

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION DIVISION FOR THE PURPOSE OF CONSIDERING:

APPLICATION OF BARBER OIL INC. FOR SALT WATER DISPOSAL, EDDY COUNTY, NEW MEXICO CASE NO. 10772

PRE-HEARING STATEMENT

This pre-hearing statement is submitted by SNYDER RANCHES INC. as required by the Oil Conservation Division.

APPEARANCE OF PARTIES

APPLICANT

APPLICANT ATTORNEY

Barber Oil Inc.

William F. Carr, Esq. P. O. Box 2208 Santa Fe, New Mexico 87501

(505) 988-4421

OPPOSITION PARTY

ATTORNEY

Snyder Ranches Inc. P. O. Box 2158 Hobbs, New Mexico 88241 Attn: Larry C. Squires (505) 393-7544

W. Thomas Kellahin KELLAHIN AND KELLAHIN P.O. Box 2265 Santa Fe, NM 87504 (505) 982-4285 Pre-Hearing Statement Case No. 10772 Page 2

STATEMENT OF CASE

OPPOSITION PARTY:

Snyder Ranches Inc. is the owner of the "Woods Ranch" and has a domestic water well immediately adjacent to the Barber Oil Company's Stovall-Wood Well No 5 which is a shallow salt water disposal well and the subject of this application.

The subject salt water disposal well has contaminated the Woods Ranch domestic water well to such an extent that it can no longer be used for domestic or stock watering purposes.

The Division should deny the application of Barber Oil Company in order to prevent further contamination of the shallow ground water in this area.

Pre-Hearing Statement Case No. 10772 Page 3

PROPOSED EVIDENCE

OPPOSITION PARTY

WITNESSES

EST. TIME EXHIBITS

Tim E. Kelly (hydrogeologist) 60 min.

8-10 exhibits

PROCEDURAL MATTERS

None applicable at this time.

KELLAHIN AND KELLAHIN

W. Thomas Kellahin

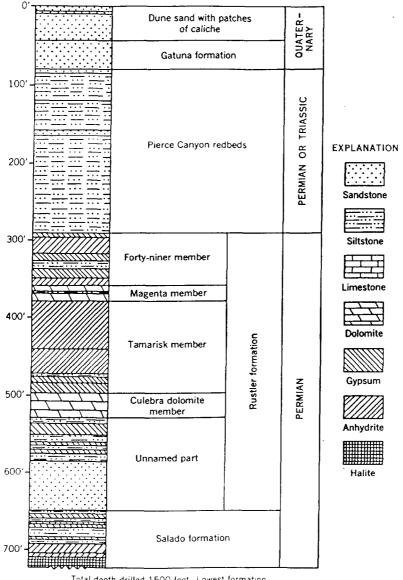
P.O. Box 2265 /

Santa Fe, New Mexico 87504

(505) 982-4285

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT

BEFORE EXAMINER	CATANACH
OIL CONSERVATIO	N DIVISION
EXHIBIT NO	_/_
CASE NO. 10772	


	(O.	L CONS	FRVA:	CASE NO.	10772		
<u> </u>	DISTRIBUTION		•		. O. BOX	O. (D. A)	ED BY: SNYDER RANCHE	s	Form C-10
144	TA FE	 				HEARING	DATE: NOVEMBER 4, 19		Revised 15
710		 	•	SANTA FI	E, NEW	M		-	
<u> </u>	.0.1.							1 Ty	pe of Leuse
1	HO OFFICE							State	Fee
02	RATOA							5. State Ott & C	ias Lease No.
							1		
U		SUNDR	Y NOTICES	AND REPO	RTS ON Y	ELLS	MENT RESERVOIR.		
1.						R	ECETT	7. Unit Agreeme	int Name
WELL	6A8 WELL		GTHER-	Disposal	Well		·	Barbe	r
2. Name o	Operator						1111 3'90	8. Farm or Lea	se Hame
	Barber	- 011.	Inc.				TIL 2 20	Stovall-	Wood Fee
3. Addres:	s of Operator	,	1201					9. Well No.	
	P. O.	Box 1	658 Carls	had. NM	88221-1	658	ن. ن. ن. معالات	Barber D	isposal
4. Locatio	on of Well			566, 1			ARTESM. OFFICE		ool, or Wildeat
İ	LETTERC		880		North			Barb	er
TIMP	LETTER		<u> </u>	780M THE	MOLEN	LIME AHO	1300 PEET PR	mmm "	τmmm
THE.	West	1E, SECTIO							
IIII		IIIII	15. E	levation (Shor	w whether D	F, RT, GR, e	ic.)	12. County	
IIIIi			/////					Eddy	
16.	(heck	Annionriace	Box To Isc	licare Na	cure of No	ctice, Report or C	Icher Data	
			TENTION T		1		•	NT REPORT OF	F•
	.,,	- 0		.	ł		30032402		•
97 9 708W	REMEDIAL WORK			PLUG AND ABA		REMEDIAL WO		ALTI	DHIEAS DHIR
	=								
	AILT ABANDON						ILLING OPHS.	PLUG	
PULL OR .	ALTER CASING			CHANGE PLANS	<u> </u>		&PC TH3M33 DHA		
	•					R3HT0	·		
WTHE R	·				<u> </u>				

17. Describe Proposed or Completed Operations (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any pro-

JUNE, 1990 - This disposal well drilled in approximately 1943 to a depth of 227' to a "cut out section" of the Upper Rustler formation. The bottom of the this formation is approximately 415'. Ran 195' of 8-5/8" casing and set with 25 sax cement. The injection interval was from 195' - 207' or 12' total open hole. Surface water is at approx. 50' and the top of the nearest oil or gas zone is 1420'. In June of 1990 we began experienci: trouble with the well back flowing ver y slight amounts of water (less than 10 bbls) and the wells rate of intake began to decline. We ran a special hand made tool down the well bore and casing and cleaned out what appeared to be a combination of asphaltines, iron sulfide and parafin. We then pumped in 1,000 gallons of acid and flushed with 250 bbls of fresh water. The well improved for a few days and then the problem reappeared We then cleaned the well bore out to a depth of 115' and ran 128' of plastic schedule 80 6" pipe down the well until we were inside good casing. The last 13' of pipe had to be forced into the casing as the existing pipe was coated with "gunk". We then ran our tool back down the new casing and into the old casing and cleaned out the hole

leaving a seal of gunk between t since this procedure. We believ successfully shut off all surfac formation. Secondly, we replace pipe at the top of the well with	he two pipes. The well has be the procedure accopmlished to the water that was previously do do what was probably several jo	two things. First, we umping into the rustler pints of badley corroded
18. I hereby certify that the Mormanton story is true and co	mplete to the best of my knowledge and belief. TITLE President	DATE 7/3/90
For Recard Only	TITLE	GATE

of the upper 725 feet of this core was used as a standard of reference for many of the stratigraphic units as they were mapped in the field. The core log is therefore reproduced below with minor modifications and shown graphically in figure 3.

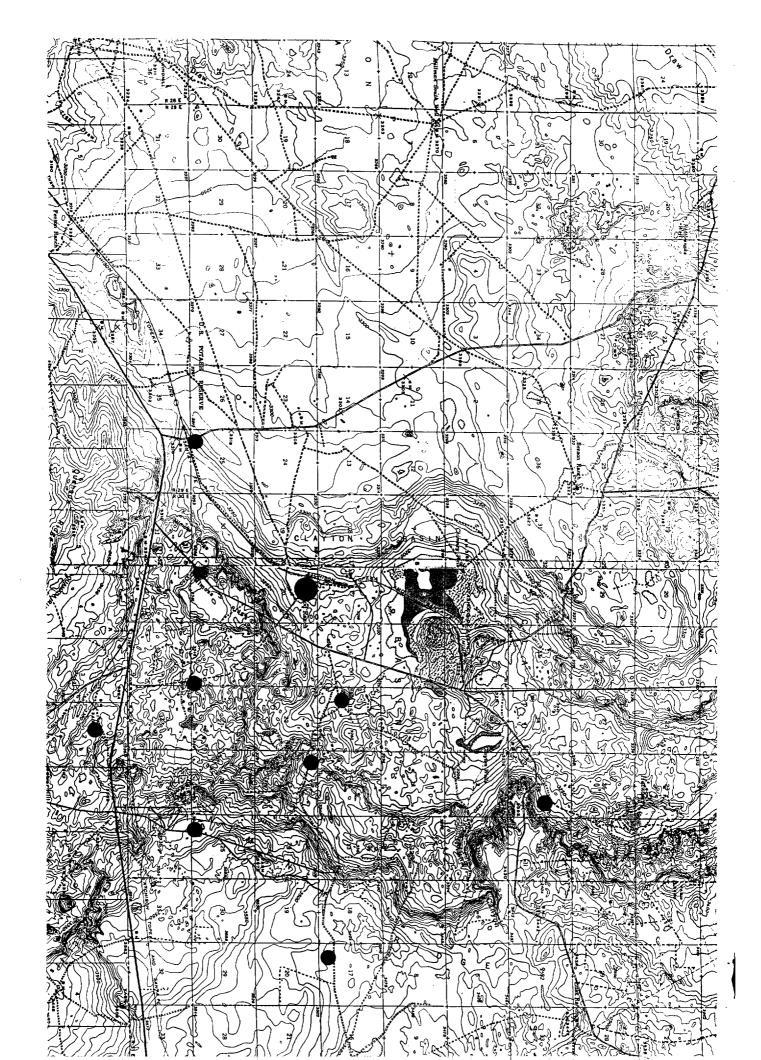

Total depth drilled 1500 feet. Lowest formation found was the Salado formation.

FIGURE 3.-Lithologic log of core from AEC drill hole 1, sec. 34, T. 23 S., R. 30 E.

BEFORE EXAMINER CATANACH
OIL CONSERVATION DIVISION

MACR EXHIBIT NO. 3

CASE NO. 10772

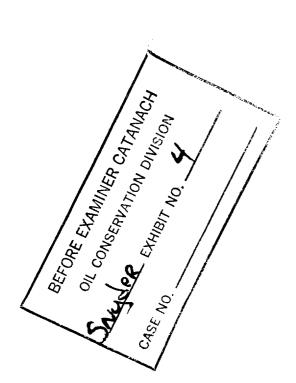


TABLE 1. RECORDS OF WELLS IN EDDY COUNTY, NEW MEXICO. (Continued)

	OWNER	DATE		ALTITUDE	DEPTH	DIAMETER	PRINCIPAL WATER-BEARING BED	
LOCATION NUMBER	OR NAME	COM-	TOPOGRAPHIC SITUATION	ABOVE SEA LEVEL (feet)	OF WELL (feet)	of well (inches)	CHARACTER OF MATERIAL	GEOLOGIC UNIT
20.28.36.140	Dinwitty	_	Scanlon draw	3,210	_	8	Redbeds, gypsum (?)	Rustler (?)
20.29.3.433	-	-	Shallow depression	3,300	-	6	do.	Dockum or Rustler
20.30.3.223	"Clayton Wells"	_	Clayton basin	3,175	-	-	Sand and silt	Quaternary
3.424	do.	_	do.	3,185	_	6 (?)	do.	do.
5.310	"Chimney Well"	_	do.	3,184	_	- '	do.	do.
16.420		_	do.	3,220	<u></u>	6	Redbeds (?)	Dockum (?)
20.120	Wood Ranch	_	do.	3,210	90	6	do. `´	do.
20.130	do.	_	do.	3,210	60	7	do.	. do.
33.440	~	_	Rolling	3,380	240+	9	do.	do.
20.31.13.440			Williams sink	3,450	- '	-	do. do.	do.
15.130	~		do.	3,450	70 (?)	6		do.
16.240	-	_	do.	3,460	110+	6	do.	do.
21.21.7.440	Armstrong	_	_	4,760	1,300	_	_	-
36.213	Frank McWilliams	1941	Draw	4,550	962	·6	Limestone	San Andres (?)

See explanation at beginning of table.

	WA'	WATER LEVEL					
LOCATION NUMBER	EELOW LAND SURFACE (feet)	DATE OF MEASUREMENT	YIELD (g.p.m.)	METHOD OF LIFT	USE OF WATER	REMARKS	
20.28.36.140	19.1	Dec. 27, 1948	_	w	S		
20.29.3.433	91.9	Dec. 13, 1948	-	W	S	See analysis, Table 3.	
20.30.3.223	6.0	Dec. 23, 1948		W	S	do.	
3.424	8.5	do.	_	W	S	do.	
5.310	3.5	do.		W	S		
16.420	29.9	May 1, 1950		w	S	See analysis, Table 3.	
20.120	29.3	Dec. 22, 1948	5 E.	W	D	Depth to water measured while pumping	
20.130	45.3	do.	_	W	D	do. See analysis, Table 3.	
33.440	203.8	Dec. 27, 1948	_	W	S	See analysis, Table 3.	
20.31.13.440	45	Dec. 22, 1948	4 E.	. W	S	do. ´	
15.130	63.1	do.	_	W	S		
16.240	61.2	do.	1 E.	W	S	Depth to water measured while pumping. See analysis, Table 3.	
21.21.7.440	1,100	_	_	W	D & S	· ·	
36.213	942	_	_	w	S	Driller: T. Hillyer	

See explanation at beginning of table.

BEFORE EXAMINER CATANACH

OIL CONSERVATION DIVISION

ASE NO.

TABLE 3. CHEMICAL ANALYSES OF WATER FROM WELLS IN EDDY COUNTY, NEW MEXICO LOCATION NUMBERS CORRESPOND TO THOSE IN TABLE 1 Analyses by U. S. Geological Survey (Parts per million)

	PER- CENT SODIUM	- 1 4 1 1 1 1 4 5 1 1 8 8 8 2 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	1
	TOTAL HARD- NESS AS CaCO ₂	22 23 2 23 2 23 2 23 2 23 2 23 2 23 2	1,110
	SOLUS SOLVED	28 20 20 20 20 20 20 20 20 20 20 20 20 20	8,220
	NI- TRATE (NO ₂)	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89
,	FLUO- RIDE (F)		ı
	CHLO- RLDE (Cl)	24 88 88 88 88 88 88 88 88 88 88 88 88 88	785
•	SUL- PATE (SO ₂)	338 138 138 138 138 138 138 138 138 138	1,190
.	BICAR- BONATE (HCO ₂)	156 166 166 166 166 166 166 166 166 166	TOS
)	SOBIUM AND POTAS- SIUM (Na+K)	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101
	MAGNE- SIUM (Mg)	200 200 200 200 200 200 200 200 200 200	244
	CAL- CIUM (Ca)	109 106 106 106 106 106 108 108 108 108 108 108 108 108 108 108	707
	SILICA (SiO ₂)		
	SPECIFIC CONDUCT- ANCE (MICROMHOS AT 25° C.)	948 948 948 948 948 948 948 948 948 948	2204
	DATE OF COLLEC- TION	1-11-50 1-11-50 1-11-50 12-21-8 12-8 12	
	LOCATION	16.21.82.20 17.24.42.20 17.27.11.110 17.27.11.110 17.27.21.1110 17.27.21.110 19.29.24.300 19.29.27.23 19.29.27.23 19.29.27.23 19.20.20 19.20.20 19.20.20 19.20.20 19.20.20 19.20.20 19.20.20 19.20.20 19.20.20 19.20.20 19.20.20 19.20.20 19.20.20 19.20.20 19.20.20 20.29.24.33 20.29.24.33 20.29.24.33 20.29.24.33 20.29.24.33 20.29.27.30 16.420 20.13	-

OIL CONSERVATION DIVISION CASE NO. EXHIBIT NO. 6
