

o

D

EMERY CARPER, PRESIDENT STANLEY CARPER, EXEC. VICE-PRES. & TREAS. MARSHALL ROWLEY, VICE-PRES. FRANCES BOOKER, SECRETARY NELLE MILLER, ASST. TREAS.

R

Р

1.

0

September 17, 1960

C EP 10 MN C 2?

New Mexico Oil Conservation Commission P. O. Box 871 Santa Fe, New Mexico

Attention: Mr. A. L. Porter

Gentlemen:

ILLING COMPANY ING

R

ARTESIA, NEW MEXICO CARPER BUILDING

woop

HERWOOD 6-2784

8 5

G

D

n

Reference is made to Case 2078 which is an Application of Chambers & Kennedy for an oil – oil dual completion . This case is scheduled to be heard before an examiner on Wednesday, September 21, 1960.

It is our understanding that if this case is approved, it will be confined to the North Shugart Queen-Grayburg Pool, and if this is correct we have no objection.

In the event this case should be extended to cover wells in the Shugart Pool, we wish to register a vigorous protest before such action is taken.

Yours very truly,

CARPER DRILLING COMPANY, INC.

Norshee Yourky

Marshall Rowley

MIDLAND NATIONAL BANK BUILDING

TELEPHONE MU 34 643 1967 AUG CO MIDLANL, Augus 544, 1960 MIDLAND, TEXAS

C. FRED CHAMBERS W. D. KENNEDY

> Mr. Daniel S. Nutter Oil Conservation Commission P. O. Box 871 Santa Fe, New Mexico

Dear Mr. Nutter:

Attached you will find a diagrammatic sketch of the two pumping unit installation that Chambers & Kennedy proposes to . use to dually complete their Monterey-State #2 well. In this installation each zone would have its own individual bottom hole pump, rod string and pumping unit.

If there is additional information that we could furnish you, we will be glad to do so.

Yours very truly,

CHAMBERS & KENNEDY

W. J. Alexander

Engineer

WJA:aa Encl.

OIL CONSERVATION COMMISSION P. O. BOX 871 SANTA FE, NEW MEXICO

Crack - 07K

ala santa da ana

August 11, 1960

Chambons and Konnedy Buite 607 Midland Mational Bank Building Midland, Tours

Gentlemen:

We are in receipt of your application for administrative approval to dually complete your Monterey State Well No. 2, located in Unit D, Section 32, Township 18 South, Range 31 East, Eddy County, New Mexico.

We regret to inform you that this application cannot be approved administratively, but must go to public bearing for a decision. This is necessary for two reasons: First, our rules require that any dual completion, to be eligible for administrative approval, must be within one mile of a similar dual completion which has previously been authorized after notice and bearing, or its must be within the horizental limits of two pools which have been approved for dual completion after notice and hearing. Your well is not within one mile of a previously authorized dual completion in the same two somes nor is it within the horizontal limits of any pool producing from the Tates or the Queen formations, the formations in which you propose to complete.

Secondly, your request for dual completion cannot be handled administratively because of the dual some pumping equipment which you propose to install. The Commission has never recognized this type of equipment as eligible for administrative approval and has in fact approved only one such application after hearing. This was the C_1 ties Service case, which, after two hearings was finally approved on a temporary OIL CONSERVATION COMMISSION PLOI BOX 871 SANTA FELNEW MEXICO

Chambers and Kennedy August 11, 1960 -2-

one-year basis, during which time a series of carefully controlled tests were to be made to evaluate the equipment. I might add that Cities Service found it necessary to replace the first pump so tested before the year was up and was then authorized, after a third hearing, to install a second pump under similar testing requirements. Cities Service recently removed this pump after approximately six-months service. This, according to our understanding of the matter, was necessitated by failure of the equipment to adapt itself to the conditions which were encountered in the well.

Please advise us as to whether or not you wish us to decket your application for hearing.

Very truly yours,

DANIEL S. NUTTER Chief Engineer

.- . .

DSX/og

cc: Mr. Mose Armstrong Oil Conservation Commission Artesia, New Mexico

Chambers & Kennedy

SUITE 607 MIDLAND NATIONAL BANK BUILDING MIDLAND, TEXAS

C. FRED CHAMBERS W. D. KENNEDY

August 8, 1960

TELEPHONE MU 3-4643

New Mexico Oil Conservation Commission Santa Fe, New Mexico

Gentlemen:

Please find enclosed data needed to complete application for dual completion of Chambers and Kennedy Monterey State #2 in Eddy County, New Mexico.

Lacking is waiver consenting to dual completion from Yates Brothers, Artesia, New Mexico. They were furnished with said waiver on July 8, 1960 and as yet have not returned the signed waiver to us. We are contacting them again today regarding this waiver, and will forward it to your office immediately upon its receipt here.

Very truly yours,

CHAMBERS & KENNEDY

Vari By: Joan Davis,

Production Secretary

encs.

13 ; ... 22.3 S ~ < ∋ င်္ဘ ρQ N

١,

WAIVER

The undersigned, being an offset operator to the Chambers & Kennedy Monterey State in the N. Shugart Queen Grayburg field, Eddy County, New Mexico, hereby waives any right to protest the dual completion of the Monterey State #2 well with the understanding that the Penrose zone will be produced through 12 inch tubing, and the Yates zone will be produced through two inch tubing.

> TEXAS GULF PRODUCING COMPANY MIDLAND, TEXAS

BY: <u>Heethul</u> DATE: July 14, 1960

<u>WAIVER</u>

The undersigned, being an offset operator to the Chambers & Kennedy Monterey State in the N. Shugart Queen Grayburg field, Eddy County, New Mexico, hereby waives any right to protest the dual completion of the Monterey State #2 well with the understanding that the Penrose zone will be produced through 1¹/₂ inch tubing, and the Yates zone will be produced through two inch tubing.

> Iverson & Welch Artesia, New Mexico

& Strileh BY:

7-19-60 DATE:____

<u>WAIVE</u>R

The undersigned, being an offset operator to the Chambers & Kennedy Monterey State in the N. Shugart Queen Grayburg field, Eddy County, New Mexico, hereby waives any right to protest the dual completion of the Monterey State #2 well with the understanding that the Penrose zone will be produced through l_{χ}^{1} inch tubing, and the Yates zone will be produced through two inch tubing.

THE PURE OIL COMPANY ROSWELL, - NEW-MEXICO-	
Fort Worth, Texas	
BY; Home I Mornin	î ⁵
Manager, Texas Producing Division	1
BATE: 7/18/60	

WAIVER

The undersigned, being an offset operator to the Chambers & Kennedy Monterey State in the N. Shugart Queen Grayburg field, Eddy County, New Mexico, hereby waives any right to protest the dual completion of the Monterey State #2 well with the understanding that the Penrose zone will be produced through 1¹/₂ inch tubing, and the Yates zone will be produced through two inch tubing.

> SUNRAY MID-CONTINENT OIL COMPANY Hinkle Building Roswell, New Mexico

BY: $\frac{\partial \mathcal{H}_{iesse}}{DATE: 7/25/60}$

Chambers & Kennedy BUITE 600 MIDLAND NATIONAL BANK BUILDING

MIDLAND NATIONAL BANK BUILDING MIDLAND, TEXAS

C. FRED CHAMBERS W. D. KENNEDY

TELEPHONE MU 3-4643

New Mexico Oil Conservation Commission Santa Fe, New Mexico

Re: CHAMBERS & KENNEDY SUNRAY MID-CONTINENT #2 Eddy County, New Mexico

Gentlemen:

Please find enclosed additional waiver from Yates Brothers, Artesia, New Mexico concerning the dual completion of the CHAMBERS & KENNEDY SUNRAY MID-CONTINENT #2

This signed waiver was received in our office today.

Very truly yours,

CHAMBERS & KENNEDY

Naris By: J. Davis,

Production Secretary

WAIVER

The undersigned, being an offset operator to the Chambers & Kennedy Monterey State in the N. Shugart Queen Grayburg field, Eddy County, New Mexico, hereby waives any right to protest the dual completion of the Monterey State #2 well with the understanding that the Penrose zone will be produced through l^{1} inch tubing, and the Yates zone will be produced through two inch tubing.

> YATES BROTHERS Artesia, New Mexico

BY: Atuatos 8/16/50 DATE:___

FLUID PACKED PUMP CO.

LOS NIETOS, CALIF.

In the **DZ2090** installation a packer separates the perforated intervals of the upper and lower zone. Both upper and lower zone pumps are positioned in the long string of tubing and are run in, operated, and pulled with a single string of rods. The long string conducts the upper zone production to the surface, a second string of tubing conducts the lower zone gas from below the packer to the surface, and a third string conducts the lower zone fluid from the crossover shoe to the surface. Gas from the upper zone is vented up the casing. The two shorter strings are clamped onto the long string and they are run into the well together. The vent string passes the crossover shoe in a slot provided for this purpose. The **DZ2090** is designed to run in $5\frac{1}{2}$ in. casing.

FIG. 2 SINGLE PACKER TRIPLE STRING Installation Typical of DZT2090

FLUID PACKED PUMP CO.

LOS NIETOS, CALIF.

FIG. 3 SINGLE PACKER DOUBLE STRING Installation Typical of DZT2092-55 DZT2092-70 DZT2592-70 In the **DZ2092** and **DZ2592** installations, a packer separates the perforated intervals of the upper and lower zone. Both upper and lower zone pumps are positioned in the long string of tubing, and are run in, operated, and pulled with a single string of rods. The long string conducts the upper zone production while a second string of tubing conducts the lower zone production to the surface. No gas is vented from the lower zone, but gas from the upper zone is vented up the casing. The two tubing strings are run independently. The crossover shoe with integral landing head is run in on the long string. A landing spear is run on the bottom of the short string. This spear is automatically guided into place by the landing head and the seal elements are properly positioned by a no-go ring and latch.

DZ-6

Chambers & Kennedy SUITE 607

MIDLAND NATIONAL BANK BUTEDING MIDLAND, TEXASBEFORE EXAMINER NUT

C. FRED CHAMBERS W. D. KENNEDY

SEPTEMBER 19,

CONSERVATION COMMISS EXMISIT NO. SE/ NO 75

Chambers & Kennedy Monterey State #2 1-N, 32-18-31, Eddy Co., New Mexico

This well has $5\frac{1}{2}$ ", 14# csg. with a drift dia. of 4.887" Cemented @ 3500'. To dual complete this well either of the following installations may be used.

Installation #1 Two strings of HYDRIL type "CS" tubing with a joint O.D. of 2.33" or a combined dimension of 4.66" and a clearance of 0.227" can be used. This tubing can be purchased @ \$1.339/ft.

Yates pay ⊌	2620 @ \$1.339/ft	:	3,408.18
Penrose pay	🥃 3430 🕲 1.339∕ft	:	4,592.77
			8,100,95

Installation #2 One string of Tex-Tube $l_2^{l_2}$ " series 301 Integral joint tubing with a joint O.D. of 2.110". And one string of Tex-Tube 2 3/8" series 301 Integral joint tubing with a joint O.D. of 2.70" or a combined dimension of 4.81" and a clearance of 0.077 inches can be used. The l_2 tubing can be purchased @\$0.501/ft and the 2 3/8" 😓 \$0.864/ft.

> Yates Pay @ 2620 @ \$0.501/ft. 1,312.62 : Penrose Pay 🥔 3430 @ \$0.864/ft. : 2,963.52 4,276.14

With installation No. 2 Chambers & Kennedy will be able to make a saving of \$3,842.81, or a difference of 89.45%.

With l_{2}^{1} tubing in this well at 2620' it can be pumped with an $l_4^{\frac{1}{4}}$ insert pump on $\frac{1}{2}$ " sucker rods, and a 25,000 inch-pound torgue gear box pumping unit. The attached calculations by Continental-Emsco give the production that may be produced with reasonable loads for this unit. These production rates are high enough to recover the allowable of this well for any rate that may be established in the foreseeable future. At the present time we do not anticipate much water in this zone, but should it become a factor we will be able to handle it because these calculations are for water at the pump level with no help from gas.

Since the lower zone of this well has been sandfractured and it may be necessary from time to time to clean out the sand from the well bore for stimulation reasons, we propose to use a Brown Oil Tools By-Pass packer. This packer may be pulled so that cleanout work may be performed. This packer also has the added advantage that gas from below the packer may be vented into the 2 3/8" tubing string through which the lower zone will be producing whereby less gas locking trouble should be experienced by the lower pump.

WELL INSTALLATION WORK SHEET	
Company Well # Vell # Vell #	Date <u>9-19-6</u> 0
Plunger 1/2 Stroke 26 SPM 20 Pump Depth 2600 Desired Prod. 2011	Impulse Factor
1/2- 5/8" Rods 100 % 1000 ft. 3/4" Rods % ft. 7/8" Rods	%ft.
1" Rods%ft. 1-1/8" Rods%%	ft.
Weight of Fluid: $W_f = (W_f, per foot on Plunger)$ Multiplied by (Depth) = $\frac{1389}{138}$ lbs.	
EFFECTIVE SIZE WT/FT LENGTH BUOY. WT OF RODS F	STRESS
$\frac{1}{10} \frac{5}{640} \frac{1}{11} \frac{1}{100} \frac{1}{1$	· (47 . 1
Load on top 5/8" Rods = 3260 lbs	÷.307 =
3/4" (1.62) () (.875) = (lbs) () =lbs	5 ÷
Load on top 3/4" Rods =bs	s÷.442 ≃psi s ∸
Load on top 7/8" Rods =bb:	s ÷ .601 =psi
1'' (2.88) () (.875) = (lbs) () =lbs	5
Load on top 1'' Rods =lbs	s ÷ .785 =psi
1-1/8'' (3.67) () (.875) = (5
Effective Weight of Rods: EW _r = (<u>1640</u> lbs) PPRL = <u>3760</u> lbs	s994 =ps1
Minimum Polished Rod Load: MPRL = EW _r (1.87 - F) = (1640) (11 <u>x</u> 5 lbs.
Coefficient of Rod Stretch	N ₁ <i>11</i>
$C_r = C_1 \%_1 + C_2 \%_2 + C_3 \%_3 = () () () ($) =
Coefficient of Tubing Stretch ($C_{t} = 0$ if tubing anchored) Not Anchored: C_{t}	
Total Coefficient of Stretch: $C = C_r + C_t =$	
Total Stretch: $E = C (D/1000)^2 = $ ()^2 = In.	
Overtravel: 0 = (1.41) (F-1) $(D/1000)^2$ = (1.41) (<u>)</u> (<u></u>	In.
Plunger Stroke: $S_p = S - E + O = -\frac{12}{12} - \frac{12}{12} + \frac{1.5}{15} = -\frac{15.5}{15}$ In	•
Theoretical Production (100%): (K, PLGR. Constant) (S _p) (SPM) = (-182) (155) (20	_) = (bbls/day
Production at 80% Pump Efficiency: .80 (Theo. Prod.) = .80 (=bbls/day	j
Counterbalance Effect: $W_r + \frac{Fluid Wt.}{2} = \frac{1600}{160} + \frac{690}{20} = \frac{2330}{160}$ lbs	
Peak Torque: (PPRL -CB) (S/2) = (<u>930</u>) (<u>13</u>) = <u>12,100</u> In. lbs.	
Prime Mover Horsepower (Single Cylinder & CE Green ▲ Electric Motors)	
HP = Depth x Prod. (Based on 100% PR Stroke) = () () = 85,000 =85,000	
Non-Synchronous Pumping Speeds (Desirable)	SPM
Remarks:	
FORM 832-R-1, 12-57	

FORM 832-R-1, 12-57

Alexandre of the set of the set	
Company Well # Date	1-60
Plunger Stroke SPM Pump Depth Desired Prod Impulse Factor	10
5/8" Rods 100 % 2600 ft. 3/4" Rods%ft. 7/8" Rods%	ft.
1" Rods%ft. 1-1/8" Rods%ft.	
Weight of Fluid: $W_f = (W_f, per foot on Plunger)$ Multiplied by (Depth) = <u>1380</u> lbs.	
EFFECTIVE SIZE WT/FT LENGTH BUOY. WT OF RODS F STRESS	
5/8" (117) (2600) (.875) = (1640 lbs) (1.10) = 1301 lbs 17	-
Load on top 5/8" Rods = $3/84$ lbs + $307 = 16, 70$	D _{psi}
3/4'' (1.62) () (.875) = (lbs) () =lbs ÷	
Load on top 3/4'' Rods =Ibs ÷ .442 =	psi
7/8'' (2.17) () (.8/5) = (bs) () =bs ÷	ngi
1'' (2.88) () (.875) = (lbs) () =lbs	µ 31
Load on top 1'' Rods =lbs ÷ .785 =	psi
1-1/8'' (3.67) () (.875) = (lbs) () =lbs	
Load on top 1-1/8" Rods =lbs ÷ .994 =	psi
Effective Weight of Rods: EW _r = (lbs) PPRL = $\frac{2132}{2}$ lbs	
Minimum Polished Rod Load: MPRL = EW _r (1.87 - F) = (1640) (5.
Coefficient of Rod Stretch	
$C_r = C_1 \aleph_1 + C_2 \aleph_2 + C_3 \aleph_3 = () () + () () + () =$	
Coefficient of Tubing Stretch (C _t = 0 if tubing anchored) Not Anchored: C _t	
Total Coefficient of Stretch: C = C _r + C _t = + + =	
Total Stretch: $E = C (D/1000)^2 = ($	
Overtravel: 0 = (1.41) (F-1) $(D/1000)^2$ = (1.41) () ()^2 =/ In.	
Plunger Stroke: $S_{p} = S - E + O = \frac{16}{100} - \frac{12}{120} + \frac{1}{100} = \frac{15}{100}$ In.	
Theoretical Production (100%): (K, PLGR. Constant) (S _p) (SPM) = (182) (13) (100) = 273 bbls	/day
Production at 80% Pump Efficiency: .80 (Theo. Prod.) = .80 (-44) = -26 _bbls/day	
Counterbalance Effect: $W_r + \frac{Fluid Wt.}{2} = \frac{16.00}{2} + \frac{6.400}{2} = \frac{22.30}{10}$ lbs	
Peak Torque: (PPRL -CB) (S/2) = (
Príme Mover Horsepower (Single Cylinder & CE Green 🔺 Electric Motors)	
HP_Depth x Prod. (Based on 100% PR Stroke) _ () () _	
85,000 85,000	
Non-Synchronous Pumping Speeds (Desirable)	SPM
Bangates: IIIFGIBLE	

WELL INSTALLATION WORK SHEET 20 1.25
Company Well # Date Date
Plunger
7 5/94 Rods 10 % 2000 ft. 3/4" Rods%ft. 7/8" Rods%ft.
1" Rods%ft. 1-1/8" Rods%ft.
Weight of Fluid: W _f = (Wt. per foot on Plunger) Multiplied by (Depth) = <u>1389</u> lbs.
EFFECTIVE SIZE WT/FT LENGTH BUOY. WT OF RODS F STRESS
$\frac{1}{12}$ (2600) (.875) = (1600 lbs) (107) = 1750 lbs
Load on top $\frac{3}{5}$ Rods = $\frac{3}{3}$ lbs $\div \frac{147}{307} = \frac{15}{15}$ $\frac{900}{100}$ psi
3/4'' (1.62) () (.875) = (lbs) () =lbs ÷
Load on top 3/4" Rods =lbs ÷ .442 =psi
Load on top 7/8'' Rods =lbs ÷ .601 =psi
1'' (2.88) () (.875) = (lbs) () =lbs
Load on top 1" Rods =lbs ÷ .785 =psi
I-1/8" (3.67) () (.875) = (Ibs) () =Ibs Load on top 1-1/8" Rods =Ibs ÷ .994 =psi
Effective Weight of Rods: EW = (lbs) PPRL = $\frac{3/30}{lbs}$
Minimum Polished Rod Load: MPRL = EW _r (1.87 - F) = (<u>1640</u>) (<u>.80</u>) = <u>1379</u> lbs. Load Ratio: (PPRL - MPRL) (100) = (<u>1810</u>) (100) = <u>57</u> %
Coefficient of Rod Stretch
Coefficient of Tubing Stretch ($C_{t} = 0$ if tubing anchored) Not Anchored: $C_{t} = \frac{1}{2}$
Total Coefficient of Stretch: $C = C_p + C_p = $
$P_{\text{restrevel}} = C \left(\frac{1}{2} \frac{1}{1000} \right)^2 = (1.41) \left(\frac{1}{2} \frac{1}{1000} \right)^2 = (1.41) \left(\frac{1}{2} \frac{1}{1000} \right)^2 = (1.41) \left(\frac{1}{100$
Plunger Stroke: $S = S_{2}E + 0 = 26 - 12 + 1 = 15$
Theoretical Production (100%): (K, PLGR. Constant) (S _p) (SPM) = (-182) (-15) (-14) = -382 bbls/day
Production at 80% Pump Efficiency: .80 (Theo. Prod.) = .80 () =30.5bbls/day
Counterbalance Effect: $W_r + \frac{Fluid Wt.}{2} = \frac{1640}{+ 640} + \frac{640}{-540} = \frac{5339}{-533}$ lbs
Peak Torque: (PPRL -CB) (S/2) = (
Prime Mover Horsepower (Single Cylinder & CE Green ▲ Electric Motors)
$HP = \frac{Depth \times Prod. (Based on 100\% PR Stroke)}{85,000} = \frac{(1,07)}{85,000} = \frac{1}{85,000} = \frac{1}{85,000}$
Non-Synchronous Pumping Speeds (Desirable)
Remarks:
FORM 83298-1 12-52

BROWN OIL TOOLS, INC.

BROWN CAM-LOK PACKER

CAM-LOK is a weight set packer

- a tension set packer
- a tension tubing anchor
- a tubing catcher

and it is convertible at the well . . .

CAM-LOK is a tough, compact, fullopening, retrievable, reliable tool. In its simplest application, **CAM-LOK** is used as a weight set packer. **CAM-LOK** is set in tension to take advantage of pressure from below when testing, water flooding, fracturing, acidizing, or in shallow wells where the tubing weight and casing fluid column may not be sufficient to hold the packer weight-set against high bottom hole pressure.

Use **CAM-LOK** as a packer during the flowing life of your well. When the well goes on the pump, convert **CAM-LOK** to a tubing anchor while you are working over the well and run it back. Thrifty? You bet it is!

AND POSITIVE, TOO . . .

CAM-LOK is the most controllable mechanical packer you can put in your well.

Less than one quarter turn of the tubing in either direction operates the unique Brown cam mechanism, to grip the casing like a pipe wrench working from the inside. This wrench grip, not friction springs or blocks, will lock the packer in place as long as torque is held in the tubing—to permit lifting or slack-off of the tubing to set or release the packer. **CAM-LOK** is the industry's best insurance against failure of a packer to release.

AND IT'S SIMPLE TO OPERATE . . .

TO SET WITH WEIGHT:

Make up **CAM-LOK** in the tubing string with its seal end up. Run in hole to setting depth, then pick up on tubing two or three inches (at the packer) to make sure jay pin is on top of slot. Manually torque tubing to the right to actuate the cam mechanism, and hold torque while lowering tubing to the desired setting weight.

TO RELEASE FROM WEIGHT SETTING:

Just pick up on tubing and come out of hole.

TO SET WITH TENSION:

Make up **CAM-LOK** in tubing string with seal end down. Set jay latch pin in short slot and run packer to setting depth. Apply torque to tubing. Cam mechanism will lock packer in position.

Hold left-hand torque while lowering tubing two or three inches to clear jay pin from short slot, then pick up to setting weight, and release torque.

TO RELEASE FROM TENSION SETTING:

Release tubing tension to set down on packer. Manually turn tubing to right with tongs. Lower another six inches (at the packer), then pick up on tubing. When torque is released, tubing and packer may be pulled out of the hole.

Parts, prices, and operating instructions for Brown production tools are contained in the general "Parts and Price List," and can be obtained by writing to Brown Oil Tools, Inc., P. O. Box 19236, Houston 24, Texas.

BROWN OIL TOOLS, INC.

BROWN BY-PASS PACKERS

The Brown By-Pass Packers are designed for gas lift chamber installations and are ideally suited for both high and low productivity, low bottom hole pressure wells. In either type, the bottom hole pressure is not sufficient to support a column of fluid that can be efficiently intermitted by a conventional installation. In using the Brown By-Pass Packer as part of the chamber installation it assures increased slug volume, therefore more fluid per cycle, particularly in wells operated at maximum cycle rates. All By-Pass packers are furnished with a top by-pass connection. A bottom by-pass connection is furnished when specified. The Brown By-Pass Packers are furnished in two types which differ in the setting procedure. The Brown Boll Weevil By-Pass Packer has the standard Boll Weevil setting principle which requires only tubing reciprocation to set. This rugged, easy to set packer is especially applicable in deep or crooked holes where packers requiring rotation to set cannot be used successfully. The Brown Anchor By-Pass Packer is set by applying weight which shears the shear pins and compresses the seal.

ENGINEERING DATA ON BROWN BY-PASS PACKERS

	Cas	ing	Packer	Overall Packer	Travel To	First String	Small	Total Packer	Body
Shear Pin By-Pass	0.D.,In.	Lb/Ft	O.D. in.	Length in.	Set in.	I.D. in,	String Connection	Slip Area Sq. In.	Length in,
2 x 5½	51/2	13-17	45%	44	3	2	1/2 Line Pipe		61/4
2½ x 7	7	26	53/4	58	3	2_{16}^{-16}	1⁄2 Line Pipe		7
$2\frac{1}{2}$ x 7	7	32-35	558	58	3	27 16	1/2 Line Pipe		7
Boll Weevil By-Pass					/=				
2 x 5½	$5\frac{1}{2}$	13~17	458	85	14	2	⅓ Line Pipe	32	8¾
2 x 7	7	17-20	6	92	15	2	1/2 Line Pipe	63	81/2
2 x 7	7	26	53/4	92	15	2	1/2 Line Pipe	60	81⁄2
2½ x 7	7	17 - 20	6	92	15	27 16	1⁄2 Line Pipe	63	81/2
2½ x 7	. 7	26	53/4	92	15	27 ₁₀	1/2 Line Pipe	69	81/2

Parts, prices, and operating instructions for Brown production tools are contained in the general "Parts and Price List", and can be obtained by writing to Brown Oil Tooh, Inc., P. O. Box 19236, Houston 24, Texas.

CHAMBERS & KENNEDY

Monterey-State Well No. 2 1-N, 32-18-31, Eddy Co., N. M.

NOTE: Well to be pumped with two strings of tods and two units. Tubing, packer, & pump depths are approximate. ---

.

CONTRACT SOLS CONTRACTOR SOLS CONTRACTOR SOLS RELIGING ENVIOLES AND LES

> . .

	IY: CHAMBERS	& KENNEDY		LOCATION
	MONTEREY	STATE # 2		
# FIELD:	CULWIN			
	: EDDY	STATE: NE	W.MEX	
	N: 660 FN &	WL'S.SEC.32		
X L N L N L N L N L N L N L N L N L N L	T-18-5, F	R-31-E		LOG NO.9594
E OF LOG	G/R 1-NW	N/N 1-NW		
TE	9-23-59 3501	9-23-59 3501	[a	
ECTIVE DEPTH (DRILLER)	3493	3493		5
OF LOGGED INTERVAL	SURF,	SURF		
PE OF FLUID IN HOLE	24/9 01L	2470+2 01L		ŝ N
ID LEVEL		\$10A3	1Z	
URCE SPACING	SCINT	13.5 SCINT.	- N	
	D461	D6N1	X	
D. OF INSTRUMENTIN.	3 5/8	3 5/8		
GING SPEEDFT./MIN.	30	2.0	18	ō K
TISTICAL VARIATION	C-933	D RECORDED		
	KIMBALL	RY		
	CASING REC	ORD INT	FRVAL	
T SIZE CASING WTL	B. FROM	WELL RECORD	F	ROM RA LOG
<u> </u>	SURF	TO 3493		TO
		TO	<u> </u>	TO