# **CORRELATION OF BOTTOM HOLE SAMPLE DATA**

GUY BORDEN, JR. AND MICHAEL J. RZASA, STANOLIND OIL AND GAS CO., TULSA, OKLA., MEMBERS AIME

#### ABSTRACT

Laboratory data on bubble point pressures and reservoir volume factors have been correlated as functions of solution gas-oil ratio, calculated gas gravity of the pentanes-and-lighter fraction of the entire fluid, differential residual oil gravity, and reservoir temperatures.

#### INTRODUCTION

Several correlations of crude oil properties have appeared in the literature.

D. L. Katz<sup>4</sup> in 1942 presented five methods of predicting oil shrinkage, these being of decreasing accuracy for decreasing amounts of information available.

M. B. Standing<sup>6</sup> in 1947 published three correlations of laboratory flash vaporization data of California crudes. From values of GOR (gas-oil ratio), gas gravity, liquid gravity, and temperature, his correlations will predict bubble point pressure, formation volumes of bubble point liquids, and twophase formation volumes.

Curtis and Brinkley<sup>2</sup> in 1949 presented several correlations. From the gas-oil ratio, an approximation of reservoir volume factor and barrels of condensate recoverable per barrel of reservoir space may be obtained; along with liquid gravity and reservoir temperature, the GOR will allow prediction of bubble point pressure. These last cor-

Manuscript received in the office of the Petroleum Branch May 29, 1950. Paper presented at the Mid-Continent Joint Meeting in Tulsa, Okla., May 12-13, 1950.

Vol. 189, 1950

relations seem to be more qualitative than quantitative.

Generally, laboratory bottom hole sample tests furnish information on solution gas-oil ratios, residual oil gravities, bubble point pressures, viscosities of oils, liquid shrinkages, and occasionally gas gravities. Each of these data has its own applications and use in reservoir engineering calculations. The particular uses of correlated bottom hole sample data are found in

- (1) Providing a basis for obtaining estimates of formation crude properties in fields where bottom hole sampling is impractical or impossible.
- (2) Greatly reducing the time in obtaining the desired information.
- (3) Determining the applicability of the results from various bottom hole samples to particular field problems.
- (4) Avoiding, in many cases, the uncertainties of sampling by replacing it with an element over which greater control can be exercised.
- (5) Permitting use of preliminary field data in application of production procedures before a bottom hole sample can be obtained and analyzed in the laboratory.
- (6) Serving as a check on data which may appear out of line.
- (7) Estimating for a particular type crude the appropriate equilibrium constants by working backward from the bubble point pressure.
- (8) Estimating original or other past history properties of reservoirs that were not sampled in the past.

#### PETROLEUM TRANSACTIONS, AIME

#### PROCEDURE

Application of the published correlations<sup>4,6</sup> to Stanolind laboratory data indicated that the general scheme presented by Standing<sup>6</sup> could give desirable results if changes were made in parameter positions and scales. The correlation curves were drawn with all the variables having consistent gradations except the temperature increments which were drawn in to best fit the data.

The variables from available Stanolind laboratory data are defined below:

- (1) Gas-oil Ratio: Gas is liberated at reservoir temperature by differential vaporization (or rather by a series of flashes, approaching differential vaporization) and measured at atmospheric pressure and temperature, at which the compressibility factor is assumed to be unity. The oil is the residual liquid remaining after the pressure has been reduced to atmospheric. For the gas-oil ratio both volumes are corrected to standard conditions of 14.7 psia and 60°F.
- (2) Gas Gravity: It was decided to arbitrarily divide the hydrocarbons of the entire bottom hole sample into pentanes-and-lighter and hexanes-and-heavier, and use a calculated gas gravity of the pentanesand-lighter for a correlating variable. (Sample calculation is shown in Table III.)
- (3) Liquid Gravity: This is the API gravity of the residual liquid from the differential vaporization. The gravity is measured at room temperature and corrected to 60°F.

<sup>&</sup>lt;sup>1</sup>References given at end of paper.

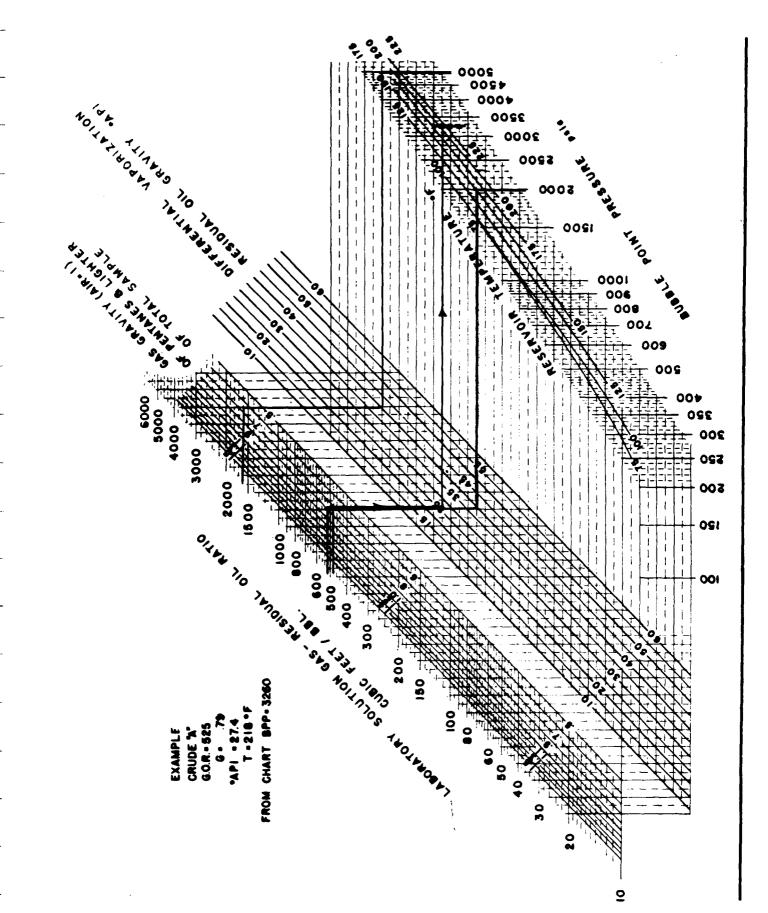
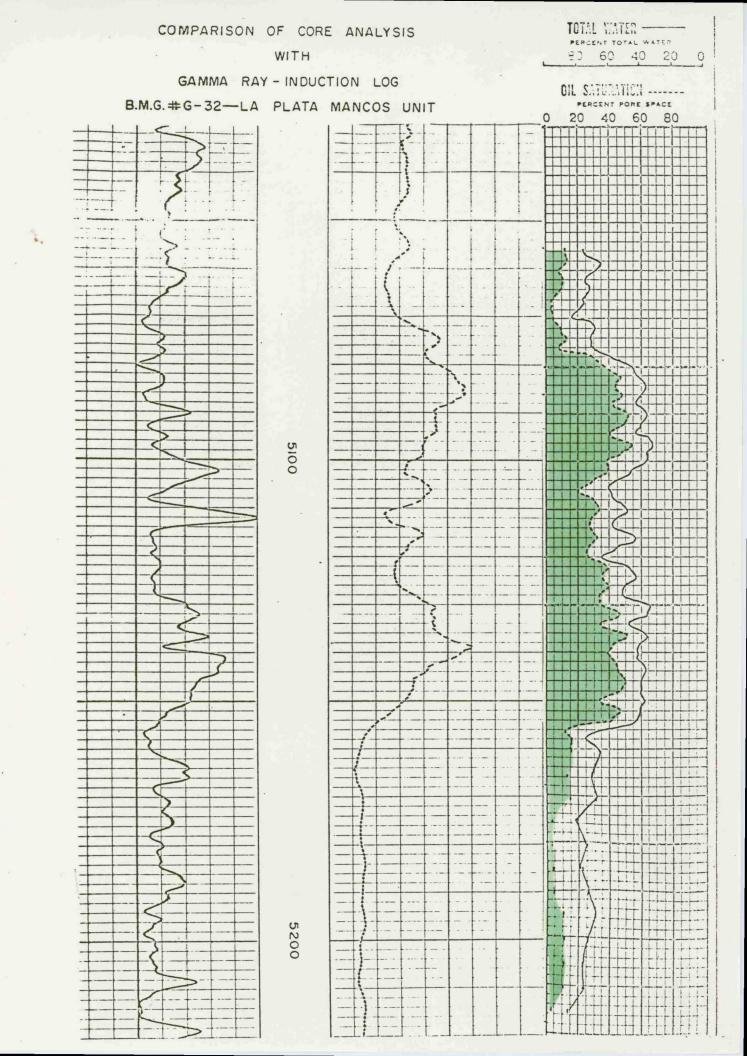




FIG. 1 — BUBBLE POINT PRESSURE CORRELATION.



#### CANADA OJITOS UNIT #2 (K-13)

#### DRILLING HISTORY

1785' FSL, 2120' FWL, Sec. 13, Twp. 25N, Rge, lW, Rio Arriba County, New Mexico.

- 7/21/62 6:00 AM Rigging up rotary.
- 7/21/62 10:30 AM Spudded in 172" hole.
- 7/22/62 2:30 AM TD 310' RKB. Set 9 joints 293' of 13-3/8" OD 48# H-40 casing at 305' RKB with 350 sacks cement, 2% calcium chloride.
- 7/23/62 2:30 AM Tested casing to 500#. Tested O.K.
  - 6:00 AM Drilling at 580' in sand and shale. Vis. 32, wt. 8.9. Pump pressure 1600#, 56 SPM, 6" liners.
- 7/24/62 6:00 AM TD 2335' in sand and shale. Making trip for Bit #4. 12\* at 1424'. Vis. 31, wt. 9.0, WL 20, FC 2/32. Pump pressure 1300#, 52 SFM, 6" liners.
- 7/25/62 6:00 AM TD 2497'. Circulating for Core #1. Vis. 48, wt. 9.0, WL 4.8, FC 2/32. 3-3/4° at 2327'. Show of gas and fluorescence in samples.
- 7/25/62 10:00 AM TD 2499'. Went in hole with core barrel.
  - Core barrel plugged. Made trip.
- 7/26/62 12:15 AM On bottom with core barrel.
  - 6:00 AM Coring (Core #1) at 2530'.

12° at 2499'. Vis. 70, wt. 9.0, WL 8, FC 1/32. Pump pressure 900#, 45 SPM, 6" liners.

- 7/26/62Pulled Core #1 from 2499' to 2559'. Reamed core-hole.Drilled 16'. Circulated 1½ hours. Logged well.
- 7/27/62 6:00 AM Waiting on orders. TD 2575'.
- Core #1 Cored 2499' to 2559'. Cored 60', recovered 36'.
- 2499-2500' Dark grey very fine silty very fossiliferous and finely micaceous shale.
  - Same, slightly fossiliferous, slightly sandy, very fine.
  - Same.
  - Same, abundant slicken sides, 45° vertical and horizontal fracture.
- 2504-05' Same.

2500-01' 2501-03'

2503-04'

2505-06' 2506-08'

2508-10'

2510-15'

2515-16' 2516-25'

2525-30' 2530-31'

2531-36'

- Same, very fossiliferous.
- Same, slightly sandy, very fine.
- Same, slightly sandy, very fine.
- Same, non-fossiliferous.
- Same, very very fossiliferous, snail, clams, etc.
- Same, non-fossiliferous.
- Same, few fossiliferous fragments.
- Same, shale becomes much darker.
- Dark grey black very very fine mica and silt.

#### Page 2

| 7/28/62    | 6:00 AM | Drilling at 3180' in 9-7/8" hole in shale. 3/4° at 2899'.<br>Vis. 47, wt. 9.0, WL 5.0, FC 1/32. Pump pressure 1350#,<br>54 SPM, 6" liners.               |
|------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7/29/62    | 6:00 AM | Drilling at 3640' in sand and shale. 1-3/4° at 3240'. Vis.<br>48. wt. 9.0, WL 4.0, FC 1/32. Pump pressure 1350#, 54 SPM, 6"<br>liners.                   |
| 7/30/62    | 6:00 AM | Drilling at 3940' in sand and shale. Bit #8 in the hole.<br>Vis. 46, wt. 9.1, WL 4.4, FC 1/32. 2° at 2692'. Pump pres-<br>sure 1400#, 54 SPM, 6" liners. |
| 7/31/62    | 6:00 AM | TD 4123'. Making trip for core barrel. 1-3/4° at 3956'.<br>Vis. 46, wt. 9.2, WL 4.5, FC 1/32. Pump pressure 1400#, 54<br>SFM, 6" liners.                 |
|            |         | CORE DESCRIPTION                                                                                                                                         |
| Core #2    |         | Cored 4123.3' to 4142.8'. Cored 19.5', recovered 19.5'.                                                                                                  |
| 4123.3-25' |         | Medium fine light grey salt and pepper varicolor sandstone,<br>very very fine mica matrix, slight gas stain and fluorescence.                            |
| 4125-26'   |         | Same, harder, good stain and fluorescence.                                                                                                               |
| 4126-29'   |         | Same, hard, slight stain and fluorescence.                                                                                                               |
| 4129-30'   |         | Same, hard, heavy stain and fluorescence.                                                                                                                |
| 4130-31'   |         | Same, hard, with thin fine varved sandstone, slightly carbon-<br>aceous streaks, stain and fluorescence.                                                 |
| 4131-32'   |         | Same.                                                                                                                                                    |
| 4132-33'   |         | Same, very fractured, good stain and fluorescence.                                                                                                       |
| 4133-35'   |         | Same, good odor, good stain and fluorescence.                                                                                                            |
| 4135-36'   |         | Same with black shale streaks, slightly carbonaceous, good odor, good stain and fluorescence.                                                            |
| 4136-37'   |         | Same with thin carbonaceous pyritic partings, good odor, good stain and fluorescence.                                                                    |
| 4137-40'   |         | Same, heavy odor, good stain and fluorescence.                                                                                                           |
| 4140-41'   |         | Same with thin slightly carbonaceous shale streaks, varved, good odor, good stain and fluorescence.                                                      |
| 4141-42'   |         | Same with thin brown shale streaks, varved, slicken sides, slight odor and fluorescence.                                                                 |
| 4142-42.8" |         | Dark grey very fine salt and pepper varicolor sandstone with thin brown grey silty shale streaks, slight bleed.                                          |
| 7/31/62    |         | Pulled Core #2 from 4123.3' to 4142.8'.                                                                                                                  |
| 8/1/62     | 6:00 AM | Coring (Core #3) at 4164'. 2-3/4° at 4154'. Vis. 50, wt. 9.9,<br>WL 3.6, FC 1/32. Pump pressure 800#, 54 SPM, 6" liners.                                 |
| 8/1/62     |         | Pulled Core #3 from 4154' to 4214'. Cored 60', recovered 46'.                                                                                            |
| 8/2/62     | 5:00 AM | TD 4214'. Vis. 52, wt. 9.9, WL 5.8, FC 1/32. 2° at 4214'.<br>Pump pressure 1400#, 41 SPM, 6" liners. Preparing to drill<br>stem test.                    |
|            |         |                                                                                                                                                          |

Benson-Montin-Greer Drilling Corp. Canada Ojitos Unit #2 (K-13) Page 3 DST #1 from 4076' to 4214'. Upper packer set at 4072', lower 8/2/62 at 4076". Tool open 10 minutes on initial flow. Good blow of air to surface immediately. Initial shut in 30 minutes. Second flow 60 minutes, final shut in 45 minutes. Initial hydrostatic pressure 2170#, initial FP 280#, initial SIP 810#. Final FP 590#, final SIP 810#. Bottom hole temperature 142°. Good blow throughout test. Gas to surface at end of test. 8/3/62 . 6:00 AM Drilled to TD 4383'. Circulating for Core #4. Vis. 59, wt. 9.9, WL 5.8, FC 1/32. Pump pressure 1400#, 54 SPM, 6" liners. CORE DESCRIPTIONS Cored 4154' to 4216'. Cored 62', recovered 46'. Core #3 Dark brown carbonaceous shale. 4154-55\* 4155-56' Same. 4156-57' Same, amber specks. 4157-59' Same, very carbonaceous. 4159-60' Impure coal. 4160-61' Dark grey brown carbonaceous shale. Dark brown slightly carbonaceous sand, medium fine, very silty. 4161-64' 4164-645' Dark grey brown silty carbonaceous sand, thin laminations. Light grey medium fine varicolor silty sandstone. 4164--65' Same with brown shale clay balls, very micaceous. 4165-71' 4171-72' Light grey tan medium fine varicolor sandstone, micaceous. Dark grey brown shale, very very finely micaceous. 4172-725' 4172 - 73' Light grey tan medium fine varicolor sandstone, micaceous, with clay balls and brown shale. 4173-74' Same with thin shale laminations. 4174-75' Dark grey brown shale, very fine mica. 4175-76' Light tan grey medium fine varicolor sandstone, micaceous. Light tan grey medium varicolor sandstone, micaceous, compact. 4176-78' 4178-80' Same, slight stain. 4180-81' Same, slight stain, very silty. 4181-82' Black very coaly shale. 4182-83' Black slightly coaly shale. 4183-85' Black very slightly coaly shale. 4185-87' Dark brown coaly shale. 4187-97' Dark brown grey slightly silty carbonaceous shale. 4197-975' Dark grey hard very slightly carbonaceous shale. 41973-99" Dark grey brown very silty carbonaceous sand with thin brown shale streaks. 4199-41995' Dark grey brown very silty carbonaceous sand with dark brown shale streaks.

.

-

-

----

×----

#### Page 4

.

: .

| <u>Core #3</u> (co | ntinued) |                                                                                                                                                                                                                               |
|--------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4199½-4200'        |          | Dark brown shale with thin medium fine to medium varicolor silty sandstone streaks.                                                                                                                                           |
| <u>Core #4</u>     |          | Cored 4491' to 4551'. Cored 60', recovered 54'.                                                                                                                                                                               |
| 4491-92'           |          | Dark grey brown very fine silty slightly carbonaceous shale.                                                                                                                                                                  |
| 4492-93'           |          | Dark grey brown very fine silty slightly carbonaceous shale<br>and grey medium fine angular varicolor slightly carbonaceous<br>sandstone.                                                                                     |
| 4493-98'           |          | Same.                                                                                                                                                                                                                         |
| 4498-4502'         |          | Dark grey brown shale, slightly carbonaceous.                                                                                                                                                                                 |
| 4502-06'           |          | Dark grey medium fine sub-angular sandstone, silty, slightly carbonaceous and micaceous.                                                                                                                                      |
| 4506-10'           |          | Light grey medium fine sub-angular sand and pepper sandstone, slightly silty.                                                                                                                                                 |
| 4510-12            | ,        | Dark grey brown very fine silty shale.                                                                                                                                                                                        |
| 4512-13'           |          | Dark grey brown very fine sandy micaceous shale.                                                                                                                                                                              |
| 4513-14'           |          | Dark grey brown shale.                                                                                                                                                                                                        |
| 4514-15'           |          | Coal.                                                                                                                                                                                                                         |
| 4515-16'           |          | Dark grey brown shale.                                                                                                                                                                                                        |
| 4516-17'           |          | Light grey medium varicolor compact micaceous and slightly carbonaceous sandstone, kaolin clay cmt.                                                                                                                           |
| 4517 <b>-27'</b>   |          | Light grey medium varicolor compact micaceous sand. Kaolin<br>clay cmt.                                                                                                                                                       |
| 4527 <b>-28'</b>   |          | Dark medium varicolor compact micaceous sand, kaolin clay cmt,<br>thin carbonaceous partings.                                                                                                                                 |
| 4528-31'           |          | Light grey medium varicolor compact micaceous sand, kaolin<br>clay cmt.                                                                                                                                                       |
| 4531-32'           |          | Same with trace gilsonite.                                                                                                                                                                                                    |
| 4532-32'           |          | Same, no gilsonite.                                                                                                                                                                                                           |
| 4532-39'           |          | Same with dark grey brown clay balls.                                                                                                                                                                                         |
| 4539-51'           | •        | Same.                                                                                                                                                                                                                         |
| 8/4/62             |          | Pulled Core #4 from 4491' to 4551'. Cored 60', recovered 54'.                                                                                                                                                                 |
| 8/6/62             | 6:00 AM  | Drilled to TD 4900'. Circulating to run casing. Vis. 58, wt.<br>10, WL 8, FC 2/32. Pump pressure 1500#, 54 SPM, 6" liners.<br>Lost 300 barrels mud at 4772'. Now have full returns.                                           |
| 8/6/62             | 8:00 PM  | TD 4900' RKB. Set 155 joints 4904' of 7-5/8" OD 26.40年 J-55<br>casing at 4898' RKB with 100 sacks cement, 2% gel, 12好<br>Gilsonite/sk, 好 flocele/sk, followed by 300 sacks cement,<br>1% gel, 12好 Gilsonite/sk, 好 flocele/sk. |
| 8/7/62             | 6:00 AM  | WOC                                                                                                                                                                                                                           |
| 8/7/62             | 8:00 AM  | TC 3700'. Ran temperature survey. Set slips. Cut off casing.<br>Rigging up air drilling equipment while WOC.                                                                                                                  |

| 8/8/62   | 6:00 AM | Nippled up. Picked up drill collars. Going in hole drill pipe.                                                                                                                                                                                                        | with                      |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 8/9/62   | 6:00 AM | TD 4911'. Drilled cement and 11' of formation. Form<br>wet. Blowing to dry up.                                                                                                                                                                                        | ation                     |
| 8/10/62  | 6:00 AM | Drilling at 5550' with air. Compressor pressure 150#<br>at 5400'. 7° at 5480'. 7½° at 5520'.                                                                                                                                                                          | . 6 <b>ł</b> °            |
| 8/13/62  | 6:00 AM | TD 6022'. Preparing to run tubing.                                                                                                                                                                                                                                    |                           |
|          |         | TD 6022'. Ran 184 joints tubing. Blew well 6:00 PM<br>11:00 PM.                                                                                                                                                                                                       | to                        |
| 8/14/62  | 6:00 AM | Shut in.                                                                                                                                                                                                                                                              |                           |
| 8/15/62  | 6:00 AM | TD 6022'. Blowing well.                                                                                                                                                                                                                                               |                           |
| ,        | 8:00 AM | Released rotary rig.                                                                                                                                                                                                                                                  |                           |
| 8/16/62  | 6:00 AM | Shut down.                                                                                                                                                                                                                                                            |                           |
| 10/ 5/62 |         | Moved in pulling unit to run Kobe pumping equipment.<br>up and started pulling 2-3/8" tubing. Moved in D-6 of<br>pad for tank battery. Moved 1" tubing, 2-3/8" EUE to<br>equipment, power oil tank (300 bbl special) and one 2<br>storage tank from B-M-G #1 Pilgrim. | at to build<br>bing, Kobe |
| 10/ 6/62 |         | Finished pulling 2-3/8" EUE tubing. Started in hole bottom hole assembly. Ran as follows:                                                                                                                                                                             | with Kobe                 |
|          |         | Perforated nipple:                                                                                                                                                                                                                                                    | 6.60'                     |
|          |         | Nort                                                                                                                                                                                                                                                                  | 4.40                      |
|          |         | 1-2' 2-3/8" EUE sub                                                                                                                                                                                                                                                   | 2.00                      |
|          |         |                                                                                                                                                                                                                                                                       | 97.83'                    |
|          |         | Start in hole with 1" Kobe tbg. Set power oil tank a bbl. storage tank. Laid flow lines and set Kobe trip                                                                                                                                                             |                           |
| 10/ 7/62 |         | Finished running l" Kobe tubing. Tubing as follows:                                                                                                                                                                                                                   |                           |
|          |         | 162 joints 48                                                                                                                                                                                                                                                         | 53.67'                    |
|          |         |                                                                                                                                                                                                                                                                       | 10.00                     |
|          |         | 1 sub 480                                                                                                                                                                                                                                                             | <u>4.00</u><br>57.67      |
|          |         | Kobe stinger on bottom of 1" 48                                                                                                                                                                                                                                       | 1.00<br>58.67'            |
|          |         | Landed 1" with stinger seated in bottom hole assembly spaced out with two subs. Released pulling unit.                                                                                                                                                                | y bowl and                |
|          | 3:00 PM | Started well pumping.                                                                                                                                                                                                                                                 |                           |
| ·        |         | Pressures of 1100# to 1200# while bringing fluid to a<br>Pressure decreased to 250-500# during first few hour<br>pumping operations.                                                                                                                                  | surface.<br>s of          |
| 10/ 8/62 |         | Well pumped 36 barrels in 16 hours. Triplex pressur                                                                                                                                                                                                                   | e 500 <b>#</b> .          |
| 10/ 9/62 |         | Pump down. (Apparently ran out of annulus gas).                                                                                                                                                                                                                       |                           |
| 10/10/62 |         | Pumping with pressure of 550# on Triplex pump.                                                                                                                                                                                                                        |                           |
| 10/11/62 |         | Well pumped 35 barrels in last 29 hours. Total new p<br>to date 133 bbls. Pressure on Triplex 700#.                                                                                                                                                                   | production                |

Well pumped 35 barrels in last 29 hours. Total new production to date 133 bbls. Pressure on Triplex 700#.

Page 5

| 10/12/62 | •       | Pumped 50 barrels last 24 hours. Increased triplex speed to full throttle. Triplex pressure 1050#. Gravity of oil 38.5 at 70°. |
|----------|---------|--------------------------------------------------------------------------------------------------------------------------------|
| 10/13/62 |         | Pumped 35 barrels in 24 hours. Triplex pressure 1000#.<br>Gravity 37.2 at 65°.                                                 |
| 10/14/62 |         | Pumped 21 barrels last 24 hours. Triplex pressure 1000#.                                                                       |
| 10/15/62 |         | Pumped 14 barrels last 24 hours. Triplex pressure 1000#.                                                                       |
| 10/16/62 |         | Pumped 9 barrels last 24 hours. Triplex pressure 1000#.                                                                        |
| 10/17/62 |         | Pumped 7 barrels last 24 hours. Triplex pressure 900#.                                                                         |
| 10/18/62 | 7:00 AM | Pump inoperative. No production last 24 hours.                                                                                 |
|          | 7:30 PM | Ran new pump.                                                                                                                  |
| 10/19/62 | 7:00 AM | Well pumped 39 barrels oil last ll <sup>1</sup> /2 hours.                                                                      |
| 10/20/62 | 7:00 AM | Pumped 19 barrels last 24 hours.                                                                                               |
| 10/21/62 | 7:00 AM | Pumped 14 barrels last 24 hours.                                                                                               |
| 10/22/62 | 7:09 AM | Pumped 15 barrels last 24 hours.                                                                                               |
| 10/22/62 |         | Pumped 15 barrels oil in 12 hours.                                                                                             |
| 10/23/62 |         | Pumped 15 barrels oil in 12 hours.                                                                                             |
| 10/24/62 |         | Pumped 13 barrels oil in 12 hours.                                                                                             |
| 10/25/62 | •       | Pumped 13 barrels oil in 12 hours.                                                                                             |
| 10/26/62 |         | Pumped 12 barrels oil in 12 hours.                                                                                             |
| 10/27/62 |         | Pumped 12 barrels oil in 12 hours.                                                                                             |
| 10/28/62 |         | Pumped 13 barrels oil in 12 hours.                                                                                             |
| 10/29/62 |         | Pumped 6 barrels in 12 hours.                                                                                                  |
| 10/30/62 |         | Pumped 5 barrels in 6 hours.                                                                                                   |
| 10/31/62 |         | Pumped 9 barrels oil in 6 hours.                                                                                               |
|          |         | •                                                                                                                              |

Page 6

|      |                     |               | <br>        |        |          |          | <b>]</b><br> |       |          |     |             |            |                |          |         |         |       |           | • • • • •<br>• |            | :<br>:<br>:  |              |                                       |       |         |          |            | -       |
|------|---------------------|---------------|-------------|--------|----------|----------|--------------|-------|----------|-----|-------------|------------|----------------|----------|---------|---------|-------|-----------|----------------|------------|--------------|--------------|---------------------------------------|-------|---------|----------|------------|---------|
|      |                     | <br>          |             |        | <br>     |          | ·            |       | <u> </u> |     | [<br>       | <br>       | <br>           |          |         |         | ļ     |           | :              |            |              |              |                                       |       |         |          | :.·        | .<br>+- |
| ·    |                     |               |             |        |          |          | · : ·        |       |          | -   | 0           |            | -0             | •<br>•   |         |         |       |           |                |            |              |              | . : .                                 | :<br> |         |          |            | ŀ       |
| ledo | i<br>_ <del>i</del> | ,<br>         | . :.        |        |          |          |              | 1     | 5        |     |             | <u>:</u>   |                |          |         |         | · · · | :         | • • •          | · · ·<br>· |              |              |                                       |       |         |          |            | +       |
|      |                     |               |             | :.<br> |          | : :<br>  |              | 4     |          |     |             |            |                | ::<br>   |         | BO      |       | 1 .       |                |            | Ξ.           |              |                                       | ( ·   | RE      |          |            | +-      |
| 1    | _                   |               |             |        |          |          | 4            |       |          |     | · · · · · · |            | . : :          |          |         |         | B     | UIL       | D-             | -UI        | <b>P</b> (   | cu           | RV                                    | E     |         |          |            | Į:      |
|      |                     | <br>          |             |        |          |          |              |       |          |     |             | ļ          |                | :···     | · · · · | · · · · |       | • · · ·   | : ·.           |            |              |              |                                       |       |         |          |            | -       |
| 1500 |                     |               | 1.1         |        |          |          |              |       | . =      |     |             |            |                |          |         |         |       |           |                | 00         |              |              |                                       |       |         |          |            | -       |
|      |                     | <br>          |             |        |          |          | ĐH           |       |          | -   |             | 1          |                |          |         | BC      | YL)   | ac/       | <b>C</b> —     | GR         | EE           | <b>H</b>     |                                       | r a   |         |          |            | ļ       |
|      |                     |               |             |        |          |          |              |       |          | -   |             |            |                |          |         |         |       | B         | 210            | ck         |              | ¥ 2          |                                       |       |         |          |            |         |
|      | :   . :<br>         |               | · · · · · · |        |          |          |              |       |          |     |             |            |                |          | 77      | 54      |       | 213       | ~              |            | Sec          | 73-          | 25                                    | N -   | THE     |          |            | 1       |
| 1400 |                     |               |             |        | 1        |          |              |       |          |     |             |            |                |          |         | 1       |       |           |                |            |              |              | <u>.</u>                              |       |         |          |            |         |
|      |                     | <br> <br>     |             |        |          |          |              |       |          |     |             |            |                | <br>     |         | F       | 10    | Arr       | 100            | Co         | unty         | , . <b>/</b> | M                                     | ex.   |         |          |            | ŀ       |
|      |                     |               |             |        |          |          |              |       |          |     |             |            |                |          |         |         |       | :         |                |            |              |              | · · · ·                               |       |         | <u> </u> | <b> </b>   | Ļ       |
|      | ·                   | <br>          | :::         |        |          |          |              |       |          |     |             |            |                |          |         |         |       |           |                |            |              |              |                                       |       |         | <u> </u> |            |         |
| 1300 | ļ .                 | !<br>         |             |        | <u> </u> |          |              |       |          |     |             |            |                |          |         |         |       |           |                |            |              |              |                                       |       |         |          |            |         |
|      |                     | <br>          |             |        |          |          |              |       |          |     |             |            |                |          |         |         |       |           |                |            |              |              |                                       |       |         |          |            |         |
|      |                     |               |             |        |          | - 14     |              |       |          |     |             |            |                |          |         |         |       |           |                |            |              |              |                                       |       | 17.71   |          |            |         |
|      |                     |               |             |        |          |          |              |       | -        |     |             |            |                |          |         |         |       | 1151.<br> |                |            | 17:41        |              |                                       |       | <u></u> |          |            |         |
| 1200 |                     |               | ):<br>      |        |          |          |              |       | H        | Ζ   | S           | <i>irv</i> | BY             | De       | pti     |         | 59    | 00        | 1              | 115        | 95           | al           | ov                                    | 8     | 680     | 16       | VO         | 1       |
|      |                     |               |             |        |          |          |              |       |          |     |             |            |                | <u>E</u> |         |         |       |           |                |            |              |              |                                       |       |         |          |            |         |
|      |                     |               |             |        |          | <u>F</u> |              |       |          |     |             |            |                |          |         |         |       |           |                |            | :::!<br>+::! |              |                                       |       |         |          |            |         |
|      |                     |               |             |        |          | FT.      | 1.1          |       | 11-1     |     |             |            |                | T:T      |         |         |       |           |                |            |              |              |                                       |       |         | <u> </u> |            |         |
| 1100 |                     |               |             |        |          |          |              | 田     |          |     |             |            |                |          |         |         |       |           |                |            |              |              |                                       |       |         |          |            | ļ       |
|      |                     | <br>          | ļ.          | E      | 114      |          |              |       |          |     |             |            |                | 1        |         |         |       |           |                |            |              |              |                                       |       |         |          | 4.         |         |
|      |                     |               |             |        |          |          |              |       |          |     |             |            | <u>.</u>       |          |         |         |       |           |                |            | <u></u>      |              | Ŧ                                     |       |         |          | <u>t</u> H |         |
|      |                     |               |             |        |          | Fit:     |              |       |          | Hr  |             |            |                |          |         |         |       |           |                |            |              |              |                                       |       |         |          |            |         |
| 1000 |                     | ~             |             |        |          |          |              |       |          | τĿ. |             |            |                |          |         |         |       |           | 1              |            |              | TH:          | + <u> </u>   +                        |       |         |          |            | 1       |
|      |                     | 20            |             |        | Ę        |          |              |       |          |     | uj/ds/s     |            | 10             |          |         |         |       |           |                | 1          |              |              |                                       |       |         |          |            |         |
|      |                     | S             |             |        | 8        | EF)      | 5 II         |       |          |     | Se          |            | à              |          |         |         |       |           |                |            | <u>i fr</u>  |              |                                       |       |         |          |            |         |
|      |                     | 192 105/50/11 | 1           |        |          | H.       | <b>\$</b>    |       |          | 1   | 1 1         |            | 11/05/501 5501 |          |         |         |       |           |                |            |              |              |                                       |       |         |          |            |         |
| 900  | -                   | _             | 1211        |        | 5        |          | 2            |       | 8<br>8   |     | 1637        |            | 9              |          |         |         |       |           |                | 1<br>•     |              |              |                                       |       |         |          |            |         |
|      | -                   |               | FC3/2       |        | - 79.0   |          |              |       |          |     | <b>.</b>    |            | V              |          |         |         |       |           |                |            |              |              | • • • • • • • • • • • • • • • • • • • |       |         |          |            |         |
|      |                     | 5             | 1           |        | 5        |          | <u> </u>     | 1     | \$       |     | 5/62        |            | 20/m2/6        |          |         |         |       |           |                |            |              |              |                                       |       |         |          |            |         |
|      |                     | Y             | 2           |        | 5        | 1.10     | <b>A</b> .   |       | <u> </u> |     | 9/15,       |            | 3              |          |         |         |       |           |                |            |              | : : <u>.</u> |                                       |       |         |          |            |         |
|      |                     | ×4            | 1           | 1.2    |          |          |              |       |          |     |             |            |                |          |         |         |       |           |                | +          |              |              |                                       |       |         |          |            | +       |
| 800  |                     | 1             | ļ           |        | 1.11     | 1        |              | 11000 | 10.5     | EE: |             |            |                |          |         |         |       |           |                |            |              |              | Щ.                                    |       |         |          |            | 1       |
|      |                     | 7             |             |        |          |          |              |       |          |     |             |            | <u> </u>       | ÷        |         |         | T     | 1         |                |            | 1 ;          | · · · · ·    |                                       | +++++ | 1       |          |            |         |
| 800  |                     |               |             |        |          |          |              |       |          |     |             | 1::.       |                |          |         |         |       |           | · · · · ·      |            |              |              |                                       |       |         |          |            |         |
| 800  |                     |               |             |        |          |          |              |       |          |     |             | 1::.       |                |          |         |         |       |           |                |            |              |              | <b>Ò</b>                              |       |         | 7        |            |         |

DAYS SHUT IN

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

November 7, 1962

RESERVOIR FLUID DIVISION

Benson-Montin-Greer Drilling Corporation 158 Petroleum Center Building Farmington, New Mexico

Attention: Mr. Virgil Stoabs

Subject: Reservoir Fluid Study Bolack No. 2 Well Wildcat Rio Arriba County, New Mexico Our File Number: RFL 2302

#### Gentlemen:

Subsurface fluid samples were collected from the subject well by a representative of Core Laboratories, Inc. on October 2, 1962, and transported to our Dallas laboratory, where they arrived on October 15, 1962. Presented in this report are the results of a reservoir fluid study performed using these samples.

The saturation pressure of the fluid was measured to be 1524 psig at the reservoir temperature of  $152^{\circ}$  F. The reservoir pressure at the sampling depth was measured to be 1631 psig.

During differential pressure depletion the fluid evolved 481 standard cubic feet of gas per barrel of residual oil. The associated formation volume factor was measured to be 1.292 barrels of saturated fluid per barrel of residual oil. Under similar depletion conditions the viscosity of the fluid varied from a minimum of 0.625 centipoise at the saturation pressure to a maximum of 1.750 centipoises at atmospheric pressure.

Separator tests were performed at four operating pressures and atmospheric temperature to determine the effect of changes in surface Benson-Montin-Greer Drilling Corporation Bolack No. 2 Well Page Two

separation pressure upon the produced fluid. These tests indicate that the optimum separator pressure is approximately 90 psig; however, near optimum recovery will be obtained at pressures as low as 40 psig.

It was a pleasure to perform this study for you. If you have any questions or if we may assist you further, please do not hesitate to contact us.

Very truly yours,

Core Laboratories, Inc. Reservoir Fluid Division P. L. Moses

a. C. Carnes, Jr.

A. C. Carnes, Jr. Senior Engineer

ACC:dc 7 cc. - Addressee

# CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

· . . ·

٠.

|                |                                                                                                                |               | Page_10f11                                     |
|----------------|----------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------|
|                | Benson-Montin-Greer                                                                                            |               | File RFL 2302                                  |
| Company_       | Dutition Companyation                                                                                          | Date Sample   | d October 2, 1962                              |
| Well           | Bolack No. 2                                                                                                   | -             | Rio Arriba                                     |
|                |                                                                                                                | -             | · · · · · · · · · · · · · · · · · · ·          |
| Field          | Wildcat                                                                                                        |               | New Mexico                                     |
|                |                                                                                                                | CHARACTERISTI | CS<br>Collect                                  |
| Formation      |                                                                                                                | -             | Gallup                                         |
|                | : Well Completed                                                                                               | -             | August 15 , 19 62                              |
| -              | eservoir Pressure                                                                                              | -             | <u>1631</u> PSIG @ <u>5957</u> Ft              |
| -              | roduced Gas-Oil Ratio                                                                                          | -             | SCF/Bb                                         |
|                | duction Rate                                                                                                   |               | Bbl/Day                                        |
| -              | parator Pressure and Temperature                                                                               | -             | PSIG,°F                                        |
| Oil            | Gravity at 60° F.                                                                                              | -             | °AP                                            |
| Datum          | <i>.</i>                                                                                                       | -             | Ft. Subsea                                     |
| Original G     | as Cap                                                                                                         | -             |                                                |
|                | WELL CHA                                                                                                       | ARACTERISTICS |                                                |
| Elevation      |                                                                                                                | -             | 7100 KB Ft                                     |
| Total Dep      | th                                                                                                             | •             | <u>    6022                               </u> |
| Producing      | Interval                                                                                                       | -             | 4900-6022 OH Ft                                |
| Tubing Siz     | e and Depth                                                                                                    | -             | <u>2-3/8</u> In. to 6003 Ft                    |
| Productivi     | ty Index                                                                                                       | -             | Bbl/D/PSI @Bbl/Day                             |
| Last Resea     | rvoir Pressure                                                                                                 | -             | <u>1631</u> PSIG @ <u>5975</u> Ft              |
| Dat            | ie in the second se | -             | October 2 , 19 62                              |
| Res            | ervoir Temperature                                                                                             |               | <u>152</u> °F. @ <u>5975</u> Ft                |
| Sta            | tus of Well                                                                                                    |               | Shut in                                        |
| Pre            | essure Gauge                                                                                                   | -             | Amerada (DO)                                   |
| Normal Pr      | roduction Rate                                                                                                 | _             | Bbl/Day                                        |
| Gas            | s-Oil Ratio                                                                                                    | •             | SCF/Bb                                         |
| Sep            | arator Pressure and Temperature                                                                                | -             | PSIG,°F                                        |
| Bas            | se Pressure                                                                                                    | -             | PSIA                                           |
| Well Maki      | ng Water                                                                                                       | . <u>-</u>    | % Cut                                          |
|                | SAMPLIN                                                                                                        | G CONDITIONS  |                                                |
|                |                                                                                                                |               | 5975                                           |
| م امما محمد من | -                                                                                                              |               |                                                |

| Sampled at                         | _5975   | Ft.     |
|------------------------------------|---------|---------|
| Status of Well                     | Shut in |         |
| Gas-Oil Ratio                      |         | SCF/Bbl |
| Separator Pressure and Temperature | PSIG,_  | °F.     |
| Tubing Pressure                    | _0      | PSIG    |
| Casing Pressure                    | ····    | PSIG    |
| Core Laboratories Engineer         | NT      |         |
| Type Sampler                       | Perco   |         |

**REMARKS:** 

CL-518

#### CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

| Page_ | 2 of 11      |
|-------|--------------|
| File  | RFL 2302     |
| Well  | Bolack No. 2 |

# VOLUMETRIC DATA OF Reservoir Fluid SAMPLE

<u>1524</u> PSIG @ <u>152</u> °F. Saturation pressure (bubble-point pressure) 1. Thermal expansion of saturated oil @ 5000 PSI =  $\frac{V @ 152 \circ F}{V @ 73 \circ F} = 1.04245$ 2. 3. Compressibility of saturated oil @ reservoir temperature: Vol/Vol/PSI: From <u>5000</u> PSI to <u>3500</u> PSI = <u>7.92 x  $10^{-6}$ </u> From  $\frac{3500}{100}$  PSI to  $\frac{2500}{100}$  PSI =  $\frac{8.93 \times 10^{-6}}{100}$ From  $\frac{2500}{1524}$  PSI to  $\frac{1524}{1524}$  PSI =  $\frac{10.34 \times 10^{-6}}{10.34 \times 10^{-6}}$ 0.02223 @ 152 °F.

4. Specific volume at saturation pressure: ft <sup>3</sup>/lb

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper opera-tion or prohitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

# CORE LABORATORIES, INC.

Petroleum Reservoir Engineering DALLAS. TEXAS

| Page_ |                 | 11 |
|-------|-----------------|----|
| File  | <b>RFL 2302</b> |    |
| Well  | Bolack No.      | 2  |

# Reservoir Fluid SAMPLE TABULAR DATA

|                       | PRESEURE-VOLUME<br>RELATION | VISCOSITY                         | DIFFERENTIAL LIBERATION @ 152 .F.                           |                                                               |                                 |  |  |  |
|-----------------------|-----------------------------|-----------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|--|--|--|
| PRESSURE<br>PSI GAUGE | @ 152 F.                    | OF OIL<br>152 "F.,<br>CENTIPOISES | GAS/OIL RATIO<br>LIBERATED<br>PER BARREL OF<br>RESIDUAL OIL | GAS/OIL RATIO<br>IN SOLUTION<br>PER BARREL OF<br>RESIDUAL OIL | RELATIVE OIL<br>VOLUME,<br>V/VR |  |  |  |
| 5000                  | 0.9694                      | 0.845                             |                                                             |                                                               | 1,252                           |  |  |  |
| 4500                  | 0.9732                      | 0.818                             |                                                             |                                                               | 1,257                           |  |  |  |
| 4005                  |                             | 0.787                             |                                                             |                                                               |                                 |  |  |  |
| 4000                  | 0.9770                      |                                   |                                                             |                                                               | 1,262                           |  |  |  |
| 3500                  | 0,9811                      | 0.758                             |                                                             |                                                               | 1,268                           |  |  |  |
| 3000                  | 0.9854                      | 0.726                             | ,                                                           |                                                               | 1.273                           |  |  |  |
| 2505                  |                             | 0.691                             |                                                             |                                                               |                                 |  |  |  |
| 2500                  | 0.9899                      |                                   |                                                             |                                                               | 1.279                           |  |  |  |
| 21,00                 | 0.9938                      |                                   |                                                             |                                                               | 1,284                           |  |  |  |
| 2000                  | 0.9947                      | 0.661                             |                                                             |                                                               | 1,285                           |  |  |  |
| 1900                  | 0.9957                      |                                   |                                                             |                                                               | 1.286                           |  |  |  |
| 1800                  | 0.9969                      |                                   |                                                             |                                                               | 1,288                           |  |  |  |
| 1700                  | 0, 9980                     | 0.635                             |                                                             |                                                               | 1,289                           |  |  |  |
| 1600                  | 0.9991                      |                                   |                                                             |                                                               | 1,291                           |  |  |  |
| 1524                  | 1.0000                      | 0.625                             | 0                                                           | 481                                                           | 1.292                           |  |  |  |
| 1516                  | 1.0020                      | ·                                 |                                                             |                                                               |                                 |  |  |  |
| 1508                  | 1.0041                      |                                   |                                                             |                                                               |                                 |  |  |  |
| 1483                  | 1.0102                      |                                   |                                                             |                                                               |                                 |  |  |  |
| 1447                  | 1.0204                      |                                   |                                                             |                                                               |                                 |  |  |  |
| 1400                  | •                           | 0.631                             |                                                             |                                                               |                                 |  |  |  |
| 1381                  | 1.0407                      |                                   |                                                             |                                                               |                                 |  |  |  |
| 1376                  | •                           |                                   | 37                                                          | 444                                                           | 1.277                           |  |  |  |
| · 1299                | 1.0698                      |                                   |                                                             |                                                               |                                 |  |  |  |
| 1250                  |                             | 0.682                             |                                                             |                                                               |                                 |  |  |  |
| 1221                  |                             |                                   | 75                                                          | 406                                                           | 1.261                           |  |  |  |
| 1201                  | 1.1121                      |                                   |                                                             |                                                               |                                 |  |  |  |
| 1123                  |                             |                                   | 100                                                         | 381                                                           | 1.251                           |  |  |  |
| 1100                  |                             | 0.720                             |                                                             |                                                               |                                 |  |  |  |
| 1090                  | 1,1734                      |                                   |                                                             |                                                               |                                 |  |  |  |
| 971                   | 1.2552                      |                                   |                                                             |                                                               |                                 |  |  |  |
| 968                   |                             |                                   | 139                                                         | 342                                                           | 1.235                           |  |  |  |
| 950                   | •                           | 0.760                             |                                                             |                                                               |                                 |  |  |  |
| 850                   | 1.3679                      |                                   |                                                             |                                                               |                                 |  |  |  |
| 818                   |                             |                                   | 176                                                         | 305                                                           | 1.220                           |  |  |  |

v = Volume at given pressure

VSAT. - Volume at saturation pressure and the specified temperature.

va = Residual oil volume at 14.7 PSI absolute and 60° F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expersent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

# CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

| Page_ | of         | 11 |  |
|-------|------------|----|--|
| File  | RFL 2302   |    |  |
| Well_ | Bolack No. | 2  |  |

# Reservoir Fluid SAMPLE TABULAR DATA

|                       | PRESSURE-VOLUME                                                      | VISCOSITY                         | DIFFERENT                                                   | IAL LIBERATION @                                              | 152 °F.                        |
|-----------------------|----------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--------------------------------|
| PRESSURE<br>PSI GAUGE | RELATION<br>@ 152 *F.,<br>RELATIVE VOLUME OF<br>OIL AND GAS, V/VSAT. | OF OIL<br>9 152 °F<br>CENTIPOISES | GAS/OIL RATIO<br>LIBERATED<br>PER BARREL OF<br>RESIDUAL OIL | GAS/OIL RATIO<br>IN SOLUTION<br>PER BARREL OF<br>RESIDUAL OIL | RELATIVE OI<br>VOLUME,<br>V/VR |
| 800                   |                                                                      | 0.802                             |                                                             |                                                               |                                |
| 728                   | 1.5320                                                               |                                   |                                                             |                                                               |                                |
| 669                   |                                                                      |                                   | 213                                                         | 268                                                           | 1.204                          |
| 650                   |                                                                      | 0.858                             |                                                             |                                                               |                                |
| 600                   | 1,7783                                                               |                                   |                                                             |                                                               |                                |
| 518                   |                                                                      |                                   | 251                                                         | 230                                                           | 1.188                          |
| 500                   |                                                                      | 0.912                             |                                                             |                                                               |                                |
| 469                   | 2.1799                                                               |                                   |                                                             |                                                               |                                |
| 365                   |                                                                      | •                                 | 290                                                         | 191                                                           | 1.170                          |
| 354                   | 2.7950                                                               | *.<br>1 •                         |                                                             |                                                               |                                |
| 350 `                 |                                                                      | 0.977                             |                                                             |                                                               |                                |
| 258                   | 3,8098                                                               | ·• •••                            |                                                             |                                                               |                                |
| 223                   |                                                                      |                                   | 332                                                         | 149                                                           | 1.151                          |
| 200                   | ι.                                                                   | 1.083                             |                                                             |                                                               |                                |
| 112                   |                                                                      |                                   | 371                                                         | 110                                                           | 1.130                          |
| 0                     |                                                                      | 1.750                             | 481                                                         | 0                                                             | 1.044                          |
|                       |                                                                      | •                                 |                                                             | @ 60 <sup>0</sup> 1                                           |                                |

Gravity of residual oil  $= 38.6^{\circ}$  API @  $60^{\circ}$  F.

v = Volume at given pressure

 $v_{\text{SAT.}}$  = Volume at saturation pressure and the specified temperature.

 $v_{R}$  = Residual oil volume at 14.7 PSI absolute and 60° F.

# CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

DALLAS. TEXAS

| Page_ | _5 of      | 11                                    |
|-------|------------|---------------------------------------|
| File  | RFL 2302   | · · · · · · · · · · · · · · · · · · · |
| Well  | Bolack No. | 2                                     |

# Differential Pressure Depletion at 152° F.

| Pressure<br>PSIG | Oil Density<br>Gms/Cc | Gas<br>Gravity | Deviation Factor |
|------------------|-----------------------|----------------|------------------|
| 1524             | 0,7206                |                |                  |
| 1376             | 0.7246                | 0.693          | 0.869            |
| 1221             | 0. 7290               | 0.694          | 0.879            |
| 1123             | 0.7319                | 0.696          | 0.886            |
| 968              | 0.7367                | 0.699          | 0.895            |
| 818              | 0.7413                | 0.708          | 0.909            |
| 669              | 0. 7462               | 0.720          | 0.920            |
| 518              | 0.7512                | 0.739          | 0.932            |
| 365              | 0.7566                | 0.783          | 0.945            |
| 223              | 0. 762.7              | 0.856          | 0.965            |
| 112              | 0. 7688               | 1.014          |                  |
| 0                | 0.7957                | 1.589          |                  |

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation. or profitableness of any vil, gas or other mineral well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

| Page_ | <u>    6                                </u> | of   | 11 |
|-------|----------------------------------------------|------|----|
| File  | RFL                                          | 2302 |    |

Bolack No. 2

Well\_\_\_

# SEPARATOR TESTS OF Reservoir Fluid SAMPLE

| SEPARATOR<br>PRESSURE,<br>PSI GAUGE | SEPARATOR<br>TEMPERATURE,<br>• F. | SEPARATOR<br>GAS/OIL RATIO<br>See Foot Note (1) | STOCK TANK<br>GAS/OIL RATIO<br>See Foot Note (1) | STOCK TANK<br>GRAVITY,<br>• API @ 60• F. | SHRINKAGE<br>FACTOR,<br>VR/VSAT.<br>See Foot Note (2) | FORMATION<br>VOLUME<br>FACTOR,<br>VEAT./VR<br>See Foot Note (3) | SPECIFIC<br>GRAVITY OF<br>FLASHED GAS |
|-------------------------------------|-----------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|
| 0                                   | 79                                | 503                                             |                                                  | 38,4                                     | 0.7645                                                | 1.308                                                           | 0.997                                 |
| 40                                  | 77                                | 414                                             | 32                                               | 39.7                                     | 0.7924                                                | 1.262                                                           |                                       |
| 80                                  | 76                                | 371                                             | 61                                               | 39.9                                     | 0.7994                                                | 1,251                                                           |                                       |
| 160                                 | 77                                | 328                                             | 117                                              | 39.7                                     | 0.7930                                                | 1.261                                                           |                                       |

- (1) Separator and Stock Tank Gas/Oil Ratio in cubic feet of gas @ 60° F. and 14.7 PSI absolute per barrel of stock tank oil @ 60° F.
- (2) Shrinkage Factor: Ve/Vent. is barrels of stock tank oil @ 60° F. per barrel of saturated oil @ 1524 PSI gauge and 152 ° F.
- (3) Formation Volume Factor: Vent./Ve is barrels of saturated oil @ 1524 PSI gauge and 152 ° F. per barrel of stock tank oil @ 60° F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

#### CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

|         |                      |           | Page7 of11    |
|---------|----------------------|-----------|---------------|
|         | Benson-Montin-Greer  |           | File RFL 2302 |
| Company | Drilling Corporation | Formation | Gallup        |
| Well    | Bolack No. 2         | County    | Rio Arriba    |
| Field   | Wildcat              | State     | New Mexico    |

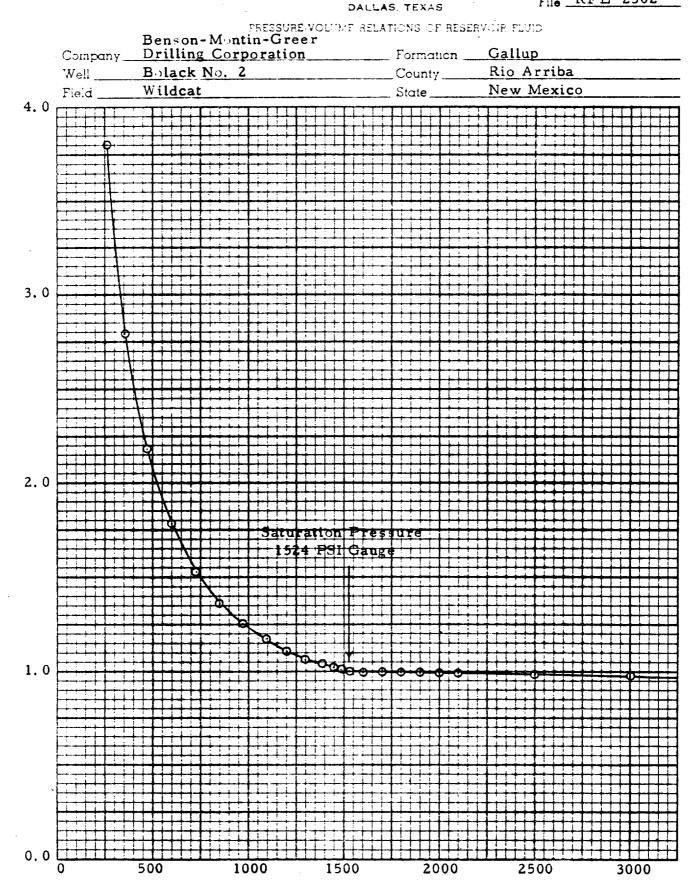
# HYDROCARBON ANALYSIS OF Reservoir Fluid SAMPLE

| COMPONENT        | WEIGHT<br>PER CENT | MOL<br>PER CENT | DENSITY @ 60° F.<br>GRAMS PER CUBIC<br>CENTIMETER | * API<br>@ 60* F. | MOLECULAR<br>WEIGHT |
|------------------|--------------------|-----------------|---------------------------------------------------|-------------------|---------------------|
|                  | •                  |                 |                                                   |                   |                     |
| Hydrogen Sulfide |                    |                 |                                                   |                   |                     |
| Carbon Dioxide   | 0.05               | 0.14            |                                                   |                   |                     |
| Nitrogen         | 0,04               | 0.16            |                                                   |                   |                     |
| Methane          | 3.68               | 26.38           |                                                   |                   |                     |
| Ethane           | 1.70               | 6,48            |                                                   |                   |                     |
| Propane          | 2.45               | 6.39            |                                                   |                   |                     |
| iso-Butane       | 0.50               | 1.00            | ·                                                 |                   |                     |
| n-Butane         | 2.23               | 4.41            |                                                   |                   |                     |
| iso-Pentane      | 1.16               | 1.86            |                                                   |                   |                     |
| n-Pentane        | I. 53              | 2.44            |                                                   | 4                 | ha.                 |
| Hexanes          | 3.33               | 4.45            |                                                   |                   |                     |
| Heptanes plus    | 83.33              | 46.29           | 0.8449                                            | 35.8              | 207                 |
| •                | 100.00             | 100.00          |                                                   |                   |                     |

Core Laboratories, Inc. Reservoir Fluid Division

a. C. Carnes, Jr.

A. C. Carnes, Jr. Senior Engineer

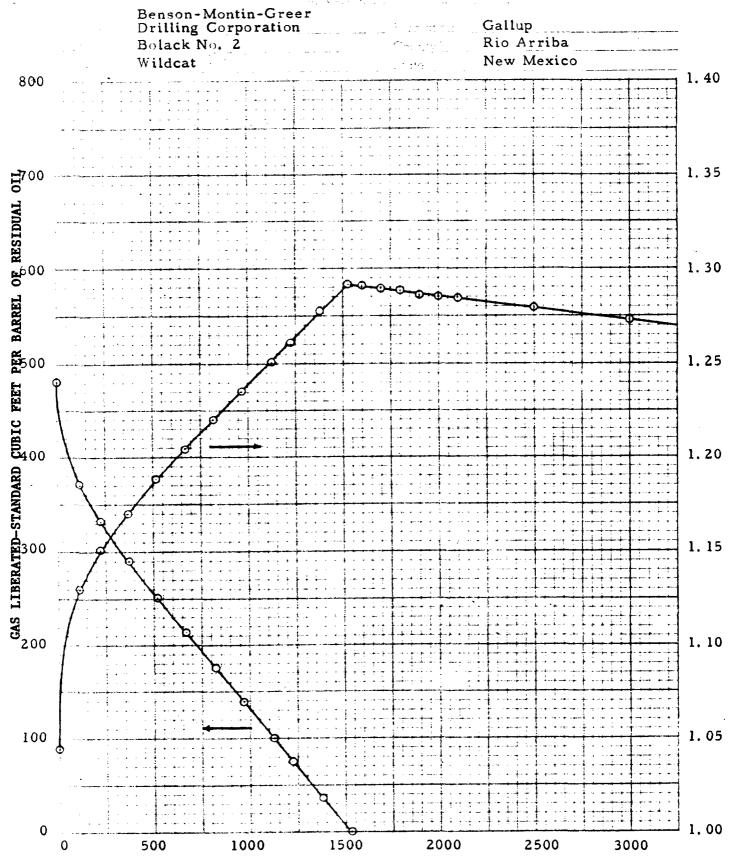

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon. CORE LABORATORIES. INC. Petroleum Reservoir Engineering

•

- •'

RELATIVE VOLUME: V/Vs

Page <u>8 of 11</u> File <u>RFL 2302</u>



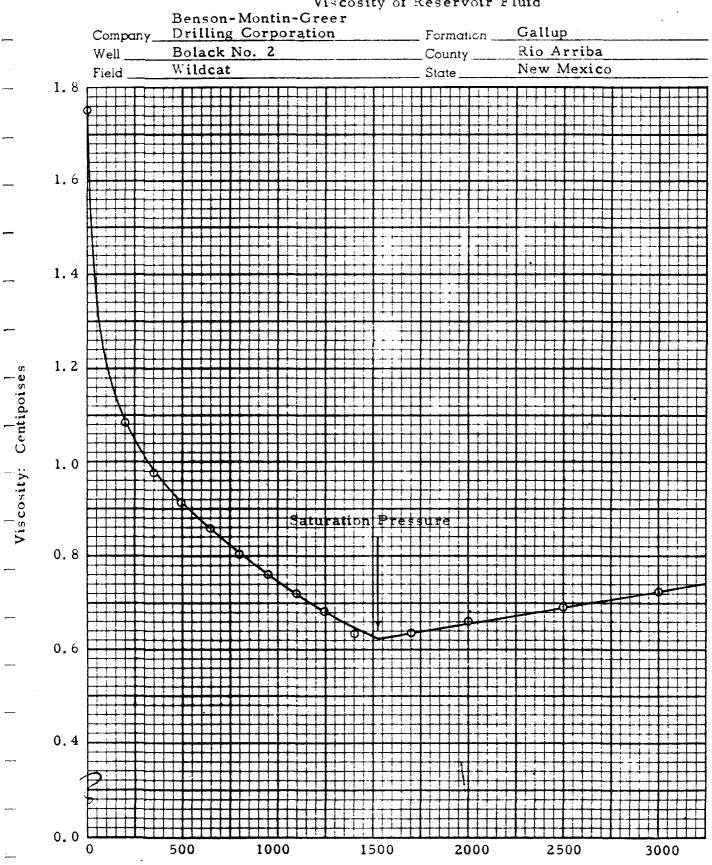

PRESSURE POUNDS PER SQUARE INCH GAUGE

CORE LABORATORIES Della Districturate Dallas Tradi

9 of 11 : :-RFL 2302

RELATIVE LIQUID VOLUME V/VP

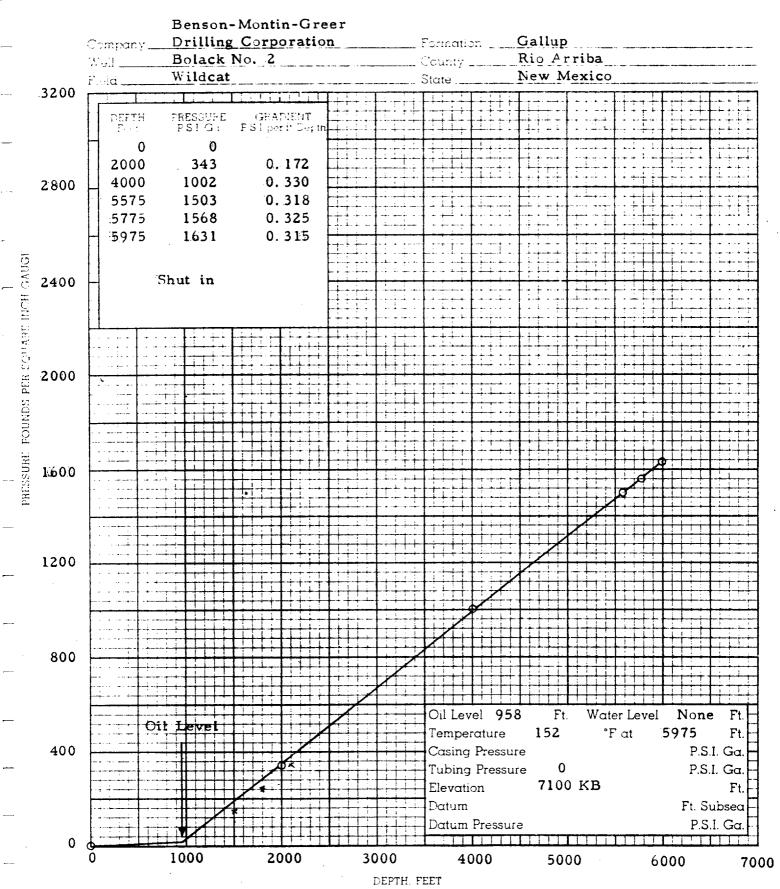



even operations of the splittee that the Wi

#### CORE LABORATORIES. INC. Petroleum Reservoir Engineering DALLAS. TEXAS

. . . . . .

Page <u>10 of 11</u> File <u>RFL 2302</u>


Viscosity of Reservoir Fluid



Pressure: PSIG

#### CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

Faye <u>11</u> of <u>11</u> File **RFL 2302** 



# DRILLING STATUS

# CANADA OJITOS UNIT L-11

|         | 1908' FSL, 523' FML, Sec. 11, T-25N, R-1W, Rio<br>Arriba County, New Mexico. Elevation 7220' GL.                                                                                                                                                                                                                                                                                                                            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8- 6-64 | Spudded.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8- 7-64 | TD 330' RKB. Set 10 joints 312' of 13-3/8" OD 48#<br>H-40 casing at 324' RKB with 350 sacks regular<br>cement, 2% calcium chloride.                                                                                                                                                                                                                                                                                         |
| 8-10-64 | Drilling at 1450'. $1^{\circ}$ at 430'.                                                                                                                                                                                                                                                                                                                                                                                     |
| 8-11-64 | Drilling at 2783'.                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8-12-64 | Drilling at 3223'. 3/4° at 3 <b>22</b> 3'                                                                                                                                                                                                                                                                                                                                                                                   |
| 8-13-64 | TD 3771'. Lost circulation. Vis. 45, wt. 9.3, WL<br>8.6, FC 2/32. Mixed lost circulation material.                                                                                                                                                                                                                                                                                                                          |
| 8-14-64 | Drilling at 4130'. $3^{\circ}$ at 4105'                                                                                                                                                                                                                                                                                                                                                                                     |
| 8-15-64 | Drilling at 4380'. Vis. 49, wt. 9.2, WL 4.2, FC 2/32, tr. sand, 6% oil, 8.5 Ph. $2\frac{1}{2}^{\circ}$ at 4359'                                                                                                                                                                                                                                                                                                             |
| 8-19-64 | Drilling at 5315'. Vis. 48, wt. 8.9, WL 5.0, FC<br>1/32, tr. sd., 22% oil. Lost 100 barrels mud at<br>5250'. 2° at 5298'                                                                                                                                                                                                                                                                                                    |
| 8-20-64 | Drilling at 5515'. 2 <sup>0</sup> at 5455'                                                                                                                                                                                                                                                                                                                                                                                  |
|         | Drilled to TD 5550'. Logged well. Drilled 145'<br>to 5695'. Laid down drill pipe.                                                                                                                                                                                                                                                                                                                                           |
| 8-21-64 | TD 5695'. $2\frac{10}{4}$ at 5550'.Ran 38 joints 1229.49' TO<br>7-5/8" OD N-80 LT&C casing (1 joint on top, balance<br>on bottom) and 137 joints 4479.22' TO 7-5/8" J-55<br>ST&C casing, landed at 5694' RKB, cemented with<br>100 sacks, 2% gel, $12\frac{1}{2}$ # Gilsonite and $\frac{1}{4}$ # flocele<br>per sack, followed with 300 sacks, 1% gel, $4\frac{1}{2}$ #<br>Gilsonite and $\frac{1}{4}$ # flocele per sack. |
| 8-22-64 | Temperature survey showed top of cement at 4050'.                                                                                                                                                                                                                                                                                                                                                                           |
| 8-24-64 | Drilled cement. Cement dusted.                                                                                                                                                                                                                                                                                                                                                                                              |
| 8-25-64 | Drilling at 5930' with 175# air pressure. 1-3/4 $^{\circ}$ at 5843'.                                                                                                                                                                                                                                                                                                                                                        |
| 8-26-64 | Drilling at 6425' with 190# air pressure. $2\frac{10}{4}$ at 6272'                                                                                                                                                                                                                                                                                                                                                          |
|         | Drilled to TD 6526'. Logged well. Started back<br>in hole with bit. Bit stopped 9' inside 7-5/8"<br>casing. Casing parted.                                                                                                                                                                                                                                                                                                  |
| 8-27-64 | Attempted to screw in to 7-5/8". Were unable to<br>with regular joint. Ran die nipple and chased<br>threads. Screwed in. Pulled 140,000#, set slips.                                                                                                                                                                                                                                                                        |
| 8-28-64 | Went back to bottom, drilled to 6590'.                                                                                                                                                                                                                                                                                                                                                                                      |
| 8-29-64 | Drilled to TD 6660'. Circulated with air for 1<br>hour. Attempted to reverse circulate with air.<br>Could not get dusting. Conventionally circulated<br>for additional 2 hours. Rigged up to circulate with<br>oil. Loaded hole with oil down drill pipe. When<br>returns established. started reverse circulating<br>oil. Reverse circulated for 2 hours. Came out of<br>hole. Laid down square drill collar.              |

- سۆ

\_

-----

~

----

----

Page 2

| 8-29-64<br>(contd.) | Picked up core barrel. Went back to bottom.<br>Reverse circulated to clean up hole. Plugged pipe.<br>Worked plug free. Attempted to reverse core.<br>Plugged pipe again. Worked out plug. Commenced<br>coring conventionally.                                                                                         |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Pulled Core #1 from 6660' to 6665.5'. Core barrel jammed. Came out of hole.                                                                                                                                                                                                                                           |
|                     | Went in with core barrel. Plugged core barrel.<br>Worked plug out. Pulled Core #2 from 6665.5' to<br>6687'. Recovered 21.5'.                                                                                                                                                                                          |
| 8-30-64             | Ran gamma ray induction log. Found cavings in hole at 6671'.                                                                                                                                                                                                                                                          |
|                     | Ran calseal plug from 6671' to 6648' using Schlum-<br>berger logging truck and dump bailer.                                                                                                                                                                                                                           |
| 8-31-64             | Started in hole with bit.                                                                                                                                                                                                                                                                                             |
| · 9- 1-64           | Cleaned out to PBTD 6648'. Circulated 2 hours.<br>Laid down drill pipe. Ran 40 joints 1296.16' TO<br>5-1/2" OD 17# J-55 casing, landed at 6648' RKB,<br>cemented with 160 sacks regular cement. Top of<br>liner 5348'.                                                                                                |
| 9- 2-64             | Temperature survey showed top of cement at 5350', plug at 6621'                                                                                                                                                                                                                                                       |
| 9- 3-64             | Ran tapered string of drill pipe (1500' of 2-7/8"<br>on bottom, 4" on top). Pressure tested system with<br>2,000# with 75# pressure drop in 15 minutes.<br>Pressure tested again with 1,000# with 25# pressure<br>drop in 15 minutes. On both tests had surface leak<br>which apparently accounted for pressure drop. |
| ·* .                | Drilled agreet plug and colored and closed out to                                                                                                                                                                                                                                                                     |

Drilled cement plug and calseal and cleaned out to original TD 6687'. Circulated hole clean. Came out of hole and ran gamma ray induction log over zone below  $5\frac{1}{2}$ " liner shoe.

Started pumping oil into formation to determine injection rate. Pumped in a 3 BPM at 400# pressure. Pumped in at 6 BPM at 1300#. Dumped radioactive material to attempt to determine point of injection. Ran McCulloch gamma ray tracer log and determined injection point 6680-86'. Perforated with Schlumberger frac jets 2 per foot from 6668-6680'. System pressured up to 1500#. Mould not take fluid at any measurable rate. Found cavings in hole. Circulated hole conventionally and reverse circulated. Pressured up on formation. Established new injection rate of 6 BFM at approximately 1150#.

Laid down drill pipe. Rigged down rotary.

9- 5-64

9- 4-64

lantua ojtios init 1-11

age 3

| 9-29-64  | Sand-oil fraced 5648-87' using 12 Dowell Allison<br>pump trucks and 4 blenders. Treated with 4,400<br>barrels oil, 150,000# 20/40 sand and 25,000# 10/20<br>sand, flushed with 260 barrels oil. Average<br>overall injection rate 75 BPM. Breakdown pressure<br>2000#. Avg. TP 3000#, max. 3200#, min. 2900#. Inst.<br>SIP 1300#, 1-min. SIP 1200#, 8-min. SIP 1100#, 12-<br>min. SIP 1035#. |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | After $3\frac{1}{2}$ hours well on vacuum.                                                                                                                                                                                                                                                                                                                                                   |
|          | Total load oil 4,660 barrels.                                                                                                                                                                                                                                                                                                                                                                |
| 10- 9-64 | Moved in cable tools.                                                                                                                                                                                                                                                                                                                                                                        |
| 10-10-64 | Rigged up.                                                                                                                                                                                                                                                                                                                                                                                   |
| 10-26-64 | Completed pressure survey. Lost bottom hole pressure bomb in hole.                                                                                                                                                                                                                                                                                                                           |
| 10-27-64 | Cleaning out and fishing for bomb at 6675' RKB.<br>Top of cavings 6668'. Cleaned out shale and lost<br>circulation material, no sand.                                                                                                                                                                                                                                                        |
|          | Ran sand pump. Cleaned out small amount of shale,<br>lost circulation material and rubber. Cleaned out<br>to 6675' RKB.                                                                                                                                                                                                                                                                      |
| 10-29-64 | Ran 169 joints 2-7/8" OD EUE tubing landed at 5323' RKB, with Kobe bottom hole assembly.                                                                                                                                                                                                                                                                                                     |
| 10-30-64 | Ran $l^{+}_{4}$ tubing.                                                                                                                                                                                                                                                                                                                                                                      |
| 11- 1-64 | Pumped 635 barrels load oil in 25 hours.                                                                                                                                                                                                                                                                                                                                                     |
| 11- 9-64 | Pumped 476 barrels oil in 24 hours. 92 barrels<br>balance of load, 384 barrels new oil.                                                                                                                                                                                                                                                                                                      |
| · · ·    | State Potential Test: 295 barrels oil in 15 hours.                                                                                                                                                                                                                                                                                                                                           |

DRILLING STATUS CANADA OUITOS UNIT L-11 (12-11)

- 05/04/65 Shut well in to condition for taking bottom hole sample.
- 05/19/65 Moved in rig to pull tubing to condition well for bottom hole sample.
- 05/20/65 Pulled 1-1/4" and 2-7/8" OD EVE tubing.

05/21/65 7:00 AM Running 2-3/8" OD EUE tubing preparatory to swabbing to condition well for bottom hole sample.

Ran 2-3/8" tubing to 2002' with perforated nipple and bull plug on bottom. Commenced swabbing.

- 05/22/65 Swabbed for 5 hours at rate of 3 barrels oil per hour. Swabbed total of 15 barrels. Shut down.
- 05/23/65 7:00 AM Shut down.
- 05/24/65 7:00 AM Preparing to resume swabbing.

Swabbed at average rate of 4 barrels oil per hour. Total swabbed today 40 barrels. Total swabbed for conditioning 55 barrels.

- 05/25/65 Swebbed at average rate of 4 barrels oil per hour. Total swebbed this day 48 barrels. Total swebbed for conditioning 103 barrels.
- 05/26/65 Swabbed 49 barrels of oil in 8 hours. Approximate rate of 4-3/4 barrels oil per hour. Total swabbed for conditioning 141 barrels. Total subsequent to 12:00 noon 5/26 34 barrels.
- 05/27/65 Swabbed 39.5 barrels of oil in 11 hours. Approximate rate of 3-3/4 barrels of oil per hour. Total swabbed for conditioning 180.5 barrels. Total subsequent to 12:00 noon 5/26 73.5 barrels.
- 05/28/65 Swabbad 44.4 barrels oil in 11 hours at approximate rate of 4 barrels per hour. Total swabbaed for conditioning 224.9 barrels. Total swabbad subsequent to 12:00 noon 5/26 117.9 barrels.
- 05/29/65 Swabbed 46 barrels oil in 11 hours at approximate rate of 4 barrels per hour. Total swabbed for conditioning 270.9 barrels. Total swabbed subsequent to 12:00 noon 5/26 163.9 barrels.
- 05/30/65 Swabbed 42.3 barrels oil in 12 hours at approximate rate of 3.5 barrels per hour. Total swabbed for conditioning 313.2 barrels. Total swabbed subsequent to 12:00 noon 5/26 206.2 barrels.
- 05/31/65 Swabbed 47.1 barrels oil in 12 hours at approximate rate of 4 barrels per hour. Total swabbed for conditioning 360.3 barrels. Total swabbed subsequent to 12:00 noon 5/26 253.3 barrels.
- 06/01/65 7:00 AM CP 15#. Swabbed 27.9 barrels oil in 7 hours at approximate rate of 4 barrels oil per hour. Total swabbed for conditioning 388.2 barrels. Total swabbed subsequent to 12:00 noon 5/26 281.2 barrels.
- 06/02/65 7:00 AM CP 15. Swabbed 46 barrels oil in 12 hours at approximate rate of 4 barrels per hour. Total swabbed for conditioning 434.2 barrels. Total swabbed subsequent to 12:00 noon 5/26 327.2 barrels.
- 06/03/65 Swabbed 48.2 barrels oil in 12 hours at approximate rate of 4 barrels per hour. Total swabbed for conditioning 482.4 barrels. Total swabbed subsequent to 12:00 noon 5/26 375.4 barrels.
- 06/04/65 6:00 AM CP zero. Started swabbing through separator.

12:00 noon CP 35#.

5:00 PM Swabbed 32.5 barrels oil in 11 hours. Shut down. Total swabbed for conditioning 514.9 barrels. Total swabbed subsequent to 12:00 noon 5/26 407.9 barrels.

#### Drilling Status Canada Ojitos Unit L-ll

06/07/65

Ran Halliburton wire line. Found total depth at 6681' RKB.

Ran wooden float. Bailed clean oil off bottom. No water or sediment. Fluid level 1582' RKB.

Ran bottom hole pressure bomb.

All wells shut in for interference test.

Report discontinued until operations resumed.

07/01/65

Took bottom hole sample.

Pulled tubing.

# CONDITIONING OF CANADA OJITOS UNIT L-11 (12-11) MAY, 1965 PRIOR TO TAKING BOTTOM HOLE SAMPLE



CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

July 27, 1965

RESERVOIR FLUID DIVISION

Benson-Montin-Greer Drilling Corporation 158 Petroleum Center Building Farmington, New Mexico

Attention: Mr. Albert R. Greer

Subject: Reservoir Fluid Study Bolack-Greer Inc. Canada Ojitos Unit No. 12-11 Well Puerto Chiquito Field Rio Arriba County, New Mexico Our File Number: RFL 3366

Gentlemen:

Subsurface fluid samples were collected from the subject well by a representative of Core Laboratories, Inc. and were delivered to our laboratory in Dallas for use in a reservoir fluid study. The results of this study are presented on the following pages.

The saturation pressure of the fluid was found to be 1519 psig at the reservoir temperature of  $162^{\circ}$  F. The associated formation volume factor was found to be 1.297 barrels of saturated fluid per barrel of residual oil. By differential pressure depletion the fluid evolved 478 standard cubic feet of gas per barrel of residual oil. Under similar depletion conditions the viscosity increased from a minimum of 0.625 centipoise at the saturation pressure to a maximum of 1.704 centipoises at atmospheric pressure. The saturation pressure of the fluid was measured at several different temperatures as you requested.

It has been a pleasure to perform this study for you. If you have any questions or if we may assist you further in any way, please do not hesitate to contact us.

Very truly yours,

Core Laboratories, Inc. Reservoir Fluid Division

P.L. Moses (A)

P. L. Moses Operations Supervisor

PLM:JB:bjm 7 cc. - Addressee CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

· , ` `

| DAL | LAS. | TEX | AS |
|-----|------|-----|----|
|-----|------|-----|----|

| Company   | Benson-Montin-Greer<br>Drilling Corporation | Date Sampled | Page 1 of 11<br>File RFL 3366<br>July 1, 1965 |
|-----------|---------------------------------------------|--------------|-----------------------------------------------|
| Well      | Canada Ojitos Unit No. 12-11                | County       | Rio Arriba                                    |
| Field     | Puerto Chiquito                             | State        | New Mexico                                    |
| Formation |                                             |              | o Braro (Gallup)<br>ctober 19 62              |

| Date First well Completed          | 000000               | , 19_05_        |
|------------------------------------|----------------------|-----------------|
| Original Reservoir Pressure        | _1631PSIG @ _        | <u>5957</u> Ft. |
| Original Produced Gas-Oil Ratio    |                      | SCF/Bbl         |
| Production Rate                    |                      | Bbl/Day         |
| Separator Pressure and Temperature | PSIG,                | °F.             |
| Oil Gravity at 60° F.              | <u> </u>             | °API            |
| Datum                              |                      | Ft. Subsea      |
| Original Gas Cap                   |                      |                 |
| WELL CHARACTERISTICS               | <b>,</b>             |                 |
| Elevation                          | 7232 KB              | Ft.             |
| Total Depth                        | 6687                 | Ft.             |
| Producing Interval                 | 6648-6687            | Ft.             |
| Tubing Size and Depth              | In. to               | Ft.             |
| Productivity Index                 | Bbl/D/PSI @ .        | Bbl/Day         |
| Last Reservoir Pressure            | <u>1693</u> PSIG @ _ | <u>6650</u> Ft. |
| Date                               | _July 1              | , 19 <u>65</u>  |
| Reservoir Temperature              | <u>162</u> °F. @     | <u>6650</u> Ft. |
| Status of Well                     | Shut in 27 days      |                 |
| Pressure Gauge                     | Amerada              |                 |
| Normal Production Rate             |                      | Bbl/Day         |
| Gas-Oil Ratio                      | <u></u>              | SCF/Bbl         |
|                                    |                      | · · · · ·       |

| Gas-Oil Ratio                      |        |
|------------------------------------|--------|
| Separator Pressure and Temperature |        |
| Base Pressure                      | 15,025 |
| Well Making Water                  | _None  |

# SAMPLING CONDITIONS

\_PSIG,\_\_\_

\_\_°F.

\_\_\_\_PSIA \_\_\_% Cut

| Sampled at                         | <u>_6650 KB</u> Ft |    |
|------------------------------------|--------------------|----|
| Status of Well                     | Shut in 27 days    | _  |
| Gas-Oil Ratio                      | SCF/Bb             | b  |
| Separator Pressure and Temperature | PSIG,°F            | 7. |
| Tubing Pressure                    | _0PSI              | G  |
| Casing Pressure                    | PSIC               | G  |
| Core Laboratories Engineer         | _NT                |    |
| Type Sampler                       | Perco              | _  |
|                                    |                    |    |

**REMARKS:** 

• 1

;

CL-518

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

| Page | 2 of 1       | 1       |
|------|--------------|---------|
| File | RFL 3366     |         |
|      | Canada Ojito | os Unit |
|      | No. 12-11    |         |

# VOLUMETRIC DATA OF Reservoir Fluid SAMPLE

| 1. | Saturation pressure (bubble-point pressure) $1519$ PSIG @ $162$ °F.                                |
|----|----------------------------------------------------------------------------------------------------|
| 2. | Thermal expansion of saturated oil @ 5000 PSI = $\frac{V @ 162 \circ F}{V @ 76 \circ F}$ = 1.04528 |
| 3. | Compressibility of saturated oil @ reservoir temperature: Vol/Vol/PSI:                             |
|    | From <u>5000</u> PSI to <u>3500</u> PSI = <u>8.24 x 10^{-6</u>                                     |
|    | From <u>3500</u> PSI to <u>2500</u> PSI = <u>9.49 x 10^-6</u>                                      |
|    | From <u>2500</u> PSI to <u>1519</u> PSI = <u>10.68 x 10<sup>-6</sup></u>                           |
| 4. | Specific volume at saturation pressure: ft $^{3}/lb$                                               |

5. Saturation pressure at various temperatures:

| Temperature, | Saturation P | ressure, PSI |
|--------------|--------------|--------------|
| <u> </u>     | BHS No. 1    | BHS No. 2    |
| 76           | 1 20 3       | 1204         |
| 110          | 1351         | -            |
| 152          | 1 49 1       | 1492         |
| 162<br>172   | 1519<br>1540 | 1519         |

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon. CORE LABORATORIES, INC.

Petroleum Reservoir Engineering DALLAS. TEXAS

| 30f          | 11                        |
|--------------|---------------------------|
| RFL 3366     | ·                         |
| Canada Ojito | s Unit                    |
| No. 12-11    |                           |
|              | RFL 3366<br>Canada Ojito: |

# Reservoir Fluid SAMPLE TABULAR DATA

|                       | PRESSURE-VOLUME                                                      | VISCOSITY                        | DIFFERENTIAL LIBERATION @ 162 °F.                           |                                                               |                                 |
|-----------------------|----------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|
| PRESSURE<br>PSI GAUGE | RELATION<br>@ 162 °F.,<br>RELATIVE VOLUME OF<br>OIL AND GAS, V/VSAT. | OF OIL<br>@ 162°F<br>CENTIPOISES | GAS/OIL RATIO<br>LIBERATED<br>PER BARREL OF<br>RESIDUAL OIL | GAS/OIL RATIO<br>IN SOLUTION<br>PER BARREL OF<br>RESIDUAL OIL | RELATIVE OIL<br>VOLUME,<br>V/VR |
| 5000                  | 0.9680                                                               | 0.841                            |                                                             |                                                               | 1.256                           |
| 4500                  | 0.9718                                                               |                                  |                                                             |                                                               | 1.260                           |
| 4000                  | 0.9759                                                               | 0.781                            |                                                             |                                                               | 1.266                           |
| 3500                  | 0.9801                                                               | 0.751                            |                                                             |                                                               | 1.271                           |
| 3000                  | 0.9847                                                               | 0.719                            |                                                             | ``                                                            | 1.277                           |
| 2500                  | 0.9895                                                               | 0.686                            |                                                             |                                                               | 1.283                           |
| 2300                  | 0.9916                                                               |                                  |                                                             |                                                               | 1.286                           |
| 2100                  | 0.9936                                                               |                                  |                                                             |                                                               | 1.289                           |
| 2000                  | 0.9947                                                               | 0.652                            |                                                             |                                                               | 1.290                           |
| 1900                  | 0.9957                                                               |                                  |                                                             |                                                               | 1.291                           |
| 1800                  | 0.9968                                                               |                                  |                                                             |                                                               | 1.293                           |
| 1700                  | 0.9981                                                               |                                  |                                                             |                                                               | 1.294                           |
| 1600                  | 0.9991                                                               |                                  |                                                             |                                                               | 1.296                           |
| 1519                  | 1.0000                                                               | 0,625                            | 0                                                           | 478                                                           | 1.297                           |
| 1508                  | 1.0028                                                               |                                  |                                                             |                                                               |                                 |
| 1498                  | 1.0054                                                               |                                  |                                                             |                                                               |                                 |
| 1481                  | 1.0101                                                               |                                  |                                                             |                                                               |                                 |
| 1457                  | 1.0162                                                               |                                  |                                                             |                                                               |                                 |
| 1429                  | 1.0254                                                               |                                  |                                                             |                                                               |                                 |
| 1389                  |                                                                      |                                  | 32                                                          | 446                                                           | 1.284                           |
| 1369                  | 1.0458                                                               |                                  |                                                             |                                                               |                                 |
| 1350                  |                                                                      | 0.684                            |                                                             |                                                               |                                 |
| 1288                  | 1.0766                                                               |                                  |                                                             |                                                               |                                 |
| 1259                  |                                                                      |                                  | 65                                                          | 413                                                           | 1.270                           |
| 1250                  |                                                                      | 0.696                            |                                                             |                                                               |                                 |
| 1196                  | 1.1174                                                               |                                  |                                                             |                                                               |                                 |
| 1129                  |                                                                      |                                  | 96                                                          | 382                                                           | 1.257                           |
| 1100                  |                                                                      | 0.731                            |                                                             |                                                               |                                 |
| 1084                  | 1.1789                                                               |                                  |                                                             |                                                               |                                 |
| 968                   | 1.2610                                                               |                                  |                                                             |                                                               |                                 |
| 963                   |                                                                      |                                  | 136                                                         | 342                                                           | 1.239                           |
| 950                   |                                                                      | 0.780                            |                                                             |                                                               |                                 |
| 858                   | 1.3638                                                               |                                  |                                                             |                                                               |                                 |
| 812                   |                                                                      |                                  | 173                                                         | 305                                                           | 1.224                           |

v = Volume at given pressure

 $v_{\text{sat.}}$  = Volume at saturation pressure and the specified temperature.

 $v_{R}$  = Residual oil volume at 14.7 PSI absolute and 60° F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon. CORE LABORATORIES, INC.

•

.

Petroleum Reservoir Engineering DALLAS. TEXAS

| Page_ | <u>4 of 11</u>     | - |
|-------|--------------------|---|
| File  | RFL 3366           | _ |
|       | Canada Ojitos Unit |   |
| vv en | No. 12-11          | - |

# Reservoir Fluid SAMPLE TABULAR DATA

| ·                     | PRESSURE-VOLUME                                                      | VISCOSITY                          | DIFFERENTIAL LIBERATION @ 162 °F.                           |                                                               |                                 |
|-----------------------|----------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|
| PRESSURE<br>PSI GAUGE | RELATION<br>@ 162 °F.,<br>RELATIVE VOLUME OF<br>OIL AND GAS, V/VSAT. | OF OIL<br>@ 162°F.,<br>centipoises | GAS/OIL RATIO<br>LIBERATED<br>PER BARREL OF<br>RESIDUAL OIL | GAS/OIL RATIO<br>IN SOLUTION<br>PER BARREL OF<br>RESIDUAL OIL | RELATIVE OIL<br>VOLUME,<br>V/VR |
| 800                   |                                                                      | 0.835                              |                                                             |                                                               |                                 |
| 750                   | 1.4975                                                               | 0.000                              |                                                             |                                                               |                                 |
| 658                   | 1.4/15                                                               |                                    | 211                                                         | 267                                                           | 1.207                           |
| 657                   | 1.6518                                                               |                                    |                                                             |                                                               |                                 |
| 650                   |                                                                      | 0.900                              |                                                             |                                                               |                                 |
| 566                   | 1.8577                                                               |                                    |                                                             |                                                               |                                 |
| 519                   |                                                                      |                                    | 246                                                         | 232                                                           | 1.192                           |
| 500                   |                                                                      | 0.980                              |                                                             |                                                               |                                 |
| 479                   | 2.1482                                                               |                                    |                                                             |                                                               |                                 |
| 413                   | 2.4573                                                               |                                    |                                                             |                                                               |                                 |
| 359                   |                                                                      |                                    | 287                                                         | 191                                                           | 1.175                           |
| 350                   | 2.8694                                                               |                                    |                                                             |                                                               |                                 |
| 298                   | 3.3145                                                               |                                    |                                                             |                                                               |                                 |
| 250                   | 3.8813                                                               | 1.161                              |                                                             |                                                               |                                 |
| 218                   |                                                                      |                                    | 328                                                         | 1 50                                                          | 1.156                           |
| 108                   |                                                                      |                                    | 367                                                         | 111                                                           | 1.133                           |
| 0                     |                                                                      | 1.704                              | 478                                                         | 0<br>@ 60 <sup>°</sup> F                                      | 1.049<br>. = 1.000              |

Gravity of residual oil =  $38.2^{\circ}$  API @  $60^{\circ}$  F.

v = Volume at given pressure

 $v_{sat.}$  = Volume at saturation pressure and the specified temperature.

 $v_R$  = Residual oil volume at 14.7 PSI absolute and 60° F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

#### CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

.

| Page_ | of1             | 1           |
|-------|-----------------|-------------|
| File  | <u>RFL 3366</u> |             |
| Well  | Canada Ojitos   | <u>Unit</u> |
|       | No. 12-11       |             |

.

# Differential Pressure Depletion at 162° F.

| Pressure<br>PSIG | Oil Density<br>Gms/Cc | Gas<br>Gravity | Deviation Factor |
|------------------|-----------------------|----------------|------------------|
| -                |                       |                |                  |
| 1519             | 0.7223                |                |                  |
| 1389             | 0.7258                | 0.696          | 0.882            |
| 1259             | 0.7298                | 0.698          | 0.887            |
| 1129             | 0.7336                | 0.701          | 0.894            |
| 963              | 0.7389                | 0.709          | 0.902            |
| 812              | 0.7438                | 0.718          | 0.914            |
| 658              | 0.7487                | 0.731          | 0.929            |
| 519              | 0.7534                | 0.753          | 0.943            |
| 359              | 0.7589                | 0.791          | 0.958            |
| 218              | 0.7642                | 0.886          | 0.976            |
| 108              | 0.7716                | 1.067          | ,                |
| 0                | 0.7939                | 1.702          |                  |

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

.

#### CORE LABORATORIES, INC.

Petroleum Reservoir Engineering DALLAS, TEXAS

| Page | _6 of    | 11 |  |
|------|----------|----|--|
| File | RFL 3366 |    |  |

Well Canada Ojitos Unit No. 12-11

#### SEPARATOR TESTS OF Reservoir Fluid SAMPLE

| SEPARATOR<br>PRESSURE,<br>PSI GAUGE | SEPARATOR<br>TEMPERATURE,<br>°F. | SEPARATOR<br>GAS/OIL RATIO<br>See Foot Note (1) | -   | STOCK TANK<br>GRAVITY,<br>° API @ 60° F. | SHRINKAGE<br>FACTOR,<br>VR/V3AT.<br>See Foot Note (2) | FORMATION<br>VOLUME<br>FACTOR,<br>VSAT./VR<br>See Foot Note (3) | SPECIFIC<br>GRAVITY OF<br>FLASHED GAS |
|-------------------------------------|----------------------------------|-------------------------------------------------|-----|------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|
| 0                                   | 74                               | 483                                             |     | 38.1                                     | 0.7639                                                | 1.309                                                           | 0.986                                 |
| 40                                  | 74                               | 386                                             | 27  | 39.6                                     | 0.7943                                                | 1.259                                                           |                                       |
| 80                                  | 74                               | 354                                             | 55  | 39.6                                     | 0.7968                                                | 1.255                                                           |                                       |
| 160                                 | 74                               | 300                                             | 110 | 39.4                                     | 0.7943                                                | 1.259                                                           |                                       |

(1) Separator and Stock Tank Gas/Oil Ratio in cubic feet of gas @ 60° F. and 14.7 PSI absolute per barrel of stock tank oil @ 60° F.

(2) Shrinkage Factor: Va/Vsat. is barrels of stock tank oil @ 60° F. per barrel of saturated oil @ 1519 PSI gauge and 162\_° F.

(3) Formation Volume Factor: VSAT./VR is barrels of saturated oil @<u>1519\_PSI gauge and 162\_</u>° F. per barrel of stock tank oil @ 60° F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any vil, gas or other mineral well or sand in connection with which such report is used or relied upon.

#### CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

•

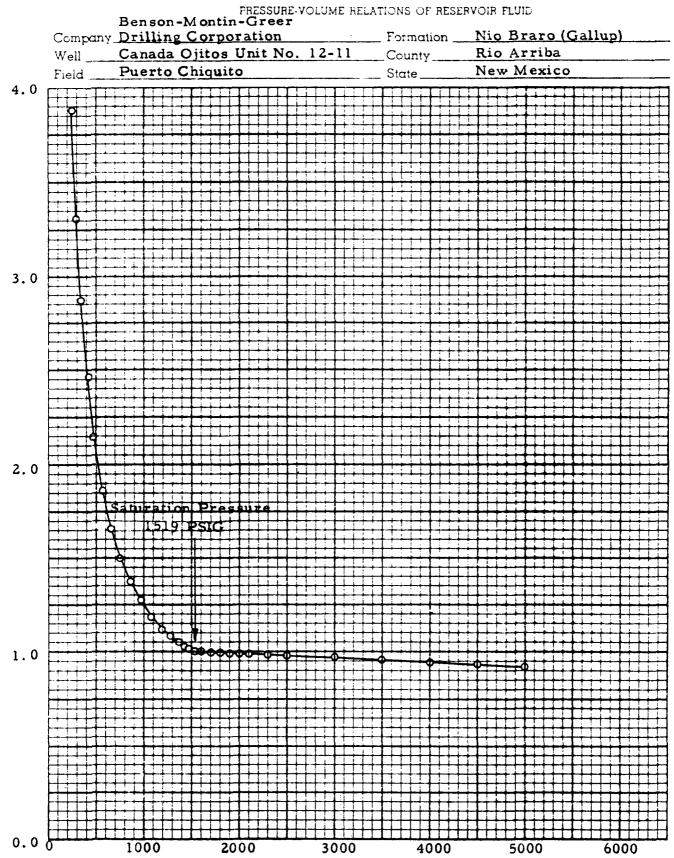
.

|          |                                             |            | Page7 of11         |
|----------|---------------------------------------------|------------|--------------------|
|          |                                             |            | File_RFL 3366      |
| Company_ | Benson-Montin-Greer<br>Drilling Corporation | Formation_ | Nio Braro (Gallup) |
| Well     | <u>Canada Ojitos Unit No. 12-11</u>         | County     | Rio Arriba         |
| Field    | Puerto Chiquito                             | State      | New Mexico         |

# HYDROCARBON ANALYSIS OF <u>Reservoir Fluid</u> SAMPLE

| COMPONENT        | MOL<br>PER CENT | WEIGHT<br>PER CENT | DENSITY @ 50° F.<br>Grams Per Cubic<br>Centimeter | ° АРІ<br>@ 60° F. | MOLECULAF<br>WEIGHT |
|------------------|-----------------|--------------------|---------------------------------------------------|-------------------|---------------------|
|                  |                 |                    |                                                   |                   |                     |
| Hydrogen Sulfide |                 |                    |                                                   |                   |                     |
| Carbon Dioxide   | 0.20            | 0.08               |                                                   |                   |                     |
| Nitrogen         | 0.13            | 0.03               |                                                   |                   |                     |
| Methane          | 26.36           | 3.65               |                                                   |                   |                     |
| Ethane           | 6.86            | 1.78               |                                                   |                   |                     |
| Propane          | 6.19            | 2.36               |                                                   |                   |                     |
| iso-Butane       | 1.20            | 0.60               |                                                   |                   |                     |
| n-Butane         | 4.29            | 2.15               |                                                   |                   |                     |
| iso-Pentane      | 1.80            | 1.12               |                                                   |                   |                     |
| n-Pentane        | 2.14            | 1.33               |                                                   |                   |                     |
| Hexanes          | 4.49            | 3.34               |                                                   |                   |                     |
| Heptanes plus    | 46.34           | 83.56              | 0.8474                                            | 35.3              | 209                 |
|                  | 100.00          | 100.00             |                                                   |                   | ,                   |

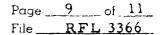
Core Laboratories, Inc. Reservoir Fluid Division

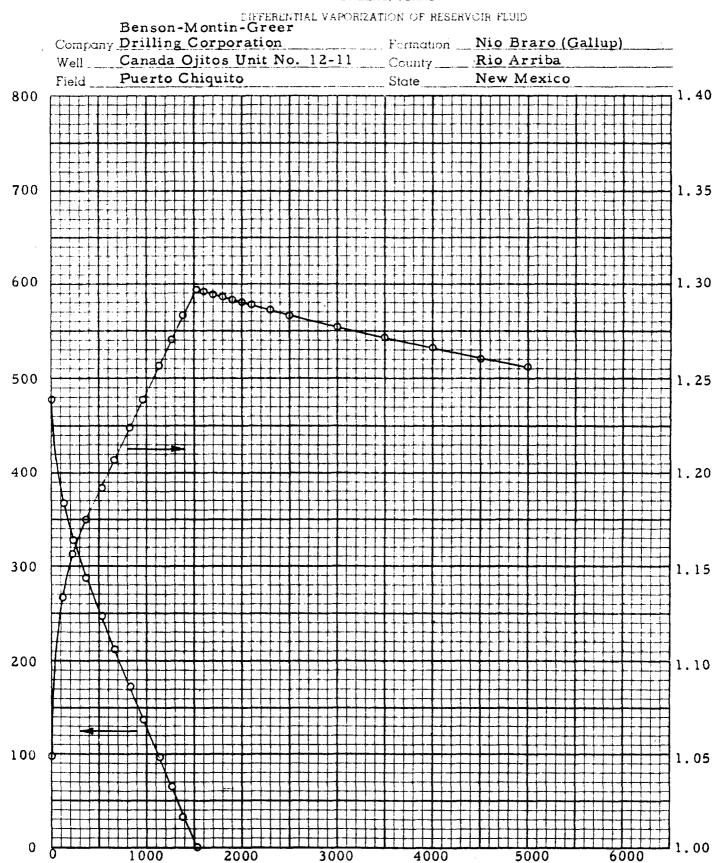

P.L. Moses (B)

P. L. Moses Operations Supervisor

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

#### CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS


| Page | 8   | of <u>11</u> |
|------|-----|--------------|
| File | RFL | 3366         |




PRESSURE: POUNDS PER SQUARE INCH GAUGE

RELATIVE VOLUME. V/Vs







PRESSURE. POUNDS PER SQUARE INCH GAUGE

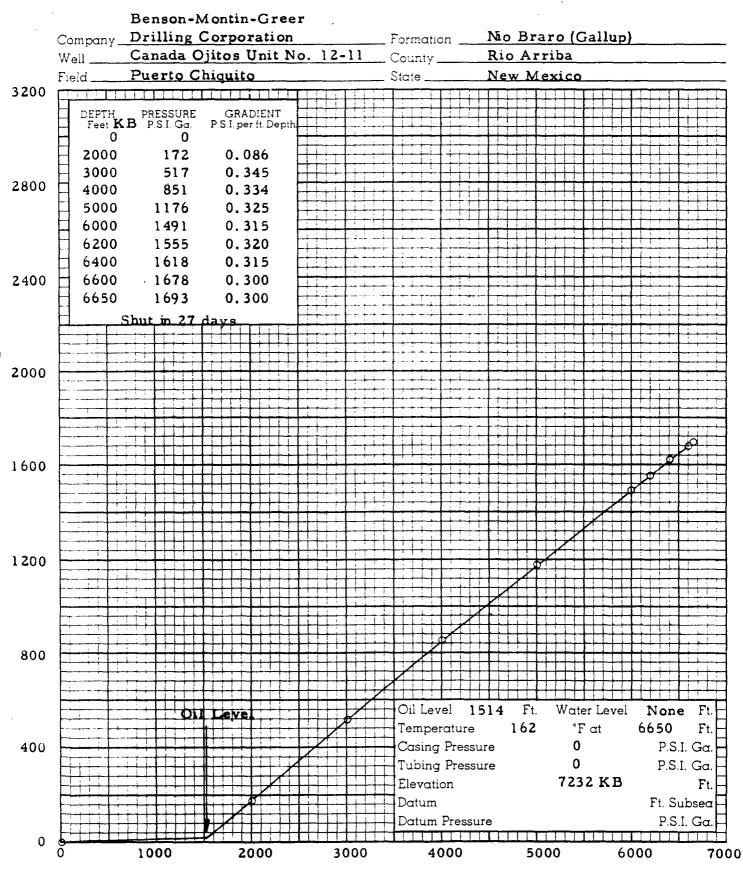
UND LIBERALED. STANDARD CUBIC FLET PER BARREL OF RESIDUAL OIL

RELATIVE LIQUID VOLUME. V/VP

:

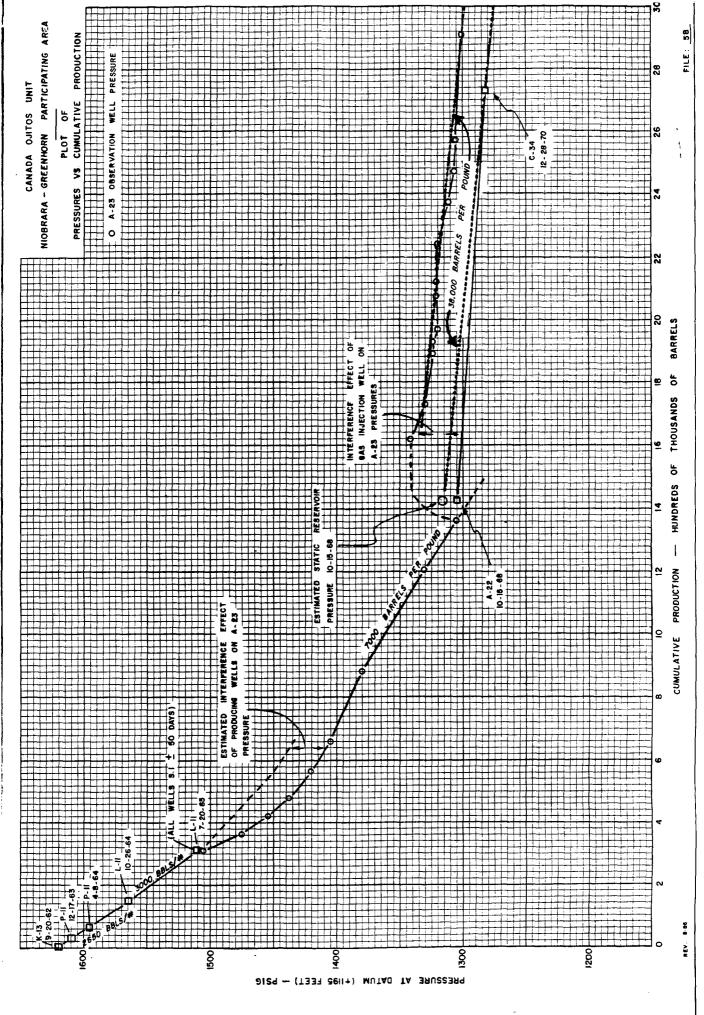
CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS 
 Page
 10
 of
 11

 File
 RFL 3366


VISCOSITY OF RESERVOIR FLUID Benson-Montin-Greer Nio Braro (Gallup) Company Drilling Corporation \_ Formation \_ Canada Ojitos Unit No. 12-11 Rio Arriba County\_ Well Puerto Cniquito New Mexico State Field 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.0 1000 2000 3000 4000 5000 6000

PRESSURE: POUNDS PER SQUARE INCH GAUGE

VISCOSITY: CENTIPOISES


#### CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

Page <u>11</u> of \_\_\_\_ 11 File \_\_\_\_\_ **RFL 3366** 



DEPTH: FEET

PRESSURE: POUNDS PER SQUARE INCH CAUGE



ESTIMATED BUBBLE POINT FOR GAVILAN

\* At 3 psi/degree (from Core Lab tests)

# GAVILAN MANCOS FIELD: RIO AMEIRA CD., N.M. J.P. MCHUGH, NATIVE SUN &I (ME 34-250-26) MATIVI Warking Interest: 1.000000 Met Interest: 1.000000

| Workins Interes                                                                                                                                                 | a service de la super-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               | 0                                                                                                  | 1000 P                                                                                              |                                                                                       |                                                             | Days                                                       |                                                                             |                                                                    |                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Ho Year Status<br>7 1984<br>8 1984<br>9 1984<br>10 1984<br>11 1984<br>12 1984<br>12 1984                                                                        | Data         He           191.2         3           281.4         12           422.4         12           297.5         7           398.1         119           2.0         119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Con           Con | Bast<br>0.<br>2.<br>2.<br>2.<br>0                                             | Manth<br>0.<br>48.<br>50.<br>48.<br>148.                                                           | HCE<br>Cua<br>0.<br>48.<br>98.<br>146.<br>148.                                                      | GOR<br>0.<br>4.<br>5.<br>4.<br>32.                                                    | Baut<br>1.2<br>2.0<br>0.3<br>0.3<br>0.0<br>0.0              | Month<br>38.<br>62.<br>10.<br>10.<br>0.<br>0.<br>120.      | Expls                                                                       | WC<br>0.6<br>0.7<br>0.1<br>0.1<br>0.0<br>0.0                       | Prod<br>19.0<br>30.0<br>30.0<br>30.0<br>30.0<br>1.0<br>140.0                                                       |
| Subtatil 1984<br>1 1985 SI<br>2 1985 SI<br>3 1985<br>4 1985<br>5 1985<br>6 1985<br>7 1985<br>8 1985<br>9 1985<br>10 1985<br>11 1985<br>12 1985<br>Subtatil 1985 | 0.0<br>0.0<br>154.2<br>154.2<br>184.0<br>17.1<br>184.0<br>17.1<br>194.2<br>17.1<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>194.2<br>19 | 0. 49837.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.<br>0.<br>147.<br>11.<br>20.<br>175.<br>195.<br>134.<br>121.<br>147.<br>81. | 0.<br>5004.<br>331.<br>586.<br>5428.<br>6039.<br>4009.<br>3828.<br>4395.<br><u>2514.</u><br>32140. | 148.<br>154.<br>5158.<br>5489.<br>6075.<br>11503.<br>17542.<br>21551.<br>25379.<br>29774.<br>32288. | 0.<br>5.<br>1068.<br>58.<br>47.<br>47.<br>47.<br>442.<br>374.<br>333.<br>350.<br>268. | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.<br>1.<br>0.<br>0.<br>20.<br>0.<br>0.<br>0.<br>21.<br>0. | 120.<br>120.<br>121.<br>121.<br>121.<br>121.<br>141.<br>141.<br>141.<br>141 | 0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>4.0<br>30.0<br>31.0<br>0.0<br>31.0<br>31.0<br>31.0<br>31.0<br>31.0<br>27.0<br>31.0<br>27.0<br>246.0<br>27.0 |
| 1 1986<br>2 1986<br>3 1986<br>4 1986<br>5 1986<br>5 1986<br>Subtatal 1986                                                                                       | 419.4 11<br>379.9 11<br>207.9 11<br>334.5 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 521. 153844.<br>730. 164814.<br>774. 174578.<br>644. 155224.<br>655.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117.<br>173.<br>134.<br>81.<br>42.                                            | 3623.<br>4851.<br>4216.<br>2432.<br><u>1912.</u><br>17034.                                         | 35911.<br>40762.<br>44978.<br>47410.<br>49322.                                                      | 314.<br>413.<br>358.<br>282.<br>184.                                                  | 0.0<br>0.0<br>0.0<br>0.0                                    | 0.<br>0.<br>0.<br>0.                                       | 141.<br>141.<br>141.<br>141.                                                | 0.0<br>0.0<br>0.0<br>0.0                                           | 27.0<br>31.0<br>30.0<br><u>31.0</u><br>146.0                                                                       |

1 Per Calendar Das

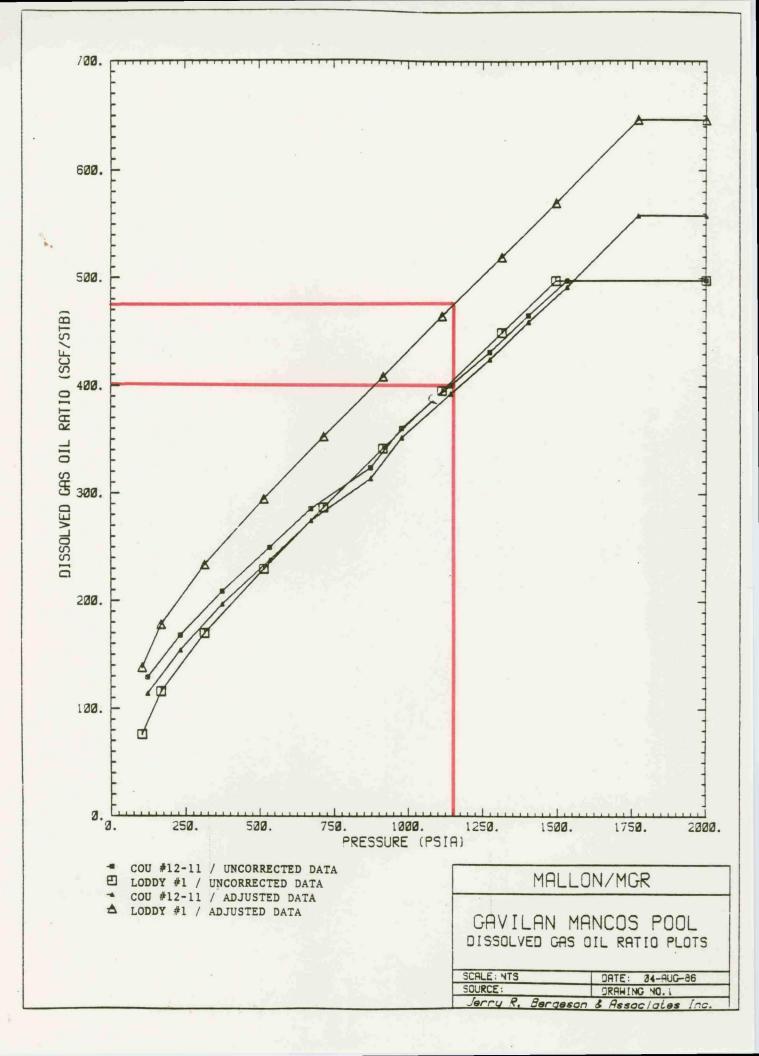
. .

Initial Potential: 6/84 198 BOPD, 324 MCFD, IPF

•

# MALLON & MESA GRAND EXHIBIT MARKED PRODUCING HISTORY CASE NO. 8946 MESA GRANDE

GAVILAN MANCOS FIELD, RIO ARRIBA CD. J.P. MCHUGH, HOMESTEAD RANCH \$2, (SW 34-25N-2W) HORA2 Working Interest: 1.000000 Net Interest: 1.000000


|                   | lil/Cond_1    | his    |           | Ga     | S_BCE  |           | Days         |            |     |     |       |
|-------------------|---------------|--------|-----------|--------|--------|-----------|--------------|------------|-----|-----|-------|
| io Year Status    | Days Nonth    | Cua    | Day\$     | Honth  | Cun    | GOR       | Day <b>t</b> | Nonth      | Cum | 9¥  | Prod  |
| 5 1985 0          | 533.4 2667.   | 2667.  | 122.      | 610.   | 610.   | 229.      | 0.0          | <b>0</b> . | 0.  | 0.0 | 5.0   |
| 6 1985 SI         | 0.0 0.        | 2667.  | 0.        | 0.     | 610.   | <b>0.</b> | 0.0          | 0.         | 0.  | 0.0 | 0.0   |
| 7 1985 0          | 323.0 646.    | 3313.  | 120.      | 240.   | 850.   | 372.      | 5.0          | 10.        | 10. | 1.5 | 2.0   |
| 8 1985 SI         | 0.0 0.        | 3313.  | ٥.        | 0.     | 850.   | 0.        | 0.0          | <b>0.</b>  | 10. | 0.0 | 0.0   |
| 9 1995 SI         | 0.0 0.        | 3313.  | 0.        | 0.     | 850.   | _0.       | 0.0          | 0.         | 10. | 0.0 | 0.0   |
| 10 1985 0         | 517.1 4654.   | 7967.  | 192.      | 1727.  | 2577.  | 371.      | 0.6          | <b>5</b> + | 15. | 0.1 | 9.0   |
| 11 1985 0         | 670.2 20105.  | 28072. | 249.      | 7460.  | 10037. | 371.      | 0.3          | 10.        | 25. | 0.0 | 30.0  |
| 12 1 <b>985 0</b> | 648.7 _12973. | 41045. | 241       | 4814.  | 14851. | 371.      | 0.5 _        | 10_        | 35. | 0.1 | _20_0 |
| Subtotal 1985     | 41045.        |        |           | 14851. |        |           |              | 35.        |     |     | 66.0  |
| 1 1986 SI         | 0.0 0.        | 41045. | 0.        | 0.     | 14851. | 0.        | 0.0          | 0.         | 35. | 0.0 | 0.0   |
| 2 1986 SI         | 0.0 0.        | 41045. | <b>0.</b> | 0.     | 14851. | 0.        | 0.0          | 0.         | 35. | 0.0 | 0.0   |
| 3 1986 SI         | 0.0 0.        | 41045. | 0.        | 0.     | 14851. | 0.        | 0.0          | 0.         | 35. | 0.0 | 0.0   |
| 4 1986 SI         | 0.0 0.        | 41045. | <b>0.</b> | 0.     | 14851. | 0.        | 0.0          | 0.         | 35. | 0.0 | 0.0   |
| 5 1986 0          | 570.0 14249.  | 55294. | 120       | 2992.  | 17843. | 210.      | 0.0 -        | <u></u> Q_ | 35. | 0.0 | -25.0 |
| Subtotal 1986     | 14249.        |        |           | 2992.  |        |           | ×            | <b>Q.</b>  |     |     | 25.0  |

\* Per Producing Day

Initial Potential: 5/85 700 BOPD, 260 Mcfd, IPF

GREER Nors: Ist delivery into Man Ple system

| MAL | L | 0   | N   |     | &  |    | M   | E | S | A  |     | G        | R        | Α        | N | D | Е |
|-----|---|-----|-----|-----|----|----|-----|---|---|----|-----|----------|----------|----------|---|---|---|
|     | E | X   | H   | Ι   | В  | I  | T   |   | M | A  | R   | K        | Е        | D        |   |   |   |
| PR  | Ċ | ) [ | ) ( | J   | נכ | 1] | 1 ( | 3 | F | IJ | : 5 | <u>_</u> | <u>ר</u> | <u>)</u> | R | Y |   |
|     | C | : P | 1 5 | 5 E | E  | 1  | 1 ( | 2 | • | 6  | 39  | 4        | 1 (      | 5        |   |   |   |

