API RP 10B Seventh Edition January 1958 RECOMMENDED PRACTICE for TESTING OIL-WELL CEMENTS

-

AMERICAN PETROLEUM INSTITUTE New York, N. Y.

Issued by API DIVISION OF PRODUCTION 300 Corrigan Tower Bldg. Dallas 1, Texas

Price: 75 Cents

Copyright 1958 by American Petroleum Institute

TABLE OF CONTENTS

			Page
Forev	vord		3
Sect.	I:	Sampling	4
Sect.	II:	Preparation of Slurry	5
Sect.	III :	Determination of Density of Slurry	6
Sect.	IV:	Filter-Loss Test	6
Sect.	v:	Strength Tests	8
Sect.	VI:	Soundness and Fineness Tests	9
Sect.	VII:	Thickening-Time Tests	10
		Pressure Temperature Thickening-Time Test	10
		Atmospheric Pressure Thickening-Time Test—A	
		Atmospheric Pressure Thickening-Time Test-B	

Note

This edition of RP 10B supersedes the 6th edition dated May 1957. It includes changes adopted at the June 1957 meeting, which were reported in detail in Circ. PS 1109.

meeting, which were reported in detail in Circ. PS 1109. This recommended practice was originally published in February 1948, as Code 32, and reissued as the 2nd edition in June 1952. In June 1952, this code was transferred to the jurisdiction of the Committee on Standardization of Oil-Well Cements, and redesignated RP 10B. The 3rd edition was issued in May 1954, and the 4th edition in May 1955. It was advanced to "standard" in June 1955. Further revised editions were issued in 1956 and May 1957. This publication may be reproduced in whole or in part, except that the "Official Publication" monogram appearing on the outside may not be reproduced. All reproductions shall carry the statement. "Reproduced by permission from API RP 10B: Recommended Practice for Testing Oil-Well Cements." This permission does not include the right to reproduce this recommended practice as a separate publication for resale or as a translation. Such right is granted only on special authorization.

API RECOMMENDED PRACTICE FOR TESTING OIL-WELL CEMENTS

Foreword

a. This recommended practice is under the jurisdiction of the API Committee on Standardization of Oil-Well Cements.

b. This recommended practice describes test procedures for the evaluation and definition of those physical properties of cements of special importance to the oil and gas industry. Certain of these procedures are required methods of test under API Std 10A: Specification for Oil-Well Cements.

c. These procedures are applicable to the following classes and types of oil-well cement (see API Std 10A for specification requirements).

- Class A: Intended for use from surface to 6,000-ft depth,* when special properties are not required. Available in regular type only (similar to ASTM C 150, type I).
- Class B: Intended for use from surface to 6,000-ft depth.* Available in the regular type (similar to ASTM C 150, type II) for conditions requiring moderate sulfate resistance, and in the high sulfate-resistant type.

*These depth limits are based on the conditions imposed by the casing cementing well-simulation tests (Schedules 1-9, incl.), and should be considered as approximate values.

- Class C: Intended for use from surface to 6,000-ft depth,* for conditions requiring high early strength. Available in the regular type (similar to ASTM C 150, type III) and in the high sulfate-resistant type.
- Class N: Intended for use from 6,000 to 9,000-ft depth,* for conditions of moderate temperature and pressure. Available in the regular type (having moderate sulfate resistance) and in the high sulfate-resistant type.
- Class D: Intended for use from 6,000 to 12,000-ft depth,* for conditions of moderately high temperature and moderately high pressure. Available in the regular type (having moderate sulfate resistance) and in the high sulfate-resistant type.
- Class E: Intended for use from 6,000 to 14,000-ft depth,* for conditions of high temperature and high pressure. Available in the regular type (having moderate sulfate resistance) and in the high sulfate-resistant type.
- Class F: Intended for use from 10,000 to 16,000-ft depth,* for conditions of extremely high temperature and extremely high pressure. Available in the regular type (having moderate sulfate resistance) and in the high sulfate-resistant type.

SECTION I SAMPLING

1. In order to secure a sample of cement which is truly representative of the lot in question, it is recommended that the following cement-sampling equipment and methods be employed whenever possible.

- 2. Apparatus. The following apparatus for sampling cement should be used:
 - a. Sacked Cement. A tube sampler, as shown in Fig. 1, should be used, if possible, for sampling sacked cement.
 - b. Bulk Cement. For sampling bulk cement, either of the following samplers should be used:
 - I. A tube sampler similar to that shown in Fig. 2 consisting of two polished brass telescopic tubes with registering slots which are opened or closed by rotation of the inner tube, the outer tube being provided with a sharp point to facilitate penetration. The length should be appropriate to the vessel from which the sample is being collected.
 - II. A small grocers scoop, for sampling during loading or unloading operations.

3. Procedure. The following procedure for samphing cement should be used:

- a. Sacked Cement. When using the sampler shown in Fig. 1, the Bates valve in the upper righthand corner of the sack should be opened, the sampler inserted diagonally, and the thumb placed over the air hole. The sampler should then be carefully withdrawn. When it is impossible or not feasible to sample cement with the tube sampler, every effort should be made to secure a representative sample from the lot of cement in question, be it large or small. A minimum of one sample from each 50 sacks (or less) is desirable. The sample should then be placed in an air-tight container, preferably metal, and kept there until immediately before testing is started.
- b. Bulk Cement. The various procedures given in the latest edition of ASTM C 183*: Method of Testing Hydraulic Cement, should be used for the sampling of bulk cement.

4. Size of Sample. The minimum weights of cement required for test purposes are given in Table 1. The total weight of sample collected should not be less than 25 per cent in excess of the amount required for the tests to be conducted.

*ASTM standards referred to herein are available from American Society for Testing Materials, 1916 Race St., Philadelphia, Pa.

TABLE 1						
WEIGHT	OF	TEST	SAMPLES			

Method of Test	Quantity for Single Test, min., lb.	Quantity for Complete Tests, min., lb
Soundness	1	1
Fineness	1	1
Thickening Time Atmospheric Pre Test A		12
Atmospheric Pre Test B Pressure Temper Tensile strength Compressive streng	6 ature2 2 (per gang	

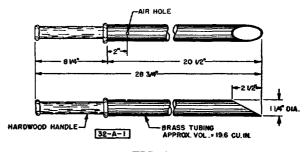


FIG. 1

FIG. 2 TUBE SAMPLER FOR BULK CEMENT

4

SECTION II PREPARATION OF SLURRY

Apparatus

5. Scales. The indicated load on scales should be accurate within a tolerance of 2 g for loads of 2000 g or more, and within 0.1 per cent of the indicated load for loads smaller than 2000 g, except that for new scales the tolerances on accuracy should be one-half of these values. The sensibility reciprocal should not be greater than twice the permissible tolerance on scale accuracy.

6. Weights. Weights should be accurate within the tolerances shown in Table 2, except that new weights should be accurate within one-half of such tolerances. On beam-type scales where the weights are on the beam, the indicated weights should conform to the requirements given in Par. 5

TABLE 2PERMISSIBLE VARIATION IN WEIGHTS

Weight, g.	Variation, Plus or Minus, g.
1000	0.50
500	0.35
300	0.30
200	0.20
100	0.15
50	0.10

7. Graduated Glass Cylinders. Graduated glass cylinders should be large enough to measure and deliver, in a single operation, the required volume of mixing water, at 20 C (68 F). The variation in volume should not exceed ± 0.2 per cent. The graduations should be subdivided to at least 5 ml. The main graduation lines should be complete circles, and should be numbered. The intermediate graduations should extend around a minimum of one-fifth of the circumference, and the smallest graduations should extend around a minimum of one-seventh of the circumference of the cylinder.

8. Mixing Device. The mixing device for preparation of cement slurries shall be a 1-qt size, two-speed Waring Blendor. This is a propeller-type high-speed mixer capable of rotating at 4,000 rpm or greater at no load on "slow" speed, and 10,000 rpm or greater at no load on "high" speed. The propeller blade and mixing container (1-qt) shall be constructed of corrosion resistant metal.

Procedure

9. Screening. The sample of cement to be tested should be passed through an 840 micron (No. 20) sieve meeting the requirements given in the latest edition of ASTM E 11: Sieves for Testing Purposes, in order to break up lumps and remove foreign materials. The materials retained on the screen should be weighed, the weight recorded as a per cent of the total cement sieved, and a notation made as to its characteristics, after which it should be discarded.

10. Mixing Water. For reference tests, freshly distilled water or distilled water essentially free of CO_2 should be used. For routine tests, any normal potable water may be employed. The mixing water should be measured in a graduated glass cylinder (see Par. 7) or weighed by means of scales and weights (see Par. 5 and 6).

11. Temperature of Water and Cement. The temperature of the water prior to mixing should be 80 ± 5 F and that of the cement should be 80 ± 10 F.

12. Water Percentage. The water percentage by weight to be added for each class of cement should conform to the values given in Table 3. No water shall be added to compensate for evaporation, wetting, etc.

TABLE 3 CEMENT SLURRY COMPOSITION

1	2	3	4	5
	Wa	ater		
		۸		d Quantity
	Percent-			d 750 ml
	age by	Gal.	of S	lurry
API Class	Wt. of	\mathbf{per}	<u> </u>	·/
of Cement	Cement	Sack	g. water	g. cement
A and B	46	5.19	444	965
С	56	6.32	479	855
N, D, E, and F	40	4.51	420	1050

NOTE: The addition of bentonite to cement requires that the amount of water be increased. It is recommended, for testing purposes, that 4.5 per cent water be added for each 1 per cent bentonite in classes A, and B, and C, and 3.8 per cent water for each per cent bentonite in classes N, D, E, and F cement. For example, a class A cement slurry having a normal water-cement ratio of 46 per cent, to which is added 3 per cent bentonite, will require an increase in watercement ratio to 59.5 per cent.

13. Mixing of Cement and Water. Mixing of the cement and the requisite percentage of water at the given temperature shall conform to the following mixing procedure:

The required quantity of water shall be placed in the mixing container, the mixer turned on "slow" speed, and the cement sample added in not more than 5 sec. After all of the cement has been added to the water, the cover shall be placed on the mixing container and stirring shall be continued at "high" speed for 35 sec.

14. Volume of Slurry. The volume of slurry in the mixing container shall be 750 ml.

SECTION III

DETERMINATION OF DENSITY OF SLURRY

15. Apparatus and Calibration. Cement slurry density should be determined by the use of any accurate instrument, such as a hydrometer or mud balance as described in API RP 29: Recommended Practice for Standard Field Procedure for Testing Drilling Fluids. 16. Procedure. The procedure for using a hydrometer or mud balance should be as recommended in the latest edition of API RP 29 except that the slurry, after being poured into the hydrometer or mud-balance cup, should be puddled 25 times to eliminate any air that may be entrapped in the slurry.

SECTION IV

FILTER-LOSS TEST

(Tentative)

17. Apparatus. The following apparatus should be used.

- a. Filter Press. The filter press should consist of a frame and cylinder assembly similar to that shown in Fig. 3. The cylinder should have an internal diameter of $3 \pm .07$ in. and a height of at least $2\frac{1}{2}$ in. The cylinder assembly should be constructed of materials not affected by alkaline solutions and so fitted that a pressure medium can be conveniently admitted into and bled from the top. The bottom of the cell should be closed by a bottom cap with a drain tube and necessary gaskets to provide an effective seal. The filtration area should be 7.1 sq in. The entire assembly should be supported in a convenient stand.
- **b.** Pressure Medium. Pressure should be supplied by compressed air, nitrogen, or any other safe and adequate means of maintaining constant gas pressure.
- c. Filter Medium. The filter medium should be 28 x 500 Dutch Twill Weave stainless steel metallic filter cloth with a stainless steel binder or a 325-mesh U S Standard Sieve Series screen

(ASTM E 11-39) supported by a 14-mesh Sieve Series screen, both fabricated from stainless steel into an integral unit.

d. Graduated Glass Cylinders. The graduated glass cylinders should be large enough to contain and measure the expected volume of filtrate.

18. Preparation of Filter Press and Slurry. Prior to placing the slurry in the press the filter press and cement slurry should be prepared as follows:

- a. Filter Press. The cell of the filter press should be assembled dry.
- b. Slurry. When the cement slurry is prepared in accordance with Sect. II, it is placed in the press as quickly as convenient handling will allow. The time between cessation of stirring and application of pressure shall not exceed 2 min. The temperature of slurry should be determined in degrees Fahrenheit.
- c. Special Slurry. When the test is used on field prepared slurries or on pressure and/or temperature treated slurries, the method of preparation and handling shall be stated.

Procedure

19. Placing of Slurry in Press and Commencing of Test. The cell should be filled with at least 2 in. of cement slurry, capped, and secured in the frame. A dry graduated cylinder should be placed under the drain tube to receive the filtrate, the relief valve closed, and a gas pressure of 100 ± 5 psi applied within 5 sec after the relief valve is closed.

20. Test Period. The test period should be timed from the instant of initial pressure application. Filtrate readings should be taken at $\frac{1}{4}$, $\frac{1}{2}$, 1, 2, and 5 min, and thereafter at 5-min intervals, until 30 min have elapsed. If dehydration occurs before the end of the 30-min test period, the elapsed time required to dehydrate the sample should be observed. At the completion of the test, the gas pressure should be shut off and the relief valve opened.

21. Recording of Results. Record the initial temperature of the slurry in degrees Fahrenheit. The volume of the filtrate should be recorded as follows:

- a. For 30-Min Test Period. Report the volume of filtrate as the fluid loss at 100 psi.
- b. For Short Test Periods. For slurries which dehydrate in less than 30 min, and tests of shorter duration than 30 min, a hypothetical 30-min fluid-loss value may be obtained for comparative purposes by multiplying the quantity of filtrate at that time by 5.477 divided by the square root of that time in minutes. This relationship is shown by the following equation:

$$Q_{30} = Q_t x \frac{5.477}{\sqrt{t}}$$

Wherein:

$$Q_{30} =$$
 the quantity of filtrate in 30 min.

 Q_t = the quantity of filtrate at time t.

All computed 30-min fluid-loss values should be so noted and should not be construed as true fluid-loss values.

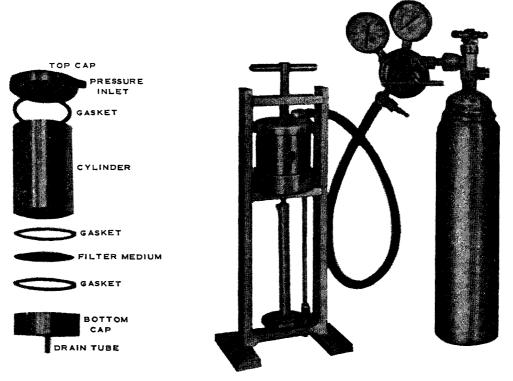


FIG. 3 TYPICAL FILTRATION TESTER

SECTION V STRENGTH TESTS

NOTE: Procedures are given for both compressive- and tensile-strength testing. However, comparative tests indicate that the results of tensile-strength tests do not reflect the effect of variation in age of specimens and in temperature of curing as well as do the results of compressive-strength tests.

22. Apparatus. The following apparatus shall be used:

- a. Sieve: 840 micron (No. 20) woven-wire cloth sieve, meeting requirements given in the latest edition of ASTM E 11: Specification for Sieves for Testing Purposes.
- b. Specimen Molds and Strength-Testing Machine: Molds and testing machine for the tensile-strength test conforming to requirements in the latest edition of ASTM C 190: Method of Test for Tensile Strength of Hydraulic-Cement Mortars. Molds and testing machine for the compressive-strength test conforming to the requirements in the latest edition of ASTM C 109: Method of Test for Compressive Strength of Hydraulic-Cement Mortars.
- c. Base and Cover Plates: Plate glass or non-corroding metal plates ¼-in. thick, approximately 4 in. wide, and 12 in. long.
- d. Water Curing Bath: A curing bath or tank having dimensions suitable for the complete immersion in water of ASTM tensile or compressive molds and operable within $\pm 3F$ of the prescribed test temperatures. The bath shall have a suitable agitator or circulating system to insure a uniform bath temperature. The two types of water curing bath are as follows:
 - I. A non-pressure vessel suitable for curing specimens at temperatures of 180 F or less.
 - II. A pressure vessel suitable for curing specimens at temperatures up to and including 350 F, and at pressures that can be controlled between 0 and 3,000 psi. The vessel shall have sufficient heating capacity to raise the temperature uniformly from 80 to 300 F in 100 min.
- e. Cooling Bath: A bath in which the specimen to be cooled from the curing temperature, can be completely submerged in water maintained at $80 \text{ F}, \pm 5 \text{ F}.$

f. Thermometers:

- I. Thermometer, range 0-220 F, with minimum scale divisions not exceeding 2 F, for use in non-pressure type vessels.
- II. Pyrometer or thermometer, range 0-400 F, with minimum scale divisions not exceeding 5 F, for use in pressure type vessels.
- g. Puddling Rod: A glass puddling rod approximately 8 in. in length and ¼ in. in diameter.
- h. Cup Grease: Cup grease, grade No. 2.
- i. Asphalt: Asphalt for use in sealing specimen molds, having a softening point above 180 F.

Procedure

23. Preparation of Slurry and Molds. The cement slurry and molds used for strength-test specimens shall be prepared prior to placing the slurry in the mold as follows:

- a. Slurry. The cement slurry shall be prepared in accordance with Sect. II.
- b. Molds. The interior faces of the molds and the contact surface of the plates shall be thinly covered with cup grease. The contact surfaces of the halves of each mold shall also be coated with cup grease to make the joint water tight when assembled. Excess grease shall be removed from the interior faces of the assembled molds, and the molds placed on a thinly greased plate or sealed to the base plate with asphalt heated to a pouring consistency and applied to the exterior contact lines of the molds and base plates. In the event that cup grease is used, it is necessarv that it be applied to the exterior contact line of the mold and the base plate.

24. Placing of Slurry in Molds. The slurry shall be placed in the prepared molds in a layer equal to one half of the mold depth, and the layer puddled 25 times per specimen with a puddling rod. The slurry shall be placed in all the specimen compartments before commencing the puddling operation. On completion of the puddling of the layer, the remaining slurry shall be stirred to eliminate segregation, after which the molds shall be filled to overflowing and puddled as for the first layer. After puddling, the excess slurry shall be struck off even with the top of the mold, using a straightedge. Specimens in molds which show evidence of leaking shall be discarded. A greased cover plate shall be placed on top of the mold.

25. Curing Periods. The curing period is the elapsed time from that of subjecting the specimen to temperature in the curing vessel to that of testing the specimen for strength.

- a. For specimens cured at atmospheric pressure, the curing period starts when specimens are initially placed in the curing bath, immediately after slurry has been placed in the molds. The curing period ends when specimens are tested for strength.
- b. For specimens cured at pressures above atmospheric, the curing period starts with the initial application of pressure and temperature, to be applied immediately after specimens are sealed in the curing vessel. The curing period ends when specimens are tested for strength.
- c. The recommended curing periods for test specimens are 8, 12, 18, 24, 36, 48, and 72 hr. Tests at 8, 24, 48, and 72 hr are usually sufficient, but in some cases where "waiting on cement" time and further information are wanted, additional tests may be necessary.

Curing Temperatures and Pressures

26. For curing at atmospheric pressure at temperatures of 180 F or less, one or more of the following temperatures are recommended: 80, 100, 120, 140, 160, 180. For curing at pressures above atmospheric, at temperatures of 170 F, or less, one or more of the following schedules are recommended (see Table 4): 1S, 2S, 3S, 4S.

27. For curing at temperatures above 180 F one or more of the following schedules (see Table 4) are recommended: 5S, 5AS, 6S, 7S, 8S, 9S, 10S.

Curing Procedures

28. Curing at Atmospheric Pressure. For curing at atmospheric pressure the test specimens, immedi-

8

ately after being placed in molds and covered, shall be immersed in a water bath maintained at the curing temperature.

- a. Where specimens are to be tested at ages of less than 24 hr, they shall be removed from the curing bath approximately 45 min before the age at which they are to be tested, immediately removed from their molds, and placed in a water bath maintained at 80 F \pm 5 F for approximately 35 min.
- b. Where specimens are to be tested at ages of 24 hr or more, they shall be removed from the curing bath 20 to 23 hr after the cement slurry is initially mixed, immediately removed from their molds, and returned to the curing bath. They shall remain in the curing bath until approximately 45 min prior to the age at which they are to be tested, at which time they shall be transferred to a water bath and maintained at 80 F ± 5 F for approximately 35 min.

29. Curing at Pressures Above Atmospheric. For curing pressures greater than atmospheric, the test specimens, immediately after molding and covering, shall be immersed in water at 80 F \pm 5 F in the pressure vessel. Heat and pressure shall be applied in accordance with the appropriate schedule as recommended in Par. 26 and 27 and in Table 2 of API Std 10A. The maximum scheduled temperature and pressure shall be maintained as shown in footnotes 1 and 2 of Table 4 until 1 hr and 45 min prior to the age at which the specimens are to be tested, at which time heating shall be discontinued. During the next 60 min

the temperature shall be decreased to 200 F or less without release of the pressure other than that caused by thermal contraction. At 45 min prior to the age at which specimens are to be tested, the pressure then remaining shall be released gradually (to avoid damaging specimens) and the specimens then removed from molds, transferred to a water bath and maintained at 80 F for approximately 35 min.

30. Testing of Specimens. The testing of the specimens shall be carried out immediately after their removal from the cooling-bath water, the testing procedure to conform with the proper ASTM standard method as follows:

- a. Cube specimens shall be tested in accordance with the latest edition of ASTM C 109: Method of Test for Compressive Strength of Hydraulic-Cement Mortars, Sect. 12 (b), 12 (c), 13, and 14, except that in the calculation of compressive strengths, variations from the specified crosssectional area (4.00 sq in.) may be disregarded, provided deviations of $\frac{1}{16}$ in. or more from the specified nominal (cross-sectional) dimensions (2.00 in.) are reported.
- b. Briquet specimens shall be tested in accordance with the latest edition of ASTM C 190: Method of Test for Tensile Strength of Hydraulic-Cement Mortars, Sect. 9 (b) and 10, except that in the calculation of tensile strength, variations from the specified cross-sectional area (1.00 sq in.) at the waistline may be disregarded, provided deviations of $\frac{1}{32}$ in. or more from the specified nominal dimensions (1.00 in.) are reported.

1	2	3	4	5	6	7	8	9	10	11	12	13
						TEI	IPERA	TURE,	deg. F.			
Schedule	Depth,	Pressure, ¹	E	Elapsed	Time fro	om First	Applic	ation of	Heat a	nd Pres	sure, hr	-min.
Number	ft.	psi	0:30	0:45	1:00	1:15	1:50	2:00	2:30	3:00	3:30	² 4:00
1S	1,000	800	80	81	82	83	84	86	88	90	92	95
2S	2,000	1,600	90	91	92	93	94	96	99	102	106	110
3S	4,000	3,000	100	105	109	113	117	121	125	130	135	140
4S	6,000	3,000	100	115	12 0	124	128	136	144	152	160	170
5S	8,000	3,000	105	115	125	135	140	150	165	175	190	200
5AS	9,000	3,000	105	120	130	140	145	160	175	185	200	215
6S	10,000	3,000	110	125	140	150	155	170	185	200	215	230
7S	12,000	3,000	115	135	155	175	185	200	215	$\overline{230}$	245	$\bar{260}$
8S	14,000	3,000	125	150	170	195	215	230	$\overline{245}$	$\bar{260}$	275	290
9S	16,000	3,000	135	165	190	220	$\bar{245}$	$\bar{2}60$	275	290	305	320
10S	18,000	3,000	145	180	210	245	280	305	$\bar{3}15$	325	335	350

 TABLE 4

 WELL-SIMULATION TEST SCHEDULES FOR CURING STRENGTH SPECIMENS

¹The test pressure shall be applied as soon as specimens are placed in the pressure vessel and maintained at the given pressure within the following limits for the duration of the curing period:

²Final temperature (Col. 13) shall be maintained \pm 3 F throughout the remainder of the curing period.

SECTION VI

SOUNDNESS AND FINENESS TESTS

31. Soundness Tests. Tests for soundness of oilwell cement should be made in accordance with the provisions of the testing procedure provided by the American Society for Testing Materials in the latest edition of ASTM C 151: Method of Test for Autoclave Expansion of Portland Cement. 32. Fineness Tests. Tests for fineness of oil-well cement should be made in accordance with the testing procedure provided by the American Society for Testing Materials in the latest edition of ASTM C 115: Method of Testing Fineness of Portland Cement by the Turbidimeter.

SECTION VII THICKENING-TIME TESTS

NOTE: Thickening-time tests are designed to determine the length of time a given cement slurry remains in a fluid state under given laboratory conditions, and thus serve as a method of comparing various cements. Following is a description of three recommended methods of test.

PRESSURE-TEMPERATURE THICKENING-TIME TEST

33. Apparatus. The following apparatus should be used:

- a. Thickening-time tester unit as developed by Fan American Petroleum Corp., formerly Stanolind Oil & Gas Co.* This apparatus consists essentially of a rotating cylindrical slurry container equipped with a stationary paddle assembly, all enclosed in a pressure chamber capable of withstanding the pressures and temperatures described herein. The space between the slurry container and the walls of the pressure container should be completely filled with white mineral oil, grade 95NF (National Formulary). A heating element capable of raising the temperature of this oil bath at the rate of at least 5 F per min is provided. Thermocouples are provided for determining the temperature of the oil bath and also that of the cement slurry. The slurry container is rotated at a speed of 50 rpm. The consistency of the cement slurry is indicated by the amount of deformation of a standardized coil spring connecting the stirring paddle and a limetal parts of the slurry container exposed to the slurry are made of corrosion-resistant alloys.
- b. Interval counter (stopwatch).

34. Calibration. The apparatus should be calibrated with Paratone calibration oil,** the viscosity of which is known over a range of 5 to 100 poises. The apparatus should be recalibrated at least once each year, also whenever wear of any metallic part in contact with the cement slurry becomes noticeable or when such part is replaced, and when the coil spring of the indicating mechanism is replaced. (Paratone should be discarded after use, because of possible contamination during the calibration test.) The thermocouples should be calibrated at frequent intervals to insure the accuracy of temperature measurements.

Procedure

35. Operating Instructions. Detailed operating instructions, as furnished by the manufacturer, are applicable under this method and should be followed. The apparatus should be at room temperature at the start of each test.

36. Filling of Apparatus. The slurry (prepared according to Sect. II) should be quickly poured into the slurry container. During this filling operation, the slurry should be lightly stirred to prevent segre-

*As illustrated in Fig. 8, 9, and 10 herein. Further information pertaining to the Pan American thickening-time tester may be obtained from Refinery Supply Co., Tulsa, Okla.

**Paratone calibration oil is obtainable in gallon lots from Refinery Supply Co., Tulsa, Okla. A certification will be furnished with each lot showing the viscosity-temperature relations (four points between 5-30 poises and four between 30-100 poises) as determined in a Precision Interchemical Rotational Viscometer at a constant shear rate of 50 rpm, by the Armour Research Foundation of Illinois Institute of Technology. It is recommended that any lot of oil not be used after two years from its date of certification. gation. When the slurry container is completely filled, the bottom should be screwed in, care being taken to insure that all air is excluded. The center plug should then be screwed in tightly, the container placed in the pressure chamber, and the chamber filled with the bath oil. Next, the head assembly of the pressure chamber should be screwed in place, the slurry container set to rotating, and the oil-pressure pump started. With the pump in operation, any air in the top of the chamber should be vented through the slurry container, placing the container in the pressure chamber, sealing and venting the pressure chamber, and placing the apparatus in operation should be completed within 5 min after completion of the mixing period.

37. Temperature and Pressure Control. During the test period, the temperature of the cement slurry, determined with the thermocouple in position in the center of the slurry container, and the pressure in the slurry container, should be increased in accordance with the well-simulation schedules given herein.

38. Casing-Cementing Schedules. Well-simulation test procedures for casing cementing are given in Schedules 1 through 10. These schedules are designed to represent field practices in cementing wells having depths ranging from 1,000 to 18,000 ft, based on assumed conditions shown in Table 5, and on the mud-circulating pressures and bottom-hole temperatures shown in Fig. 6 and 7.

39. Squeeze-Cementing Schedules. Well-simulation test procedures for squeeze cementing are given in Schedules 12 through 20. These schedules are designed to represent field practices in squeeze cementing of wells having depths ranging from 1,000 to 16,000 ft. These schedules are based on the data shown in Table 6 and Fig. 6 and 7.

40. Temperature and Pressure Ranges. The thickening time for classes A, B, and C cement should be determined in accordance with Schedules 1 through 4 for casing-cementing simulation tests, and in accordance with Schedules 12 through 15 for squeezecementing simulation tests. The thickening time for classes N, D, E, and F cement should be determined in accordance with Schedules 4 through 9 for casingcementing simulation tests, and in accordance with Schedules 15 through 20 for squeeze-cementing simulation tests. If only limited data are required it is not necessary to conduct tests in accordance with all of the above mentioned schedules.

41. Thickening Time. The elapsed time between the starting of the apparatus and the occurrence of a consistency of 100 poises should be reported as the thickening time for the cement under test for the particular schedule followed in the test. For the schedules involving the higher temperatures, it is permissible to stop the test at a consistency of approximately 70 poises; and, by plotting the results, to extrapolate to the 100-poise value.

42. Recording of Results. The results of the thickening-time tests should be recorded on forms similar to that shown on Fig. 4. The results should be reported in poises. RP 10B: Testing Oil-Well Cements

API CEMENT EVALUATION TESTS PAN AMERICAN¹ THICKENING-TIME TESTER

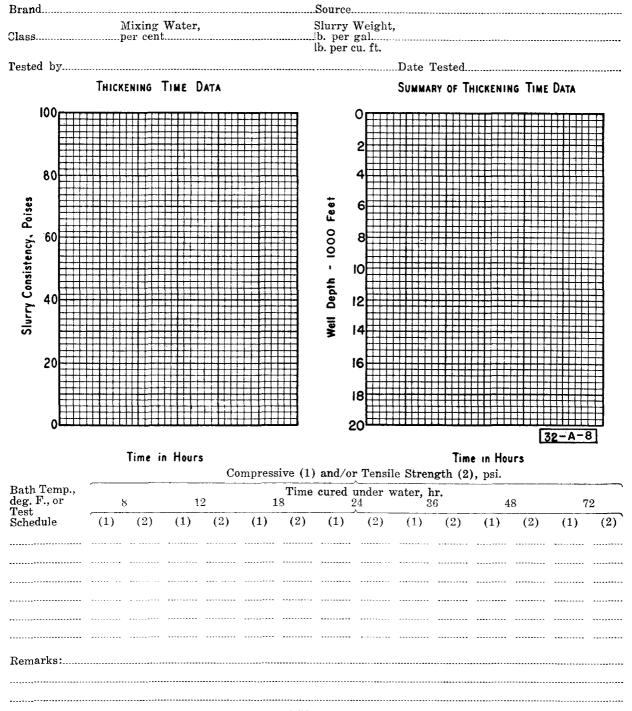


FIG. 4

FORM FOR REPORTING STRENGTH TESTS AND RESULTS OBTAINED FROM THICKENING-TIME TESTS ON THE PAN AMERICAN¹ THICKENING-TIME TESTER.

¹Formerly Stanolind.

11

ATMOSPHERIC PRESSURE THICKENING-TIME TEST-A

43. Apparatus. The following apparatus should be used:

- a. Thickening-time tester unit as developed by the Halliburton Oil Well Cementing Co.* This unit is furnished complete with motor, switches, thermo-regulator, base board, and carrying case.
- b. Interval counter (stopwatch).

44. Calibration. The apparatus should be calibrated with Paratone calibration oil,** the viscosity of which is known over a range of 5 to 100 poises. The apparatus should be recalibrated at least once each year, also whenever wear of any metallic part in contact with cement slurry becomes noticeable or when such part is replaced. (Paratone should be discarded after use, because of possible contamination during the calibration test.)

Preparation of Apparatus

45. Cleaning and Lubricating. Care should be taken to insure that all surfaces which come in contact with the cement slurry are clean. After each test such surfaces (particularly the outside edges of the paddles) should be cleaned and brushed with a brass cement-mold brush. Surfaces which come in contact with the slurry should be given a thin coating of water-proof grease or light oil before each test. The ball bearings in the top of the cylinder and those in the torque-indicating mechanism should be kept clean by frequent washings in kerosine and should be oiled with a light grade of lubricating oil.

46. Water Bath. Water should always be used as the bath liquid. For this reason, all exposed steel parts should be kept clean and lightly oiled or greased. The water bath should always be filled with water before turning on the heater.

47. Assembly. The slurry container mechanism should be assembled and the paddle rotated by hand to insure that none of the parts scrape. The index of the torque-indicating mechanism should point to zero when the pendulum hangs free. If it does not, the quadrant scale should be adjusted.

Procedure

48. Filling of Apparatus. The slurry (prepared according to Sect. II) should be quickly poured into the slurry container to the proper fill level, which is indicated by the groove around the inside of the container. The paddle should then be inserted, the lid placed in position, and the slotted shaft engaged

*As illustrated in Fig. 11, 12, 13 and 14 herein. Further information pertaining to the Halliburton thickening-time tester may be obtained from Halliburton Oil Well Cementing Co., Duncan, Okla.

**Paratone calibration oil is obtainable in gallon lots from Refinery Supply Co., Tulsa, Okla. A certification will be furnished with each lot showing the viscosity-temperature relation (four points between 5-30 poises and four between 30-100 poises) as determined in a Precision Interchemical Rotational Viscometer at a constant shear rate of 50 rpm, by the Armour Research Foundation of Illinois Institute of Technology. It is recommended that any lot of oil not be used after two years from its date of certification. with the pin in the torque shaft in the lid. The assembly should then be placed in the bath, the gears engaged, and the torque-indicator cord passed around the torque drum and looped over the pin. Care should be taken to insure that the cord is properly aligned on the 1%-in. drums of both the torque-indicator ring and the torque drum in order to preserve a constant radius of pull. The motor should then be started. The interval between the completion of mixing and the starting of the apparatus should not exceed 1 min.

49. Temperature Ranges. The thickening time for classes A, B, and C cement should be determined for temperature ranges of 80-100 F, 80-120 F, and 80-140 F; and the thickening time for classes N, D, E, and F cement for ranges of 80-140 F, 80-160 F, 80-180 F, and 80-200 F. If only limited data are required, it is not necessary to conduct tests at all of these temperature ranges.

50. Temperature Control. When testing slurries within the ranges of 80-100 F, 80-120 F, and 80-140 F, the rate of temperature increase should be 1 F per min. When testing within the ranges of 80-160 F, 80-180 F, and 80-200 F, the rate of increase should be 2 F per min. When the final temperature of the range is reached, that temperature should be maintained within ± 1 F.

51. Test Readings. Readings of the torque-indicator scale should be taken at 10-min intervals for the first hour and at 30-min intervals thereafter, until the slurry starts to stiffen, when readings should be taken at 10-min intervals or at increments of 10 poises.

52. Thickening Time. The elapsed time between the initial starting of the apparatus and the occurrence of a consistency of 100 poises should be reported as the thickening time of the cement under test, for the particular temperature range. Under some test conditions, the slurry stiffens very rapidly; and in order to avoid difficulty in removing the thickened cement slurry, it may be advisable to stop the test when a consistency of approximately 70 poises is reached. In such cases, the data should be plotted and the curve extrapolated to the 100-poise value. If the slurry stiffens very slowly, the test may be stopped at the end of an 8-hr test period, and the results reported as "8+ hr."

53. Recording of Results. The results of the thickening-time tests should be recorded on a form similar to that shown in Fig. 5. The results should be reported in poises.

NOTE: In the operation of the apparatus, a moment is created which pulls the pendulum from the vertical position. This moment is a maximum when the pendulum is in a horizontal position. The quadrant scale behind the pendulum is graduated in ten equal increments of torque, and readings taken on this scale must be converted to poises, on the basis of the calibration chart.

ATMOSPHERIC PRESSURE THICKENING-TIME TEST-B

54. Apparatus. The following apparatus should be used:

a. Thickening-time tester unit as developed by the Standard Oil Company of California*. The apparatus is mounted on a base and is furnished complete with motor, immersion heater, thermostat, pulleys, two V-belts, and two spring scales.

b. Interval counter (stopwatch).

55. Calibration. The torque-measuring spring scales (0 to 8 oz and 0 to 64 oz) should be calibrated frequently with dead weights.

Preparation of Apparatus

56. Accuracy. The apparatus should first be checked carefully to make certain that the paddles and slurry container are dimensionally accurate, that the outer paddles rotate freely about the stationary ones without play or wobble, that the torque measuring arm is $2\frac{43}{2}$ in. in length, and that the two spring scales are accurate.

57. Cleaning and Lubricating. Care should be taken to insure that all surfaces which come in contact with the cement slurry are clean. After each test such surfaces should be cleaned and brushed with a brass cement-mold brush. The following places should be well lubricated with water-proof grease before the start of each test: a, the bearing surface on the bottom of the slurry container which supports the container in the water bath; b, the inside of the bottom of the stationary paddle and the brass ring between this paddle and the movable paddle (sufficient grease should be used to prevent the slurry from entering the bearing); c, the top of the stationary paddle which is inserted into the revolving frame; and d, the threads between the container and the container bottom, in order to prevent loss of water to or from the cement slurry and to facilitate disassembly of the apparatus for cleaning after the test.

58. Assembly. After lubrication, the apparatus should be assembled in the water bath and rotated at the higher speed (60 rpm) to determine that none of the parts scrape. The spring scale may indicate a small torque at this speed. If so, this value should be recorded and subtracted from subsequent test readings. Care should be exercised that the water in the water bath covers the immersion heaters and is slightly above the height to which the slurry will fill the shell. Also, care should be taken to insure that the flexible chain which attaches to the spring scale does not touch the sides of the water bath, and that the direction of pull of the chain is tangential to the segment of the shell to which the chain is attached.

Procedure

59. Pretest Temperature. Prior to testing, the apparatus should be heated to the desired pretest temperature (usually 80 F).

60. Spring Scale. The spring scale with the range of 0 to 8 oz should be used at the start of the test and until the pull reaches 8 oz, at which time it should be replaced with the scale with the range of 0 to 64 oz.

61. Filling of Apparatus. The slurry (prepared according to Sect. II) should be quickly poured into the slurry container of the apparatus. A funnel may be used to facilitate this transfer. The cement should fill the slurry container to the proper height which is indicated by a mark $1\frac{14}{4}$ in. from the top of the container. The time for filling the slurry container and placing the apparatus in operation should not exceed 1 min.

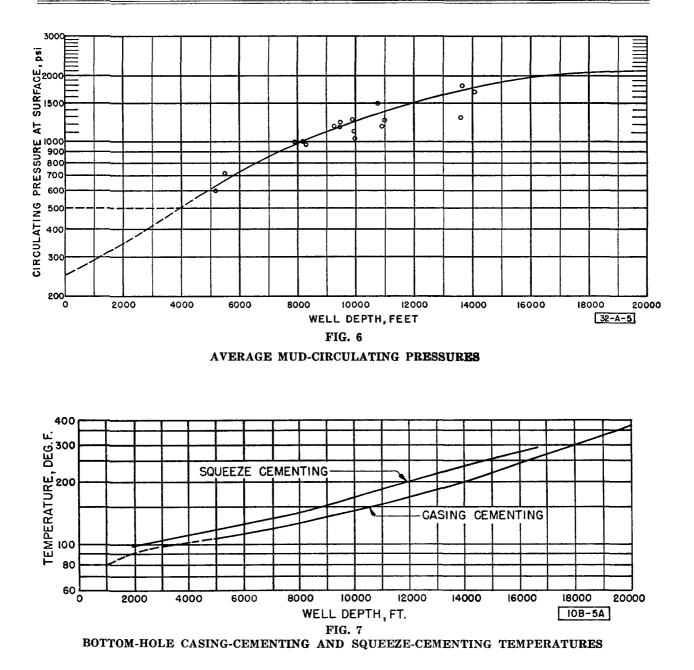
62. Testing Speeds. The apparatus should then be started at the higher speed (approximately 60 rpm), and the test continued at this speed for 15 min, after which the speed should be reduced to 14.5 rpm by placing the V-belt on the larger pulley. It is important that this speed be held within ± 0.2 rpm since variations in speed affect the thickening time considerably.

63. Temperature Ranges. The thickening time for classes A, B, and C cement should be determined for temperature ranges of 80-100 F, 80-120 F, and 80-140 F; and the thickening time for classes N, D, E, and F cement for ranges of 80-140 F, 80-160 F, 80-180 F, and 80-200 F. If only limited data are required, it is not necessary to conduct tests at all of these temperature ranges.

64. Temperature Control. When testing slurries within the ranges of 80-100 F, 80-120 F, and 80-140 F the rate of temperature increase should be 1 F per min. When testing within the ranges of 80-160 F, 80-180 F, and 80-200 F, the rate of increase should be 2 F per min. When the final temperature of the range is reached, that temperature should be maintained within ± 1 F.

65. Test Readings. Minimum readings of the pull exerted by the slurry should be taken at 10-min intervals, starting when the test apparatus is started at the higher speed. Also, readings should be taken immediately before and after the speed is changed.

66. Thickening Time. The elapsed time between the initial starting of the apparatus and the occurrence of a consistency of 40 oz should be reported as the thickening time of the cement under test.


67. Recording of Results. The results of the thickening-time tests should be recorded on a form similar to that shown in Fig. 5. The results should be reported in ounces.

^{*}As illustrated in Fig. 15 and 16 herein. Further information pertaining to the Standard of California thickeningtime tester may be obtained from Cook Laboratories, Menlo Park, Calif.

FIG. 5

FORM FOR REPORTING STRENGTH TESTS AND RESULTS OBTAINED FROM THICKENING-TIME TESTS ON THE HALLIBURTON OR STANDARD OF CALIFORNIA THICKENING-TIME TESTER.

15

TABLE 5 BASIS FOR CASING-CEMENTING WELL-SIMULATION TEST SCHEDULES

1	2	3		4	5	6	7
Schedule No.	Depth, ft.	Mud-W lb. per gal.	Veight, lb. per cu. ft. ¹	Surface Pressure, psi ²	Bottom-Hole Circulating Temperature, deg. F. ³	Bottom-Hole Pressure, psi ⁴	Total Cementing Time, min. ⁵
1	1,000	10	74.8	500	80	1,020	23
$\frac{1}{2}$	2,000	10	74.8	500	91	1.540	27
3	4,000	10	74.8	500	103	2,580	37
4	6,000	ĩŏ	74.8	750	113	3,870	46
5	8,000	10	74.8	1,000	125	5,160	55
5A	9,000	11	82.3	1,120	135	6,270	60
6	10,000	$\overline{12}$	89.8	1,250	144	7,480	65
7	12,000	$\overline{14}$	104.7	1,500	172	10,230	74
8	14,000	$\overline{16}$	119.7	1,750	206	13,390	84
9	16,000	17	127.2	2,000	248	16,140	91
10	18,000	18	134.6	2,000	300	18,800	100
				E E E E	1	1	

¹Mud weights obtained from a review of field data.

²Surface pressure obtained from a review of field data. ³Bottom-hole circulating temperatures averaged from ac-tual field tests run at various depths.

⁴Bottom-hole pressures calculated from surface pressures and mud weights.

 ${}^{5}\text{Total}$ cementing time calculated from the following assumed conditions:

Casing size: 7-in. outside diameter

Size of job: 300 sacks of cement

Pumping rate: 50 cu ft per min

TABLE 6						
BASIS FOR SQUEEZE-CEMENTING V	WELL-SIMULATION	TEST SCHEDULES				

1	2	3		4	5	6	7
Schedule No.	Depth, ft.	Mud-W lb. pe r gal.	eight, lb. per cu. ft. ¹	Surface Pressure, psi ²	Bottom-Hole Circulating Temperature, deg. F. ³	Bottom-Hole Pressure, psi ⁴	Total Cementing Time, min. ⁵
12	1,000	10	74.8	500	89	3,300	29
13	2,000	10	74.8	500	98	4,200	31
14	4,000	10	74.8	500	116	4,600	35
15	6,000	10	74.8	800	136	6,700	40
16	8,000	10	74.8	1,000	159	7,800	45
16A	9,000	11	82.3	1,200	171	8,500	47
17	10,000	12	89.8	1,300	186	9,400	49
18	12,000	14	104.7	1,500	213	11,800	50
19	14,000	16	119.7	1,800	242	14,000	55
20	16,000	17	127.2	2,000	271	16,500	60

¹Mud weights obtained from a review of field data.

²Surface pressure obtained from a review of field data.

³Bottom-hole circulating temperatures averaged from ac-tual field tests run at various depths.

⁴Bottom-hole pressures calculated from surface pressures and mud weights.

⁵Total cementing time calculated from the following assumed conditions:

Tubing size: 2½ in.

Size of job: 100 sacks of cement

Pumping rate: 14.0 cu ft per min displacing; 14.0 cu ft to 1.4 cu ft per min squeezing

16

SCHEDULE 1 1000-ft CASING-CEMENTING

WELL-SIMULATION TEST

Field Conditions Assumed

Surface tempo Surface press Size of job: Mud weight: Bottom-hole f Bottom-hole f	ure: temperature:	80 F 500 psi 300 sacks 10 lb per gal 74.8 lb per cu ft 80 F 1020 psi
Mixing time:	probbaret	18 min
Total cementi	ng time:	$23 \min$
Time,	Pressure,	Temperature,
min.	psi	deg. F.
0	500	80
0 2 4 6 8	550	80
4	590	80
6	640	80
8	680	80
10	730	80
12	780	80
14	820	80
16	870	80
18	910	80
20	960	80
22	1010	80
23	1020	80

Final temperature and pressure should be held constant to completion of test, within ± 2 F and ± 10 psi respectively.

SCHEDULE 2

2000-ft CASING-CEMENTING WELL-SIMULATION TEST

Field Conditions Assumed

Surface tempera Surface pressur Size of job: Mud weight: Bottom-hole tem Bottom-hole pre Mixing time: Total cementing	80 F 500 psi 300 sacks 10 lb per gal 74.8 lb per cu ft 81 F 1540 psi 18 min 27 min			
Time,	Pressure,	Temperature,		
min	psi	deg. F.		
0	500	80		
0 2 4 6 8	580	81		
4	650	82		
6	730	82		
8	810	83		
10	890	84		
12	96 0	85		
14	1040	86		
16	1120	86		
18	1190	87		
20	1270	88		
22	1350	89		
24	1420	90 90		
26	26 1500			
27	1540	91		
Final temperature and pressure should be held constant to completion of test, within ± 2 F and ± 10 p respectively.				

SCHEDULE 3

4000-ft. CASING-CEMENTING

WELL-SIMULATION TEST

Field Conditions Assumed

Surface tempe Surface pressu Size of job: Mud weight:	80 F 500 psi 300 sacks 10 lb per gal 74.8 lb per cu ft	
Bottom-hole te	emperature:	103 F
Bottom-hole p		2580 psi
Mixing time:		18 min
Total cementin	g time:	37 min
Time,	Pressure,	Temperature,
min.	psi	deg. F.
0	500	80
0 2 4 6 8	610	81
4	730	82
6	840	84
8	960	85
10	1070	86
12	1180	88
14	1300	89
16	1410	90
18	1530	91
20	1640	92
22	1750	94
24	1870	95
26	1980	96
28	2100	98
30	2210	99
32	2320	100
34	2440	101
36	2550	102
37	2580	103

Final temperature and pressure should be held constant to completion of test, within ± 2 F and ± 10 psi respectively.

SCHEDULE 4 6000-ft CASING-CEMENTING WELL-SIMULATION TEST

Field Conditions Assumed

Π.	Icia Conantion	a Assumeu	
	Surface temp Surface press Size of job: Mud weight: Bottom-hole Mixing time: Total cementi	sure: temperature: pressure:	80 F 750 psi 300 sacks 10 lb per gal 74.8 lb per cu ft 113 F 3870 psi 18 min 46 min
_	Time min.	Pressure, psi	Temperature, deg. F.
_	0 2 4 6 8 10 12	$750 \\ 890 \\ 1020 \\ 1160 \\ 1290 \\ 1420 \\ 1560$	80 81 83 84 86 87 89

=

6	1160	84	ł
8	1290	86	
10	1420	87	
12	1560	89	1
14	1700	90	
16	1830	91	
18	1970	93	
20	2100	94	
$\frac{1}{22}$	2230	96	
$\frac{1}{24}$	2370	97	
26	2500	99	
28	2640	100	
30	2780	101	
32	2910	103	1
34	3040	104	
36	3180	106	
38	3310	107	
40	3450	109	
42	3590	110	
$\overline{44}$	3720	111	
46	3870	113	
	0010	110	

Final temperature and pressure should be held con-stant to completion of test, within ± 2 F and ± 10 psi respectively.

SCHEDULE 5 8000-ft CASING-CEMENTING WELL-SIMULATION TEST

Field Conditions Assumed

Field Conditions	Assumed	
Surface temper	rature:	80 F
Surface pressu	re:	1000 psi
Size of job:		300 sacks
Mud weight:		10 lb per gal
muu weight.		74.8 lb per cu ft
Rottom hole to	maratura	125 F
Bottom-hole te	mperature:	5160 psi
Bottom-hole pr	essure.	10 psi
Mixing time:		18 min
Total cementin	g time:	55 min
Time	Pressure,	Temperature,
min.	psi	deg. F.
0	1000	80
2	1150	82
4	1300	83
6	1450	85
8	1600	87
10	1750	88
12	1900	90
14	2050	91
16	2200	93
18	2350	95
20	2500	96
22	2650	98
24	2800	100
26	2950	101
28	3100	103
30	3250	104
32	3400	106
34	3550	108
36	3700	109
38	3850	111
40	4000	112
42	4150	114
44	4300	116
46	4450	117
48	4600	119
50	4750	121
52	4900	122
54	5050	124
55	5160	125
Final temperat	ure and press	ure should be held con-
stant to complete	on of test, wit	thin ± 2 F and ± 10 psi
respectively		

respectively.

SCHEDULE 5A 9,000-ft CASING-CEMENTING

WELL-SIMULATION TEST

Field Conditions Assumed				
Surface temper	ature:	80 F		
Surface pressu	re:	1120 psi		
Size of job:		300 sacks		
Mud weight:		11 lb per gal		
6		82.3 lb per cu ft		
Bottom-hole te	mnerature	135 F		
Bottom-hole pr		6270 psi		
Mixing time:	00000201	18 min		
Total cementing	r time.	60 min		
Time,	Pressure,			
min.	psi	Temperature, deg. F.		
0	1120	80		
2	1290	8 2		
4	1460	84		
6	1640	85		
8	1810	87		
10	1980	89		
12	2150	91		
14	2320	93		
16	2500	95		
18	2670	96		
20	2840	.98		
22	3010	100		
24	3180	102		
26	3350	104		
28	3520	106		
30	3700	107		
32	3870	109		
34	4030	111		
36 38	4210	113		
38 40	4380	115		
40 42	$\begin{array}{c} 4550 \\ 4730 \end{array}$	117 118		
42 44	4900	118 120		
44	4900 5070	120		
40	5240	122		
50	5410	124 126		
52	5580	120		
54 54	5760	128		
56	5930	131		
58	6100	131		
60	6270	135		
stant to complete	on of tost wit	ure should be held con-		
stant to completion of test, within ± 2 F and ± 10 psi respectively.				
Topconvery.				

SCHEDULE 6

10,000-ft CASING-CEMENTING WELL-SIMULATION TEST

Field Conditions Assumed

rield Conditions	Assumed	
Surface temper	rature:	80 F
Surface pressu		1250 psi
Size of job:		300 sacks
Mud weight:		
mua weight:		12 lb per gal
D. (1.).)		89.8 lb per cu ft
Bottom-hole te		144 F
Bottom-hole pr	essure:	7480 psi
Mixing time:		18 min
Total cementin	g time:	65 min
Time,	Pressure,	Temperature,
min.	psi	deg. F.
0		
0	1250	80
2	1440	82
4	1630	84
6	1830	86
8	2020	88
10	2210	90
12	2400	92
14	2590	94
16	2790	96
18	2980	98
20	3170	100
22	3360	102
$\bar{2}\bar{4}$	3550	104
26	3750	106
28	3940	108
30	4130	110
30	4320	110
34	4510	113
36	4710	115
38	4900	117
40	5090	119
42	5280	121
44	5470	123
46	5670	125
48	5860	127
50	6050	1 29
52	6250	131
54	6440	133
56	6630	135
58	6930	137
60	7020	139
62	7210	141
64	7400	143
65	7480	144
rinai temperat	ure and pressi	ire should be held con-
stant to completion	on of test, wit	hin ± 2 F and ± 10 psi

stant to completion of test, within ± 2 F and ± 10 psi respectively.

SCHEDULE 7 12,000-ft CASING-CEMENTING WELL-SIMULATION TEST

Field Conditions Assumed

Field Conditions Assumed			
Surface temperature:		80 F	
		1500 psi	
Surface pressure:			
Size of job:		300 sacks	
Mud weight:		14 lb per gal	
		104.7 lb per cu ft	
Bottom-hole ter	marsture	172 F	
Bottom-hole pr	mperature.	10,230 psi	
	essure:		
Mixing time:	_	18 min	
Total cementing	g time:	$74 \min$	
Time,	Pressure,	Temperature,	
min.	L I OBBUIC,	dor E	
	psi	deg. F	
0	1,500	80	
$\overset{\circ}{2}$	1,740	82	
$\frac{1}{4}$	1,970	85	
4			
6	2,210	87	
8	2,440	90	
10	2,680	92	
12	2,910	95	
$\overline{\overline{14}}$	3,140	97	
16	3,380	100	
18	3,610	102	
20	3,850	105	
22	4,080	107	
24	4,320	110	
$\overline{26}$	4,560	112	
28	4,790	115	
30	5,020	117	
32	5,260	120	
34	5,490	122	
36	5,730	125	
38	5,970	127	
40		130	
	6,200		
42	6,430	132	
44	6,670	135	
46	6,910	137	
48	7,140	140	
50	7,380	142	
52	7,610	144	
54	7,850	147	
56	8,090	149	
58	8,320	152	
60	8,560	154	
62	8,790	157	
64	9,030	159	
66			
	9,270	162	
6 8	9,500	164	
70	9,740	167	
72	9,970	169	
74	10,230	172	
• -			
Final temperature and pressur		in the E and that one	
stant to completion of test, within ± 2 F and ± 10 psi			
respectively.			

SCHEDULE 8 14,000-ft CASING-CEMENTING

WELL-SIMULATION TEST

Field Conditions Assumed

Field Conditions	Assumeu	
Surface tempe	erature:	80 F
Surface press	ire	1750 psi
Size of job:		300 sacks
Mud weight:		
muu weight.		16 lb per gal
		119.7 lb per cu ft
Bottom-hole to		206 F
Bottom-hole p	ressure:	13,390 psi
Mixing time:		18 min
Total cementin	ng time:	84 min
Time,	Pressure,	Temperature,
min.		dog E
	psı	deg. F.
0	1,750	80
2	2,030	83
4	2,310	86
6	2,580	89
8	2,860	92
10	3,140	95
12	3,420	98
14^{12}	3,420	
	3,700	101
16	3,970	104
18	4,250	107
20	4,530	110
22	4,810	113
24	5,090	116
26	5,370	119
28	5,650	122
30	5,920	125
32	6,200	128
$\overline{34}$	6,480	131
36	6,760	134
38	7,040	137
40	7,320	140
40		
	7,600	143
44	7,880	146
46	8,160	149
48	8,440	152
50	8,710	155
52	8,990	158
54	9,270	161
56	9,550	164
58	9,830	167
60	10,110	170
62	10,390	173
64	10,670	176
66	10,950	179
68	11,230	182
70	11,500	185
72		
	11,780	188
74	12,060	191
76	12,340	194
78	12,620	197
80	12,900	200
82	13,180	203
84	13,390	206
Final tomporat	ure and press	re should be held con-
- mar cemperat	are and pressu	ac should be netd con-

Final temperature and pressure should be held constant to completion of test, within ± 2 F and ± 10 psi respectively.

SCHEDULE 9 16,000-ft CASING-CEMENTING WELL-SIMULATION TEST

SCHEDULE 10 18,000-ft CASING-CEMENTING WELL-SIMULATION TEST

1 Condition	- A	
d Condition		00 13
urface temr		80 F
urface pres	sure:	2000 psi
ize of job:		300 sacks
ud weight:		17 lb per gal
11		127.2 lb per cu ft
	temperature:	248 F
ottom-hole		16,140 psi
lixing time:		$18 \min_{0.1}$
otal cement		<u>91 min</u>
Time,	Pressure,	Temperature,
min.	psi	deg. F.
0	2,000	80
2	2,310	84
4	2,620	87
6	2,930	91
8	3,240	95
10	3,550	99
12	3,860	102
14	4,170	106
16	4,480	$110 \\ 113$
18	4,790	
20 22	5,100 5,410	117 121
24	5,720	121
26	6,030	128
28	6,340	132
30	6,650	135
32	6,960	139
34	7,270	143
36	7,580	147
38	7,890	150
40	8,200	154
42	8,510	158
44	8,820	161
46	9,130	165
48	9,440	169
50	9,750	172
52	10,060	176
54 54	10,370	180
56 58	10,680 10,990	183 187
60	11,300	187
62	11,610	191
64	11,920	198
ĞĜ	12,220	202
68	12,540	206
70	12,850	209
72	13.160	213
74	13,470	217
76	13,780	220
78	14,090	224
80	14,400	228
82	14,710	231
84	15,020	235
86	15,330	239
88	15,640	243
90	15,950	246
91	16,140	248
	ture and prese	ire should be held con
inal tempera	func and press	ite should be held con
it to complete	tion of test, wit	hin ± 2 F and ± 10 ps

Field Conditions Assumed			
Surface temp	erature:	80 F	
Surface pres		8000 psi 300 sacks	
Size of job:		300 sacks	
Mud weight:		18 lb per gal 134.6 lb per cu ft	
Bottom-hole	temperature:	300 F	
Bottom-hole		18,800 psi	
Mixing time:	•	18 min	
Total cement		<u>100 min</u>	
Time,	Pressure,	Temperature,	
	psi	deg. F.	
0	2,000	80	
2	2,340	84	
4 6	2,670 3,010	89 93	
š	3,340	98	
10	3,680	102	
12	4,020	106	
14 16	4,350	111	
18	4,690 5,020	115 120	
20	5,360	124	
22	5,700	128	
24	6,030	133	
26 28	6,370 6,700	137 142	
30	7.040	142	
32	7,380	150	
34	7,710	155	
36 38	8,050 8,380	$\begin{array}{c} 159\\ 164 \end{array}$	
40	8,720	164	
42	9,060	172	
44	9,390	177	
46 48	9,730	181	
50	10,060 10,400	186 190	
52	10,740	194	
54	11,070	199	
56	11,410	203	
58 60	11,740 12,080	208 212	
62	12,420	216	
64	12,750	221	
66 68	13,090	225	
68 70	$13,420 \\ 13,760$	$\begin{array}{c} 230 \\ 234 \end{array}$	
$\frac{10}{72}$	14,100	238	
74	14,430	24 3	
76	14,770	247	
78 80	$15,100 \\ 15,440$	$\begin{array}{c} 252 \\ 256 \end{array}$	
82	15,780	260	
84	16,110	265	
86	16,450	269	
88 90	16,780	274	
90 92	17,120 17,460	278 282	
94	17,790	287	
96	18,130	291	
98 100	18,460	296	

~

American Petroleum Institute

NOTE: Data for Schedule 11, "20,000-ft Casing-Cementing Well-Simulation Test" has not yet been developed.

SCHEDULE 12

1000-ft SQUEEZE-CEMENTING WELL-SIMULATION TEST

Field Conditions Assumed

Surface tempe Surface pressu Size of job: Mud weight:		80 F 500 psi 100 sacks 10 lb per gal 74.8 lb per cu ft
Bottom-hole to Bottom-hole p Mixing time: Total cementin	ressure:*	89 F 3300 psi 8 min 29 min
Time,	Pressure,	Temperature,
min.	psi	deg. F.
0	500	80
1	900	83
$\overline{2}$	1200	86
1 2 3 4 25	1300	89
4	1300	89
95	1300	89
	1000	
	1900	20
26	1300	89
26 27	2300	89
26		

Final temperature and pressure should be held con-stant to completion of test, within ± 2 F and ± 10 psi respectively.

SCHEDULE 13

2000-ft SQUEEZE-CEMENTING

WELL-SIMULATION TEST

Field Conditions Assumed

Surface tempe Surface press Size of job: Mud weight:		80 F 500 psi 100 sacks 10 lb per gal 74.8 lb per cu ft
Bottom-hole temperature:		98 F
Bottom-hole pressure:*		4200 psi
Mixing time:		8 min
Total cementin	ng time:	31 min
Time,	Pressure,	Temperature,
min.	psi	deg. F.
0	500	80
1	900	84
2 3 4 5 6	1200	87
3	1600	91
4	1900	94
5	2300	98
6	2300	98
27	2300	98
28	2800	98
29	3300	98
30	3300	98
31	4200	98
T 11 1 4	•	

Final temperature and pressure should be held con-stant to completion of test, within ± 2 F and ± 10 psi respectively.

*Bottom-hole pressure is the final squeeze pressure and is equal to the calculated static pressure plus 2500 psi surface pressure.

4000-ft	SCHEDULE 14 4000-ft SQUEEZE-CEMENTING				
WEL	L-SIMULATI	ON TEST			
Field Conditions		00 H			
Surface temper	rature:	80 F			
Surface pressu Size of job:	re:	500 psi 100 sacks			
Mud weight:		10 lb per gal			
		74.8 lb per cu ft			
Bottom-hole te	mperature:	116 F			
Bottom-hole pr Mixing time:	essure:*	5600 psi 8 min			
Total cementin	a time.	35 min			
Time,	Pressure,	Temperature,			
min.	psi	deg. F.			
0	500	80			
1	900	84			
2	1200	88			
3 4	$\begin{array}{c} 1600 \\ 1900 \end{array}$	92 06			
5	2300	96 100			
6	2700	104			
7	3000	108			
8	3400	112			
9 10	3600 3600	116 116			
31	3600	116			
32	4100	116			
33	4600	116			
34 35	$5100 \\ 5600$	116 116			
Final temperate	are and press	re should be held con-			
stant to completion	on of test, wit	hin ± 2 F and ± 10 psi			
respectively.	·				
6000 EL	SCHEDULE				
WEL	SQUEEZE-C L-SIMULATI	EMENTING ON TEST			
Field Conditions	Assumed	ON TEST			
Surface temper	rature:	80 F			
Surface pressu	re:	800 psi			
Size of job: Mud weight:		100 sacks 10 lb per gal			
muu weight.		74.8 lb per cu ft			
Bottom-hole te	mperature:	136 F			
Bottom-hole pr	essure:*	6700 psi			
Mixing time:		8 min			
Total cementin		40 min			
Time, min.	Pressure, psi	Temperature, deg. F.			
0	800				
1		80			
^	1200	80 84			
2	1200 1500	84 88			
	1200 1500 1900	84 88 92			
	1200 1500 1900 2200	84 88 92 96			
3 4 5	1200 1500 1900 2200 2600	84 88 92 96 100			
3 4 5 6 7	1200 1500 2200 2600 3000 3300	84 88 92 96 100 104 108			
3 4 5 6 7 8	$1200 \\ 1500 \\ 1900 \\ 2200 \\ 2600 \\ 3000 \\ 3300 \\ 3700$	84 88 92 96 100 104 108 112			
3 4 5 6 7 8 9	$1200 \\ 1500 \\ 1900 \\ 2200 \\ 2600 \\ 3000 \\ 3300 \\ 3700 \\ 3900 \\$	84 88 92 96 100 104 108 112 116			
3 4 5 6 7 8	$1200 \\ 1500 \\ 1900 \\ 2200 \\ 2600 \\ 3000 \\ 3300 \\ 3700 \\ 3900 \\ 4100$	84 88 92 96 100 104 108 112 116 120			
3 4 5 6 7 8 9 10 11 12	$1200 \\ 1500 \\ 1900 \\ 2200 \\ 2600 \\ 3000 \\ 3300 \\ 3700 \\ 3900 \\$	84 88 92 96 100 104 108 112 116 120 124 128			
3 4 5 6 7 8 9 10 11 12 13	$1200\\1500\\1900\\2200\\2600\\3000\\3300\\3700\\3900\\4100\\4300\\4600\\4800$	84 88 92 96 100 104 108 112 116 120 124 128 132			
3 4 5 6 7 8 9 10 11 12 13 14	$1200 \\ 1500 \\ 1900 \\ 2200 \\ 2600 \\ 3000 \\ 3300 \\ 3700 \\ 3900 \\ 4100 \\ 4300 \\ 4600 \\ 4800 \\ 5000 \\ 5000 \\ 1900 \\ 1900 \\ 1900 \\ 1900 \\ 1900 \\ 1900 \\ 1000 \\ $	84 88 92 96 100 104 108 112 116 120 124 128 132 136			
3 4 5 6 7 8 9 10 11 12 13 14 15	$1200 \\ 1500 \\ 1900 \\ 2200 \\ 2600 \\ 3000 \\ 3300 \\ 3700 \\ 3900 \\ 4100 \\ 4300 \\ 4600 \\ 4800 \\ 5000 \\ $	84 88 92 96 100 104 108 112 116 120 124 128 132 136 136			
3 4 5 6 7 8 9 10 11 12 13 14 15 36	$1200 \\ 1500 \\ 1900 \\ 2200 \\ 2600 \\ 3000 \\ 3300 \\ 3700 \\ 3900 \\ 4100 \\ 4300 \\ 4600 \\ 4800 \\ 5000 \\ $	84 88 92 96 100 104 108 112 116 120 124 128 132 136 136 136 136			
$ \begin{array}{r} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 36 \\ 37 \\ 38 \\ \end{array} $	$1200 \\ 1500 \\ 1900 \\ 2200 \\ 2600 \\ 3000 \\ 3300 \\ 3700 \\ 3900 \\ 4100 \\ 4300 \\ 4600 \\ 4800 \\ 5000 \\ 5000 \\ 5000 \\ 5000 \\ 5400 \\ 5900 \\ 5900 \\ 5900 \\ 5900 \\ 5900 \\ 5900 \\ 500 \\ 5900 \\ 5900 \\ 500 \\ 5900 \\ 5900 \\ 500 \\ 5900 \\ 5900 \\ 500 \\ 5900 \\ 500 \\ 5900 \\ 5900 \\ 500 \\ 5900 \\ 500 \\ 5900 \\ 500 \\ 5900 \\ 500 \\ 5900 \\ 500 \\ 5900 \\ 500 \\ 5900 \\ 500 \\ 500 \\ 5900 \\ 500 \\ $	84 88 92 96 100 104 108 112 116 120 124 128 132 136 136 136 136 136 136			
3 4 5 6 7 8 9 10 11 12 13 14 15 36 37 38 39	$1200\\1500\\2200\\2600\\3000\\3300\\3700\\3900\\4100\\4300\\4600\\4800\\5000\\5000\\5000\\5000\\5000\\5000\\50$	84 88 92 96 100 104 108 112 116 120 124 128 132 136 136 136 136 136 136 136 136			
3 4 5 6 7 8 9 10 11 12 13 14 15 36 37 38 39 40	$1200 \\ 1500 \\ 1900 \\ 2200 \\ 2600 \\ 3000 \\ 3300 \\ 3700 \\ 3900 \\ 4100 \\ 4100 \\ 4300 \\ 4600 \\ 4800 \\ 5000 \\ 5000 \\ 5000 \\ 5000 \\ 5000 \\ 5000 \\ 5000 \\ 5000 \\ 5000 \\ 5000 \\ 5000 \\ 6700 \\ 6700 \\ 6700 \\ 6700 \\ 500 \\ 6700 \\ 500 \\ 6700 \\ 500 \\ 6700 \\ 500 \\ 6700 \\ 500 \\ 670 \\ 500 \\ 5$	84 88 92 96 100 104 108 112 116 120 124 128 132 136 136 136 136 136 136			

stant to completion of test, within ± 2 F and ± 10 psi respectively.

SCHEDULE 16 8000-ft SQUEEZE-CEMENTING WELL-SIMULATION TEST

Field Conditions Assumed

Surface tempo Surface press Size of job: Mud weight: Bottom-hole t Bottom-hole p Mixing time: Total cementin	ure: emperature: ressure:*	80 F 1000 psi 100 sacks 10 lb per gal 74.8 lb per cu ft 159 F 7800 psi 8 min 45 min
Time,	Pressure,	Temperature,
	psi	<u>deg. F.</u>
0	1000	80
1	1400	84
1 2 3 4 5 6 7 8	1700	88
3	2100	93
4	2400	97
5	2800	101
6	3200	105
7	3500	109
8	3900	114
9	4100	118
10	4300	122
11	4500	126
12	4800	131
13	5000	135
14	5200	139
15 16	$5400 \\ 5600$	143 148
10	5900	148
18	6100	152
19	6300	150
20	6300	159
41	6300	159
42	6600	159
43	7000	159
44	7400	159
45	7800	159
		ure should be held con-
stant to complet	ion of test, wit	thin ± 2 F and ± 10 psi

stant to completion of test, within ± 2 F and ± 10 psi respectively.

*Bottom-hole pressure is the final squeeze pressure and is equal to the calculated static pressure plus 2500 psi surface pressure.

SCHEDULE 16A 9000-ft SQUEEZE-CEMENTING WELL-SIMULATION TEST

Field Conditions Assumed

Surface tempe Surface press Size of job: Mud weight:	ıre:	80 F 1200 psi 100 sacks 11 lb per gal 82.3 lb per cu ft
Bottom-hole to	emperature:	171 F
Bottom-hole p Mixing time:	ressure:	8500 psi 8 min
Total cementing time:		$47 \min$
		Temperature,
Time, min.	Pressure,	deg. F.
	psi	
0	1200	80
1 2 3 4 5 6 7 8	1500	84
2	1800	89
3	2100	93
4	2300	97
5	2600	102
6	2900	106
7	3200	110
8	3500	115
9	3800	119
10	4100	123
11	4300	128
12	4600	132
13	4900	136
14	5200	141
15	5500	145
16	5800	149
17	6100	154
18	6300	158
19	6600	162
20	6900	167
21	7200	171
43	7200	171
$\overline{44}$	7500	171
$\bar{45}$	7900	171
46	8200	171
47	8500	171
Final tempera	ture and pressu	are should be held con-
stant to complet	ion of tost wit	hin ± 9 F and ± 10 nei

Final temperature and pressure should be held constant to completion of test, within ± 2 F and ± 10 psi respectively.

SCHEDULE 17 10,000-ft SQUEEZE-CEMENTING WELL-SIMULATION TEST

Field Conditions Assumed

Surface tempe Surface pressu Size of job: Mud weight: Bottom-hole te Bottom-hole p Mixing time: Total cementin	emperature: ressure:*	80 F 1300 psi 100 sacks 12 lb per gal 89.8 lb per cu ft 186 F 9400 psi 8 min 49 min
Time.	Pressure,	Temperature,
min.	psi	deg. F.
0	1300	80
1	1700	85
1 2 3 4 5 6 7 8 9	2000	89
3	2400	94
4	2700	98
5	3100	103
6	3500	108
7	3800	112
8	4200	117
	4500	121
10	4700	126
11	5000	131
12	5300	135
13	5500	140
14	5800	144
15	6100	149
16	6300	154
17	6600	158
18	6900	163
19	7200	167
20 21	7400 7700	172 177
22	8000	181
23	8200	181
23	8200	186
45	8200	186
46	8500	186
40	8800	186
48	9100	186
49	9400	186
TT: 1 / /	0400	100

Final temperature and pressure should be held constant to completion of test, within ± 2 F and ± 10 psi respectively.

SCHEDULE 18

12,000-ft SQUEEZE-CEMENTING WELL-SIMULATION TEST

Field Conditions Assumed

Field Conditions Assumed			
Surface temp	erature	80 F	
Surface pressure:		1500 psi	
Size of job:		100 sacks	
Mud weight:		14 lb per gal	
Maa weigne.		104.7 lb per cu ft	
Pottom hole t	amparatura	213 F	
Bottom-hole t Bottom-hole p	emperature:	11,800 psi	
	Jiessure.	$8 \min$	
Mixing time:			
Total cementi		50 min	
Time,	Pressure,	Temperature,	
min.	\mathbf{psi}	deg. F.	
0	1,500	80	
1	1,900	85	
2 3	2,200	90	
3	2,600	94	
4	2,900	99	
5	3,300	104	
$rac{6}{7}$	3,700	109	
'7	4,000	113	
8	4,400	118	
9	4,700	123	
10	5,000	128	
11	5,300	132	
12	5,700	137	
13	6,100	142	
14	6,400	147	
15	6,700	151	
16	7,000	156	
17	7,300	161	
18	7,600	166	
19	8,000	170	
20	8,300	175	
21	8,600	180	
22	8,900	184	
23	9,200	189	
24	9,500	194	
25	9,800	199	
26	10,200	203	
27	10,500	208	
28	10,800	21 3	
29	10,800	213	
46	10,800	213	
47	11,000	213	
48	11,200	213	
49	11,500	213	
50	11,800	213	
		ire should be held son	

Final temperature and pressure should be held constant to completion of test, within ± 2 F and ± 10 psi respectively.

*Bottom-hole pressure is the final squeeze pressure and is equal to the calculated static pressure plus 2500 psi surface pressure.

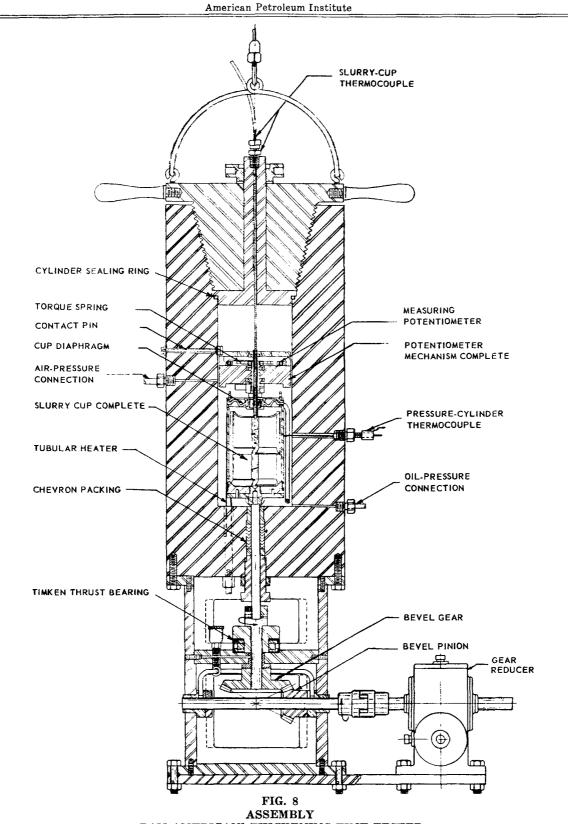
SCHEDULE 19

14,000-ft SQUEEZE-CEMENTING WELL-SIMULATION TEST

Field Conditions Assumed

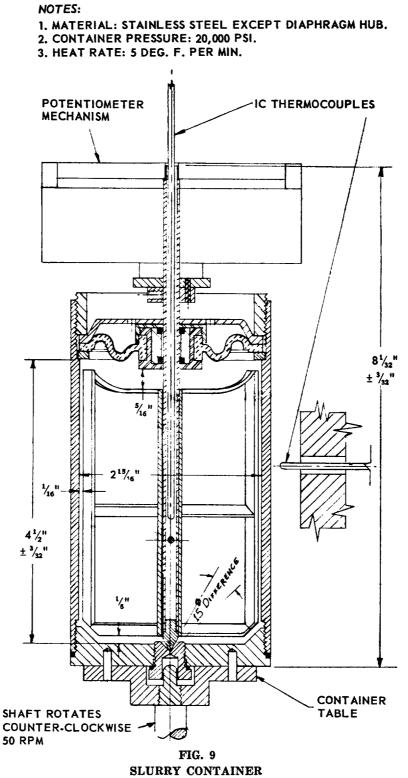
Field Conditions	Assumed	
Surface tempe	ratura	80 F
Surface press		1800 psi
Size of job:	u . • • •	100 sacks
Mud weight:		16 lb per gal
muu weigno.		119.7 lb per cu ft
Bottom hole t	amparatura	242 F
Bottom-hole t	emperature.	
Bottom-hole p	ressure:	14,000 psi
Mixing time:		8 min
Total cementing		55 min
Time,	Pressure,	Temperature,
min.	psi	deg. F.
0	1,800	80
ı 1	2,200	85
	2,500	90
2 3	2,900	95
3 4	3,200	100
5		
6	3,600	105
0	4,000	110
7	4,300	115
8	4,700	120
9	5,000	125
10	5,400	130
11	5,800	135
12	6,100	140
13	6,500	145
14	6,800	150
15	7,200	155
16	7,600	160
17	7.900	165
18	8,300	170
19	8,600	175
20	9,000	180
21	9,400	185
$\overline{22}$	9,700	190
$\bar{23}$	10,100	195
$\overline{24}$	10,400	200
$\overline{25}$	10,800	205
$\tilde{26}$	11,200	210
27	11,500	215
28	11,900	220
29	12,200	226
30	12,600	220
31	13,000	231 237
32	13,300	237
33	13,300	
50 51	19,000	242
51 52	13,300	242
53	13,500	242
	13,700	242
54	13,900	242
55	14,000	242
Final tempera stant to complet	ture and press ion of test, wit	ure should be held con- thin ± 2 F and ± 10 psi
respectively.		1

16,000-ft SQUEEZE-CEMENTING WELL-SIMULATION TEST

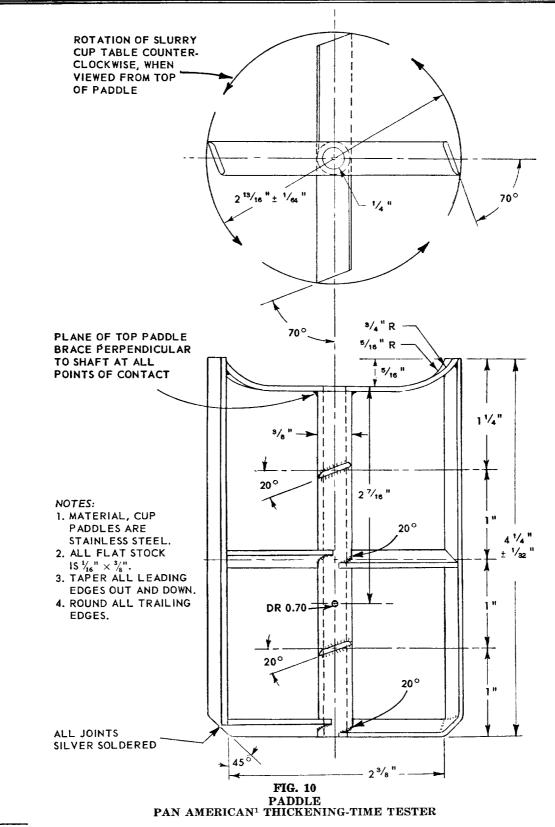

SCHEDULE 20

Field Conditions Assumed

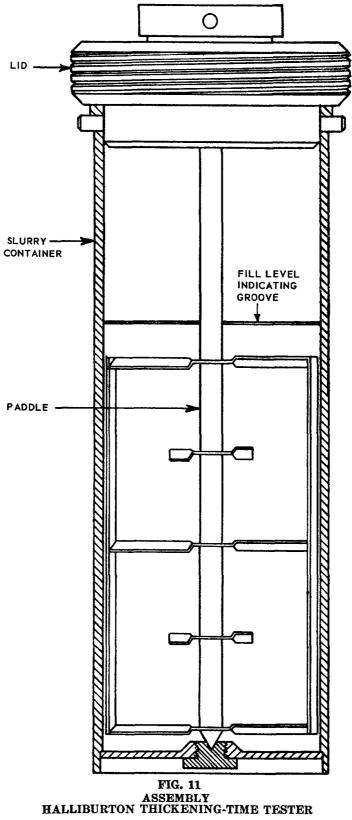
Surface temp	erature:	80 F
Surface press	ure:	2000 psi
Size of job:		100 sacks
Mud weight:		17 lb per gal
		127.2 lb per cu ft
Bottom-hole t		271 F
Bottom-hole p	ressure:*	16,500 psi
Mixing time:		8 min
Total cementi		<u>60 min</u>
Time,	Pressure,	Temperature,
min.	psi	deg. F.
0	2,000	80
1	2.400	85
23	2,700	90
3	3,100	95
4	3,400	100
5	3,800	106
6	4,200	111
7	4,500	116
8	4,900	121
9	5,300	126
10	5,600	131
11	6,000	136
12	6,400	141
$\overline{13}$	6,800	$\overline{146}$
14	7,200	151
15	7,600	157
16	7,900	162
$\overline{17}$	8,300	167
18	8,700	172
19	9,100	177
20	9,500	182
$\overline{21}$	9,800	187
$\overline{22}$	10,200	192
$\overline{23}$	10,600	197
$\overline{24}$	11,000	202
$\overline{25}$	11,400	208
$\overline{26}$	11,800	213
$\overline{27}$	12,100	218
$\overline{28}$	12,500	223
29	12,900	228
30	13,300	233
31	13,700	238
32	14,000	243
33	14,400	248
34	14,800	253
35	15,200	259
36	15,600	265
37	16,000	271
38	16,000	271
56	16,000	271
57	16,100	271
58	16,200	271
5 9	16,300	271
60	16,500	271
Final tempera		ire should be held con-

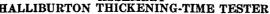

stant to completion of test, within ± 2 F and ± 10 psi respectively.

*Bottom-hole pressure is the final squeeze pressure and is equal to the calculated static pressure plus 2500 psi surface pressure.


PAN AMERICAN¹ THICKENING-TIME TESTER

¹Formerly Stanolind.




PAN AMERICAN¹ THICKENING-TIME TESTER

¹Formerly Stanolind.

¹Formerly Stanolind.

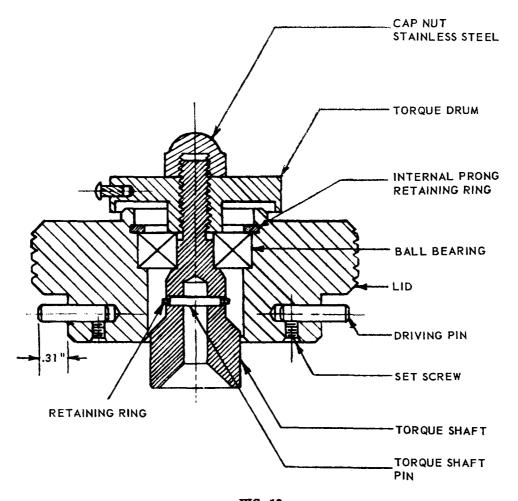
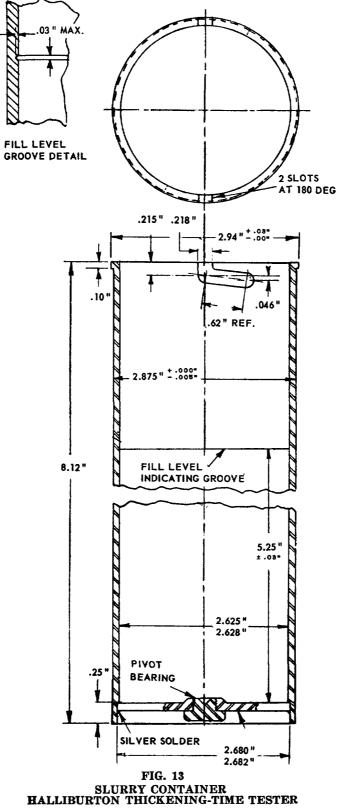
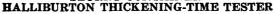
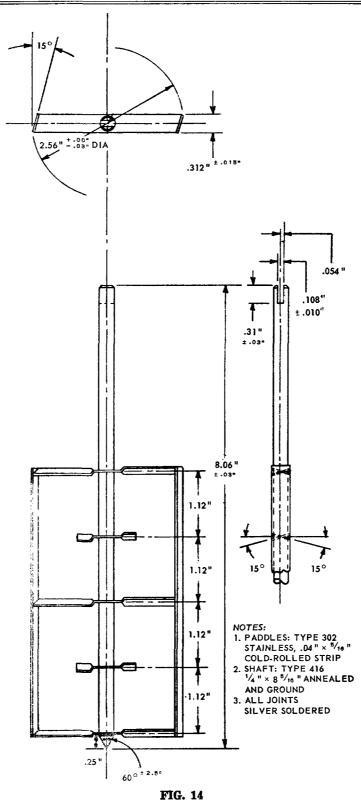
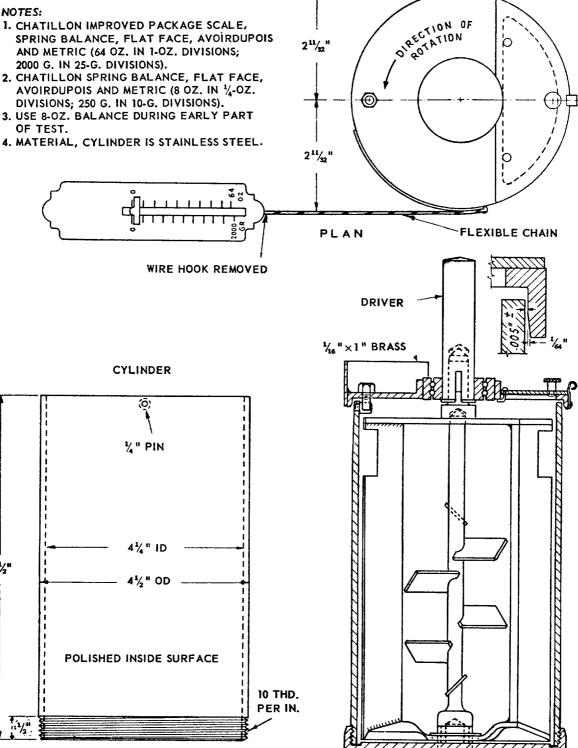




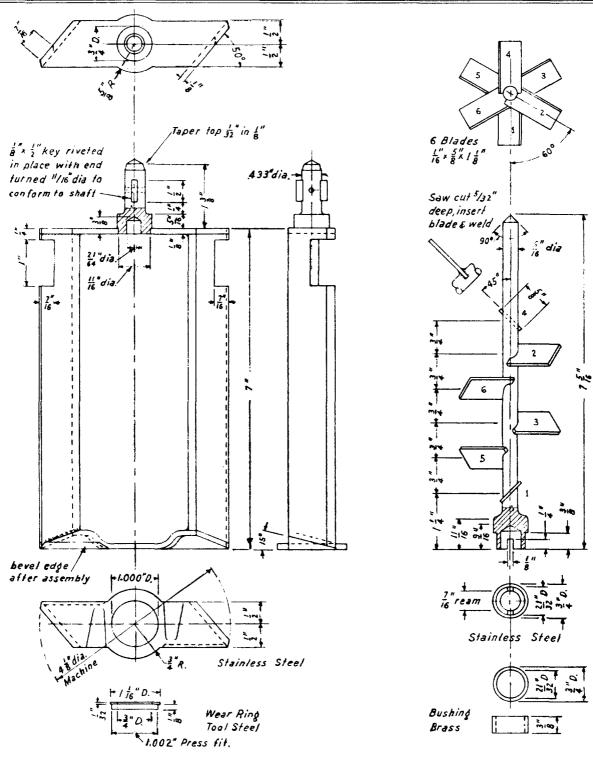
FIG. 12 SLURRY CONTAINER LID HALLIBURTON THICKENING-TIME TESTER

_




FIG. 14 PADDLE HALLIBURTON THICKENING-TIME TESTER

2"/32"


71/2"

- 1. CHATILLON IMPROVED PACKAGE SCALE, SPRING BALANCE, FLAT FACE, AVOIRDUPOIS AND METRIC (64 OZ. IN 1-OZ. DIVISIONS; 2000 G. IN 25-G. DIVISIONS).
- AVOIRDUPOIS AND METRIC (8 OZ. IN 1/4-OZ.
- OF TEST.

FIG. 15 ASSEMBLY STANDARD OIL COMPANY OF CALIFORNIA THICKENING-TIME TESTER

b

MOVING PADDLE STATIONARY PADDLE

FIG. 16

PADDLES STANDARD OIL COMPANY OF CALIFORNIA THICKENING-TIME TESTER