SEC. 10 OIL RESERVOIRS UNDER SIMULTANEOUS DRIVES

The indications are that the critical gas saturation is low for the high permeability, oölitic limestone of the Rockwell Field, and that at 2800 psia the gas-oil ratios would begin to rise and cause a lower recovery efficiency.

11. Maximum Efficient Rate (MER). Many studies indicate that the recovery from true solution gas-drive reservoirs by primary depletion is essentially independent of both individual well rates and total or reservoir production rates. Kelly, Tracy, and Roe²² have shown that this is true even for reservoirs with severe permeability stratification where the strata are separated by impermeable barriers and are hydraulically connected only at the wells. The Gloyd-Mitchell zone of the Rodessa Field (see Chapter 3, Sec. 7) is an example of a solution gas-drive reservoir which is essentially not rate sensitive, i.e., the recovery is unrelated to the rate at which the reservoir is produced. The recovery from very permeable, uniform reservoirs under very active water drives may also be essentially independent of the rates at which they are produced.

Applied

PETROLEUM RESERVOIR ENGINEERING

B. C. CRAFT

and

M. F. HAWKINS

Petroleum Engineering Department Louisiana State University

POGO PRODUCING COMPANY

NEW MEXICO OIL CONSERVATION DIVISION CASE NO. 10692

MARCH 18, 1993

EXHIBIT # 12

197

46 3650

WSE 5 YEARS BY MONTHS X 100 DIVISIONS KEUFFEL & ESSER CO. MADE № 05.A.

KoE 5 YEARS BY MONTHS X 100 DIVISIONS KEUFFEL & ESSER CO. MADE NUSA.

CUMULATIVE GAS, MMCF

46 3650

46 3650

• ~

KSE 5 YEARS BY MONTHS X 100 DIVISIONS KEUFFEL & ESSER CO. MADELNUSA.

EAST LOVING DELAWARE GORS (10-11/92)

T23S R28E

EDDY COUNTY, NEW MEXICO

										_	~				
D	с	в	A 4	D	с	В	A ³	D	с	В	A 2	D	с	В	A 1
Е	F	G	н	Е	F	G	н	E	F	G	Н	Е	F	G	н
L	K	J	I	L	K	J	I	L 2,916	К	J	I	L	К	J	I
М	N	0	Р	м	N	0	Р	M 5.196	N	0	Р	М	N	0	Р
D	С	В	A 9	D	C 33,856	В	A ¹⁰	D 9,696	C 3,469	B 3,227	A ¹¹	D	С	В	A 12
E	F	G	Н	E 3,427	F 5,027	G 4,452	H 664	E 9,563	F 3,600	G 6,074	H 3,800	Е	F	G	Н
L	К	J	I 11,015	L 6,563	K 6,033	J 2,085	I 2,873	L 5,775	K 3,581	J 3,784	I 6,267	L	к	J	I
М	N	0	Р	M 19.817	N 9.352	O 22.658	P 13.781	M 5.450	N	O 3.462	P 7.031	м	N	o	Р
D	С	В	A ¹⁶	D	C 4,286	B 4,818	A ¹⁵ 5,154	D 3,061	с 	B 4,400	A ¹⁴ 6,234	D	с	В	A ¹³
E	F	G	Н	Е	F	G 4,047	H 10,371	E 5,997	F 5,709	G 4,074	H 4,545	Е	F	G	н
L	ĸ	J	I	L	К	J 4,237	I 4,627	L 6,317	K 5,752	J 3,829	I 13,814	L 5,414	К	J	Ι
М	N	ο	Р	м	N	O 3.814	Р 9.576	M 3.979	N 3.695	O 4.034	Р 7.844	M 1.700	N	0	Р
D	с	В	A 21	D 4,941	C 2,273	В	A 22 4,633	D 6,668	C <u>8,056</u>	В 5,773	A ²³ 5,358	D 8,479	с	В	A 24
Е	F	G	н	E 3,610	F	G	H 7,848	E 6,264	F 5,687	G 4,065	H 2,973	E 6,164	F	G	н
L	К	J	I	L 1,839	К	J 4,716	I 4,697	L 6,516	K 5,021	J 4,791	I	L	К	J	I
М	N	ο	P 5.870	м	N	0	Р	M 4.971	N 1.435	O 4.246	Р	м	N	0	Р
D	с	В	A 28	D	с	B 8,635	A ²⁷ 12,597	D 7,668	С	В	A ²⁶	D	с	В	A 25
E	F	G	Н	Е	F	G	H 2,276	Е	F 7,300	G	Н	E	F	G	Н
L	К	1	I	L	K	J 9,171	I	L	K	1	I	L	K	J	I
М	N	0	Р	м	N	0	Р	м	N	0	Р	м	N	0	Р

POGO PRODUCING COMPANY

NEW MEXICO OIL CONSERVATION DIVISION CASE NO. 10692 MARCH 18, 1993 EXHIBIT # 15

FREQUENCY DISTRIBUTION OF GORS

FREQUENCY DISTRIBUTION OF GORS EAST LOVING DELAWARE (7/91-9/91) 25 20 NUMBER OF WELLS 15 10 5 0 4000-4999 6000-6999 <1000 2000-2999 8000-8999 >10000 1000-1999 3000-3999 5000-5999 7000-7999 9000-9999 GOR (SCF/BBL)

FREQUENCY DISTRIBUTION OF GORS

EAST LOVING DELAWARE HISTORY AND STATISTICS OF GORS

	PRODU	CTION		
	GAS	OIL	PRODUCING	MEDIAN
DATES	MCF	BBL	GOR	GOR
7/90 - 9/90	583,791	312,683	1,867	1,584
1/91 - 3/91	1,133,452	442,511	2,561	2,457
7/91 – 9/91	1,314,457	359,141	3,660	3,600
1/92 - 3/92	1,276,299	294,102	4,340	4,243
7/92 - 9/92	1,168,789	225,428	5,185	4,748

POGO PRODUCING COMPANY

NEW MEXICO OIL CONSERVATION DIVISION CASE NO. 10692 MARCH 18, 1993 EXHIBIT # <u>/</u>

From:

Fundamentals of Reservoir Engineering by John C. Calhoun, Jr. Copyright 1953 University of Tulsa Press

AVERAGE GAS-OIL RATIOS

of uncertainty. In the early life of a reservoir, moreover, special care must be taken that reliable average pressures are chosen, and that reliable gas-production figures are available because the differences in terms in Equation 149 are small during the early period when reservoir pressure is near its original value.

90. Average Gas-Oil Ratios

For material balance and other calculations, it is necessary to know amounts of gas produced. In the material-balance equation, the produced gas shows up as a cumulative gas-oil ratio rather than as a gas volume. The expression of gas production by gas-oil ratios is more common than by gas cumulative figures. Very often current producing gas-oil ratios are available and it is desirable to convert them to a cumulative gas-oil-ratio basis. The present discussion is concerned with the handling of such gas-measurement quantities.

Producing, or instantaneous, gas-oil ratio signifies a current rate. It is by definition the current rate of gas production divided by the current rate of oil production. It is expressed usually as standard cubic feet of gas per barrel of stock-tank oil. Such ratios are given as a result or a few hours' testing or as a result of several days of testing. The symbol R will be used to designate current producing gas-oil ratio over whatever testing period may be applicable.

To obtain an average producing gas-oil ratio for several wells or for all wells in a field, one cannot take an arithmetic average value of the ratios. For example, two wells with gas-oil ratios of 2,000 and 8,000 would not necessarily have an average ratio of 5,000. They would only if both wells were producing the same amounts of oil. An average producing gas-oil ratio must be obtained by dividing total current gas production from all wells involved by total current oil production from all wells involved. Thus, if the 2,000ratio well produced at the rate of 100 bbl. per day and the 8,000 ratio well at the rate of 50 bbl. per day, the average value of Rfor the two wells would be:

 $R_{\rm avg} = \frac{2,000 \times 100 + 8,000 \times 50}{150} = 4,000$ cu. ft. per bbl.

POGO PRODUCING COMPANY NEW MEXICO OIL CONSERVATION DIVISION CASE NO. 10692 MARCH 18, 1993 EXHIBIT # 17

227

228 FUNDAMENTALS OF RESERVOIR ENGINEERING

For a large number of wells the average ratio is figured as:

$$R_{avg} = \frac{\sum R_i \times Q_{0i}}{\sum Q_{0i}}$$
(154)

where R_i and Q_{0i} signify the individual ratios and stock-tank oil production rates and the sign \sum means the addition of such quantities for all the wells in question.

The total gas produced in an interval of time is equal to the producing gas-oil ratio during that period of time multiplied by the oil-production rate during the interval. To find the cumulative gas produced up to a certain time on a reservoir, therefore, one needs the current ratio at various periods and the amount of production during each period.

If ΔN represents cumulative stock-tank production, then the production over a short interval of time is its derivative, or d (ΔN). The product of the gas-oil ratio at this interval and the production is equal to the gas produced in the interval, or:

Gas produced in interval =
$$R \times d(\Delta N)$$
 (155)

The cumulative gas produced from zero time up to a certain time t is the integral of Equation 155 or:

Cumulative gas =
$$\int_{0}^{t} R \times d(\Delta N)$$
 (156)

Expressed another way, this is the area under the curve of R plotted against the cumulative production ΔN . This is shown in Fig. 142.

The cumulative gas-oil ratio, expressed by the symbol R_c , is defined as all the gas produced and kept from the reservoir up to a certain time divided by the cumulative oil produced at that same time. Therefore:

$$R_{c} = \frac{\int_{0}^{t} R \times d(\Delta N) - \text{gas reinjected}}{\Delta N}$$
(157)

In the case where no gas is reinjected, the cumulative gas-oil ratio is simply the area shown in Fig. 142 divided by ΔN .

In averaging individual gas-oil ratios, therefore, at a specific time, the important thing to remember is that they must be weighted according to the production which they represent. In

averaging current producing gas-oil ratios at successive times to get a cumulative ratio, the important thing to remember is that the current ratios cannot be weighted on the basis of the time they represent but on the basis of the cumulative production they represent. In other words a graph of the gas-oil ratio, R, versus

time does not give average or cumulative gas-oil ratio. A knowledge of R versus cumulative production is necessary as indicated by Equation 157.

91. Computing Original Oil in Place From Gas Produced

In section 90 it was pointed out that the area under a plot of the producing gas-oil ratio versus cumulative oil produced would be equivalent to the total cumulative gas produced from a reservoir. This is a true statement regardless of the mechanism of production. Furthermore, at the termination of the producing life of a reservoir the total area under the plot will be essentially equivalent to the total amount of gas which was originally avail-

EAST LOVING DELAWARE

STRUCTURALLY HIGH WELLS

EAST LOVING DELAWARE

~

MID STRUCTURE WELLS

EAST LOVING DELAWARE

STRUCTURALLY LOW WELLS

EAST LOVING (DELAWARE) WELLS									MAR	ICH 18, 199:	J
8,000:1 GOR (SORTED BY SECTION & UNIT)									EXF	11BIT # <u>20</u>	·
					CALC	ULAT	IONS:				_
		PRODUCT	ION		<u>10-11</u>	<u>/92</u>				MONT	HLY
		10-11/92			DAII	×	ADJU	STED DA	VIL Y	INCRE	ASE
WELL NAME	LOCATION	MCF	BBL	GOR	MCF	BBL,	MCF	BBL	GOR	MCF	BBL
PARDUE-MARTIN #2	02L 23S 28E	3,383	1,160	2,916	55	19	55	19	2,916		
PARDUE-MARTIN #1	02M 23S 28E	5,206	1,002	5,196	85	16	85	16	5,196		
NEL COM. #5	09I 23S 28E	9,671	878	11,015	159	14	159	14	11,015		·
PARDUE FARMS #4	10A 23S 28E	0	0		0	0	0	0			
FEDERAL 10 #2	10C 23S 28E	6,365	188	33,856	104	ы	104	3	33,856		
FEDERAL 10 #3	10E 23S 28E	6,166	1,799	3,427	101	29	101	29	3,427		
FEDERAL 10#1	10F 23S 28E	9,194	1,829	5,027	151	30	151	30	5,027		
PECOS IRRIGATION 'A' #2	10G 23S 28E	3,486	783	4,452	57	13	57	13	4,452		
I FWIS ESTATE #1	101 233 28E	005 6	1,017 870	2 873	41	14	41	14	2.873		
PARDUE FARMS #5	10J 23S 28E	8,905	4,272	2,085	146	6	146	70	2,085	-	
URQUIDEZ #3	10K 23S 28E	14,648	2,428	6,033	240	40	240	40	6,033		
URQUIDEZ COMM. #5	10L 23S 28E	17,439	2,657	6,563	286	44	572	87	6,563	8,577	1,307
URQUIDEZ #4	10M 23S 28E	8,105	409	19,817	133	7	133	7	19,817		
URQUIDEZ #2	10N 23S 28E	17,227	1,842	9,352	282	30	565	60	9,352	8,472	906
PARDUE FARMS #3	10O 23S 28E	24,562	1,084	22,658	403	18	805	36	22,658	12,079	533
PARDUE FARMS #1	10P 23S 28E	17,516	1,271	13,781	287	21	574	42	13,781	8,614	62.5
AMOCO 11 FEDERAL #6	11B 23S 28E	3,553	1,101	3,227	58	18	58	18	3,227		
ONSUREZ #1	11C 23S 28E	3,590	1,035	3,469	59	17	65	17	3,469		
PARDUE D 8808 JV-P #2	11D 23S 28E	14,651	1,511	9,696	240	25	240	25	9,696		
PARDUE D 8808 JV-P #1	11E 23S 28E	11,772	1,231	9,563	193	20	193	20	9,563		
ONSUREZ #2	11F 23S 28E	3,737	1,038	3,600	61	17	61	17	3,600		
AMOCO 11 FEDERAL #5	11G 23S 28E	7,501	1,235	6,074	123	20	123	20	6,074		
AMOCO FEDERAL #3	11H 23S 28E	4,343	1,143	3,800	71	19	71	19	3,800		
AMOCO FEDERAL #1	11I 23S 28E	5,133	819	6,267	84	13	84	13	6,267		
AMOCO 11 FEDERAL #4	11J 23S 28E	5,528	1,461	3,784	91	24	91	24	3,784		
PARDUE B 8808 JVP #1	11K 23S 28E	16,743	4,675	3,581	274	77	458	128	3,581	5,497	1,535
PARDUE B 8808 JVP #2	11L 23S 28E	16,090	2,786	5,775	264	\$	528	91	5,775	7,913	1,370
PARDUE C 8808 JVP #2	11M 23S 28E	16,673	3,059	5,450	273	50	547	100	5,450	8,200	1,504
AMOCO 11 FEDERAL #2	110 23S 28E	13,283	3,837	3,462	218	63	218	63	3,462		
AMOCO 11 FEDERAL #7	11P 23S 28E	12,501	1,778	7,031	205	29	205	29	7,031		

POGO PRODUCING COMPANY

I

NEW MEXICO OIL CONSERVATION DIVISION

CASE NO. 10692

.

(SORTED BY SECTION & UNIT)											
					CALC	ULATI	ONS:		=		
		PRODUCT	ION		10-11	92				MONT	ΗLΥ
		10-11/92			DAIL	×	ADJU	STED DA	JLY	INCRE	ASE
WELL NAME	LOCATION	MCF	BBL	GOR	MCF]	BBL	MCF	BBL	GOR	MCF	BBL
CULEBRA BLUFF UNIT (SOUTH) #5	13L 23S 28E	1,700	314	5,414	28	s	28	s	5,414		
CANDIE 13 #1	13M 23S 28E	3,245	1,909	1,700	53	31	53	31	1,700		
CULEBRA BLUFF 14 (SOUTH) #1	14A 23S 28E	8,940	1,434	6,234	147	24	147	24	6,234		
CULEBRA BLUFF UNIT (SOUTH) #7	14B 23S 28E	15,603	3,546	4,400	256	58	512	116	4,400	7,674	1,744
TELEDYNE #1	14C 23S 28E	0	· 0		0	0	0	0			
TELEDYNE #2	14D 23S 28E	21,250	6,943	3,061	348	114	391	128	3,061	1,284	419
TRACHTA #2	14E 23S 28E	17,446	2,909	5,997	286	48	572	95	5,997	8,580	1,431
CARRASCO 14 #1	14F 23S 28E	28,894	5,061	5,709	474	8	730	128	5,709	7,679	1,345
CARRASCO 14 #2	14G 23S 28E	16,933	4,156	4,074	278	68	521	128	4,074	7,293	1,790
CARRASCO 14 #3	14H 23S 28E	6,636	1,460	4,545	109	24	109	24	4,545		
CARRASCO 14 #5	14I 23S 28E	14,007	1,014	13,814	230	17	230	17	13,814		
CULEBRA BLUFF UNIT (SOUTH) #2	14J 23S 28E	16,270	4,249	3,829	267	70	489	128	3,829	6,679	1,744
RGA #1	14K 23S 28E	28,661	4,983	5,752	470	82	735	128	5,752	7,957	1,383
TRACHTA #1	14L 23S 28E	17,164	2,717	6,317	281	45	563	68	6,317	8,441	1,336
RGA #3	14M 23S 28E	13,695	3,442	3,979	225	56	225	56	3,979		
RGA #2	14N 23S 28E	13,669	3,699	3,695	224	61	224	61	3,695		
REID #1	140 23S 28E	15,251	3,781	4,034	250	62	250	62	4,034		
REID #2	14P 23S 28E	14,653	1,868	7,844	240	31	240	31	7,844		
SIEBERT #1	15A 23S 28E	29,484	5,721	5,154	483	94	659	128	5,154	5,259	1,020
CHAVES #1	15B 23S 28E	4,881	1,013	4,818	8	17	80	17	4,818		
NYMEYER A #1	15C 23S 28E	2,769	646	4,286	45	11	45	11	4,286		
KIDD #1	15G 23S 28E	2,242	554	4,047	37	9	37	9	4,047		
WITT #1	15H 23S 28E	14,789	1,426	10,371	242	23	242	23	10,371		
CAVINESS-PAINE #1	15I 23S 28E	7,024	1,518	4,627	115	25	115	25	4,627		
CAVINESS-PAINE #4	15J 23S 28E	1,343	317	4,237	22	s	22	5	4,237		
CAVINESS – PAYNE #3	150 23S 28E	1,846	484	3,814	30	8	30	8	3,814		
CAVINESS-PAINE #2	15P 23S 28E	10,840	1,132	9,576	178	19	178	19	9,576		
LEU-1 #1	21P 23S 28E	6,463	1,101	5,870	106	18	106	18	5,870		
QUEEN #1	22A 23S 28E	5,800	1,252	4,633	95	21	95	21	4,633		
MARKHAM #1	22C 23S 28E	2,534	1,115	2,273	42	18	42	18	2,273		
BURKHAM #2	22D 23S 28E	6,018	1,218	4,941	999	20	86	20	4,941		

EAST LOVING (DELAWARE) WELLS 8,000:1 GOR

8 19,994	120,19	5,548	3,186	17,678			5,426	153,711	833,965		TOTALS
								-			
		4,203	10	42	10	42	4,203	606	2,547	27P 23S 28E	PARDUE FARMS 27 BTRY 1 #4
		7,951	10	83	10	83	7,951	636	5,057	27N 23S 28E	PARDUE FARMS 27 BATTERY 6 #6
		9,171	15	136	15	136	9,171	904	8,291	27J 23S 28E	PARDUE FARMS 27 BTRY 1 #3
		2,276	6	21	9	21	2,276	558	1,270	27H 23S 28E	PARDUE FARMS 27 BTRY 1 #1
		8,635	6	81	6	81	8,635	573	4,948	27B 23S 28E	PARDUE FARMS 27 BATTERY 2 #2
		12,597	13	162	13	162	12,597	785	9,889	27A 23S 28E	PARDUE FARM 27 #7
		7,300	10	72	10	72	7,300	604	4,409	26F 23S 28E	PARDUE FARMS 26 BATTERY 3 #3
		7,668	22	169	22	169	7,668	1,345	10,313	26D 23S 28E	PARDUE FARMS 26 BATTERY 2 #2
		6,164	14	84	14	84	6,164	835	5,147	24E 23S 28E	CULEBRA BLUFF UNIT (SOUTH) #6
		8,479	5	46	5	46	8,479	330	2,798	24D 23S 28E	CANDELARIO #1
		4,246	12	52	12	52	4,246	751	3,189	23O 23S 28E	CULEBRA BLUFF 23 (SOUTH) #9
		1,435	3	s	3	5	1,435	207	297	23N 23S 28E	BRANTLEY COM #1
		4,971	23	114	23	114	4,971	1,403	6,974	23M 23S 28E	CULEBRA BLUFF 23 (SOUTH) #3
		6,516	18	119	18	119	6,516	1,114	7,259	23L 23S 28E	CULEBRA BLUFF 23 (SOUTH) #2
		5,021	28	143	28	143	5,021	1,734	8,707	23K 23S 28E	CULEBRA BLUFF 23 (SOUTH) #1
		4,791	7	35	7	35	4,791	440	2,108	23J 23S 28E	CULEBRA BLUFF 23 (SOUTH) #7
		2,973	8	23	8	23	2,973	478	1,421	23H 23S 28E	CULEBRA BLUFF 23 (SOUTH) #12
		4,065	26	107	26	107	4,065	1,608	6,537	23G 23S 28E	CULEBRA BLUFF UNIT (SOUTH) #3
		5,687	32	181	32	181	5,687	1,946	11,067	23F 23S 28E	DONALDSON COM A #1
		6,264	18	116	18	116	6,264	1,127	7,060	23E 23S 28E	CULEBRA BLUFF 23 (SOUTH) #4
		6,668	33	221	33	221	6,668	2,024	13,496	23D 23S 28E	CULEBRA BLUFF 23 (SOUTH) #5
		8,056	31	247	31	247	8,056	1,870	15,064	23C 23S 28E	CULEBRA BLUFF 23 (SOUTH) #6
		5,773	41	237	41	237	5,773	2,507	14,474	23B 23S 28E	CULEBRA BLUFF 23 (SOUTH) #11
		5,358	19	104	19	104	5,358	1,180	6,322	23A 23S 28E	CULEBRA BLUFF UNIT (SOUTH) #4
		1,839	7	13	7	13	1,839	434	798	22L 23S 28E	MCCLARY #1
		4,716	23	107	23	107	4,716	1,385	6,531	22J 23S 28E	BRANTLEY #2
		4,697	34	159	34	159	4,697	2,065	9,700	22I 23S 28E	JASSO UNIT #1
		7,848	27	212	27	212	7,848	1,645	12,910	22H 23S 28E	QUEEN #2
		3,610	24	58	24	85	3,610	1,437	5,187	22E 23S 28E	BURKHAM #1
				1							
BBL	MCF	GOR	BBL	MCF	BBI.	MCF	GOR	BBL	MCF	LOCATION	WELL NAME
REASE	INC	AILY	JSTED D.	ADJU	Y	DAI			10-11/92		
VTHLY	MON				1/92	10-1		NOU	PRODUCT		
				IONS:	TNTU	CALC					
											(SORTED BY SECTION & UNIT)
											8,000:1 GOR
											EASTLOVING (DELAWARE) WELLS

.

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION

BRUCE KING GOVERNOR

ANITA LOCKWOOD CABINET SECRETARY POST OFFICE BOX 2088 STATE LAND OFFICE BUILDING SANTA FE, NEW MEXICO 87504 (505) 827-5800

July 9, 1993

HINKLE, COX, EATON, COFFIELD & HENSLEYAttorneys at LawP. O. Box 2068Santa Fe, New Mexico 87501

RE: CASE NO. 10692 ORDER NO. R-9501-B

Dear Sir:

Enclosed herewith are two copies of the above-referenced Division order recently entered in the subject case.

Sincerely,

lly Leichtec

Sally E. Leichtle Administrative Secretary

cc: BLM - Carlsbad Donna McDonald - OCD Alvin Tapia - OCD George Geran Tim Goudeau