buiberson formation packer was set at 3449'.on October 27th, '38. Since that time it has produced by flowing. It has however been necessary to swab it a number of times due to it dying from water accumulating or paraffin. Recent 24 hour test show it to be making from 25 to 30 barrels of oil per day and 3 to 7% water with a gas-oil ratio of 740 to 1.

		Drilling Time	
Dorth	Time	Douth	Time
Depth	Min	Depth	Time Min
3280	MILII	72	23
82	40	74	12
84	1 0 56	76	9
86	31	78	1 5
88	31	80	20
90	20	82	11
92	43	84	10
94	43	86	12
96	31	88	22
98	78	90	36
3300	21	92	30 40
02	20	94	40 40
02	20 32	96	40 59
04	32 42	98	
			39 80
08	52	3400	30
10	41	02	30
12	32	04	41
14	33	06	30
16	40	08	22
18	32	10	37
20	21	12	42
22	18	14	19
24	18	16	28
26	22	18	19
28	16	20	19
30	16	22	3
32	39	24	4
34	72	26	40
New bit 3335		28	32
36	51	30	32
38	15	32	23
40	14	34	28
42	15	36	30
44	15	38	30
46	15	40	38
48	15	42	21
50	12	44	25
52	11	4 6	27
54	9	4 8	38
56	9	50	32
58	21	52	21
60	58	54	9
62	47	56	3
64	40	58	10
66	40	60	11
68	40	62	27
New bit 3570		64	41
70	40	66	64
		SLM 3467	

STANOLIND OIL AND GAS COMPANY P. J. Langlie A-1 Drilling Time

-

-

BOTTOM HOLE PRESSURE SURVEYS

LANGLIE #1

- 13- 4	202	

Date

9-29-39

Pressure

.

810#

STANOLIND OIL AND GAS COMPANY COPY OF FIELD INVENTORY

_

1

Langlie A Lease

Unit	Size	Description Quan	tity
		WELL #1 - FLOWING	
		DERRICK INSTALLATION	
)errick	94	Amer size #12 API painted angle steel with 24' base,	
		5'6" top, steel crown platform, 6"x6"x1/2" starting legs,	
		333000# cap - on concrete corners.	1
Prod Sill	7 * x24*	Casing	2
		WELL HEAD INSTALLATION	
rbg Head	5 ¹ / ₂ "x2 ¹ / ₂ "	BIW type HX30	1
Lasing Hd	$8-5/8^{n}x 5\frac{1}{2}^{n}$	Rector type M w/std gland & 2 - 3" outlets	1
Casing Nip	8-5/8" x 10"	32# 10-thd SS	1
do	5 ¹ 7 43"	17# 10-thd SS	1
Casing Clamps	8-5/8"	1"x8"x46" anchor	l set
Sucker Rod Har	nger	WKM Fritts type, 50-strand	1
Iretolizer	5-gal	S-M Tretolizer, comp	1
Flow Bean	3 ⁿ	6000# T Hughes Adj	ī
-			-
		SUB-SURFACE EQUIPMENT	
Casing	8-5/8"	28# 8-thd LW	1175
do	5 <u>1</u> " 2 <u>1</u> "	17# 10-thd G-C SS	3270
lubing	211	6.5# 10-thd EUE G-C SS	3457
Juide Shoe	8-5/8"	Larkin 32#	1
Float Collar	8-5/8"	do	ī
Guide Shoe		Larkin 17# 19-thd	i
Float Collar	5글" 5 <u>글</u> "	do	i
Perforated Nip	2^{1}	Reg	ì
Packer	2"x4-3/4"	10-thd upset x actual OD Guib spiral Oakum wrapped	i
fubing anchor	2"	4.7# 10-thd EUE CC SS, one end plain	13
	-	I. A THE NOT OF POINT OF PARTY	IU
		WELL FENCING	
Corner Posts	71	Angle iron galv steel w/braces	8
Line Posts	71	ditto	12
Gate	3'x42"	Style F univ walk, $w/2\frac{1}{2}$ " angle iron post ftgs	ĩ
			-
		WELL #2 - PUMPING	
		DERRICK INSTALLATION	
Derrick	94 '	Amer size 12 API painted angle steel w/24' base,	
		5'6" top, stl crown platform, 6"x6"x1/2" starting legs,	
		6"x6"x3/8" running legs, H-beam BW girt, cap 333000#	
		on concrete corners.	1
Prod Sill	7 " x241	Casing	2
Crown block	3-beam	Amer Stl w/3 - 10"x7' beams,4 CI seprs &	~
		6 - 2-15/16" B.B.Bearings	1
Casing Pulleys	s 24"x2-15/16"		3
•	•		•
		RIG FRONT	
Pumping Unit	20 HP	OCS Duck type mounted on 5'5"x17'6" fabricated stl base	
- 0		section, comp w/twin crank, dbl reduction gear, ration	
		16.6 to 1; twin 8" OCS spec cranks; 8'1/2" Steel Samson	
		post; 16"x82"x12'10" @ 58# stl walking beam; horsehead	
		type beam hanger; 5" S.O. Center bearings; crosshead	
		bearings, 32"x6'8" twin tubular Pitmans and wrist pins &	
		welded sheet metal belt guard, serial H-1456	٦
Jnit Sheave	30.6"	PD-4 "C" Sec V type	1
lt	136-C	"C" Sec V-type	1 4
		· · · · · · · · · · · · · · · · · · ·	*
		ENGINE INSTALLATION	
Engine		McCormick-Dearing Model P-30 comp w/weather hood.	1
		serial PB-3160; with	T
		l Int Model #70 air cleaner	
		l Ensign gas-gasoline carburetor	
		1 Ensign gas-gasoline carburetor 1 Marvel Oiler	
		1 21" starting wheel	
Engine sheave	13.5"	PD-4 ^M C ^H sec V-type	1

	61	Deseriation	mentiter
Unit	Size	Description Univ Engine	Quantity 1 set
Slide rails	1"	Reliance house gas	1 000
Regulator Weburge terms	5'x13"	S-M gas scrubber, on 3 - 2'8" legs made of l_{Ξ}^{\pm} " angle iron	i
Volume tank	0.810	- The for solution is a reference of its and to read	-
		WELL HEAD INSTALLATION	
Flow bean	2*	Hughes adj 6000# T T-type	1
Hd	5 ¹ / ₂ "X2 ¹ / ₂ "	BIW PX-64	ī
Cag Hd	8-5/8" x51"		1
Cag Nip	51 "x44"	17# 10-thd	1
Cag Clamps	13"	1 ¹ / ₄ "x8"x43"	l set
Cag Hd	13"x8-5/8"	BIW East Tex Spec w/2 - 3" outlets	1
••••••	•		
		SUB SURFACE EQUIPMENT	
Casing	12"	40# 8-thd lapweld	150
Casing (Line Pip	e)_8"	29.35# 8-thd LW	1183
Casing	5 ¹ / ₂ "	17# 10-thd CC SS	3222
Tubing	2 ¹ 2 ¹¹	6.5# 10-thd BUE CC SS	3431
Sucker Rods	3/4"x251	Axelson #59 API	3325
Guide Shoe	8-5/8"	Baker Bek Blu	1
Float Collar	8-5/8"	Baker Bak Blu w/male & female thds	1
Guide Shoe	9 <u>5</u> "	Baker Bak Blu 17# 10-thd	1 1
Float Collar	5글" 5글" 2글"x36"	Baker Bak Blu 17# 10-thd	1
Perforated nip	2급"x30" 5불"x2불"	10-thd EUE	1
catcher	0 <u>5</u> "⊼2 <u>2</u> " 2 2 "x91	Guib type E less anchor BMW Admore	1
Plunger Pump	2 <u>2</u>	BRM Admore	Ŧ
		BATTERY	
		Serving wells #1&2	
Separator	3'xll'	Nat'l #5-IF,200# T 125# WP Ser #5428,Co #309,w/	1
-		1 - 4" flanged end IB oil walve	
		1 - inside float assembly	
		1 - 4" 200# IB IR pressure gauge	
		1 - 4" SE IB BP relief valve	
Tank	500 bbl	Amer LP BS w/top SO&G #133	1
do	do	ditto SOLG #135	1
Tank stairway	24"x8†	Amer painted stl w/railing & supports	1
Tank walkway	24"	Amer painted stl w/railing & 2 sets ground brackets	301
Separator	3'x11'	200# T 125# WP Serial 5364 #5-IF Nat'l O&G Separator with	1
		Inside float assembly	
		1 - 4" FE IB Oil valve	
		1 - 4" 200# IB IR pressure gauge	
The sham	61-71	l - 4" SE IB BP relief valve #2 Nat'l Emulsion Heater	1
Heater	6*x7* 6*	std LP	1
C pling Heating Coil	2"x3'x20'		1 1
Heating Coil Steam Pump	6"x4"x6"	B ilwell duplex #T-1616	i
Swag nipple	6" x 4"	8-thd reg SS	2
ower urbbre	0 41		2
		MISC LEASE EQUIPMENT	
Chemical Feeder		BS&B automatic comp w/2" 30# pressure gauge	1
		AT BATTERY	
Fence Gate	2'10"x4'	S-M gate	1
Corner Posts	71	Angle iron galv stl	8
Line Posts	71	do	12
	- 41	AT WELL #2	_
Regulator	1"	C&F LP gas	1
Clamp		#2 http-T-handle Ratigan polished rod	1
Fge	4 ⁿ	Fig F-5 Orifice	1
		TRACE DIAN TINDO	
CT D	211	Well #2 to sepr	920
SLP	2" 2"	Scrubber tank to engine	268 16
do do	2"	Scrubber tank to gas line	16
do	3*	Riger at well	8
do	4"	Well #1 to sepr	16
do	3"	do	797
do	4"	Riser at sepr	8
do	3"	Well #2 to sepr	841
do	3"	Riser at sepr	8
			~

-#

_

|]

				Quantit
		BATTERY P	IPE	
SLP	2*	Heating lines at heater		662
do	4"	Sepr vent line		362
do do	4 n 4 n	Sepr vent line riser at sepr vent line riser to	-	13
do do	2"	Sepr vent line guy stab		22 14
do	2"	Sepr vent line to rolli		492
do	2*	Bleeder from stock tank		262
do	2*	Fence posts at burn pit		84
do	3** 2*	Battery vent line	a la la contra contra con	49
do do	8" 2"	TEREEXPERIX Battery ver Battery vent line suppo		18
do	5 [#]	Battery vent line suppo		30 10
do	2	Fence posts		126
do	4"	Fence posts (Battery)		42
do	2*	Fence posts (Battery)		4
do	4"	battery header		20
do do	4" 4"	Battery header riser	a dom	9
do	31	Gravity from sepr to he Gravity from sepr to he		37 130
do	4 ¹¹	Meter setting		20
do	3*	Sepr Drain		3
Final Tre	nsfer 6 <u>A</u> -517			
		STANOLIND OIL AND GAS COMPAN	WY - LANGLIE A-1 & A-2	
c/ U.	S.Geological Su	il & Gas Operations, rvey,P.O.Box 997	5% Royalty Interest	
Re	swell, New Mexi	<u>co</u>		
	J.Langlie S lst Street		1/2% Royalty Interest	
Al	h ambra,Califor r	ia		
187	N Flerer			
	M.Klages 11 S. Catalina	Street	1/2% Royalty Interest	
	s Angeles, Calif			
			<i>,</i>	
	W.Gregory	n . 1	1/2% Royalty Interest	
	19 S. Ridgeley Câ ngeles , Calif			
Lo	ttie Gregory*		1/6% Royalty Interest	
	28 - 4th Avenue			
Lo	s Angeles, Cali	fornia		
E	A. Andrews		A-6/60 Derrolter Teters	_
	3 South Van Nes	s Avenue.	4-5/ <u>6</u> % Royalty Interest	
	s Angeles, Calif	-		
	l Royalties Cor		1/2% royalty Interest	
	6 Van Nuys Buil s Angeles, Cali	~		
	rshall Winston,		1/2% Royalty Interest	
	O I.W.Hellman H	0		
Lo	s Angeles, Calif	ornia.		
2+	anolind Oil and	Gas Company	87-1/2% Noyking Interes	. L
	ilcade Building		of the montruc fureles	
	lsa,Oklahoma.			
			t being withheld until legal	

-

STANOLIND OIL & GAS COMPANY - LANGLIE A-2 Well Information Casing Record 13^{H} OD - 40# - 162' - 100 sacks 8-5/8^{\text{H}} - 28# - 1185' - 360 sacks $5\frac{1}{2}^{\text{H}}$ OD - 17# - 3221' - 400 sacks Special Equipment This well is equipped with an OCS "Duck" unit and a P-30 McCormick Dearing engine and 3325' of 3/4" sucker rods. Tubing Record 23" EUE - 3335" 22" x 9' B&W Admore liner barrel 3335' to 3344'. Geological Information Elevation **~**3160' Top Anhydritel100* Base Salt 2660! Top Brown Lime 2670' Top Yates Sand 2810' Gas shows - None logged Total Depth 3463' Oil Zones - (Drilling time & samples) 3210 - 20 240 minutes -3220*-30 235 minutes From 3230' to TD drilled with cable tools. 3415' to 3424' show oil & gas, 3424'-30 inc. oil. 3452' to 3463' hole filling with oil. Special Tests - None General Information Royalty Division - Attached Accumulated Production to January 1, 1940 - 24, 726. Initial Production - Swabbed 47.5 B.O. in 7 hrs.shot with 140 qts. SNG 3416' to 3459', after shot flowed IP 121 BOPD thru 1/16" choke w/gas-oil ratio of 512. Well History Rotary drilling operations were started on this well September 21, 1937, and drilled to a depth of 3230' where cable tools were moved in and the well completed on Nov. 7, 1937, at a total depth of 3463' (-303'). Well was tested at 3456' and swabbed 27.5 B.O. in 6 hrs. Deepened to TD 3463' and swabbed 47.5 B.O. in 7 hrs. On November 23, 1937, it was shot with 140 qts. of SNG and was then cleaned out by Beckman. After cleaning out it flowed 121 Bbls oil in 24 hrs thru a 1/16" choke. The gas-cil ratio on this test was 512 cu.ft. per. bbl. It continued to flow at the allowable rate of 63 BOPD until January 1938. With the production amounting to 40 Bbls. per day, a string of $1\frac{1}{4}$ " tubing was run February 12, 1938. This was run inside the $2\frac{1}{2}$ " tubing. Although some trouble was encountered keeping the well flowing it was produced by flow until June 16, 1938. At this time a pumping unit was installed. On recent tests over a 24 hr. period the gil Production varies from 18 to 20 barrels. The maximum water production has been 2% and was first noticed November 19, 1939. Since the last test the well has been pulled to inspect the pump as it is believed it should pump more than the recent tests have shown.

1

-101-

د.

WELL	INFORMATION	
------	-------------	--

Casing Record	$12\frac{1}{2}$ " -266'-200 sax 8-5/8"-2767'-900 sax $5\frac{1}{2}$ " -3242'-25 sax
Special Equipment	None
Tubing Record	2" - 34291
GEOLOGICAL INFORMATION	
Elevation	3189
Top Anhydrite	1070
Base Salt	2650
Top Brown Lime	2780
Top Yates Sand	2920
Gas Shows	2938'-52' 2990') 1,100 MCF
Total Depth	34761
Oil Zones (Drilling time & Sample	s 3342-57 3364-70 3388-3409 3434-52 3488-65
Drilling Time	Attached
Special Tests	None
GENERAL INFORMATION	
Royalty Division	Attached
Accumulated Production to January	1, 1940
	33,647 bbls.
Initial Production	2.2 BO/hr. Gas Lift Csg an

2.2 BO/hr. Gas Lift Csg and DP, Shot 300 qts. 3325'-3476' After Shot Fl. IP 6.4 BO/hr.

WELL HISTORY BURLESON #1

]|

The well was spudded on November 17th, 1937, and at total depth 270' the same day, 247' fo 13" OD casing was run 266'. Plug was drilled, and drilling was resumed on November 20th. Top of the Anhydrite was encountered at 1070' on November 22nd.

On November 25th, 2749' of 8-5/8" OD casing was run to 2767', 3 feet off bottom, and cemented with 900 sax of cement mixed with 4 tons of salt.

Yates sand was picked up at 2920' and began showing gas at a drilling depth of 2938'. The well unloaded itself at 2952', and another increase was found at 2990. The well was unloaded at TD 2992, and tested between drill ipip and casing. The gas gauged 1,140 MCF gas.

At total depth 3250, 3226' of $5\frac{1}{2}$ " 17# seamless casing was run to 3242' and comented with 25 sax comment. The plug was drilled on December 15th, 1937 and the well was drilled in while circulating oil.

At TD 3476, the well tested 22 barrels of oil in 10 hours by gas lift between casing and drill pipe. The hole was then shot with 300 qts. nitroglycerine at 3325 to 3476 shooting with 2 qts. per foot, the hole having been loaded with oil.

After cleaning the well out to the bottom, tubing was run, 3439'1" of 2", tallied overall, set at 3429'9" 47' off bottom. The well then flowed an initial production of 155 barrels of cil with 260 MCF gas flowing through 30/64" choke on the tubing. Completed December 26, 1937

GEOLOGICAL POINTS

Elevation
Top of Anhydrite1070
Base Salt
Top of Brown Limestone2780
Top of Yates Sandstone2920
Total Depth

CASING RECORD

SIZE	AMOUNT	DEPTH	CEMENT
13"	247 1	266	200
8-5/8"	27491	2767 1	900 \neq 4 tons salt.
5-1/2"	3226 1	3242*	25
2"	343911"	3429 * 9*	

MSPECIAL TESTS

ſ

TYPE	DEPTH	RESULTS
Drill pipe & casing	2767-2992	1,140 MCF gas
Gas lift between drill pipe & casing	3242-3476	22 barrels oil in 10 hrs.
Initial flow thru tubing, no packer after shot	3242-3476-	155 barrels of oil with 260 MCF gas thru 30/64 [#] Choke.

. –

DRILLING TIME IN MINUTES BURLESON #1

3252 to 3253	8	3306 to 3307 15
54	11	8 15
55	7	9 15
56	3	10 10
57	4	11 15
58	11	12 13
59	11	13 14
60	11	14 17
61	13	15 15
62	17	16 17
63	13	17 13
64	20	18 8
65	15	19 13
66	18	20 18
67	17	21 20
68	17	22 20
69	18	23 17
70	17	24 20
71	13	25 8
72	18	26 4
73	19	27 8
74	15	28 10
75	15	29 20
76	20	30 20
77	17	31 20
78	17	32 12
79	17	33 11
80	17	54 22
81 82	17 17	35 5
83	23	36 14
84	22	37 26
85	28	38 28 39 24
86	27	
87	25	40 25 41 11
88	18	
89	22	43 11
90	16	44 7
91	19	45 5
92	25	46 8
93	14	47 5
94	21	48 8
95	22	49 5
96	15	50 6
97	20	51 4
98	23	52 4
99	18	53 6
3300	15	54 5
1	9	55 6
2	14	56 7
3	20	57 7
4	15	58 18
5	15	59 25
6	15	60 26
		-104- 61 30

DRILLING TIME IN MINUTES BURLESON #1

-

3361 to 3362	25	3415 to 3416 23	3472-73 10
63	15	17 12	
64	22	18 5	
65	13	19 2	
66	4	20	
67	2	21 9	
68	5	22 21	
69	4	23 2	
70	4	24 24	
71	16	25 25	
72	25	26 2'	
73	32	27 21	
76 74	25	28 2	
75	10	29 28	
76	10	30 2	
77	15	31 24	
78	13	32 2	
79	15	52 E 53 2	
80	14	34 20	
80	23	35 2	
82	23		3
83	6		5
84	13	38	4
85	16		5
86	18	40 1	
87	17		3
88	17	42	5
89	20		Ď
90	5		3
91	4		9
92	4	46 1.	
93	4		9
94	4		3
95	4	49 2	
96	5		7
97	5		5
98	5	52	8
99	5 5 5	52 1	
3400	5	54 1	
1	2 1 2 1 1	55 1	
2	1	56 X	
3	2	57 1	
4	1	58 1	
5	1		8
6	3	60 1	1
7	3	61	5
8	3	62	3
9	14	63	3 2
10	19	64	1
11	23	65	9
12	20	66 1	
13	22	67 1	
14	28	68 1	4
15	17	69 <u>1</u>	
		70 1	
		71 2	
		72 1	9

]!

WELL EQUIPMENT AT HERSCHBACH #I BURLESON

SEPARATOR

CELLAR CONNECTIONS

ſſ

```
1 boarded cellar
1 christmas tree including:
   1 300# Wescott choke
   2 2x6 nipples
   1 2x12 nipple
   1 2<sup>#</sup> steel tee
   1 2x2 swage
   1 2" 3000# Wescott valve
1 2" ups x 2" reg swage
   1 52"x 2" Cameron 4000#
      tbg head
   1 4x\frac{1}{2} hydralic swage
   1 2" 3000# Wescott valve
  \frac{5\frac{1}{5} \times 18^{\text{m}} \text{ nipple}}{5\frac{1}{2} \times 8-5/8^{\text{m}} \text{ Rector head}}
1
1
2
   3x8 hydralic nipples
   3* 3000# Wescott valve
2
1
   3x2 swage
   3x8 nipple
1
2
   3" tie down clamps
   4' 7/8" tie down rods
2
   8-5/8x12 nipple
8-5/8x 13" Rector head
1
1
   3x2 swage
1
   2" 3000# Wescott valve
1
   13" casing clamp
1
1
   3x8 nipple
   3" std tee
1
   3x2 swage
1
   2" collar
1
   2x6 nipple
1
1
   2" hvy maleable tee
   maleable ells
3
1
   3x2 nipples
   2" Wescott choke
2" maleable union
1
1
   2x12 nipple
1
   2x6 nipple
1
1 2" steel ell
   2x1 swage
1
   2x8 nipple
1
1 2" collar
ixxii
```

TANK BATTERY

2 200 bbl Nat'l Welded tanks complete with stair & walk

1 200# Nat'l flow valve & gas valve complete separator 1 set gauge glass connections 1 4x12 nipple 1 3x2 swage 1 2" collar 2x10 nipple 1 1 2" clip gate 3 std 2" bull plugs 1 2" LP Nat'l pop valve 1 4" std bull plug 1 3/4" std bull plug VENT LINE 1 4" all-thread nipple 1 4" flange union 4 4" std ells joints 4" pipe, 280' 7 1 4x4 nipple 1 4" Nat'l screw back pressure valve 4" collar 1 1 4x6 nipple FLOW LINE 1 4x3 swage 860' 3" line pipe, 43 joints 1 3x2 swage 2 3" std tees 1 3" std bull plug 1 3" heavy maleable tee 2 3x8 nipples 2 3" x 20' risors 4 3" std ells 4 3x3 std nipples 3x4 nipples 2 2 3" 2000# hammer unions 2 3" 125# Wescott clip gates 3x4 swages 2

PIPE LINE OUTLET

3" std ells

3x3 nipple

2 4"x6" std nipples 2 4" lock stops

3" steel hammer unions

(sizes in inches unless shown otherwise)

2

1

2

TANK VENT LINE

1

TANK FENCE

4 2" x 5' pipe posts
1 Roll barbed wire
l archway, 2" pipe
13 L iron posts
-

TANK BLEEDER

2001	2" pipe
3	2x4 nipples
1	2x6 nipple
2	2" lock stops
4	2" std ells
2	2" std flange unions
1	2 [#] std tee
2	2x8 nipples
1	2x6 nipple
1	2x4 nipple
1	2x10 nipple

L iron posts
<u>WELL FENCE</u>
2" x 5' pipe posts
1 roll barbed wire
1 archway, 2" pipe
5 L iron posts

~

(sizes in inches unless shown otherwise)

CASING RECORD AT BURLESON #1

Size	Length	depth	Cement
13"	247	266	225
8-5/8"	2749	2767	900 & 4 tons salt
8-5/8" 52"	3225	8242	25
2"	3430	3439	

Note:

2-1-40, One Nixon Gas lift System complete with mast, turbine, hoist, unloading valve, bottom valve, and standing valve.

BURLESON LEASE, $N^{\frac{1}{4}} - 8-25-37$

Herschback Drilling Co., Republic Bank Bldg., Dallas	27/64 WI
Western Gas Co., 10th Floor, Bassett Tower, El Paso	27/64 WI
Amerada Pet. Corp., Box 2040, Tulsa, Okla.	2/64 ORI

F.M.Burleson & Naomi Burleson, Box 683, Lubbock	36/128 of 1/8 RI
Argo Oil Corp., 1st Nat'l Bank Bldg. Denver, Colo.	56/128 of 1/8 RI
E. A. Fariss, 511 Ramsey Tower, Oklahoma City, Okla.	20/128 of 1/8 RI
Bulbertson & Irwin Inc., Box 1071, Midland, Tex.	6/128 of 1/8 RI
G.R.Henson,911 Commercial Bldg., Shreveport, La.	4/128 of 1/8 RI
G.H. Wilson, 510 West Rusk, Marshall, Tex.	2/128 of 1/8 RI
Paget Cady, 37 E. Division St., Chicago, Ill.	1/128 of 1/8 RI
E.W.K.Andrau, 2109 Kingston, Houston, Tex.	1/128 of 1/8 RI
Aletta S. Root, 70 E. Walton Place, Chicago, Ill.	1/128 of 1/8 RI
Peter Connor, 435-5th Ave., Chula Vista, Calif.	1/128 of 1/8 RI

WESTERN GAS CO. BURLISON # 2

-

1

WELL INFORMATION		
Casing Record	$12\frac{1}{2}$ " - 255 - 125 sax 8 5/8" - 2744 - 700 sax $5\frac{1}{2}$ - 3236 - 20 sax	
Special Equipment	None	
Tubing Record	2" - 34581	
GEOLOGICAL INFORMATION		
Elevation	3168	
Top Anhydrite	1090	
Base Salt		
Top Brown Lime	2730	
Top Yates Sand	2860	
Gas Shows	2910-46 3,000 MCF, inc at 3066 to 4,000 MFC, 3071-94 16,000 MCF	
Total Depth	3467 *	
Oil Zones (Drilling Time & Samples)		
3343-50	3322-38 3343-50	
•	33 82-90	
	3449-55	
	3459-67	
Drilling Time	Attached	
Special Tests	None	
GENERAL INFORMATION		
Royalty Division	None	
Accumulated Prod. to January 1, 1940 5,449 bbls.		
Initial Prod.	Fl. Natural $l\frac{1}{2}$ BO/hr, Shot 220 qts. 3357- 3467, After Shot Fl., I.P. 5.4 BO/hr.	

HERSCHBACH DRILLING CO. ET AL

#2 BURLISON

WELL HISTORY

1

Rigging up on the location was started on the 13th of June, 1939, with one crew working eight days, three crews working one day. Drilling then commenced on June 22, 1939.

On June 23, 1939, 237'10" of second-hand 13" pipe was set at 255'10", and was cemented with 175 sax of cement. Nippling up was started on June 24th, and the shut-off tested, and the plug drilled on June 25th with an 11" bit.

An ll" hole was drilled to 2750' where casing was run. On July 4, 1939, 2728'll" of 8 5/8" casing was set at 2744'll" and was comented with 700 sax. On July 9th the plug was drilled out of the pipe with a 6-3/4" bit and oil was used to replace the water as drilling medium.

On July 11 a show of gas was encountered at 2910-2945, and at total depth 2945 was gauged. This gas tested 3,000 MCF with no oil. On July 14 the well was again tested at total depth 3023', and gauged 3,000MCF gas with no oil, at total depth 3066 the gas gauged 4,000 MCF and no oil.

On July 16, at total depth 3071', the well unloaded and was tested. It gauged 16,000 MCF of gas with 250 lbs. back pressure and a spray of oil. The rock pressure was 1250 lbs. The well was then drilled to 3121 and testing was started. The gas cut off the connections and operations were suspended to kill the well and replace the connections.

On July 22 and 23, the well was killed using 770 sax of lime dust and 36 sax of Aquagel. On the 24th tubing was started into the well but would not reach bottom. The well was then cleaned out, and tubing rerun on the 26th to 3121', with a $5\frac{1}{2}$ " packer at 3097', perforations below the packer. Thre test showed a small amount of gas with no oil. Salt water was then used to displace the mud and the well was deepened to 3234'.

On July 31st, 2" tubing was run to total depth 3234', with a packer at 3135' and perforations below the packer. The well was then swabbed dry and showed a small amount of gas with no oil.

At total depth 3250', 3212' of $5\frac{1}{2}$ " casing was set at 3226' and cemented with 20 sax. The plug was tested on August 10th and drilled out with a 4-3/4" bit, using oil to displace the salt water as drilling fluid.

On August 12th, the well was tested through the casing with drillpipe in the hole by injected gas, this test showed $\frac{1}{2}$ BO/hr.

The well was then deepened to 3467' and on the 14th the well was kicked off by input gas and flowed $1\frac{1}{2}$ BO/hr. natural.

The well was loaded with oil and on the 16th was shot with 220 quarts of nitroglycerine from 3357 to 3467, with a 135' gravel tamp above the shot. The well unloaded after the shot and then bridged at 3267'. The bridge was drilled out and the hole cleaned to 3467' total depth of the well. 2" tubing was then run to 3458'.

After the well unloaded through the tubing it was allowed to flow three hours, and then was gauged flowing 5.4 BO/hr on August 18, 1939.

FORMATION POINTS

ſ

Elevation Top Anhydrite	3168' L & S 1090
Base Salt	
Top Br. Lime	2730
Top Yates	2860

....

OIL PAYS

3371-3390 3456-3467

<u>GAS PAYS</u> 2910-46 (Yates) 3,000 MCF, 3052-66 (L.Yates) 1,000 MCF (est.), 3070-93 (Queens), 16,000 MCF w/250# B. Pr.

TESTS

- (1). 2910-46, 3,000 MCF gas no oil.
- (2). @T.D. 3023', 3,000 MCF gas no oil.
- (3). @ T.D. 3066', 4,000 MCF gas no cil.
- (4). @ T.D. 3071', 16,000 MCF gas, spray of oil, Back-Pressure 250#, shut in Pr. 1250#.
- (5). @ T.D. 3121', 2" tubing with packer 3097 perforations below, small gas no oil.
- (6). @ T.D. 3224', 2" tubing with packer 3125, perforations below, small gas no oil.
- (7). 3226-3401, small gas, 1/2 B0/hr.
- (8). T.D. 3467, Natural small gas $l_{\frac{1}{2}}^{\frac{1}{2}}$ BO/hr.
- (9). T.D. 3467', After shot, Fl. I.P. 5.4 BO/hr fourth hour of four hour test, no estimate on gas.

CASING & TUBING RECORD

SIZE	AMOUNT	DEPTH	CEMENT
12 ¹ /2"	237'10"	255*10"	100
8 5/8*	2728*11*	2744 *11 *	700
5 <u>2</u> "	3212'0"	322610"	20
2" Tubing	3454'0"	3458 °0"	

		DRILLING	TIME,	BURLISON	#2		
	117110			17777077	3/737	DEDMI	3.5°**3*
DEPTH 3216	MING	DEPTH 3261	$\frac{\text{MIN}}{10}$	DEPTH 3308	MIN.	DEPTH 3356	MIN.
17	19	62	13	3308 09	10	5555 57	25
18	13	63	12	10	13	57 58	25 25
18	18	6 4	18	10	15	59	20
20	20	65	12	12	10	59 60	20 35
20	20	66	14	12	9		
22	20	67	8	13	3 17	61	40
		68	6	14		62	17
23	13	69			19	63	13
24	19 16		4	16	17	6 4	17
25	16	70	4	17	15	65	18
26	20	71	8	18	22	66	20
27	19	72	11	19	20	67	19
28	21	73	13	20	13	68	16
29	19	74	16	21	10	69	18
30	10	75	18	23	9	70	18
31	5	76	15	24	5	71	21
32	8	77	15	25	7	72	II 12
33	22	78	15	26	7	73	9
34	19	79	17	27	7	74	6
35	15	80	15	28	7	75	9
36	10	81	13	29	10	76	6
37	10	82	20	30	13	77	6
38	20	83	17	31	7	78	6
39	17	84	30	32	6	79	8
40	18	85	28	33	6	80	6
41	15	86	27	34	6	81	9
42	20	87	13	35	5	82	7
43	15	88	13	36	6	83	7
44	11	89	13	37	8	84	5
45	14	90	22	38	8	85	4
46	15	91	14	39	25	86	6
47	15	92	28	40	15	87	7
48	17	93	26	41	13	88	8
49	15	94	29	42	12	89	9
50	13	95	36	43	13	90	11
51	12	96	36	44	5	91	26
52	18	97	42	45	224	9252	30
53	24	98	16	46	4	93	30
54	19	99	6	47	13	94	28
55	23	3300	3	4 8	10	95	4 0
56	18	01	7	49	7	96	22
57	22	02	13	50	5	97	14
58	20	03	47	51	8	98	11
59	20	04	60	52	11	99	7
60	17	05	60	53	12	3400	14
		06	12	54	8	01	21
		07	18	55	12	02	26
		08	12	56	28	03	14
					15		

DRILLING TIME. BURLISON #2

..**.**.

1

-111-

		DRILLING TIME	BURLISON # 2	
DEPTH	MIN.		DEPTH	MIN.
3403			3449	
04	30		50	7
05	27		51	8
06	25		52	15
07	20		53	13
08	12		54	9
09	11		55	9
10	17		56	10
11	15		57	12
12	15		58	11
13	15		59	11
14	15		60	4
15	15		61	3
16	9		62	4
17	15		63	25
18 19	16 25		64 65	2
20	23 13		66	2 3
20 21	9		67	2
22	3 17		68	2
23	23		69	4
24	18		70	7 6
25	15			0
26	20		Total	Depth, Steel line correction
27	15 15		3470 e	quals 3467
28	10		0110 0	date pin
29	14			
30	23			
31	10			
32	8			
33	17			
34	14			
35	19			
36	10			
37	10			
38	13			
39	17			
40	20			
41	19			
42	14			
43	19			
44	18			
45	18			
46 47	13			
47 48	11 20			
40 49	20 21			
49 50	61			
<i></i>				

DRILLING TIME BURLISON # 2

.

ן

•

WELL CONNECTIONS

1	13x12 nipple
1	13x 7-5/8 Rector head
1	3" Ex heavy bull plug
1	5x2 Ex heavy swage nipple
1	2* 300# Hughes gate
1	7-5/8 x 8 nipple
1	7-5/8 x 52 Rector head
	3x8 hydralic nipple
2	
2	
2	
2	
1	$5\frac{1}{2} \times 7$ swage nipple
1	5gx10 nipple
1	52 3000# Hughes gate
1	7" Type T 16B 2000# OCT
	tubinghead complete
2	4x2 hydralic swage nipple
3	2" 3000# WKM gate
2	2x2 hydralic swage nipple
3	支 [#] Wlwth all-steel needle
	valves.
1	2" 8th x 2" 10th seamless
	nipples
	2x10 Ex heavy nipple
	2x8 Ex heavy nipple
1	14
	all-steel tee
1	set 2" tubing hold-down clamps
	with Stacy boomer & Chain
1	2" Hughes choke
FL	OW LINE CONNECTIONS
T	2x10 regular nipple

1

1 2x10 regular nipple 1 2x21 reg nipple 1 2* Heavy maleable ell 1 jt 2* pipe, 22*10*, 1800# test 24 jts 3* line, 557*6* 1 3x2 Ex heavy swage nipple

FENCE AROUND WELL

4	2*	x	51	pipe	posts
				posts	

(Sizes in inches unless otherwise specified)

SEPARATOR CONNECTIONS

4	3"mHvy maleable ells
1	3x4 nipple
2	4x3 swage nipples
1	4" Ser. 30 Vanstone bolt type
	flange unions
1	3x24 nipple
1	Separator, built complete by EPNG
1	2* 250# pop valve
1	2" std collar
1	2x4 std nipple
1	2" Lunk gate valve
1	4x4 nipple
1	4" collar
1	3 [#] collar
1	3x12 nipple
2	3 [#] std ells
1	3x6 nipple
1	4* 200# BS&B oil valve comp.,#1595
1	3x6 nipple
5	jts 3 ⁿ vent line, 112'3"
3 1	4x3 regular swages
1	4" maleable tee
1	4" bull plug
1	4" x 12' risor pipe
1	4x8 nipple
1	4x3 welded swage (home-made)
2	3 [#] ells
1	5x5 nipple
2	3" close nipple
1	3" OJC check valve
1	4" back-pressure valve
	2" ells
	2 [#] tees
	2 [#] unions
2	2x6 nipples
1	2x10 nipple
1	2x8 nipple

WELL EQUIPMENT AT BURLESON #2

•

TANK CONNECTIONS

Γ

<pre>107*6* of 3* pipe 3* common tees 3* hdl bar unions 3* bull plugs 3* ells 3x12 nipple 3x6 nipple 3x6 nipple 2* Wescott gate valve 4* Welworth stops 4x12 nipples 3x6 nipples for bleeder lines 3* collars 3* collars 3* ells 3x2 swages 2 2* Crane stops 40* 2* line pipe, bleeders 2 2* Maleable ells 1 2* maleable tees 3 2* common lip union 1 2x8 nipple 3* Ells 5 3x3 nipples 3 * dol bar unions 2 4x3 swage nipples 2 3* common tees 3 * dol bar unions 2 4x3 swage 1 2x3 nipple 1 2* lip union</pre>	2	500 bbl Nat'l bolted tanks
<pre>4 3* common tees 4 3* hdl bar unions 2 3* bull plugs 2 3* ells 1 3x12 nipple 1 3x6 nipple 1 2* Wescott gate valve 2 4* Welworth stops 2 4x12 nipples 2 3x6 nipples for bleeder lines 2 3* collars 2 3* collars 2 3* collars 2 3* ells 3 x2 swages 2 2* Crane stops 40* 2* line pipe, bleeders 2 2* Maleable ells 1 2* maleable tees 3 2* common lip union 1 2x8 nipple 4 3* Ells 5 3x3 nipples 2 3* dull bar unions 2 4x3 swage nipples 3 * common tees 2 3* bull pligs 2 3x6 nipples 3 * pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>	f a	
<pre>4 3" hdl bar unions 2 3" bull plugs 2 3" ells 1 3xl2 nipple 1 3x6 nipple 1 2" Wescott gate valve 2 4" Welworth stops 2 4xl2 nipples 2 3x6 nipples for bleeder lines 2 3" collars 2 3" ells 2 3x2 swages 2 2" Crane stops 40" 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 3 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 5 2" hdl bar unions 2 4x3 swage nipples 2 3" bull pligs 2 3x6 nipples 3 5; 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>	4	
<pre>2 3" bull plugs 2 3" ells 1 3xl2 nipple 1 3x6 nipple 1 2" Wescott gate valve 2 4" Welworth stops 2 4xl2 nipples 2 3x6 nipples for bleeder lines 2 3" collars 2 3" ells 2 3x2 swages 2 2" Crane stops 40' 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 1 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35' 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>	-	
<pre>2 3" ells 1 3xl2 nipple 1 3x6 nipple 1 2" Wescott gate valve 2 4" Welworth stops 2 4xl2 nipples 2 3x6 nipples for bleeder lines 2 3" collars 2 3" collars 2 3" ells 2 3x2 swages 2 2" Crane stops 40" 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 3 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35" 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>		
<pre>1 3x12 nipple 1 3x6 nipple 1 2" Wescott gate valve 2 4" Welworth stops 2 4x12 nipples 2 3x6 nipples for bleeder lines 2 3" collars 2 3" cllars 2 3" ells 2 3x2 swages 2 2" Crane stops 40* 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 3 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35* 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>		
<pre>1 3x6 nipple 1 2" Wescott gate valve 2 4" Welworth stops 2 4xl2 nipples 2 3x6 nipples for bleeder lines 2 3" collars 2 3" cllars 2 3" ells 2 3x2 swages 2 2" Crane stops 40' 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 3 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 1 2x3 swage 1 2x3 nipple</pre>	ĩ	$3\pi 12$ minule
<pre>1 2" Wescott gate valve 2 4" Welworth stops 2 4xl2 nipples 2 3x6 nipples for bleeder lines 2 3" collars 2 3" ells 2 3x2 swages 2 2" Crane stops 40' 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 3 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 5 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35' 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>		**
<pre>2 4" Welworth stops 2 4xl2 nipples 2 3x6 nipples for bleeder lines 2 3" collars 2 3" ells 2 3" ells 2 3x2 swages 2 2" Crane stops 40' 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 1 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35' 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>		
<pre>2 4xl2 nipples 2 3x6 nipples for bleeder lines 2 3" collars 2 3" ells 2 3" ells 2 3x2 swages 2 2" Crane stops 40' 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 3 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35' 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>		
<pre>2 3x6 nipples for bleeder lines 2 3" collars 2 3" ells 2 3x2 swages 2 2" Crane stops 40' 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 1 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35' 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>		
<pre>2 3" collars 2 3" ells 2 3x2 swages 2 2" Crane stops 40' 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 3 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35' 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>		
<pre>2 3" ells 2 3x2 swages 2 2" Crane stops 40' 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 3 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35' 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>		
<pre>2 3x2 swages 2 2" Crane stops 40" 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 3 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35" 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>		
40: 2" line pipe, bleeders 2 2" Maleable ells 1 2" maleable tees 3 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35: 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple		
<pre>2 2" Maleable ells 1 2" maleable tees 3 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35' 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>	2	2" Crane stops
<pre>1 2" maleable tees 1 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35' 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>	401	
<pre>1 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Welworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35* 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>	2	2" Maleable ells
<pre>1 2" common lip union 1 2x8 nipple 4 3" Ells 5 3x3 nipples 2 3" Welworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35* 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>	1	2" maleable tees
<pre>4 3" Ells 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35: 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>	3	2 ⁿ common lip union
 5 3x3 nipples 2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35" 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple 		
<pre>2 3" Walworth stops 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35' 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>		
 3 2" hdl bar unions 2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35' 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple 		
<pre>2 4x3 swage nipples 2 3" common tees 2 3" bull pligs 2 3x6 nipples 35* 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>		
<pre>2 3" common tees 2 3" bull pligs 2 3x6 nipples 35* 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple</pre>		
 2 3" bull pligs 2 3x6 nipples 35° 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple 	2	4x3 swage nipples
2 3x6 nipples 35° 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple		
35° 3" pipe on top of tanks 1 2x3 swage 1 2x3 nipple		
1 2x3 swage 1 2x3 nipple		
1 2x3 nipple		
1 2" lip union		
	1	2" lip union

CASING RECORD AT BURLESON #2

Si :8	Amount	Depth	Sax Cement
13" 8-5/8" 52 "	237'10" 2728'11" 3454 '3212'	255 2744 3458 3226 *	175 700 20
2 " Tbg.	3454	3458	less threads

HE TITIONERS' EXHIBIT NO. 4

-

1

<u>in l</u>	"PRODUCTION RE REPRESENTING ANGLIE FIELD, N	UNIT	XICO	
ANDERSON PRICHARD	Jal	1	27	short
10: 10	Jal Langlie	22 1	68 6 444	short short
W	Langlie	2	4 0	short
*	Langlie	3	59	short
Ħ	Langlie	4	16	over
	Stuart	3	7428	short
ti -	Wells	1	631	over
•	Wells	2	631	over
CLAY DRILLING CO	Burleson	1	216	over
	Burleson	2	614	short
STANOLIND OIL & GAS CO.	Langlie A	1	1072	short
W	Langlie A	2	893	short
TOTAL			14,651	SHORT

ANDERSON-PRICHARD OIL CORPORATION Wells No. 2 5-25-37

	ALLO	WABLE	RUNS		OVER	SHOR	C TOTAL
T0 8 -1-3 9							••320
AUGUST	784	25.3	59 7	19,3		187	
SEPTEMBER	1260	42	1435	47.8	175		
OCTOBER	1488	4 8	1677	54.1	189		
NOVEMBER	1380	4 6	1616	5 3,9	236		
DECEMBER 1940	1395	45	1372	44 ²		23	
JANUARY	1240	40	1331	42 ⁹	91		
FEBRUARY	1363	47	1349	465		14	
MARCH	1488	48	1487			1	
APRIL		46	1360	-		20	
MAY		42	1227	-		20 75	
JUNE		41	1163			67	
JULY	1209	59	1240		31	0.	
AUGUST	1147	37	1761	· •	614		
SEPT EMBER			1065	-	15		
OCTOBER	1147	37	1134	36 <mark>6</mark>		13	
TOTAL 18	3,863		19,814		1,351	400	-320
GRAND TOTA	L						OVER 631

* .

Of Bite e a

		9-25-37			
TO 8-1-39	ALLOWABLE	RUNS	OVER	SHORT	TOTAL
AUGUST	288 9 ³	117 3 <u>8</u>		171	
SEPTEMBER	525 17 <mark>5</mark>	597 19 ⁹	72		
OCTOBER	620 20	348 11 ²		272	
NOVEMBER	450 15	489 16 ³	39		
DECEMBER	465 15	347 12 ¹		91	
1940 JANUARY	496 16	517 16 7	21		
FEBRUARY	464 16	579 20	115		
MARCH	496 16	347 11 ²		149	
APRIL	60 2	48 6 16 ²	426		
MAY	496 16	446 14 ⁴		50	
JUNE	480 16	205 6 ⁸		275	
JULY	310 10	310 10			
AUGUST	310 10	236 7 9		74	
SEPTEMBER	300 10	303 10 1	3		
OC TOBER	465 15	478 154	13		
TOTAL	6,225	5,832	689	1,082	
GRAND TOTAL				S	SHORT 393

STANOLIND OIL & GAS COMPANY Langlie A-2 9-25-37

•

					nglie A-1 9-25-37		
	ALLOY	ABLE	RUNS	5	OVER	SHORT	TOTAL
T08-1-39							
AUGUST	320 1	103	241	7 ⁸		79	
SEPTEMBER	825 2	2 7 5	663	22 <mark>1</mark>		162	
OCTOBER	930 3	50	396	12 ⁸		534	
NOVEMBER	600 2	20	512	171		88	
DECEMBER	620 2	20	374	121		246	
1940 JANUARY	279 9	9	445	144	166		
FEBRUARY	261 9	•	460	15 7	199		
MARCH	279 9)	347	11 ²	68		
APR IL	90 3	3	725	2 4 2	635		
MAY	1302 4	12]	1118	36		184	
JUNE	1230 4	11	464	155		766	
JULY	620 2	20	620	20			
AUGUST	620 2	20	522	16 <u>8</u>		98	
SEP TEMBER	600 2	20	603	20 1	3		
OCTOBER	620 2	20	634	20 4	14		
TOT AL	9,196	8,	,124		1,085	2,157	
GRAND TOTAL							SHOR

STANOLIND OIL & GAS COMPANY

~

-

GRAND TOTAL

SHORT ... 1072

				ING COMPANY on No.2 -37					
ALLOWABLE		RUNS		OVER	SHOP	a r	TOTAL		
TO 8-1-39									
AUGUST									
SEPTEMBER	620 21	842	2 9 1	212					
OCTOBER	1488 48	1657	53 <mark>4</mark>	169					
NOVEMBER	1380 46	1304	48 5		76				
DECEMBER	139545	1312	4 2 ³		83				
1940 JANUARY	1240 40	1122	36 1		118				
FEBRUARY	638 22	520	172		118				
MARCH	1488 48	1541	497	53					
APRIL	1380 46	1400	46 7	20					
MAY	1302 42	1027	331		275		,		
JUNE	1230 41	1210	402		20				
JULY	1934 62 ⁴	2050	66 1	116					
AUGUST	1147 37	1200	38 7	53					
SEPTEMBER	1050 35	450	15		60 0				
OCTOBER	1147 37	1200	38 7	53					
TOTAL	17,449	16,835		676	1,290				
GRAND TOTAL						011010	61 4		

CLAY DRILLING COMPANY

-

1

GRAND TOTAL

SHORT.....614

			Bu	DRILL rleson 8-25-3			
	ALLOV	VABLE	RUN	ſ	OVER	SHORT	TOTAL
T0 8 -1- 39							-3886
AUGUST	784	25.3	974	31.4	190		
SEPTEMBER	1260	42.0	1107	36.9		153	
OCTOBER	1488	48.0	1442	46.5		46	
NOVEMBER	1380	4 6.0	1728	57.6	348		
DECEMBER 1940	1395	45.0	1560	50.3	165		
JANUARY	1240	4 0.0	1345	43.4	105		
FEBRUARY	957	33.0	650	22.4		307	
MARCH	1488	48.0	1420	45.8		6 8	
APRIL	1380	46.0	1446	48.2	66		
MAY	1302	42.0	1300	41.9		2	
JUNE	1230	41.0	1175	39.2		55	
JULY	1615	52.0	1322	42.6		293	
AU GUST	1147	37.0	1217	39,2	70		
SEPTEMBER	1050	35	4570	152.3	3520		
OCTOBER	1147	37	1709	55.1	562		
TOTAL	18,863		22,965	j.	5,026	924	-3886
GRAND TOTAL							OVER 216

ſ

-119-

			{				
	ALLOW	ABLE	RUNS		OVER	SHORT	TOTAL
TO 8-1-39							-708
AUGUST	784	25.3	597	19.3		187	
SEPTEMBER	1260	42	1435	47.8	175		
OCTOBER	1488	4 8	1677	54.1	189		
NOVEMBER	1380	46	1616	53.9	236		
DECEMBER 1940	1395	45	1372	44.3		23	
JANUARY	1240	40	1331	42.9	91		
FEBRUARY	1363	47	1349	46.5		14	
MARCH	1488	4 8	1487	48.0		1	
APRIL	1380	46	1360	45.3		20	
MAY	1302	42	1227	39.6		75	
JUNE	1230	41	1163	38.8		67	
JULY	1209	39	1240	40.0	31		
AU GUST	1147	37	2149	69.3	1002		
SEPT EMBER	1050	35	1065	35.5	15		
OCTOBER	1147	37	1134	36.6		13	
TOTAL	18,863		20,202		1,739	4 00	-708
GRAND TOTAL							OVER 631

ANDERSON-PRICHARD OIL CORPORATION Wells No. 1

_

1

X

			Stuar 9-25-				
	ALLOW	ABLE	RUNS		OVER	SHOR T	TOTAL
T0 8-1-39							-3538
AUGUST	784	25.3	180	5.8		604	
SEPT EMBER	1260	4 2	1173	39.1		87	
OCTOBER	1488	4 8	1266	40.8		222	
NOVEMBER	1380	4 6	1216	40.5		165	
DECEMBER 1940	1395	4 5	1384	44.6		11	
JANUARY	1240	40	1091	35.2		149	
FEBRUARY	1363	47	1072	37		291	
MARCH	1488	48	1083	34.9		405	
APRIL	1380	4 6	1075	35.8		305	
MAY	1302	42	1077	34.7		225	
JUNE	1230	41	8 9 9	30.0		331	
JULY	1209	39	972	21.4		237	
AUGUST	1147	37	883	28.5		264	
SEPTEMBER	1050	35	883	29.4		167	
OC TOBER	1147	37	720			427	
TOTAL	18,863		14,973			3,890	-3538
GRAND TOTAL							SHOR T 7428

ANDERSON-PRICHARD OIL CORPORATION Stuart No. 3

ſ

				8-			
TO	ALLOW	ABLE	RUNS		OVER	SHORT	<u>TOT AL</u>
8-1-39							-000
AUGUST	784	25.3	726	23.4		58	
SEPTEMBER	1260	42	1323	44.1	63		
OCTOBER	1488	48	1816	58.6	328		
NOVEMBER	1380	46	16 17	53.9	237		
DECEMBER	1395	4 5	1540	49.7	145		
1940 JANUARY	1240	4 0	1156	37.3		84	
FEBRUARY	1363	47	1262	43.5		101	
MARCH	1488	4 8	1461	47.1		27	
APRIL	1380	46	1427	47.6	47		
MAY	1302	42	1269	40.9		33	
JUNE	1230	41	1189	39.6		41	
JULY	1209	39	1225	39.5	16		
AUGUST	1147	37	1172	37.8	25		
SEPTEMBER	1050	35	1055	35.2	5		
OCTOBER	1147	37	1174	37.9	27		
TOTAL	18,863		19,412		893	344	-553
GRAND TOTAL							OVER16

.

ANDERSON-PRICHARD OIL CORPORATION Langlie A-4 8-25-37

-

-

	8-25-37								
	ALLOWABLE		E RUNS		OVER	SHOR	T	TOTAL	
TO 8-1-39								-1044	
AUGUST	784	25.3	718	23.1		66			
SEPT EMBER	1260	42	1314	43.8	54				
OCTOBER	14 88	4 8	1799	5 8. 0	311				
NOVEMBER	1380	4 6	1639	54.6	259				
DECEMBER 1940	1395	45	1737	56.0	342				
JANUARY	1240	4 0	1406	45.4	166				
FEBRUARY	1363	1145	1245	42.9		118			
MARCH	1488	4 8	1733	55.9	245				
APRIL	1380	4 6	1369	45.6		11			
MAY	1302	42	1157	37.3		145			
JUNE	1230	41	1202	40.0		28			
JULY	1209	39	1194	38.5		15			
AUGUST	1147	37	1155	37.3	8				
SEPTEMBER	1050	35	1046	34.9		4			
OCTOBER	1147	37	1154	37.2	7				
TOTAL	18,863		19,868		1,392	387		-1064	
GRAND TOTAL							SHORT	59	

ANDERSON-PRICHARD OIL CORPORATION Langlie A-3

-

			L				
	ALLOW	ABLE	% RUNS		OVER	SHORT	TOTAL
TO 8-1-39							-1281
AUGUST	784	25.3	634	20.5		150	
SEPTEMBER	1260	42	1438	47.9	178		
OCTOBER	1488	4 8	1744	56.3	256		
NOVEMBER	1380	46	1484	49.5	104		
DECEMBER 1940	1395	4 5	1865	60.2	470		
JANUARY	1240	4 0	1574	50.8	334		
FEBRUARY	1363	47	1468	50.6	105		
MARCH	1488	4 8	155 6	50.2	68		
APRIL	1380	46	1497	50.0	117		
MAY	1302	42	1211	39.1		9 2	
JUNE	1230	41	1057	35.2		173	
JULY	1209	39	1201	38.7		8	
AUGUST	1147	37	1155	37.3	8		
SEPTEMBER	1050	35	1046	34.9		4	
OCTOBER	1147	37	1174	37.9	27		
TOTAL	18,863		20,104		1,667	426	-1281
GRAND TOTAL						SHORT	40

ANDERSON-PRICHARD OIL COMPANY Langlie A-2 8-25-37

-

. .

		8-25-37						
	ALLOW	ALLOWABLE			OVER	SHORT	TOTAL	
TO 8-1-39							-3157	
AUGUST	78 4	25.3	212	6.8		572		
SEP TEMBER	1260	42	1240	41.3		20		
OCTOBER	1488	4 8	1714	55.3	226			
NOVEMBER	1380	4 6	1700	56.7	320			
DECEMBER 1940	1395	45	1426	46.0	31			
JANUARY	1240	4 0	812	16.2		426		
FEBRUARY	95 7	33	395	13.6		562		
MARCH	1395	45	601	19.4		794		
APRIL	1380	46	621	20.0		759		
MAY	1054	34	624	20.1		430		
JUNE	1230	41	977	32.6		253		
JULY	682	22	679	21.9		3		
AUGUST	682	2 2	673	21.7		9		
SEPTEMBER	660	22	625	20.8		35		
OCTOBER	682	22	683	22.0	1			
TOTAL	16,269		12,982		578	3,865	-3157	
						a		

ANDERSON-PRICHARD OIL COMPANY Langlie No. 1

1

GRAND TOTAL

SHORT..... 6444

 $\begin{array}{r}
 16, 269 \\
 12, 982 \\
 3, 287 \\
 3, 287 \\
 3, 287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\
 3287 \\$

-125-

			8	-25-37			
	ALLOW	ABLE	RUNS		OVER	SHORT	TOTAL
TO 8 -1-3 9							-984
AUGUST 31	784	25.3	720	23.2		64	
SEPTEMBER 30	1260	42.0	1302	43.4	42		
OCTOBER 31	1488	48.0	1809	58.4	321		
NOVEMBER 30	1380	46	1639	54.6	259		
DECEMBER 31	1395	45	16 7 1	53.9	276		
1940 January	1240	4 0	16 31	52.6	391		
FEBRUARY 29	1363	47	1118	5 8.5		245	
MARCH 31	1488	4 8	1562	50.4	74		
APRIL 30	1380	4 6	1370	45.7		10	
MAY 31	1302	42	1259	40.6		43	
JUNE 30	1230	41	1210	40.3		20	
JULY 31	1209	39	1185	38.2		24	
AUGUST 31	1147	37	1155	37.3	8		
SEPTEMBER 30	1050	35	1047	34.9		3	
OCTOBER	1147	37	1142	36.8		5	
TOTAL	18,863		19,820		1,371	414	- 984
GRAND TOTAL						:	SHOR T27

ANDERSON PRICHARD OIL COMPANY Jal No. 1

•==

SHORT.....27

984 + 1398 414 - 1371 1398 - 27

-126-

			8-25-	37			
	ALLOWA	BLE	RUNS		OVER	SHOR T	TOTAL
TO 8 -1- 39							
AUGUST	78 4	25.3	716	23.1		68	-1217
SEPTEMBER	1260	42	1288	42.9	28		
OCTOBER	1488	4 8	1788	57.7	300		
NOVEMBER	1380	46	1629	54.3	249		
DECEMBER	1395	45	1804	58.2	409		
1940 JANUARY	1240	40	1804	58.2	564		
FEBRUARY	1363	47.9	1343	46.3		20	
MARCH	1488	48	1321	42.6		167	
APRIL	1380	46	1370	45.7		10	
MAY	1302	42	1217	39.3		85	
JUNE	1230	41	1219	40.6		11	
JULY	1209	39	1197	38.6		12	
AUGUST	1147	37	1109	35.8		38	
SEPTEMBER	1050	35	1038	34.6		12	
OCTOBER	1147	37	1169	37.7	22		
TOTAL	18,863		20,012		1,572	423	-1217

ANDERSON-PRICHARD OIL COMPANY Jal No. 2 8-25-37

GRAND TOTAL

1217 423 1640 1572 1572 423 995 CERTIFICATE

I hereby certify that the foregoing and attached one hundred twenty-six and one-half pages of typewritten matter are a true, correct and complete transcript of the shorthand notes taken by me on December 11, 1940, in Case No. 22, and by me textended into typewriting, together with copies of Exhibits Nos. 4 and 6, offered by Petitioners.

WITNESS my hand this 30th day of December, 1940.

Esther Barton