STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT 1 OIL CONSERVATION COMMISSION STATE LAND OFFICE BUILDING 2 SANTA FE, NEW MEXICO 3 17 June 1988 4 COMMISSION HEARING 5 VOLUME $\underline{\nabla}$ OF $\underline{\nabla}$ VOLUMES 6 7 IN THE MATTER OF; 8 A hearing in the matters involved CASES in Cases Nos. 7980, 8946, 8950, 7980, 8946, 9 9111 and 9412. 8950, 9111, 9412. 10 11 BEFORE: William J. Lemay, Chairman 12 Erling Brostuen, Commissioner William M. Humphries, Commissioner 13 14 TRANSCRIPT OF HEARING 15 16 17 APPEARANCES 18 For the Commission: Robert G. Stovall 19 Attorney at Law Legal Counsel to the Commission 20 State Land Office Bldg. Santa Fe, New Mexico 21 22 23 24 25

NATIONWIDE BOO-227 0120

TOLL FREE IN CALIFORNIA BOO 227 2434

FORM 25CIEP3

2 1 APPEARANCES 2 For BMG Drilling Co.: William F. Carr 3 Attorney at Law CAMPBELL AND BLACK P.A. 4 P. O. Box 2208 Santa Fe. Mew Mexico 87504-2208 5 For Sun Exploration and W. Thomas Kellahin 6 Dugan Production: Attorney at Law KELLAHIN, KELLAHIN and AUBREY 7 P. O. Box 2265 Santa Fe, New Mexico 87504-2265 8 9 For Mallon Oil Company: Frank Douglass Attorney at Law 10 SCOTT, DOUGLASS and LUTON Twelfth Floor 11 First City Bank Bldg. Austin, Texas 78701 12 For Mallon Oil Company W. Perry Pearce 13 and Mobil Producing Co.: Attorney at Law MONTGOMERY and ANDREWS 14 Post Office Box 2307 Santa Fe, New Mexico 87504-2307 15 For Amoco Production: Kent J. Lund 16 Attorney at Law Amoco Production Company 17 P. O. Box 800 Denver, Colorado 80201-0800 18 Robert D. Buettner For Koch Exploration: 19 General Counsel and Secretary Koch Exploration Company 20 P. O. Box 2256 Wichita, Kansas 67201-2256 21 For Mesa Grande Ltd. and Owen P. Lopez 22 Mesa Grande Resources: Attorney at Law HINKLE LAW FIRM 23 P. O. Box 2068 Santa Fe, New Mexico 87504-2068 24 25

NATIONWIDE 400-227-0120

FORM 25C20P3 TOLL FREE IN CALIFORNIA 800 227-2434

		2A		
1	INDEX Cont'd			
2				
3	BETSY LOUGH			
4	Direct Examination by Mr. Lund	992		
5	Cross Examination by Mr. Kellahin	1006		
6	Cross Examination by Mr. Carr	1009		
7	Questions by Mr. Chavez	1012		
8	Questions by Mr. Brostuen	1014		
9	Questions by Mr. Lemay	1014		
10				
11	CLOSING ARGUMENT BY MR. LUND	1018		
12				
13	A. R. GREER (Recalled and Continued)			
14	Direct Examination by Mr. Carr	1030		
15	Cross Examination by Mr. Kellahin	1095		
16	Cross Examination by Mr. Douglass	1100		
17	Questions by Mr. Chavez	1145		
18	Questions by Mr. Brostuen	1146		
19	Questions by Mr. Humphries	1152		
20	Questions by Mr.Lemay	1160		
21	Questions by Mr. Chavez	1167		
22	Redirect Examination by Mr. Carr	1168		
23	Recross Examination by Mr. Douglass	1170		
24				
25				

Γ

		2B		
1	INDEX Cont'd			
2				
3	GREG D. HUENI (Recalled)	1174		
4	Questions by Mr. Humphries			
5				
6	BILL WEISS (Recalled)			
7	Questions by Mr. Lemay	1186		
8	Questions by Mr. Humphries	1189		
9				
10	CLOSING ARGUMENT BY MR. KELLAHIN	1193		
11	CLOSING ARGUMENT BY MR. CARR	1204		
12	CLOSING ARGUMENT BY MR. DOUGLASS	1212		
13	CLOSING ARGUMENT BY MR. PEARCE	1223		
14	CLOSING ARGUMENT BY MR. LOPEZ	1231		
15	CLOSING ARGUMENT BY MR. BUETTNER	1241		
16				
17	EXHIBITS Cont'd			
18				
19	Amoco Exhibit One			
20				
21	BMG Exhibit Seven B, Readjustment	1030		
22	BMG Exhibit Eleven, Fractures	1034		
23	BMG Exhibit One, Green Book	1035		
24	BMG Exhibit Twelve, Fisher Federal	1051		
25	BMG Exhibit Two, Tan Book	1055		

[

				2C		
1	EXHIBITS Cont'd					
2						
3	Proponents Ex	hibit Fifty Fo	ır A, Pressure Da	ata 1124		
4	Proponents Ex	hibit Fifty Fi	ve, List	1136		
5	Proponents Ex	hibit Fifty Siz	x, List	1138		
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						

ſ

991 1 (Thereafter at the hour of 8:45 o'clock a. m. 2 on the 17th day of June, 1988, the hearing was 3 again convened and the following proceedings 4 were had, to-wit: 5 6 MR. LEMAY: The meeting will 7 come to order. 8 At this time I think we'll 9 take a break that's been agreed to by -- not a break, a 10 break in Mr. Greer's testimony, and with permission of the 11 lawyers present, we will have a witness, Amoco's witness 12 very briefly, one exhibit, I understand, and a closing 13 statement by Mr. Lund, for a clarification of the Bear 14 Canyon unit. 15 MR. LUND: Thank you Mr. 16 Lemay. 17 Would you please swear the 18 witness? She hasn't been sworn. 19 20 (Witness sworn.) 21 MR. LUND: Thank you, Mr. 22 Chairman, and I thank the participants for letting us go 23 out of order. 24 25

992 1 BETSY LOUGH, 2 being called as a witness and being duly sworn upon her 3 oath, testified as follows, to-wit: 4 5 DIRECT EXAMINATION 6 BY MR. LUND: 7 Would you please state your name? Q 8 А Yes. My name is Betsy Lough. 9 And you're employed by Amoco Production Q 10 Company as a reservoir engineer? 11 А Yes, I am. 12 Q Briefly state your educational back-13 ground from college on. 14 Α Okay. I graduated from Stanford Univer-15 sity in 1980 with a Bachelor of Science degree in petroleum 16 engineering. 17 And briefly what was your work exper-Q 18 ience since graduation? 19 I worked in one of Amoco's District Α 20 Offices in Colorado for two years, 1980 to 1982. My pri-21 mary responsibilities were with well completions and evalu-22 ating wells for workovers. 23 All right, and your next period was '82 Q 24 to '84? 25 А Yes, that's correct. I worked in the

993 ۱ Denver Region Office. My responsibility there was evalu-2 ating secondary recovery projects, projects that were both 3 operated by Amoco and projects in which Amoco had a work-4 ing interest. These included waterflood, secondary gas in-5 jection projects, and CO_2 floods. 6 All right, and then '84 and '85? Q 7 А I performed a reservoir simulation study 8 on a dry gas reservoir, the Red Oak Field in southeastern 9 Oklahoma, which lead to an infill drilling program by 10 Amoco. 11 And then '85 to '86? Q 12 Α '85 to '86 I was in Tulsa at Amoco's 13 research facility performing a petrophysical study on the 14 Niobrara formation in the DJ Basin which is a naturally 15 fractured formation similar to the Niobrara here in the San 16 Juan Basin. 17 All right, and then '86 to '87? Q 18 '86 to '87 I performed another reservoir А 19 simulation study on a dry gas field in southeastern Okla-20 homa. 21 Q And then when did you start work in this 22 area? 23 А I've been working this area since May of 24 1987, performing a reservoir simulation in the Northeast 25 Ojito Area, as well as reviewing the general operations in

994 ۱ the Gavilan Mancos Pool. 2 All right. And you've studied this area Q 3 for purposes of this hearing and you've also prepared an 4 exhibit? 5 А Yes, I have. 6 All right, before we look generally at Q 7 the exhibit, in general how did you prepare the exhibit 8 we've marked as Amoco Exhibit Number One? 9 Α Just in the course of testimony this 10 week the Bear Canyon Unit has -- has been mentioned sever-11 al times and we thought this would be a good opportunity to 12 present some data that we've collected on the Bear Canyon 13 Unit. 14 All right, let's turn to Exhibit Number Q 15 One and just go through it as quickly as we can. 16 Would you please turn to --17 MR. LEMAY: Are you going to 18 qualify the witness? 19 MR. LUND: Oh, I'm sorry. 20 MR. LEMAY: That's fine. 21 Offer Ms. Lough as MR. LUND: 22 an expert. 23 MR. LEMAY: Her qualifications 24 are accepted. 25 MR. LUND: Thank you.

995 1 Q Would you please go through Exhibit 2 Number One and first talk about its format? 3 Kent, I don't have a copy of that. А 4 Oh, I'm sorry. Q 5 Α Thank you. 6 I'm sorry. Q 7 А Okay, the purpose of this exhibit is to 8 set forth some properties and some characteristics of some 9 different reservoirs here in this area; the Bear Canyon 10 Unit, the Gavilan Mancos Area, and the Canada Ojitos Unit 11 Pressure Maintenance Area. 12 A11 right, what's included in the 0 13 Gavilan Mancos Area? 14 Α Okay, the Gavilan Mancos Area, I've in-15 cluded here the Gavilan Mancos Pool and also the wells in 16 the proposed expansion area. 17 And when you reference pressure what is Q 18 your datum point? 19 Α The datum is +370 feet sea level, which 20 is consistent with the previous exhibits that have been 21 presented in this hearing. 22 The first point on your exhibit is the Q 23 initial reservoir pressure at the datum point. Would you 24 identify what that means, please? 25 Α Yes. The Bear Canyon Unit, we measured

996 1 the initial reservoir pressure there in November of 1987 in 2 the C Zone using a pressure bomb corrected to the -- to the 3 datum of 370 feet is 952 psi. 4 That was in the Bear Canyon No. 1 Well? Q 5 Α Yes, that's correct. 6 Then go on to the Gavilan Mancos. Q 7 Gavilan Mancos Area initial pressure, А 8 March of '82, 1800 psi, and that's taken from Hueni's 9 Exhibit Number Twenty. 10 Q Okay. 11 Α The Canada Ojitos Unit pressure mainte-12 nance initial pressure, 1890 psi in September of '62 and 13 again that's taken from Hueni's Exhibit Twenty. 14 Next is the bubble point pressure. 0 15 Α Yes, we collected a downhole fluid 16 sample from the C Zone in the Bear Canyon Unit No. 1 and 17 had that sample analyzed, and the bubble point pressure 18 found from that sample was 925 psi. At that time we took a 19 static pressure from the C Zone prior to getting the fluid 20 sample, was 1040 psi at mid-perforations, which is where 21 the fluid sample was taken. 22 the fluid sample was taken Q And in 23 December of '87? 24 А Yes, that's correct. 25 Q Next the Gavilan pressure.

997 1 Α The Gavilan bubble point pressure, 1482 2 That's from the Loddy No. 1 Well that has been repsi. 3 ferred to in previous testimony. 4 Was that from Mr. Bush's testimony? Q 5 А Yes. Yes, that's correct. 6 And did you hear Mr. Roe testify that Q 7 the Loddy pressure was about 1594? 8 А Yes, I did, and I'm not sure why the 9 discrepancy there. 10 Q How about the bubble point pressure for 11 Canada Ojitos? 12 That pressure, 1534 psi, I found from А 13 Mr. Lee's exhibit from the -- from the previous hearing 14 this -- earlier this year. 15 Q All right, let's turn to the latest 16 pressure then. 17 Α Okay, we measured a pressure again in 18 the Bear Canyon Unit No. 1, C Zone, using a downhole pres-19 sure bomb, May of '88, measured the pressure to be 907 psi. 20 Q The Gavilan? 21 А The Gavilan, the February '88 static 22 pressure in that reservoir, 825 psi, again taken from 23 Hueni's Exhibit Number Twenty. 24 For the Canada Ojitos Pressure Mainte-25 area the pressure as of February, '88, 1400 psi, nance

998 1 again from Mr. Hueni's Exhibit Twenty. 2 Q Then we go to the current field 3 producing GOR. 4 Yes, the current field producing GOR for А 5 the Bear Canyon Unit, approximately 120 standard cubic feet 6 per barrel. This is based on the average production from 7 the Bear Canyon Unit Wells No. 1, No. 2, and No. 3. 8 Q Is that from the May of '88 production? 9 А Yes, that's correct. 10 Q Gavilan Mancos? 11 The current producing field GOR, 4000 А 12 standard cubic feet per barrel. That would be in March of 13 '88 and that's taken from the -- some production data that 14 was put together in the course of Mr. Hueni's study of the 15 area, of which Amoco was a participant. 16 Q And finally Canada Ojitos Unit. 17 Α Canada Ojitos, 1,200 standard cubic feet 18 per barrel in March of '88. This was significantly higher 19 than the GOR's during 1987 and also, well, the GOR was in 20 -- seemed to have been increasing starting in January of 21 '88. February '88 was even higher, and then this 10,200 in 22 March of '88. 23 Q And you took this from the Bergerson 24 study and the production (not clearly understood)? 25 Α Yes, that's correct.

999 1 All right. Q Let's go next to the cur-2 rent average per well oil rate. 3 Okay. The Bear Canyon Unit, 350 barrels А 4 of oil per Again this is based on May production day. 5 figures. 6 And that's a 3-well average also? Q 7 А Yes, that's right. 8 All right. Q 9 А Gavilan Mancos Area, 48 barrels of oil 10 per day per well, that's per producing well, again taken 11 from the data compiled in the course of Mr. Hueni's study. 12 And then 40 barrels of oil per day in 13 the Canada Ojitos Pressure Maintenance Area. 14 Q And then finally we've got the primary 15 producing zone, and what is that? 16 The majority of the production in the А 17 Unit is coming from the C Zone. Bear Canyon The Bear 18 Canyon Unit Wells No. 1 and No. 2 are completed in the C 19 Zone, as well as the A and the B Zones. We just recently 20 completed those wells in the A and B Zones and we're -- and 21 we're still evaluating the data from those completions. 22 The Gavilan -- oh, excuse me, the No. 3, 23 Bear Canyon No. 3 Well was only completed in the C Zone at 24 this time. 25 The Gavilan Mancos Area, those wells are

1000 1 primarily being produced from the A and B Zones, and the 2 Canada Ojitos Pressure Maintenance Area wells primarily 3 produce from the C Zone. 4 Q And that, the latter two producing 5 information is primarily based on the prior testimony in 6 this case? 7 А Yes, that's correct. 8 Q Just real briefly summarize what this 9 exhibit tells you as an engineer. 10 А Based on the data that I've put together 11 here on this exhibit and that I'm familiar with, it appears 12 that there are some significant differences between the 13 characteristics of the Bear Canyon Unit compared to the 14 Gavilan Mancos Area and also the Canada Ojitos Pressure 15 Maintenance Area. 16 Q Now, were you present when Mr. Roe tes-17 tified that in his opinion there was communication between 18 Bear Canyon Unit and the Gavilan Mancos Area? 19 А Yes, I was. 20 Q Do you have an opinion about that? 21 Α Yes, I do. At first glance, if you just 22 look at the initial pressure in the Bear Canyon Unit, which 23 is much lower than we expected, I can see why -- why you 24 would think that there has been some pressure depletion in 25 the Bear Canyon Unit, but I also believe that there is --

1001 1 that there is other data that's shown here on our exhibit 2 that indicates that there are some significant differ-3 ences in the Bear Canyon Unit compared to the Gavilan 4 Mancos Area. 5 0 And those are the things we discussed 6 earlier in discussing the exhibit? 7 А Yes. 8 0 What about well producing information? 9 Α Okay. There are some wells to the south 10 of the Bear Canyon Unit that have performance that I don't 11 think we can ignore in evaluating the Bear Canyon Unit. 12 The Amoco operated Siefert Well --13 0 I'm referring you to Exhibit Number Five 14 of the Proponents, which is a base map. 15 А The Siefert Well is located in Section 16 22 of 2 West, 26 North. 17 So the Siefert Well is -- the Bear Q 18 Canyon Unit is north up in here, is that correct? 19 Ά Yes. 20 Q The Siefert Well is -- the main Gallup 21 production is down in here, so the Siefert Well is between 22 Bear Canyon and Gavilan. 23 Yes, that's right. А 24 Q All right, and what do you know about 25 that Siefert Well?

1002 1 А The Siefert Well is completed in the A, 2 С Zones and we've recently connected it to a В and the 3 For the first three months in 1988 the well pipeline. 4 averaged 27 barrels of oil per day, which is significantly 5 lower productivity than the Bear Canyon exhibits. 6 Q What about some of these other wells 7 also to the south of the Bear Canyon Unit? 8 Α Okay. The Wildfire Well that's located 9 in Section 26 of 2 West, 26 North, that well in -- in May 10 of 1987 that well averaged 18 barrels of oil per day and as 11 far as I can tell from the producing data, it had been shut 12 in for the majority of the time since then and it was shut 13 in in March of '88, also. 14 Q And finally the Tapacitos Well. 15 А Yes. The Tapacitos No. 2 Well has a 16 cumulative production of about 31,000 barrels of oil. In 17 1987 it averaged about 11 barrels of oil per day and for 18 first three months of 1988 it's averaged about 4 barthe 19 rels of oil per day. 20 These wells have -- are significantly 21 lower productivity wells than the wells that we see in the 22 Bear Canyon Unit. 23 Q So it's fair to say that the three wells 24 you just referenced are essentially between the Bear Canyon 25 Unit to the north and Gavilan to the south.

1003 1 Yes, that's right. А 2 Director Lemay asked Mr Roe yesterday in 0 3 his testimony whether in Mr. Roe's opinion if wide open gas 4 production would drain the Bear Canyon. 5 Were you present for that testimony? 6 Α Yes, I was. 7 Do you have an opinion on that question? Q 8 А Yes. Using again the apparently the low 9 low productivity between the Bear Canyon the area of 10 Unit and the more prolific producers in the Gavilan Mancos 11 Area, I think it's unlikely that by increasing the allow-12 ables we would be suffering adverse affects in Bear Canyon. 13 Q Do you see any evidence on the informa-14 tion you've studied to date that the Bear Canyon Unit and 15 the Canada Ojitos Unit are in communication? 16 А No, I don't believe they are. 17 What's the basis of that opinion? Q 18 The basis for that, first of all, is the А 19 difference in current pressure in the Bear Canyon Unit com-20 pared to the Canada Ojitos Unit. That's a difference of 21 about 500 psi. 22 Q And other factors set forth on Exhibit 23 One, does that also contribute to your opinion? 24 А Well, excuse me, I don't understand. 25 Q Okay. That -- is your primary conclu-

1004 1 sion that there's no communication between Bear Canyon and 2 Canada Ojitos the pressure difference? 3 Yes, that's -- that's one of the main А 4 points. Also in Mr. -- Mr. Greer's tan exhibit book, Tab 5 N, there is map that shows that to the -- the area to the 6 east of the Bear Canyon Unit in the West Puerto Chiquito 7 Area, that's cross hatched with the white and brown, is an 8 area of non -- non-productivity C Zone, or a very tight C 9 So I don't feel like there could be communication Zone. 10 from the C Zone in the pressure maintenance area to the C 11 Zone in the Bear Canyon Unit. 12 Q Have you examined any cores in the Bear 13 Canyon Area? 14 Α Yes, I have. Bear Canyon Unit No. 1 15 Well was cored. 16 Q What did you learn from your examination 17 of that core? 18 А I examined the core at a CORE Lab faci-19 lity near Denver. When the core was originally unleaded, 20 it had not been wiped -- wiped off; there was still mud on 21 the core. 22 We took the core out of the -- out of 23 the tubes and put the core in the black light and the core 24 did fluoresce, which indicated the presence of hydrocar-25 bon. We saw the hydrocarbon -- we saw the fluorescence

1005 1 both on the fracture faces as well as on the matrix itself. 2 Q Did you examine thin sections also? 3 А Yes, we've had some thin sections pre-4 pared from the Bear Canyon Unit core in which you can also 5 see the fluorescing hydrocarbons in the matrix. 6 Q And what did you conclude by examining 7 the core with respect to the nature of the fractures? 8 А The Bear Canyon Unit core was very 9 intensely fractured. Often these fractures were -- were 10 less than an inch apart and they covered sort of really the 11 entire cored interval. 12 And, finally, the last question is were Q 13 you present when Mr. Bush testified that -- I believe he 14 said that there was substantially less C Zone production 15 south of the Bear Canyon Unit. Were you present to hear 16 that? 17 А Yes, I was. 18 Q Do you agree with that? 19 Yes, I do. А 20 MR. LUND: Nothing further and 21 I offer the witness for cross examination. 22 MR. LEMAY: Thank you, Mr. 23 Lund. 24 LUND: Oh, I'm sorry, I'd MR. 25 better offer the exhibit into evidence.

1006 1 MR. LEMAY: Exhibit accepted. 2 Exhibit of Amoco is accepted. 3 Were you going to be a Pro-4 ponent and ask questions on this, Mr. Douglass? 5 MR. DOUGLASS: No questions. 6 MR. LEMAY: Anyone else in the 7 Proponents side? 8 Mr. Carr, do you have some 9 questions? 10 MR. CARR: Mr. Kellahin is 11 going to go first and then I'll have questions. 12 MR. LEMAY: Mr. Kellahin, 13 please proceed. 14 15 CROSS EXAMINATION 16 BY MR. KELLAHIN: 17 Your last name is Lough? Q 18 Yes, that's correct. Α 19 Q Lough, if Bear Canyon were in good Ms. 20 pressure communication with Gavilan or West Puerto Chi-21 quito Mancos, would you expect the discovery pressure to be 22 near but slightly above that in Gavilan? 23 Α Not necessarily. As I stated, the ini-24 tial pressure we saw in the Bear Canyon Unit was lower than 25 we expected but the only reason we had expected a higher

1007 1 pressure was because of the pressures we had seen re-2 corded from the -- from the areas around the Bear Canyon 3 Unit. 4 If 0 the Bear Canyon pressures had their 5 pressure draw down, wouldn't you expect the bubble point 6 pressure to be quite near the pressure at the time of 7 discovery? 8 А Yes, yes, that's true; however, as I 9 stated earlier, there was approximately 125 pound pressure 10 difference between the bubble point pressure determined and 11 the initial -- initial pressure at (unclear) in the Number 12 One Well. 13 0 Let me take your Exhibit Number One for 14 a moment. When we look at the second column over and the 15 third entry down, the A-25 number? 16 А Yes. 17 Q What's your date of first production out 18 of the Bear Canyon Unit? 19 А Bear Canyon Unit, I believe, to the best 20 of my knowledge, that was in July of '87? 21 Q When you have captioned this Gavilan 22 Mancos Area, you've included within the Gavilan Mancos Pool 23 the expansion area out of West Puerto Chiquito Mancos? 24 Α Yes. 25 Q And when we look at the last column to

1008 1 the right, the Canada Ojitos Unit, that pressure number, 2 1400, that does not include the pressures taken out of the 3 the expansion area? 4 Yes, sir, that is correct. А 5 0 And it does include the pressures out of 6 the main project area up in there in the gas cap? 7 as I understand it from Mr. А It --8 Hueni's exhibit, that includes the -- only the pressures 9 that are == that's the average reservoir pressures that's 10 to the -- to the east of the barrier. 11 Have you made a calculation of the pres-0 12 sure to put in the last entry under Canada Ojitos Unit as a 13 substitution for the 1400 pounds if you put the expansion 14 area pressures into the pressure maintenance project? 15 А No, I haven't. I just simply took those 16 pressures from Mr. Hueni's exhibit. 17 And have you conversely taken the Gavi-Q 18 lan Mancos Area pressure, the 825 pounds and calculated 19 what that pressure is when you take the expansion pressures 20 out of that number? 21 А No, I haven't. 22 MR. KELLAHIN: Thank you. 23 MR. LEMAY: Mr. Carr. 24 25

1009 1 CROSS EXAMINATION 2 BY MR. CARR: 3 0 Ms. Lough, if we look at your Exhibit 4 Number One, is it your testimony that the initial reservoir 5 pressure of 950 pounds is in fact the original reservoir 6 pressure? 7 Α We did have some fluid production from 8 the unit from the time they completed a well to the time 9 that the pressure measurement was taken. 10 А And so what does that do to that figure? 11 А It would be -- the initial pressure 12 would have been higher than the pressure that's shown as 13 our initial pressure. 14 Q And could you estimate how much higher? 15 А No, I couldn't. 16 Q When you took this bottom hole fluid 17 sample to determine the reservoir bubble point, could you 18 tell me how the well was conditioned prior to taking that 19 sample? 20 Α Yes. The well was shut in for, I 21 believe it was about two months. We were waiting on the 22 well to be connected to the pipeline before producing any 23 fluids. 24 We lowered a pressure bomb in the well, 25 recorded the static bottom hole pressure. Since the fluid

1010 1 that was in the well had been sitting there for quite 2 awhile. We purged the tubulars of that fluid to allow 3 fresh fluid to enter the wellbore. We did shut in the well 4 to allow these pressures to stabilize and then we took our 5 fluid sample. 6 Q What did the fluid sample show you about 7 or for gas in solution at the bubble point pressure? 8 I don't recall that number. А 9 Would it be possible for that analysis 0 10 to be made available to us? 11 А Yes, it would. 12 Q You did a core analysis that you talked 13 about? 14 А Yes. 15 Now what well was that? Q 16 А That was on the Bear Canyon Unit No. 1 17 Well. 18 Q And would you be willing to make the 19 results of that core analysis also available to us? 20 I don't -- I don't know if I have the А 21 authority to do that. I would have to check with our 22 manager on that. 23 MR. LUND: We'd be happy to do 24 that. 25 Thank you, MR. CARR: very

1011 1 much. 2 MR. I think Mr. Roe LUND: 3 testified he already examined it but we'd be glad to look 4 into that. 5 Do you have a written description of how Q 6 that core sample was analyzed? I'm sorry, of how the core 7 was analyzed? 8 А Yes, we have a complete core report that 9 was prepared by CORE Lab. 10 Do you have photographs of the core? Q 11 А Photographs of the core or of the thin 12 sections? We do have photographs of the thin sections. I 13 don't know if we photographed the entire core or not. 14 Q Would you see if those photographs might 15 also be made available to us for review? 16 А All photographs or the thin sections or 17 18 Yes, all of the thin sections? Q 19 Α Yes, I will. 20 Do you have a written analysis or sum-0 21 mary of how that well was actually conditioned prior to 22 taking the sample? 23 Prior to the fluid sample? А 24 Q Yes. 25 I would -- I would think that there Α

1012 1 would a -- there's a daily operation summary that would --2 that would have that information. 3 And, if possible, we'd also like to have 0 4 that made available to us. 5 А Okay. 6 MR. CARR: That's all I have. 7 MR. LEMAY: Additional gues-8 tions of the witness? 9 Mr. Chavez. 10 11 QUESTIONS BY MR. CHAVEZ: 12 Q Ms. Lough, what bottom hole pressure did 13 you expect to discover in the Bear Canyon? 14 А Higher than what we saw. 15 Q If you were to take the difference be-16 tween the bottom hole pressures measured in November of '87 17 and May of '88, could you draw a graph similar to Mr. Roe's 18 exhibits about how much pressure drop you have per psi of 19 -- I'm sorry, per barrel of oil withdrawn from the reser-20 voir? 21 Α Yes, I have done that. 22 0 If this reservoir had been partially 23 drained, would you expect it to be drained more of gas or 24 oil that would contribute to the lower producing GOR? 25 Never mind that question. Let me ask

1013 1 another instead. 2 You said you're still evaluating the A 3 and B Zones in this Bear Canyon Unit Area? 4 Α Yes. 5 0 So you don't know for sure whether the 6 primary producing zone will be the C or the A and B in the 7 future? 8 А The data that I am familiar with to date 9 shows a minor contribution from the A and B -- from the A 10 and B Zone. We completed both of those zones together. I 11 don't have the exact production figures for that but we did 12 see a small incremental change in oil production and only a 13 very small incremental gas production. 14 Was the C Zone the major contributor to Q 15 the production in the Bear Canyon Unit No. 1? 16 А The C Zone? 17 Yes. Q 18 Yes, absolutely. А 19 Did you review the production data that 0 20 Mr. Bush presented as to the production from the A, B and C 21 Zones in the Bear Canyon Unit Area and for the Siefert Well? 22 А I did not review -- I was here for the 23 testimony. I don't recall what those numbers were. 24 Q Thank you. 25 MR. LEMAY: Additional gues-

1014 1 tions of the witness? 2 MR. BROSTUEN: I only have one 3 for clarification. 4 MR. LEMAY: Mr. Brostuen. 5 6 QUESTIONS BY MR. BROSTUEN: 7 Q Ms. Lough, you mentioned that you had 8 completed the No. 1 and No. 2 Well in the AB and are now 9 completing in the C or --10 А We completed in the C Zone first and we 11 recently moved up hole. 12 Okay, I just wanted to get that clear in 0 13 my mind. Thank you very much. 14 15 QUESTIONS BY MR LEMAY: 16 А Ms. Lough, the extremely low GOR that is 17 in the C Zone, could you speculate a little with present 18 me, assuming that some of these fractures from some of the 19 superstars, I mean some of those Mallon wells down in the 20 Gavilan Area did have some C Zone communication up there to 21 the Bear Canyon Unit, with the low GOR in the C Zone, do 22 you think it would be possible that by increasing allow-23 ables in Gavilan that it would draw some C Zone production 24 and therefor keep the GORs lower than normally would be 25 expected?

1015 1 First of all about the low GORs, we are А 2 have been producing below bubble point and so we we 3 would expect our GORs to be low in the Bear Canyon Unit. 4 We've just recently got to the point where we are near --5 we are below or near bubble point pressure, so we're ex-6 pecting to see the GORs increase at this time. 7 We have to --8 Q Well, we're looking for some reasons 9 don't make sense down in the Gavilan Area. We're that 10 witnessing lower gas/oil ratios with higher allowables and 11 at the same time we're witnessing an increase in oil 12 recovery from a pressure drop with lower allowables. 13 With that situation it's been specu-14 lated that these wells -- not speculated but proven, some 15 of the wells can reach out and drain an area quite a ways 16 away from the initial wellbore. The fracture system ex-17 tended those areas, and I was just wondering, although you 18 consider this pool separate because of three marginal 19 wells, it would seem easy to extend some fractures between 20 those wells and maybe communicate with some of the good 21 wells, like the Bear Canyon No. 1. If that's too long a 22 distance, and it may be, I don't know, but we're just 23 looking for possible reasons for some of the things we're 24 witnessing in Gavilan. 25 А It's, well, I think everyone is aware

1016 1 that it's a very complex reservoir. I just -- I find it 2 is somewhat perplexing that we could have such prolific 3 wells, some of Mallon's wells being very, very good wells, 4 and the Bear Canyon Unit's wells being very prolific, we've 5 had those three marginal wells in between, it's difficult 6 to see how you could have a major fracture system extending 7 between the two areas and yet passing through an area where 8 we see such low productivity wells. 9 Your well density, with one or Q Agreed. 10 two wells per section, isn't -- doesn't seem to be -- you 11 only have a 7-7/8ths inch hole there --12 Yes. Α 13 -- and a lot of it's projection from Q 14 that hole, and I guess with the heterogeneous reservoir, 15 would you say that the conditions are expected to vary 16 throughout that area? 17 Yes, I think so, but also with the major Α 18 fractures, or major faulting that may be contributing some 19 to the natural fracturing here, I would expect to see a 20 fairly wide zone of natural fractures and to say that 21 that's passing between two wells that are a little bit less 22 than a mile apart, I find that a little bit hard to 23 believe. 24 Q Okay. So it would be your conclusions 25 that you would not expect zones to the south to communicate

1017 1 through the these -- because they'd have to have a wide 2 zone of fractures -- through three marginal wells to draw 3 on areas that are beyond that, those three marginal wells. 4 Yes. Α 5 Q Thank you. 6 Additional gues-MR. LEMAY: 7 tions? If not, you may be excused. Thank you very much. 8 CARR: Mr. Chairman, I'd MR. 9 just like to ask Mr. Lund if when they're checking to see 10 what can be made available to us, if we might not also see 11 the (not clearly understood.) 12 MR. LUND: We'd be happy to 13 check that. 14 MR. LEMAY: Appreciate that. 15 MR. LUND: Be happy to. 16 MR. DOUGLASS; Mr. Chairman, 17 you requested at one time the over-injection figures, I 18 think, --19 MR. LEMAY: Yes. 20 MR. DOUGLASS; -- from BMG? 21 MR. LEMAY: Yes. 22 MR. DOUGLASS: Have those been 23 furnished yet? 24 MR. LEMAY: Not yet, as far as 25 my knowledge.

1018 1 MR. LEMAY: There was a 2 request by Mr. Lund that he summarize for ten minutes, ap-3 proximately, that his -- his concluding arguments. Is that 4 agreeable with the lawyers present here for both sides? 5 MR. CARR; I have no objec-6 tion. 7 MR. LEMAY: Carry on, Mr. 8 Lund. 9 MR. LUND: Thank you very 10 much. Ι appreciate the courtesy and I'll try to be real 11 brief. 12 Way back when we heard opening 13 statements in this case I wrote down some of the comments 14 made by Mr. Kellahin and Mr. Carr. Some of the things that 15 were noteworthy was that Mr. Kellahin stated that there 16 would be no rhetoric in their cases, just the facts. He's 17 concerned about the Gavilan owners it think he said 18 "blowing and going" from the reservoir, and stated over and 19 over again that less is better for Gavilan and that uniti-20 zation is the only way, and again brought out how this 21 emergency and dire situation existed before and how every-22 body got scared. 23 Carr was a little less Mr. 24 strident and said that his intention is not to violate any-25 body's correlative rights and his intention is to show that

1019 ۱ Mr. Greer's pressure maintenance project needs to be pro-2 tected and he's going to show how the pressure maintenance 3 project is working and why, and, of course, their evidence 4 would be that there's no barrier here. 5 Well. we've already talked 6 about the incompetence of lawyers and, frankly. I've sat in 7 on years of these hearings and it's overwhelming sometimes 8 just the technical data that we're receiving and, you know, 9 a simplistic lawyer's mind I ask, how can we sort it for 10 out, you know, what's important, and I'm kind of like Dr. 11 Lee, he talked about the good professor, he said he'd lay 12 out a bunch of data and say what does that mean. Well, so 13 I sat down with my expert last week and the other engineers 14 and said what does all this mean, you know, what's impor-15 tant? What's the bottom line and what should the Commis-16 sion consider in rendering a decision in these cases, and I 17 think Dr. Lee summed it up pretty well. He said that 18 really there's just two major issues. 19 One is, is there matrix con-20 tribution or is this a dual porosity system over in Gavi-21 lan, and the second major issue is, is there an effective 22 barrier here as the proponents have drawn? 23 And I think that's a good way

to look at it and I think we have to focus on the evidence of those two big areas and I'm sure that the others will

1020 1 talk more about the evidence and there's going to be re-2 buttal and there's going to be some very interesting 3 squabbling and I hate to miss it, but the first -- it seems 4 to me if we look at the first issue, is there dual porosity 5 and matrix contribution, what is the major evidence, and I 6 sat down with my engineer and tried to figure out what's 7 important for you to consider as a Commission. 8 Number one is the inverse rate 9 sensitivity, and there's a lot of excellent data from Mr. 10 Hueni, from Mr. Weiss, and even from Mr. Roe himself about 11 that. The gas rate is constant even though the oil rate is 12 varied. 13 Number two is the porosity and 14 Mr. Elkins testified that the porosity is too high in Gavi-15 lan to be in the fractures alone and there's going to be 16 a dispute over that 1965 test and I think that's going to 17 be very interesting to hear Mr. Greer and Mr. Elkins talk 18 about this. But the fractures can't be that big, is 19 basically what Mr. Elkins said. 20 Next is the core data and this 21 is some of the hard data that Mr. Kellahin invited us to 22 review, and the core data from the Mallon Davis Federal 23 315 took fluid into the matrix which their geologist on 24 this panel, my geologist told me that that's significant 25 and that's something that you should consider and in addi-

1021 1 tion, prior testimony, Mr. Faulhaber testified about the 2 televiewer information that showed intense fracturing from 3 that data. 4 Next is the pressure build-up 5 tests and my engineers pointed me to two of them in parti-6 cular, the Rucker Lake No. 2 and the Mobil Lindrith B-37, 7 which indicated dual porosity. 8 Next the evidence of Mr. Hueni 9 Mr. Greer's pressure maintenance project has the is that 10 lowest and slowest production per acre of any fractured 11 matrix field, and it's the only one that is engaged in se-12 condary recovery operations for any extensive period of 13 time. 14 Next is the fracture spacing, 15 a significant difference here. Our experts say that it's 16 one inch or less with respect to the fracture spacing, and 17 that's based on, again, hard evidence in the core data, but 18 Dr. Lee testified that this fracture spacing is much 19 broader, 270 feet I believe is what he said, and he also 20 indicated, Dr. Lee did, that the fractures fizzled out, I 21 think he said, around the wellbores. 22 And again, our evidence is 23 quite to the contrary. 24 next piece of evidence The 25 that's significant is the Bergerson model study, which when
1022 1 they're matching actual observed field performance they had 2 to have a dual porosity system, which is also persuasive. 3 The barrels of oil recovery 4 acre in Gavilan is better than in West -- in Canada per 5 Ojitos and that shows something for us, too. 6 Now, in the 1987 hearings one 7 of Amoco's petrologists, a man named John Thomas, wrote a 8 letter dated March 30, 1987, that was included in the Ber-9 gerson exhibits and that indicated, I thought, quite suc-10 cinctly, what's going on here and I'd like to read just a 11 little bit of it. 12 He said that, "In issue is the 13 role of matrix porosity in the total pore volume of oil and 14 gas contained in the Niobrara, which is also know as Gallup 15 and Mancos, in the reservoirs in Gavilan and West Puerto 16 Chiquito." 17 And what he said is based on 18 his continuing studies of Gallup cores, bit sections, core 19 analyses, and xray distraction data, he believes that there 20 are three components contributing to the pore network in 21 the subject pools, and they are, number one, pore space 22 within and around sand grains; number two, abundant tiny 23 hairlike fractures that cut across and parallel layering in 24 the Gallup zones; and three, large scale fractures that cut 25 across multiple beds of rock. And he said that the discon-

1023 1 tinuous nature of types one and two cores are intercon-2 nected with the larger fractures. 3 And he goes on and talks about 4 the tiny, delicate microfractures and and he says that the 5 microfractures have been well documented in Gallup and 6 Mancos intervals by means of this fluorescent examination 7 and have been recorded by Terra Tech, and additional micro-8 fracturing evidence is gained -- has been gained by study-9 ing continuous cores, both wet and dry. 10 And so when we talk about this 11 chicken wire thing, and that's what he references in this 12 letter, he says that because of the fineness of the frac-13 ture spacing and the "chicken wire" interpenetration of the 14 fractures, this type of porosity is significant as a matrix 15 component in the zones. 16 And then he concludes his let-17 ter by saying that his observations are based on a number 18 of pieces of data. 19 Number one, the Amoco Jicaril-20 la Apache 118 No. 14 cores and cores analyses, and that's 21 near the Ojito Gallup Pool; the Mallon Davis Federal 315 22 Well, which is in the Gallup, excuse me, the Gavilan; and 23 the Mobil Lindrith B-38 Well, which is also in the Gallup, 24 and he also said that he used to be a consultant for 25 geology and engineering and he saw similar evidence of this

1024 1 system in other San Juan Basin wells. 2 So, he concludes, he says, "I 3 do not believe the Gallup Mancos reservoir in the Gavilan 4 and West Puerto Chiquito Pools is a simple mega-fracture 5 drainage network. The microfracture intergranuslar pore 6 spaces must be interconnected with the mega-fractures." 7 That's part of the evidence, 8 and of course we like to think of it as our evidence, and 9 we believe it is persuasive. 10 The second major issue is the 11 effective communication barrier that's drawn on Exhibit 12 Five. Does it exist? And again it appears to us that the 13 evidence is overwhelming that it does. 14 First you've got to look at 15 these wells drilled into the barrier that are very poor. I 16 think Mr. Brostuen asked about that and he asked about the 17 22 Well, and Mr. Roe testified that there wasn't any No. 18 data on that because it's completed in the Dakota, which is 19 lower than the A, B and C Zones. 20 So we don't know why the A, B 21 and C hasn't been tested, you know, and if the sand is 22 continuous throughout there, that's interesting that it 23 wouldn't be there. 24 The interference testing 25 across the barrier, I realize there's going to be more evi-

1025 1 dence on that, but we though that Dr. Kohlhaas' testimony 2 was excellent. There were no, as we would say, points made 3 on cross examination. Lee disagreed with it but Dr. 5 he didn't say why, and Mr. Greer has disagreed with it, so 6 apparently his reasons will be obvious later. 7 Next is the pressure build-up 8 data that we thought also was persuasive. 9 Next is the Greer rainbow map 10 where they show those gradients. We realize that Dr. Lee 11 said that it's a pressure gradient, not a barrier, but we 12 think if you look at all the evidence, particularly Mr. 13 Hueni's testimony, that's persuasive. 14 Mr. Powell's isobar map was 15 also persuasive in this regard and perhaps most interesting 16 was his 25-year interference test that has been shown and 17 talked about over and over again. It's Exhibit Twenty that 18 Hueni talked about and it's Exhibit Number Nine (not Mr. 19 clearly understood), but it's very interesting to see how 20 the Gavilan production and the restricted -- or the lower 21 pressure has not affected Canada Ojitos, and that's hard to 22 escape. 23 Mr. Hueni testified that there 24 is lost oil forever because they didn't produce in the 25 Gavilan fast enough, and that's very significant.

1 And finally I think there's no 2 dispute over geology here and in previous geological testi-3 mony they indicated that this area just by virtue of the --4 of the geological formations, you'd expect a quiet area 5 here and there's no dispute about that, for example, Mesa 6 Grande, but anyway, just to try to sum up real quickly, 7 there are some -- it's kind of hard to reconcile as a 8 layman some of these things, you know, like Dr. Lee passed 9 out exhibits on Monday and talked about some production 10 figures for -- expected for the Gavilan area, and the 11 numbers really changed Monday to Tuesday, you know, and his 12 first number, he estimated ultimate recovery in thousands 13 of stock tank barrels without pressure maintenance as 14 5,439, that's thousands, and then the next day it jumped up 15 to -- I'm sorry, it's the other way around. 16 Monday he said 7,106-thousand 17 stock tank barrels and the next day it dropped down to 18 5.439 barrels, and the same thing happened with pressure 19 Initially it was 7,494-thousand stock tank maintenance. 20 barrels, which is only different, an incremental difference 21 of 388,000 stock tank barrels. And then the next day it 22 goes to 10,215, and you know, he testified it as used as an

exhibit, and this has been a hotly disputed case for years
and, you know, we can understand some differences in modeling and -- but that just doesn't make sense.

1027 ł The second kind of conspic-2 uous by its absence factor is the lack of core data in the 3 Canada Ojitos Unit. Obviously that's an important part of 4 the facts that Mr. Kellahin says we should look at. 5 We already talked about these 6 poorer wells before and there's some data on it. 7 The next is how can gravity 8 drainage contribute substantially to production here with 9 dip being so small? Maybe I don't understand it but, you 10 know, Boulder Mancos is 20 degree dip, West Puerto Chiquito 11 is about 5 degrees and Gavilan is less than one degree 12 maximum. 13 Next thing, what happened to 14 Spraberry? Remember, that was a big -- a big issue and the 15 Proponents brought in the two experts on the Spraberry, Mr. 16 Elkins and Mr. Powell, but it's gone now. It's not an 17 issue any more. 18 It's still analogous because 19 it shows that secondary recovery by gas injection won't 20 work. It's kind of hard, Dr. Lee testified about the over-21 injection but he assumed that it only went straight to the 22 west, but he didn't assume that it went any place else. 23 That's hard to buy, and perhaps even most telling is Chair-24 man Lemay asked Dr. Lee, well can you give us an example of 25 another fractured reservoir where secondary recovery has

1028 1 been effective? And what Dr. Lee's response was, I think, 2 was, (not clearly understood.) 3 I'm just about done. We 4 caught a lot of heat from the Proponents I can remember a 5 couple of years ago. We wrote a letter and it said, gee, 6 we've heard both sides of the case and both sides are 7 technically competent and if you on the Commission are 8 going to err, you've got err on the side of preventing 9 waste, and we got in trouble with the Proponents. We 10 thought that there was some more study needed and we think 11 you did the right thing by ordering the study and we think 12 now that the data is in and the hard facts are in, that the 13 Proponents are correct, and what that leads us to believe 14 is that, you know, Mr. Humphries talked about correlative 15 rights, what does that mean? It's the opportunity, the 16 fair opportunity to produce your fair share. It's not an 17 equalization, you know, just because you have a poor well 18 doesn't mean you get a piece of the good well just because 19 of correlative rights. That's not the way it works. It's 20 an opportunity and the only difference we have at Amoco is 21 that we'd recommend that the statewide allowables, Rule 505 22 and Rule 506, and we've been chided that apparently 505 23 doesn't apply to spacing over 160. Well, if that's true, I 24 assume the Commission won't worry about statewide allow-25 ables for more than 160-acre spacing, but we think that particularly the gas/oil ratios should be 2000, just for
general reasons more than anything else. We think that you
shouldn't allow the original energy to escape that much.
That's the only difference.

5 But the bottom line here is 6 that this area is so variable and what we find hard to be-7 lieve is you look at all these variations, look at the 8 variations of Bear Canyon as opposed to all these areas, 9 and it appears like the Opponents are saying, this area is 10 one and we've got to treat everything the same. Well, it's 11 just not true. There are these quiet zones and barriers 12 and difference in production based on differences in frac-13 tures and variables in area, and each pool needs to be 14 examined specifically.

15 So in conclusion, Amoco re-16 spectfully requests that the Commission do what you said 17 you would do and that is make a decision and not split the 18 baby, and we submit that the evidence is overwhelming that 19 the production restrictions ought to be eliminated in the 20 Gavilan and the Gavilan ought to be expanded two tiers to 21 the east, and I thank you very much for allowing me to go 22 out of turn.

23

24

25

Lund.

MR. LEMAY: Thank you, Mr. We can resume now with the

1030 1 testimony of Mr. Greer. Thank you, gentlemen, for accom-2 modating Mr. Lund. 3 4 A. R. GREER 5 being recalled to the witness stand and remaining under 6 oath, testified as follows, to-wit: 7 8 DIRECT EXAMINATION CONTINUED 9 BY MR. CARR: 10 Greer, would it be fair to say that 0 Mr. 11 the last few days you've been preparing exhibits at a 12 hectic pace? 13 А That's a fair statement. 14 Have you found an error in Exhibit 0 15 Seven-B? 16 А Yes, sir, I have. 17 Q Does it change actually the conclusions 18 that you reached from that exhibit? 19 It does. Α 20 Would you go through that exhibit and 0 21 explain and identify that error, please? 22 А Yes. Seven-B is a sheet of handwritten 23 notes, and has some figures on it. 24 On the top line it says Migration Across 25 Area of Low Permeability.

1031 1 Go ahead. 0 2 The -- on the bottom set of figures I А 3 have a column labeled L over W, which is length over width. 4 L is the direction of flow and W is the width across the 5 flow and I have there for the ratio of 1, .5 darcy feet and 6 then I wanted to show the more the transmissibility in 7 width was five times longer than the length, length, the 8 just wrote down 5 and I should have written down 1 and I 9 over 5 so I show 1 to 5 instead of 5. 10 The figures then would still be the same 11 Kh .5 to 1 and .1 for W. 12 Then I made one other mistake. That's 13 under item number 3 of the third line there, you have Q 14 equals something and Kh equals something plus or minus and 15 I had 150 x .6. That 150 is (not clearly understood) so 16 that should be 100 instead of 150. That then reduces all 17 the figures by about a third, so .5 would be calculated 18 .35. Kh down at the bottom should be .35 on the top line 19 and .07 on the bottom line. 20 And your conclusion from this exhibit Q 21 that this is evidence of migration not dual porosity is un-22 changed. 23 Α Right. 24 Would you -- before we go to Exhibit Q 25 Eleven, I believe it would be fair to say that in the

1 course of the hearing we've seen the different results that 2 have been obtained when build-up tests are used as opposed 3 to the information obtained through interference testing. 4 Do you understand why this is? 5 Α Yes. 6 Would you review that? Q 7 А Mr. Chairman, ordinarily we Yes, sir. 8 engineers feel like a build-up test gives information for 9 reservoir over -- over large areas and gives informathe 10 tion over larger areas, for instance, that we could expect 11 from all the coring and we've come to accept that as a way 12 to get the information over a pool and we take a number of 13 build-up tests, get those characteristics, and then add 14 them and say that that's the characteristics of the pool. 15 That just doesn't work for West Puerto 16 Chiquito and the reason we just touched on briefly yester-17 day is that the reservoir comprises a system of fractured 18 blocks and the blocks on the order of 10 to maybe 80 acres, 19 perhaps some of them larger than that, and taking a build-20 up test, all that the test would show is the characteris-21 tics of that one small block, so if it's 10 acres that's 22 all it shows. If it's 2 or 3 acres that's all the charac-23 teristics you get, and along with that, being so small it 24 tends to, characteristics tend to be well covered up such 25 that you can't really tell what they are. You can postu-

١ late them, and I discovered this first by observing the 2 pressure build-up test and drawdown test and there's just 3 no question that this concept is how the reservoir is made 4 It cannot be any other way. When a well builds up up. 5 over a short period of time and levels off, no longer 6 continues to build, I'm speaking now of hours, then it just 7 has to be representative of the boundary condition and that 8 boundary can be either a closed reservoir, or a small re-9 reservoir, or it's a reservoir with constant pressure at 10 the boundary. Now you can tell which that is simply by 11 running a drawdown test, pressure drop down and level off 12 and if the well continues to produce and produce and pro-13 duce, and the working pressure doesn't draw down, then 14 there's a positive pressure at the boundary and it's being 15 supplied from somewhere else. In this instance being 16 supplied by the high capacity fracture system surrounding 17 little tight blocks, and twenty years after we disthese 18 covered this and had a survey made, a geologic survey, and 19 confirmed, sure enough they found evidence on the surface 20 of these fractured blocks, and in addition we ran an 21 electromagnetic survey and it showed the same thing, ex-22 cept more fractured blocks, and we ran another one in the 23 area of B-6 and sure enough, it showed a lot of fractured 24 blocks and there we got a good well. We ran one in the 25 area of the P31 and didn't find any fractured blocks and we

have a very poor well there. So we believe there is some consistency in our earlier -- in support of our earlier conclusions in a geologic sense as well as an engineering sense.

You can kind of look at -- might take a quick look at one of our exhibits we had in March --

7 Q And that's what's marked as Benson8 Montin-Greer Exhibit Number Eleven It was entered in Case
9 9111 and it is a tan plat of fractures.

10 Α The E-6 Well is in Section 6, 25 North, 11 1 West, on the lefthand side of the plat up to the top and 12 these fractures can be seen on this plat and we think that 13 the reflection on the surface of these fracture remnants is 14 probably -- represents only a small part of what's there. 15 There's probably even more than these, but to understand 16 this reservoir now and how it works, when I say "this 17 reservoir" I'm speaking particularly of Canada Ojitos, we 18 found, well, we could only determine the real average 19 reservoir characteristics through interference tests, no 20 way we could do it through individual build-up tests be-21 cause they got too small an area, and the tests of the 22 small tight blocks would show low, low transmissibility and 23 yet the interference tests of a large area shows high 24 transmissibility and in my view the interference tests 25 covered several thousands of acres, to quote Mr. Douglass,

1035 1 get a sampling of the reservoir over a very large and so 2 area and that's how we first determined that had adequate 3 transmissibility and gravity drainage and when we put that 4 into the classic equation we find that yes, indeed, we do 5 have gravity drainage on the order of the figure we dis-6 cussed yesterday, and I'd like to review briefly, as 7 briefly as we can, how we analyze and know that we've got 8 these tight blocks, or at least short dimensions from the 9 well -- from a well to the fracture system. 10 Q And is that information summarized in 11 what has been marked Benson-Montin-Greer Exhibit Number 12 One? 13 А Yes, sir. 14 MR. CARR: That's the green 15 book, Mr. Chairman, that was distributed on Monday. 16 Q Mr. Greer, would you identify the infor-17 mation contained behind Tabs A and B of this exhibit? 18 Α Yes, sir. Under Tab A is just an intro-19 duction that explains generally what we've just discussed. 20 I might say how I describe or how I initially analyzed 21 these before a type curve became available. It's clear we 22 were dealing with a small -- a small reservoir with con-23 stant pressure at the boundary but perhaps the best way to 24 describe those, if I had some sort of an idea of the effec-25 tive wellbore radius, and can use those classic equations.

1036 1 Well, that gets a little bit involved 2 found that I could use an effective wellbore volume but Ι 3 I could approximate that from the results of a frac and 4 treatment and from that, when I'd use the classic equa-5 tion, why I could arrive at an approximation of the size of 6 the block. 7 Another, a second way that I arrived at 8 just through the diffusivity process and the two it was 9 checked fairly well. The simple diffusivity constant 10 allows one to determine over a period of time how far the 11 pressure pulse will go and the time that it takes to reach 12 what would ordinarily be called steady state conditions and 13 From that we can determine a number of things. 14 it just takes a short time we know If 15 that the information reflected doesn't cover more than a 16 short, small area. 17 Under B we begin to describe some of the 18 background regarding our analyses and then if we might turn 19 to Tab C. 20 Q What is the first plat behind Tab C? 21 What does that show? 22 Α Tab C just shows a type curve of a pres-23 sure build-up in a well in which the pressure is shown on 24 coordinate scales vertically against log time horizontally, 25 and the thing I'd like to point out on this first plat is a

1037 1 hodgepodge of phases and effects in early time of what had 2 occurred; very difficult to analyze just what's going on 3 here in the early, so-called early time. Now if you'd go to the second plat, 0 5 which is the first item behind Tab D with a different por-6 tion of it shaded and explain what that shows. 7 Α Here we see the shape, just the general 8 shape. again, of a pressure build-up curve if a reservoir 9 has matrix porosity laced with fractures, and the build-up 10 curve is flat at first and then it slopes up and just from 11 that general slope that gives us an idea and, of course, 12 this is just a generalization of how these curves can ap-13 pear. 14 Q Behind that are a couple of curves on 15 pink sheets of paper. 16 А Yes, sir, on the pink sheets of paper a 17 couple of sample dual porosity systems, porosity laced with 18 fractures, and the coefficients and the character of the 19 particular reservoir is described by the different factors **Z**0 that affect it. 21 Both of these curves, one with wellbore 22 storage and one without, we see the increased slope which 23 is characteristic of dual porosity. If the slope picks up, 24 steepens, sometimes it can come back and parallel the first 25 slope, but without that first (unclear) of the line that

steepens towards the curve, it does not reflect dual
porosity. We've found another fact. None of the wells we
tested showed this kind of a general shape.

Q All right, Mr. Greer, if you'd go to the
copy of this graph behind Tab E and focus on the upper
righthand portion of it, would you explain that and relate
this to information on the Canada Ojitos Unit?

8 A Yes, sir. This is the type of a curve
9 that we found on the Unit wells where the pressure would
10 build-up and then level off, level off rapidly, which meant
11 one of two things, a boundary effect that is either a
12 closed reservoir or whether it is a constant pressure at
13 the boundary.

14 Q Would you go back to the blue sheets 15 that follow that and explain how you read those curves?

16 А Here, Mr. Chairman, we seem to find a 17 which you can determine the difference. way in Here is a 18 pressure build-up and levels off, either a closed reservoir 19 or is a form of constant pressure at the boundary. So we 20 found that we're able to take not just the pressure in the 21 well but the difference in pressure from the time it's 22 producing and shut-in and the pressure builds up and we 23 take that difference in pressure and plot that against time 24 and produce a type curve as shown in the upper blue graph. 25

If the plotted points fall above the

1039 1 plotted points fall above the line for infinite condi-2 tions, then we have a closed reservoir. 3 And looking down at the lower graph if 4 all the points fall below the line for infinite conditions, 5 then we're dealing with a constant pressure at the bound-6 ary. 7 So here, although the curve on a semilog 8 plot will have the same shape, we find now that we can plot 9 differences in pressures and we find that one reservoir 10 will behalf one way and one another, so now we can distin-11 guish between them. 12 Would you now go to the graph on the Q 13 E-6, which is behind Tab F and explain that? 14 А The E-6 is an example of a well drilled 15 in a tight block. The steeply rising shaded area is -- is 16 the area that's represented or has characteristics only of 17 the little tight block in which the well is completed. 18 To determine the transmissibility of the 19 area around a well for any distance at all, one must rely 20 then only on the so-called late time region, the brown 21 shaded area, and analyze that, and, of course, when you 22 analyze we have to be careful about boundary that 23 conditions beyond that point. 24 Even so, with the sensitive pressure 25 we have now it's possible to analyze this area, bombs

1040 1 whereas earlier engineers were hesitant to do it. 2 This is the area that Dr. Lee and I ana-3 lyzed in our report to the Commission a year ago in March 4 and we showed, as I recall, 12 or 15 darcy feet. Our ob-5 servation said that you had to analyze the slope along the 6 shaded area and we got substantially lower transmissibi-7 lity. 8 Q And, Mr. Greer, when you say slope along 9 the shaded area, do you mean green shaded area? 10 Α Yes, sir, well, the green shaded --11 well, the green colored area and it's shaded in black on 12 the exhibit. 13 Q And this is a typical build-up curve? 14 For West Puerto Chiquito, that's right. Α 15 Q And the part that you believe should be 16 analyzed is the part under the area shaded brown. 17 А In order to tell something about the 18 area away from the well, yes, sir. 19 Would you now go to Tab G and the first Q 20 yellow sheets behind those and review those? 21 Α Yes, sir. Plat I is a copy of the same 22 just looked at before, same pressure buildplot that we 23 up. 24 And then if we go to the Plate II, the 25 upper righthand plate, this is the same well with build-up pressure taken at a later time when the relative permeability is dropping off and you get a steeper slope now. or
the B slope is steeper.

And then in Plate III on the lower righthand side shows the build-up taken last November and the B slope becomes more evident, in fact really is the slope that should be used, that should have been used all along, and I note that Mr. Weiss, when he made his analysis of this build-up he used the B slope, which is the proper slope.

Q All right, Mr. Greer, let's go to the
material behind Tab H and ask if you would briefly show how
a radius of investigation would be determined.

14 A Well, this is just a simple way to take
15 the value you get from a build-up test, Kh/u and put it
16 into a formula to estimate the radius of investigation.

Now ordinarily that's done with the
classic formula used, so the porosity, if you don't know
what it is, or the permeability, you don't know what that
is, we can use Kh/u and so I just put that in, we may want
to refer to it for confirmation perhaps later on with some
other information.

23 Q Okay, let's go to Tab I and ask you if
24 you could give us a general example of how we measure the
25 dimensions of tight blocks working within the section.

1042 1 А Yes, sir. This is one of the problems, 2 in knowing that we really are properly analyzing this 3 is indeed the problem of wellbore storage and reservoir, 4 afterflow, particularly the oil wells. To try to reduce 5 that error, we selected a gas injection well, where we were 6 injecting gas under a packer through tubing and we have, 7 therefor, a small reservoir storage and it's gas and it 8 doesn't have the problems of phase segregation during the 9 build-up, and in this instance pressure fall-off occurred, 10 so this gives us more accurate information. 11 The first time we tested this was back 12 in 1969 when we were using K-13 as an injection well, and 13 at that time we, to get the information as accurately as we 14 could, but particularly the differential information, we 15 used surface pressures measuring with a dead weight tester, 16 and of course we had to leave the pressures a short time 17 interval, for only a few minutes, as part of the test to 18 try to find the exact shape of the curve. 19 Even so I think we got very good inform-20 ation. 21 Now, the first approximation that we 22 would make would be from the formula shown on this graph 23 and from the semi-log plot. Now, to prove the information, 24 we used, rather than differences in pressure, which you can 25 use, but more accurately it's best to use a difference in squares of pressures, and better still is to use difference in squares of the pseudo steady state pressure to take into account some of the other possible errors, which we did that, and in 1980 we reported what we found in the 1969 test to the Department of Interior hearing at that time. Since we now have sensitive pressure

7 gauges, we decided to take another test about a year ago 8 from the same well, and that test is shown on the yellow 9 pages.

10 We have here roughly the same thing, 11 the first approximation formula is .013 darcy feet, and now 12 we analyze that by measuring the constant pressure at the 13 boundary, which is shown on the pink sheet. And I should 14 pause here, Mr. Chairman, and point out that the reservoir 15 closed systems for concentration at the boundary are most 16 unusual. We don't find many oil reservoirs that have con-17 stant pressure at the boundary, and the constant pressure 18 that's listed here is not absolutely constant, but it's so 19 close as compared to pressure within the type log that for 20 all practical purposes it is a constant pressure at the 21 boundary.

Now the type curves that came out in 1978 in the technical literature was the connection on how to use type curves for concentration value. We can find these type curves themselves, but by taking the report of

the calculated interval and calculation made on type curves and we included them here in this book in case anybody else might want to deal with constant pressure at the boundary; save them the exercise of going through the calculations. Now, what we do here, Mr. Chairman, is to plot on a transparent sheet of paper the pressures against time that we made in the test and you can plot them

first on one of these graphs that doesn't have the curves on it, and what you do, you draw the curves while you do your plotting, and after the plot is made, you shift that transparent layer around until it fits the curve, and when it fits, why then at that time you pick a match point and that's on the formula when it calculates the characteristics.

Now, what I've done, which incidentally, here's another little mistake, on the calculations in the center of the sheet it says m equals some numbers equals some more numbers times 1.25 and there should be a times 10⁶ after that and then it should be 1.07 times 10⁶. That's the trouble in using these formulas.

I like to see a plot of this on the semi-log scale also, but first I would point out that the pressure points, the circles on the bottom lefthand side, pretty well fit the fairly straight line on the early part of the graph coming up to the point that says "end of the point the point that says "end of the point the point the point that says "end of the point that says "end of the point that says "end of the point the po

period of linear flow". Now that's the period during the time of the test that we believe that oil or gas is flowing into the fracture and that's the induced fracture that we induced with the fracture treatment, and that's a linear flow; that's not a radial flow as we ordinarily consider otherwise around the wells.

After that point is reached, then the conditions, the full system becomes more radial and this is something that we look for if we have the kind of information that can let us look for it, to see if really that's what's happening, and here it appears to me that that is what's happening. Now it doesn't quite fit the bottom ones because of wellbore storage. That would be my guess.

Then we take this information, I don't make the calculation here, I just take this information and from that derive the dimensionless pressure whereby I can make the semi-log plot, and we do that with the calculations shown next. In terms of the green sheets, I'll just take a minute to talk about why we use these pseudo pressures.

In the flow of gas to a well from -from the outer reaches of the drainage area to the well, pressure will change and when the pressure changes the gas viscosity changes and the gas deviation factor change, and ordinarily, to simplify it, we just take an average and

1046 1 say, well, this is approximately it, and go with that. 2 Here we have to take into account how 3 that changes the viscosity and the deviation factor all 4 the way from the edge of the reservoir into the wellbore 5 and that's the reason we use pseudo pressures. Now some --6 some engineers use pseudo pressure to be a pressure divided 7 by viscosity divided by deviation and they deal with a 8 number like 40,000, 50,000, something like that. I like to 9 take the ratio of the viscosities and bring the numbers 10 back to something it can relate to, like, for instance, on 11 the upper righthand side of the upper graph, 2000 pounds of 12 pressure equates to about 250 pounds of pseudo pressure. 13 Then the interbedded characteristics are 14 shown on the bottom plate and, incidentally, in the repro-15 duction process we missed changing the 10⁶ again. Here it 16 should be times 10^6 at the bottom of that. 17 All right, let's go to Section J and I'd Q 18 ask you first to tell you what -- or tell us what you 19 intend to show with this section in the exhibit. 20 А This is simply the same thing we looked 21 at before except it's on a semi-log plot and I picked out a 22 slightly different place that the 1.6 or so, it looks like 23 we have about 1.7. On the upper righthand side where it 24 levels off, the ratio of the size of the outside boundary 25 is square to the length of the fracture.

1047 1 That's probably not a very good fit. 2 sure we could change it perhaps on the lower a little I'm 3 Those points on the lower lefthand side probably bit. 4 should fit closer to the curve, but it's not significant. 5 The important thing is approximately what's the ratio of 6 outer boundary to the fractures, and of course this the 7 applies again more specifically if you had a square and had 8 a well in the center, but what is supplied is the distance, 9 the distance, the nearest distance, the closest distance to 10 the high capacity fracture system, and we have determined 11 that fairly well, it will change a lot with its shape of 12 the area, but the significant thing is that there's a high 13 capacity system right toward the top. 14 The calculations are shown on the yellow 15 sheet following. 16 Q These calculations are calculating the 17 length of the fracture, is that right? 18 Yes, sir, and at the bottom righthand Α 19 part of this sheet the length of the fracture. It varies 20 from about 160 feet to nearly 400 feet depending upon the 21 pore volume of the fractured rock and the equivalent acres 22 wouldn't perhaps by chance be square with the acreage shown 23 there as 40 acres, whatever it is, it's a fairly small area 24 and less than we want to (unclear) with this kind of test. 25 Q All right, will you go to the Section K and review that plot on the E-6?

2 Α We do the same thing with the E-6. We 3 note here on the first yellow sheet, and this is the same 4 sort of test we looked at earlier and as you see, it levels 5 off in three to ten hours and suggesting, of course, an-6 other small block with a constant pressure at the boundary. 7 We analyzed that with the same kind of type curve over on 8 the pink sheet following, and then at the bottom of the 9 pink sheet in the figures, why, we find I made another mis-10 take. So just above the wavy line where it says xe/xf 11 (from graph) 1.5, in this instance it's 1. We can see that 12 that 1.0 is where the plotted points fall out on the graph 13 above xe/xf = 1. 14 I believe I properly prepared the calcu-15 lations otherwise, then at the bottom on the lower lefthand 16 side where it says $x^2 = .37 \times 9760 = 360/porosity$ feet, 17 that should be 3600. 18 And then you have corrections for the 19 length of the fracture and behaviors. I'll read them 20 straight down. 21 There are four fracture lengths. 22 Instead of 40 it should be 134. 23 Instead of 60 it should be 190. 24 Instead of 85 it should be 27o. 25 Instead of 200 it should be 600.

1049 1 And under acres instead of .2 it should 2 be 1.6. 3 Instead of .3 it should be 3.3. 4 Instead of 7 it should be 6.7. 5 Instead of 4 it should be 33. 6 Now one of the problems you have, of 7 course, is what is the pore volume of that tight block, 8 permeability to thickness. We really just don't have a way 9 to put a handle on that other than through some comparisons 10 I made years ago when I was testing there for this well 11 (not clearly understood). It probably falls somewhere 12 around that 500, and when you're talking about, oh, 7 to 10 13 acres for the fracture length, that's something like 300 14 feet and my analysis of this is that that fracture from the 15 well has extended from the well towards the fracture sys-16 tem; it's gotten clear out of the tight block and I think 17 that's what this means. 18 I should point out also another charac-19 teristic. It seems to me like -- like I get a better match 20 when I used the type curve for -- for uniform flux factor 21 rather than one for infinite conductivity. There are two 22 types of curves. One is for the assumption that the frac-23 tures were produced as an infinite conductivity, no pres-24 sure drop throughout, and the other is if the flow was 25 feeding into the fracture uniformly along its length and

1 is a pressure drop. I'm not sure just what the there 2 situation would be if we had a log with just absolutely no-3 where we can go, all we have is the fracture to the -- to 4 the high capacity system. We don't have a fracture drop --5 a pressure drop in that fracture, too, and whether that 6 might be reflecting here or not, I don't know, but I think 7 it is of interest to know that it appears that uniform flux 8 gets measured, and my concept of these tight blocks is that 9 their reasonable approximate size trends to 30, maybe 80 10 acres, or bigger.

The tight blocks themselves have, in the wells that we looked at, the wells we cored, and we cored two, only analyzed one of them, there were very many hairline fractures and my feeling is that those tight blocks, the contribution they made was from those hairline fractures.

17 The, what they call matrix porosity was 18 apparent in the (unclear) part of the cores, a very low 19 volume, practically left, and then when we brought the core 20 to the surface and had it analyzed, this pore space was 21 still filled with something, either water, mostly water. or 22 oil, and the oil just didn't come out. Whether it was dead 23 oil or something about it that the pore system was -- those 24 pores have only dead oil, I don't know, but in our tight 25 wells when we cored we didn't find anything occurring with

1051 1 that -- that so-called matrix porosity. 2 My feeling and my analysis of the capa-3 cities of the wells, is that the fractures are really tiny 4 fractures. It just doesn't take a big fracture to carry a 5 large volume of oil. Hairline fractures (unclear) high 6 capacity system. 7 Now, Mr. Greer, the information con-Q 8 tained in Exhibit Number One confirms your interpretation 9 of the reservoir, is that correct? 10 Yes, sir. Α 11 Q And the remainder of the information 12 that we haven't gone over in any detail is supporting 13 material for the conclusions you've stated? 14 А Yes, sir, it just has some of the type 15 curves and the equations that we used. 16 Q Now, Mr. Greer, I'd like you to refer to 17 what has been marked as Benson-Montin-Greer Exhibit Number 18 Twelve, we passed out yesterday, a booklet that contains 19 certain material on the Fisher Federal 2 No. 1 Well, dated 20 February 20, 1988. 21 А This is a --22 Q Just a minute. 23 Oh, excuse me. А 24 All right, would you review Exhibit Q 25 Number Twelve, please.

1052 1 Α information on Yes, sir. This has 2 Mallon Oil Company's Fisher Federal 2-1. Now this well is 3 a mile or so inside the Gavilan down to the west of the 4 boundary line and it appears to me that it has character-5 istics very much like what we found in the Canada Ojitos 6 wells. 7 I have here at the first white pages are 8 the properties of the core which Mallon filed with the 9 Commission on the pressure survey. 10 Now this -- this report was prepared by 11 a service company and it appears that they just used their 12 standard formula for calculating the characteristics, and 13 I've examined this -- this build-up in the light of -- of 14 constant pressure at the boundary (not clearly understood) 15 and made a comparison of this information determined both 16 ways. 17 I'd like to refer first to the second 18 sheet which says Test Summary and note the remarks, white 19 Number 3, it says "No period of linear flow was observed. 20 Wellbore storage dominated the first 1/2 hour of the test." 21 And then if you'll go past the next two 22 white sheets and the blue sheet to the yellow sheet, we 23 can see how the points plot up on this graph and I apolo-24 gize for the small size of the graph, but I believe you can 25 tell something about it.

~

1 We can see the Horner plot building up 2 steeply with the first part of the curve and the rather 3 point where those plotted points make the curved line is 4 about a half hour and that's the part of the curve that the 5 service company says is dominated by reservoir storage, and 6 we can see why the service company did not observe the 7 slope which would imply to them linear flow up into frac-8 ture, the reason being that they didn't cover enough time. 9 Just vertically above the point at which the plotted points 10 meet the curved line, the remark there says "End of period 11 of linear flow", and so that's why they didn't see any 12 measure of flow, and the odds are that there's a fracture 13 and that there's linear flow into it that we just can't 14 determine from the test. 15 The way I compare the curves, I come up 16 with a ratio of 1.5 for the distance, the distance of the 17 side of the drainage area compared to the fracture length. 18 Plotted again on the next graph is the 19 information on the semi-log plot. You can see the same 20

(not clearly understood) is closer here. Now, one thing is
perfectly clear, the plotted points do not fall to the left
of the upper part of the line of (not clearly understood).

We see another thing where it says
"Begin semilog straight line" we can see that the points
come up and level off before that line is reached and that

means that we cannot accurately use any of the information from this test to estimate under the ordinary (unclear) the permeability even though this line appears to be a straight line on the semilog plot. The closest characteristics are such that it's just not balanced.

6 The next sheet is where we have the cal-7 culations again and then the last sheet, the last green 8 sheet, we have a comparison, and for instance, on total 9 mobility Kh/u, the report says 1.9 darcy feet. I get 1.2, 10 and of course that's not a significant difference. The Koh 11 is .43 compared to .28, again really no significant differ-12 ence.

What is significant is the fracture
Hength. The service company (unclear) with the zero feet I
think is unrealistic for a well that's been treated with
135,000 gallons of frac fluid and 180,000 pounds of sand.

What I get is 98 feet for probably the
highest pore volume which could be expected, and to 540
feet fracture length, and so I imagine the fracture length
runs somewhere, I would guess, between 200 and 400 feet.

And the area of investigation is probably not in excess of 15 or 20 acres; it could be as small as 3 acres that the report shows, but I would think that it's probably, oh, more like 10 to 20.

25

Q

Now, Mr. Greer, this exhibit confirms

1055 1 the approach you've used in analyzing these fractures, that 2 being by a closed system concentrated at the boundary. 3 Well, this is using concentration at the Α 4 boundary when we make a comparison. The way I would 5 analyze it and the way the service company analyzed it, and 6 as close as the plotted points fit on the type curve, I'm 7 convinced that there's no question as to this tight block, 8 high capacity fracture system exists here in this area just 9 as it does across the line. 10 right, would you now refer to 0 A11 11 Benson-Montin-Greer Drilling Corporation Exhibit Number 12 Two, the tan volume that was distributed on Monday? 13 First I'd ask you simply to identify the 14 material behind Tabs A and B in this book. 15 Α Tab A is an orientation map and Tab B is 16 our interpretation of the structure in the area. 17 0 Now, Mr. Greer, have you reviewed the 18 pressure interference data obtained during the recent Oil 19 Conservation Commission order testing? 20 А Yes, sir. As we determined first twenty 21 years Ι just have no confidence in anything that's ago, 22 been developed so far with respect to determining oil in 23 place and that was my approach analysis for the reservoir 24 from that prospective. 25 The logs don't tell us anything and I

1 personally have no confidence whatsoever in cores. What I 2 place my reliance on is the gas and the oil, the volumes we 3 take out of the reservoir and how they affect the pres-4 sures, and in this reservoir with such a widespread com-5 munication, it's very difficult to determine, even if you 6 project a pressure decline curve with the total -- total 7 oil to be recovered from the reservoir, the question is 8 where in the world is it coming from? How many acres would 9 contribute to it?

10 And in order to try to get a -- some 11 kind of a handle on pore volumes and barrels per acre, my 12 feeling is the best thing is interference testing and it's 13 difficult to get an interference test when wells are pro-14 ducing and going on and off production and trying to find a 15 good point to start from. So I was most pleased when the 16 Commission ordered the shut-in period and the pressure sur-17 veys because that gave us an opportunity to make an inter-18 ference test that otherwise would have been most difficult 19 to do, and of course there's a complication with it in that 20 when the wells have been producing and we shut them in, 21 then none of those wells can affect the observation well, 22 and one of the problems is -- is how much affect could each 23 well have and what then, when we put it all together what 24 does it mean, and to do that, why we've developed a program 25 that calculates the interference effect for each of the

• wells and then sums it up to -- for the total.

2 Q Okay, you're now going to go to Exhibit 3 Number C?

Yes, sir. I'd like to go to Tab C, the А 5 area of this interference test, the D-17 Well is one we 6 used for an observation well, and we provided the Commis-7 sion in March a copy of the -- of the reaction of this ob-8 servation well when the other wells were shut in. We did 9 not at that time show an analysis. We didn't think it was 10 of substance at that time, but we have it here now and 11 we've shown in the dashed circled area, oblong area, wells 12 that might affect the D-17.

The D-17 is shown as a square and then
each of the circled wells, the ones that were producing at
rates that might have been high enough, the volumes high
enough to affect the D-17's response from when the well was
shut in.

18 Will you now go to the yellow sheets? Q 19 Α The yellow sheets, the graph shows the 20 match that we came up with. It shows a porosity times feet 21 value of .14, displaced right at 1000 stock tank barrels an 22 acre. It has the value of Kh/u of 55 and that would trans-23 late into Koh is the difference, the balance depending upon 24 the gas/oil ratio.

25

We show the -- at the bottom of the page
of statistics, the bottom line is gas/oil ratio and just above it we show percent. Now what that percent means is the percent of total effect on the observation well caused by the individual wells, and so we can see that there's a number of wells that have only 1 and 2, 4 percent. One of them even has 0 percent, so those wells would not have much effect on it.

8 The biggest effect would come from wells 9 that have like 16, 10, one of them has as much as, let's 10 see. 26 percent for the F-19 and I see the Howard 1-11 11 would have 15 percent. That covers a very big area. We 12 can't say that the characteristics that we got is repre-13 sentative of the entire area, but it's probably a pretty 14 good -- pretty good figure for a high capacity fracture 15 system. It might represent a little more than that and 16 contrasted to a 30-day test, like we ran before in 1965, 17 these -- these short tests may reflect only your particular 18 (unclear), the volume of the high capacity fracture system. 19 Now, it's important to recognize that in terms of total 20 volume of reservoir space, this is a large figure. If --21 the best I can see for this area is something like 15 to 22 maybe 1800 barrels an acre in place total, and if 1000 23 barrels of it is in the high capacity fracture system, 24 that's a big part of it, and that's important to know be-25 cause that's the part of the reservoir that can respond to

gravity drainage and pressure maintenance.

Q Mr. Greer, if I understand this graph, what is says is, for say the E-10 Well, which is this well, it is 5 percent of the influence on the D-17. Is that the way you read that?

A Yes, sir, that would give you most of
the (unclear) that have effect and then if you're in the
half that says there's a barrier there, why, then you can
say we're going to change that 5 to 0 but that still won't
change the general calculation of the area.

11 Q Will you go to the green sheets that 12 follow, please?

13 A Here we show on the green sheets --14 well, first I should say that it takes two of these print-15 outs to determine the effect of any one of the wells, and 16 way we do this, is -- make this calculation is to assume 17 that the wells continue producing and get the lowest 18 pressures reached in individual wells.

19 Then another run is made assuming the
20 well was shut in, and then by taking the difference of
21 those two, why, then we find the effect of any one well on
22 the whole, so it takes both of those to do that, and that's
23 the other one on the green sheet, and then the graph is
24 simply the one that shows the relation or the ratio of the
25 Koh to Kh/u as determined from the total transmissibility,

1060 1 the permeability of oil. 2 Now, obviously, there is many different 3 wells, three zones of ultimate production, different 4 gas/oil ratios, there's no way we can expect an absolutely 5 accurate calculation, but (unclear) goes in this area. 6 Q All right, the remainder of the informa-7 tion in this section is supporting material, isn't that 8 correct? 9 Yes. А 10 Would you now go to the material behind Q 11 Tab D and review the information on this other interfer-12 ence test? 13 Okay. This interference test is what we А 14 made when the first shut-in period that the Commission set 15 last July, or really shut-in in June and the production 16 started in July, and again we used the same system of 17 identifying wells. The Lady Luck Well in the lower left-18 hand side, that we don't have a circle around it, that well 19 didn't start producing until about the end of the test. 20 The observation well is Native Son 3, 21 which well was kept shut in following the pressure build-up 22 survey and was used as part of the pressure decline in the 23 area after the other wells are on production. 24 And on the yellow sheets behind that we Q 25 again have the curve.

1 Α Well, here we show the match of 2 (unclear) pressures against calculated pressures. In this 3 instance we have a pore volume on porosity feet of .18 so 4 real quick about 1100 stock tank barrels per acre, not sig-5 nificantly different than what we found on the other side, 6 and this is something that I notice throughout the area, 7 even in areas of the high capacity wells, I'm confident 8 that there's more oil in place there as I notice that they 9 smaller, but probably not an awful lot. It's just are 10 these happen to fit that high capacity system in a good way 11 and are hooked up with it and that's the difference.

Again it's still the same system as before for the percent effect that each of the wells had; in this instance Homestead Ranch has 37 percent of the effect, so we can believe that is actually the bigger share of influence on the test, and here again is a high capacity well like the other wells in the pool, and yet it does not reflect a lot of oil in place compared to anything else.

The next two green sheets are the same information to compare the total mobility and determine the transmissibility of the oil, and in this instance both wells at that time the gas/oil ratio was pretty high, it went to 14,000, I believe, so even with the Kh/u of 110 darcy feet, they only had a permeability of oil, Koh, transmissibility of the oil of 2 darcy feet; however, with

1062 1 that much, that gas/oil ratio, I'm convinced had the 2 test been run at a time the gas/oil ratio was lower, the 3 transmissibility would have been much higher, probably in 4 the range of 5 to 10 darcy feet as we'd earlier estimated. 5 High enough that they could have developed some gravity 6 drainage had they been able to affect measures to do it. 7 Q Now is the remaining material in this 8 section just support material (unclear)? 9 А Yes, sir. 10 Q Would you now go to Tab E and review 11 the interference test information in that -- behind that 12 tab and compare it to the (not understood)? 13 Α Yes, sir, this test is one that we ran 14 when the Engineering Committee was in existence but it 15 didn't work out quite the way we had planned. There we'd 16 made arrangements with Mr. Mallon to try an interference 17 test at a time it was convenient with everyone and also 18 needed to track a well nearby, the J-6, and something hap-19 pened, Mr. Mallon's gasoline price went down and trying to 20 change the schedule over there but we were still able to, I 21 think, get pretty -- pretty good information, and we can 22 see on the blue sheets as to what -- what took place about 23 that time. 24 Starting on the lefthand side, the wells 25 had been shut-in, Mallon's wells had been shut-in long enough that the pressure appears to have been leveled off.
That's at the 1632 pound level on the lefthand scale and
just before we commenced the pumping, the J-6 was fraced.
You can see the response to the J-6 frac, and then about
the 9th or 10th of May, why, the pressure started falling
off after that frac treatment.

On the 12th of May we pulled the bomb and ran it back in. There's a little (not clearly understood) that you can see there, about .3 of a pound between the two bomb runs. Picked up a slope, then, of 4600 pounds a day and the interference effect that to analyze this -this test is indicated by the difference between the 4600 pound per day slope and the actual measured pressures.

14 On the yellow we show the match of the 15 gauges pressures and the calculated. It's not a perfect 16 match and yet there's 1.3 of a pound at the top on one 17 side and 1.3 on the righthand side. I have an idea that 18 this is fairly representative of the characteristics of the 19 area.

20 One of the things that we didn't go back
21 to correct, that change, the Mallon wells seem to have a
22 real wide variation of production from day to day and we
23 felt like it was probably responding as a consequence of
24 reading at different times, and so we tried to normalize
25 that some and in that process we normalized from 53 barrels

a day the first day to 113, and so that -- that probably
was a -- did about half that very first day, that probably 53 barrels was about right. So that gives us a higher
drawdown from the reservoir than we had starting out.

5 So I think it's probably a pretty good 6 match. Now here we show 1700 stock tank barrels an acre, 7 and this would be a little higher than we what we had esti-8 mated before.

9 This was at a time when the pressures 10 There's considerable controversy about the were higher. 11 compressibility of the formation. If I use the compress-12 ibility which Bergerson suggests, why, the pore volume 13 would be about a third less than I've shown here. Nobody 14 knows for sure. If I had my feelings, I think this is pro-15 bably closer to right. I'm sure they feel the other way.

16 Q All right, what does the green sheet
17 show?

18 Α Again we show here the ratio of Kh/u to 19 transmissibility and for the gas/oil ratio of the dominant 20 well, the Howard 1-11, which is about the same as the 21 Howard 1-8, it shows 10 darcy feet for transmissibility, or 22 Koh, again a fairly considerable difference of opinion. We 23 felt like transmissibility had been that high all the way 24 through, we measured with the frac pulse tests, measured 25 with interference tests, we find the tight blocks, so what

we're measuring is the characteristic of a small tight block which means that there has to be a substantially higher transmissibility in the high capacity system and this high transmissibility, I would have to agree with the chairman, it makes one wonder about the Bear Canyon Area. There's certainly a possibility that drainage is occurring, it seems to me.

8 Q Are you ready now to go to the material
9 behind Tab F?

A Yes, sir. Under F we take a look at how
we analyze the pressure test period of last year. We tell
that by looking at the sketch on the bottom where we show
the cutoff of the bomb at the bottom of the hole; it might
be higher up or whatever, the pressure is measured at that
particular depth.

16 Then with the density of the fluids in 17 the wellbore that pressure is corrected at the intersection 18 of the wellbore with the producing formation, which in this 19 instance I used the top of the B Zone. I believe that's 20 what Bill Weiss used. And then from that point to the 21 datum depth, the density used is the density of the fluids 22 in the formation, and that's where we have a problem, is 23 what is that density?

And so we review that briefly on the
green sheets. Here is one of the reasons why different en-

gineers will get a different set of pressures starting off
with the same basic information. We just don't know what
the density of the reservoir fluids are.

The common method of adjusting pressure to datum is simply to use the density of the continuous (unclear) phase in the reservoir. Well, here we don't know what that is, so that makes some cures which I think are on the high side, some on the low side, and I just made them as what might be appropriate to use.

10 On the high side the curve that I have 11 used there is what the density of the reservoir fluids 12 would be if the reservoir itself were just expanded until 13 that pressure, that particular pressure is reached, and 14 then would be -- would define density of the gas and that 15 oil. Now, that's, of course, not what's happening. The 16 reservoir would take out some oil in some places and gas n 17 and there's no way to say that that represents what's some 18 going to be the effective rate of pressure up and down the 19 structure of the reservoir.

20 On the other side, the little dotted 21 line on the bottom, that represents the density of the 22 mobile fluids. The sum of the density is added to gas and 23 oil that's moving through the formation and that's one way 24 to analyze it. In fact, that's the way Bill Weiss analyzed 25 his.

1067 1 Then we have a density that's consider-2 I feel like in time that there's no question ably less. 3 in a solution gas drive reservoir that that dotted line ex-4 tended on out is what it's going to be. The question is 5 when does it drop down from the upper level down to the 6 dotted line? 7 I used, I think, maybe an average of one 8 of these lines, an average of the two of them, for the dif-9 ferent tests. That's all part of the (unclear) I ran for 10 the November survey and then I show the difference. Then 11 from November to February I used the same because of (not 12 clearly understood.) 13 All right, and on the yellow sheets fol-Q 14 lowing, you review the ranges shown on the --15 Α Yes, I show on the yellow sheet, on this 16 first yellow sheet, how I handled this. Highlighted on the 17 bottom lefthand side of the -- of the page, we show that 18 for everything else being the same except the reservoir 19 density, I find a difference in pressure in this particular 20 well, the Meridian Hill Federal No. 1, running from 944 21 pounds to 965 pounds. Nobody knows what that pressure is. 22 Chances are it's in between there somewhere, but no one 23 knows. 24 This is one of the reasons why you 25 cannot use reservoir pressures taken in the ordinary method of bottom hole pressures to try to estimate pressure gradients across a reservoir. This is one of the unknown
quantities.

1068

Now it's not the only thing that makes
bottom hole pressures not reliable for determining bottom
hole pressure gradients across the reservoir, but it's one.
Then we might turn to the last sheet in
this section, the gold colored sheet, and you can see here
why in making my analyses I chose to deal with pressure
differences from one survey to the next, rather than absolute pressures within the surveys.

12 Take for instance the Mesa Grande Bear-13 cat, which is highlighted. In June its pressures would 14 range from 1041 pounds to 1061 pounds and in November I 15 would estimate from 768 to 787, but when you take the dif-16 ference for the different surveys, we find that for one 17 reservoir density we get a difference of 273 pounds, for 18 another one, 275, another 274, so here when we deal with 19 only differences, assuming the wells build up approximately 20 the same, of course is another question, but we've elimin-21 ated the problem, I think, pretty much, and the problem of 22 reservoir densities, it's unlikely to me that the reservoir 23 density would change substantially in any one well during 24 this pressure survey. I can see it would be different for 25 any one well as compared to another across the reservoir

-

but it probably would not change (not clearly understood.)
So that's one of the differences in my
analysis of the survey.

1069

Q All right, let's go to Tab G and I'd ask
you to review the pressure differences as exhibited in that
section of this exhibit.

A Okay, here we show, like I said the
three -- three different areas, the Gavilan Central, and
what I call the Gavilan outer, and the boundary area, and
show -- show the differences, and for the overall period of
June to February I show the Gavilan Central has a decline
of 309 pounds and the Outer, 248 pounds, and for the boundary area of 232 pounds.

14 Q What is shown on the tan sheets, Mr.
15 Greer?

16 A Then on the tan sheets we've taken a
17 look at recovery in terms of barrels per thousand of reser18 voir pressure decline.

During the high allowable period we show
on the righthand side what I call the recovery coefficient
of 1800 barrels a pound, and during the lower level period
I show about 5000 barrels a pound.

Here I've used the -- because we had
such a small pressure difference from the survey in the
past there is no way that we could accurately determine

1070 1 what that difference is. 2 I used the difference for the highest 3 capacity well in the group, which probably would have the 4 least problem of reaching fill up through a statewide 5 pressure. 6 0 Now the figures shown on these tan 7 sheets are for the expansion area, is that correct? 8 А Yes, sir, that's just for the production 9 in the expansion area clearing insofar as the Unit is con-10 cerned and this expansion area we believe is the correct 11 term for our pressure maintenance project and insofar as 12 our operations are concerned, we see a higher recovery in 13 barrels per pound at the lower -- at the lower allowable. 14 Q Are you ready to go on to Exhibit H at 15 this time, Section H? 16 Α Yes, sir. 17 Mr. Greer, the first page behind Exhibit Q 18 or Section H in Exhibit Number Two has a plat on it and --19 on the plat is a green area, or an area highlighted in 20 green. 21 Could you identify what is depicted by 22 that highlighted area? 23 Yes, sir, that's the area that I select-А 24 ed to -- to make an estimate of pore volume for the Gavilan 25 Area.

1071 1 Q About how many acres are in this area? 2 I estimate approximately 27,500. А 3 Is this the study area that you refer-Q 4 enced yesterday? 5 Α Yes. 6 Q And in this area there are a number of 7 different numbers in small boxes. Would you explain what 8 this is designed to show? 9 Α Yes. sir. These -- these numbers show 10 pressure declines that we looked at a little earlier the 11 and this is for the period of July through November 30 and 12 during the high rate period. 13 I took those pressure declines and the 14 production for wells within the green outlined area and fro 15 the pressure decline I made an estimate of pore volume. I 16 did this with only the information from the test period and 17 I did this because I think it's really about the best in-18 formation we have to date to make an estimate of pore vol-19 ume. 20 If we tried to go to the classic method 21 of using material balance, go back to the beginning of 22 production, we run into problems as to what was the origi-23 nal bubble point and is this that is significant. The 24 problem of an average of pressures and particularly we run 25 into a problem of migration away from the area and

1072 1 migration to the area, and those are pretty difficult to 2 take into account. 3 Here is seemed to me that there prob-4 ably was a minimum of migration from the east, from the 5 unit area tests, although I'm not certain of that, I'm 6 concerned about it; as compared to earlier times I think it 7 was probably small. 8 There may have been some migration from 9 north in view of what Amoco's told us, however, I'm the 10 afraid I would have to disagree with Amoco that there has 11 probably been substantial migration from the north. 12 Q What was the average range of pore 13 volumes that you've taken? 14 А Those are shown on the green sheets fol-15 lowing and here -- here I just used a very simple calcula-16 tion just to get compressibility itself. For compressibil-17 ity I've used the Loddy sample, although there's not a lot 18 of difference between it and the other ones. And I made 19 the calculation for a number of assumptions. 20 Now, if, of course, one makes an initial 21 run like this, it's possible to go back and take the calcu-22 lated recovery and calculate the oil in place and then make 23 a (unclear) calculation of the free gas, and I've not done 24 this here. It seemed to me like there's probably some free 25 gas to begin with and I don't know just how useful it would

1073 1 and the volume of free gas isn't going to make that be, 2 much difference. You can see how it varies. 3 I made three sets of calculations. One 4 was with 5 percent free gas, another with 10, and another 5 and for each calculation I've use the minimum of with 15. 6 compressibility for the formation that might apply and also 7 what I think might be relaxed. 8 And we see, if you look at the pore 9 volume on the righthand side, column 9, that even though 10 there are variations, we only have a variation of .2 to .25 11 for pore volume. 12 Are you ready to move to Exhibit I? Q 13 Α Yes, sir. 14 Exhibit I contains your recommended Q 15 method of setting allowables but before we get to that 16 would you review the data contained on the first tan sheet 17 for that section? 18 А Yes, sir. I just listed here a number of 19 the pore volumes that we calculated at different tests, 20 both interference tests and frac pulse tests and the pro-21 duction with pressure decline that we just now looked at, 22 and it appears to me that the average is pretty clearly in 23 the range of .2 or .25. I have used in order to be a lit-24 tle bit on the high side, I've used .2 for the next -- next 25 set of calculations.

1 Q Now, Mr. Greer, if we go to the yellow
2 sheets, I'd ask you first to explain to the Commission how
3 you believe the allowables -- allowables question should be
4 approached.

5 Α Well, here I believe we should approach 6 the allowable from the standpoint of the gas allowable 7 rather than oil allowable and I say that for a number of 8 reasons. One is it's easier to calculate the amount of gas 9 that might be produced. When you're talking about oil 10 there's a question of recovery factor and with respect to 11 gas it doesn't make any difference what the recovery effi-12 ciency of the oil is, all the gas is going to be produced 13 out of the ground, I'm afraid.

14 if we deal with gas volumes I think So 15 it's a lot more appropriate way to have handle the allow-16 ables. Right now it's being handled that way by the 17 limitations and I would recommend that it still be gas/oil 18 handled that way, but the principal governing factor is --19 is the gas volume and here we want to look at what's a 20 reasonable gas volume to permit the reservoir to be de-21 pleted in a reasonable length of time and not allow some 22 means for the wells that just happen to be much better con-23 nected in the fracture system to recover a disproportion-24 ately high share of the -- of the reservoir gas and oil. 25 The first six lines are simply analysis

of how much gas might be in place, the recoverable down to
150 pounds. I've used the two different samples that have
been provided by the operators. It comes out very close on
line 6), 680 and 640 MCF an acre and I suggest we use the
average, 660.

6 Then from that to determine the amount 7 of gas in place on a spacing unit, Line 7), that would be 8 640 acres and 320 acres, and then we show on Line 8) the 9 average rate of gas production if the reserve is produced 10 in 2-1/2 years, MCF per day, and I've used that because 11 that's the current allowable and we can see there that if 12 the fields are all drilled at one time, wells all go on 13 production at one time, the depletion, the rate of deple-14 tion at the current allowable would be 2-1/2 years.

The reason, of course, that the pool has
lasted as long as it has, longer than this, is because the
wells are draining a wide area.

If we look down at the bottom four lines
we have a per well allowable of, for instance, at 320 acres
a day that's 1400, which is approximately 700 barrels a
day at 2000 cubic feet a barrel, which I understand some
people have suggested, and I guess others have suggested no
number at all.

And the number of reservoir depletion in
terms of acres per day, on 320 acres it would be a little

1076 ۱ over two acres a day; 640 would be four acres a day, and 2 then the time to deplete the tract's reserves would be 150 3 days and what that means is an average well with average 4 reserves under it if produced at that rate, it would take 5 it 150 days to produce all the gas and oil that was under 6 its tract. Anything more that it would produce would have 7 to have come from outside its tract. I'm sure the wells 8 during the high rate period last year produced practically 9 all the gas and oil under their tracts during that 5-1/2 10 months of high rate of production. 11 So this, this points out the problems 12 with having too high an allowable. The wells that don't 13 have that big a reserve, just have a better connection with 14 the system. So we think that's one of the things that 15 needs to be taken care of. 16 Q Now, Mr. Greer, before you go on, Line 17 7) on the yellow pages says "Recoverable gas at 600 MCF per 18 acre". Line 7). 19 Oh, well, I hope that's not another mis-Α 20 I'll call on one of our assistants to ask if I used take. 21 660 or 600. 22 (There followed comments off the record.) 23 Α We need to correct that on Line 7) where 24 it says "Recoverable gas at 600 MCF" to be 660. 25 Q Now if you'd go to the gray sheet that 1 follows and explain what you're trying to show with the two
2 blocks on it.

3	A Here we show the problem of unequal
4	drainage for mixed spacing units. The Commission a year
5	ago moved from 320-acre to 640-acre spacing, or possible
6	spacing, and one of the problems here with mixed spacing is
7	having that well on 640 acres produce as much as two wells
8	on 640 acres. If it can, then there's no problem in pro-
9	tecting its correlative rights, but the higher the allow-
10	able, the closer the wells will come to the producing capa-
11	city and when that happens, then the one well on a tract
12	will not produce as much as two, and so what that means is
13	the correlative rights, then, it's going to be a real prob-
14	lem to protect correlative rights if the allowable is so
15	high that all the wells are or most of the wells are
16	producing to capacity.
17	MR. CARR: May it please the
18	Commission, we probably have 20 minutes additional direct.
19	MR. LEMAY: Let's take a if
20	this is a good point, let's take a break to five minutes
21	after 11:00.
22	
23	(Thereupon a recess was taken.)
24	
25	MR. LEMAY: We shall continue.

1078 1 Mr. Carr. 2 Greer, will you refer to the plat Q Mr. 3 behind Tab J in Exhibit Number Two and we've got a blow-up 4 it here, and would you review the current status of of 5 development along the boundary between the Canada Ojitos 6 Unit and the Gavilan Pool? 7 А Yes, sir. One of the issues, of course, 8 is protection of correlative rights across the boundary, 9 which I'd like to discuss briefly, and also point out that 10 we see no useful purpose in moving the boundary. 11 A year ago we asked the boundary be re-12 moved just to simplify the rule that all wells would be 13 operated under the same rules, but of course that can be 14 done giving both pools the same rules and under the circum-15 stances it seems to us like the boundary should stay where 16 it is. 17 There's been a great deal of effort, of 18 hearings to this Commission, and wells drilled in accor-19 dance with orders of the Commission, to recognize the 20 change in spacing from Gavilan into West Puerto Chiquito, 21 and I would like to point out that there's really only one 22 way that the spacing can be changed in a pool and do it 23 with assurance that correlative rights be protected and 24 that's to make the spacing change at a unit boundary and 25 when the unit boundary coincides with a pool boundary, why,

1079 1 is what we've taken into account and what would have that 2 been done to protect correlative rights across this 3 boundary. I'd like to point out just what has been 5 done. 6 We might start at the upper two pink 7 squares and note that there's one well on one side of the 8 boundary on a section and there's one on the other side. 9 There the drainage is balanced, at least 10 the opportunity to protect from drainage is balanced. 11 Down below that are two blue squares 12 with two wells on a blue cross section and one on a pink 13 cross section. 14 Sections 1 and 6 there are two wells on 15 each section there and they're balanced. 16 And down below that, Section 7 offset-17 ting Section 12, there's one well on each section. 18 Down' in the next row, Section 18 versus 19 Section 13, one well on each section. 20 Then we see three rows of sections in 21 which there are two wells in each section on the Gavilan 22 side and one well in a section on the Unit side. Now there 23 we have no problem with protection of correlative rights 24 for the reason that of these units we can look at all three 25 sections here, 19, 30 and 31, and if we take the combined

production in those three sections, we find that the value of that production, even though we're injecting gas, just the value of the oil that we sell is substantially in excess of the value of the gas and the oil from the other -- other tracts, and so although reservoir voidagewise we're taking no more reservoir space, we have protected our correlative rights.

So right now, the way the situation exists across the boundary, there is a pretty good situation if we look at protection of correlative rights assuming there is pressure maintenance credit, that's a pretty simple way to view it.

13 Q Now, Mr. Greer, let's go to the map that
14 is behind Section K of Exhibit Two.

15 А Here we show again the pressures differ-16 ences which we developed in surveys and we show the yellow 17 colored area some information we presented in March, 50 to 18 100 pounds the pressure decline during the period from July 19 to February. That's the yellow colored area. which, inci-20 dentally, I have pointed out before, I'll just point it out 21 again, it's pretty difficult to get a weighted average 22 pressure in the gas cap with the extreme variations in 23 pressures; there's no way to put a real close figure to it, 24 but generally it's something in that range.

25

And then the expansion area, the brown

1081 1 shaded area, the pressures drop to around a little over 200 2 pounds. 3 in the green shaded area, Then 300 4 The boundary wells in the west and the boundary pounds. 5 well to the north, the Wildfire, 217 pounds, not produced, 6 also had little pressure declines. 7 Q Now what can you -- what conclusions can 8 you draw from these three areas? 9 Α Well, it seems to me that we again have 10 the general pattern of -- of higher withdrawals and the 11 effect of that in Gavilan, the pressures are dropping more 12 rapidly and probably pressure support from the unit from 13 east to west, the general flow that we found that every-14 thing else was (not clearly understood) 15 Q And if you hadn't had this pressure sup-16 port from the unit, what would you anticipate would have 17 happened in the brown area? 18 А Well, it's pressure would have dropped 19 down. 20 Q More than is shown on this exhibit? 21 Α Yes. 22 right, Mr. Greer, let's go to the Q All 23 first exhibit behind Section L in Exhibit Number Two, and 24 I'd ask you to review the information on the first gray 25 sheet.

-

1082 ۱ Yes, sir. This shows why when we pre-А 2 sented the rainbow map in March and it's presented again 3 now, that this shows a minimum pressure gradient from east 4 to west and the pressures on the rainbow map were surface 5 pressures and we had at that time gas in the wellbores from 6 the surface to the producing formation. And so we know 7 that the pressure gradient, then, from east to west, would 8 have to be higher than that, maintaining would be deter-9 mined by comparing one pressure to another because as we 10 see here on this sketch, the reservoir density of the 11 fluids would be higher than the density of the free gas in 12 the wellbore and so, as we indicated before, the rainbow, 13 and all it's designed to show is the direction of flow and 14 it has the minimum pressure gradient and compares one pres-15 sure against another. 16 Q And then behind that is the rainbow map 17 Yes, sir. А 18 On this map could you tell me how far Q 19 apart approximately the C-5 and the B-18 Wells are? 20 Α It would be about two miles. 21 And this gives you an accurate depiction Q 22 of where the wells are actually located as contrasted to 23 the map presented by Mr. Hueni? 24 Α I didn't realize he had a difference 25 there.

-

1083 1 Q I mean if you -- when you've looked at 2 in this fashion you can actually see the actual disthem 3 tance the wells are apart. 4 Yes, sir. Α 5 Q And again would you explain the purpose 6 of presenting this map. What does it show? 7 Α Yes, sir, the purpose is to show that 8 the direction of fluid movement through this area is from 9 east to west, and also we pointed out the equalization of 10 pressures north and south applies all the way across the 11 reservoir, beginning with the injection wells, there tends 12 to be an equalization north and south, and then with the 13 injection wells, the next area, rather a large pressure 14 drop. The largest pressure drop in the field is right 15 there between the B-18 and the K-13, that are only a mile 16 apart, and there's 500 pounds of (unclear) pressure grad-17 ient. 18 The green area, again the pressures 19 north/south are very well equalized. 20 The brown area and the yellow area, even 21 though we're talking now about a small pressure difference, 22 still north and south there's an amazing degree of equali-23 zation. 24 The only -- the only difference, and 25 that's only a 2 pound difference in Section 6 from the E-6 to the J-6, and here we find that the structure is the other direction and so that's probably the reason for that. Q All right, Mr. Greer, would you now go to Section M and review the evidence of pressure support from the pressure maintenance project into the expansion area?

7 А Yes, sir. I show here on a plat wells 8 that were produced in the expansion area during March, I 9 it was about mid-March, I think -- March 15th to think 10 23rd, and the two observation wells, the D-17, which is a 11 small well, small capacity, and the B-29, which is our 12 highest capacity well, and the producing wells are the 13 F-18, B-32, F-30 and G-5, and we show on the tabulation 14 just above the plat the production rate for those wells 15 during that test period, which, incidentally, was their 16 flowing rate all through the month, and the gas/oil ratios, 17 and we point out the extremely low gas/oil ratios from 18 these wells, whose production is coming primarily from the 19 C Zone, and we've inferred from that that we had effective 20 gravity drainage and pressure maintenance.

21 Q Now if we go to the plats that follow
22 that, could you explain what this -- what this first plat
23 is designed to show? That's the plat on the D-17 Well.

A Yes, sir, this shows the pressure in
that well during this test period.

1085 1 Q Is that depicted by the little line I'm 2 indicating now, that goes across the graph? 3 Yes, that's right. Α What does that tell you? Q 5 А That tells me that those wells are using 6 pressure support from the pressure maintenance project. 7 There's just no way that we can produce 1500 barrels a day 8 without a pressure decline unless there is pressure sup-9 port coming from some place. The C Zone is a good zone and 10 it's good but it's not good enough to produce the pressure 11 motion indefinitely without a pressure drop. It has to 12 have a pressure drop. 13 During the high rate test period the 14 pressure decline in the area was around a pound and a quar-15 ter to a pound and a half a day. I've run that as a com-16 parative slope to see the difference. 17 And that's shown on the lower part of Q 18 this graph? 19 Yes, sir. Α 20 All right, let's go to the next graph. Q 21 This is a similar graph on the B-29. 22 Α Yes, sir. 23 Does it show basically the same thing? Q 24 Α Yes, sir, it shows the pressures are 25 practically leveled off at this rate of production and the

1086 1 D-17, of course, it's being in a tighter part of the reser-2 it takes it awhile longer to replace, but that presvoir, 3 sure change is in the reservoir, the B-29 reflects it very 4 quickly and here it's very clear that this pressure was 5 just level during this period of time in March, and you can 6 see in order for the pressures to be level and not drop, 7 and still take oil out, and with the pressures in Gavilan, 8 production over there and pressure dropping, we had pres-9 sure support not only for the 1500 barrels a day but enough 10 more to keep going on over to Gavilan, otherwise the pres-11 sure would have dropped here. 12 So how much additional pressure support 13 we have, of course, we don't know, but we had to have a 14 minimum pressure support of 1500 barrels a day, and we only 15 produce on an average of, I think, oh, in that range, 1500 16 to 2000 barrels a day. 17 Q Mr. Greer, these are actually observed 18 facts which show that pressure maintenance is in fact 19 working in this area. 20 А Yes, sir. 21 Q A11 right, let's go to the next plat, 22 which is a plat of the area with a blue rectangle and 23 dashed lines on it, and I'd ask you to explain what this 24 shows. 25 Α Yes, sir, this just shows that the pro-

1 duction that we get from the wells during this time, the 2 transmissibility required to provide that production is 3 consistent with what we think the reservoir properties are 4 and I've shown for a 2-1/2 mile distance the pressure 5 difference of 400 pounds; the amount of production from 6 that approximately 4-1/2 mile long area, and what it shows 7 is that it will take about 1.3 darcy for a value of Koh to 8 provide that support. Now this is all oil. If, through 9 this high streak we have some gas mixing up with it, why, 10 it wouldn't require that much, and, of course, I think 11 that's what's happened.

12 Now this is in the area of the B-32 and 13 C-34 interference test which showed an average Koh of about 14 10 darcy feet and I tried to point out in March when I 15 talked about it, but I guess I was unsuccessful in getting 16 my point across that normally these interference tests or 17 frac pulse tests didn't show the average characteristics 18 for a large area, several thousand acres. If there's a 19 tight streak in the middle of it, it's not going to pick 20 that up and if there's directional permeability, that's not 21 going to be reflected. You can't tell that with just one 22 test across the area. So the effective permeability in the 23 east/west direction can be significantly less than that 24 shown for that average for the area, and we think that on 25 average there's got to be transmissibility and gravity

1088 1 drainage for pressure maintenance; even though there's a 2 tight streak here and there, it's not going to deny its 3 ability to recover oil efficiently. Greer, this is a copy of the map Mr. 0 5 which is the first exhibit behind Tab N in Exhibit Two and 6 I'd ask you first to identify what you depict by the gray 7 area on this map. 8 А Well, the gray area is interpreted to be 9 the initial gas cap area with extremely low pore volume. 10 Q Okay, and then what is depicted by the 11 solid brown area on the exhibit? 12 Α The solid brown area shows the area 13 which we think still contains a high percent of oil in the 14 C Zone. 15 Q And in the yellow area? 16 А The yellow area shows gas invasion of 17 that part of the C Zone. 18 And the northwestern portion of this Q 19 plat has brown lines on it. What do you intend to depict 20 with that? 21 Α Well, so far in the northern part we 22 have found no production in the C Zone and we interpret it 23 as possibly the whole area will be noncommercial in the C 24 Zone, although we're not certain, we won't know until we 25 drill more wells up there. We do anticipate initial pro-

duction in the A and B Zones up there.

Q Now using this exhibit, could you explain to the Commission how you believe this area needs to be produced?

5 Α What we want to do, Mr. Chairman, our, 6 or my belief as to the prospects that we have to produce a 7 significant additional amount of oil from the C Zone by 8 gravity drainage and pressure maintenance, can be seen from 9 this -- this plat, and we don't know just exactly where 10 that stocked area is but we feel that -- that over 20 years 11 through gas moving through that area, as we injected moving 12 up dip and displacing oil down dip, and apparently there's 13 been quite a bit of oil moving down through the yellow 14 colored area and the stocked area doesn't -- hasn't appear-15 ed to move as fast and as far west as one might have ex-16 pected.

17 We believe that -- that continued pres-18 sure maintenance will bring -- keep the project effective 19 by gravity drainage work just as the tight -- the oil moved 20 down to the tight zone and we would cross it with gas drive 21 or effective gas drive above the gravity drainage, goes 22 across the tight streak, we'll have gravity drainage again. 23 Even in the flat reception area that we have now we consid-24 er the expansion area primarily the collector for our pres-25 sure maintenance project. In time we'll finally get some

1 gravity drainage down there even though it's (unclear) 2 there is enough high capacity formation there that we'll 3 pick up a little bit, but right now what we're getting is 4 low gas/oil ratio oil, not concentrated in the gas drive 5 where we have high, high gas/oil ratios. That oil is 6 collecting, moving down principally by gravity with the 7 force of the pressure maintenance gas cap behind it to go 8 to some high areas, and we anticipate a very large addi-9 tional amount of oil to be produced. As we indicated yes-10 the efficiency so far has been outstanding as terday, 11 compared to other solution gas drive areas, for instance, 12 Gavilan, and all we want is the opportunity to continue our 13 pressure maintenance project into the expansion area. We're 14 not interested in trying to pick up oil off of Gavilan and 15 drain oil in that direction. That just is not our inten-16 tion at all, and we don't want any of it.

But we would like to be able to carry
out our program the way we think it should be done. I understand the opposition has said that gravity drainage
won't work, pressure maintenance project can't work, hasn't
worked, won't work, but the people in the unit, who own the
unit, think otherwise, and we would like the opportunity to
continue our pressure maintenance project.

24 Q Now, Mr. Greer, to develop these re25 serves do you have to balance this pressure maintenance

• with the migration?

A If we attempt to move too fast, the gas
will tend to bypass the oil and we will not get as efficient recoveries as we'd like to have.

5 Q If you're to continue to operate this
6 area with your pressure maintenance project, of what im7 portance is the gas injection credit?

8 Α Well, the -- we'd have to have gas in-9 jection credit or we can't afford to carry on the project. 10 If we don't have credit, why, the gas and oil will move 11 across the line and we've done all that is reasonable, we 12 think, we can do to prevent migration. But at the low 13 rates of production now, as can be seen by how we can pro-14 duce the C Zone wells with no pressure drop, we can produce 15 a long time very efficiently.

When we move to the high rate of producwhen we move to the high rate of production all we can do is try to protect our boundary and increase production from our wells and try to keep up with the offsets and our efficiency will be diminished.

20 Q Now would you go to the material behind
21 Tab O in Exhibit Two and review for the Commission how you
22 believe the boundary migration can be minimized?

A Yes, sir. As I indicated before, we
would like to carry on with the pressure maintenance project; we have no objection to any kind of a reasonable

1 long term (unclear) of whatever that will assure that there 2 is a balance of withdrawals across the boundary. A sug-3 gestion was made at the March hearing that one way to do 4 that might be to measure pressures on each side of the 5 boundary and we're certainly willing to do that, and we 6 think that there are certain things that need to be done to 7 be assured that we can measure comparably what the pres-8 sures are. and we made those suggestions as to what pres-9 gauge should be used, use the same wireline to lower sure 10 the bombs into the wells and utilize wells that are in good 11 communication with the main producing reservoir, and try to 12 select that wells that have a minimum difference in struc-13 tural position so that we would not be plaqued by the prob-14 lem of the unknown density of the reservoir fluids.

15 And finally we would suggest that as a 16 practical matter, that the Aztec Division or office of the 17 Conservation Division be charged with the responsibility 18 and authority to establish the procedure, witness the 19 tests, and then, in the event the Aztec Office determines 20 that migration is occurring from Gavilan to the Unit, I 21 won't say anything about the other way, if they find drain-22 age occurring, migration occurring from Gavilan to the 23 Unit, then to reduce the Unit's percentage of gas injection 24 credit for the expansion area wells, and that adjustment to 25 the gas injection credit percentage be carried until an-

1 other survey. 2 Greer, were you present and heard Q Mr. 3 Mr. Roe's recommendation concerning letting wells in the 4 area produce at high rates for short periods of time to 5 achieve more efficient oil production? 6 Α Yes, sir. 7 Q And would you care to comment on Mr. 8 Roe's recommendation? 9 А Well, in general, the phenomenon that --10 apparently occurs in Gavilan of the high rates and that 11 the low gas/oil ratios I just did not find in our wells, 12 significant ones. We found where it apparently occurthe 13 red but it was a consequence of offset drainage. But we 14 have absolutely no objection to that if they feel they can 15 more efficiently produce the reservoir by producing at high 16 rates, and then in order to protect correlative rights shut 17 in until the time their allowables are balanced. We cer-18 tainly have no objection to that. 19 Because of a little (unclear) in what we 20 just discussed in balancing pressures across the boundary 21 with (not clearly understood) I think that reasonable 22 people can resolve and no, we have absolutely no objection 23 to that. 24 Q Mr. Lemay raised yesterday a question of 25 whether or not there were examples of injection projects
1094 1 working in fractured reservoirs and do you have examples of 2 those? 3 I can remember, I think I can remember, А 4 of a large reservoir with no matrix porosity, only fracture 5 porosity, a gas injection project, but I can't recall which 6 one it was, and if it is possible that we could research 7 the literature and submit that at a later date, why, that's 8 what we'd like to do. 9 Do you have an opinion, Mr. Greer, on Q 10 what the impact will be upon this reservoir if higher 11 production rates are in fact authorized by the Division, or 12 the Commission? 13 А I feel that the ultimate recovery from 14 the Canada Ojitos Unit will be -- be reduced if the allow-15 ables are permitted to go much higher than they are right 16 now. 17 Q In your opinion will that result in 18 waste of oil? 19 Yes, sir. Α 20 Q In your opinion is pressure maintenance 21 working in this unit? 22 Oh, yes, sir, absolutely. А 23 And in your opinion could there be a Q 24 barrier across the unit as depicted by Mr. Hueni? 25 А No, there's no barrier. There is a

1095 1 permeability restriction but it's not adequate to complete-2 ly stop the pressure maintenance project from being effec-3 tive. 4 Q Now, Greer, were Exhibits One Mr. 5 through Six, Seven A and B, Eight and Eight A, and Ten, 6 Eleven and Twelve, compiled by you or prepared under your 7 direction and supervision? 8 Α Yes, sir. 9 MR. CARR: May it please the 10 Commission, at this time we would offer those exhibits into 11 evidence. 12 MR. LEMAY: Without objection 13 those exhibits are admitted into evidence. 14 MR. CARR: That concludes my 15 direct examination of Mr. Greer. 16 MR. LEMAY: Thank you, Mr. 17 Carr. 18 Mr. Kellahin. 19 MR. KELLAHIN: Thank you, Mr. 20 Chairman. 21 22 CROSS EXAMINATION 23 BY MR. KELLAHIN: 24 Q A point of clarification, Mr. Greer, in 25 response to Mr. Roe's recommendation yesterday with regards to allowing wells in either pool the flexibility to overproduce their allowable, my recollection was that Mr. Roe recommended that the flexibility be the option to produce any well, overproduce up to a maximum limit equal to four months of allowable during any one continuous production period. Is that your understanding?

7 A That sounds reasonable to me, yes, sir.
8 Q Do you have a recommendation as to
9 whether or not it should exceed more than four months
10 during any on those periods of production?

11 Α Well, as fast as Gavilan is being de-12 pleted, gosh, I believe we ought to take a minute or two 13 and take a look at John Roe's Exhibit Four, that -- that --14 at the time that the Commission called attention to the 15 operators that they might want to do something, was just 16 about the righthand side of that dashed line, and we did 17 manage to take some pressures in our E-6 Well and the Loddy 18 Well, and it was clear that Gavilan at that time, Mr. 19 Chairman, was draining probably two townships, and --

20 Q You're speaking about that portion of 21 Exhibit Four in here where it says the E-6 and the Loddy 22 Wells?

23 A Yes, sir.

25

- Q Way up in here?
 - A Yes, sir, and then as the wells were

drilled and migration to Gavilan cut off, wells in the expansion area were drilled, we're not sure about Northeast jojito. There's an igneous dike that runs up along the township line between Northeast Ojito and Gavilan that I would think probably would reduce migration generally in that direction.

7 It might -- might have come down around 8 the south part of the dike and then into Gavilan, but cer-9 tainly there was a significant amount of migration into 10 Gavilan that began to be cut off, both -- well, I say both 11 -- all from the south, the west is beginning to be cut off, 12 from the east it's been reduced substantially from the 13 unit, and it would appear now that in view of my interpre-14 tation of what Amoco gave us this morning, that Gavilan is 15 going to see another -- another sharp decline when the 16 north part of Gavilan comes on production and cuts off that 17 migration.

18 And so in answer to your question, I
19 think it's going to be best not to allow longer than four
20 months overproduction.

21 Q Within that four month limitation or
22 restriction, what then is the advantage of allowing those
23 superstars the opportunity to produce in short, continuous,
24 high rate bursts for that period of time?

25

А

Well, it seems to me that if that solves

1098 ł a problem that they feel the need to produce at a maximum 2 capacity, and that being the case, I would see no reason to 3 limit it, if that's really what they (unclear), produce 4 as fast as they can and it would seem to me that just 5 that solves two problems: We assume that they proceed at 6 high efficiency and at the same time protects correlative 7 rights by not being able to produce indefinitely and 8 draining other properties. 9 Is there any advantage or necessity to 0 10 have the provision, a flexible rule, one restricted to one 11 of continuous production during that high rate period? 12 I --А 13 I didn't make myself clear. 0 14 I'm sorry, say it again. А 15 Q Yes, sir. With the high capacity wells, 16 the proposition Mr. Roe gas us was that once you put that 17 well on production at the high rate, that that high rate 18 ought to continue, that the production from the well ought 19 to continue continuously until that well was no more than 20 four times overproduced. 21 Now what happens if that production is 22 interrupted? Would the well have to be balanced again 23 before you could then produce it in a high rate burst? 24 А Well, in principle, I think it should be 25 but I presume the Aztec Office should be given some flexi-

-

1099 1 bility there for such problems as mechanical breakdowns and 2 such as that. I guess we haven't given that too much 3 thought. 4 In general, it seems to me like it 5 should overproduce, then be balanced, then overproduce 6 (unclear). 7 Q Once the overproduction, then, is made 8 from the well, it should be required to balance by going 9 back to a zero state within terms of its allowable? 10 Α I believe so. I don't believe that 11 would be too -- too much of a burden or a hardship, say, 12 the well produced two months allowable instead of four, 13 produced in two weeks, and then shut down. Then it could 14 be balanced at the end of the two month period; start over 15 again and go for four months. 16 Q Thank you, Mr. Greer. 17 MR. LEMAY: Thank you, Mr. 18 Kellahin. 19 Is there any other on the 20 direct, the opponent forces want to ask questions? 21 Why don't we take a break be-22 fore we start cross examination for lunch, if that would be 23 all right, returning at 1:00 o'clock. 24 25 (Thereupon the noon recess was taken.)

1100 1 2 MR. LEMAY: We shall resume 3 with the cross examination of the witness. 4 Yes, Mr. Douglass. 5 6 CROSS EXAMINATION 7 BY MR. DOUGLASS: 8 Q Mr. Greer, approximately what is your 9 gas cap volume now in MMCF or MCF, do you know? 10 А Well, we worked out some numbers last 11 time, I haven't quite kept track of it, but we can go 12 through that exercise again, if you want to, (unclear) --13 Q Well, I just -- is it something you've 14 got to calculate, you just -- you don't know approximately 15 how much your gas cap volume is with the gray area here? 16 Α Oh, from time to time. The gray area I 17 think is just not substantial. 18 What about the gas that's down in the Q 19 yellow? 20 А Down there, we can approximate that. 21 Well, we produced about 9-million barrels, and about 7, 22 roughly 7 cubic feet a barrel, that's about 63-million 23 barrels -- 63-million cubic feet, and then at roughly 100 24 atmospheres, that would be about 6.3-million. 25 Then the drainage pressure has dropped,

_

1101 1 oh, maybe down as low as 14, 1450 pounds, there's been some 2 shrinkage particularly from the up-dip area; that would 3 give us a little more participating gas, maybe -- maybe 200 4 BCF. 5 In round numbers it's probably in the 6 range of 8 to 10-billion cubic feet. 7 8 to 10 BCF? Q 8 А Yes, sir, that's my estimate right now. 9 0 On the wells that you've (not clearly 10 understood) in the unit out here, do you measure -- first 11 of all, are all your oil wells in the expansion area on gas 12 lift? 13 Α All except one that we're still fooling 14 around with. 15 Q All right, producing wells that are on 16 gas lift in the expansion area? 17 Α Yes, sir. I think -- I believe the G-32 18 is the only one we don't have on gas lift. 19 You said there were about nine producing 0 20 wells in the expansion or are there more than that now, ac-21 tually on production? 22 А Well, we'd have to count them but --23 You're going to have to add up the wells Q 24 in the expansion area? That's all right, if you have to 25 add them up, I don't -- I don't want to take the time.

1102 1 А The producing wells, yes. About four-2 teen. 3 You counted the D-17, it's 0 Fourteen. 4 not a producing well, is it? 5 Α Okay, take that off. We've been using 6 that for -- we've been using the D-17 as an observation 7 well for about a year, so that would get us down to thir-8 teen. 9 Q You're actually producing thirteen wells 10 during the month, now. 11 Α Well, most months. You know, occasion-12 ally we get overproduced. We've been trying to stay fairly 13 well within the current allowable. 14 Q Do you measure the gas that goes into 15 your gas lift at each well? 16 А Oh, yes, sir. 17 How do you measure it at each well? Q 18 Measured by keeping track of the -- the А 19 pressures that cross the choke and calculate (unclear). 20 Q Pressures that cross the choke. Do you 21 have a chart on it, a meter? 22 Α It's a calibrated choke. 23 It's a calibrated choke, so the pumper Q 24 will go out once a day and check that or how often would 25 you check it?

1103 1 А Yes, he checked it once a day. 2 It's an eyeball measurement that he made Q 3 across the choke? 4 Yes, sir, Α 5 Q And then how do you measure the gas? Do 6 you measure the gas immediately when it comes out by meter? 7 Yes, sir. Α 8 Q All right, out of the well you measure 9 it by meter. 10 А We use a standard, conventional flow 11 meter to measure the total volume of gas. 12 At the well? Q 13 Α At the well. 14 You have a meter at the well that Q 15 measures the gas. Is it separated at the well? 16 А Yes, the gas and oil are separated at 17 the well. 18 Q And then you measure the gas at the 19 well. 20 А Yes, sir. And we have a separate meas-21 urement for each well for the gas volume and the oil vol-22 ume. 23 Each day. Q 24 Each day. Α 25 Charts. Q

1104 1 Yes, sir. А 2 You've got the chart, the gas chart. Q 3 Α Right. We use 7-day charts for the gas. 4 Is that -- are those the charts? Do you Q 5 add up those charts to get what the gas -- the well pro-6 duced for the month? 7 Usually, we've found Α Once in awhile. 8 that for the most stable wells, the most accurate way to 9 determine the volume is to get the gas/oil ratio for a 10 period that's representative and use that gas/oil ratio for 11 the full month. 12 In other words, you --Q 13 А Well, no, I'll say until there's a 14 change and we can, of course, tell by looking at the charts 15 if there is a significant change in the gas volume, and 16 that's only on the boundary wells. All the others are 17 fairly stable. (Not clearly understood) end of the month 18 these are checked within, oh, 4 or 5 percent. 19 0 So you make measurements and then you 20 allocate for the gas produced for the well. 21 А That's correct. 22 Q And that's how -- you use those measure-23 ments to calculate your gas/oil ratio. 24 Yes, sir. А 25 Q And that's the wells along the -- for

1105 1 instance, the E-6 would be one of those wells. 2 Α Yes, sir. 3 Now --Q 4 Oh, excuse me, I believe the E-6 right Α 5 now, I think, with the high gas/oil ratio, I believe we cut 6 gas lift, the input gas off, so all we've got is just the 7 the (inaudible) 8 Q Is it flowing, then? 9 Α Oh, yeah. 10 The E-6 is flowing. 0 11 Α Yeah, they all flow by the gas lift 12 system and some of them will flow all the time without the 13 gas lift but I'm using the gas lift to get more stable 14 rates and I just prefer to do it that way. 15 Q Mr. Greer, you've submitted some injec-16 tion figures here, is that correct? 17 Α Well, that schedule that you have, as I 18 understand was given to Dr. Lee's people from our office 19 but I have not looked at it. 20 Q Let's see if I understand what is hap-21 pening. 22 You started injection according to this 23 about in looks like 1968, is that correct? 24 Yes, sir. Α 25 Q And you took the gas that was being

1106 1 produced, all the wells that you were producing were east 2 of where we've designated the barrier, is that correct? 3 А Until -- until we brought the wells on 4 west of the barrier. 5 Q Right, and that wasn't until what, 1982 6 or '83? 7 А I believe it was closer to '85. 8 '85, I think you're right. I believe Q 9 the first well went on in January, '85, and so from '68 to 10 '85 you had gas production the brown area injected in the 11 brown area. 12 Yes, sir. А 13 All right, sir, and then is the way you Q 14 over-injected -- strike that. 15 When you first started injecting, prior 16 to that time had you been -- what had you been doing with 17 the gas? 18 Α Before we started injecting? 19 Q Yes. 20 Α We'd had a period of time when gas at 21 that time was worth, I think, the high was around, oh, 12 22 or 13 cents a thousand. We tried to get pipeline companies 23 to lay to us so we could market the gas but we were unable 24 25 I'm sorry, Mr. Greer, were you flaring Q

1107 1 the gas? 2 sir, so until 19 -- about 1967 or Α Yes, 3 '68, we made arrangements whereby we could deliver gas to 4 the towns of Dulce and Chama, made a swap out arrangement 5 with the -- to the pipeline companies so that we could 6 We sold gas for I think 6 or 8 months and at market gas. 7 that time I had concluded by studies and decided instead of 8 selling gas we should inject it. So we turned around and 9 instead of selling gas we started buying make-up gas. 10 And the gas was pretty cheap in those 0 11 days. 12 Yes, sir, we had like a 25 year contract А 13 (not clearly understood), something like that. 14 one of the advantages in addition to Q So 15 what you say is additional oil recovery, is that you in 16 fact got to store the gas where if gas prices ever did move 17 up, you'd have it available. 18 Α Yes, sir, but unfortunately we didn't 19 have the foresight to realize that would be an advantage, 20 but it turned out by happenstance that it was. 21 0 And then you over-injected, I believe 22 that you got up as high as 1.4, is that 1.4 BCF? Is that 23 what those figures over here? 24 Well, I haven't seen this schedule. Α Ι 25 don't believe we injected roughly 12 billion total.

1108 1 Q Well, I don't know. I was just looking 2 at the -- I assume the minuses, according to the column, is 3 a net over-injection. It says MMSCF, is that --4 Well, I'd have to ask the people who Α 5 prepared this schedule. It doesn't look like I can inter-6 pret it myself here. 7 Ι think I'd better ask Dr. Lee's 8 opinion. 9 Is it (not clearly understood) over-Q 10 injected? 11 12 (Thereupon a discussion was had off the record.) 13 14 Q Mr. (unclear) has conformed that accord-15 ing to these figures, that's BCF figures if I put the deci-16 mal in, and I'm going to say it's about 1.4, roughly you 17 got about 1.4 BCF over-injection, is that correct? 18 I assume that that's right. Α I don't 19 know. What -- what year is this? 20 Q Well, you look at it and tell me what 21 year. 22 А (Not understood.) 23 Well, there's a whole lot of 1.4's along Q 24 with the year, it looks to me like 1983. 25 Well, I presume that's right. А I know that we bought make-up gas. We used (unclear) and my recollection is that -- just offhand I would not have thought
that we had that much over-injection.

1109

Q I see. In 1980 does it show -- can you
give me November of 1980 off of this -- this graph?

A Yes, sir, if I recall, in 1980 we made a
review of our injection; in fact, we filed it with the
Commission at a hearing, and as I recall we had -- we were
gaining about 10 pounds a month, which I felt was just
about enough to balance the drainage down dip of the oil in
the oil section.

12 Q Mr. Greer, in 1980 you over-injected 1.4
13 BCF, haven't you, approximately 1.3 BCF according to these
14 figures you submitted to the Commission in 1980, late 1980?
15 A Mr. Douglass, as I said, I have not
16 checked these figures and I don't mean to hedge, but let me
17 tell you what the situation is.

When -- when I made my review for the Commission in 1980, I recall that in using total figures of production and injection, I had to take into account fuel usage, and I'm not sure that they're on here. I didn't do this. We might save some time here if --

23 Q That would be all right with me, Mr.
24 Greer.

25

Α

I have a feeling that there may be a --

1 I don't whether I have a misunderstanding or what, but 2 there was -- if these are Dr. Lee's pressures, it's my un-3 derstanding that he was running a study for Sun, a direc-4 tional study. Sun is very much concerned about migration 5 and Sun feels very strongly that we have an oil bank effect 6 and they wanted some information from him, I think, on pre-7 liminary -- (unclear) preliminary basis, and I made my own 8 calculations for migration and I know we had the same cor-9 rections. They're substantially different from Dr. Lee's. 10 Q What you're really telling me is that 11 during the time of over-injection the pressure was still 12 going down in the unit area, this brown area, isn't that 13 correct? 14 А Well, now, up until 1980 I think we

15 over-injected enough to just about balance the pressure and 16 at that time I think my pressures were around, oh, 1450 17 pounds, and today in talking about these things, I (not 18 clearly understood) talking about, oh, 1600 to 1650 19 (unclear).

20 Q Well, Mr. Greer, didn't you testify that 21 even though you'd been over-injecting that you could not 22 maintain pressure in your unit?

A Well, yes, sir, the situation is there
but again, as I explained in my 1980 hearing, is that in
addition to replacing the gas with the volume of oil that's

1111 1 produced, as the oil moves down dip you have to increase 2 the pressure of the gas cap just to maintain the pressure 3 in the oil flow, so even though we over-inject, why, we 4 don't see a substantial increase in the pressure. 5 Q Are you saying that the pressure decline 6 that's shown on Exhibit Twenty from the time you started 7 injection till the -- you actually measured some pressures 8 in the oil column is incorrect? 9 Α Oh, I wouldn't say it was substantially 10 incorrect. Ι think we have about 1600 pounds in 1980. 11 What does your graph show? 12 Α It shows in 1980 that the pressure was 13 about 1570, 60, 70. 14 Okay, then I didn't miss it more than 50 Q 15 to 100 pounds. 16 Α But it's not at the level that Dr. Lee 17 shows in his work, is it? 18 Oh, no, it's not. Α 19 0 Now, let me see if I can understand the 20 situation. 21 If the barrier exists here, and it is 22 effective separation, then that's not going to adversely 23 affect your injection project. Is that correct? 24 Well, if it was an absolute barrier, Α 25 which, of course, you know I disagree with that, --

1112 1 Sure, I think I had feeling, too. Q 2 Α Okay. 3 I sensed that, Mr. Greer. Q 4 Α You're very perceptive. 5 Q One country boy to another country boy, 6 I sense that. 7 Α If this area is a barrier, okay, what 8 about that? 9 It's 0 not going to affect your gas 10 injection project you've got carrying on. 11 Α Well, if it's an absolute barrier, it 12 would affect it to the extent that we'd have to do some-13 thing different. We'd have to find just where the blamed 14 thing is and drill some more wells down there right next to 15 it. 16 Q Now, when you say absolute barrier, have 17 you put on any absolutes in this case so far, Mr. Greer? 18 Α Oh, in this business I think there 19 hardly are any absolutes. 20 In other words, even if there's not ef-Q 21 fective communication across that barrier, it's not going 22 to affect your injection project, is it? 23 Α Well, only to the extent that there's 24 additional stuff. We feel there is lots of oil down dip 25 from the existing producing wells and if we're going to

1113 1 have to move that oil across your (not understood) to the 2 down dip wells, then we've got to drill additional wells 3 to pick it up. Let me ask you, if -- what are these 0 5 wells up here to the north, directly north of your injec-6 tion wells? 7 Α That's the East Puerto Chiquito Mancos 8 Unit. 9 Q The East Puerto Chiquito Mancos Unit, 10 and pressure maintenance? 11 Α Well. we've got a pressure installed in 12 some of our lines; we've not got it in operation yet. 13 We've done the other things that go with that kind of oper-14 ation to shut in the high gas/oil ratio wells. 15 Q Answer no? 16 Α We have not started the injection yet. 17 Q And so it's not a pressure maintenance 18 project over there. 19 А Not yet. 20 Is it separated, effective separation, Q 21 from the -- from --22 А Oh, yes, we've mapped faults. In fact 23 we actually (not understood) a fault in one of the wells 24 and it had a throw of something like a little less than 300 25 feet. So it's separated by a fault from the area to the

.

1114 1 west. 2 Now, Mr. Greer, we all know that you can Q 3 have a fault but it doesn't necessarily mean separation, 4 does it? 5 Α Well --6 Q You've got a 600 foot formation here, 7 don't you? 8 Α Yes, sir, but we have an initial -- I 9 just a minute and point out that initially we might take 10 thought that it was in communication with the rest of the 11 area. 12 Q Might have been a source from where that 13 gas was going where you couldn't build up the pressure, it 14 kept going down when you were over-injecting. 15 Α Well, as we said before we started in-16 jection, after we drilled enough wells, found the fault, we 17 also found water on down this side and so that pretty well 18 confirmed it's isolated. 19 Is there a pressure differential up Q 20 there between your West Puerto Chiquito Area here and that 21 area? 22 Α Yes, sir. 23 How much? Q 24 А Well, if you're speaking of the injec-25 tion wells, of course, apparently you have a different view

_

1115 1 of them and 2 Well, how about --Q 3 Α -- injection well but they're --4 How far --Q 5 They're up about 1600 pounds and the Α 6 pressure there will be a couple of hundred pounds, so there 7 what --8 And if you'd use the pressure in the Q 9 area you've got 1400 versus 200 pounds. 10 It was 1200. Α 11 Q You're producing that area up there at 12 depletion now? 13 Α Well, we're producing it, like I say, 14 like I say, rather gently while we're trying to get our --15 all the things together we need to do to our enhanced re-16 covery method. 17 When you produce it gently, though, it Q 18 gets down to the same pressure. 19 А Well, we shut in the high gas/oil ratio 20 wells so that we can produce oil to take the pressure 21 gradient. 22 0 Now if the (unclear) exists, as I under-23 stand what's taking place, is that you've over-injected in 24 the unit area and I notice here that after a period of 25 time, according to these figures, you quit the over-injec-

_

1116 1 tion, according to the figures that you've submitted to the 2 3 My recollection is that when the price Α 4 of gas went up, it seems to me that it was around '78, it 5 may have been within a year or two later, then we reduced 6 the amount of gas that we were -- make-up gas, that we were 7 buying. 8 Q I guess one of the problems I have, I 9 can't tell that on this list because it goes from 1975 to 10 1980 and so I can't tell what happens in there, but you 11 think it's about 1978 or '79? 12 А Somewhere in there, and I apologize, if 13 I'd known you wanted this information, why, I'd have pre-14 pared it and tried to help you. 15 Q Well, I understand and I'm sorry. You 16 know that this is information that the Chairman requested 17 and I'm just trying to see what it is. 18 А Okay. 19 Yeah. Q 20 Α I just don't know enough about it, any-21 way. 22 Q Well, I'm trying to see what took place 23 in the Unit during this period. 24 Α I think I can pretty well tell you that. 25 Q So then I notice even after that,

1117 1 though, in '81, '82, you've still got the over-injection's 2 building up. How does that happen if you start selling gas 3 in '78? 4 Oh, well, the over-injection, as I un-Α 5 derstand that they were working on is on the assumption 6 that it would be only in the project area. 7 Well, I think until '80 -- this is based Q 8 only on the pressure maintenance area here? 9 А I assume that that's what they're talk-10 ing about when they show over-injection. That's what I --11 I meant by over-injection in the hearing in March, you 12 know, we had an exhibit or two that showed how much we had 13 over-injected in the project area and converted that to 14 reservoir barrels a day, which I felt had been moving 15 across the tight strip, but I'd have to go to that exhibit, 16 but that's not -- that was my -- the way I figured over-17 injection. 18 Now this is Dr. Lee's work and I don't 19 know what they were doing. 20 Well, what is the project area? Do you Q 21 consider the project area to go over to the boundary of the 22 -- between --23 Well --Α 24 -- the pools now? Q 25 А No, sir, it's identified as stopping

1118 1 right along the (not understood). 2 Right along the barrier there, maybe, Q 3 huh? Is that a pretty good place where you said you'd --4 is that where you said you -- is that there you stopped it? 5 Α No, it was along the permeability re-6 striction. 7 Q In fact you're shown a restriction in 8 that area for many, many years, haven't you? 9 Α Oh, yeah. 10 Well, I still don't understand how if Q 11 you started selling gas in '78 that you continued overin-12 jecting until '82 or '83. 13 Α Well, if indeed we're talking about the 14 project area only when we use the term "over-injection" --15 Q Uh-huh. 16 Α -- which is all we can do right now, 17 that's all we have is the project area, so gas that was 18 produced in the expansion area was what constituted over-19 injection. 20 Well, but I didn't think you started 0 21 producing the expansion area till '85. 22 Α That's right, so I don't know what --23 again, I didn't prepare these figures and I can't --24 Q You can't help me understand them, then, 25 can you?

1119 1 А I'm sorry, I can't understand them, 2 either. 3 Well, this --Q 4 From my own knowledge, my own under-Α 5 standing, I know that we did not buy enough make-up gas to 6 -- well, it would be over-injection (not understood). 7 Well, let me ask you, if you continue on Q 8 during the period of time we're talking about here, when 9 you started development of the expansion area, you took the 10 gas produced from those wells and injected it in the pres-11 sure maintenance area, is that correct? 12 That's correct. А 13 Now, in the fall of '86 Q All right. 14 didn't you give a pressure on your B-18 Well similar to 15 what we've seen here? Isn't that pressure you actually 16 told the Commission existed in that in the March, '87 17 hearing that is about -- it was about -- I don't know what 18 that number is, 12 -- 1250, or something at that level, 19 what the exact pressure was, but isn't that about the 20 pressure --21 Α Something like that. 22 Q -- that 1250, something like that? So 23 beginning in about '85 and certainly during '86 you started 24 taking the gas out of the expansion area and putting it 25 over in the pressure maintenance area.

1 Yes, sir. Α 2 All right, sir. And then when the --Q 3 when the Commission reduced the rates in August of 1986, or 4 September of '86, you continued that on through today, to 5 take the gas from the expansion area, putting it over in 6 the pressure maintenance area. 7 Oh, yes, sir, and it caused an area of А 8 substantial interference effect. As you can see, when we 9 injected higher volumes, that tight area was passed up and 10 those pressures, as you may recall from the surveys from 11 July to November to February changed considerably on those 12 injection wells. They (unclear) down 2-or-300 pounds de-13 pending primarily on the -- on the rate of injection pre-14 ceding, oh, a month or two --15 Well, then --Q 16 Α -- that's why it's so difficult to try 17 to arrive at some kind of a weighted average pressure. 18 0 Then these high pressures in the injec-19 tion area measured in November of '87 are not necessarily 20 inconsistent with having the barrier, are they, if you 21 over-injected in the pressure maintenance area and it was 22 actually separated, and you over-injected in the pressure 23 maintenance area where you have a tight area? 24 The only consistent analysis that we Α 25 have of that was for the time of the surveys that the

1 Commission ordered and we were able to analyze that and 2 those analyses of mine appeared in the -- our exhibits for 3 the March hearing, my analyses of how the pressure fell off 4 for the entire time we injected gas, we sold some gas, 5 overall we over-injected and the pressure dropped. That's 6 the only real analysis that we have and it's a problem 7 where -- where there's as much interference effect as there 8 is because of that tight gas cap area. It's something that 9 I watch and study and in fact we've got a bomb in the K-13 10 right now trying to -- to determine as best we can what's 11 going to happen. One of our faults, as I believe most of 12 the people in this room can understand, is we don't know 13 what the allowable is going to be and we have to be pre-14 pared for -- for injecting larger volumes or whether ex-15 isting wells will take this stacking up of gas, and the in-16 terference effect is something that I really have to try to 17 understand; whether we need to drill more injection wells 18 or whatever we need to do. And whether I'll be prepared to 19 make a recommendation to the working interest owners when I 20 get the answer from the Commission on the allowable, or if 21 I don't know it will I have time to work at it. 22 Q Is the answer yes or no?

23 A The answer is if we inject at high rates
24 the pressures stack up and there's primarily an interfer25 ence effect and there's no way to determine if that's in-

1 creased the over all weighted average pressure in the gas 2 cap other than by the way I just tried to describe that we 3 presented to the Commission in the March hearing. Well, my question was, having these two Q 5 high pressures in the gas cap area due to over-injection in 6 the tight area is not inconsistent with having a barrier 7 where there's no effective communication, is it? 8 Α It's also not inconsistent with gas 9 moving across that area, so it in itself is inconclusive. 10 During the period of time that you've Q 11 had this injection project going on out there, you had an 12 observation well, didn't you, Mr. Greer? 13 А Well, we've -- we've used several dif-14 ferent wells for observation wells. 15 And you're observed during the period of Q 16 time of over-injection that the pressure generally going 17 down in those wells, even though you were over-injecting, 18 slightly. 19 Α I think that's what I mentioned awhile 20 The pressure actually increased up to about 1980 and ago. 21 then it gradually started decreasing. 22 Q Now, one of the other, I guess, I don't 23 want to call it a complaint, an observation you made, was 24 that we had left a line off of one of your pressure charts, 25 is that correct?

1123 1 А Yes, sir, well, didn't leave it off but 2 mislabeled one of them. It's a little more difficult on 3 the small scale --4 I'm sorry, I understood we left off the 0 5 line. We didn't leave off any lines? 6 Α Where you have the label right there, 7 that shows that bar to be a part of this exhibit. 8 Q I see. 9 Α But I'm sure that was not a (unclear). 10 Oh, I'm sure it wasn't. Q 11 Let me ask you this, Mr. Greer, I think 12 you said you didn't -- you couldn't -- you didn't remember 13 why you were running this build-up on this P-32, I've for-14 gotten when it was, but I guess it was --15 Α I think that January 31, 1987. 16 Q January of '87 or '86? 17 '87, right. Α 18 **'87**. Q 19 About 60 days before we ran the other А 20 test. We occasionally run build-up tests and drawdown 21 tests. 22 Q Well, I don't get to do this very often, 23 Mr. Greer, but I'm going to try to refresh your memory. 24 Α Okay. 25 Q Yes. Isn't the reason that you had that

1124 1 well shut in, the B-32, in January of 1987, is that you 2 were getting ready to frac another well? Testing your 3 memory, how about the A-20? 4 А That's possible. 5 0 Mr. Greer, let me show the rest of the 6 pressure data that you didn't post on your exhibit, and 7 have that identified as Exhibit Fifty-four. I really -- I 8 Some of this data you've got posted but misstated that. 9 the data from just before the change in pressure slope 10 there -- let me show you this. 11 Where the change in pressure slope oc-12 curs, you haven't posted that data on your -- on your C --13 on your B-32 Well, January and February of 1987, did you? 14 Α Well, let me see what days -- let see, 15 we shut the well in on the 31st and so that was the fifth 16 and sixth day. I presume we went on and --17 Q I think you did. I think you went up 18 right before you fraced the well timewise but you didn't 19 post the date. 20 Α Oh, yeah, it wouldn't have any bearing 21 on that test. 22 Q Oh, it wouldn't have any bearing on that 23 test. Well, let's see if it does. 24 Does that Exhibit Fifty-Four look like 25 you've had a frac response in the --

.

1125 ١ Α Well, it would be beyond the point of 2 the --3 It would be right there. If you put it Q 4 on this scale it would go practically straight up, wouldn't 5 it? 6 А Oh, yeah. 7 Yeah. Now, does that look like the same Q 8 kind of frac response that you say you got from the C-34 a 9 vear later? No, not a year later, I'm sorry, two months 10 later? 11 Well, this, Mr. Chairman, this А Right. 12 is one of the tests that we made and I appreciate him re-13 freshing my memory on it, that convinced us that we had a 14 very high degree of north/south permeability here. At the 15 same time we had a bomb in the B-32 we had one in the B-29 16 and even though those wells are, say, about a mile apart, 17 the response was almost exactly the same and so here is 18 absolute confirmation of the extremely high transmissi-19 bility north and south. It's just -- those wells are a 20 mile apart, they might just as well have been as close as 21 from me to you. 22 Q How far is the C-34 from the B-32, about 23 two miles? 24 About two miles. А 25 And how far is the A-20 from the B-32? Q

1126 1 А About two miles. 2 About the same distance? Q 3 Α Yes, sir. 4 There isn't any question about the dif-0 5 ference in response, is there, according to your testimony. 6 Oh, yeah, there's no question in my mind Α 7 about the B-32/C34 response we discussed yesterday. 8 Q looks to me like when you drew your It 9 straight line there that there are a number of points above 10 your straight line down at this area. 11 А Well, I guess everybody sees certain 12 things different. That seems to like a pretty average 13 line. 14 I see. Are you satisfied that another 0 15 engineer couldn't actually find that there was a straight 16 line at a lesser angle than you have here and that there 17 was a response in that well in January of '87 that appro-18 ximately in time was the same as you show your frac res-19 ponse? 20 А He'd have to have better eyes than I 21 have. 22 Q Well, you and I, Mr. Greer, you and I 23 are getting close or I think I'm catching up with you, 24 about the same age, and we find that happens sometimes to 25 us when we get older, don't we?

A Oh, yeah, most people have different
2 interpretations.

Q Did I understand in your calculations
after your interference test that you found back in '65 or
'66, the one that Mr. Elkins analyzed and you analyzed,
that you determined that half of the oil was in the
fractures and half in the matrix?

8 Α That was my best assessment at that 9 That's an almost impossible thing to determine, and time. 10 my conclusion for that primarily was that I came up with a 11 bunch of different ways of averaging and so on, but if the 12 overall average, which I think that's what we got, that's 13 what Mr. Elkins thinks we got, is one number and it's like 14 10 times as high as what we get for the tight blocks, then 15 just seems to me like there's a good possibility that it 16 the high capacity system itself must have a higher trans-17 missibility, and it's just kind of a guess; turns out it's 18 a good guess because otherwise the gas would have channeled 19 during the -- all the time that we were -- and we could not 20 injected gas as long as we did without it channeling have 21 if there had not been a lot of it, or a high percent of it 22 in the high capacity fracture system.

23		so,	, like I	say,	it's	just	a	(unc	lea	ır)
24	Q	Is	the answ	ver to	o my q	quest	io	n yes	;?	
25	А	I	didn't	calcu	ılate	it;	I	kind	of	esti-

1128 1 mated it. In fact in all those ideas that I had as to how 2 to go about trying to analyze everything are in the files 3 of the Conservation Commission. 4 Is the answer to my question yes? Q 5 I estimated half of it in the fracture Α 6 system. 7 Then the answer to my question is yes. Q 8 I believe I answered that. Α 9 Did you consider the L-11 and P-11 Wells Q 10 to be wells that were in this major fracture system? 11 Well, the L-11, I forget now just how Α 12 the size of the fracture estimated is. It was in the 13 fractured block, just like the K-13 is in a fractured block 14 and on the block, on the -- when we put the well on produc-15 tion for a test, as I recall, it leveled out in, oh, a 16 matter of hours, and that, too, has been filed with the 17 Commission. 18 Is the answer to my question yes? 0 19 Α Well, we need to understand what you 20 mean when you say it's in the high capacity fracture 21 system. It's in communication, close communication. 22 It's in close communication but you had Q 23 -- when you --24 Α It's in a tight block that has good 25 communication with the high capacity fractures. The tight

_

1129 1 block itself is estimated to have the transmissibility of 2 about I think around .46 darcy feet. The overall system 3 has 10 or 12 times that. Did you say that when you turned on the Q 5 other wells that you had almost immediate response in that 6 L-6 and -- excuse me, in the L-11 and the P-11 wells? 7 Well, the P-11 was the first one we Α 8 turned on and we saw a response of quality within a few 9 hours in one or two of the wells and like 24 hours later in 10 the ones farthest away. 11 Q And how about when you turned the L-11 12 on? 13 Α About the same thing. The L-11 was a 14 little farther away; took a little bit longer to reach a 15 response over to the A-23, I believe, was the farthest ob-16 servation well that we had, and at that time we did not 17 have the sensitive pressure bombs and so we don't have the 18 exact time of the response. What we would do is measure 19 fluid levels, we did that twice a day, and we'd extrapo-20 late that back to give some kind of an idea of time. 21 Q I need to know if you think those two 22 wells were in what you would call the major fracture system 23 as opposed to what you call the hairline fractures. 24 А They're, well, my concept, Mr. Chairman, 25 is I just don't believe we've ever drilled a well right
1 straight into the fracture system itself. They've nearly 2 all been drilled into a, like I say, a tight block. A 3 tight block has these hairline fractures and -- and it's 4 the high capacity system surrounding that tight block that 5 does the good for the reservoir. You have to have all 6 these sideline -- these hairline fractures or we'd never 7 been able to carry on the pressure maintenance project. 8 Q Well, let's see if I understand your 9 concept. You say that no wells been drilled into the major 10 fracture system, that they've all been drilled in the areas 11 that you say the hairline fractures are located. 12 Yes. Α 13 Q And have been communicated in some way 14 out to this pipeline system or spiderweb or major fracture 15 system. 16 А Right. The E-10 might have been in a --17 was in a better -- had a better hookup with the system than 18 the others. I don't know if that's because we fraced right 19 straight into the fracture system or not. 20 Q But you're satisfied that both the two 21 wells, that the P-11 and the L-11 communicated with this 22 major fracture system. 23 Yes, sir. Α 24 Q Weren't in but they communicated with 25 it.

1131 1 А Yes. 2 Now, doesn't your pressure build-up that Q 3 you show on your Exhibit Seven show that after 60 days, 4 that the -- that those two wells were still building up? 5 Were they shut in? 6 А Yes, sir. I think I called that to the 7 Commission's attention yesterday. 8 Q And so after 60 days these two wells 9 that are connected with the major fracture system, although 10 they're in the hairline fracture system, just like every 11 other well in the field is in there --12 Α Right. 13 0 -- that these two wells after 60 days 14 hadn't achieved build-up. 15 Α That's right. I pointed that out yes-16 terday. 17 Q Doesn't that indicate to you the effects 18 of the dual porosity system? 19 Α I suppose, as I stated yesterday, that 20 would be one of the possibilities and of course the other 21 The information that we acquired later on was migration. 22 led me to believe that it was probably migration rather 23 than a dual porosity, and of course, I won't repeat what I 24 said. 25 Q Mr. Greer, do you disagree that during

1132 1 the normal rate of production in the last four and a half 2 months in '87, in what your side has called the high rate 3 production, that your wells in the expansion area produced 4 48 percent of the oil? 5 Α I have not calculated, but that sounds 6 reasonable. 7 Q All right, sir. With reference to the 8 oil in place as calculated by Mr. -- by Dr. Lee, there 9 would be 19-million barrels of oil in place in that expan-10 sion area, is that correct? 11 Α I believe so, that's probably a reason-12 able estimate. 13 Q And there would be 45.3-million barrels 14 of oil in place in the Gavilan. 15 Α Yes, sir, he has a little higher fig-16 ures, I think, but they're both very --17 In other words, there's almost 2-1/2Q 18 times as much oil originally in place in the Gavilan as in 19 the expansion area according to Dr. Lee's figures. 20 А Yes, sir. 21 And you, at the normal rate of produc-Q 22 tion, your wells produced 48 percent of the oil versus 52 23 percent. 24 Α Ι think that's probably right. Of 25 course, that's really not significant in terms --

Q You don't consider that significant, all
right, I didn't think you would, Mr. Greer.

1133

And at the restricted rate of production
you're now producing 54 percent out of the -- out of the
expansion area versus the Gavilan and I assume that you
don't consider that significant.

7 Α Well, that's -- of course that varies 8 from month to month just how we do it. The important thing 9 right now just like determining a high rate of production, 10 any time, is not how much oil you get out of the ground 11 insofar as the Commission orders are concerned for protec-12 tion of correlative rights, it's how much reservoir space 13 is voided and of course, with a limited gas/oil ratio, why, 14 we won't void any more space than anyone else, and, of 15 course, according to my analysis, why, our oil production 16 has come from the pressure maintenance project through the 17 restricted area.

18 Q I understand, but you don't have any
19 analysis to present to the Commission to show that the
20 voidage space that you're taking out of the -- just the ex21 pansion area, versus Gavilan, is anywhere equal.

A No, I said that previously when I estimated the amount of migration to and from Gavilan, I think
I --

25

Q

Did you use just the expansion area?

1134 1 Α Yes. 2 You did? And what month was this? Q 3 Α This is a little different way than per-4 haps computer modeling would -- would go about analyzing 5 migration, but what I show --6 Mr. Greer, could you tell me what month? Q 7 I show January 1, 1986, there had Α Okay. 8 been produced from Gavilan 1,500,000 barrels and 170,000 9 from the expansion area. totals 1,700,000. I'm convinced 10 that a third of the production at that time was coming from 11 the expansion area, so there would be roughly 500,000 12 barrels that had migrated from the expansion area into --13 into Gavilan. 14 started to catch up in 1987. We The 15 total drainage, January 1, '87, 3.8-million barrels and a 16 third of that should have come from the expansion area, 17 roughly 1,300,000; it actually produced about 900,000, so 18 we were 400,000 barrels short, but we're producing --19 gained a little bit in oil, but we're not taking out near 20 as much reservoir space as Gavilan, and to follow through 21 on that same analysis, I feel that overall there's been 22 about 4-to-500,000 barrels more moving from the expansion 23 area into Gavilan on overall migration, which is a little 24 more, I think, (not clearly understood.) 25 Q You don't have any calculations that you

 $\overline{}$

1 can show us for the normal rate or what you call high rate 2 production or the restricted rate production after that to 3 show what the reservoir withdrawals are between the two 4 areas.

A Only that the gas/oil ratios were much
lower right there at the end. On a proration basis, why, I
imagine they're about the same, the marginal wells and the
Gavilan wells.

9 Q I heard the term used here "superstar"
10 wells and I think there's an implication that Mallon is the
11 one that's got the superstar wells. If you were grading
12 superstar wells what would be the test that you would use,
13 and I don't mean an individual test, but what would be the
14 qualifications that you would say would be a superstar
15 well?

A Well, I presume that the implication is
wells that produce at high -- high rates, and that the high
volume wells would be the superstar wells.

19 Q How about cumulative production, is that 20 a pretty good test?

A Cumulative is not quite so good as the
just comparing, for instance, one well's been on production
for 10 years would have a high cumulative and another one
might be on for only a month and still be a good well.

25

Q

Mr. Weiss likes cumulative production to

1136 1 be an indicator of whether you've got an injection project 2 successful, didn't he? 3 Well, that's one of the characteristics А 4 or one of the qualifying factors whether pressure main-5 tenance is being successful. 6 0 And that would be over a period -- that 7 qualification would be over a period of about 20 years for 8 an injection project and maybe 25 years producing, is that 9 right? 10 А The main thing is the amount of produc-11 tion accompanying the low gas/oil ratio. 12 The --Q 13 А Large production with a high gas/oil 14 ratio is not so good. 15 MR. DOUGLASS: We'd like to 16 offer Exhibit Fifty-four, Mr. Chairman. 17 MR. LEMAY: Without objection, 18 Fifty-four into the record. 19 And let's identify as Exhibit Fifty-five Q 20 a list of Gavilan superstar wells and this time we're using 21 Gavilan as we understand it and suggest as opposed to what 22 you call the Gavilan. In other words, we're including the 23 expansion area there. 24 Exhibit Fifty-five, would you agree that 25 that looks like a pretty good ranking of the superstar

1 wells according to their ability to produce? 2 Well, I presume so but it's my under-А 3 standing when the Howard 1-11 came on, I remember Mr. 4 Mallon telling us one day that it was capable of about 3000 5 barrels a day and that one ranks with our B-29, so I won't 6 say that that's really that far down the line for -- if 7 you're talking about quality of reservoir. The problem, of 8 course, that's happened here, I think, is depletion and so 9 the (unclear) has changed. 10 Q The -- that happens when you deplete a 11 reservoir is the ability of the wells to produce goes down, 12 doesn't it? 13 Α Yes, so this is where you can see the 14 difference there, that the expansion area wells being re-15 charged with the pressure maintenance project manage to 16 stay up there. 17 Well, it's not necessarily inconsistent Q 18 with the barrier being there, is it? 19 Α Oh, yeah, it is. 20 Q You think it is? 21 А Oh, yeah, it is, because if the barrier 22 were there, why, those wells, the B-29, B-32, F-18 and F-30 23 in the unit, they'd be right on down there with the others. 24 Q Well, all these wells -- all your wells

25 were drilled later in the life of the field, weren't they?

1138 1 Α Yes, sir, but in this instance the com-2 munication is such that the area was depleted just as 3 though they had been there and producing themselves. 4 The -- in the superstar ranking there, 0 5 how many wells do you have? 6 А Well, by your list it looks like 1, 2, 7 3, 4, 5, 6, 7. I'm not sure I'd call the N-31 a superstar 8 well, but there would be 7, anyhow. 9 How about Sun? Q 10 Let's see, Sun, I'd count 1, 2, 3, 4. Α 11 You might cut superstar off at some Q 12 other level than those 18, is that right? 13 Yes, sir. Α 14 Let me show you what we'll have identi-Q 15 fied as Exhibit Fifty-Six. I understand there's a correc-16 tion that needs to be made on this. It says, Cumulative 17 I believe that's (STB), if you'd correct that Oil (DTB). 18 on your copies, I'd appreciate it. 19 Now, your -- cumulative productionwise, 20 looks like BMG has got the first two wells and Sun's got 21 the next two, is that correct? 22 Yes, sir. Α 23 Q Where are those Sun wells located? Are 24 they over here in the Unit area? 25 А They're in the central Gavilan area.

1139 1 Q These are Sun, yeah, Ι see them. 2 There's one, Native Son 2 and 1. There's the 2, I believe, 3 there's the 1, okay. 4 They are two miles further away from the Α 5 expansion area. 6 Α Yes, sir. 7 About 10 miles -- 8 or 10 miles from the 0 8 nearest injection well, and then of these on a cumulative 9 basis, the top two are wells -- let's see, you have 1, 2, 3, 4, 5. 5 of your wells have already gotten in the top 20 10 11 producers and you just started your production, I believe 12 you said, in '85, or say approximately January of '86. 13 Α Yes, sir. In fact, we kind of held off 14 in January of '86 when it looked like --15 Q Mr. Greer, is the answer to my question 16 yes? 17 Α Yes. 18 Thank you. If Gavilan is separated by 0 19 this barrier and has the expansion area and Gavilan as a 20 common pool or common reservoir or common source of supply, 21 do you think gravity drainage would be an effective drive 22 mechanism in the Gavilan as described as far as producing 23 economical rates of oil? 24 Α Not now. There was a time when I 25 believe they could have gotten a substantial amount.

1140 1 I believe one of the -- D-10, one of the Q 2 exhibits that you showed us, was a -- I said D-10, your 3 Exhibit Ten, comparison with Boulder, is that correct? 4 Let me find it. Α 5 Q This is what it looks like here. 6 Yeah, okay, I know which one you're Α 7 talking about. 8 And I believe you described that the Q 9 proration that was in effect for Boulder was a good prora-10 tion; that was a good system. 11 Yes, sir, good (unclear). Α 12 Q Were you -- were you aware that under 13 that good system of proration that Boulder had produced 14 almost 90 percent of its -- 90 percent of its pressure in 15 the first 3-1/2 years? 16 А Yes, sir. 17 You were? Q 18 Α Yes, sir. 19 Well, Gavilan has only produced about a Q 20 little over 50 percent of its pressure in 6 years, hasn't 21 it, and you say that's bad proration that you've had it 22 here. 23 Α The thing I pointed out, or tried to 24 I guess I failed to do that, apparently didn't point out, 25 make my point, is that had it not been for proration, that

Boulder would have produced at a higher rate than that,
might have exceeded their gravity drainage greater than the
wells could recover. They had wells that were capable of
producing far in excess of the 80 barrel a day allowable.
I think I mentioned one that actually was over 4000 barrels
a day.

7 Q Mr. Greer, do I understand that -- that 8 part of your exhibits here show some problems with bottom 9 hole pressures and trying to see if they're accurate, and 10 trying to take care of the column that's on there, to see 11 really what the pressures are?

A Well, the problem which I was afraid would occur, and it did, when we started surveying, was to point out that these pressures would not be -- should not be used to try to determine small pressure differences across the reservoir. We could use them for certain things but I think the way I used them is wrong as a way of using this kind of pressures.

19 Q In this major communication system, this 20 major frac system out there, very small differences in 21 pressures can move large quantities of oil, can't it?

22 A They can lead to large rates of produc23 tion, yes, sir.

24QNow that's the same thing you do --25AThey can --

1142 1 Q -- almost like a pipeline, isn't it? 2 Yes, sir. Yes, sir. Α 3 And yet you're proposing to this Com-0 4 mission that we use pressures measured along this now 5 common boundary to determine whether oil is moving from one 6 side to the other. 7 Yes, sir. А 8 Q -- Mr. Greer, have you calculated Mr. 9 how much Unit production would be increased if the Propo-10 nents application is granted, their position is granted in 11 this hearing? 12 А No, sir, I'm not sure there would be a 13 substantial increase. 14 Well, if you hold it back it wouldn't be Q 15 substantially increased, would it? 16 А That's been the nature of our operation. 17 Q If you elect to produce your wells at 18 capacity out there, you could produce well in excess of 700 19 barrels a day additional right now, couldn't you? 20 Α Oh, yes. 21 How much more do you think you could, if Q 22 you wanted to? 23 Well, I'll invite your attention to the Α 24 way the pressure is dropping now, the capacity may be 25 smaller than before.

_

1143 1 Q Are you aware how much Sun's wells would 2 increase if the Proponents position is granted here? 3 Α No, sir, I'm not. Do you think it makes good reservoir 0 5 sense to conserve gas and produce oil wells at the lowest 6 gas/oil ratio possible? 7 А (Not clearly understood.) 8 0 If that principle is good to produce 9 four months production in one month, why isn't it consis-10 tent to do that during the entire producing life of a well 11 at the stage that Gavilan and the expansion are if the 12 barrier's in place? 13 Α Well, whether they're in place or not, I 14 just feel that there is too much possibility of violating 15 the correlative rights, and I tried to describe that this 16 morning, in which the high capacity wells could pull all 17 the products out from under their land in looks like 150 18 days, or something, and then be draining something else, 19 and that just seems to me to be extremely high. 20 Q So as Ι understand, your objection is 21 that you think that the expansion area won't be able to 22 keep up. 23 А That's one. That's one of the reasons. 24 Q Have you got any others? 25 А Well, the main one I just mentioned,

1144 1 protection of correlative rights is just not there, and I'm 2 speaking now of within Gavilan itself, concerning one well 3 against another, the high capacity wells would drain their 4 tracts and then their neighbors' tracts. 5 Q Well, that's what I asked you. You 6 don't think the expansion area would be able to keep up 7 with Gavilan at the --8 Α Oh. 9 -- high rates? 0 10 А Oh, I don't know, it's hard to say. It 11 might be able to but I just don't like to produce at high 12 rates. 13 Q That would be an election that you'd 14 have to make. 15 А Yes, sir, that's the policy, that we 16 just do not want to produce at high rates and we'd be 17 losing some good stuff. 18 If the Commission were to restore it Q 19 back to 702 oil and 1404 for gas for a 320, do you think 20 that would be a rate that -- that you would produce your 21 wells in the expansion area? 22 Α Oh, well, we'd have to. 23 If the did -- if the Commission set that Q 24 kind of rate, then you would consider that, first of all, 25 that would be a rate that's -- that's statewide allowable,

1145 1 although I understand it's actually written, but it was the 2 allowable that was in effect before the restriction was put 3 in, is that right? 4 Α Yes, sir. 5 MR. DOUGLASS: Pass the wit-6 ness. 7 MR. LEMAY: Thank you. Addi-8 tional questions of the witness? 9 MR. DOUGLASS: Oh, I need to 10 offer Exhibits Fifty-Five and Fifty-Six. 11 MR. LEMAY: Those exhibits 12 will be taken into the record without objection. 13 Mr. Lopez, do you have any 14 questions? 15 Mr. Chavez. 16 17 QUESTIONS BY MR. CHAVEZ: 18 Mr. Greer, your calculations in the 0 19 efficiency of the operation of the pressure maintenance 20 project, have you included the acreage within the project 21 area or within the Unit area for calculating your volumes 22 of reserves? 23 А I calculated only the Unit area plus I 24 estimated 800,000 barrels, I believe, that had crossed the 25 tight streak in the expansion area and been produced there.

1146 1 Q Have you ever considered that there 2 have been drainage from either the north or from the might 3 south into the Unit during its production? 4 I did not. I did not. Α 5 0 Is there any reason why you didn't? 6 А Well, the -- from the north it will 7 still be Unit lands. From the south we might have enjoyed 8 some migration. 9 MR. CHAVEZ: That's all I 10 have. Thank you. 11 MR. LEMAY: Additional ques-12 tions of the witness? 13 Mr. Brostuen? 14 15 QUESTIONS BY MR. BROSTUEN: 16 Q Mr. Greer, yesterday I asked Mr. Roe 17 several questions about the status of some wells that 18 appear to be currently shut in along the -- what the 19 Proponents are claiming to be the barrier. 20 I was wondering, perhaps, if you could 21 update me as to what the status of those wells are, whether 22 or not they have any appreciable production from the Mancos 23 Pool, they're complete in this pool, or what have you. 24 For example, the Canada Ojitos Well No. 25 22.

1147 1 Α Is that the F-20? 2 Q If you prefer to use the F-20 or the 3 designation --4 Α That's how I've got them --5 Q Okay, fine. That's the F-20 Well, yes, 6 sir. 7 Α Yes, sir. That well we have pipe set 8 through the Mancos, through the Dakota. We perforated the 9 gave it an acid treatment, and the Dakota under Dakota, 10 those conditions appears to be capable of, oh, something 11 less than 100 MCF a day (not clearly understood) of oil. 12 Our plan is to frac the Dakota and to -- I believe we've 13 got the frac tanks on location now, or are going to this 14 week. We'll frac the Dakota and we're still (unclear) 15 about fracing the Mancos, and so I think we'll test the 16 Dakota first, see what it is, what it will do, and then 17 we'll frac the Mancos and I would imagine that we would get 18 that work completed sometime this summer. 19 When was that well drilled? Q 20 Α Oh, several years ago. 21 Q 1986? 22 А It was one of the first wells we drilled 23 after we got the expansion area approved. 24 I see. Okay. How about your G-32 Well? Q 25 Α Okay, G-32, the well has been fraced,

1148 1 appears to be a very poor well. We fraced it with a jelled 2 kerosine and we found that one of the other wells that we 3 fraced with jelled kerosine, that something happened, the 4 kerosine didn't break, and we went back and gave it a shot 5 of water and, what is it, one of the other chemicals, and 6 that seemed to help it. 7 We don't know if that's the problem with 8 the G-32. We've kind of set that well aside while we try 9 to find out what's the best way to frac the wells. We've 10 tried everything we could think of from water to jelled 11 oil, to carbon dioxide, and we still don't know what's the 12 best thing to do. 13 So the answer to that is that right now 14 it appears to be a small producer, very small, and whether 15 we're going to do any good with it or not, remains to be 16 seen. 17 And the well is currently shut in at the Q 18 present time? 19 Α I think we've tested it a couple times, 20 so I believe we haven't cleaned the sand out and pulled the 21 tubing and we've run some tests on it this month and I --22 or last month and I'd have to review to see what --23 Q Okay, but it appears to be a very poor 24 producer --25 А Well, in any event I don't expect --

-

1149 1 Q -- a marginal producer. 2 Yes, marginal. А 3 How about the F -- when was that Q Okay. 4 well drilled? 5 About, oh, a few months after the N-22. Α 6 It would have been probably (unclear). 7 Q Okay, so that well's been sitting there 8 since '81, has it not? 9 Yes, sir. Α 10 Q And you fraced it, the first attempt at 11 completion was back in '81? 12 Yes, sir. We have two problems with it. Α 13 is we're currently thinking about another well in the One 14 We've not built a pipeline up that canyon same canyon. 15 yet, so the only time we've produced the well is for short 16 periods and getting a small volume of gas. We do not have 17 it tied into our pipeline system. So our plan is to drill 18 another well, I forget which section it is, I believe it's 19 Section 30 up northwest of it, and when we do that we'll 20 probably lay a pipeline system up the canyon and tie in 21 then before we run definitive tests on them. 22 Q Okay. How about the J-20 -- pardon me, 23 J-8 Well? 24 J-8 is a real sorry well. Α 25 Q And that's completed in the Mancos?

1150 1 Yes, sir. Α 2 And when was that drilled? Q 3 My recollection is about two years ago. А 4 Okay, so we're talking about 1986. 0 The 5 B-17, is that a well you've been utilizing for observation? 6 We've been using it for observation. Α 7 Its capacity is probably, seem like 10 or 12 barrels day. 8 It's a small well. 9 Q Okay, and that well is currently shut in 10 or producing? 11 Α It seems like a pretty useful purpose 12 for that well is to use it for an observation well. 13 And when was that well drilled and Q 14 completed? 15 А It seems to me like we completed it, oh, 16 maybe a month or two before we put it on observation, which 17 I think was about a year ago. 18 Benson-Montin-Greer A-16 Q Okay. The 19 Well. 20 Α Okay, that well is a -- about all I can 21 say is they don't -- they don't do things like they -- like 22 they used to. 23 We produced that well for, oh, I guess, 24 20 years with a hydraulic pump out of the C Zone and went 25 in last year and fraced the A and B Zones, and then we from

1151 1 time to time work on it and we ran a new string of tubing 2 in it, plastic-coated tubing, the kind we had before, but 3 we just can't make the thing go. We set the pump back up 4 and tried some repair and in year's past we used to have 5 really good luck with those hydraulic pumps, and now we --6 Q Is --7 -- can't get the blamed thing to go. А So 8 it's another problem but it is one that I'm going to get 9 solved one way or another. 10 0 And that well was completed in the C 11 Zone initially? 12 The C Zone. I think it made like a А 13 100-to-150,000 barrels of oil out of the C Zone. 14 And did you deplete your -- or --Q 15 А It was still making, as I recall, about 16 20 barrels a day. 17 20 Q barrels a day, and you've been 18 unsuccessful with it so far in getting production from the 19 A and B. 20 А I wouldn't say we haven't got any pro-21 duction; just don't know what -- we've not produced it. 22 Q The well off to the southeast of the 23 A-22 Well, it appears to be 3/4 of a mile or a mile, or 24 over a mile, perhaps, to the east of the Proponents 25 barrier, what's the status of that well?

1152 1 Α It's shut-in. 2 Shut it in? Q 3 А Yes, sir. We were toying about com-4 pleting in the A and B Zones and then if we put in a gaso-5 line plant, using it for cycling. 6 It has been completed in the C Zone? Q 7 А Completed in the C Zone. I think it 8 produced maybe 3-or-400,000 barrels. 9 MR. BROSTUEN: Thank you very 10 much. 11 MR. LEMAY: Commissioner 12 Humphries. 13 14 OUESTIONS BY MR. HUMPHRIES: 15 Mr. Greer, in some of Mr. Hueni's testi-0 16 mony he showed some production information records on wells 17 in the Gavilan Mancos that took what appeared to be a long 18 -- longer than normal period of time to sort of hit their 19 stride after they went to the high rate. It took a longer 20 period of time for those wells to come back up than what 21 they had anticipated. 22 How would you explain that? The first 23 few days were slow production and they -- they kind of came 24 back to what they were supposed to, what they had expected 25 of them, in barrels of oil produced.

1 А Yes, sir. The only explanation I have, 2 the one that seems logical to me, is we know that those 3 zones are stratified. Normally we did not have this kind 4 of a problem when the gas/oil ratios were lower, at least I 5 hadn't heard of a discussion of it and this gravity segre-6 gation, which I'm sure some has taken place; it's possible 7 that one zone has lower pressure than another, and the A 8 Zone could force some of it back into the -- back into the 9 and this could just go on, you just have to get B Zone. 10 that gas bubble out of there before it goes on. That would 11 be one possible explanation. 12 The idea of converse or reverse rate Q

12 Q The idea of converse or reverse rate 13 sensitivity certainly has some logical explanation. You 14 don't give that merit?

A The only direct case that we have that's
been given as an example in this hearing, I know was not -did not have that relation. That's our E-6 Well. It was
shown as an example well for the issue of high rate and low
gas/oil ratio.

What happened on that well was that the high volume was established, the offset wells came on and started producing oil and gas. They pulled the gas out from under our well and its gas/oil ratio went down and that was like for a month and a half. The allowable started July 1. The drainage to the offset well took place

until about mid -- mid-August, and then at that time we finished the modifications to our equipment, where we could produce at higher rates, and then we increased the rate about mid-August on that well.

5 And so it's a confusing thing that de-6 velops, that for that month of August the gas/oil ratio is 7 low and the oil production is high, and it would appear 8 that would be cause and effect, but that's not the case. 9 I had excellent information, producing pressures, injecting 10 gas, record of the drop of bottom hole pressure in the 11 area, and there just absolutely is no question for that 12 particular well that it had no bearing on efficiency. I 13 had, I think, some exhibits on that at the March hearing.

14 The other wells in Gavilan, we just have 15 not operated any there and I just don't have a feel for it. 16 I can understand from the statistics the concern that the 17 people in Gavilan have had wells that appear to have that 18 characteristic. I believe there was -- all of them that I 19 looked at, there was nothing but depletion, but I think 20 that there were few that clearly seemed to have that re-21 lation, so that was, I think, why John Roe came up with the 22 suggestion that, well, let them produce as high as they can 23 and they perceived that to be the efficient way to do it, 24 to letting them go ahead and do that, but to protect corre-25 lative rights, balance out occasionally on allowable.

1155 1 Q In Mr Elkins' testimony he mentioned 2 that he thought West Puerto Chiquito was being produced ex-3 ceedingly, that's his word, slow. I understand your theory 4 for producing it the way you are, but for the way you do or 5 your method of operation, but his emphasis on exceedingly 6 slow, certainly kind of escaped me. Is there another 7 reason that could be operated --8 Α Well, the only reason was to try to get 9 gravity range recovery. I think (unclear). My analythe 10 sis shows about 20 --16 to 25 percent of oil in place re-11 covered so far. We still have along way to go, and I feel 12 that it's worked excellently. 13 Gavilan, on the other hand, is going to 14 get 6 or 7 percent. 15 Q In some speculation, is there another 16 reason why a reservoir would be operated exceedingly slow? 17 Another reason? Α 18 Right. 0 19 Α I had no other reason. I was the only 20 one that made the decision about how -- how fast to produce 21 the wells. 22 Q In the Exhibit Twenty that Mr. Hueni 23 prepared, showing the relative difference in pressures for 24 Gavilan Mancos and West Puerto Chiquito, it's something 25 that has bothered me since the first time we looked at that

1156 1 exhibit, and I'm not sure if that was March of '88 or last 2 year, but that when Gavilan Mancos came on and that rapid 3 increase in production was there, it appears to not show a 4 corresponding drop in pressure from West Puerto Chiquito, 5 indicating some kind of difference between the two sides, 6 and you've explained that as, I believe, restriction, I'm 7 not sure exactly how you explained it, but that's it, I'd 8 like you to tell me one more time so I understand --9 Α Okay. 10 0 -- why you don't think that that would 11 indicate that there's some kind of a barrier. 12 Well, I think it indicates a restric-А 13 tion, a permeability restriction, and it just doesn't need 14 to be a barrier, and I am most thankful that it's there. 15 you know, if it hadn't been there, Canada Ojitos would have 16 gone over to Gavilan, so we're fortunate that that restric-17 tion is there, that we still have an opportunity to recover 18 that oil by gravity drainage; otherwise we would have not. 19 Well, let me ask you, if -- with or Q 20 without the barrier, if you're taking the gas for your 21 over-injection, theoretically, from the expansion area or 22 transition area, whatever you want to call that, do you 23 feel that that in some fashion sets up a pressure sink that

25 Range 2 line, or the pool boundary, to the transistion

advantageously moved liquid from west around Range 1 and

	1157
1	area?
2	A Well, I certainly don't don't think
3	so. I've seen no evidence of it so far and I don't think
4	that is happening now. If the barrier was there, why, of
5	course, if we produce at higher withdrawal rates than the
6	others, why, then that could happen, and so I understand
7	some of the opposition and that's why we're willing, you
8	know, to submit to any kind of monitoring by the Commission
9	to to guarantee that that isn't happening. We can't
10	just inject an excessive amount; that is just mechanically
11	and physically we can't do it; and if we can't, then
12	there's only one other thing we can do, we can sell that
13	gas. If we sell the gas, then we lose our gas injection
14	credit. So it's sort of a self regulating system the way
15	the pressure maintenance formula works, and that alone
16	gives a lot of protection to the parties on the west side
17	of the boundary.
18	But absent that, I mean even with that,
19	we're willing to do anything else.
20	Q In your theory of pressure plateaus,
21	that this row of sections going from north to south just
22	west of the alleged barrier, and I can't I think the
23	K-13, B-29 and the B-32, and right in that row of sections,
24	when would you expect to see some kind of demonstrable
25	pressure results from the injection if the barrier is not

1158 1 there and the next plateau is achieved that I suspect is 2 demonstrated under color in the rainbow map, if you will, 3 between there and the next row of sections, because there's 4 fairly significant amount of distance between those a 5 producing wells and the wells along the pool boundary? 6 А Well. I believe the wells in the expan-7 sion area and Gavilan are so well connected that we'll 8 never see much of a pressure difference. 9 I think we'll see enough difference that 10 we can tell if there's migration but just generally that 11 area is going to be lower pressure than the rest of it. 12 Wouldn't those wells show some response Q 13 as the next plateau was achieved prior to the ones farther 14 west, or do you think --15 А Do you mean as the gas works through? 16 Q As you achieve the next plateau or the 17 next color in the rainbow? 18 Α I don't guess I quite follow your line 19 of questioning. 20 Q Well, if -- if you move -- you've sug-21 gested that it takes awhile for each of these plateaus to 22 achieve a higher pressure and you demonstrated that by the 23 rainbow map, and it appears to me me now that if the bar-24 rier is either more permeable than is alleged or -- or is 25 not there, that the next response in a pressure plateau would be in that row of sections where those wells that I
named exist in --

3 Okay, under the circumstances where you Α 4 be more permeable, what I think is going to say it might 5 happen is as the gas works down through it, and it has a 6 higher mobility than the oil, and we're going to see an 7 increase in gas volumes into the expansion area, and then 8 it's just a question of what -- what happens with that gas 9 it gets over there, whether we produce it or whether when 10 it moves on over to Gavilan or what, and right now we've 11 already seen in many of these wells some free gas coming 12 across. So --

Q I recall in, I believe, Mr. Elkins'
testimony that in the Spraberry deal they injected nitrogen
or helium in -- well, I think both, actually, at different
injection points and retrieved it at some other point.

Have you contemplated doing something
like that to test your theory that the barrier doesn't
exist?

20 A I certainly hope that we don't have the
21 problem that they had in Spraberry when they saw such
22 gravity movement of gas across the lease lines.

The gas cap that we discussed has maybe
an 8-to-10 billion cubic feet in it and when we inject gas
like, oh, say 5, 5-BCF a year, making 5-million feet a day,

1160 1 that's what's happening here, that might take like 12 years 2 to reach across that township. 3 HUMPHRIES: I have no fur-MR 4 ther questions. Thank you. 5 6 QUESTIONS BY MR. LEMAY: 7 Q Mr. Greer, I think you've testified that 8 because of different engineers using different reservoir 9 fluid density, that you can get bottom hole pressure calcu-10 lations that will vary roughly 20 - 21 pounds maximum. 11 Α I believe around 20, I forget which well 12 had the maximum, but somewhere in that range, maybe 30 13 pounds. 14 Uh-huh, well, accepting the 21 pounds Q 15 figure, and assuming that you have a 20-pound differential 16 across what is now the Gavilan and now the West Puerto 17 Chiquito fields, with high permeability, how would you 18 translate that into oil migration per month, or can you do 19 that? 20 Well, I think we can, on that famous Α 21 formula. I'd suggest we use the linear flow formula. We 22 have Q is equal to 1.12 Kh Delta T. 23 Let's see, we used the simplified form 24 over here. Q is going to be equal to 1.127, Kh/mu, and 25 (unclear) over F. I presume a one mile wide section and

1161 1 one mile long, and W/L-1, Q then becomes approximately 1 x 2 If we use Koh, if you'll remember one of the examples Kh. 3 I used in the B-29 and B-32 area had about 1.3 darcy feet, 4 so -- so let's take 1.127 times and this is Koh, then 1.3 5 Delta T, so in round numbers that's 1.5 Delta T. If Delta 6 T is 20 pounds that would be 30 barrels a day. 7 Q 30 barrels a day across a one mile area? 8 MR. DOUGLASS: With a 20-pound 9 pressure drop? 10 That's a 20-pound pressure drop and it's Α 11 about 1.3 darcy feet per Koh, like I used. 12 MR. DOUGLASS: Could we have 13 what you used for viscosity? 14 А I used -- I just used Koh. That was --15 MR. DOUGLASS: What's mu? 16 Α Let's see, is the sand colored book Two? 17 In our Exhibit Two under Section M we just used the Koh 18 there. Koh there came out to be 1.2 darcy feet and that is 19 -- that's just total Koh, so you don't need the word mu. 20 If we want to go to reservoir barrels and total gas volume, 21 and all that, then you'd need another, another (unclear). 22 DOUGLASS: MR. Ι thought --23 didn't I recall that you used 1.3 as the Koh across the 24 barrier? 25 Α I just showed them that we had 1.3 was

1162 1 the Koh in that area, to try to be consistent with what 2 we're producing from those wells, but I think any --3 MR. DOUGLASS: And you -- I 4 just want to make sure --5 Α I might -- if I might, I think Bill 6 Weiss came up with 5, 5 darcy feet on the build-up test, 7 and that would be from our highest capacity well. All the 8 other wells, of course, are substantially less than that. 9 Q Well, proportionately, if you double 10 that differential to 40 pounds differential, you just 11 double the number or does it --12 А Yes, sir, that's correct. 13 Q So it's in linear feet, basically? 14 Α Yes. 15 0 Would that be of concern to the opera-16 tors, a 20 pound differential across that line, migration 17 of that much fluid? 18 А Well, let's see, what did I come up 19 with, what was that, 20 --20 Q Well, just using rough figures, 30 21 barrels of oil per day. That's about 7 to 10,000 barrels 22 per month across the field boundary. 23 MR. DOUGLASS: Per mile. 24 Q Well, that's per mile. I'm just taking 25 the miles involved in the boundary, that's what I was

1163 1 looking at. 2 30 barrels a day is about 900 barrels Α 3 per month. 4 Times a 30 day period month. Q 5 Α Yes, sir. 6 Are we talking about 30 days -- 30 bar-Q 7 rels per day or 30 barrels per month? 8 А 30 barrels per day or per month? 9 Α 30 barrels per day. 10 Q Per day, so 900 barrels per month. 11 Right. А 12 Times however you want to -- how many Q 13 miles do you want to use along that boundary? I was just 14 looking at total migration between the two fields. 15 Α Okay. Now, let's take a look at that. 16 There's only a small area that has that kind of capacity 17 and that really not on the boundary, that's our B-32 and 18 B-29 area. I'll point out the rest of it --19 Roughly --Q 20 Α -- there's nothing along the boundary 21 there that has anything near that capacity. 22 Our F-30, F-19, F-18 (inaudible). 23 Q Well, I was looking within the range of 24 predictability, 20 pound differential appears to be about 25 as close as you control that boundary and not something

1164 1 that either side would worry about. 2 Α Well, yeah, my concern, I think, would 3 be about the accuracy, can be pretty well taken care of 4 in he methods that I suggested. 5 I think what --6 Q Just using the difference, relative 7 differences rather than absolute value. 8 Α If we do that, we can deal with absolute 9 values if we use the method I suggest, and --10 Well, what do you consider a significant 0 11 pressure differential that could be a voidage problem? 12 Well, 20 pounds would be significant. А 13 25, anything over 25 should be avoided, Q 14 that there's significant drainage going one way or the 15 other. 16 Α Yes, sir, and of course that's going to 17 depend on the authorization level it has. 18 Right, yes. Just one other question, 0 19 it's brought up some questions I had concerning your expan-20 sion area well, the B-29. I think you used that example 21 in this book here under Tab M, I believe, to show the sup-22 port that well was receiving, pressure support, it was 23 receiving from what you considered the pressure maintenance 24 area. 25 Α Well, I just -- what I was showing there

1165 1 was what I felt was consistent with what we observed in the 2 field. 3 And that, I think you mentioned, was Q 4 just a C Zone producer? 5 А Yes, sir, these are --6 Q Assuming the barrier is there, it 7 wouldn't have to extend into all three zones, would it, A, 8 B and C? 9 Α suspect it could be -- would be in I 10 varying -- in different amounts, unless it's just an abso-11 lute fault. It's unlikely it's going to be the same in all 12 zones. 13 Q It's very difficult, I take it, in order 14 to separate the relative production attributable to each 15 zone. I know Mr. Bush tried to do that earlier and said 16 many wells, it's just -- you can just say that there's some 17 contribution. Initially I thought West Puerto Chiquito was 18 characterized as being predominantly C; Gavilan, predomin-19 antly A and B, and is that still your contention with the 20 pressure information you see? 21 Α Well, it seems to me like it's still 22 pretty much that way. Just by happenstance our -- our best 23 C Zone wells now seem to be right up to the Gavilan bound-24 ary and stop. There just doesn't appear to be -- there 25 appears to be some C Zone production in Gavilan but cer-
1166 ١ tainly nothing like we've got in the Unit, and why that is, 2 Lord only knows. 3 Could that also account for the fact 0 4 that generally I think you're showing the expansion wells 5 at lower GOR? 6 А Yes, sir, I think --7 That it could be more C Zone? Q 8 Α The C Zone with the gravity drainage and 9 pressure maintenance is why those wells are flowing so much 10 different from the others. 11 Could it also be because of the Bear 0 12 Canyon and possibly support from the south that these pres-13 sures remain fairly constant due to migration into the, 14 say, the expansion area or the pressure maintenance area 15 from the north and south, or the northwest to the south? 16 А There is no doubt -- I say no doubt, I 17 feel like -- like Bear Canyon area is probably A and B. I 18 just can't believe that core on their analysis. We could 19 be getting some help from the north. 20 Q Thank you. 21 MR. LEMAY: I have no further 22 questions. 23 Additional questions? 24 MR. CARR: Just a couple on 25 redirect.

1167 1 MR. LEMAY: Mr. Chavez, do you 2 have a question? 3 MR. CHAVEZ: One. 4 5 QUESTIONS BY MR. CHAVEZ: 6 Q Mr. Greer, I just want to clear up a 7 misunderstanding that may have occurred on how you're 8 measuring your injection gas. 9 А Okay. 10 Is the injection gas measured to pres-0 11 sure record it on the (unclear) of the choke or by daily 12 instantaneous recordings by an operator? 13 Α The injected gas --14 Yes. 0 15 -- as opposed to gas lift gas. А 16 Q I'm sorry, the gas lift gas. 17 Oh, the gas lift gas. Α The gas lift gas 18 we measure with -- through chokes and gas, injected gas we 19 measure through the meters and the total gas from the well 20 we measure (inaudible). 21 Q Is the gas lift gas measured, up stream 22 pressures recorded on a daily basis? 23 А Yes, sir. 24 MR. CHAVEZ: That's all. 25

1168 1 REDIRECT EXAMINATION 2 BY MR. CARR: 3 Now, Mr. Greer, you testified there was 0 4 over-injection in the project area. 5 Yes, sir. А 6 Q Could the pressure gradient have moved 7 to the east from that injection? 8 Α I'm sorry, say again? 9 From that over-injection could there 0 10 have been a pressure gradient moving to the east because of 11 that injection? 12 There could be no pressure gradient А 13 from west to east from the over-injection. 14 And why is that? Q 15 Α Because that's just excess pressure with 16 no relevant injection. 17 Q Could it have gone to the north or the 18 south? 19 Α Oh, no way it could go north or south 20 because you've got virgin pressures up there and so there's 21 just no place for it to go. 22 Q And did it go to the west, in your opin-23 ion? 24 Ά I think that there's no doubt that some 25 of it did.

1169 1 Q And do you have a reason for that? 2 Simply that there's not enough restric-А 3 tion to stop it. 4 And the fact that you and Dr. Lee may Q 5 have reached some different figures on the gas injection, 6 does that cause you to reach a different conclusion from 7 Dr. Lee that the migration is in fact going from the in-8 jection area into what's being called the expansion area? 9 Α Oh, no, he was working on a different 10 kind of analysis than I was and his (unclear) don't have 11 any bearing on what I did. 12 In the F-20 Well, has that well been Q 13 perforated in the Mancos interval? 14 Α No, sir. 15 Q It would not be possible, therefor, to 16 frac that zone, would it? 17 А Not in the Mancos Zone. 18 If vou're called upon because of 0 19 increased withdrawals from Gavilan to increase withdrawals 20 from the wells in the west portion of this unit, what ef-21 fect will that have on your overall pressure maintenance 22 project? 23 Well, I feel that it will hurt it. I Α 24 just hope we wouldn't have to produce at higher rates. 25 MR. CARR: That's all I have.

1170 ١ MR. LEMAY: Thank you. Addi-2 tional questions? 3 4 RECROSS EXAMINATION 5 BY MR. DOUGLASS: 6 Greer, on Mr. -- on Dr. Lee's study Q Mr. 7 what -- what millidarcy feet did he use between the 8-mile 8 area where you join the Tank 2 and Tank 3? 9 А Well, I'd have to look and see his mark Looks like he's got 5 and 3. 10 there. 11 Q Is that 5 darcy feet or 5 millidarcy 12 feet? 13 Α That's 5 darcy feet. 14 5 darcy feet. Q 15 А That's the numbers we were talking about 16 awhile ago in the B-32. 17 And when you ran the D-17 you got 55 Q 18 darcy feet in that well, didn't you? Do I recall 19 correctly? 20 А Say again. 21 I said when you did the interference Q 22 test in the D-17 and you had a circle around all these 23 wells, you had 55 darcy feet, if I recall your testimony. 24 А That 55 darcy feet was Kh/u. The trans-25 missibility we showed -- that's in our Exhibit Two under

	1171
1	Section C, when you come to the yellow sheets, at the top
2	of the page it says Kh/u 55. Then if you go a couple of
3	pages further over you find the green sheet and if you'll
4	look at the 1009 volume and for gas/oil ration of
5	1000-to-1, you'll have 16 darcy feet. Now that would be
6	like the B-29 and B-32. You've got 4 and 8000 cubic feet
7	per barrel, we're in the range of 2 to 4 darcy feet, which
8	is what would be along the boundary. So what we've been
9	talking about in the Koh in the range of 1 to 5 darcy feet
10	is about what the interference test shows, about what Bill
11	Weiss' test shows, pretty reasonable.
12	Q I think you said Mr. Weiss used 5 darcy
13	feet?
14	A He used 5 for the best well in the area.
15	Q Let me ask you, if the Commission should
16	adopt a production plan that permitted, say, 1200 barrels a
17	day to move from the that's 1200 barrels of stock tank
18	oil to move a day across into the Gavilan area, would
19	that be a plan that you would endorse?
20	A Well, we would hope for a plan in which
21	there would be essentially no migration. And the judgment,
22	Mr. Chairman, if the judgement, that we believe was left
23	strictly to the Aztec Office of the OCD, and I believe
24	they're capable of being able to tell whether they're get-
25	ting information, whether they can rely on it, or if there
	1

1172 1 a problem, if they think there's a problem, we could is 2 come back to the Commission and show you that something 3 else needed to be done. 4 Q Thank you. 5 MR. LEMAY: Additional ques-6 tions? 7 Let's take a fifteen minute 8 recess. 9 10 (Thereupon a recess was taken.) 11 12 MR. LEMAY: This is a schedule 13 of how we're going to close out this thing. 14 The Commissioners are going to 15 ask some questions of specific witnesses, calling them back 16 without the opportunity for examination by lawyers or cross 17 examination. We just want to, because we've heard all the 18 testimony, want to zero in on those things that we don't 19 have a clear picture of, or we want some clarification for. 20 Beyond that we'll close. Each 21 side will have forty-five minutes to -- for closing argu-22 ments. 23 We'll take the case under 24 advisement and we'll ask -- we'll leave the record open for 25 a week. I think there were some exhibits that were wanted

1173 1 -- they wanted to add to with some written comment, I think 2 maybe concerning fractured fields that might produce with 3 pressure maintenance. 4 Is there any comment on that 5 procedure, any -- yes, sir, Mr. Douglass. 6 MR. DOUGLASS: Might I suggest 7 that since I think some of us are making comments, why 8 don't we just close it down, and I don't think whether we 9 hear about fractured fields somewhere else is going to be 10 important now. I hope it wouldn't be significant to one 11 side or the other as far as what we want. 12 MR. LEMAY: I have no problem. 13 I thought there was a desire on the part of someone to 14 submit that. 15 MR. DOUGLASS: I'll put it in 16 a motion for rehearing. 17 MR. LEMAY: You got a problem 18 with that, Mr. Kellahin? 19 MR. KELLAHIN: Our preference 20 is to accommodate the Commission. If you want that infor-21 mation we will provide it, but I'm like Mr. Douglass, 22 there's perhaps more than we can all understand and maybe 23 you've had enough. 24 MR. LEMAY: You're testing me, 25

1174 1 Kellahin. That's an understatement. We have lots and Mr. 2 lots, according to Mr. Weiss' testimony, to digest. 3 I think if it's important No, 4 to us, that research, we can go on on it, so if there is a 5 quick answer to that by one of the experts I would have 6 liked to hear it but it's not a probing question that's 7 going to decide the case. So I'll accommodate that. I 8 think we can close the record at the end of the closing 9 statements. 10 So does that sound like a good 11 schedule? 12 Let's continue, then, with I 13 think Mr. Hueni. Commissioner Humphries would like to ask 14 you some questions, Greg, if you don't mind. 15 16 GREGORY B. HUENI, 17 being recalled and remaining under oath, testified as fol-18 lows, to-wit: 19 20 QUESTIONS BY MR. HUMPHRIES: 21 Q Mr. Hueni, yesterday or day before yes-22 I asked Mr. Roe about some conditions in the Gaviterday, 23 lan Mancos Pool as it's recognized today, and they had to 24 do with what I called the superstars and I don't think I'm 25 the creator of that term, but my question was that there

_

seemed to be an indication that that contribution to those so-called superstars was poolwide and not discussing at this point the expansion area, you've studied the Gavilan Mancos a great deal and it strikes me that regardless of whether it's Gavilan Mancos or some other field or some other pool, there are from time to time going to be wells that are better than other wells.

8 Is it your opinion that the contribution
9 to the very good wells is poolwide or is it unknown, due to
10 sort of a jagged lightning pattern macrofracture or what11 ever you call it, fractures?

A Mr. Humphries, I -- I believe that it's largely unknown. We've testified before that while we could use, for example, pressure production history to determine oil in place for a field as a whole, that we really have no very good method of carrying that back to individual areas of the field.

18 The factors that influence the amount of 19 oil within any given area have to do with frequency of 20 fracturing, the spacing, the amount of matrix that's being 21 contacted by the fractures, the width of the fractures, as 22 well as whether you have A and B production, A, B, maybe 23 some C, maybe just A production. There are so many vari-24 ables in there that we really don't think that there is 25 a method of saying that -- well, we don't think it's cor-

1176 1 rect to say each spacing unit has the same amount of oil 2 under it and should be given the same -- same recovery. 3 We can make the case just as easily 4 that wells that have high deliverability must have favor-5 able reservoir characteristics underneath that particular 6 portion of the pool, so that its -- that its rate is a 7 demonstration of its -- its -- what's underneath it, as 8 well. 9 But there's no denying there is commun-10 ication between wells within the pool and, as such, for 11 example, when you go to a restricted rate scenario, then in 12 particular in our opinion what we've seen is that there 13 have been certain beneficiaries and certain people that 14 have been highly hurt by that restricted rate. 15 We see in particular the pressure pro-16 posed expansion area as being a particular beneficiary of 17 the restricted rates and, obviously, other wells, particu-18 larly in the Gavilan Mancos Pool proper have hurt. 19 But basically we have no method of going 20 to back to specific tracts and saying that -- saying exact-21 ly what's underneath each of those tracts. 22 I interpret the second part of the gues-Q 23 tion that was that if, again minus the expansion area that 24 we've discussed, it strikes me that there is a fundamental 25 question there about the correlative rights of the people

1 who own the superstars as well, and there seems in your 2 recommendations about allowables, et cetera, you didn't 3 address that, and yet some of the body of the testimony led 4 me to believe that perhaps we're talking about just equal-5 izing its production over the entire Gavilan Mancos Pool, 6 vet I clearly believe that there could be good wells as 7 well as bad wells within the pool, and I don't want to see 8 the people who have off production units or spacing leases 9 be damaged but on the other hand I'd hate to see the people 10 who have the good wells get (not clearly understood) the 11 source be punished for having good wells.

Is there, in your opinion, a way to determine that, because I think that's becoming sort of a secondary issue in my mind, is what's happening within the -- especially Gavilan Mancos?

16 А Well, you know, I don't believe that's 17 there any way that you're going to do it with pressures, 18 and for example, pressure -- pressure comparisons across 19 this boundary. There's just too much flow rate that can 20 occur as a result of small pressure differences, even the 21 20 psi pressure differential that Mr. Greer talks about as 22 being ascribable just to different assumptions with respect 23 to the density difference of the fluid.

There -- there have got to be significant differences in the quality of the reservoir under the

area. We go to the southern part of the Gavilan Mancos Pool and we have wells down there that will produce 2 or 3 or 4 barrels a day and there's just no way that the reservoir quality is the same as the wells that are up in a highly fractured area in the vicinity of, for example, Mallon wells.

7 As a consequence, and I don't know 8 whether it's even appropriate, we obviously are not pre-9 senting rebuttal testimony, but we did prepare an exhibit 10 that showed, for example, on Mallon's wells, we've talked 11 all along about barrels per psi rock that has occurred, 12 changes that have occurred during the field, and for exam-13 ple, we have plotted for Mallon's wells under initial con-14 ditions, a number of barrels that they were making per psi 15 drop, and I believe that was around 1200 barrels per psi. 16 The initial rate restriction went into 17 and they decreased then down to 450 barrels per psi effect 18 drop. 19 The normal rate testing period came back 20 into effect and they went up to 850 barrels per psi drop. 21 The restricted rates came back in effect

at the end of the start -- well, the middle of November, and their barrels per psi is now down to 150 and they would appear to have less than I would say 50,000 barrels of oil remaining to be assigned to them under the existing

restricted allowable conditions.

2 So obviously there is a commonality of 3 the reservoir. There are good wells and there are poor 4 wells and I guess in my own mind I would make the assump-5 tion that the good wells probably have better reservoir 6 quality associated with them, more fractures, more inten-7 sive fractures, maybe wider fractures, maybe they contact 8 more matrix, and -- and therefor they -- they should have a 9 chance to -- or be given -- well, all the wells should be 10 given the same opportunity to produce and I think it's our 11 recommendation that from a reservoir standpoint to maximize 12 production, that opportunity to produce should be at least 13 the statewide allowables and preferably in terms of the 14 ultimate recovery standpoint a capacity type rate.

15 Q I would ask, I asked you once and I want 16 to just clarify again, and I've asked a couple of other 17 people, in your theory of this interspersed matrix and your 18 perception of the structures of producing rock, you'll have 19 to humor me a minute, because I had to finally tell Bill 20 Lemay, or the Chairman, excuse me, that I at least can see 21 the three dimensional part. The best thing I can do is to 22 give on analogy. I remember one time when I was a pretty 23 young kid and we had marbles that we called cat eyes, they 24 were clear marbles with some kind of stuff in the middle of 25 them, I don't know what it was, and I -- I decided I was

1 going to find out what this stuff was in the middle of them 2 and I learned two things. I went and got a big hammer and 3 I was going to break that marble to see what this stuff in 4 the middle of it was. The first thing I did was knock my 5 thumb nail off and the second thing I did was split that 6 and it didn't break open, it just shattered in every dif-7 ferent direction and those weren't linear, they weren't 8 right angle, they were -- I remember they bent and twisted 9 and they went back and forth through this colored stuff in 10 the middle of them.

And that's the way I foresee the fracture system going through your matrix. Is that a fair assumption?

14 Α Well. I think that's a fair assumption. 15 Certainly some of the geologic witnesses that we've had, 16 and past exhibits, are better qualified to tell you. Mr. 17 Elkins indicated that in his experience fractures are, this 18 perfect model that we have, is a three dimensional model, a 19 constant width, a constant frequency, that they vary in 20 many different aspects and I think you're right in assuming 21 that if this network is not just an equally spaced network, 22 it is probably a very broken up and irregular shaped solid 23 bodies of rock that are encased in basically these high 24 capacity fractures, such that if you inject anything, 25 whether it's oil or whatever you inject, you wouldn't in-

1181 1 ject oil, but whether you inject gas or you inject water 2 the tendency is not going to be for the fluid to flush 3 through that very hard rock, but it is going to be basic-4 ally to -- to pass around that rock. The only thing that 5 can work to get the oil out from inside that rock is going 6 to be some sort of imbibition process where it will suck 7 in, for example, maybe water and dispel out oil, but that, 8 once again, has been proven to not be particularly effec-9 tive in this very, very (not clearly understood). 10 I'm afraid that I didn't really answer 11 your question. 12 Well, you're saying that that three Q 13 dimensional pattern is obviously not linear or small, it 14 has all kinds of widths and diameters, down to very barely 15 measureable and you have a lot of formulas for calculating 16 those kinds of things. 17 But if that matrix exists and those 18 fractures, micro-fractures, macro-fractures, or whatever 19 they are, go back and forth through it. 20 The one thing that's hard for me to 21 visualize is that in that if you're able to put some kind 22 of pressure behind, that just going back and forth in 23 there, that you may be able to move stuff through that even 24 with the imbibition theory, and it's hard for me to disre-25 gard that completely, also, although I understand that your

1 differential concept, it strikes me if you pass that 2 through this matrix, it has multiple directions and mul-3 tiple dimensions and widths, that you may have the oppor-4 tunity by the fracture going through the matrix or the more 5 porous area, to move stuff between the micro-fractures or 6 macro-fractures that is in the matrix. I see the differ-7 ence that you drew and I understand the concept between 8 pressure differentials. It's hard for me to imagine with 9 the fractures going every way, multiple dimensions and 10 shapes, that you couldn't move between fractures if you 11 have some kind of --

A Let me try again, then. What we're
looking at is a piece of matrix rock surrounded in a three
dimensional sense or somewhat by this high capacity fracture system.

When you inject gas into that high capatractive fracture system and you, say, pressure that gas up to 2000 psi, that 2000 psi gas pressure exists on both sides of the matrix, so it can't really push anything through the matrix. It's a pressure on both sides. There is no pressure difference to push through the matrix itself.

So the only way that you get fluid out of the matrix is for the matrix to be, let's say, at 3000 psi and then through its natural process of flow out of the matrix have a lower pressure in the fracture than you have

1 in the rock itself. But if you try to inject gas and push 2 it out of the matrix, basically that gas pressure is going 3 to be the same on both sides of that matrix rock and 4 there's no way you're going to be able to push gas or any 5 other type of fluid through that matrix rock because the 6 gas will not want to go through -- through the matrix rock 7 itself. It will want to go strictly down the fractures, 8 fracture system.

9 Q And that's -- that slow give up or slow 10 rise to original production you believe to be the amount of 11 time it takes to drop the pressure or to make the pressure 12 differential between the fractures and the matrix or porous 13 ___

14 Α Yes, we -- we do not believe, in fact I 15 think you've seen a number of exhibits presented by various 16 parties here today where they've shown build-ups that 17 occurred over a period of time in the past. I think even 18 the 1965 pressure interference test that Mr. Greer showed, 19 showed that after 72 hours pressures were not anywhere 20 close to build-up in his wells. They were still building. 21 And this analysis that you do, that compares a barrel of 22 oil to a psi pressure drop, if it's done on a well by well 23 basis, and those pressures are not fully built up, then the 24 analysis is totally distorted by the lack of getting up to 25 a reservoir pressure in -- during that build-up period, and

that is why -- that is why we don't see these build-ups occurring, because it's a very slow feed in from the matrix into the fracture system that's going to occur over an extended period of time. Mr. Elkins referred to, I think in the West Edmond Field, build-up that was still going up after, I think, 2 or 400 days of shut-in, but they were still seeing increases in pressure.

So it's a very slow feed in that occurs from the matrix system into the fracture and it means that if you take a pressure of 72 hours, regardless of how well intentioned you are, you probably are not, particularly after a high rate of production, you are probably not going to get anywhere close to an initial reservoir -- or to the true reservoir pressure.

15 Q Is that slow recovery time what you ex-16 pected production to be -- have been from -- in addition to 17 the -- assuming that there was no matrix contribution or 18 that that was only part of it, could that have been merely 19 a function of how far it had to come down the fracture sys-20 tem?

A That's right. It's -- that, I think, is
the other part of this problem that is particularly a problem with analyzing production for psi pressure drop on a
well by well basis, because you have within the Gavilan
Mancos Pool and the proposed expansion area, you're going

1185 1 to have a number -- you're going to have the fluids rear-2 ranging themselves in the reservoir in response to these 3 restricted rates, normal rates, restricted rates. It's 4 going to change back and forth, and as a consequence, 5 that's right, there is -- there is -- I don't know if you 6 want to call it influx or efflux (sic) that will occur 7 within the given drainage area of any given well, and as a 8 consequence of that, the amount of production that you 9 achieve per psi pressure drop on an individual well in this 10 particular area, because of the -- some -- the large degree 11 of commonality of reservoir pressure, is -- is going to 12 also measure the influx/efflux between the different wells 13 in the -- in this Gavilan Mancos proposed expansion area 14 pool, and it can reflect influx or efflux from other areas 15 outside the pool to the north, to the south, to the east 16 and west. 17 Q Thank you. I have nothing else. Ι 18 appreciate it. 19 MR. LEMAY: Bill Weiss, you 20 want to educate us a little bit? 21 22 BILL WEISS, 23 being recalled to the witness stand and remaining under 24 oath, testified as follows, to-wit: 25

3 QUESTIONS BY MR. LEMAY:

۱

2

25

4 just want to concentrate on termin-Ι 0 5 ology, barrier, permeability restriction. Let's assume 6 that we have some restriction there between the expansion 7 area and the pressure area project, but that thinking of it 8 in terms of maybe a -- I'll use the term semi-permeable 9 membrane, whatever that can conjure up, but the idea that 10 something can get through there, because very few things 11 are completely, at least within a porous formation, are 12 just like cement. Isn't it -- can't that be a function of 13 pressure differential on both sides as to what might pass 14 that thing and then what might not?

15 Α Yeah, I think we've heard it this week, 16 many different things could be called a barrier. There's a 17 no flow barrier which is a fault or this igneous dike that 18 was mentioned, water leg, something of that nature. No. 19 not a water leg but a dike is certainly a good example of a 20 no flow barrier.

Then we have things mobility cages. You see the -- and this is in homogeneous rock; in a waterflood, maybe you'd see the -- the oil bank, that would -might look like a barrier and a pressure test.

And then, of course, that's just a

1187 1 change of mobility. Mobility that is permeability divided 2 by viscosity, so there's two factors in there, and I don't 3 think it's there. 4 You've been listening to all this testi-0 5 mony all week. Have you changed any of your ideas initial-6 ly? 7 No. А 8 0 What about the fact that we've got this 9 permeability restriction, then? You're building up pres-10 sure on one side. Is there a tendency for that gas to 11 break through that restriction, first to the oil to follow, 12 do you expect some of those wells to gas out now? 13 А Yes. 14 0 As soon as that gas front gets close 15 you're going to start -- you anticipate breakthrough? 16 А Yes. That would be -- well, I don't 17 know as that would be definitive, either, unless you have a 18 feeling of that. 19 Yeah, right. Yeah, you wouldn't know 0 20 because you're also getting higher GOR's and so you're 21 trying to find a point in time and you may not have that 22 particular pause at the time. 23 А Yes, that could be a problem. 24 Q We're just trying to focus in things 25 like barrier and rates and what -- what would be your im1 pression if we did go to high rates and that was a barrier 2 that was a permeability restriction. It was -- there would 3 always be a pressure differential across that restriction 4 but some of the gas would be coming through, by reducing 5 the voidage both in the expansion area and to those sec-6 tions adjoining it in the Gavilan Field, by having with-7 drawals there, would that -- that would cause a greater 8 pressure differential, I guess, and guicker breakthrough, 9 would you say?

10 Α Yes. You could very possibly suffer 11 from gas fingering, then. That -- in that fractional flow 12 equation I had before, I had what was called the critical 13 rate. You could use that approach for pushing down dip. 14 If you go too fast, the gas fingers. If you stay just 15 right, it doesn't finger. But you have to know the perme-16 ability to do that.

17 Q The rates themselves being more effi18 cient, have you come to grips with the idea of how can you
19 have more efficient rates and higher production but still
20 on the barrels per pound pressure jump have a reverse rela21 tionship?

A Well, we did go ahead and check the -on the column I had on Table IV. We converted those, added
the gas in terms of reservoir barrels and all we did was
get more barrels; we didn't change anything; the ratios

were still 5-to-1 in favor of more barrels produced per psi
pressure drop than during the high rate.

But -- so we didn't change anything
there.

5 The more I listen to it, I'm sorry, I 6 think in terms of fluid migration in terms of what's been 7 expressed here earlier, but I've not had time to go back 8 and look and see how that affects the build-ups with time, 9 that type of thing. For instance, these build-ups that --10 there's a number of them that the engineering committee has 11 collected and I don't know what the effect would be with 12 time. You'd think if it was fluid migration it wouldn't be 13 evident when the pressure is high as it is at the end, as 14 where in the last group the pressures were down around 900 15 pounds, and there you can certainly see that, in many of 16 the curves, see that the tail end of the build-up would go 17 which I was -- in the B-37 interpreted it as a naturup, 18 ally fractured reservoir. It might have been influx. It 19 might have been a barrier. I did look at that. The bar-20 rier is either 300 or 2500 feet away, depending on what you 21 use for what you plug into the equation.

22

23 QUESTIONS BY MR. HUMPHRIES:

24 Q Did the idea now -- I can't remember who
25 advanced it, that there might be an opportunity to go with

1 high rate production for a little longer periods of time 2 than one or two days and I think that would be the idea, to 3 overcome the lag time to get the liquid into production. 4 If we went with that kind of operational procedure and got 5 your production back up to the highest or more desirable 6 levels, highest production, and then shut it back in, if 7 that imbibition period was there, it strikes me that when 8 you're shutting it in you still would have that; you might, 9 in fact, exacerbate it.

10 А Well, imbibition is a tough one and 11 these experts here can tell that. I did get a textbook and 12 I found that it was proportional to the size of the block, 13 which there are lots of guesses to. So during this shut-in 14 period, where you could have, in fact, gravity segregation 15 in a big block, which would overcome the capillary forces 16 and maybe you'd get some oil out of it along with some 17 shut- in.

This problem of rate sensitivity is -is a real problem and I happen to like the idea of a secondary gas cap forming. That one suited me the best.

21 But there are valid reasons for wanting 22 to produce at a high rate. As well as whether to produce 23 at a high rate per month and then shut the field in for a 24 year, I don't know. I don't know how that -- I think 25 that's your problem.

1191 1 MR. LEMAY: Thanks. 2 MR. WEISS: You're welcome. 3 MR. LEMAY: We appreciate it. 4 Okay, we'll close with that 5 If nothing else, Mr. Weiss, you gave us the terminline. 6 ology of lots, lots and lots. 7 We're going to close, I think, 8 in reverse order that we opened. Do you agree? 9 MR. DOUGLASS: I don't know if 10 we have the right to open and close. 11 MR. LEMAY: Well, someone 12 told me that fairness was the other way. 13 MR. DOUGLASS: No, that's the 14 way that --15 MR. CARR; I think as a Propo-16 nent he opened first and he closes last, I think, unless 17 you want to do it otherwise. 18 MR. LEMAY: Well --19 MR. KELLAHIN: We're prepared 20 to close now and give Mr. Douglass the last comments in the 21 case. I think that's the way it's supposed to be. 22 MR. LEMAY: It's your choice. 23 MR. DOUGLASS: I just get one? 24 In other words I don't get to open and close? 25 In administrative procedure in

1192 1 jury trial, that's it, the plaintiffs get to open and а 2 they get to close. 3 Uh-huh, well you MR. LEMAY: 4 certainly get to close but in which order to you want it? 5 MR. DOUGLASS: Well, I think 6 I'd rather close, if I just get one, if I've got any 7 choice, then I'd like to close. 8 MR. LEMAY: Well, normally 9 what we do, were you thinking of closing, then having their 10 close and then you're closing again? 11 Yes, to rebut MR. DOUGLASS: 12 what they said. 13 MR. LEMAY: Generally we 14 haven't done it that way. 15 MR. DOUGLASS: Well, I can 16 play around or through. You tell me what the rules are and 17 I'll abide by them. 18 MR. LEMAY: Okay, generally we 19 just have closing once but it's your choice, whichever, if 20 you want to close at the end or close at the beginning? 21 MR. DOUGLASS: If I've got a 22 choice, I want to go last. 23 MR. LEMAY: Fine. 24 MR. KELLAHIN: We'll give Mr. 25 Douglass that choice.

1193 1 MR. LEMAY: I appreciate that. 2 MR. KELLAHIN: Gentlemen, I'll 3 be the first to tell you there is lots I don't know about 4 There are some things I did learn, however. I this case. 5 learned some things about how the Railroad Commission of 6 Texas operates and functions from Mr. Powell. 7 was pleased to learn how Ι 8 that in Texas in these tight fractured reservoirs that they 9 do, in fact, have pressure maintenance projects for primary 10 production in only parts of the reservoir. 11 I was pleased to hear from him 12 in Texas that they do allow those pressure maintenance 13 operators to reinject their gas into that reservoir in or-14 der to replace reservoir voidage and they get a credit for 15 that. 16 I don't want to tell you that 17 I know a lot about reservoir engineering, but there are 18 some things which I do know. 19 I know that in New Mexico the 20 rule of capture is not the rule in this state, where this 21 Commission has been a pioneer among states in the southwest 22 and in the United States in protecting correlative rights 23 and preventing waste. 24 I don't think you have to take 25 advise from Texas or any other state about how you run this

1194 1 Commission. 2 You have the comfort and con-3 fidence to act as a Commission knowing that in some fifty 4 years of operation this Commission has been reversed by our 5 judicial system only once or twice, but there are some sig-6 nificant cases in Commission orders for which I do know. 7 know that if the rule of Ι 8 capture were in place, then these superstar wells that 9 we've talked about of the Gavilan Mancos could produce at 10 capacity and drain the other wells in Gavilan and drain the 11 other pools in the immediate area and there would be no 12 need for this Commission to exist and we would not be here 13 today. 14 know that the statutes of Ι 15 New Mexico and the rules of the Oil Conservation Commission 16 are there to keep order in the Gavilan Mancos Pool and to 17 create balance in this pool where the operators cannot do 18 it for themselves. 19 know from the Continental Т 20 Oil case of 1962 the Commission can use a pure acreage for-21 mula among the spacing units for each of these wells and 22 allocate that share of production based upon acreage; in 23 the absence of convincing data, that you can determine the 24 total portion of the pool reserves underlying each spacing 25 unit.

1195 1 Ι know that from the Contin-2 ental Oil case, from the Viking Petroleum case, from the 3 Faskin case, from Duke City Lumber, the Trujillo case, that 4 the Commission must in its deliberations review the whole 5 record of this proceedings and consider the entire record, 6 both the evidence for a decision and against that decision, 7 whatever that decision is you must consider the evidence on 8 both sides of that issue. You cannot simply look at that 9 evidence that supports the conclusion that you believe you 10 want to reach. 11 Ι also know from reviewing 12 those cases and practicing before this Commission that the 13 order itself that you write must be clear in giving us 14 specific findings that disclose the reasons of this Commis-15 sion in reaching its ultimate conclusions and in doing so 16 you must explain yourself. 17 In writing that order I know 18 that you can reject the competence of Mr. Hueni's dual 19 porosity computer modeling because I know there is an al-20 ternative explanation from Dr. Lee, because Dr. Lee can 21 take that model with observed reservoir performance and 22 factors and he can match with his model both historical 23 facts without using the dual porosity hypothesis, and with-24 out having a barrier hypothesized into the model. 25 I know that you can reject Mr.

1 Hueni's concept of the inverse rate sensitivity conditions 2 because Mr. Roe has told us that all that is occurring in 3 this reservoir is not dual porosity operations, it's simply 4 the migration of fluids in the reservoir. We have wells 5 competing against one another, and that's the explanation 6 he sees for the inverse rate sensitivity. 7 I know that you can reject Mr. 8 Hueni's dual porosity hypothesis and explain that rejection 9 very clearly and convincingly in the order that you write 10 based upon the fact that no other well but the Mobil 11 Lindrith B-37 Well has a build-up curve that has a shape 12 that can be attributed to dual porosity. 13 I know that you can reject Dr.

Kohlhaas' testimony in support of a barrier, about not seeing that interference between the B-52, the B-32, and the C-34 Well and explain that with conviction because Mr. Greer has told us that Dr. Kohlhaas has used the wrong plots and he didn't see it. He didn't see it because it wasn't there. He simply used the wrong plot.

I know that you can reject that barrier hypothesis because of the observations of the situation that your own witness, Mr. Bill Weiss, has found from the project area into the expansion area, and he is the only witness that's been before you in the entire proceedings that is not -- has not been paid by either side by

being here for his testimony.

2 Ι know that you can adopt an 3 order that rejects Mr. Hueni's conclusion that the high 4 is more effective for Gavilan Mancos because you know rate 5 from his own Exhibit Number Twenty-two, for which Mr. Roe 6 had calculated that there are 6,089 more reservoir barrels 7 per pound of pressure loss recovered at the lower rate than 8 at the high rate from Mr. Hueni's own work. 9 We have a significant contrast 10 in styles here between the opponents and the proponents. Ι 11 thought Mr. Douglass and Mr. Kohlhaas had a wonderfully 12 nice style when they took that display and they showed the 13 interference test on both sides and they had the red lines 14 across the hypothesized barrier and Mr. Douglass had that 15 wonderful opportunity to rip off the tape every time Mr. 16 Kohlhaas told him to take it off. That was great style, 17 but that style does not remove the fact that Mr. Greer has 18 measured the interference across that barrier, so-called 19 barrier, lease. Removing that tape from that exhibit does 20 not remove the fact that Mr. Weiss finds that there is 21 pressure response in the expansion area directly attribu-22 table to the project area. It's in his report; he commit-23 ted it to writing; he committed it in a preliminary report 24 and in the final report and he did not change it. 25 Let me direct my attention for

1198 1 a moment to some of the comments that Mr. Lund made earlier 2 today. It's unfortunate that he could not stay for the 3 rest of the day with us, but let's address ourselves for a 4 moment to some of this comments. 5 How would you adopt a position 6 that Mr. Lund urges you to adopt and explain away the fact 7 that his own witness tells us that the initial pressures in 8 the Bear Canyon Unit are lower than Amoco expected to find 9 when they drilled the discovery well? 10 How do you explain the fact 11 that Betsy Lough had forgotten Mr. Roe's testimony from the 12 day before when he said he had examined the results from 13 the Amoco core and it did not bleed? 14 Mr. Lund drew a comment to Dr. 15 Lee providing a correction in the number of barrels of oil 16 to be recovered in Gavilan Mancos in the absence of pres-17 sure maintenance. On Monday Dr. Lee gave us one number; 18 the following Wednesday, I believe it was, when he testi-19 fied, he had another number on that portion of his exhibit. 20 Isn't it interesting that Mr. Lund did not remind us of the 21 basic conclusion of Dr. Lee that regardless of what that 22 number was, the 5-million barrels of oil under primary re-23 covery in Gavilan or the 7-million, the fact of the matter 24 is Dr. Lee tells us under pressure maintenance we're going 25 to get 10-million. The basic conclusion was the same.

1199 1 isn't it refreshing when And 2 of the caliber of Dr. Lee and John Roe and Al witnesses 3 Greer get before you and run the risk of letting the oppo-4 sition argue that they have changed a calculation. They 5 take that risk just so they can give you the most accurate 6 number upon which you then can rely to make your judgments. 7 How do you explain with confi-8 dence if you go to a higher allowable rate in the Gavilan 9 Mancos and rely upon the dual porosity reservoir hypothesis 10 when you are shown only 1 well out of 87 wells in the study 11 area, a well that is isolated in the western portion of 12 Gavilan that has that shape on the build-up curve? How do 13 you rely with confidence on the Mobil well core in the 14 southwest corner of this reservoir? Is it not easier to 15 explain that simply related to the situation an anomalous 16 example that you can reject? 17 How do you explain with confi-18 Mr. Greer that the barrier does not leak when he dence to 19 has shown you the interference across that barrier? 20 How do you explain to Dr. Lee 21 with confidence that you have a dual porosity reservoir 22 when he knows that the better engineering explanation for 23 shape of those multiple build-up plots is one where we the 24 have phase redistribution in the wellbore? 25 And how do you explain with

1200 1 confidence to Mr. Roe that you have matrix contributing in 2 the Gavilan Mancos when Mr. Roe has looked at the informa-3 tion from the Mallon Davis core and under visual observa-4 tions, that core shows no oil? 5 How do you explain with con-6 fidence to Dr. Lee that the matrix is contributing, when in 7 his six section sponge that he gave you in his report, with 8 the eight wells, that we squeeze that sponge as hard as we 9 can under those conditions and we do not improve recovery 10 in those eight wells? 11 How do you explain to Mr. Roe 12 that you have increased the allowables to the higher rate 13 when he knows at the higher rate it recovered only a third 14 of the oil per pound of pressure loss in Gavilan Mancos 15 that the lower rates did? 16 And how do you explain to the 17 operators of the 23 wells during the high test rate that 18 had decreased oil recoveries, that you're going to increase 19 the allowables for the benefit of those operators of the 15 20 wells that are going to benefit? How are you going to 21 resolve that? 22 How do you explain to the 23 operators of the 43 wells that had their productivity re-24 duced by the high rates that it's okay because we need to 25 help the 15 better wells?

1201 1 How do you explain to Mr. 2 that his pressure maintenance project is not a suc-Greer 3 cess and not entitled to an injection gas credit when he 4 knows he's recovered 15 percent more of the original oil in 5 place in his unit compared to Gavilan Mancos and its 6 and 6 8 percent recovery? 7 How do you explain the fact 8 that Mr. Powell finds that the pressure is constant in the 9 unit between June 30th, 1987, and February 29, 1988, when 10 we know there is over-injection in the unit and as a re-11 sult of that injection Mr. Weiss sees pressures being 12 supported across the barrier into the expansion area on 13 those three wells that he's put in his report? 14 How do you find an effective 15 barrier and explain away the fact that the pressure main-16 tenance area was providing pressure support to the D-17 17 Well and the B-29 Well in the expansion area? 18 And how do you explain away 19 the conclusion Mr. Greer gave you, that at the higher rate 20 of withdrawals in Gavilan the pressure maintenance project 21 cannot keep up with the withdrawal rates in Gavilan and 22 there will be a pressure sink, where at a lower rate, the 23 rate of injection of gas in the main project area is 24 allowed to come across the permeability restriction area 25 and recharge the expansion area and recharge Gavilan?
1202 1 The simply basic conclusion is 2 that without the pressure support from the project area 3 across this assumed barrier, the pressure and the produc-4 tion in the expansion area and in Gavilan will sink like a 5 rock. 6 How do you adopt a higher 7 allowable rate in Gavilan Mancos based upon the credibil-8 ity of Mr. Hueni as an expert when you have before you his 9 conclusions of the August, 1986 hearing; the conclusions of 10 the March '87 hearing; the conclusions of the hearing this 11 week, each of which contain at least one fundamental, 12 basic, essential conclusion that is different each time he 13 testified? 14 How do you explain to Mr. 15 Greer why you have decided to put at risk a lifetime work 16 of effort to maximize recovery in the Canada Ojito Unit in 17 order to satisfy and receive an erroneous assumption that 18 higher rates for certain high capacity wells is in the best 19 interest of all parties? 20 Mr. Lund earlier today gave 21 you some definitions about correlative rights. Correla-22 tive rights is written in your rule book, it's in your 23 statutes, and it says simply this: Correlative rights is 24 an opportunity to produce your fair share of the reserves 25 underlying your spacing unit. It is not an opportunity to

1203 1 advantage of the adjoining spacing units and produce take 2 their share of the oil with your superstars. Capacity 3 allowables in Gavilan Mancos will take us back 50 years to 4 the worst days under the rules of capture. 5 Ι told you on Monday that we 6 solution to this case. had a I did not tell you until 7 Thursday when Mr. Roe testified what we proposed with Mr. 8 Roe as a solution to the allowable rates in Gavilan; how-9 ever by Tuesday afternoon Commissioner Lemay had already 10 found that solution in his questioning of Mr. Hueni con-11 cerning how to handle the liability of the flexibility of 12 producing rates for the superwells. 13 think that fact can be re-Ι 14 solved by proposing a flexible rule for the producing rates 15 of Gavilan Mancos that we discussed with Mr. Roe; that we 16 reconfirmed with Mr. Greer; and I have taken the time to 17 write out what I think is the solution to your problem. If 18 I might have a moment, I will pass those out. 19 Gentlemen, I appreciate the 20 opportunity to appear and practice before this Commission. 21 It's always a privilege and honor. I have enjoyed that 22 privilege this week. I have enjoyed meeting and partici-23 pating against Mr. Douglass and the other attorneys on the 24 other side. I thank you for your time. 25 MR. LEMAY: Thank you, Mr.

Kellahin.

2	MR. CARR: May it please the
3	Commission, this is the time in these proceedings where the
4	incompetents get to finally take over. This is the last
5	opportunity that anyone in this group is going to have to
6	address you in the context of this hearing. For those
7	people who want to maintain the current allowable rates in
8	the Gavilan Mancos Area and after I sit down you're going
9	to hear a great deal from Mr. Douglass and others. You're
10	going to hear about the barrier, and about the porosity and
11	interference and whether or not it's there or not. You may
12	get to look at some more exhibits, and you're probably
13	going to even get to hear something about Mr. Greer.
14	The reason that they go last.
15	they get the last say, is because they have the burden of
16	proving that change is really warranted and they have to
17	meet that burden, and I'm convinced that when you stop and
18	deliberate on the (not understood) they've made after 17
19	days of hearing and review this with your staffs that you
20	will conclude that they have failed to most that burden
21	Now the incompetent lawyong I
22	think in our defense it to fair to nee have twich to
23	think, in our own defense it's fair to say, have tried to
24 24	keep lawyer damage in this proceeding to a minimum and I
AT	
75	think I can speak for both sides in saying we have stepped

lead you through the wilderness and they took the same data and they ran in opposite directions, and so now we tender to you what has got to be a difficult decision and as you retire to reach your final decision in this case, there are two people who have appeared before you who I believe stand in unique positions.

7 The first one of those is 8 obviously Al Greer. He's different from all the rest. 9 Long before there was Gavilan, long before there was imbi-10 Greer with his slide rule walked out into bition, Mr. 11 northwest New Mexico and he found a reservoir that I think 12 one thing we all agree on is if it isn't unique, it's 13 complicated. I think that fact is underscored by even Mr. 14 Hueni's testimony. One time we see Mr. Hueni, he talks 15 about the existence of a barrier and how effective it is. 16 The next time something else; the next time imbibition, and 17 I'm not saying those are wrong but I'm saying it under-18 scores the fact that this is a complicated and a difficult 19 question.

20 Mr. Greer went out and he took 21 the data as it has been developed over the years. He has 22 interpreted it. He has found tight blocks in a reservoir 23 connected by an extension fracture system, gravity drain-24 age, and all of those things you've heard about, and he has 25 instituted in this Canada Ojitos Unit a pressure mainte-

1206 1 nance project. This has not been something Mr. Greer has 2 done alone. 3 If you go back through the 4 records of this Commission, there aren't 17 days of hearing 5 there are many times that, for as he has developed the area 6 he has done it in close association with the regulatory 7 authorities of this state. 8 Now the concepts that were 9 developed by Mr. Greer, I think it is important, and I've 10 told you this before, the concepts that were developed by 11 Mr. Greer are, unlike so many of the concepts you've had 12 presented to you, they were not developed for the purpose 13 of the hearing. They were not developed to produce the 14 reserves that are in the Gavilan Mancos area. They were 15 developed to produce oil and as we have through these 16 hearings seen experts come forward one after another, we 17 believe that Mr. Greer's theories still stand before you 18 and they stand before you basically unrefuted. 19 Elkins comes before you Mr. 20 and we believe he in fact confirms you use the EI approach 21 and that you interpret the interference tests as Mr. Greer 22 has done. 23 We Dr. Kohlhaas come saw 24 before you and I don't want to suggest that we were having 25 engineering games played but we -- I do submit to you that

1207 1 the analyses of the interference test that he made were 2 incorrect; his results were wrong. 3 Mr. Greer, on the other hand, 4 has come before you and explained how you read those graphs 5 and what they really show. He has shown you why the inter-6 ference tests look like they do and he's shown you that 7 they show there's interference in the area of the boundary 8 -- of the barrier. There's communication and we submit 9 that we can couple this with the normal pressure gradients 10 that you see across the reservoir with the evidence of 11 pressure support in the expansion area during very recent 12 test periods, that you must conclude the barrier was in 13 fact there -- that you must conclude that the barrier is in 14 fact not there. 15 I think when you look at the 16 evidence you're going to find that pressure maintenance is 17 working, that it must be, and that it is only a clever 18 trick to move the boundary of the Gavilan into our unit and 19 then claim the down dip production and say that the unit, 20 Mr. Greer's unit is dying and the Gavilan is continuing to 21 produce at a more effective rate. 22 So the bottom line, I think, 23 is that we believe what we have told you over the years 24 remains true, and it remains true today, and I ask you when

you retire to consider this evidence, that you think about

1 what the two parties have come before you to propose. On 2 one side, we want to produce it all; we want to do it now. 3 On the other hand we want to do it slowly. We want to do 4 it right, and we have come before you and we have shown you 5 how we offer to continue to work with you to monitor that 6 migration across the boundary both ways, to assure that 7 correlative rights are protected and that people are not 8 harmed.

I can tell you I'm proud to stand up with Mr. Greer. I'm convinced I stand before you with one of the most respected men in this industry and he has come before you to tell you what he believes; to tell you what he knows, and he knows it because it's been confirmed by 26 years of experience, 26 years of actual field information.

16 Mr. Kellahin pointed out that 17 we didn't have, perhaps, the razzle-dazzle of the other 18 and I'm not willing necessarily to concede that, but side, 19 we are convinced that however we presented it, what we told 20 you was right. We're asking you not to destroy a pressure 21 maintenance project that benefits the interest owners in 22 the unit, that benefits the State of New Mexico, and will 23 continue to benefit the people of this state and the 24 interest owners in this unit for years to come, and we're 25 asking you to do that instead of just returning a quick buck to somebody else.

25

2 Now the second person who I 3 think stands before you in a very unique posture is a per-4 son that you turned to for advice, the man that you asked 5 to come in and help you understand the very complicated 6 matter, give you some neutral opinions and some independent 7 counsel on the engineering side of this case. In this room 8 full of experts there is probably only one who's not being 9 paid one penny extra for being here and that is, of course, 10 Bill Weiss. 11 Now I can tell you that we 12 don't agree with him on some things. He took the informa-13 tion from one core. He finds this to be evidence of dual 14 porosity, and in fact we don't disagree with that statement 15 so much but with the implications that can be drawn from it 16 but we still contend that the evidence on dual porosity 17 looks a heck of a lot more like an anomaly than a reservoir 18 wide characteristic. 19 But there are areas where we 20 also agree with Mr. Weiss. He finds absolutely no barrier 21 and we think that is obviously the situation in this reser-22 voir. 23 He finds that the reservoir is 24 rate sensitive and we agree with that.

I can tell you too that I was

1210 1 surprised last month to see you release his report when you 2 did. With this kind of help I don't think Mr. Weiss would 3 have written anything at all that could not have been 4 seriously attacked by one side or the other. I will tell 5 you that after five days of hearing this week I think his 6 report stands before you in a pretty good position and it 7 still stands as an honest, competent, professional job and 8 it should be given, when you consider this case, substan-9 tial weight, and that's lots. 10 Now, if we look at the case, 11 there are some things here that are easy to dispose of. 12 Those can be gotten out of the way quickly. Separating the 13 C Zone one time may have sounded like a great idea but I 14 just don't think in this record it really poses a sure 15 thing. 16 Moving the boundary, further-17 more, accomplishes nothing; it's a political boundary. We 18 can move from one political boundary to another political 19 but that doesn't accomplish anything, when the boundary, 20 boundary that counts is the unit boundary. It's a 21 creature that has been blessed from time to time by this 22 Commission, but it is a creature of private contract. It's 23 an approved Federal unit and the unit boundary is going to 24 remain. I think those questions are out of the case. 25 The harder question is for you and that's what do you do to make sense out of all that's
been presented to you. You're doing today what Mr. Greer
tried to do 26 years ago. You're trying to take the information available and decide what is right to efficiently
produce the reservoir.
We submit it need not be, how-

7 ever, as difficult as it may appear, for we have attempted 8 to show you how it can be done, expand the pressure main-9 tenance project, obtain reasonable rates, monitor the flow 10 across this boundary both ways and we're ready to work with 11 you in doing that to assure that no one gains an advantage 12 and no one's rights are impaired.

13 We think that you should 14 permit production at whatever rates are necessary for short 15 periods of time, if it is necessary to get the oil out of 16 that reservoir and to do it in an efficient fashion if this 17 is what needs to be done, and when you do this, we are con-18 vinced that you will have acted to prevent waste, your pri-19 mary statutory responsibility, and you will have acted to 20 protect correlative rights and you will have met all of 21 your duties as members of this Commission.

Thank you very much.

Thank you,

Mr.

LEMAY:

24 | Carr.

25

22

23

Mr. Douglass?

MR.

1212 1 MR. DOUGLASS: First of all, 2 let me thank you gentlemen for letting me participate here. 3 This is a very serious case. I'm not going to cast asper-4 sions on co-opposing counsel for being against my position 5 here. That's not my style. I do not play games with 6 clients, opposing counsel, juries, judges, or administra-7 tive bodies. 8 My client's rights and pro-9 perty have been severely and adversely affected by what's 10 taken place previously. Production of my client's wells 11 under the normal allowable is 1000 barrels of oil per day, 12 and it's been reduced to 50 barrels a day, still going down 13 as a result of strict allowables. 14 Let's put an exhibit on here 15 to show you how Mallon was going to benefit from restora-16 tion of the normal allowable rates. All I can say is that 17 that's the best exhibit I know to show you what these re-18 strictive rates have done to my client, because only by 19 producing normal rates will he get his fair share from this 20 field. 21 He's not just by himself and I 22 think this shows exactly what that -- how and why that re-23 stricted rate was designed. It was designed to affect only 24 Mallon and only next to the expansion area because the ex-25 pansion area had not gotten their wells (unclear), had not

1 gotten their numbers in, and according to Mr. Greer would 2 be (unclear).

3 Others are impacted. You've 4 seen the list of them. Those that have stood up and are 5 going to stand up with Mallon, because Mallon does not 6 He does not ask to us to do what's right by stand alone. 7 himself, although I think he's entitled to do so. All of 8 these parties agreed to a detailed study. Their position 9 has been the same as a result of that study. And the 10 question that you now have to decide are the issues and I 11 think it's clear from your questions that you know what the 12 issues are in these cases and you don't need me or anyone 13 else to tell you what they are. You've seen them, you've 14 asked the guestions (not clearly understood>)

Let me say that it's obvious that everything doesn't fit, and I think we know the reason why. It's Mother Nature. If she let everything fit what good would be on this earth? How would we think? How would we find? How would we expand, if every question had a finite solution?

Administrative bodies such as yours have two functions. You're the judge and you're the jury; quasi judicial is what these sessions are, what it is here. That's what it is in almost every state that has judicial authority.

1 Now there's no dispute about 2 I don't think there's any question about the the law. 3 rules. I'll accept them. Mr. Kellahin's definition of 4 what correlative rights are, Mr. Roe's. In every state 5 I've been to it is essentially identical, even a backward 6 state like Texas it is essentially the same. Fair share 7 has been used in our Supreme Court opinions for years and 8 years and years. And let me suggest to you that in order 9 get a fair share you don't restrict a field down to 40 to 10 (unclear). That's clear, I think, in New Mexico or any-11 where else. That's not the standard. That's not what's 12 going to cause oil and gas to be produced. That's not 13 what's going to cause outside capital to come into New 14 Mexico to drill and produce wells, is to set the standard 15 at the lowest level, and you haven't done that. You have 16 set fieldwide yardstick allowables and that's what was in 17 effect in this field before and that's what brought about 18 drilling of these 80-something wells that were out here. 19 The operators had an opportu-20 nity to produce. 21 And let me suggest something 22 else; competition is not bad. Our country has been built 23 on it. Obviously there are some opportunities when you 24 have freedom, when you have equality. Obviously a lot of 25 times that is an efficient way but it has to be economical-

1215 1 ly feasible, economically practical, for that to happen. 2 My suggestion to you gentle-3 men is that the best way to decide that is the ones who are 4 spending the money. I think you have the duty to make sure 5 that waste does not occur, and I think that that's why this 6 original restriction was put in because that Commission had 7 a question about whether waste would be caused by contin-8 uing to produce oil at normal rates and I think the evi-9 dence since that date and you can see it now and the result 10 of your test shows without question that producing at nor-11 mal rates (unclear) producing at normal rates caused low 12 GOR and low GOR is more efficient. Every witness has tes-13 tified and ascribed to that. That has been a uniform and 14 tested theory through every witness that has been here. 15 Since there is no dispute on 16 the law, then your function has obviously got to be to 17 decide the facts and then the remedy; oftentimes juries do 18 that; and they do it, I think, in the same manner that you 19 will be called upon, and that is with the preponderance of 20 the evidence. It's not the great weight of the preponder-21 ance of the evidence. It's not beyond a reasonable doubt. 22 me say, if it was beyond a reasonably doubt, and if I Let 23 a barrier, I would be convicted, because the evidence was 24 is beyond a reasonable doubt that it exists. 25 Upon a preponderance solely

1 The evidence appears to tip the scale one it's a scale. 2 way and that's the way the facts should be decided and 3 unless there is enough evidence, even though there may be 4 some evidence, unless there's enough evidence to tip the 5 scale the other way, the preponderance of evidence rules. 6 In this case I think you could 7 even go to a great preponderance of evidence. I think 8 there are some things that are even beyond a reasonable 9 doubt on the preponderance side. Let me say that the Pro-10 ponents did not create this barrier. This barrier was re-11 cognized by Mr. Al Greer twenty years ago. He knew that he 12 found something that stopped flow down dip from where he 13 was located and that's obviously the reason that he didn't 14 go develop one of the nicest, biggest, substantial oil re-15 servoirs that you've probably got in New Mexico. If he 16 didn't think there was a barrier down dip, then why didn't 17 he go develop it. 18

think Mr. Ι Al Greer is a 19 I think you've seen him enough on the smart operator. 20 stand to realize exactly how smart he is and I think that 21 situation that we have here is, Mr. Weiss says that he the 22 has to have a geological barrier in there before he thinks 23 it's one that stops the flow. I think that the more 24 reasonable situation would be that obviously there's at 25 least one barrier in that reservoir or this oil and gas

1 wouldn't have stayed there. This formation, as I under-2 stand it, outcrops on top of the ground, so obviously 3 there's a permeability barrier in this reservoir that you 4 cannot find geologically, that stops the flow of oil and 5 gas, and I suggest to you there are at least two. A bar-6 rier is shown by our Exhibit Twenty. Mr. Greer has been in 7 the business for 26 years and I think he's an excellent 8 petroleum engineer, and we've run an interference test 9 that's almost as long as the 26 years in this reservoir and 10 nobody yet has told us how these two reservoirs can be in 11 effective pressure communication when you start out with 12 the pressure down here, continue the pressure all the way 13 across, have pressures in between that fall at or near this 14 line, and you have another reservoir that comes in at least 15 350 or more pounds above, it will come down, and we're now 16 at a 5-to-825 pounds versus 1400 -- we're now 525 pounds 17 pressure below and we're 350 pounds or more above, gentle-18 men, that is not effective (unclear). You gentlemen recog-19 nized it in your order as the result of the March, 1987, 20 hearing. You had a serious question at that time. You 21 wanted test data and information, and that test data and 22 information has shown communication as far as the wells on 23 the west of the boundary are concerned. It has shown 24 communication as far as the wells east of the boundary are 25 concerned. But it has shown no communication across the

1218 1 barrier. 2 They chastise Mr. Hueni about 3 being inconsistent. I think not. I think that Mr. Hueni 4 is an excellent petroleum engineer and I think he's given 5 forthright opinions that he's had, and I believe that as 6 far as this case is concerned that they found no error by 7 Mr. Hueni. 8 think Dr. Kohlhaas, when he Ι 9 put on his case, showed clearly that there were no frac-10 ture responses in the four wells that Mr. Greer said there 11 were, and as I understand it, Mr. Greer has to do a differ-12 ent type of analysis to show that data, and I suggest to 13 you gentlemen that all you need to do is to look at the 14 tests themselves in the same scales and these four tests 15 show fracture response and we offer it in this case, it 16 ought to be in communication, these four tests -- he sub-17 mitted another one to you just on the stand that shows 18 another pressure response in the B-32 Well and you saw what 19 type of response. These fracture tests were across the 20 barrier and they do not show any response. 21 Dr. Lee's model in order to 22 create pressure across the boundary use erroneous data and 23 information. He showed a pressure that both Mr. Roe and 24 Mr. Greer say is not correct, and then they just sort of 25 fluff off for that reservoir.

1219 1 John Lee is not that bad an 2 engineer. He is a good, smart engineer. He has done some 3 oil in place calculations and he has compared those oil in 4 place calculations with what's taking place in the reser-5 voir. They're consistent with the data and information 6 that's available. I'm not saying that they're completely 7 correct, I don't think that Dr. Lee would say they were, 8 but they are something that you can certainly look at and 9 whether the fair share is being produced here; what's see 10 happening in the reservoir. 11 I think that the evidence on 12 the barrier is clear, it exists. There is no data, there 13 is no interference test across the barrier. This barrier 14 was so easy to show it wasn't there, why didn't they show 15 an interference test pressure. Mr. Greer's rainbow map 16 shows pressure differential across that map. Let me see, 17 got one? Incidentally, my able assistant here is Mr. Mal-18 so we're -- this shows, even using Mr. Greer's lon's son, 19 Greer's pressure, the way he measures pressure, he says 20 surface is better than bottom hole. I don't know about 21 that. I've always heard the other way around, but even 22 taking his, you see that they're consistent with the bar-23 rier being in place where it is, and also the explanation 24 for the higher pressures in the gas wells in this tight 25 area that exist, the over-injection. Let me tell you about that over-injection. That over-injection that took place then went exactly the same place that it did for the 10 years that he over-injected and he couldn't keep up with the pressure. That's what the evidence shows as far as that's concerned.

6 suggest to you that Ι the 7 barrier does exist. It's an effective barrier to effective 8 communication across there and that's the first step. When 9 you take that step, then you can analyze what's going on in 10 this reservoir, once you get that problem out of the way. 11 The efficient rate of produc-12 tion is one that I think we could show without question. 13 All of the data, you remember I started with Mr. Roe in 14 January of '87 at a time when they said there weren't any

15 problems involved when we were at the low rate. Every 16 month increased oil production, low GORs, lower GORs;. 17 lower oil production, increased gas/oil ratios. It is true 18 each and every month during the higher rates production, 19 during the lower rates production that occurred. During 20 the normal rates and during the restricted rates that 21 happened, and that's inefficiency. It's inefficient to 22 produce this reservoir at high gas/oil ratios. You con-23 serve energy, you prevent waste, no one has told you that 24 you do not prevent waste by producing at lower gas/oil 25 ratios and as Mr. Powell says, that's getting it, and it's

1 an opportunity that you have to prevent waste in the 2 future.

3 400,000 barrels in the past, 4 600,000 barrels in the future, 602,000. If you're going to 5 take this scheme that's been proposed of four months and 6 one month, shut it in for the next three months, the 7 problem with that is that that means 3/4ths of the waste 8 that we say is going to occur, is going to occur because 9 you're still only producing those wells at one quarter of 10 the rate. Waste is going to occur if you continue re-11 stricted production here. The loss to the State has been 12 \$4-million already; it's going to be more. The loss to 13 these operators is \$22-million and that is significant as 14 far as these operators are concerned. That's the kind of 15 thing -- if you go to Sun's proposal and put it down to 94 16 MCF, you can't even pay out a well. When you get down to 17 the rates that we are now with the gas/oil ratios, you 18 can't pay out a new well. You don't have any new wells 19 being drilled when you produce at the rates that are being 20 submitted in this reservoir.

If you will recall with reference to the production rate, the effect, I've shown under any test of correlative rights, you'll recall that -that if you take March's production, that they are producing 5.35 in the expansion area, 5.35 barrels per acre while

1 we're producing only 1.22 under the restricted rates, and 2 accepting Mr. Kellahin's definition as set forth in the 3 Continental case, that you can use acreage unless you can 4 determine or detect the reserves that are in each tract and 5 I haven't heard anybody say that they can't determine re-6 serves in each tract, and if you're applying acreage, 7 that's not what's happening here. You're not using acre-8 age allocation when you permit 1.22 barrels per acre over 9 in the Gavilan and 5.25 -- now that's using Mr. Roe's 10 Gavilan. That's using the Gavilan that has really been 11 hurt by these restrictions that are there. That's not an 12 opportunity to produce a fair share. 13 If you go to oil in place, and 14 using their figures, you understand this calculation up 15 here is using their figures as far as they acreage, but if 16 you go to the -- using their oil in place figures that they 17 have submitted to you, the percents that they put their

wells on, they have recovered 8.4 percent of the oil in 19 place under their tracts while Gavilan has only produced 20 5.5 percent. That is a 52.79 percent.

18

21 Maybe Mr. Greer is entitled to 22 be (unclear) for his pressure maintenance project. I'm 23 certainly not going to say that you shouldn't encourage 24 people to put in a pressure maintenance project, if they 25 want to put in a pressure maintenance project. Certainly

1223 1 that is sufficient reward. He has already received a 2 substantial advantage that's occurred and you should not 3 continue an allowable system that substantially restricts 4 my client's wells and others in order to reward Mr. Greer. 5 I've got no quick bucks in-6 volved here. I've got no razzle-dazzle. I got no great 7 style, but I do have one thing that the other side doesn't 8 have. I've got great facts. 9 Thank you. 10 MR. LEMAY: Thank you, Mr. 11 Douglass. 12 Mr. Pearce. 13 MR. PEARCE: Thank you, Mr. 14 Chairman. 15 May it please the Commission, 16 I am not in a comfortable position. It's late in the week 17 and it's late in the day and I am following some gifted 18 rhetorical gentlemen. 19 We began just a little while 20 ago with the Commission being told that you can do certain 21 things. I understand that. I've practiced before the Com-22 mission and on behalf of the Commission for a number of 23 years and I understand that you can do a lot of things with 24 this case. After the number of years I've been doing this 25 am willing to be presumptuous because I propose to tell I

1224 1 you what I think you should do. 2 I read the Oil and Gas Act; I 3 read your rules and regulations; I deal with them a lot and 4 I for one have an opinion on what you should do. 5 Mobil is one of 11 companies, 6 both majors and independents, who have spent two years 7 studying the Gavilan Mancos Pool. We've also studied the 8 expansion area. Mobil has done this because it, as well as 9 other operators, desire to utilize their geological, en-10 gineering, and financial resources to recover as much oil 11 as they can. That's why Mobil's here. Mobil seeks the op-12 portunity to produce a fair share of reserves under its 13 acreage and use a fair share of the reservoir's energy. 14 If the Gavilan Pool is allowed 15 to produce as the Proponents of the study, members of the 16 study committee have indicated is the most efficient, which 17 is allowing those Gavilan wells to produce whatever they 18 can, the maximum amount of oil will be produced from that 19 reservoir and that reservoir is the present Gavilan and the 20 expansion area, and if what we're about is trying to 21 prevent waste and get as much oil out of that reservoir as 22 we can, we're going to let those wells go. 23 there was an exhibit Now, 24 blown up which Mr. Douglass showed to you earlier which 25 dealt with percentages to be recovered. I want to assure

1 you that my client is not in the business of raising its 2 relative percentage of a smaller number. Those numbers may 3 Our share of a daily production number may go be true. 4 down but if the oil we recover is higher, that's fine with 5 us, because we're going to get more ultimate recovery and 6 in that sense our aim in this process is exactly the same 7 as yours is. We're both here to try to recover more oil. 8 And Mobil will pay a smaller percentage of a bigger number 9 but we want the oil. 10 Now I'm not going to restate

11 Mr. Douglass' argument summarizing the evidence about a 12 barrier between the proposed expansion area and the pres-13 sure maintenance project. That barrier is there. Mobil 14 has spent two years studying the question. Mobil is con-15 vinced. We think this record is clear. Yeah, two years 16 ago we started a 90-day study in the Gavilan reservoir. I 17 calculate we've studied it about 690 days now. My client's 18 position has not changed. We indicated to the Commission 19 at that time that this reservoir be turned loose so we 20 could recover more oil. That is still our position.

I'm not going to restate Mr.
Douglass' summary of the high rate/low GOR data. That data
shows that producing this reservoir at higher rates is more
efficient.

25

With regards to the possibi-

1226 1 lity of gas injection, Mr. Elkins has presented conclusions 2 resulting from the two year or, if you will excuse me, 690 3 days, of money spent in studying, and I want to recall for 4 you what those conclusions are. 5 He concluded that the bulk of 6 Gavilan oil is in the matrix. 7 He concluded that injecting 8 gas into this fractured system will not recover more oil. 9 We wish it would; we'd inject gas; but it won't. 10 He concluded that oil will be 11 lost unless you maintain the highest pressure differen-12 tial between the fractures and these tight blocks. 13 If there is a single individ-14 ual who can help the Commission with the problems before 15 dealing with fractured reservoirs, it's Linc Elkins. it. 16 Mr. Elkins has got 47 years of hard core engineering 17 (unclear) of secondary recovery projects in fractured re-18 servoirs. He's got practical experience and he's got 19 theoretical writings and everybody relies on his theoreti-20 cal writings. 21 And he is a world renowned 22 in petroleum engineering. He's discussed for you expert 23 several analogous projects and he said I think you ought to 24 know that gas injection won't help you, and he named the 25 places where it had been tried and there was immediate

1227 1 breakthrough and immediate project failure and it didn't 2 help anybody, it just cost everybody money, which causes 3 premature abandonment and wastes more oil, and that's all 4 you get for gas injection out here. 5 I wish that weren't so, but 6 the experts tell us it is. 7 All the parties agree that the 8 Gavilan and the expansion area are relatively flat. They 9 are in relatively good communication. There is not a 10 poolwide gas cap. If you inject gas in that pool you're 11 going to get fast breakthrough. It's happened over and 12 over and over again and the people have related those 13 stories to you, and nobody's come up with a gas injection 14 project in a fractured reservoir. The people who have been 15 studying this all their professional lives haven't done it. 16 And we believe it's signifi-17 cant that Dr. Lee has come to this hearing and has aban-18 doned the model he used before. We're not surprised. We 19 think it's interesting, we're not surprised. We thought 20 that model was flawed; we still think it was flawed. We're 21 not surprised he didn't use it. 22 Mr. Elkins also confirmed that 23 the Gavilan and the expansion area are a dual porosity sys-24 By applying measured reservoir parameters and recogtem. 25 nized calculations, Mr. Elkins has concluded that the

1228 1 matrix will produce oil. As I said, Mr. Elkins has 47 2 years of practical and theoretical expertise and, you know, 3 he's been proven absolutely correct. 4 In this hearing you have heard 5 evidence which proves that that conclusion about dual poro-6 sity is correct. 7 Mallon, regretably maybe, Mr. 8 I'm sure for him, drilled the Davis Federal Well. Every-9 body agrees that that well is in one of what Mr. Greer 10 calls tight blocks and that well produces oil. It doesn't 11 produce enough to make the man who paid for the well happy, 12 but it produces oil and if the tight blocks weren't giving 13 up oil, that well couldn't produce. That well is proof of 14 a dual porosity system. He can't see anything else. We've 15 got dual porosity. We've got dual porosity which needs to 16 have the pressure differential between the tight blocks and 17 the fracture reduced as much as possible so the oil can get 18 out of the tight blocks. That's what we're talking about 19 here. 20 Τf we don't maximize that 21 pressure differential we will waste more oil. 22 Mobil believes that allowing 23 an injection credit to wells in the expansion area is 24 unfair. Those wells are not receiving pressure support 25 from that pressure injection area. That pressure injection

1229 1 area was at a different pressure first below and then above 2 for 26 years. They're not in pressure communication. 3 I hope the Commission will 4 review, I don't want to be insulting, but I do want to 5 remind you of something. 6 When I started today I hadn't 7 planned to do this until a few minutes ago, but I want to 8 remind you that drilling and having a good well is not a 9 punishable offense. What we're talking about here is 10 taking an operator who goes out and drills a good well to 11 produce oil being punished. We're going to reward some-12 body who drills a well that's not good in order to punish 13 somebody who drills a well that is good. 14 You've heard Mr. Hueni comment 15 that he's convinced that the better wells are in better 16 parts of the reservoir. 17 Allowing a better well to pro-18 duce more oil is fair. Punishing somebody for coming into 19 New Mexico or spending money in New Mexico to drill a good 20 well-- I'm sorry, it just doesn't make sense to me. I 21 don't think that's what we're supposed to be about and I'm 22 talking about the Commission and all the lawyers who prac-23 tice before the Commission and all the companies who bring 24 cases before the Commission. We all want more oil and to 25 punish somebody for having a good well doesn't make good

1230 1 sense. 2 In summary, Mobil joins other 3 proponents in asking the Commission to avoid waste and to 4 protect the parties correlative rights by setting the 5 allowables equal to whatever those wells will produce so 6 that we can recover the maximum amount of oil; by including 7 the expansion area in the Gavilan Pool, in which it is 8 in pressure -- with which it is in pressure communication; 9 and by determining that it is unreasonable to cause further 10 waste by holding down production rates in frankly a false 11 hopes that the parties will get together, form a unit, and 12 come up with some better way to produce this reservoir. 13 The best way to produce this 14 reservoir is to let wells go. My client is in the business 15 of producing oil. We're not in the business of wasting it 16 and we're not in the business of figuring out what relative 17 percentages are, how those percentages change. We're in 18 the business of producing oil. 19 The way to get the most oil 20 out of this reservoir, to distribute that production most 21 correctly and to get the most benefit for the operators, 22 is to let this reservoir go, and we ask you to do that. 23 Thank you. 24 MR. LEMAY: Thank you, Mr. 25 Pearce.

1231 1 Mr. Lopez. 2 MR. LOPEZ: I'm sorry that Mr. 3 Lund is not here so I could explain why I use this script. 4 Some of my friends and clients are afraid to turn me loose 5 without one. 6 Mr. Chairman, and members of 7 the Commission, I'm making this statement on behalf of Mesa 8 Grande. 9 I mentioned in my opening, As 10 hopefully we've come to the last bend in the road. We are 11 now at the moment of truth. It's been a great fight and 12 personally, and on behalf of my client, and surely for the 13 Proponents and Opponents alike, I want to thank the Commis-14 sion, its staff and Mr. Weiss, for the dedicated attention 15 and the time and energy you have given, and in allowing us 16 to come before you in an open forum to debate and contest 17 the issues that will affect the ultimate recovery of 18 thousands of barrels of oil and millions of dollars in lost 19 revenues to the operators, mineral owners, and the State of 20 New Mexico. That this is a very important case and I know 21 that both the Opponents and Proponents are in agreement on 22 this issue. 23 This is obviously a case where 24 reasonable men disagree and I know for certain that both 25 the Opponents and Proponents have put forward their very

best cases with some of the country's preeminent experts on
petroleum engineering, a very distinguished club on both
sides of the aisle.

And still, while I'm at it, I 5 would like to state publicly to all the members of our 6 team, the geologists, engineers, landmen, not to mention 7 the big bosses, that I consider it a real privilege and a 8 high point of my career to have worked and vigorously de-9 bated with all of you in endless discussions the issues 10 before the issues before us. As I mentioned five days ago, 11 I first started living with this thing called Gavilan five 12 years ago, and so as the Commission, I'm sure, realizes, 13 there are a bunch of folks, landmen, geologists, et cetera, 14 who may not be here today but who have provided valuable, 15 talented testimony and who contributed greatly to helping 16 frame the issues.

17 Besides congratulating this 18 effort, the point I hope I'm making is these reservoirs 19 called Gavilan and West Puerto Chiquito have been inten-20 sively scrutinized by the best people our industry has to 21 offer. Complete and thorough studies have been made on the 22 areas in question, so it's time for a decision, time for 23 calling it one way or the other, and it's up to you three 24 Commissioners to weigh the evidence and to reach your con-25 clusions in accordance with the laws of this state.

1233 1 Actually, this is where we 2 incompetent lawyers come into the picture. And incompetent 3 we are perceived because, as my father, who happens to be 4 an engineer, has told me more than once, noting offends him 5 more than to pay the damned lawyers their ungodly hourly 6 rates trying to educate them about things they're incap-7 able of comprehending. 8 Be that as it may, our demo-9 cratic form of government has provided laws and a judicial 10 process where the interpretation and enforcement of those 11 laws take place and that is the lawyer's game. 12 That is also why our dispute 13 is before you three gentlemen who are empowered and whose 14 duty it is to prevent waste and protect correlative rights. 15 So you all must do your best. 16 Where do we begin? Section 70-2-3 of 17 the New Mexico statutes states that the term underground 18 waste embraces: "the inefficient, excessive or improper use 19 or dissipation of the reservoir energy, including gas 20 energy and water drive, of any pool, and the locating, 21 spacing, drilling, equipping, operating or producing, of 22 any well or wells in a manner to reduce or tend to reduce 23 the total quantity of crude petroleum oil or natural gas 24 ultimately recovered from the pool..." 25 The Oil Conservation Commission Rules

1234 ł Regulations define correlative rights to mean: and "the 2 opportunity afforded as far as practicable to do so, to the 3 owner of each property in a pool to produce without waste 4 his just and equitable share of the oil or gas, or both, in 5 the pool, being an amount, so far as can be practically 6 determined, and so far as can be practically obtained, 7 without waste, substantially in the proportion that the 8 quantity of recoverable oil or gas, or both, under such 9 property bears to the total recoverable oil or gas, or 10 both, in the pool, and for such purpose to use his just and 11 equitable share of the reservoir energy." 12 In a word, correlative rights 13 means the opportunity to drill and compete with for the 14 hydrocarbons available without causing waste. 15 Your task is to now examine 16 the evidence and apply the law. As Mr. Greer stated, there 17 are some things that we agree on. 18 We agree that the Gavilan Pool 19 is in direct communication with the expansion area. We 20 strongly disagree, however, that the expansion area is in 21 effective communication with the West Puerto Chiquito Pres-22 sure Maintenance Project. 23 We also agree, or at least Dr. 24 Lee testified, that if the Gavilan Mancos is solely a solu-25 tion gas drove reservoir, it is then not rate sensitive,

and that if Gavilan has matrix, that matrix contribution
might be an explanation for observing lower gas/oil ratios
at higher producing oil rates.

We both disagree on the signi-5 ficance of matrix contribution, however, and its contribu-6 tion to ultimate recovery. The Proponents believe that the 7 matrix is a significant contributor of oil production to 8 the fracture systems and the most efficient way to produce 9 the matrix is to produce the wells at capacity, creating as 10 large a pressure differential as possible between the 11 fractures and the matrix system. This minimizes the imbi-12 bition effects in the reservoir, which at restricted pro-13 ducing rates, causes waste. As John Roe said yesterday, 14 "once you get the oil moving, you better keep it moving." 15 And we totally agree with that testimony.

I might again divert from my script, but imbibition is a new thought for me but I know it's not for my wife, because she's accused me on more than one occasion when we're at a cocktail party that I seem to suck up everything in sight like a sponge and I know it's harder than hell to get me to expel it.

There may be disagreement, but there is no denying on any account, that during the test periods performed at the Commission's direction since July of 1987, when the reservoir was produced at normal allow-

1236 1 ables and then restricted allowables, that oil was produced 2 more efficiently at normal allowables as witnessed by the 3 observed lower gas/oil ratios in the pool. Another area of disagreement 5 is whether there exists an effective permeability barrier 6 separating the two pools and whether it lies two sections 7 east of the present Gavilan boundary. 8 Our evidence has indeed shown 9 that there exists an effective barrier separating the ex-10 pansion area and the pressure maintenance project. The 11 Proponents have strong evidence to support their position. 12 First, we have the 25 year 13 interference test, Exhibit Twenty, that Mr. Douglass refer-14 red to, which shows that Gavilan on first discovery came 15 in at virgin pressures, although West Puerto Chiquito had 16 been producing by then for 20 years and had experienced a 17 pressure decline that did not affect Gavilan. 18 Conversely, the substantial 19 Gavilan and expansion area production over the past six 20 years has not affected the production from the West Puerto 21 Chiquito Pressure Maintenance Area. 22 Also the Commission ordered 23 interference tests have provided additional proof that no 24 effective pressure communication exists across the barrier. 25 Actually, as Dr. Kohlhaas explained, the correct Horner

1 plot analysis of the interference tests conducted across 2 the barrier by BMG confirms the existence of the barrier 3 and its approximate location. 4 Moreover, Mr. Max Powell pre-5 sented isobaric pressure maps showing the distribution of 6 the pressure gradients in both pools for three separate 7 time periods, and that testimony has not been refuted with 8 hard facts. 9 Second, reason for supporting 10 this is that there really has never been much disagreement 11 about the permeability pinch out in the trough separating 12 the West Puerto Chiquito monocline from the Gavilan Dome 13 until recently when Mr. Greer sought gas injection credits 14 for the expansion area wells. 15 However, yesterday Mr. Roe 16 testified that this part of the reservoir is not high in 17 transmissibility and Mr. Greer also yesterday referred to 18 it as "fuzzy boundary" where there exists a "change in 19 permeability." Also, as I also mentioned in my opening 20 statement, this very Commission on June 8th, 1987, in Case 21 8950, Order R-6469-D, found that by Finding (5), "the 22 evidence shows that there is limited pressure communication 23 between the two designated pools and that there are two 24 weakly connected areas separated by some restriction at or 25 near the common boundary of the two pools."
1238 1 Mesa Grande believes that the 2 pool boundary should be moved to reflect the true boundary 3 separating the two pools because again by Commission 4 definition, "pool means any underground reservoir contain-5 ing a common accumulation of crude petroleum oil or natural 6 gas or both... pool is synonymous with common source of 7 supply." Under any circumstance, the expansion area must 8 be treated identically as the rest of the Gavilan under the 9 rules adopted by the Commission. 10 Turning to the second matter 11 the Commission must address, namely the protection of cor-12 relative rights, there again should be no disagreement on 13 what it means, but there is sharp disagreement on who is 14 doing what to whom. 15 It has been inferred by the 16 Opponents that Mallon superstar wells have a formidable 17 advantage over other wells in the area. However, the facts 18 of the matter are the first five highest ranked superstar 19 wells are operated by BMG in the expansion area and BMG and 20 Sun operate 11 of the 18 superstar wells compared to 21 Mallon's 3. If drainage is occurring, then it is clear 22 that the expansion area is draining the heart of Gavilan. 23 Restricted rates substantially benefit expansion area

25 be clearly exacerbated if injection credits are allowed.

wells, a clear violation of correlative rights, which will

24

1239 1 One thing is clear, however, 2 is that the issue of correlative rights disapand that 3 pears if the expansion area is included or treated the same 4 as Gavilan and if capacity allowables are instituted, or at 5 least allowables no less than the statewide allowables. 6 The Commission should bear in 7 mind that there are many pools in the state that enjoy 8 allowables much higher than the statewide rules call for, 9 but we know of none except Gavilan that suffer from re-10 stricted allowables. 11 Finally, I come to the last 12 item on which there is very strong disagreement, and that 13 is the issue of unitization. The opposition has supported 14 unitization since day one and still does. Mr. Kellahin 15 said in his opening comments that untilization is the appro-16 priate solution. Mesa Grande strongly disagrees, and why? 17 Mesa Grande believes the only 18 reason that makes sense for forming a unit is to provide a 19 mechanism for efficiently and economically recovering more 20 oil from secondary recovery operations as required by State 21 law. 22 have stated, because we As Ι 23 are convinced that Gavilan together with the expansion area 24 is а fractured, dual porosity, solution gas driven 25 reservoir we have concluded that gas injection for pressure

1240 1 maintenance won't work but, in fact, will inhibit ultimate 2 recoveries from the pool from primary operations. 3 Moreover, as both Mr. Elkins 4 and Mr. Powell testified, comparable fractured reservoirs 5 have proved to be very poor candidates for secondary re-6 covery operations whether through gas injection or water-7 flood operations. 8 Ι fervently hope the Commis-9 sion will see these cases the way the Proponents do and 10 find, as Mr. Hueni stated, "We're not wrong." I believe 11 the evidence is overwhelmingly in our favor and that the ad 12 hoc committee composed of the Gavilan proponents by their 13 present unanimity, sees it the way it is. Please don't let 14 the 243 barrel per day tail continue to wag the dog that 15 can produce 6,000 barrels per day. 16 As I stated in my opening, 17 these hearings will have an irreparable and irreversible 18 effect on Gavilan's future. 19 These cases also have repre-20 sented one of my very best professional experiences and 21 have for the most part been a great deal of fun since my 22 oil and money are not at risk, and I thank all concerned. 23 MR. LEMAY: Thank you, Mr. 24 Lopez. 25

1241 1 MR. BUETTNER: Thank you. Ι 2 had eight minutes, I've cut out about half. 3 Mr. Chairman, members of the 4 Commission, distinguished Professor Elkins, ladies and 5 gentlemen. 6 I'm Bob Buettner. I'm General 7 Counsel and Secretary of Koch Exploration Company. 8 Koch, as you know, is a wholly 9 subsidiary of Koch Industries of Wichita, Kansas. owned 10 Koch Industries is the largest privately owned oil company 11 in the United States. If we were publicly owned, we'd rank 12 between 15 and 18 on the Fortune 500 with revenues in the 13 range of \$17-billion annually. 14 We have available to us, thus, 15 huge capital resources and fairly large experience in the 16 oil business generally. We've invested, perhaps, \$100-17 million in feasible enhanced recovery projects, both con-18 ventional and exotic, in the last few years. 19 I can't begin to improve on 20 the summaries of the Proponents' overwhelming evidence that 21 Mr. Pearce has made for Mobil; that Mr. Lund has made for 22 Amoco; that Mr. Lopez has made for Mesa Grande; further, 23 that Mr. Douglass has made for all of us. 24 Ι know at this stage that 25 promises of brevity are laughable, but I'll make a comment

_.

on regulatory policy and I'm going to try to take one more stab at an analogy on the part of the physical process that -- that's been difficult for me to grasp and I am still not sure that Mr. Humphries is comfortable with it, as I am not.

6 The idea that you can't cure 7 problem of reimbibition by injecting gas into a fracthis 8 tured reservoir, the best analogy I could think of that 9 the engineers would agree was correct was if I blow into a 10 balloon hard enough to blow out a candle, I'll push out the 11 sides of the balloon because the air can't go anywhere 12 hold that balloon out in a wind that's else, but if Ι 13 strong enough to blow out a bonfire, I won't inflate the 14 balloon, and that's because the wind just whistles right on 15 around it, takes the path of least resistance.

The original gas in the matrix The original gas in the matrix or the hairline fractures or whatever, the smaller, tighter spaces, can go no place but out to the big fractures and that pushed oil ahead of it.

The injected gas just whistles The injected gas just whistles like the wind through the fractures and around the matrix. The actual results received from the physical processes in the reservoir, we're seeing 300 barrel a day wells that are plummeting to 3 barrel a day abandonment levels and all the oil is being sucked back into the rock forever.

1242

1243 1 These rates are not only 2 killing this field and the smaller businesses that live by 3 it, but if they're continued, they're going to kill the 4 confidence of responsible operators in New Mexico regula-5 tory policies. 6 Finally, a word on history and 7 regulatory policies, the industry learned the hard way 30 8 to 40 years ago that gas injection into fractured reser-9 voirs is a disastrous mistake. 10 Chairman Lemay asked if it 11 worked anywhere in the world. With an auditorium full of 12 experts on fractured reservoirs, the closest we could come 13 is Mr. Greer's (unclear) example, which is a nonfractured 14 limestone with a water drive and any number of other non-15 analogous conditions. 16 It doesn't work and the people 17 who have to pay for it know better than to try and that's 18 why you can't find examples. 19 Now, 25 years ago the prede-20 cessors to this Commission allowed Mr. Greer to try to 21 disprove that lesson for the noble purposes of conserva-22 tion. For 20 years the experiment continued without 23 affecting others in the industry. 24 Since the early eighties this 25 Commission and its predecessors have continue to protect

1244 1 the experiment to the concern and later to the injury of 2 others and to the state itself, but again in the name of a 3 noble cause. 4 Now it seems some want to hold 5 primary recovery hostage until the Proponents agree to try 6 the experiment again. 7 It's time to end the indul-8 gence, declare the experiment was noble, but declare 9 enough. Gas injection in fractured reservoirs was waste in 10 1950, it is waste today, and it will be waste tomorrow. 11 High rates will maximize the 12 ultimate recovery; low rates jeopardize it. This Commis-13 sion should not risk primary recovery in the vain hope of 14 forcing another doomed experiment. 15 Those who do not learn from 16 history are condemned to repeat it. That thought is attri-17 buted to the philosopher Santana. That name sounds New 18 Mexican. I think that thought certainly should be. 19 Thank you. 20 LEMAY: Thank you, MR. Mr. 21 Buettner. 22 Additional comments in the 23 case? 24 Statements? 25 I want to thank everyone for

ì	1245
1	the professional manner in which this week has been con-
2	ducted, including the lawyers and the expert witnesses.
3	It's been a fun week.
4	We'll take this case under
5	advisement. Thank you.
6	
7	(Hearing concluded.)
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
20	
21	
22	
23	
24	
25	

CERTIFICATE I, SALLY W. BOYD, C.S.R., DO HEREBY CERTIFY the foregoing Transcript of Hearing before the Oil Conservation Commission was reported by me; that the said transcript, contained on pages 991 through 1245, inclusive, is a full, true and correct record of this portion of the hearing, prepared by me to the best of my ability. Soldy W. Doyd Corz