SUN EXPLORATION AND PRODUCTION COMPANY EXHIBITS MANCOS POOL RESERVOIR SIMULATION STUDY MARCH 30, 1987

MANCOS POOL

Reservoir Simulation Study

MODEL PROGRAM SOFTWARE

- VIP (Vectorized Implicit Program)
 - ° Developed by J. S. Nolen and Associates Houston, Texas
 - [°] Three dimensional, three-phase (oil, gas, water)
 - [°] Black oil; oil and gas properties described by input FVF, viscosity, and solution gas-oil ratio
 - ^o Accounts for gravity, viscous, and capillary forces Uses mathmatical equations for fluid flow common to all modern reservoir simulation programs
 - Results compared against other industry products in Society of Petroleum Engineers comparitive test, (Journal of Petroleum Technology, March 1986)
 - ° Used by other major oil companies including Conoco, Phillips, Standard Oil, and Unocal

SUN EXPLORATION AND PRODUCTION COMPANY'S EXPERIENCE

- ^o Extensively tested and benchmarked program against other publicly available software
- Has been used to model numerous reservoirs of various types since acquisition in 1983

MANCOS POOL

Reservoir Simulation Study

ASSUMPTIONS

RESERVOIR CONDITIONS AND PROPERTIES

	itial Pressure	1534 psia	@ +370'
° In	itial Saturation Pressure	1534 psia	(C.O.U. L-11)
° Ter	nperature	162° F	
	rosity	1.0%±	
	t Pay	2-30' Zones	(1 zone Modeled)
°In	itial Water Saturation	10%	
°Ir	reducible Water Saturation	10%	
° Res	sidual Oil Saturation	10%	
° Cr	itical Gas Saturation	1.0%	
° 00	IP	3000 STB/acre	(BMG Calculation,
		Others) c	
° Ro	ck Compressibility	Others) 10 x 10 ⁻⁶ 1/1	psi
		(Gavilan Tech.	Comm., Mobil
		Lindrith B Uni	
° Re	lative Permeability	See Exhibit 3	,
	rmeability	10 Darcy-Feet	(BMG. Sun
		Calculations)	

FLUID PROPERTIES

<u>0i1</u>

0	Obtained	1 from C.O.U. L-11)	See Exhibit 4
0	Initial	Saturation Pressure	1534 psia
٥	Initial	FVF	1.297
0	Initial	Solution Gas-Oil Ratio	478 SCF/STB

Water

0	Density	1.021 gm/cc
0	FVF	1.021
0	Viscosity	0.44 CP 6
	Compressiblity	3.2 x 10 ⁻⁶ 1/psi

~

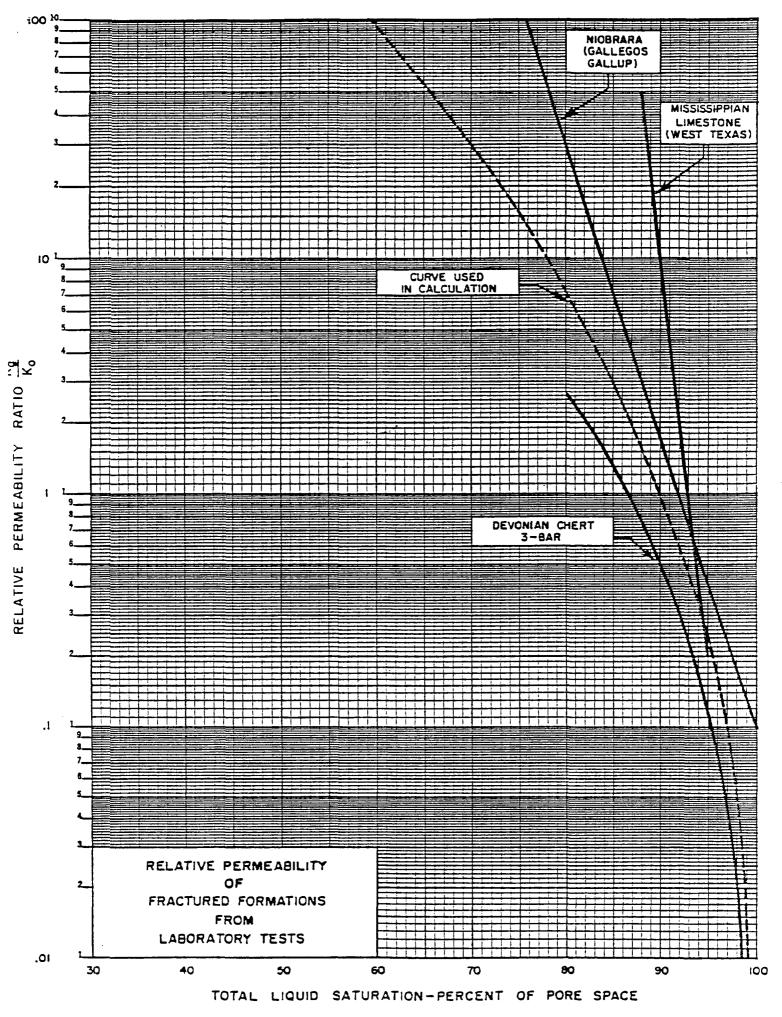


Exhibit 3

July 27, 1965

RESERVOIR FLUID DIVISION

Benson-Montin-Greer Drilling Corporation 158 Petroleum Center Building Farmington, New Mexico

Attention: Mr. Albert R. Greer

Subject: Reservoir Fluid Study Bolack-Greer Inc. Canada Ojitos Unit No. 12-11 Well Puerto Chiquito Field Rio Arriba County, New Mexico Our File Number: RFL 3366

Gentlemen:

Subsurface fluid samples were collected from the subject well by a representative of Core Laboratories, Inc. and were delivered to our laboratory in Dallas for use in a reservoir fluid study. The results of this study are presented on the following pages.

The saturation pressure of the fluid was found to be 1519 psig at the reservoir temperature of 162° F. The associated formation volume factor was found to be 1.297 barrels of saturated fluid per barrel of residual oil. By differential pressure depletion the fluid evolved 478 standard cubic feet of gas per barrel of residual oil. Under similar depletion conditions the viscosity increased from a minimum of 0.625 centipoise at the saturation pressure to a maximum of 1.704 centipoises at atmospheric pressure. The saturation pressure of the fluid was measured at several different temperatures as you requested.

It has been a pleasure to perform this study for you. If you have any questions or if we may assist you further in any way, please do not hesitate to contact us.

Very truly yours,

Core Laboratories, Inc. Reservoir Fluid Division

P.Z. Moses (B)

P. L. Moses Operations Supervisor

PLM:JB:bjm 7 cc. - Addressee

Exhibit 4

* . * . .

3

				Pagelof_	11
	Benson-Montin-Greer			FileRFL 3	366
Company		_Date Sample	ъđ	July 1, 1965	
Well	Canada Ojitos Unit No. 12-11	County		Rio Arriba	
Field	Puerto Chiquito	State		New Mexico	
	FORMATION CHA	RACTERIST	ICS		
Formation			Nio B	raro (Gallup)	
Date First	t Well Completed		Octob	ber	, 19_62
Original F	Reservoir Pressure		1631	PSIG @	<u>5957</u> Ft
Original F	Produced Gas-Oil Ratio	•			SCF/Bb
Pro	oduction Rate				Bbl/Day
Se	parator Pressure and Temperature			PSIG,	¥°
Oil	Gravity at 60° F.				°AP
Datum					Ft. Subsea
Original (Gas Cap			·····	
	WELL CHARA	CTERISTICS	•		
Elevation			7232	KB	Ft
Total Dep	oth		_6687_		Ft
Producing	g Interval		_6648-	-6687	Ft
Tubing Si	ze and Depth			In. to	Ft
Productiv	-		 	Bbl/D/PSI @ _	
Last Rese	ervoir Pressure	•	1693	PSIG @	<u>6650</u> Ft
Da	te		July	1	, 19_65
Re	servoir Temperature		162	°F. @	<u>6650</u> Ft
Sta	atus of Well		Shut	in 27 days	
, Pro	essure Gauge		Ame	rada	······
Normal P	roduction Rate				Bbl/Day
Ga	s-Oil Ratio				SCF/Bb
Ser	parator Pressure and Temperature			PSIG,	°F
	se Pressure		_15.02	25	PSIA
Well Maki	ing Water		_None	······	% Cu
	SAMPI INC. C	ONDITIONS			

SAMPLING CONDITIONS

Sampled at	KB	Ft.
Status of Well	Shut in 27 days	
Gas-Oil Ratio		SCF/Bbl
Separator Pressure and Temperature	PSIG,	°F.
Tubing Pressure	0	PSIG
Casing Pressure	·	PSIG
Core Laboratories Engineer	NT	
Type Sampler	Perco	

.

REMARKS:

1

Page	<u>2 of 11</u>	
File	RFL 3366	
Well	Canada Ojitos	Unit
•• ••	No. 12-11	

VOLUMETRIC DATA OF Reservoir Fluid SAMPLE

1.	Saturation pressure (bubble-point pressure) 1519 PSIG @ 162 °F.
2.	Thermal expansion of saturated oil @ 5000 PSI = $\frac{V @ 162 \circ F}{V @ 76 \circ F} = \frac{1.04528}{1.04528}$
3.	Compressibility of saturated oil @ reservoir temperature: Vol/Vol/PSI:
	From <u>5000</u> PSI to <u>3500</u> PSI = <u>8.24 x 10⁻⁶</u>
	From <u>3500</u> PSI to 2500 PSI = <u>9.49 x 10^{-6</u>
	From <u>2500</u> PSI to <u>1519</u> PSI = <u>10.68 x 10⁻⁶</u>

4. Specific volume at saturation pressure: ft ³/lb

<u>0.02218</u> @ 162 °F.

5. Saturation pressure at various temperatures:

Temperature,	Saturation P	ressure, PSI
• F	BHS No. 1	BHS No. 2
76	1203	1204
110	1351	•
152	1 49 1	1492
162	1519	1519
172	1540	

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon. CORE LABORATORIES, INC.

Petroleum Reservoir Engineering DALLAS, TEXAS

Page	
File	RFL 3366
Well	Canada Ojitos Unit
,,	No. 12-11

Reservoir Fluid SAMPLE TABULAR DATA

	PRESSURE . VOLUME	VISCOSITY	DIFFERENT	N@ 162 °F.	
PRESSURE PSI GAUGE	RELATION @ 162 °F., RELATIVE VOLUME OF OIL AND GAS, V/VSAT.	OF OIL @ 162 "F CENTIPOISES	GAS/OIL RATIO LIBERATED PER BARREL OF RESIDUAL OIL	GAS/OIL RATIO IN SOLUTION PER BARREL OF RESIDUAL OIL	RELATIVE OIL VOLUME, V/VR
5000	0.9680	0.841			1.256
4500	0.9718				1.260
4000	0.9759	0.781			1.266
3500	0.9801	0.751			1.271
3000	0.9847	0.719			1.277
2500	0.9895	0.686			1.283
2300	0.9916				1.286
2100	0.9936				1.289
2000	0.9947	0.652			1.290
1900	0.9957				1.291
1800	0.9968				1.293
1700	0.9981				1.294
1600	0.9991	•			1.296
1519	1.0000	0.625	0	478	1.297
1508	1.0328				
1498	1.0054				
1481	1.0101				
1457	1.0162				
1429	1.0254				
1389			32	446	1.284
1369	1.0458				
1350	•	0.684			
1288	1.0766				
1259			65	413	1.270
1250		0.696			
1196	1.1174				
1129			96	382	1.257
1100		0.731			
1084	1.1789				
968	1.2610				
963			136	342	1.239
950		0.780			
858	1.3638			•	
812	•		173	305	1.224

v = Volume at given pressure

 $v_{sat.}$ = Volume at saturation pressure and the specified temperature.

 v_R = Residual oil volume at 14.7 PSI absolute and 60° F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon. CORE LABORATORIES, INC. Petroleum Reservoir Engineering

• ;

DALLAS, TEXAS

Page	4of	11
File	RFL 3366	
Well	Canada Ojito	os Unit
	No. 12-11	

Reservoir Fluid SAMPLE TABULAR DATA

	PRESSURE-VOLUME	VISCOSITY	DIFFERENT	IAL LIBERATION @	162 • F.
PRESSURE PSI GAUGE	RELATION @ 162 °F., RELATIVE VOLUME OF OIL AND GAS, V/V9AT.	OF OIL @ 162°F., CENTIPOISES	GAS/OIL RATIO LIBERATED PER BARREL OF RESIDUAL OIL	GAS/OIL RATIO IN SOLUTION PER BARREL OF RESIDUAL OIL	RELATIVE OIL VOLUME, V/VR
800		0.835			
750	1.4975				
658			211	267	1.207
657	1.6518			,	
650		0.900		,	
566	1.8577				
519			246	232	1.192
500	• •	0.980			·
479	2.1482				
413	2.4573				
359			287	191	1.175
350	2.8694				
298	3.3145				
250	3.8813	1.161			
218			328	150	1.156
108			367	111	1.133
0		1.704	478	0 @ 60° F	1.049

Gravity of residual oil = 38.2° API @ 60° F.

v = Volume at given pressure

VSAT. == Volume at saturation pressure and the specified temperature.

 v_R = Residual oil volume at 14.7 PSI absolute and 60° F.

CORE LABORATORIES, INC.

See .

`..

Petroleum Reservoir Engineering DALLAS. TEXAS

Page_	_5 of
File	RFL 3366
Well	Canada Ojitos Unit
	No. 12-11

Differential Pressure Depletion at 162° F.

Pressure PSIG	Oil Density Gms/Cc	Gas <u>Gravity</u>	Deviation Factor
1519	0.7223		
1389	0.7258	0.696	0.882
1259	0.7298	0.698	0.887
1129	0.7336	0.701	0.894
963	0.7389	0.709	0.902
812	0.7438	0.718	0.914
658	0.7487	0.731	0.929
519	0.7534	0.753	0.943
359	0.7589	0.791	0.958
218	0.7642	0.886	0.976
108	0.7716	1.067	, '
0	0.7939	1.702	

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any vil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Page <u>6</u>	of	11
---------------	----	----

File RFL 3366

Well Canada Ojitos Unit No. 12-11

SEPARATOR TESTS OF <u>Reservoir Fluid</u> SAMPLE

SEPARATOR PRESSURE, PSI GAUGE	SEPARATOR TEMPERATURE, • F.	SEPARATOR GAS/OIL RATIO See Foot Note (1)	-	STOCK TANK Gravity, • API @ 60• F.	SHRINKAGE FACTOR, VR/VSAT, See Foot Note (2)	FORMATION VOLUME FACTOR, VSAT./VR See Foot Note (3)	SPECIFIC GRAVITY OF FLASHED GAS
0	74	483		38.1	0.7639	1.309	0.986
40	74	386	27	39.6	0.7943	1.259	
80	74	354	55	39.6	0.7968	1.255	
160	74	300	110	39.4	0.7943	1.259	

(1) Separator and Stock Tank Gas/Oil Ratio in cubic feet of gas @ 60° F. and 14.7 PSI absolute per barrel of stock tank oil @ 60° F.

(2) Shrinkage Factor: VR/VSAT. is barrels of stock tank oil @ 60° F. per barrel of saturated oil @ 1519 PSI gauge and 162 ° F.

(3) Formation Volume Factor: VSAT./VR is barrels of saturated oil @ 1519 PSI gauge and 162 ° F. per barrel of stock tank oil @ 60° F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

1_

•••

•

- - -

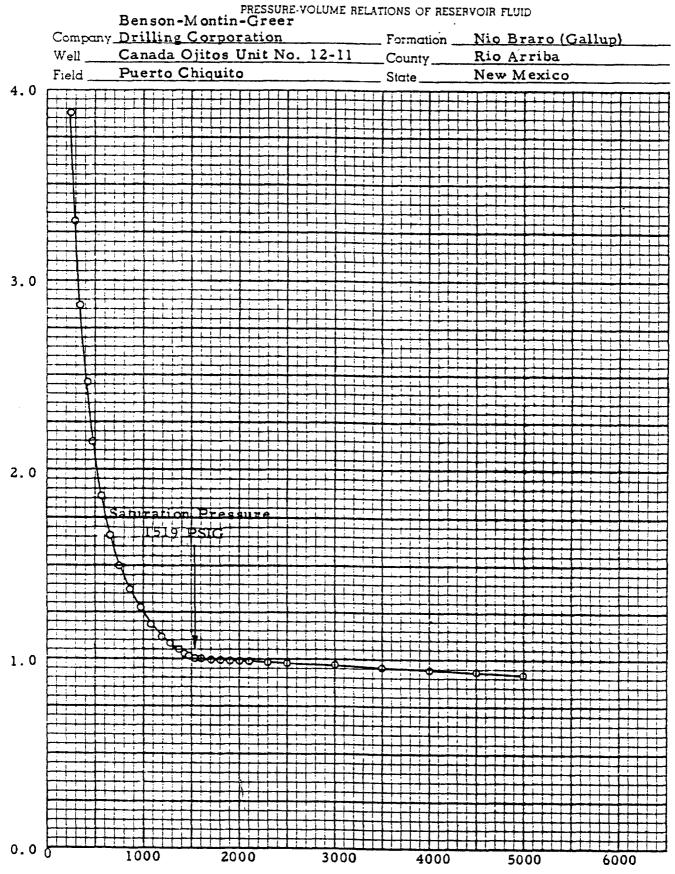
	Benson-Montin-Greer		FileRFL 3366
Company_	Drilling Corporation	Formation_	Nio Braro (Gallup)
Well	Canada Ojitos Unit No. 12-11	County	Rio Arriba
Field	Puerto Chiquito	State	New Mexico

HYDROCARBON ANALYSIS OF Reservoir Fluid SAMPLE

COMPONENT	MOL PER CENT	WEIGHT PER CENT	DENSITY @ 60° F. Grams Per Cubic Centimeter	• API @ 60• F.	MOLECULAR WEIGHT
Hydrogen Sulfide					
Carbon Dioxide	0.20	0.08			
Nitrogen	0.13	0.03			
Methane	26.36	3.65			
Ethane	6.86	1.78	•		
Propane	6.19	2.36			
iso-Butane	1.20	0.60			
n-Butane	4.29	2.15			
iso-Pentane	1.80	1.12			
n-Pentane	2.14	1.33			
Hexanes	4.49	3.34			
Heptanes plus	46.34	83.56	0.8474	35.3	209
	100.00	100.00			

Core Laboratories, Inc. Reservoir Fluid Division

Page 7 of 11

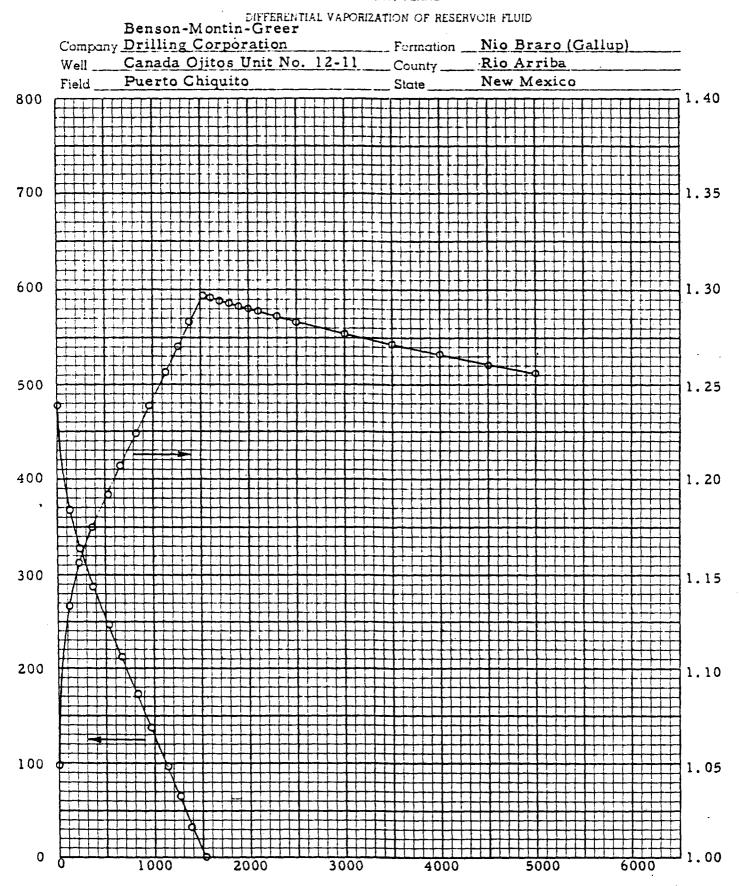

L. Moses (B)

P. L. Moses Operations Supervisor

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Page _	8	of 11
File	RFL	3366

•••

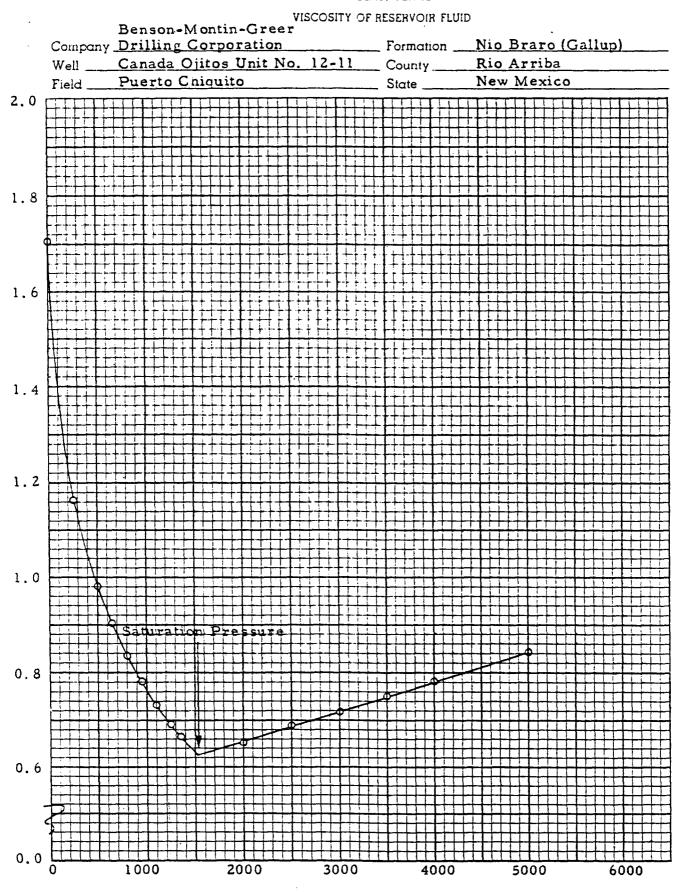


PRESSURE: POUNDS PER SQUARE INCH GAUGE

HELATIVE VOLUME: V/VS

Page <u>9 of 11</u> File <u>RFL 3366</u>

.:

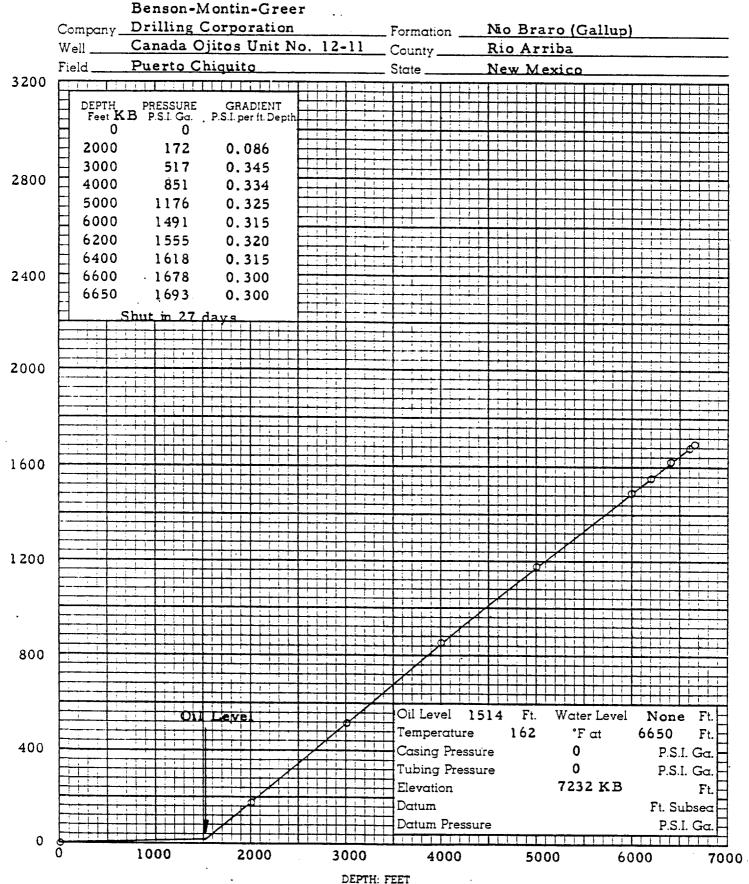

בייי בוו וואווחבר טו אווטאוים ליוו וואווחבר טו הבאוטעאל טור

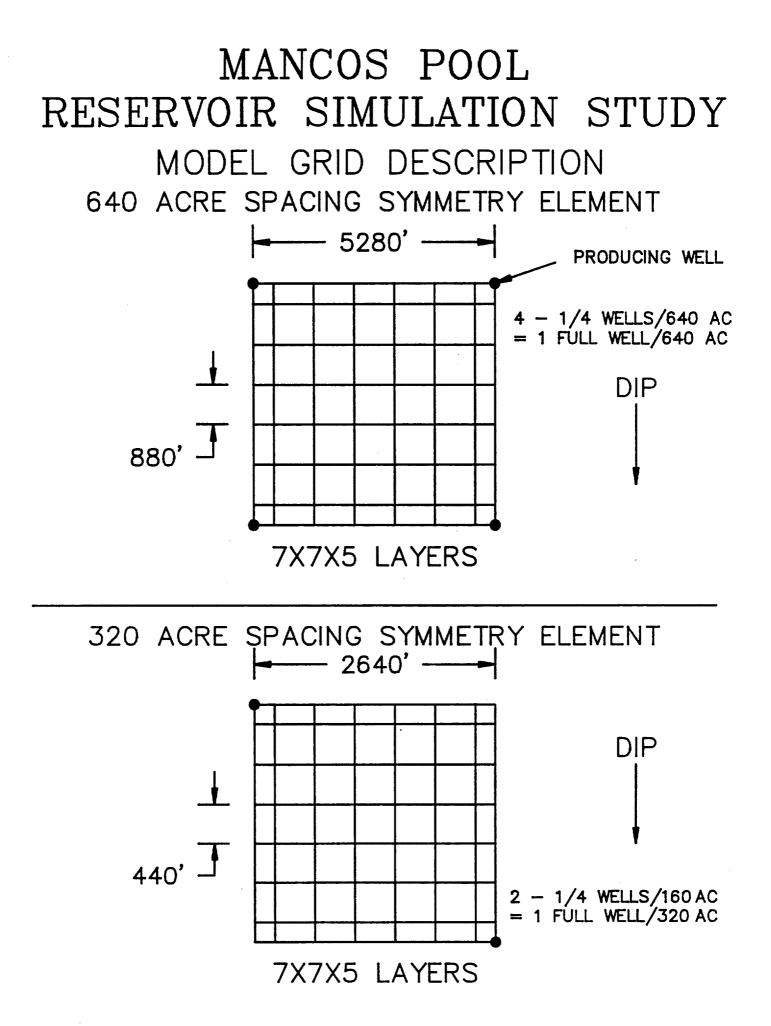
1

PRESSURE. POUNDS PER SQUARE INCH GAUGE

RELATIVE LIQUID VOLUME: V/VR

Page 10 of 11 File RFL 3366




PRESSURE: POUNDS PER SQUARE INCH GAUGE

VISCOSITY: CENTIPOISES

1.1

<u>11</u>_of__ Page ____ 11 File ___ **RFL 3366**

