

February 19, 1990

BIRD CREEK RESOURCES, INC. 1412 S. Boston Suite 550 Tulsa, Oklahoma 74119

Attention: Mr. Bill Burks

Subject: Reservoir Fluid Study Carrasco "14" #1 East Loving Delaware Field Eddy County, New Mexico File: RFLM 89108

Gentlemen:

Duplicate separator oil and gas samples were collected from the subject well and were submitted to our Midland laboratory on October 20, 1989 for use in a reservoir fluid study. Presented in the following report are the results of this study as requested by Bird Creek Resources, Inc.

As a quality check, the room temperature saturation pressure of each separator oil sample was initially determined. At 70°F., separator oil samples, numbers one and two, were found to have bubble point pressures of 392 psig and 371 psig, respectively. These values were considered to be in good agreement with the sampling conditions and sample number one was selected for use in the reservoir fluid study.

The composition of the separator gas was determined by gas chromatography while the composition of the separator liquid was determined by spike/flash chromatographic technique. The composition of the separator products are reported on page four.

We were initially requested to recombine the separator products to a matio of 1000 standard cubic feet of gas at 15.025 psia and 60°F. per barrel of stock tank oil at 60°F. The physical recombination was performed and the resulting fluid was placed into a high pressure windowed cell and thermally expanded to the reservoir temperature of 106°F. This fluid was found to have a bubble point pressure of 3270 psig at 106°F. This bubble point did not correlate with the reported reservoir pressure of 2892 psig, therefore, it was decided to recombine the separator BIRD CFEEK RESOURCES INC. Page 2

products to a ratio of 820 SCF/STB. The resulting fluid was used for the remainder of the study. The composition of the well stream material was calculated using the gas/oil ratio of 820 SCF/STE.

A small quantity of the reservoir fluid was charged to a high pressure windowed cell and thermally expanded to the reservoir temperature of 106°F. During a constant composition expansion at this temperature, the fluid was found to have a bubble point pressure of 2858 psig. The results of the pressure-volume measurements at reservoir temperature may be found on page seven.

When subjected to differential pressure depletion at the reservoir temperature. The fluid evolved a total of 1108 cubic feet of gas at 15.025 psia and 60°F. per barrel of residual oil at 60°F. The resulting relative oil volume factor was 1.543 barrels of saturated fluid per barrel of residual oil. The oil density and the properties of the evolved gases were measured at each point during the differential pressure depletion and these data are included in the summary of the differential depletion data on page eight.

The viscosity of the reservoir fluid was measured over a wide range of pressures at 106°F. in a rolling ball viscosimeter. The viscosity of the fluid was found to vary from a minimum of 0.54 centipoise at the saturation pressure to a maximum of 2.59 centipoise at atmospheric pressure. The results of the viscosity measurements are tabulated on page fifteen.

One multi-stage separator test was performed at room temperature to measure gas-oil ratio, stock tank oil gravity, and formation volume factor. The results of the separator test can be found on page eleven.

For your convenience, differential data has been adjusted to separator conditions. The results can be found on page twelve.

Thank you for the opportunity to be of service to Bird Creek Resources, Inc. If you have any question or if we may be of further assistance in any way, please feel free to call upon us.

Very truly yours, CORE LABORATORIES, a division of WESTERN ATLAS INTERNATIONAL, INC.

Chehand Hulme

Richard Hulme Supervisor Reservoir Fluid Lab

File RFLM 89108

<u>Page</u>

BIRD CHEEK RESOURCES, INC. Date Sampled: October 20, 1989 Carrasco "14" #1 Eddy County, New Mexico East Loving Delaware Field

•.

Į

4

ļ

-

TABLE OF CONTENTS

Laborationy Procedures	i
Table of Contents	iii
Well Information	1
Summary of Reservoir Fluid PVT Data	2
Summary of Quality Control Data Samples	3
Compos:tion of Reservoir Fluid Sample	4-5
Volumetric Data of Reservoir Fluid Sample	6
Pressure-Volume Relations Data	7
Differential Vaporization Data	8-10
Separator Test of Reservoir Fluid Sample	11
Summary of Adjusted Data-Differential Vaporization Adjusted to Surface Conditions	12-14
Viscosity Data	15-16
Nomenclature and Equations to Adjust Differential Vaporization to Surface Conditions	17

Page 1 of 17 File RFLM 89108 Carrasco "14" #1

FORMATION CHARACTERISTICS

Formation Name Date First Well Completed Original Reservoir Pressure Original Produced Gas/Liquid Ratio Production Rate Separator Pressure and Temperature Liquid Gravity at 60°F. Datum Delaware July 15, 1989 2892 psig @ 6130 ft. 1071 SCF/Bbl 480 Bbls/Day 160 psig 61°F. 42.5°API 3117 ft. Subsea

WELL CHARACTERISTICS

Elevation Total Depth Producing Interval Tubing Size and Depth Open Flow Potential Last Reservoir Pressure Date Reservoir Temperature Status of Well Pressure Gauge 3013 ft. KB 6420 ft. 6086-6190 ft. 2.875 In. to 5987 ft. N/A MMSCF/Day 2892 psig @ 6130 ft. June 17, 1989 106°F. @ 6130 ft. Producing Amerada bomb

SAMPLING CONDITIONS

Flowing Tubing Pressure N/A psig Flowinc: Bottom Hole Pressure N/A psig Primary Separator Pressure 437 psig Primary Separator Temperature 85°F. Secondary Separator Pressure 20 psig Secondary Separator Temperature 74°F. Field Stock Tank Liquid Gravity 42.5°API @ 60'F. Primary Separator Gas Production Rate N/A MSCF/Day Pressure Base 15.025 psia 60°F. Temperature Base Compressibility Factor (Fpv) 1.03975 Gas Gravity (Laboratory) 0.697 Gas Gravity Factor (Fg) 1.19779 Stock Tank Liquid Production Rate @ 60°F. N/A Bbls/Day Primary Separator Gas/Stock Tank Liquid Ratio 820 SCF/Bbl

Samplec. by

REMARKS :

L Contraction

Core Laboratories

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions ex vessed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper opi-rations, or profitableness however of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever.

Page 2 of 17 File RFLM 89108 Carrasco "14" #1

SUMMARY OF RESERVOIR FLUID PVT DATA

Volumetric Data

Bubble point pressure (Pb) at 106°F. = 2858 psig

Thermal expansion of reservoir fluid at 5000 $\text{psig} = \frac{\text{V at } 106^{\circ}\text{F.}}{\text{V at } 72^{\circ}\text{F.}} = 1.02259$

Compressibility of reservoir fluid at 106°F. from 4000 psig to 3500 psig = 12.91 x 10^{-6} V/V/psi from 3500 psig to 2858 psig = 13.40 x 10^{-6} V/V/psi

Differential Vaporization Data

Solution gas/oil ratio at 2858 psig and $106^{\circ}F$. = 1108 standard cubic feet of gas at 15.025 psia and 60°F. per barrel of residual oil at 60°F.

Relative oil volume at 2858 psig and $106^{\circ}F$. = 1.543 barrels of oil per barrel of residual oil at $60^{\circ}F$.

Density of reservoir fluid at 2858 psig and $106^{\circ}F. = 0.6641 \text{ gm/cc}$

Viscosity Data

Viscosity of reservoir fluid at 2858 psig and 106 F. = 0.54 centipoise

Separator Test Data

		Gen	Tank Oil Gravity
<u>Separator Conditions</u> 437 rsig and 74°F. to	<u>Bo(1)</u>	<u>Rs(2)</u>	API at 60°F.
20 psig and 74°F.			
0 rsig and 74°F.	1.508 [,]	1039	43.5

GAR

- (1) Formation volume factor, barrels of oil at 2858 psig and 106 F. per barrel of stock tank oil at 60 F.
- (2) Total solution gas/oil ratio at 2858 psig and 106°F., total standard cubic feet of gas at 15.025 psia and 60°F. per barrel of stock tank oil at 60°F.

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warrantly or representations, express or implied, as to the productivity, proper operations, or profitableness however of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever.

.

Page 3 of 17 File RFLM 89108 Carrasco "14" #1

SUMMARY OF QUALITY CONTROL DATA OF SEPARATOR LIQUID SAMPLES

Cylinder <u>Number</u>	Sampling <u>Conditions</u> Pressure, <u>PSIG</u>	Temperature, F	Laboratory <u>Bubble point</u> Pressure, <u>PSIG</u>	Temperature,
1*	437	85	392	70
2	437	85	371	70

* Selected for use in study.

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions ex xeased represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness however of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatboever.

Page 4 of 17 File RFLM 89108 Carrasco "14" #1

HYDROCARBON ANALYSES OF SEPARATOR PRODUCTS AND CALCULATED WELL STREAM

	Separator Liquid,		Gas	met
	Mol	Separator	Gas	Well Stream
<u>Component</u>	Percent	Mol Percent	GPM	<u>Mol Percent</u>
Hydrogen Sulfide	0.00	0.00		0.00
Carbon Dioxide	0.12	0.46		0.29
Nitrogen	0.10	3.41		1.73
Methane	8.04	78.41		42.62
Ethane	7.05	11.79	3.216	9.38
Propane	10.21	4.39	1.234	7.35
iso-Butane	2.13	0.37	0.123	1.27
n-Butare	7.18	0.84	0.270	4.06
iso-Pertane	2.35	0.12	0.045	1.25
n-Pentane	3.00	0.12	0.044	1.58
Hexanes	11.45	0.06	0.024	5.85
Heptanes	7.85	0.02	0.009	4.00
Octanes	9.02	0.01	0.005	4.59
Nonanes	5.48	0.00	0.000	2.79
Decanes	4.07	0.00	0.000	2.07
Undecares	3.21	0.00	0.000	1.63
Dodecares	2.33	0.00	0.000	1.19
Tridecanes	2.23	0.00	0.000	1.13
Tetradecanes	1.93	0.00	0.000	0.98
Pentadecanes	1.84	0.00	0.000	0.94
Hexadec anes	1.41	0.00	0.000	0.72
Heptadecanes	1.10	0.00	0.000	0.56
Octadecanes	1.26	0.00	0.000	0.64
Nonadecanes	1.20	0.00	0.000	0.61
Eicosares plus	5.44	0.00	0.000	2.77
-	100.00	100.00	4.970	100.00
Properties of Hept	anes nius			

Properties of Heptanes p	lus		
API Gravity @ 60°F.	37.2		
Density, Gm/Cc @ 60°F.	0.8382	0.7395	0.838
Molecular Weight	214	105	214

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warrantly or representations, express or implied, as to the productivity, proper operations, or profitableness however of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever.

Page 5 of 17 File RFLM 89108 Carrasco "14" #1

Calculated separator gas gravity (air=1.000) = 0.697Calculated gross heating value for separator gas = 1190 BTU per cubic foot of dry gas @ 15.025 psia and 60°F.

Primary separtor gas collected @ 437 psig and 85°F. Primary separator liquid collected @ 437 psig and 85°F.

Primary separator gas/separator liquid ratio =717 SCF/Bbl @ 85°F. Primary separator liquid/stock tank liquid ratio = 1.1434 Bbls @ 85°F./Hbl @ 60°F.

PROPERTIES OF SEPARATOR LIQUID HEAVIER FRACTIONS

	Component	Mol <u>Percent</u>	Density	API	Mol <u>Weight</u>
C ₆	Hexanes plus Heptanes plus Undecanes plus	59.82 48.37 21.95	0.8227 0.8382 0.8795	40.3 37.2 29.2	189. 214. 338.
	Pentadecanes plus Eicosanes plus	12.25 5.44	0.9028 0.9266	29.2 25.1 21.1	475. 527.

Sample Molecular Weight = 131.4

Page 6 of 17 File RFLM 89108 Carrasco "14" #1

VOLUMETRIC DATA OF RESERVOIR FLUID SAMPLE

Saturation pressure (bubble point pressure) = 2858 PSIG 106°F. Specific volume at saturation pressure = 0.02412 ft ³/lb @ 106°F. Thermal expansion @ 5000 PSIG = 1.02259 V @ 106°F./V @ 72°F. Compressibility @ 106°F.:

> From 5000 PSIG to 4500 PSIG = $10.21 \times 10^{-6} \text{ V/V/PSI}$ From 4500 PSIG to 4000 PSIG = $11.78 \times 10^{-6} \text{ V/V/PSI}$ From 4000 PSIG to 3500 PSIG = $12.91 \times 10^{-6} \text{ V/V/PSI}$ From 3500 PSIG to 2858 PSIG = $13.40 \times 10^{-6} \text{ V/V/PSI}$

The analyses, opinions or intel pretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions exp 'assed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warrantly or representations, express or implied, as to the productivity, proper ope ations, or profitableness however of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever.

• •

Page 7 of 17 File RFLM 89108 Carrasco "14" #1

((Constant Composit	tion Expansion)	
Pressure	Relative	Y	Density
PSIG	<u>Volume(1)</u>	Function(2)	_Gm/cc
5000	0.9742		0.6817
4500	0.9792		0.6782
4000	0.9850		0.6742
3500	0.9914		0.6699
3000	0.9954		0.6672
3100	0.9967		0.6663
3000	0.9981		0.6654
2900	0.9994		0.664
2858 Pb	1.0000		0.664
2826	1.0029		
2801	1.0051		
2777	1.0072 ·		
2753	1.0092		
2661	1.0185		
2490	1.0394	3.725	
2289	1.0712	3.471	
2090	1.1134	3.218 '	
1868	1.1780	2.954	
1658	1.2631	2.726	
1469	1.3691	2.536	
1292	1.5034	2.380	
1137	1.6663	2.242	
1019	1.8284	2.147	
925	1.9901	2.077	
752	2.4114	1.945	
586	3.0572	1.838	
390	4.1816	1.720	

- (1) Relative Volume: V/Vsat is barrels at indicated pressure/ barrel at saturation pressure.
- (2) (Psat-P) Y Function = (Pabs)(V/Vsat-1)

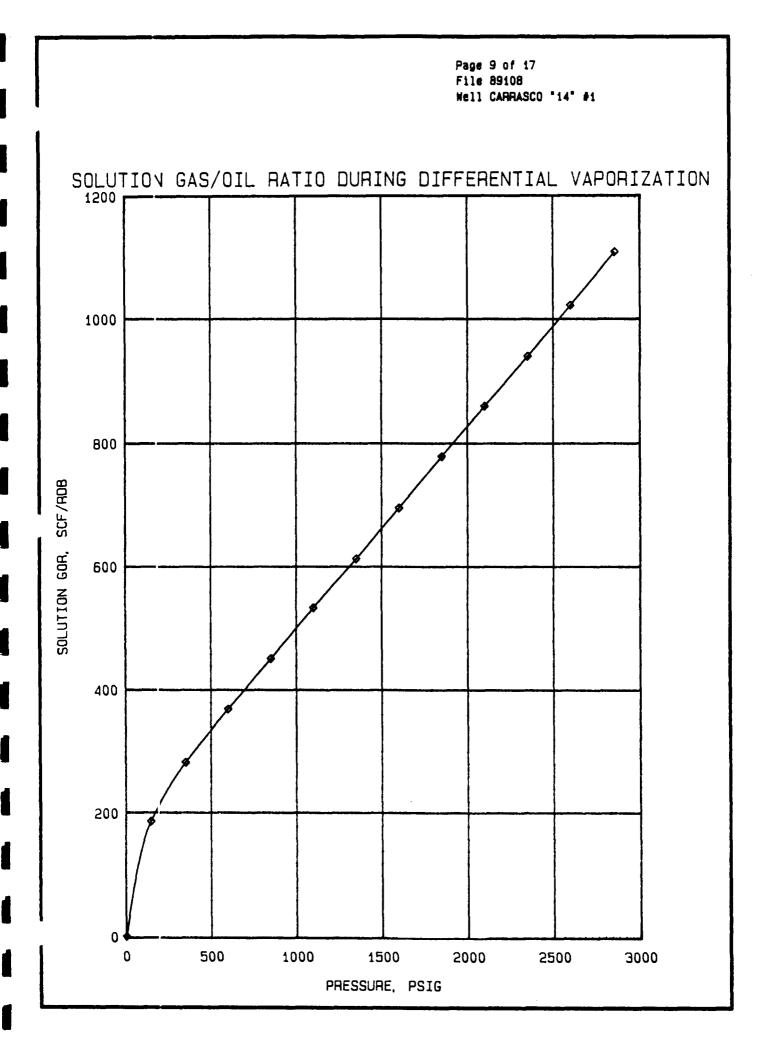
The analyses, opinions or inter xetations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions explessed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness however of any oil, gas, coat or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever.

Carrasco "14" #1 File RFIM 89108 Page 8 of 17

CORE LABORATORIES

DIFFERENTIAL VAPORIZATION AT 106°F

Incremental Gas Gravity	0.715 0.712 0.708 0.706 0.707 0.719 0.719 0.719 0.735 0.735 0.735 1.438	
Gas Formation Volume Factor(4)	0.00483 0.00535 0.00691 0.00812 0.00880 0.01229 0.01624 0.02359 0.04131 0.09833	
Deviation Factor, Z	0.773 0.773 0.777 0.788 0.802 0.818 0.818 0.838 0.859 0.922 0.922	
oil Density, Gm/CC	0.6641 0.6740 0.6833 0.6833 0.6833 0.7107 0.7107 0.7107 0.7201 0.7208 0.7208 0.7208 0.7508 0.7508 0.7744 0.7744	
Relative Total Volume(3)	1.543 1.574 1.619 1.687 1.947 1.790 2.180 3.149 4.321 7.256 17.273	
Relative 0il Volume, Bod(2)	1.543 1.458 1.458 1.458 1.314 1.314 1.212 1.212 1.171 1.023	
Solution Gas/Oil Ratio,Rsd(1)	1108 1021 939 855 694 612 612 853 368 281 281 281 0	at 60°F =
Pressure, psig	2858 Pb 2600 2500 2350 2350 1850 1850 850 850 145 0 350 0 145 0	


at 60°F = 1.000

Gravity of Residual Oil = 42.5°API @ 60°F.

Cubic feet of gas at 15.025 psia and 60° F. per barrel of residual oil at 60° F. Barrels of oil at indicated pressure and temperature per barrel of residual oil at 60° F.

Barrels of oil plus liberated gas at indicated pressure and temperature per barrel of residual oil at 60°F. £36£

Oubic feet of gas at indicated pressure and temperature per cubic foot at 15.025 psia and 60°F.

File 89108 Well CARRASCO "14" #1 RELATIVE OIL VOLUME DURING DIFFERENTIAL VAPORIZATION 1.60 1.50 1.40 RELATIVE DIL VOLUME, V/Vr 1.30 1.20 1.10 1.00 1000 0 500 2500 3000 1500 2000 PRESSURE, PSIG

Page 10 of 17

8	1
	W. em Atlas International Atambra comp
	0

i

CORE LABORATORIES

Carrasco "14" #1 File RFIM 89108 Page 11 of 17

SAMPLE
DINI
RESERVOIR
QF
TIEST
SEPARATOR

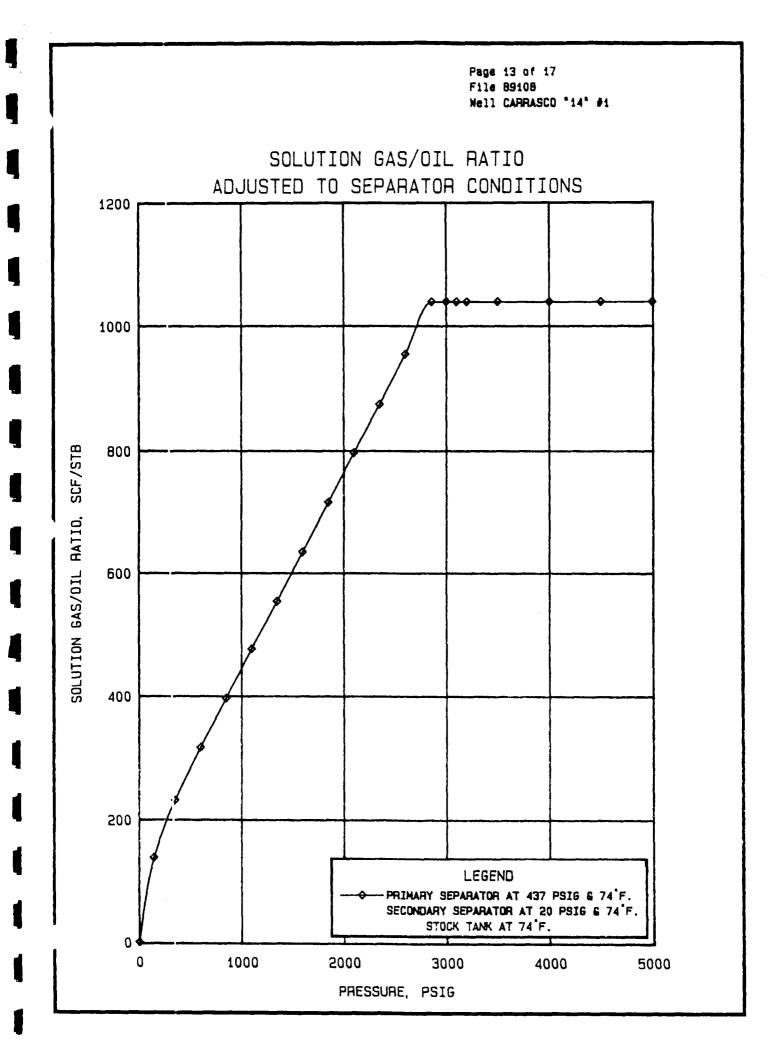
Specific Gravity of Flashed Gas	0.698	0.965	1.4 67	
Separator Volume Factor (4)	1.174	1.074	1.007	
Formation Volume Factor, Bofb(3)			1.508	
Stock Tank Gravity, °API @ 60°F			43.5	
Gas/Oil Ratio (2)	746	205	88	o = 1039
Gas/Oil Ratio (1)	636	190	87	Rsfb
Separator Temperature, °F	74	74 .	74	
Separator Pressure, PSI Gauge	437	// 8 8 1	30	

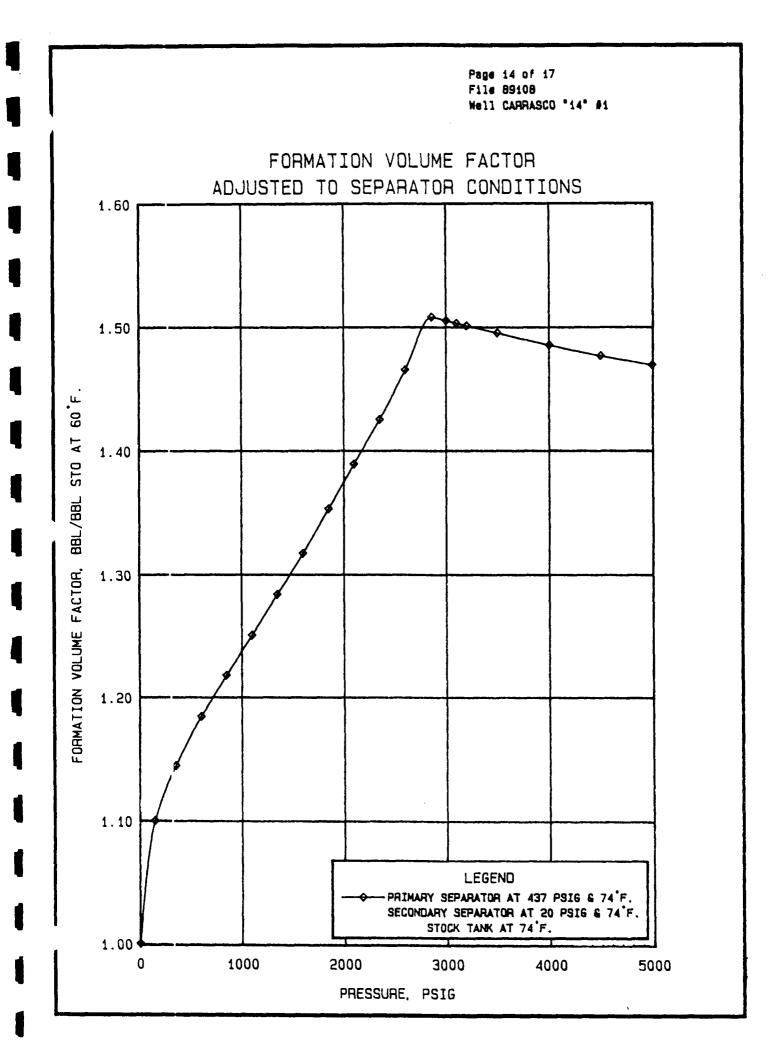
- Gas/Oil Ratio in cubic feet of gas @ 60°F. and 15.025 PSI absolute per barrel of oil @ indicated pressure and temperature. 3
 - Gas/Oil Ratio in cubic feet of gas @ 60°F. and 15.025 PSI absolute per barrel of stock tank oil @ 60°F. Formation Volume Factor is barrels of saturated oil @ 2858 PSI gauge and 106°F. per barrel of stock tank oil ଟିତି
- ₿ 60°F.
- Separator Volume Factor is barrels of oil @ indicated pressure and temperature per barrel of stock tank oil @ 60°F. . (4)

Page 12 of 17 File RFIM 89108 Carrasco "14" #1

Pressure, psig	Solution Gas/Oil Ratio, Rs(1)	Formation Volume Factor, Bo(2)	Gas Formation Volume Factor, Bg(3)	0il Density, gm/cc	Oil/Gas Viscosity Ratio
5000	1039	1.469		0.6817	
4500	1039	1.477		0.6782	
4000	1039	1.485		0.6742	
3500	1039	1.495		0.6699	
3200	1039	1.501		0.6672	
3100	1039	1.503		0.6663	
3000	1039	1.505		0.6654	
2858 Ib	1039	1.508		0.6641	
2600	954	1.465	0.00483	0.6740	26.0
2350	874	1.425	0.00535	0.6833	28.6
2100	796	1.389	0.00601	0.6921	32.2
1850	716	1.353	0.00691	0.7017	36.7
1600	634	1.317	0.00812	0.7107	41.4
1350	554	1.284	0.00980	0.7201	47.3
1100	477	1.251	0.01229	0.7298	53.3
850	396	1.218	0.01624	0.7398	62.0
600	316	1.184	0.02359	0.7508	72.7
350	231	1.144	0.04131	0.7620	87.7
145	138	1.100	0.09833	0.7744	110.6
0	0	1.000		0.7941	301.2

LIFFERENTIAL VAPORIZATION DATA ADJUSTED TO SEPARATOR CONDITIONS*

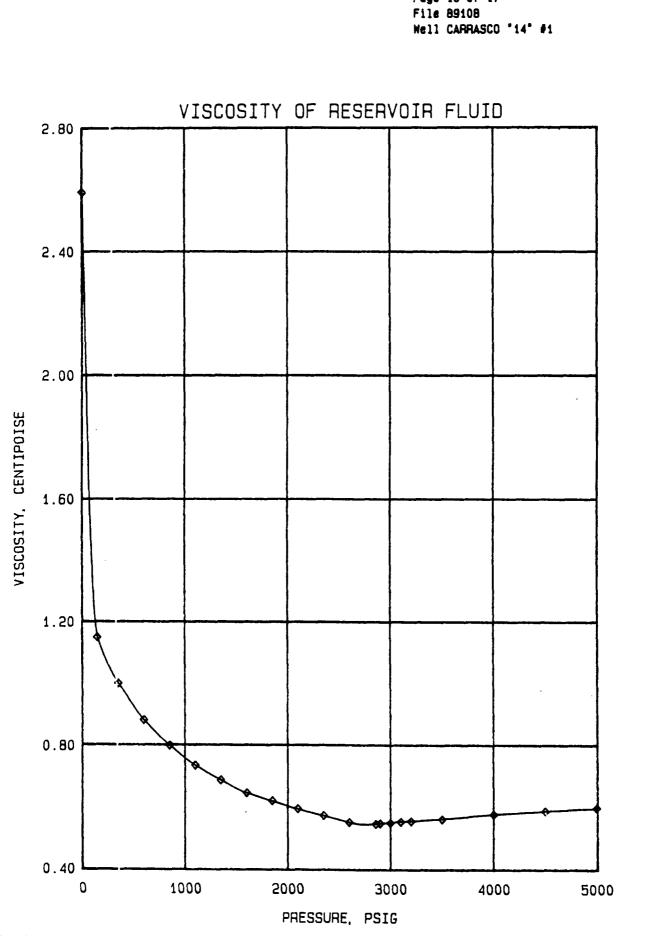

 $0.60^{\circ}F. = 1.000$


Gravity of Stock Tank Oil = 43.5°API @ 60°F.

*Separator Conditions: Separator at 437 psig and $74^{\circ}F.$, Secondary Separator at 20 psig and $74^{\circ}F.$, stock tank at $74^{\circ}F.$

- (1) Cubic feet of gas at 15.025 psia and 60°F. per barrel of stock tank oil at 60° F.
- (2) Barrels of oil at indicated pressure and $106^{\circ}F$. per barrel of stock tank oil at $60^{\circ}F$.
- (3) Cubic feet of gas at indicated pressure and 106°F. per cubic foot at 15.025 psiz and 60°F.

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness however of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever.


Page 15 of 17 File RFLM 89108 Carrasco "14" #1

VISCOSITY DATA AT 106 .F

Pressure psig	, Oil Viscosity Centipoise	Calculated Gas Viscosity, <u>Centipoise</u>	Oil/Gas Viscosity <u>Ratio</u>
5000	0.60		
4500	0.59		
4000	0.58		
3500	0.56		
3200	0.55		
3100	0.55		
3000	0.55	•	
2900	0.55		
2858 P	b 0.54		
2600	0.56 -	0.0215	26.0
2350	0.57	0.0199	28.6
2100	0.59	0.0183	32.2
1850	0.62	0.0169	36.7
1600	0.65	0.0157	41.4
1350	0.69	0.0146	47.3
1100	0.73	0.0137	53.3
850	0.80	0.0129	62.0
600	0.88	0.0121	72.7
350	1.00	0.0114	87.7
145	1.15	0.0104	110.6
0	2.59	0.0086	301.2

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, express or implied, as whatsoever.

.

Page 16 of 17

Page 17 of 17 File RFLM 89108 Carrasco "14" #1

NOMENCLATURE AND EQUATIONS TO ADJUST <u>INFFERENTIAL VAPORIZATION DATA TO SURFACE CONDITIONS</u>

- Pb = Bubble point pressure
- Bo = 0il formation volume factor
- Bofb = Formation volume factor from field conditions (or optimum) separator flash test.
- Bob = Relative oil volume from differential vaporization test.
- Bodb = Value of Bod at the bubble point pressure.
- R.V. = Felative volume from pressure-volume relations test.

For Bo above the bubble point pressure:

Bo = R.V. x Bofb

For Bo below the bubble point pressure:

Bo = (Bod) (Bofb/Bodb)

- Rs = Cas in solution, standard cubic feet per barrel of stock tank oil.
- Rsfb = Sum of separator gas and the stock tank gas from field conditions (or optimum) separator flash test, standard cubic feet per barrel of stock tank oil.
- Rsd = The gas in solution from the differential vaporization test.
- Rsdb = The value of Rsd at the bubble point pressure.

Rs - Rsfb - [(Rsdb - Rsd)(Bofb/Bodbl)]

The analyses, opinions or interpretitions contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness however of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason what however.

October 26, 1990

Oryx Energy Company Technology Center P.O. Box 830936 Richardson, TX 75083-0936

Attention: Mr. Robert A. Skopec

Subject: Reservoir Fluid Study Pardue Farm No. 1 Well Loving Field Eddy County, New Mexico RFL 900381

Gentlemen:

Samples of primary separator gas and liquid were collected from the subject well by a representative of Core Laboratories on September 17, 1990. These samples were shipped to our laboratory in Carrollton, Texas for use in a reservoir fluid study. The results of this study are presented in the following report.

Thank you for the opportunity to perform this study for Orxy Energy Company. Should any questions arise or if we may be of further service in any way, please do not hesitate to contact us.

Sincerely,

James R. Jotues

James R. Fortner Area Manager Reservoir F'uid Analysis

JRF:KWK:jlp 6 cc: Addressee

· · · ·

LABORATORY PROCEDURES

Oryx Energy Comapny Reservoir Fluid Study Pardue Farm No. 1 Well Loving Field Eddy County, New Mexico RFL 900381

As quality control checks, the laboratory temperature opening pressure of each separator gas and the laboratory temperature bubblepoint of each separator liquid sample were determined. These preliminary data are presented on page three.

In a high pressure, windowed cell, separator gas and liquid were physically recombined to a GOR of 1150 scf/separator barrel. The mixture was then pressurized into single-phase at 5000 psig and 115°F. The sample was expanded to 2375 p;ig, and the resulting gas cap was removed. This bubblepoint adjusted fluid was then used for the remainder of the testing program. The composition of the reservoir fluid was measured through eicosanes plus by a flash chromatographic procedure. The results of this extended compositional analysis, in terms of both mole percent and weight percent, are presented on page four.

A small quantity of the reservoir fluid was charged to a high pressure windowed cell and thermally expanded to the reservoir temperature of 115°F. During a constant composition expansion at this temperature, the fluid was found to have a bubblepcint pressure at 2375 psig. The results of the pressure-volume relation measurements at reservoir temperature may be found on pages five and six.

When subjected to differential pressure depletion at the reservoir temperature, the fluid: evolved a total of 983 cubic feet of gas at 15.025 psia and 60°F per barrel of residual oil at 60°F. The resulting relative oil volume factor was 1.525 barrels of saturated fluid per barrel of residual oil at 60°F. The oil density and the properties of the evolved gases were measured at each point during the differential pressure depletion, and these data are included in the summary of the differential depletion data on page seven.

The viscosity of the reservoir fluid was measured over a wide range of pressures at $115^{\circ}F$ n a rolling ball viscosimeter. The viscosity of the fluid was found to vary from a minimum of 0.427 centipoise at the saturation pressure to a maximum of 1.893 centipoises at atmospheric pressure. The results of the viscosity measurements are tabulated on page ten.

Two single-stage separator tests were performed to determine the formation volume factor, gas/oil ratio and stock tank oil gravity. One separator test was performed at field operating conditions and the other at the calculated optimum primary separator pressure and ambient temperature. The data are presented on page 12. The primary separator gas from each test was collected and analyzed through heptanes plus by routine gas chromatography and is presented on page 13. These data were used to adjust the differential vaporization data to surface conditions, and the resulting values are presented on pages 14 and 15.

• •

Company <u>Oryx Energy Company</u>	File	RFL 900381
WellPardue_Farm_No. 1	County_	Eddy
Field <u>Loving</u>	State	New Mexico

TABLE OF CONTENTS

	Page
Laboratory Procedures	i
Table of Contents	ii
Well Information	1
Summary of Reservoir Fluid Data	2
Summary of Samples	3
Reservoir Fluid Composition	4
Pressure-Volume Relations	5
Compressibility	6
Differential Vaporization	7-9
Viscosity	10,11
Separator Tests	12
Separator Test Gas Compositions	13
Adjusted Differential Vaporization Data	14,15
Nomenclature and Equations	16

Page	1	_of		
File_	RFL 900	381		
Well_	Pardue	Farm	No.	1

WELL INFORMATION

FORMATION CHARACTERISTICS

Formation	<u>Delaware (Brushy Canyon)</u>
Datum	6090 (-3114) ft ss
Date First Well Completed	
Original Reservoir Pressure	psig @ft
Original Produced Gas/Liquid Ratio	_1000scf/bb1
Production Rate	B/D
Separator Conditions	psig and*F
Stock Tank Liquid Gravity	*API @ 60°F

WELL CHARACTERISTICS

Elevation
Total Depth
Producing Interval
Tubing Size and Depth
Productivit/ Index
Reservoir Conditions:
Pressure
Date
Temperature
Status of Well
Water Cut

<u>2976</u> ft
_6200 ft
6052-6128 ft
<u>2-7/8</u> in. to 6004 ft
B/D/psi@B/D
,
<u>2390</u> psig @ <u>6072</u> ft
August 28, 1990
115 °F @ 6200 ft
Flowing
None percent

SAMPLING CONDITIONS

Flowing Tubing Pressure	1375 psig
Flowing Bottomhole Pressure	psig @ft
Primary Separator Conditions	
Secondary Separator Conditions	psig and•F
Stock Tank Temperature	\$0•F
Field Stock Tank Liquid Gravity	41 • API @ 60•F
Primary Separator Gas Production Rate	<u>560</u> Mscf/D
Standard Conditions	15.025 psia and 60°F
Stock Tank Liquid Production Data	262 B/D @ 80 °F
Primary Separator Gas/Stock Tank Liquid	2137 scf/bbl
Sampled By	Core Laboratories (KWK)
Date Sampled	September 17, 1990

Page	2	_of_	10	5
File_	RFL 900	381		
Well_	Pardue	Farm	No.	1

SUMMARY OF RESERVOIR FLUID DATA

Volumetric Data

Bubblepoint pressure $(P_b) = 2375$ psig at 115°F

Thermal expansion at 5000 psig = $\frac{V \text{ at } 115^{\circ}\text{F}}{V \text{ at } 69^{\circ}\text{F}}$ = 1.02389

Differential Vaporization (DV) Data

Solution gas/oil ratio (R_{sdb}) at bubblepoint = 983 standard cubic feet of gas per barrel of residual oil at 60°F

Relative oil volume (B_{pdb}) at bubblepoint = 1.525 barrels of oil per barrel of residual oil at 60 F

Densit/ of reservoir fluid at bubblepoint = 0.6604 gm/cc

Viscosity Data

Viscosity of reservoir fluid at bubblepoint = 0.427 centipoise

Separator Test Data

Separator Conditions	$B_{ofb}(1)$	$R_{sfb}(2)$	Tank Oil Gravity, *API at 60°F	
410 psig at 45°F	1.525	986	43.9	
110 psig at 67°F	1.500	958	44.3	

Standard corditions = 15.025 psia and 60°F

(1) Formation volume factor, barrels of oil at bubblepoint per barrel of stock tank oil at 60° F.

(2) Solution gas, oil ratio at bubblepoint, total standard cubic feet of gas per barrel of stock tank oil at 60° F.

Page_	3	_of	16	<u>;</u>
File_	RFL 900	381		
Well_	Pardue	Farm	No.	1
,				

SUMMARY OF SAMPLES

-

	Separator Gas							
	<u>Separato</u>	r Conditions	Laboratory Opening Conditions					
Cylinder	Pressure,	Temperature,	Pressure,	Temperature,				
<u>Number</u>	psig	•F	psig	F				
193487D(1)	410	45	385	70				
193523D	410	45	385	70				

<u> </u>	·····	Separator Li	quid		
	<u>Separato</u>	r Conditions	Laboratory Bubblepoint		
Cylinder	Pressure,	Temperature,	Pressure,	Temperature,	
<u>Number</u>	psig	F	psig	•F	
2079(±)	410	45	414	69	
2068	410	45	364	70	

Page <u>`</u>	40f16
File_	RFL 900381
Well_	Pardue Farm No. 1

RESERVOIR FLUID COMPOSITION

<u>Component</u>	Mole <u>Percent</u>	Weight <u>Percent</u>	Molecular <u>Weight(1)</u>	Density, gm/cc at_60°F(1)
Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane iso-Butane n-Butane iso-Pentane n-Pentane Hexanes Heptanes Octanes Doctanes Doctanes Drdecanes Tridecanes Tetradecanes Hexadecanes Heptadecanes Heptadecanes Nonadecanes Eicosanes plus	$\begin{array}{c} 0.00\\ 0.01\\ 1.68\\ 41.30\\ 9.75\\ 8.44\\ 1.36\\ 4.05\\ 1.42\\ 1.83\\ 2.55\\ 4.05\\ 4.41\\ 3.07\\ 2.44\\ 1.88\\ 1.42\\ 1.41\\ 1.15\\ 1.02\\ 0.80\\ 0.71\\ 0.69\\ 0.63\\ \underline{3.93}\\ 100.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.01\\ 0.59\\ 8.34\\ 3.69\\ 4.69\\ 1.00\\ 2.96\\ 1.29\\ 1.66\\ 2.70\\ 4.90\\ 5.94\\ 4.68\\ 4.12\\ 3.48\\ 2.88\\ 3.11\\ 2.75\\ 2.65\\ 2.24\\ 2.12\\ 2.18\\ 2.09\\ \underline{29.93}\\ 100.00\\ \end{array}$	34.080 44.010 28.013 16.043 30.070 44.097 58.123 58.123 72.150 72.150 84 96 107 121 134 147 161 175 190 206 222 237 251 263 605(2)	0.80064 0.81720 0.80860 0.29970 0.35584 0.50648 0.50648 0.62408 0.63049 0.685 0.722 0.745 0.745 0.764 0.778 0.789 0.800 0.811 0.822 0.832 0.839 0.847 0.852 0.857 0.912(2)
Properties of Fraction	ns(2)			
Heptanes plus Undecanes plus Pentadecanes plus Eicosanes plus	27.61 13.64 7.78 3.93	73.07 53.43 41.21 29.93	210 311 421 605	0.835 0.871 0.892 0.912
Molecular weight			79.40	

Assigned properties taken from literature.
Calculated.

Page	5	_of_	16
File	RFL 900	0381	
Well	Pardue	Farm	<u>No. 1</u>

PRESSURE-VOLUME RELATIONS AT 115°F (Constant Composition Expansion)

Pressure, psig	Relative <u>Volume(1)</u>	Y <u>Function(2)</u>	Density, gm/cc
psig 5000 4500 4000 3500 2700 2600 2375 Pb 2363 2354 2354 2354 2354 2321 2285 2217 2101 1918 1716 1520 1343 1186 1060 809	Volume(1) 0.9699 0.9747 0.9800 0.9857 0.9918 0.9957 0.9970 0.9983 0.9997 1.0000 1.0008 1.0016 1.0028 1.0074 1.0127 1.0235 1.0445 1.0856 1.1475 1.2302 1.3329 1.4584 1.5934 2.0151	<u>Function(2)</u> 3.159 3.153 3.145 3.114 3.080 3.018 2.912 2.762 2.581 2.419 2.283 2.160 2.061 1.872	<u>gm/cc</u> 0.6809 0.6775 0.6739 0.6600 0.6633 0.6624 0.6615 0.6606 0.6604
609 436	2.6379 3.6836	1.728	

(1) Volume at indicated pressure per volume at bubblepoint. (2) Y Function = $(f_b - P)/[(P_{abs})(RV - 1)]$.

. .

Î

Page_	6	_of_	1(5
File_	RFL 900	0381		
Well_	Pardue	Farm	No.	1

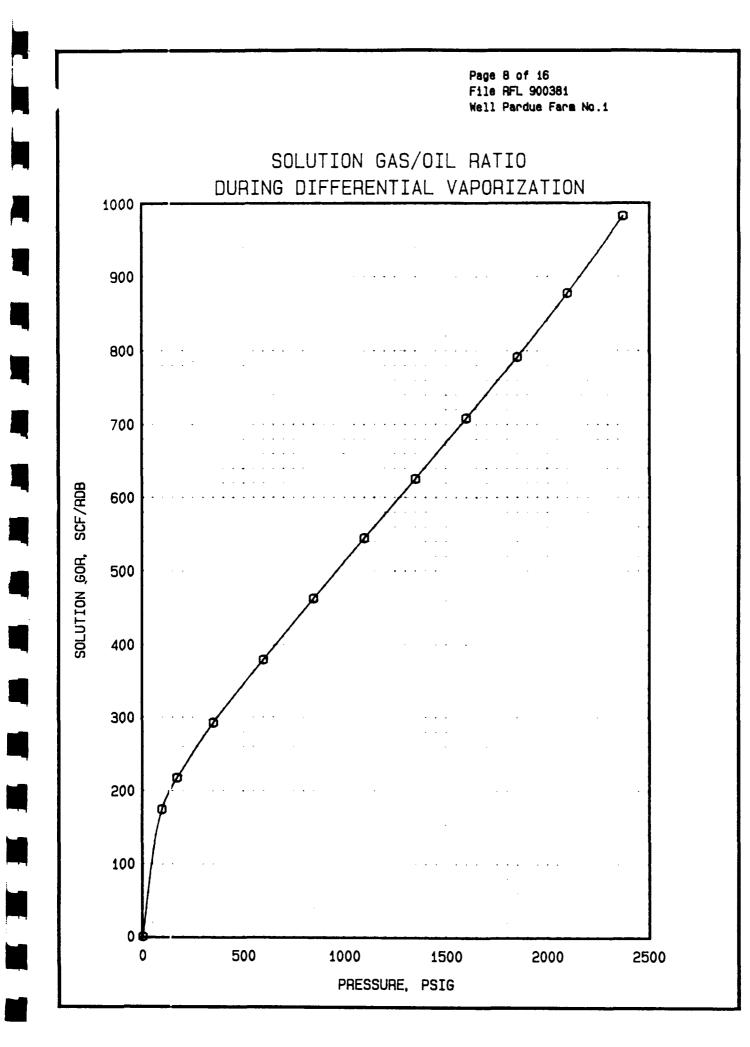
COMPRESSIBILITY AT 115°F

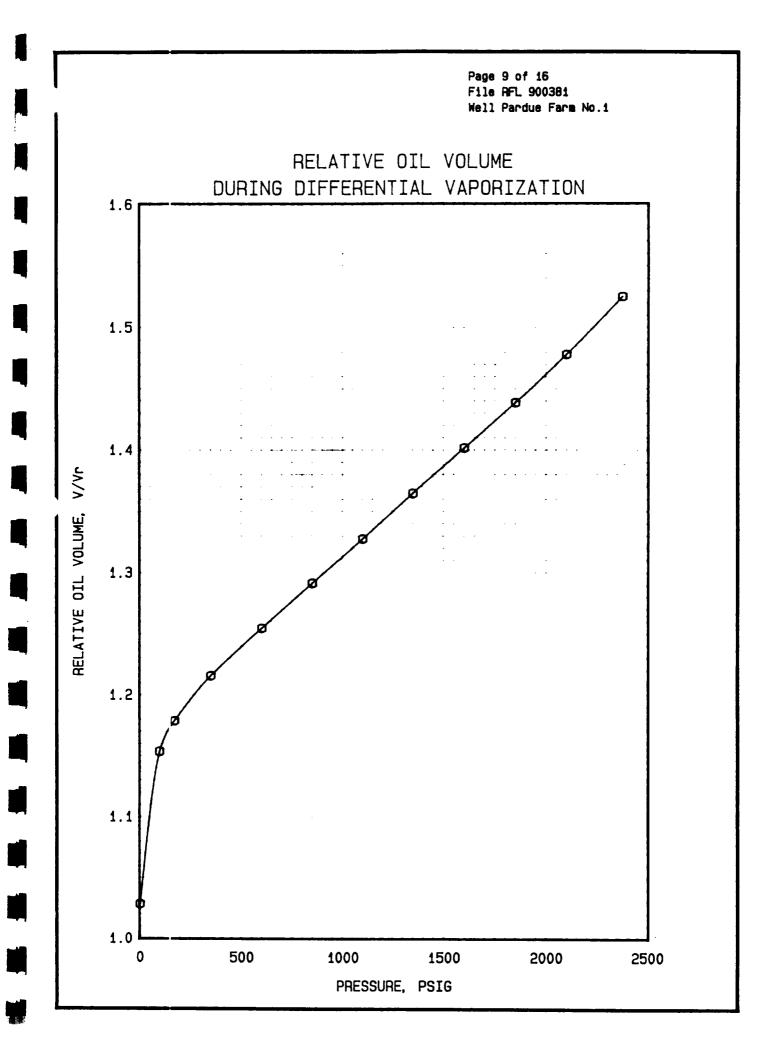
From 5000 psig to 4500 psig = $9.97 \times 10^{-6} \text{ V/V/psi}$ From 4500 psig to 4000 psig = $10.73 \times 10^{-6} \text{ V/V/psi}$ From 4000 psig to 3500 psig = $11.54 \times 10^{-6} \text{ V/V/psi}$ From 3500 psig to 3000 psig = $12.27 \times 10^{-6} \text{ V/V/psi}$ From 3000 psig to 2500 psig = $13.11 \times 10^{-6} \text{ V/V/psi}$ From 2500 psig to 2375 psig = $13.64 \times 10^{-6} \text{ V/V/psi}$

Well Pardue Farm No. 1 16 Page 7 of File RFL 900381

DIFFERENTIAL VAPORIZATION AT 115°F

٦


Incremental Gas Gravity	0.765	0.722	0.701	0.693	0.697	0.713	0.748	0.808	0.928	1.111	1.468	
Gas Formation Volume Factor(4)	0.00628	0.00729	0.00858	0.01043	0.01308	0.01731	0.02502	0.04338	0.08718	0.14612		
Deviation Factor Z	0.799	0.818	0.834	0.857	0.878	0.901	0.926	0.953	0.976	0.985		
0il Density, gm/cc	0.6604 0.6696	0.6783	0.6871	0.6964	0.7060	0.7158	0.7258	0.7362	0.7465	0.7531		= 0.8059
Relative Total Volume, B _{td} ⁽³⁾	1.525 1.595	1.687	1.820	2.027	2.350	2.897	3.945	6.554	13.072	22.207		0 60'F
Relative Oil Volume, B _{od} (2)	1.525 1.478	1.438	1.401	1.364	1.327	1.291	1.254	1.215	1.178	1.153	1.030	•F = 1.000
Solution Gas/Oil Ratio, R _{sd} ⁽¹⁾	983 878	161	708	626	544	462	379	292	217	174		0 60°F
Pressure, psig	2375 P _b 2100	1850	1600	1350	1100	850	600	350	171	67	0	

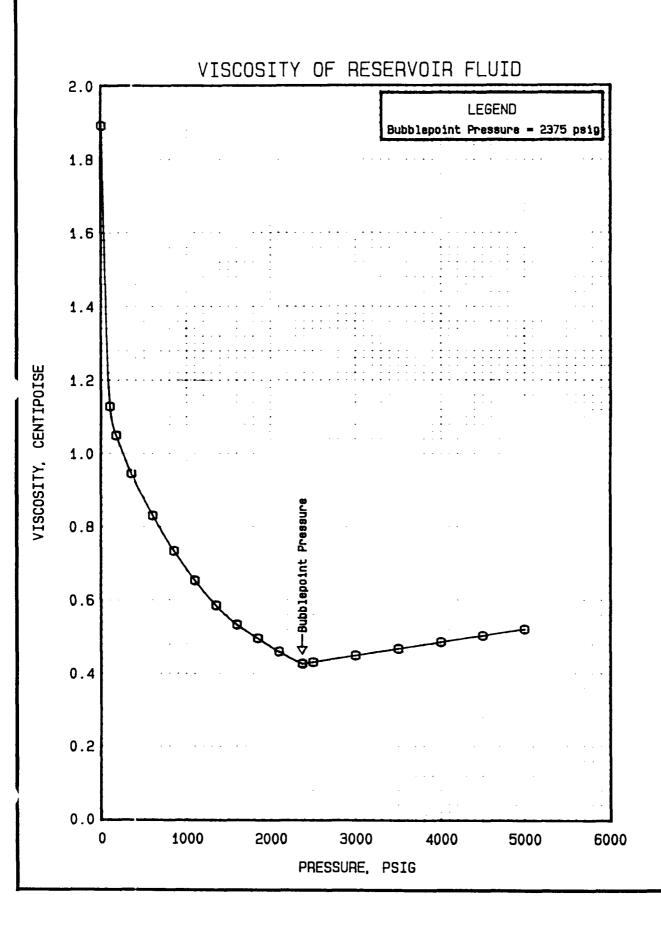

Gravity of residual oil = 43.9*API @ 60*F

Molecular weight of residual oil = 183 gm/mole

Standard conditions = 15.025 psia and 60*F

Cubic feet of gas per barrel of residual oil at 60°F.
Barrels of oil at indicated pressure per barrel of residual oil at 60°F.
Barrels of oil plus liberated gas at indicated pressure per barrel of residual oil at 60°F.
Cubic feet of gas at indicated pressure per standard cubic foot.

Page_	<u> 10 of 16 </u>
File_	RFL 900381
Well_	Pardue Farm No. 1


VISCOSITY AT 115°F

^o ressure,	Oil Viscosity, <u>centipoise</u>	Gas Viscosity, <u>centipoise</u>	Oil/Gas Viscosity Ratio
	<u>centrporse</u>	Cencipoise	
5000	0.522		
4500	0.505		
4000	0.484		
3500	0.467		
3000	0.448		
2500	0.431		
<u>2375</u> P _b	0.427		
2100	0.460	0.0185	24.84
1850	0.496	0.0167	29.70
1600	0.534	0.0155	34.51
1350	0.586	0.0145	40.42
1100	0.654	0.0136	47.90
850	0.735	0.0129	56.98
600	0.831	0.0122	68.11
350	0.945	0.0114	82.89
171	1.050	0.0107	98.13
97	1.129	0.0099	114.04
0	1.893		

• •

1

Page 11 of 16 File RFL 900381 Well Pardue Farm No. 1

Page_		of_	1(5
File_	RFL 90	0381		
Well_	Pardue	Farm	No.	1

SEPARATOR TESTS

	ator itions, at °F	<u>Gas/Liqu</u> (1)	<u>id Ratio</u> (2)	Stock Tank Liquid Gravity, *API at 60°F	Formation Volume Factor B _{ofb} (3)	Separator Volume Factor(4)	Gas Gravity
410	45	518	621			1.200	0.669*
to O	68	363 R _{sfb}	<u>365</u> = 986	43.9	1.525	1.004	1.216
110	67	764	827			1.083	0.766*
to O	69	131 R _{sfb}	= <u>131</u> = 958	44.3	1.500	1.005	1.428

* Collected and analyzed in the laboratory.

Standard cond tions = 15.025 psia and $60^{\circ}F$

- (1) Standard cubic feet of gas per barrel of liquid at indicated pressure and temperature.
- (2) Standard cubic feet of gas per barrel of stock tank liquid at $60\degree F$.
- (3) Barrels of licuid at bubblepoint per barrel of stock tank liquid at $60\degree F$.
- (4) Barrels of liquid at indicated pressured and temperature per barrel of stock tank liquid at 60°F.

Page	<u>13 of 16</u>	
File_	RFL 900381	
Well_	Pardue Farm No. 1	

COMPOSITION OF SEPARATOR TEST GAS SAMPLES

	<u>410 psig</u> Mole	<u>, 45°F</u>	<u> 110 psig</u> , Mole	67°F
<u>Compolent</u>	Percent	_GPM_	Percent	GPM
Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane iso-Butane n-Butane iso-Pentane n-Pentane Hexanes Heptanes plus	0.00 0.01 3.96 81.77 9.64 3.50 0.27 0.60 0.10 0.09 0.05 <u>0.01</u> 100.00	2.630 0.984 0.090 0.193 0.037 0.033 0.020 <u>0.005</u> 3.992	0.00 0.05 3.06 71.74 13.84 7.93 0.76 1.78 0.30 0.30 0.13 <u>0.11</u> 100.00	3.701 2.185 0.249 0.561 0.110 0.109 0.050 <u>0.049</u> 7.014
Gas gravity (air=1.000):	0.669		0.766	
Gross heating value (Btu per cubic foot of dry gas at 15.025 psia and 60°F):	1149		1291	

				Page14	of <u>16</u>
				FileRFL_90	0381
					Farm No. 1
NTEEDEN		ATION AT 115*	F ADJUSTED	TO SEPARATOR C	
DITTEREN				IV SEPANATON_C	ONDITIONS
Pressure, psig	Gas/Oil Ratio, R _s (1)	Formation Volume Factor, B _o (2)	Oil Density, gm/cc	Gas Formation Volume Factor(3)	Oil/Gas Viscosity Ratio
5000 4500 4000 3500 3000 2500 <u>2375</u> P _b	986 986 986 986 986 986 986 986	1.479 1.486 1.495 1.503 1.512 1.522 1.525	0.6809 0.6775 0.6739 0.6700 0.6659 0.6615 0.6604		
2100 1850 1600 1350 1100 850 600 350 171 97	881 794 711 629 547 465 382 295 220 177	1.478 1.438 1.401 1.364 1.327 1.291 1.254 1.215 1.178 1.153	0.6696 0.6783 0.6964 0.7060 0.7158 0.7258 0.7362 0.7465 0.7531	0.00628 0.00729 0.00858 0.01043 0.01308 0.01731 0.02502 0.04338 0.08718 0.14612	24.84 29.70 34.51 40.42 47.90 56.98 68.11 82.89 99.13 114.04

Separator Conditions:	Primary Separator	410 psig at 45°F
	Stock Tank	0 psig at 68°F

Standard conditions = 15.025 psia and 60 °F

(1) Standard cubic feet of gas per barrel of stock tank liquid at 60° F.

(2) Barrels of oil per barrel of stock tank liquid at 60° F.

(3) Cubic feet of gas at indicated pressure per standard cubic foot.

Page_	<u>15 of 16</u>
File_	RFL 900381
Well_	Pardue Farm No. 1

DIFFERENTIAL VAPORIZATION AT 115°F ADJUSTED TO SEPARATOR CONDITIONS

	0 (0:3	Formation	0/1	Gas	0:1/0
Dwolecumo	Gas/Oil	Volume	0il Density	Formation Volume	Oil/Gas Viscosity
Pressure, psig	Ratio, R _s (1)	Factor, B _o (2)	Density, gm/cc	Factor(3)	Ratio
psig	<u> </u>				
5000	958	1.455	0.6809		
4500	958	1.462	0.6775		
4000	958	1.470	0.6739		
3500	958	1.479	0.6700		
3000	958	1.488	0.6659		
2500	958	1.497	0.6615		
<u>2375</u> P _b	958	1.500	0.6604		
2100	855	1.454	0.6696	0.00628	24.84
1850	769	1.414	0.6783	0.00729	29.70
1600	688	1.378	0.6871	0.00858	34.51
1350	607	1.342	0.6964	0.01043	40.42
1100	526	1.305	0.7060	0.01308	47.90
850	446	1.270	0.7158	0.01731	56.98
600	364	1.233	0.7258	0.02502	68.11
350	278	1.195	0.7362	0.04338	82.89
171	205	1.159	0.7465	0.08718	98.13
97	162	1.134	0.7531	0.14612	114.04

Separator Conditions:	Primary Separator	110 psig at 67°F
	Stock Tank	0 psig at 69°F

Standard conditions = 15.025 psia and 60°F

(1) Standard cubic feet of gas per barrel of stock tank liquid at $60\degree F$.

(2) Barrels of oil per barrel of stock tank liquid at $60^{\circ}F$.

(3) Cubic feet of gas at indicated pressure per standard cubic foot.

NOMENCLATURE AND EQUATIONS

<u>Symbols</u>

B _o	Barrels at reservoir conditions per barrel of stock tank oil.
B _{od}	Relative oil volume from differential vaporization test.
B _{odb}	B _{od} at bubblepoint pressure.
8 _{ofb}	Formation volume factor from separator test.
B _t	Total (two-phase) formation volume factor.
B _{td}	Total formation volume factor from differential vaporization test.
Pres	Reservoir pressure.
Pb	Bubblepoint pressure.
R _s	Standard cubic feet of gas per barrel of stock tank oil.
R _{sd}	Solution gas/oil ratio from differential vaporization test.
R _{sdb}	R _{sd} at bubblepoint pressure.
R _{sfb}	Sum of separator and stock tank gas/oil ratios from separator test.
RV	Relative volume from pressure-volume test.

Equations

For B_o at and above the bubblepoint pressure: $B_o = (RV)(B_{ofb})$ For B_o below the bubblepoint pressure: $B_o = (B_{od})(B_{ofb}/B_{odb})$ For R_s : $R_s = R_{sfb} - [(R_{sdb} - R_{sd})(B_{ofb}/B_{odb})]$ For B_t : $B_t = (B_{td})(B_{ofb}/B_{odb})$