CORRELATION OF BOTTOM HOLE SAMPLE DATA

GUY BORDEN, JR. AND MICHAEL J. RZASA, STANOLIND OIL AND GAS CO., TULSA, OKLA., MEMBERS AIME

ABSTRACT

Laboratory data on bubble point pressures and reservoir volume factors have been correlated as functions of solution gas-oil ratio, calculated gas gravity of the pentanes-and-lighter fraction of the entire fluid, differential residual oil gravity, and reservoir temperatures.

INTRODUCTION

Several correlations of crude oil properties have appeared in the literature.

D. L. Katz⁺ in 1942 presented five methods of predicting oil shrinkage, these being of decreasing accuracy for decreasing amounts of information available.

M. B. Standing⁶ in 1947 published three correlations of laboratory flash vaporization data of California crudes. From values of GOR (gas-oil ratio), gas gravity, liquid gravity, and temperature, his correlations will predict bubble point pressure, formation volumes of bubble point liquids, and twophase formation volumes.

Curtis and Brinkley² in 1949 presented several correlations. From the gas-oil ratio, an approximation of reservoir volume factor and barrels of condensate recoverable per barrel of reservoir space may be obtained; along with liquid gravity and reservoir temperature, the GOR will allow prediction of bubble point pressure. These last cor-

References given at end of paper.

Manuscript received in the office of the Petroleum Branch May 29, 1950. Paper presented at the Mid-Continent Joint Meeting in Tulsa, Okla., May 12-13, 1950. relations seem to be more qualitative than quantitative.

Generally, laboratory bottom hole sample tests furnish information on solution gas-oil ratios, residual oil gravities, bubble point pressures, viscosities of oils, liquid shrinkages, and occasionally gas gravities. Each of these data has its own applications and use in reservoir engineering calculations. The particular uses of correlated bottom hole sample data are found in

- (1) Providing a basis for obtaining estimates of formation crude properties in fields where bottom hole sampling is impractical or impossible.
- (2) Greatly reducing the time in obtaining the desired information.
- (3) Determining the applicability of the results from various bottom hole samples to particular field problems.
- (4) Avoiding, in many cases, the uncertainties of sampling by replacing it with an element over which greater control can be exercised.
- (5) Permitting use of preliminary field data in application of production procedures before a bottom hole sample can be obtained and analyzed in the laboratory.
- (6) Serving as a check on data which may appear out of line.
- (7) Estimating for a particular type crude the appropriate equilibrium constants by working backward from the bubble point pressure.
- (8) Estimating original or other past history properties of reservoirs that were not sampled in the past.

PETROLEUM TRANSACTIONS, AIME

PROCEDURE

Application of the published correlations^{4,4} to Stanolind laboratory data indicated that the general scheme presented by Standing⁶ could give desirable results if changes were made in parameter positions and scales. The correlation curves were drawn with all the variables having consistent gradations except the temperature increments which were drawn in to best fit the data.

The variables from available Stanolind laboratory data are defined below:

- Gas-oil Ratio: Gas is liberated at reservoir temperature by differential vaporization (or rather by a series of flashes, approaching differential vaporization) and measured at atmospheric pressure and temperature, at which the compressibility factor is assumed to be unity. The oil is the residual liquid remaining after the pressure has been reduced to atmospheric. For the gas-oil ratio both volumes are corrected to standard conditions of 14.7 psia and 60°F.
- (2) Gas Gravity: It was decided to arbitrarily divide the hydrocarbons of the entire bottom hole sample into pentanes-and-lighter and hexanes-and-heavier, and use a calculated gas gravity of the pentanesand-lighter for a correlating variable. (Sample calculation is shown in Table III.)
- (3) Liquid Gravity: This is the API gravity of the residual liquid from the differential vaporization. The gravity is measured at room temperature and corrected to 60°F.

FIG. 1 - BUBBLE POINT PRESSURE CORRELATION.

CANADA OJITOS UNIT #2 (K-13)

DRILLING HISTORY

1785' FSL, 2120' FWL, Sec. 13, Twp. 25N, Rge, 1W, Rio Arriba County, New Mexico.

- 7/21/62 6:00 AM Rigging up rotary.
- 7/21/62 10:30 AM Spudded in 17友" hole.
- 7/22/62 2:30 AM TD 310' RKB. Set 9 joints 293' of 13-3/8" OD 48# H-40 casing at 305' RKB with 350 sacks cement, 2% calcium chloride.
- 7/23/62 2:30 AM Tested casing to 500#. Tested O.K.
 - 6:00 AM Drilling at 580' in sand and shale. Vis. 32, wt. 8.9. Pump pressure 1600#, 56 SPM, 6" liners.
- 7/24/62 6:00 AM TD 2335' in sand and shale. Making trip for Bit #4. 1½° at 1424'. Vis. 31, wt. 9.0, WL 20, FC 2/32. Pump pressure 1300#, 52 SPM, 6" liners.
- 7/25/62 6:00 AM TD 2497'. Circulating for Core #1. Vis. 48, wt. 9.0, WL 4.8, FC 2/32. 3-3/4° at 2327'. Show of gas and fluorescence in samples.
- 7/25/62 10:00 AM TD 2499'. Went in hole with core barrel.

Core barrel plugged. Made trip.

- 7/26/62 12:15 AM On bottom with core barrel.
 - 6:00 AM Coring (Core #1) at 2530'.

 12° at 2499'. Vis. 70, wt. 9.0, WL 8, FC 1/32. Pump pressure 900#, 45 SPM, 6" liners.

- 7/26/62
 Pulled Core #1 from 2499' to 2559'. Reamed core-hole.

 Drilled 16'. Circulated 1½ hours. Logged well.
- 7/27/62 6:00 AM Waiting on orders. TD 2575'.

Core #1 Cored 2499' to 2559'. Cored 60', recovered 36'.

2499-2500' Dark grey very fine silty very fossiliferous and finely micaceous shale.

2500-01' Same, slightly fossiliferous, slightly sandy, very fine.

2501-03' Same.

Same, abundant slicken sides, 45° vertical and horizontal fracture.

2504-05' Same.

2503-04

2505-06'

2508-10'

2510-15'

2515-16'

2516-25'

2530-31'

- Same, very fossiliferous.
- 2506-08' Same, slightly sandy, very fine. F

Same, non-fossiliferous.

- Same, slightly sandy, very fine.
- Same, very very fossiliferous, snail, clams, etc.
- Same, non-fossiliferous.
- 2525-30' Same, few fossiliferous fragments.
 - Same, shale becomes much darker.

2531-36' Dark grey black very very fine mica and silt.

6:00 AM

7/28/62

Vis. 47, wt. 9.0; WL 5.0, FC 1/32. Pump pressure 1350#, 54 SPM, 6" liners. 7/29/62 Drilling at 3640' in sand and shale. 1-3/4° at 3240'. Vis. 6:00 AM 48. wt. 9.0, WL 4.0, FC 1/32. Pump pressure 1350#, 54 SPM, 6" liners. Drilling at 3940' in sand and shale. Bit #8 in the hole. 7/30/62 6:00 AM Vis. 46, wt. 9.1, WL 4.4, FC 1/32. 2° at 2692'. Pump pressure 1400#, 54 SPM, 6" liners. 7/31/62 6:00 AM TD 4123'. Making trip for core barrel. 1-3/4° at 3956'. Vis. 46, wt. 9.2, WL 4.5, FC 1/32. Pump pressure 1400#, 54 SPM, 6" liners. CORE DESCRIPTION Cored 4123.3' to 4142.8'. Cored 19.5', recovered 19.5'. Core #2 4123.3-251 Medium fine light grey salt and pepper varicolor sandstone, very very fine mica matrix, slight gas stain and fluorescence. 4125-26' Same, harder, good stain and fluorescence. 4126-29' Same, hard, slight stain and fluorescence. 4129-30' Same, hard, heavy stain and fluorescence. 4130-31' Same, hard, with thin fine varved sandstone, slightly carbonaceous streaks, stain and fluorescence. 4131-32' Same. 4132-33' Same, very fractured, good stain and fluorescence. 4133-35' Same, good odor, good stain and fluorescence. 4135-36' Same with black shale streaks, slightly carbonaceous, good odor, good stain and fluorescence. 4136-37' Same with thin carbonaceous pyritic partings, good odor, good stain and fluorescence. 4137-40' Same, heavy odor, good stain and fluorescence. 4140-41' Same with thin slightly carbonaceous shale streaks, varved, good odor, good stain and fluorescence. 4141-42' Same with thin brown shale streaks, varved, slicken sides, slight odor and fluorescence. 4142-42.8' Dark grey very fine salt and pepper varicolor sandstone with thin brown grey silty shale streaks, slight bleed.

Drilling at 3180' in 9-7/8" hole in shale. 3/4° at 2899'.

7/31/62 Pulled Core #2 from 4123.3' to 4142.8'.

8/1/62 6:00 AM Coring (Core #3) at 4164'. 2-3/4° at 4154'. Vis. 50, wt. 9.9, WL 3.6, FC 1/32. Pump pressure 800#, 54 SPM, 6" liners.

8/1/62 Pulled Core #3 from 4154' to 4214'. Cored 60', recovered 46'.

8/2/62 5:00 AM TD 4214'. Vis. 52, wt. 9.9, WL 5.8, FC 1/32. 2° at 4214'. Pump pressure 1400#, 41 SPM, 6" liners. Preparing to drill stem test. Canada Ojitos Unit #2 (K-13) Page 3 8/2/62 DST #1 from 4076' to 4214'. Upper packer set at 4072', lower at 4076'. Tool open 10 minutes on initial flow. Good blow of air to surface immediately. Initial shut in 30 minutes. Second flow 60 minutes, final shut in 45 minutes. Initial hydrostatic pressure 2170#, initial FP 280#, initial SIP 810#. Final FP 590#, final SIP 810#. Bottom hole temperature 142°. Good blow throughout test. Gas to surface at end of test. Drilled to TD 4383'. Circulating for Core #4. Vis. 59, wt. 9.9, WL 5.8, FC 1/32. Pump pressure 1400#, 54 SPM, 6" liners. 8/3/62 · 6:00 AM CORE DESCRIPTIONS Cored 4154' to 4216'. Cored 62', recovered 46'. Core #3 4154-55' Dark brown carbonaceous shale. 4155-56' Same. 4156-57' Same, amber specks. 4157-59' Same, very carbonaceous. 4159-60' Impure coal. 4160-61' Dark grey brown carbonaceous shale. 4161-64' Dark brown slightly carbonaceous sand, medium fine, very silty. 4164-642' Dark grey brown silty carbonaceous sand, thin laminations. 41643-65' Light grey medium fine varicolor silty sandstone. 4165-71' Same with brown shale clay balls, very micaceous. 4171-72' Light grey tan medium fine varicolor sandstone, micaceous. 4172-725' Dark grey brown shale, very very finely micaceous. 41723-73 Light grey tan medium fine varicolor sandstone, micaceous, with clay balls and brown shale. 4173-74' Same with thin shale laminations. 4174-75* Dark grey brown shale, very fine mica. 4175-76' Light tan grey medium fine varicolor sandstone, micaceous. 4176-78 Light tan grey medium varicolor sandstone, micaceous, compact. 4178-80' Same, slight stain. 4180-81' Same, slight stain, very silty. 4181-82' Black very coaly shale. 4182-83' Black slightly coaly shale. 4183-85' Black very slightly coaly shale. 4185-87' Dark brown coaly shale. 4187-97' Dark brown grey slightly silty carbonaceous shale. 4197-975' Dark grey hard very slightly carbonaceous shale. 41972-99' Dark grey brown very silty carbonaceous sand with thin brown shale streaks. 4199-41995' Dark grey brown very silty carbonaceous sand with dark brown.

shale streaks.

Benson-Montin-Greer Drilling Corp.

.

Core #3 (contin	ued)	
41995-4200'		Dark brown shale with thin medium fine to medium varicolor silty sandstone streaks.
Core #4		Cored 4491' to 4551'. Cored 60', recovered 54'.
4491-92 '		Dark grey brown very fine silty slightly carbonaceous shale.
4492-93'	·	Dark grey brown very fine silty slightly carbonaceous shale and grey medium fine angular varicolor slightly carbonaceous sandstone.
4493-98'		Same.
4498-4502'		Dark grey brown shale, slightly carbonaceous.
4502-06'		Dark grey medium fine sub-angular sandstone, silty, slightly carbonaceous and micaceous.
4506-10'		Light grey medium fine sub-angular sand and pepper sandstone, slightly silty.
4510-12'	3	Dark grey brown very fine silty shale.
4512-13"		Dark grey brown very fine sandy micaceous shale.
4513-14'		Dark grey brown shale.
4514-15'		Coal.
4515-16'		Dark grey brown shale.
4516-17'		Light grey medium varicolor compact micaceous and slightly carbonaceous sandstone, kaolin clay cmt.
4517-27'		Light grey medium varicolor compact micaceous sand. Kaolin clay cmt.
452 7-28'		Dark medium varicolor compact micaceous sand, kaolin clay cmt, thin carbonaceous partings.
4528-31'		Light grey medium varicolor compact micaceous sand, kaolin clay cmt.
4531-32'		Same with trace gilsonite.
4531-32'		Same, no gilsonite.
4532-39'		Same with dark grey brown clay balls.
4539-51'		Same.
8/4/62		Pulled Core #4 from 4491' to 4551'. Cored 60', recovered 54'.
8/6/62	6:00 AM	Drilled to TD 4900'. Circulating to run casing. Vis. 58, wt. 10, WL 8, FC 2/32. Pump pressure 1500#, 54 SPM, 6" liners. Lost 300 barrels mud at 4772'. Now have full returns.
8/6/62	8:00 PM	TD 4900' RKB. Set 155 joints 4904' of 7-5/8" OD 26.40# J-55 casing at 4898' RKB with 100 sacks cement, 2% gel, 12好 Gilsonite/sk, 好 flocele/sk, followed by 300 sacks cement, 1% gel, 12好 Gilsonite/sk, 好 flocele/sk.
8/7/62	6:00 AM	WOC
8/7/62	8:00 AM	TC 3700'. Ran temperature survey. Set slips. Cut off casing. Rigging up air drilling equipment while WOC.

Page 4

8/8/62	6:00 AM	Nippled up. Picked up drill collars. Going drill pipe.	in hole with
8/9/62	6:00 AM	TD 4911'. Drilled cement and ll' of formatic wet. Blowing to dry up.	on. Formation
8/10/62	6:00 AM	Drilling at 5550' with air. Compressor press at 5400'. 7° at 5480'. 7눈° at 5520'.	sure 150#. 6½°
8/13/62	6:00 AM	TD 6022'. Preparing to run tubing.	
		TD 6022'. Ran 184 joints tubing. Blew well 11:00 PM.	6:00 PM to
8/14/62	6:00 AM	Shut in.	
8/15/62	6:00 AM	TD 6022'. Blowing well.	
	8:00 AM	Released rotary rig.	
8/16/62	6:00 AM	Shut down.	
10/ 5/62		Moved in pulling unit to run Kobe pumping equ up and started pulling 2-3/8" tubing. Moved pad for tank battery. Moved 1" tubing, 2-3/8 equipment, power oil tank (300 bbl special) a storage tank from B-M-G #1 Pilgrim.	ipment. Rigged in D-6 cat to build " EUE tubing, Kobe and one 210-barrel
10/ 6/62		Finished pulling 2-3/8" EUE tubing. Started bottom hole assembly. Ran as follows:	in hole with Kobe
		Perforated nipple: Kobe bottom hole assembly 1-2' 2-3/8" EUE sub 156 jts 2-3/8" EUE Total string Start in hole with 1" Kobe tbg. Set power of	6.60' 14.40 2.00 <u>4874.83</u> 4897.83' 1 tank and 210
10/ 7/69		bbl. storage tank. Laid flow lines and set K	obe triplex pump.
10/ //62		Finished running 1" Kobe tubing. Tubing as f	ollows:
		loz joints l sub	4853.67
		1 sub	4.00
			4867.67
		Kobe stinger on bottom of 1"	1.00 4868.67
		Landed 1" with stinger seated in bottom hole spaced out with two subs. Released pulling u	assembly bowl and nit.
	3:00 PM	Started well pumping.	
		Pressures of 1100# to 1200# while bringing fl Pressure decreased to 250-500# during first f pumping operations.	uid to surface. ew hours of
10/ 8/62		Well pumped 36 barrels in 16 hours. Triplex	pressure 500 # .
10/ 9/62		Pump down. (Apparently ran out of annulus ga	s).
10/10/62		Pumping with pressure of 550# on Triplex pump	•
10/11/62		Well pumped 35 barrels in last 29 hours. Tot	al new production

Page 5

Well pumped 35 barrels in last 29 hours. Total new production to date 133 bbls. Pressure on Triplex 700#.

10/12/62		Pumped 50 barrels last 24 hours. Increased triplex speed to full throttle. Triplex pressure 1050#. Gravity of oil 38.5 at 70°.
10/13/62		Pumped 35 barrels in 24 hours. Triplex pressure 1000#. Gravity 37.2 at 65°.
10/14/62		Pumped 21 barrels last 24 hours. Triplex pressure 1000#.
10/15/62		Pumped 14 barrels last 24 hours. Triplex pressure 1000#.
10/16/62		Pumped 9 barrels last 24 hours. Triplex pressure 1000#.
10/17/62		Pumped 7 barrels last 24 hours. Triplex pressure 900#.
10/18/62	7:00 AM	Pump inoperative. No production last 24 hours.
	7:30 PM	Ran new pump.
10/19/62	7:00 AM	Well pumped 39 barrels oil last $11\frac{1}{2}$ hours.
10/20/62	7:00 AM	Pumped 19 barrels last 24 hours.
10/21/62	7:00 AM	Pumped 14 barrels last 24 hours.
10/22/62	7:00 AM	Pumped 15 barrels last 24 hours.
10/22/62		Pumped 15 barrels oil in 12 hours.
10/23/62		Pumped 15 barrels oil in 12 hours.
10/24/62		Pumped 13 barrels oil in 12 hours.
10/25/62		Pumped 13 barrels oil in 12 hours.
10/26/62		Pumped 12 barrels oil in 12 hours.
10/27/62		Pumped 12 barrels oil in 12 hours.
10/28/62		Pumped 13 barrels oil in 12 hours.
10/29/62		Pumped 6 barrels in 12 hours.
10/30/62		Pumped 5 barrels in 6 hours.
10/31/62		Pumped 9 barrels oil in 6 hours.

Page 6

DAYS SHUT IN

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

November 7, 1962

RESERVOIR FLUID DIVISION

Benson-Montin-Greer Drilling Corporation 158 Petroleum Center Building Farmington, New Mexico

Attention: Mr. Virgil Stoabs

Subject: Reservoir Fluid Study Bolack No. 2 Well Wildcat Rio Arriba County, New Mexico Our File Number: RFL 2302

Gentlemen:

Subsurface fluid samples were collected from the subject well by a representative of Core Laboratories, Inc. on October 2, 1962, and transported to our Dallas laboratory, where they arrived on October 15, 1962. Presented in this report are the results of a reservoir fluid study performed using these samples.

The saturation pressure of the fluid was measured to be 1524 psig at the reservoir temperature of 152° F. The reservoir pressure at the sampling depth was measured to be 1631 psig.

During differential pressure depletion the fluid evolved 481 standard cubic feet of gas per barrel of residual oil. The associated formation volume factor was measured to be 1.292 barrels of saturated fluid per barrel of residual oil. Under similar depletion conditions the viscosity of the fluid varied from a minimum of 0.625 centipoise at the saturation pressure to a maximum of 1.750 centipoises at atmospheric pressure.

Separator tests were performed at four operating pressures and atmospheric temperature to determine the effect of changes in surface Benson-Montin-Greer Drilling Corporation Bolack No. 2 Well Page Two

separation pressure upon the produced fluid. These tests indicate that the optimum separator pressure is approximately 90 psig; however, near optimum recovery will be obtained at pressures as low as 40 psig.

It was a pleasure to perform this study for you. If you have any questions or if we may assist you further, please do not hesitate to contact us.

Very truly yours,

Core Laboratories, Inc. Reservoir Fluid Division P. L. Moses

a. C. Cames, Jr.

A. C. Carnes, Jr. Senior Engineer

ACC:dc 7 cc. - Addressee

CORE LABORATORIES, INC.

-

1 L . 1

•

,

Petroleum Reservoir Engineering DALLAS. TEXAS

	DALL	AS. TEXAS	
			Page1
	Benson-Montin-Greer		File
Commons	Drilling Corporation	Data Samul	od October 2, 1962
Company_	Polosis No. 2		Pio Arriba
Well	BOIACK ING. 2	County	RIO ATTIDA
Field	Wildcat	State	New Mexico
	FORMATION	CHARACTERIST	TICS
Formation	Name		Gallup
Date First	Well Completed		<u>August 15</u> , <u>19 02</u>
Original R	eservoir Pressure		<u>PSIG @Ft.</u>
Original P	roduced Gas-Oil Ratio		SCF/Bbl
Pro	duction Rate		Bbl/Day
Sep	arator Pressure and Temperature		PSIG,°F.
Oil	Gravity at 60° F.		API
Datum Original C	og Com		Ft. Subsea
Unginal G	as Cap WELL CH	ADA (TEDISTICS	· · · · · · · · · · · · · · · · · · ·
Floretion	WELL CH		7100 KB F4
Total Dan	th		6022 Ft
Producing	Interval		4900-6022 OH Ft
Tubing Siz	e and Depth		2-3/8 In to 6003 Ft.
Productivi	ty Index		Bbl/D/PSI @ Bbl/Day
Last Rese	rvoir Pressure		1631 PSIG @ 5975 Ft.
Dat	ie		October 2 . 19 62
Res	ervoir Temperature		<u>152</u> °F. @ <u>5975</u> Ft.
Sta	tus of Well		Shut in
Pre	ssure Gauge		Amerada (DO)
Normal Pr	oduction Rate		Bbl/Day
Gas	s-Oil Ratio		SCF/Bbl
Sep	arator Pressure and Temperature		PSIG,°F.
Bas	se Pressure		PSIA
Well Maki	ng Water		% Cut
	SAMPLIN	G CONDITIONS	
Sampled a	t		_5975
Status of V	Well		Shut in
Gas	-Oil Ratio		SCF/Bbl
Sep	parator Pressure and Temperature		PSIG,°F.
Tuk	oing Pressure		_0PSIG
Cas	ing Pressure		PSIG
Core Labo	ratories Engineer		NT
Type Sam	pler		Perco

REMARKS:

. · · ·

01-818

4.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

Page_	2	of	11	
File	RF	L 230	02	<u> </u>
Well	Bol	ack N	lo. 2	

VOLUMETRIC DATA OF Reservoir Fluid SAMPLE

Saturation pressure (bubble-point pressure)
 Saturation pressure (bubble-point pressure)
 Thermal expansion of saturated oil @_5000 PSI = V @ 152 °F / V @ 73 °F = 1.04245
 Compressibility of saturated oil @ reservoir temperature: Vol/Vol/PSI:

Fi	rom 5000 PSI to 3500 PSI =	7.92×10^{-6}
F	rom 3500 PSI to 2500 PSI ==	8.93×10^{-6}
т. Гу	$r_{om} = 2500 PSI to = 1524 PSI = 1524$	10.34×10^{-6}
Specific volume at saturation pressure: ft 3/1	h 0.	02223 @ 152 °F

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil gas or other mineral well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC.

`...

Petroleum Reservoir Engineering DALLAS. TEXAS

Page_	3	of	11	
File	RFL	2302		
Well	Bola	.ck No.	2	

Reservoir Fluid SAMPLE TABULAR DATA

	PRESSURE-VOLUME VISC		DIFFERENT	152 °F.	
PRESSURE PSI GAUGE	@ 152 °F., RELATIVE VOLUME OF OIL AND GAS, V/VSAT.	OF OIL @ 152 °F., CENTIPOISES	GAS/OIL RATIO Liberated Per Barrel of Residual oil	GAS/OIL RATIO IN SOLUTION PER BARREL OF RESIDUAL OIL	RELATIVE OIL VOLUME, V/VR
5000	0.9694	0.845			1.252
4500	0.9732	0.818			1.257
4005		0.787			
4000	0.9770				1.262
3500	0.9811	0.758			1,268
3000	0.9854	0.726			1.273
2505		0.691			
2500	0.9899				1.279
2100	0.9938				1.284
2000	0.9947	0.661			1.285
1900	0.9957				1.286
1800	0.9969				1.288
1700	0.9980	0.635			1.289
1600	0.9991				1.291
1524	1.0000	0.625	0	481	1.292
1516	1.0020				
1508	1.0041				
1483	1.0102				
1447	1.0204				
1400		0.631			
1381	1.0407				
1376			37	444	1,277
1299	1.0698				
1250		0.682			
1221			75	406	1.261
1201	1.1121				
1123			100	381	1.251
1100		0.720			
1090	1.1734				
971	1,2552				
968			139	342	1.235
950		0.760			
850	1.3679				
818			176	305	1.220

v = Volume at given pressure

· · · ·

 $v_{\text{SAT.}}$ = Volume at saturation pressure and the specified temperature.

 v_R = Residual oil volume at 14.7 PSI absolute and 60° F.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

Page_	of	11
File	RFL 2302	
Well	Bolack No.	2

Reservoir Fluid SAMPLE TABULAR DATA

	PRESSURE-VOLUME	VISCOSITY	DIFFERENTIAL LIBERATION @ 152 °F.		
PRESSURE PSI GAUGE	@ 152 °F RELATIVE VOLUME OF OIL AND GAS, V/VBAT.	OF OIL @ 152 °F CENTIPOISES	GAS/OIL RATIO LIBERATED PER BARREL OF RESIDUAL OIL	GAS/OIL RATIO IN SOLUTION PER BARREL OF RESIDUAL OIL	RELATIVE OIL VOLUME V/VR
800		0.802			
728	1.5320				
669			213	268	1.204
650		0.858			
600	1.7783				
518			251	230	1.188
500		0.912			
469	2.1799				
365			· 290	191	1.170
354	2.7950	4. 1. v			
350		0.977			
258	3.8098				
223			332	149	1.151
200		1.083			
112			371	110	1.130
0		1.750	481	0	1.044
				@ 60 ⁰ I	F. = 1.000

Gravity of residual oil = 38.6° API @ 60° F.

v = Volume at given pressure

.

 $v_{sat.}$ = Volume at saturation pressure and the specified temperature.

 v_R = Residual oil volume at 14.7 PSI absolute and 60° F.

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering DALLAS, TEXAS

Page_	_5 of	11
File	RFL 2302	
Well_	Bolack No.	2

Differential Pressure Depletion at 152° F.

Pressure PSIG	Oil Density Gms/Cc	Gas <u>Gravity</u>	Deviation Factor
1524	0.7206		
1376	0.7246	0.693	0.869
1221	0.7290	0.694	0.879
1123	0.7319	0.696	0.886
968	0.7367	0.699	0.895
818	0.7413	0.708	0.909
669	0.7462	0.720	0.920
518	0.7512	0.739	0.932
365	0.7566	0.783	0.945
223	0.7627	0.856	0.965
112	0.7688	1.014	
0	0.7957	1.589	

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

2

Page_	c	of	11
File	RFL	2302	

Well Bolack No. 2_____

SEPARATOR TESTS OF Reservoir Fluid SAMPLE

SEPARATOR PRESSURE, PSI GAUGE	SEPARATOR TEMPERATURE. • F.	SEPARATOR GAS/OIL RATIO See Foot Note (1)	STOCK TANK GAS/OIL RATIO See Foot Note (1)	STOCK TANK GRAVITY, • API @ 60° F.	SHRINKAGE FACTOR, Vr/Vsat, See Foot Note (2)	FORMATION VOLUME FACTOR, VSAT./VR See Foot Note (3)	SPECIFIC GRAVITY OF FLASHED GAS
0	79	503	<u></u>	38.4	0.7645	1.308	0.997
40	77	414	32	39.7	0.7924	1.262	
80	76	371	61	39.9	0.7994	1.251	
160	77	328	117	39.7	0.7930	1.261	

- (1) Separator and Stock Tank Gas/Oil Ratio in cubic feet of gas @ 60° F. and 14.7 PSI absolute per barrel of stock tank oil @ 60° F.
- (2) Shrinkage Factor: VR/VSAT. is barrels of stock tank oil @ 60° F. per barrel of saturated oil @ 1524 PSI gauge and 152 ° F.
- (3) Formation Volume Factor: VSAT./VR is barrels of saturated oil @ 1524 PSI gauge and 152 ° F. per barrel of stock tank oil @ 60° F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

			Page7 of11
	Benson-Montin-Greer		FileRFL 2302
Company	Drilling Corporation	Formation	Gallup
Well	Bolack No. 2	County	Rio Arriba
Field	Wildcat	State	New Mexico

HYDROCARBON ANALYSIS OF Reservoir Fluid SAMPLE

COMPONENT	WEIGHT PER CENT	MOL PER CENT	DENSITY @ 60° F. Grams Per Cubic Centimeter	* API @ 60* F.	MOLECULAR WEIGHT
Hydrogen Sulfide					
Carbon Dioxide	0.05	0.14			
Nitrogen	0.04	0.16			
Methane	3.68	26.38			
Ethane	1.70	6.48			
Propane	2.45	6.39			
iso-Butane	0.50	1.00			
n-Butane	2.23	4.41			
iso-Pentane	1.16	1.86			
n-Pentane	1,53	2.44		2	te i
Hexanes	3.33	4.45			
Heptanes plus	83.33	46.29	0.8449	35.8	207
	100.00	100.00			

Core Laboratories, Inc. Reservoir Fluid Division

a. C. Carnes, Jr.

A. C. Carnes, Jr. Senior Engineer

•

Page <u>8 of 11</u> File <u>RFL 2302</u>

RELATIVE LICCIE VOLUME V. VE

na ann ann mar at 191

Pressure: PSIG

Viscosity: Centipoises

CORE LABORATORIES, InC Petroleum Reservoir Engineering DALLAS, TEXAS

Fage 11 of 11 File RFL 2302

HOLATORY FOURIS PER DOPTATE BUILD

51 Y. 41.

DRILLING STATUS

CANADA OJITOS UNIT L-11

1908' FSL, 523' FWL, Sec. 11, T-25N, R-1W, Rio Arriba County, New Mexico. Elevation 7220' GL. 8- 6-64 Spudded. 8- 7-64 TD 330' RKB. Set 10 joints 312' of 13-3/8" OD 48# H-40 casing at 324' RKB with 350 sacks regular cement, 2% calcium chloride. Drilling at 1450'. 1° at 430'. 8-10-64 8-11-64 Drilling at 2783'. 8-12-64 Drilling at 3223'. 3/4° at 3223' 8-13-64 TD_3771'. Lost circulation. Vis. 45, wt. 9.3, WL 8.6, FC 2/32. Mixed lost circulation material. Drilling at 4130'. 3° at 4105' 8-14-64 Drilling at 4380'. Vis. 49, wt. 9.2, WL 4.2, FC 2/32, tr. sand, 6% oil, 8.5 Ph. $2\frac{1}{4}^{\circ}$ at 4359' 8-15-64 Drilling at 5315'. Vis. 48, wt. 8.9, WL 5.0, FC 1/32, tr. sd., 22% oil. Lost 100 barrels mud at 5250'. 2° at 5298' 8-19-64 8-20-64 Drilling at 5515'. 2° at 5455' Drilled to TD 5550'. Logged well. Drilled 145' to 5695'. Laid down drill pipe. TD 5695'. $2\frac{10}{4}$ at 5550'.Ran 38 joints 1229.49' TO 7-5/8" OD N-80 LT&C casing (1 joint on top, balance on bottom) and 137 joints 4479.22' TO 7-5/8" J-55 ST&C casing, landed at 5694' RKB, cemented with 100 sacks, 2% gel, $12\frac{1}{2}$ # Gilsonite and $\frac{1}{4}$ # flocele per sack, followed with 300 sacks, 1% gel, $4\frac{1}{2}$ # Gilsonite and $\frac{1}{4}$ # flocele per sack. 8-21-64 ... 8-22-64 Temperature survey showed top of cement at 4050'. 8-24-64 Drilled cement. Cement dusted. Drilling at 5930' with 175# air pressure. $1-3/4^{\circ}$ at 5843'. 8-25-64 8-26-64 Drilling at 6425' with 190# air pressure. $2\frac{10}{10}$ at 6272 Drilled to TD 6526'. Logged well. Started back in hole with bit. Bit stopped 9' inside 7-5/\$''casing. Casing parted. 8-27-64 Attempted to screw in to 7-5/8". Were unable to with regular joint. Ran die nipple and chased threads. Screwed in. Pulled 140,000#, set slips. 8-28-64 Ment back to bottom, drilled to 6590'. Drilled to TD 6660'. Circulated with air for 1 8-29-64 hour. Attempted to reverse circulate with air. Could not get dusting. Conventionally circulated for additional 2 hours. Rigged up to circulate with oil. Loaded hole with oil down drill pipe. When returns established, started reverse circulating G oil. Reverse circulated for 2 hours. Came out of hole. Laid down square drill collar.

Canada Ojitos Unit L-11

.

8-29-64 (contd.)	Picked up core barrel. Went back to bottom. Reverse circulated to clean up hole. Plugged pipe. Worked plug free. Attempted to reverse core. Plugged pipe again. Worked out plug. Commenced coring conventionally.
	Pulled Core #1 from 6660' to 6665.5'. Core barrel jammed. Came out of hole.
	Went in with core barrel. Plugged core barrel. Worked plug out. Pulled Core #2 from 6665.5' to 6687'. Recovered 21.5'.
8-30-64	Ran gamma ray induction log. Found cavings in hole at 6671'.
	Ran calseal plug from 6671' to 6648' using Schlum- berger logging truck and dump bailer.
8-31-64	Started in hole with bit.
9- 1-64	Cleaned out to PBTD 6648'. Circulated 2 hours. Laid down drill pipe. Ran 40 joints 1296.16' TO 5-1/2" OD 17# J-55 casing, landed at 6648' RKB, cemented with 160 sacks regular cement. Top of liner 5348'.
9- 2-64	Temperature survey showed top of cement at 5350', plug at 6621'
9- 3-64	Ran tapered string of drill pipe (1500' of 2-7/8" on bottom, 4" on top). Pressure tested system with 2,000# with 75# pressure drop in 15 minutes. Pressure tested again with 1,000# with 25# pressure drop in 15 minutes. On both tests had surface leak which apparently accounted for pressure drop.
· ·	Drilled cement plug and calseal and cleaned out to original TD $6687'$. Circulated hole clean. Came out of hole and ran garma ray induction log over zone below $5\frac{1}{2}''$ liner shoe.
9- 4-64	Started pumping oil into formation to determine injection rate. Pumped in a 3 BPM at 400# pressure. Pumped in at 6 BPM at 1300#. Dumped radioactive material to attempt to determine point of injection. Ran McCulloch gamma ray tracer log and determined injection point 6680-86'. Perforated with Schlumberger frac jets 2 per foot from 6668-6680'. System pressured up to 1500#. Mould not take fluid at any measurable rate. Found cavings in hole. Circulated hole conventionally and reverse circulated. Pressured up on formation. Established new injection rate of 6 BPM at approximately 1150#.
9- 5-64	Laid down drill pipe. Rigged down rotary.

Page 2

lantum jluod init 1-11

.

Eage 3

9-29-64	Sand-oil fraced 6648-87' using 12 Dowell Allison pump trucks and 4 blenders. Treated with 4,400 barrels oil, 150,000# 20/40 sand and 25,000# 10/20 sand, flushed with 260 barrels oil. Average overall injection rate 75 BPM. Breakdown pressure 2000#. Avg. TP 3000#, max. 3200#, min. 2900#. Inst. SIP 1300#, 1-min. SIP 1200#, 8-min. SIP 1100#, 12- min. SIP 1035#.
	After $3\frac{1}{2}$ hours well on vacuum.
	Total load oil 4,660 barrels.
10- 9-64	Moved in cable tools.
10-10-64	Rigged up.
10-26-64	Completed pressure survey. Lost bottom hole pressure bomb in hole.
10-27-64	Cleaning out and fishing for bomb at 6675' RKB. Top of cavings 6668'. Cleaned out shale and lost circulation material, no sand.
	Ran sand pump. Cleaned out small amount of shale, lost circulation material and rubber. Cleaned out to 6675' RKB.
10-29-64	Ran 169 joints 2-7/8" OD EUE tubing landed at 5323' RKB, with Kobe bottom hole assembly.
10-30-64	Ran l_{4}^{1} tubing.
11- 1-64	Pumped 635 barrels load oil in 25 hours.
11- 9-64	Pumped 476 barrels oil in 24 hours. 92 barrels balance of load, 384 barrels new oil.
	State Potential Test: 295 barrels oil in 15 hours.

2

.

DRILLING STATUS CANADA OJITOS UNIT L-11 (12-11)

- 05/04/65 Shut well in to condition for taking bottom hole sample.
- 05/19/65 Moved in rig to pull tubing to condition well for bottom hole sample.
- 05/20/65 Pulled 1-1/4" and 2-7/8" OD EUE tubing.
- 05/21/65 7:00 AM Running 2-3/8" OD EUE tubing preparatory to swabbing to condition well for bottom hole sample.

Ran 2-3/8" tubing to 2002' with perforated nipple and bull plug on bottom. Commenced swabbing.

- 05/22/65 Swabbed for 5 hours at rate of 3 barrels oil per hour. Swabbed total of 15 barrels. Shut down.
- 05/23/65 7:00 AM Shut down.

05/24/65 7:00 AM Preparing to resume swabbing.

Swabbed at average rate of 4 barrels oil per hour. Total swabbed today 40 barrels. Total swabbed for conditioning 55 barrels.

- 05/25/65 Swabbed at average rate of 4 barrels oil per hour. Total swabbed this day 48 barrels. Total swabbed for conditioning 103 barrels.
- 05/26/65 Swabbed 49 barrels of oil in 8 hours. Approximate rate of 4-3/4 barrels oil per hour. Total swabbed for conditioning 141 barrels. Total subsequent to 12:00 noon 5/26 34 barrels.
- 05/27/65 Swabbed 39.5 barrels of oil in 11 hours. Approximate rate of 3-3/4 barrels of oil per hour. Total swabbed for conditioning 180.5 barrels. Total subsequent to 12:00 noon 5/26 73.5 barrels.
- 05/28/65 Swabbed 44.4 barrels oil in 11 hours at approximate rate of 4 barrels per hour. Total swabbaed for conditioning 224.9 barrels. Total swabbed subsequent to 12:00 noon 5/26 117.9 barrels.
- 05/29/65 Swabbed 46 barrels oil in 11 hours at approximate rate of 4 barrels per hour. Total swabbed for conditioning 270.9 barrels. Total swabbed subsequent to 12:00 noon 5/26 163.9 barrels.
- 05/30/65 Swabbed 42.3 barrels oil in 12 hours at approximate rate of 3.5 barrels per hour. Total swabbed for conditioning 313.2 barrels. Total swabbed subsequent to 12:00 noon 5/26 206.2 barrels.
- 05/31/65 Swabbed 47.1 barrels oil in 12 hours at approximate rate of 4 barrels per hour. Total swabbed for conditioning 360.3 barrels. Total swabbed subsequent to 12:00 noon 5/26 253.3 barrels.
- 06/01/65 7:00 AM CP 15#. Swabbed 27.9 barrels oil in 7 hours at approximate rate of 4 barrels oil per hour. Total swabbed for conditioning 388.2 barrels. Total swabbed subsequent to 12:00 noon 5/26 281.2 barrels.
- 06/02/65 7:00 AM CP 15#. Swabbed 46 barrels oil in 12 hours at approximate rate of 4 barrels per hour. Total swabbed for conditioning 434.2 barrels. Total swabbed subsequent to 12:00 noon 5/26 327.2 barrels.
- 06/03/65 Swabbed 48.2 barrels oil in 12 hours at approximate rate of 4 barrels per hour. Total swabbed for conditioning 482.4 barrels. Total swabbed subsequent to 12:00 noon 5/26 375.4 barrels.

06/04/65 6:00 AM CP zero. Started swabbing through separator.

12:00 noon CP 35#.

5:00 PM Swabbed 32.5 barrels oil in 11 hours. Shut down. Total swabbed for conditioning 514.9 barrels. Total swabbed subsequent to 12:00 noon 5/26 407.9 barrels. Drilling Status Canada Ojitos Unit L-11

Page 2

06/07/65 Pulled tubing.

Ran Halliburton wire line. Found total depth at 6681' RKB.

Ran wooden float. Bailed clean oil off bottom. No water or sediment. Fluid level 1582' RKB.

Ran bottom hole pressure bomb.

All wells shut in for interference test.

Report discontinued until operations resumed.

07/01/65

Took bottom hole sample.

CONDITIONING OF CANADA OJITOS UNIT L-11 (12-11) MAY, 1965 PRIOR TO TAKING BOTTOM HOLE SAMPLE

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

July 27, 1965

RESERVOIR FLUID DIVISION

Benson-Montin-Greer Drilling Corporation 158 Petroleum Center Building Farmington, New Mexico

Attention: Mr. Albert R. Greer

Subject: Reservoir Fluid Study Bolack-Greer Inc. Canada Ojitos Unit No. 12-11 Well Puerto Chiquito Field Rio Arriba County, New Mexico Our File Number: RFL 3366

Gentlemen:

Subsurface fluid samples were collected from the subject well by a representative of Core Laboratories, Inc. and were delivered to our laboratory in Dallas for use in a reservoir fluid study. The results of this study are presented on the following pages.

The saturation pressure of the fluid was found to be 1519 psig at the reservoir temperature of 162° F. The associated formation volume factor was found to be 1.297 barrels of saturated fluid per barrel of residual oil. By differential pressure depletion the fluid evolved 478 standard cubic feet of gas per barrel of residual oil. Under similar depletion conditions the viscosity increased from a minimum of 0.625 centipoise at the saturation pressure to a maximum of 1.704 centipoises at atmospheric pressure. The saturation pressure of the fluid was measured at several different temperatures as you requested.

It has been a pleasure to perform this study for you. If you have any questions or if we may assist you further in any way, please do not hesitate to contact us.

Very truly yours,

Core Laboratories, Inc. Reservoir Fluid Division

P.L. Moses (B)

P. L. Moses Operations Supervisor

PLM:JB:bjm 7 cc. - Addressee

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering DALLAS. TEXAS

Field	Puerto Chiquito	State	New Mexico
Well	Canada Ojitos Unit No. 12-11	County	Rio Arriba
Company_	Drilling Corporation	Date Sampled	July 1, 1965
	Benson-Montin-Greer		File
			Page 1 of 11

FORMATION CHARACTERIST	ICS		
Formation Name	Nio Brar	o (Gallup)	
Date First Well Completed	October		, 19_62_
Original Reservoir Pressure	_1631	PSIG @	<u>5957</u> Ft.
Original Produced Gas-Oil Ratio		· -	SCF/Bbl
Production Rate			Bbl/Day
Separator Pressure and Temperature	<u></u>	PSIG,	°F.
Oil Gravity at 60° F.			°API
Datum			Ft. Subsea

Original Gas Cap

WELL CHARACTERISTICS

Elevation	7232 KB	Ft.
Total Depth	6687	Ft.
Producing Interval	6648-6687	Ft.
Tubing Size and Depth	In. to	Ft.
Productivity Index	Bbl/D/PSI @ _	Bbl/Day
Last Reservoir Pressure	<u>1693</u> PSIG @ _	<u>6650</u> Ft.
Date	July 1	, 1965
Reservoir Temperature	<u>_162</u> °F. @	<u>6650</u> Ft.
Status of Well	Shut in 27 days	
Pressure Gauge	Amerada	
Normal Production Rate		Bbl/Day
Gas-Oil Ratio		SCF/Bbl
Separator Pressure and Temperature	PSIG,	°F.
Base Pressure	15.025	PSIA
Well Making Water	None	% Cut

SAMPLING CONDITIONS

Sampled at	<u>6650 KB</u>	Ft.
Status of Well	Shut in 27 days	······································
Gas-Oil Ratio		SCF/Bbl
Separator Pressure and Temperature	PSIG,	°F.
Tubing Pressure	_0	PSIG
Casing Pressure	0	PSIG
Core Laboratories Engineer	NT	
Type Sampler	Perco	

REMARKS:

•

.

CL-518

·)

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

Page_	<u>2</u> of <u>11</u>	
File	RFL 3366	
Well	Canada Ojitos U	<u>nit</u>
	No. 12-11	

VOLUMETRIC DATA OF Reservoir Fluid SAMPLE

1.	Saturation pressure (bubble-point pressure)	<u> </u>	1519	PSIG @	<u>162</u> ° F .
2.	Thermal expansion of saturated oil @ 5000 PSI = $\frac{V @ 162}{V @ 76}$	<u>॰</u> F =	==	1.04528	
3.	Compressibility of saturated oil @ reservoir temperature: Vol/V	Vol/P	SI:		
	From <u>5000</u> PSI to <u>3</u>	<u>3500</u>	PSI ==	<u>8.24 x</u>	10 ⁻⁶
	From <u>3500</u> PSI to 2	2500	PSI =	<u>9.49 x</u>	10-6
	From <u>2500</u> PSI to <u>1</u>	.519	PSI ==	<u>10.68 x</u>	10-6
4.	Specific volume at saturation pressure: ft 3/lb		0.	02218 @	<u>162</u> ° F .

5. Saturation pressure at various temperatures:

Temperature,	Saturation Pressure, PSI			
• F.	BHS No. 1 BHS No			
76	1203	1204		
110	1351	-		
152	1 49 1	1492		
162	1519	1519		
172	1540			

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

Page	of	11
File	RFL 3366	
Well	Canada Ojito	s Unit
	No. 12-11	

Reservoir Fluid SAMPLE TABULAR DATA

	PRESSURE-VOLUME	VISCOSITY	DIFFERENTIAL LIBERATION @ 162 °F.			
PRESSURE PSI GAUGE	@ 162 °F., RELATIVE VOLUME OF OIL AND GAS, V/VSAT.	OF OIL @ 162 °F CENTIPOISES	GAS/OIL RATIO LIBERATED PER BARREL OF RESIDUAL OIL	GAS/OIL RATIO IN SOLUTION PER BARREL OF RESIDUAL OIL	RELATIVE OIL VOLUME, V/Vr	
5000	0 9680	0 841			1 256	
4500	0.9718	0.011			1.250	
4000	0.9759	0 781			1.200	
3500	0.9801	0.751			1.200	
3000	0 9847	0.719			1.277	
2500	0.9895	0. 119			1 283	
2300	0.9075	0.000			1.205	
2100	0.9910				1.280	
2000	0 9947	0 652			1.209	
1900	0 9957	0.052			1,291	
1800	0 9968				1 293	
1700	0.9981				1,294	
1600	0.9991				1.296	
1519	1.0000	0.625	0	478	1.297	
1508	1.0328				_ / _ / _	
1498	1.0054					
1481	1.0101					
1457	1.0162					
1429	1.0254					
1389			32	446	1.284	
1369	1.0458					
1350		0.684				
1288	1.0766					
1259			65	413	1.270	
1250		0.696				
1196	1.1174					
1129			96	382	1.257	
1100		0.731				
1084	1.1789					
968	1.2610					
963			136	342	1.239	
950		0.780				
858	1.3638					
812			173	305	1.224	

v = Volume at given pressure

.

 $v_{\text{SAT.}}$ = Volume at saturation pressure and the specified temperature.

 v_R = Residual oil volume at 14.7 PSI absolute and 60° F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

.

....

Page_	_40f11
File	RFL 3366
Well	Canada Ojitos Unit
	No. 12-11

Reservoir Fluid SAMPLE TABULAR DATA

	PRESSURE-VOLUME	VISCOSITY	DIFFERENTIAL LIBERATION @ 162		
PRESSURE PSI GAUGE	RELATION @ 162 °F., RELATIVE VOLUME OF OIL AND GAS, V/Vsat.	of oil @ 162°f., centipoises	GAS/OIL RATIO LIBERATED PER BARREL OF RESIDUAL OIL	GAS/OIL RATIO IN SOLUTION PER BARREL OF RESIDUAL OIL	RELATIVE OIL VOLUME, V/VR
800		0.835			
750	1.4975				
658			211	267	1.207
657	1.6518				
650		0.900			
566	1.8577				
519			246	232	1.192
500		0.980			
479	2.1482				
413	2.4573				
359			287	191	1.175
350	2.8694				
298	3.3145				
250	3.8813	1.161			
218			328	1 50	1.156
108			367	111	1.133
0		1.704	478	0	1.049
				@ 60° F	. = 1.000

Gravity of residual oil = 38.2° API @ 60° F.

 \vee = Volume at given pressure

.

 $v_{\text{sat.}}$ = Volume at saturation pressure and the specified temperature.

 v_{R} = Residual oil volume at 14.7 PSI absolute and 60° F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

•

DALLAS. TEXAS

Page_	5 of	11
File	RFL 3366	<u> </u>
Well_	Canada Ojito	s Unit
	No. 12-11	

.

Differential Pressure Depletion at 162° F.

Pressure PSIG	Oil Density Gms/Cc	Gas Gravity	Deviation Factor	
1510	0 5000			
1519	0.7223			
1389	0.7258	0.696	0.882	
1259	0.7298	0.698	0.887	
1129	0.7336	0.701	0.894	
963	0.7389	0.709	0.902	
812	0.7438	0.718	0.914	
658	0.7487	0.731	0.929	
519	0.7534	0.753	0.943	
359	0.7589	0.791	0.958	
218	0.7642	0.886	0.976	
108	0.7716	1.067		
0	0.7939	1.702		

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any pil, gas or other mineral well or sand in connection with which such report is used or relied upon. CORE LABORATORIES, INC. Petroleum Reservoir Engineering

DALLAS, TEXAS

. .

.

Page_	6	of	11	
0				

File___RFL 3366

Well Canada Ojitos Unit No. 12-11

SEPARATOR TESTS OF Reservoir Fluid SAMPLE

SEPARATOR PRESSURE, PSI GAUGE	SEPARATOR TEMPERATURE, °F.	SEPARATOR GAS/OIL RATIO See Foot Note (1)	STOCK TANK GAS/OIL RATIO See Foot Note (1)	STOCK TANK GRAVITY, º API @ 60° F.	SHRINKAGE FACTOR, Vr/Vsat. See Foot Note (2)	FORMATION VOLUME FACTOR, VSAT./VR See Foot Note (3)	SPECIFIC GRAVITY OF FLASHED GAS
0	74	483		38.1	0.7639	1.309	0.986
40	74	386	27	39.6	0.7943	1.259	
80	74	354	55	39.6	0.7968	1.255	
160	74	300	110	39.4	0.7943	1.259	

- (1) Separator and Stock Tank Gas/Oil Ratio in cubic feet of gas @ 60° F. and 14.7 PSI absolute per barrel of stock tank oil @ 60° F.
- (2) Shrinkage Factor: VR/VSAT. is barrels of stock tank oil @ 60° F. per barrel of saturated oil @ 1519 PSI gauge and 162 ° F.
- (3) Formation Volume Factor: VSAT./VR is barrels of saturated oil @<u>1519</u> PSI gauge and <u>162</u>° F. per barrel of stock tank oil @ 60° F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.
CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

. . .

			Page7 of11
	Benson-Montin-Greer		File RFL 3366
Company_	Drilling Corporation	Formation_	Nio Braro (Gallup)
Well	Canada Ojitos Unit No. 12-11	County	Rio Arriba
Field	Puerto Chiquito	State	New Mexico

HYDROCARBON ANALYSIS OF Reservoir Fluid SAMPLE

COMPONENT	MOL PER CENT	WEIGHT PER CENT	DENSITY @ 60° F. Grams Per Cubic Centimeter	° АРІ @ 60° F.	MOLECULAR WEIGHT
Hydrogen Sulfide					
Carbon Dioxide	0.20	0.08			
Nitrogen	0.13	0.03			
Methane	26.36	3.65			
Ethane	6.86	1.78			
Propane	6.19	2.36			
iso-Butane	1.20	0.60			
n-Butane	4.29	2.15			
iso-Pentane	1.80	1.12			
n-Pentane	2.14	1.33			
Hexanes	4.49	3.34			
Heptanes plus	46.34	83, 56	0.8474	353	209
	100.00	$\frac{100.00}{100.00}$		55.5	

Core Laboratories, Inc. Reservoir Fluid Division

•

P.L. Moses (B)

P. L. Moses Operations Supervisor

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES. INC. Petroleum Reservoir Engineering DALLAS, TEXAS

Page	88	of.	11	_
File .	RFL	3	366	_

PRESSURE: POUNDS PER SQUARE INCH GAUGE

HELATIVE VOLUME V/VS

.

PRESSURE. POUNDS PER SQUARE INCH GAUGE

RELATIVE LIQUID VOLUME, V/VP

•

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

 Page
 10
 of
 11

 File
 RFL 3366

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS Page <u>11</u> of <u>11</u> File <u>**RFL 3366**</u>

DEPTH: FEET

ESTIMATED BUBBLE POINT FOR GAVILAN

.

From Canada Ojitos Unit L-11 1519# + 24# = 1543#(@ 162°)

* At 3 psi/degree (from Core Lab tests)

GAVILAN MANCOS FIELD, RIO ARRIBA CD., N.M. J.P. MCHUGH, NATIVE SON \$1 (NE 34-25N-2W) NATIV1 Working Interest: 1.000000 Net Interest: 1.000000

		Rhls		Ga	s MCE			Wate	-Bbls		. Days
Ho Year Status 7 1984 8 1984 9 1984 10 1984 11 1984 12 1984 Subtotal 1984	Dast Month 191.2 5927. 288.4 8939. 422.8 12683. 299.5 9284. 398.1 11944. 2.0 <u>62.</u> 48839.	Cum 5927. 14866. 27549. 36833. 48777. 48839.	Day# 0. 0. 2. 2. 2. 0.	Honth 0, 48, 50, 48, 2 148,	Cun 0. 48. 98. 146. 148.	GOR 0. 4. 5. 4. 32.	Day# 1.2 2.0 0.3 0.3 0.0 0.0	Honth 38. 62. 10. 10. 0. 	Cum 38. 100. 110. 120. 120.	WC 0.6 0.7 0.1 0.1 0.0 0.0	Prod 19.0 30.0 30.0 30.0 30.0 140.0
1 1985 SI 2 1985 SI 3 1985 4 1985 5 1985 6 1985 7 1985 7 1985 9 1985 9 1985 10 1985 11 1985 12 1985 Subtatal 1985	0.0 0. 0.0 0. 40.1 1244. 156.2 4686. 184.0 5705. 415.1 12454. 367.1 11381. 421.8 13075. 357.1 10714. 371.0 11500. 419.2 12575. 302.3 _92704.	48839. 48839. 50083. 54769. 60474. 72928. 84309. 97384. 108098. 119598. 132173. 141543.	0. 0. 167. 11. 20. 175. 134. 123. 147. 81	0. 6. 5004. 331. 586. 5428. 6039. 4009. 3828. 4395. _2514. 32140.	148. 148. 154. 5158. 5489. 6075. 11503. 17542. 21551. 25379. 29774. 32288.	0. 5. 1068. 58. 47. 477. 462. 374. 333. 350. 268.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0. 0. 1. 0. 0. 20. 0. 0. 0. 0. 21.	120. 121. 121. 121. 121. 121. 141. 141. 141	0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 4.0 30.0 31.0 0.0 31.0 31.0 31.0 27.0 -31.0 246.0
1 1986 2 1986 3 1986 4 1986 5 1986 Subtotal 1986	371.6 11521. 419.6 11750. 379.9 11776. 287.9 8436. 334.5 <u>10370.</u> 54053.	153064. 164814. 176590. 185226. 195596.	117. 173. 136. 81. 62	3623. 4851. 4216. 2432. <u>1912.</u> 17034.	35911. 40762. 44978. 47410. 49322.	314. 413. 358. 282. 184.	0.0 0.0 0.0 0.0 0.0	0. 0. 0. 0.	141. 141. 141. 141. 141.	0.0 0.0 0.0 0.0	27.0 27.0 31.0 30.0 <u>31.0</u> 146.0

* Per Calendar Bas

L

Initial Potential: 6/84 198 BOPD, 324 MCFD, IPF

.

М	A	L	L	0	N	1		Se .		M	Е	S	A		(3	R	A		N	D	E	1
			E	X	Ē	I		B	Ι	Т		M	A	F	21	K	E	D)				•
	E	2	R	<u> </u>	D	U	С	1	N	1 (3	1	Ξ	I	S	Т	• (5	R	Y			
			(2	A	S	E		Ņ	1 (D	•		8	9	4	(5			-		

Η

GAVILAN MANCOS FIELD, RID ARRIBA CO. J.P. MCHUGH, HOMESTEAD RANCH \$2, (SW 34-25N-2W) HORA2 Working Interest: 1.000000 Net Interest: 1.000000

Workins	Interes	t: 1.	000000	et Interes	st: 1.(00000		•					
		n	il/Cond H	8h1<		Ga	s_HCE				Bbls		Daas
.0 Year 5 1985 6 1985 7 1985 8 1985 9 1985 10 1985 11 1985 12 1985 Subtota	Status 0 SI 0 SI SI 0 0 0 1 1985	Day# 533.4 0.0 323.0 0.0 517.1 670.2 648.7	Honth 2667. 0. 646. 0. 4654. 20105. _12973. 41045.	Cue 2667. 2667. 3313. 3313. 3313. 7967. 28072. 41045.	Day# 122. 0. 120. 0. 192. 249. 241.	Honth 610. 0. 240. 0. 1727. 7460. 4814. 14851.	Cun 610. 810. 850. 850. 2577. 10037. 14851.	GOR 229. 0. 372. 0. 371. 371. 371. 371.	Day t 0.0 5.0 0.0 0.0 0.0 0.4 0.3 0.5	Month 0. 10. 0. 5. 10. 35.	Cum 0. 0. 10. 10. 10. 15. 25. 35.	HC 0.0 1.5 0.0 0.1 0.1 0.1	Prod 5.0 0.0 2.0 0.0 9.0 30.0 <u>-20.0</u> 66.0
1 1986 2 1986 3 1986 4 1986 5 1986 Subtata	SI SI SI SI 0 1 1986	0.0 0.0 0.0 570.0	0. 0. 0. <u>14249.</u> 14249.	41045. 41045. 41045. 41045. 55294.	0. 0. 0. 120	0. 0. 0. <u>- 2992.</u> 2992.	14851. 14851. 14851. 14851. 17843.	0. 0. 0. 210.	0.0 0.0 0.0 0.0	0. 0. 0. 0. 0.	35. 35. 35. 35. 35.	0.0 0.0 0.0 0.0	0.0 0.0 0.0 <u>25.0</u> 25.0

* Per Producins Day

Ť

Initial Potential: 5/85 700 BOPD, 260 Mcfd, IPF GREER Note: 1st defivery 1270 Malt Ple System

MALLON & MESA GRANDE EXHIBIT MARKED PRODUCING HISTORY CASE NO. 8946

OIL CONSERVATION DIVISION

MR. STAMETS

BENSON-MONTIN-GREER DRILLING CORP. EXHIBITS IN CASE NOS. 8946 & 8950 BEFORE THE OIL CONSERVATION DIVISION OF THE NEW MEXICO DEPARTMENT OF ENERGY AND MINERALS

+---

-

.

.

.

~

...

AUGUST 7, 1986

Chibit #7

COMPARISON OF POROSITY AND PERMEABILITY FOR TWO SYSTEMS OF FRACTURING

(TENSION) TO IN PLATES I AND II THE FORMATION AT TWO DIFFERENT LOCATIONS IS STRESSED SAME DECREE AND EACH HAS SAME NUMBER OF SAME SIZE FRACTURES

IN PLATES III AND IV THE FORMATIONS HAVE BEEN STRESSED AN ADDITIONAL AMOUNT SO THAT THE PERMEABILITY HAS BEEN INCREASED 100-FOLD

А

DIRECT COMPARISON OF POROSITY TO PERMEABILITY RELATIONS FOR OIL WELL RECOVERIES (Actual recoveries from any well will depend on a number of factors, including the area drained by the well, but assuming these ancillary matters to be the same, then the following shows how unlikely it is that porosity will bear a direct relation to permeability.)

Example Wells:

Compare Canada Ojitos Unit C-2 initial productivity with the Canada Ojitos Unit B-29, use the C-2 cumulative recovery and project the B-29 cumulative recovery (C-2 cumulative = 230 Mbbls):

VOL. 52, NO. 1 (JANUARY, 1968), PP. 57-65, 5 FIGS., 1 TABLE

QUANTITATIVE FRACTURE STUDY—SANISH POOL, McKENZIE COUNTY, NORTH DAKOTA¹

GEORGE H. MURRAY, JR.² Billings, Montana 59102

ABSTRACT

The Devonian Sanish pool of the Antelope field has several unusual characteristics which make it almost unique in the Williston basin. Some of these are: (1) high productivity of several wells from a nebulous, ill-defined reservoir; (2) association with the steepest dip in the central part of the basin; (3) very high initial reservoir pressure; and (4) almost complete absence of water production.

Analysis of these factors indicates that Sanish productivity is a function of tension fracturing associated with the relatively sharp Antelope structure. Fracture porosity and fracture permeability can be related mathematically to bed thickness and structural curvature (the second derivative of structure). It is found that fracture porosity varies directly as the product of bed thickness times curvature and that fracture permeability varies as the third power of this product. A map of structural curvature in the Sanish pool shows good coincidence between areas of maximum curvature and areas of best productivity.

Volumetric considerations show that the quantities of oil being produced cannot be coming from the Sanish zone. It is concluded that the overlying, very petroliferous Bakken Shale is the immediate, as well as the ultimate, source of this oil. The role of the Sanish fracture system is primarily that of a gathering system for many increments of production from the Bakken.

The extremely high initial reservoir pressure indicates that the Sanish-Bakken accumulation is in an isolated, completely oil-saturated reservoir and, hence, is independent of structure in the normal sense. Similar accumulations should be present anywhere in the Williston basin where a permeable bed, of limited areal extent, is in direct contact with either of the two Bakken shale beds.

INTRODUCTION

The Sanish pool is one of several oil accummulations in the Antelope field of McKenzie County, North Dakota. As shown in Figure 1, this field is on a relatively sharp, southeast-trending anticline on the east side of the Nesson uplift of the central Williston basin. The field discovery, the Pan American No. 1 Woodrow Starr, SW1/4 SE14, Sec. 21, T. 152 N., R. 94 W., was completed in December 1953 with an initial flow potential of 550 bbl a day from 10.526-10.566 ft in the Devonian Sanish zone. Production in the Mississippian Madison Group was established in May 1956, and production in the Devonian Nisku and Duperow Formations and in the Silurian section was found in 1960. One well, the Amerada No. 1 Nelson, SW1/4 SW1/4, Sec. 5, T. 152 N., R. 94 W., recently has been recompleted as a discovery well in the Mississippian Lodgepole Formation. Cumulative production as of July 1, 1966 was 7,986,141 bbl from the Madison, 7,140,448 bbl from the Sanish, 1,072,890 bbl from the Duperow, and

¹ Manuscript received, November 5, 1966; accepted, June 16, 1967. Modified from a paper presented before the 15th annual meeting, AAPG Rocky Mountain Section, Billings, Montana, September 28, 1965.

Independent geologist.

The writer is indebted to W. H. Somerton, Univ. California, Berkeley, for checking the mathematical treatment presented herein. 1,477,410 bbl from the Silurian, a total of approximately 17 million bbl.

The Madison, Nisku, Duperow, and Silurian pools generally may be considered to be conventional structural accumulations. The Sanish pool, however, has several unusual characteristics which make it almost unique in the Williston basin. To date, the only other Sanish production in the United States part of the basin has been in the one-well, subcommercial Elkhorn Ranch field in Sec. 5, T. 143 N., R. 101 W., Billings County, North Dakota. Some of the very interesting aspects of the Antelope Sanish accumulation are a very high initial reservoir pressure, the high productivity of several wells from a nebulous, ill-defined reservoir, and, in contrast to most Williston basin fields, an almost complete absence of water production.

LITHOLOGIC AND RESERVOIR CHARACTERISTICS SANISH ZONE

As shown in Figure 2, the so-called "Sanish zone" is at the very top of the Devonian Three Forks Formation, just below the lower Bakken shale. A thin, very dolomitic sandstone at the top of this interval was termed the "Sanish Sand" during the early development of the field. It originally was believed that the limits of Sanish production would be related to the areal extent

117

FIG. 1.—Regional structural contour map of McKenzie County area, North Dakota. Structural datum, base of lowest Charles (Mississippian) salt. Map shows location of oil pools on part of Nesson anticline. Contour interval, 100 ft. Contour datum, sea level.

and degree of development of this sandstone. However, subsequent drilling showed that this sandstone is absent in much of the field. Where the sandstone is absent, the Sanish zone consists of gray, very dense dolomite, commonly sandy, interbedded and intercalated with waxy, greenish, pyritic shale typical of the underlying Three Forks section.

Surprisingly, some of the wells with the bestdeveloped Sanish sandstone have been among the poorest producers, whereas others with no sandstone have been among the best producers. For example, the No. 1 Reed-Norby Unit, NW¼ NE¼, Sec. 6, T. 152 N., R. 94 W., penetrated 4 ft of sandstone but has been a poor producing well. Cumulative production to July 1, 1966, was 73,876 bbl and productive capability at that time was less than 15 bbl a day. In contrast, the Carter No. 1 Norby-Melby Unit, SW¼ NE¼, Sec. 7, T. 152 N., R. 94 W., found no sandstone but has been one of the best wells in the field. Cumulative production to July 1, 1966 was 511,910 bbl and the producing rate then was approximately 270 bbl a day.

Core analyses of the Sanish section indicate poor reservoir parameters regardless of the presence or absence of sandstone development. Porosity averages between 5 and 6 percent and plug permeability almost invariably is less than 0.1 md. Despite a universal absence of initial water production, core analyses indicate wide variations in oil and water saturations among wells.

BAKKEN FORMATION

The Mississippian Bakken Formation is composed of three easily differentiated units. The most striking of these are the two shale beds at the top and bottom of the formation, respectively. These are very radioactive, black, petroliferous shale and undoubtedly are source beds throughout the central Williston basin. They invariably have shows of oil and gas in cuttings and their log characteristics also are strong evidence for their identification as source beds. Their fluidfilled pore space, as indicated by velocity and/or neutron logs, is normal or greater than normal for shale at the depth at which they are found. Their

Fic. 2.—Logs from Lloyd H. Smith No. 1-A Weedeman, SE¼ SW¼, Sec. 29, T. 153 N., R. 94 W., Mc-Kenzie County, North Dakota, showing typical productive section. Curve on left is gamma ray. Solid curve on right is resistivity. Dashed curve is interval transit time. Depths (from surface) in feet.

resistivity, however, is essentially infinite. This fact, in conjunction with the visibly petroliferous character of the two shales, indicates that their pore space is hydrocarbon-saturated. The lower shale was perforated together with the Sanish section in several wells. However, no attempt has been made to separate the production by zones. Consequently, the direct contribution of the shale to the total production is unknown.

The section between the two shale zones is composed of dolomite, dolomitic siltstone, and minor quantities of shale. As might be expected, this section, called the "Banff member" by some workers, generally carries oil shows. This section also was perforated in conjunction with the Sanish zone in several wells in the field. However, as in the case of the lower shale, no attempt has been made to measure the production from the Banff independently of that from the Sanish.

LODGEPOLE FORMATION

The interbedded limestone and shale of the Mississippian lower Lodgepole Formation overlie the upper Bakken shale. This lower part of the Madison Group recently has been proved to be productive in a rework of the Amerada No. 1 Nelson, SW_{14} , SW_{14} , Sec. 5, T. 152 N., R. 94 W. Although not discussed here, this Lodgepole accumulation probably is related closely to the Bakken-Sanish pool.

ROLE OF FRACTURING IN SANISH PRODUCTION

THEORY

Because the productivity of individual Sanish wells appears to be unrelated to variations in reservoir lithology and because measured porosity and plug permeability are very low, it appears reasonable to assume that productivity is related to fracturing. Although core descriptions do not indicate an unusual degree of fracturing, a few fractures were noted. The data from the Carter No. 1 Norby-Melby Unit illustrate the peculiarities of the Sanish reservoir which lead to the hypothesis that fracturing is the controlling parameter. This well found no sandstone in the Sanish section-only dense dolomite and shale with some slight fracturing. Whole-core analysis shows an average porosity of approximately 5.5 percent and permeability below 1.0 md, except for a value of 27 md in a 1-ft zone and another value of 6.7

md in another 1-ft zone. Nevertheless, this well has been one of the best in the field! The writer believes that the only logical hypothesis to explain this fact is that the more than 500,000 bbl which has been produced from this well has come from fractures in the 2 ft of section with wholecore permeability values greater than 1.0 md.

The important role of fracturing also is suggested by the association of this production with the area of steepest dip in the central Williston basin. A cursory examination of the Sanish pool shows that the best wells are concentrated along the northwest-southeast line where the Antelope anticline bends abruptly from the relatively flat crest into the steep, northeast flank (Fig. 4). It is intuitively reasonable that the greatest intensity of tension fracturing would be in this position, where structural curvature (rate of change of dip, or structural second derivative) is greatest. Although this simple observation reinforces the hypothesis of a fractured reservoir, it indicates nothing about the magnitudes of fracture porosity and fracture permeability or about the minimum curvature necessary for the development of fractures.

To attempt to answer these questions, with particular reference to the Sanish pool and the individual wells in the pool, the writer has derived two mathematical relations which express fracture porosity and fracture permeability, respectively, as functions of bed thickness and structural curvature. Because the Antelope anticline is relatively elongate, the equations have been derived for a structural configuration which is infinite in the axial direction. This greatly simplifies the mathematical treatment.

Figure 3 shows a cross section of a segment of a competent bed, of thickness T feet, folded into an arc, of radius of curvature R feet. The folding is assumed to be sufficiently sharp to have caused stress greater than the ultimate tensile strength of the bed and, consequently, to have resulted in tension fractures represented by the idealized pieshape voids. For convenience, the neutral surface (surface of no change in length, or no strain) has been taken as the base of the competent bed. The Z axis of Figure 3 is vertical; the Y axis—normal to the page—is chosen to coincide with the direction of the structural axis; and the X axis is the horizontal axis at right angles to the structure. The angle θ , measured in radians in a counter-

59

Ť.

FIG. 3.—Geometry of fracture system used in deriving expressions for fracture porosity and fracture permeability.

clockwise direction from the positive X axis, is the angle made by a normal to the competent bed. The angular increment between adjacent fractures is represented by $\Delta \theta$. The corresponding increment in the surface of the fractured bed is represented by Δs .

The fractional porosity of the fracture system is determined easily from the geometry of the figure. Because the structural configuration and porosity are unchanging in the axial direction, the porosity may be calculated by considering a "slice" of the structure of unit length in the Y direction. Thus, from the expression for the area of a sector of a circle, the fractional porosity, ϕ , of that segment of the reservoir bounded by the two sides of angle $\Delta \theta$, the top and bottom of the bed, and unit length in the Y direction is given by

$$\phi = \frac{\frac{1}{2}(2RT+T^{*})\Delta\theta - T\Delta s}{\frac{1}{2}(2RT+T^{*})\Delta\theta} \cdot$$

Because

$$\Delta \mathbf{s} = R \Delta \boldsymbol{\theta},$$

this may be reduced to

$$\phi = \frac{T}{2R+T}.$$

T generally is very small in comparison with R. For example, the greatest thickness of any single competent bed. T, in the Sanish zone is on the order of 10 ft, whereas the minimum value of R for the Antelope structure is approximately 10,000 ft. Hence, the last expression may be reduced to

$$\phi = T/2R.$$
 (1)

It is useful to express the radius of curvature Rin terms of the derivatives in the X-Z coordinate system permitting the graphical evaluation of equation (1) from structural cross sections. In the usual structural situation, dz/dx, the dip measured in feet per feet is very small in comparison with unity. Hence, as is proved in most elementary calculus texts (Sherwood and Taylor, 1946), it is sufficiently accurate to take

$$R=1\left/\frac{d^2z}{dx^2}\right.$$

From this expression it may be observed that the curvature, which is defined as the reciprocal of the radius of curvature, is simply the second derivative of structure, d^2s/dx^2 . Substitution into (1) yields the simple expression

$$\phi = \frac{1}{2}T \frac{d^2z}{dx^2}$$
 (2)

for fractional porosity as a function of bed thickness and structural curvature.

It should be noted that fracture porosity generally is very small. For example, use of the maximum and minimum values of T and R, respectively, for the Sanish pool gives a maximum fracture porosity of approximately 1/2,000, or 1/20of 1 percent.

As might be expected, fracture permeability is much more significant. The basic expression used in deriving the relationship between fracture permeability, bed thickness, and structural curvature is the equation for the volume of fluid flow per unit length between two parallel plates (Lamb, 1932).

$$q_p = -\frac{h^3}{12\mu} \frac{dp}{dy}$$

where k is the separation of the plates, μ is fluid viscosity, and dp/dy is the pressure gradient in the direction of flow. The minus sign arises because the direction of flow is in the direction of decreasing pressure. Because the angular divergence of the fracture faces is very small, the total volume of flow through one of the pie-shape fractures may be approximated by

$$Q = \int_{-\pi}^{\pi} q_p dt = -\frac{1}{12} \frac{dp}{dy} \int_{-\pi}^{\pi} h^3 dt$$

where t is the distance in the fracture above the point of zero separation, or above the base of the fractured bed. For the pie-shape fracture, h = kt and

$$Q = -\frac{k^2}{12\mu}\frac{dp}{dy}\int_0^T t^3dt = -\frac{k^2T^4}{48\mu}\frac{dp}{dy}$$

The average flow per unit area is the total flow per fracture divided by the average area A per fracture.

$$q = \frac{Q}{A} = -\frac{k^2 T^4}{48\mu A} \frac{dp}{dy}$$

In order to evaluate k, it is noted that

$$\frac{\frac{1}{2}h_0T}{A} = \phi \quad \text{and thus } k = \frac{A}{T^2} \left(T \frac{d^2z}{dx^2} \right) ,$$

where k_0 is fracture width at the top of the bed. Hence,

$$q = -\frac{A^2}{48T^2\mu} \left(T\frac{d^2z}{dx^2}\right)^2 \frac{dp}{dy}.$$

From the last expression the permeability is seen to be given by

$$K = \frac{A^2}{48T^2} \left(T \frac{d^2 z}{dx^2}\right)^2.$$

After conversion from cgs units to the more familiar millidarcy (Pirson, 1950) and evaluation of Ain terms of an assumed fracture spacing of 6 in., this expression reduces to

$$K = 4.9 \times 10^{11} \left(T \frac{d^3 z}{dx^2} \right)^2.$$
(3)

Although the assumption of a fracture spacing of 6 in. admittedly is arbitrary, there are certain considerations leading to this as a reasonable approximation. If the fracture spacing were much greater than this it would be possible for some of the favorably located wells to have missed the fracturing altogether. There is no evidence of this in the Sanish pool. Also, assumption of wider spacing leads to unreasonably large values of calculated permeability. Finally, the writer's field experience leaves the impression that a 6-in. fracture spacing may be somewhat short, but that it is not entirely unreasonable.

Because permeability increases as the third power of $T d^2z/dx^2$, it becomes appreciable with relatively small values of this parameter. The tabulations in Table I give illustrative permeability values for different values of T and d^2z/dx^2 .

TABLE I. EXAMPLES OF PERMEABILITY	VALUES
-----------------------------------	--------

T=2	î ft	T = I	T = 10 ft					
$\frac{\overline{d^2 z}}{dx^2} (\times 10^{-4})$	K (md)	$\frac{d^2 z}{dx^2} (\times 10^{-4})$	K					
1 2 4 6	0.06 0.49 3.92 13.20	1 2 4 6	0.49 3.92 31.20 106.00					

The figures in Table I should not be taken too literally. The configuration of a natural fracture system undoubtedly varies considerably from the assumptions made in deriving the above expressions for porosity and permeability. Particularly subject to question are the assumptions that the base of the competent bed is a neutral surface and that the fracture spacing is 6-in. It also is apparent that the regular, pie-shape fracture voids are an oversimplification. In some cases the value of bed thickness is uncertain. T represents the thickness of a single competent bed unbroken by shale intercalations capable of providing slippage. In a section like the Sanish, with abundant shale intercalations, a value for T is difficult to ascertain. Despite these uncertainties, it is believed that the above expressions are important as indications of the order of magnitude of fracture porosity and fracture permeability which might be expected with a particular bed thickness and structural configuration.

It should be noted that a minimum value of the parameter $T d^2x/dx^2$ must be exceeded before fracturing is developed. It is easily shown that the tensile stress in the upper surface of the bed of Figure 3 is given by

$$F = ET \frac{d^3z}{dx^3}$$

where F is the stress in the upper surface and E is Young's modulus for the bed (Stephenson, 1952). If $T d^2z/dx^2$ is such that F exceeds the ultimate tensile strength of the bed, fractures will develop. A rough idea of this critical value may be obtained from measured values of the ultimate tensile strength and Young's modulus of building stones. Some average values (Kidder and Parker, 1935) would give a critical value of about 1.2×10^{-4} for $T d^2z/dx^2$ in the case of a limestone. As discussed hereafter, the empirically determined critical value of structural curvature, d^2z/dx^2 , for the presence of Sanish fracturing appears to be about 2×10^{-4} . Depending on the exact value of T, this would place $T d^{2}z/dx^{2}$ near the above figure of 1.2×10^{-4} .

APPLICATION TO SANISH POOL

Figure 4 shows the correlation between well productivity and structural curvature in the Sanish pool. Figure 5 shows how the values of curvature on the man were obtained. At the top of Figure 5 is a structural profile of the Bakken Formation along section A-B. The central profile is a plot of dip magnitude along this line of section. This second curve has been obtained from the first by drawing tangents to the first curve, as indicated, measuring the dip in feet per hundred feet, and plotting this magnitude at the position measured. West dip has been chosen arbitrarily as positive and east dip as negative. The bottom profile of structural curvature has been obtained from the second curve just as the second was obtained from the first. Tangents are drawn on the dip-magnitude curve, their slopes measured, and the values of these slopes plotted at their respective positions.

Across the Antelope field from west to east. the curvature increases to a maximum of about 5×10^{-5} /ft where the dip is changing abruptly into the steep east flank, then returns to zero at the inflection point in the middle of the east flank, and reaches a second maximum where the beds bend sharply into the syncline on the east. As indicated in the legend in Figure 4, the dotted areas show where the curvature is between 2×10^{-5} /ft and 4×10^{-5} /ft and the dashed areas show where the curvature is greater than 4×10^{-5} /ft. As outlined above, the minimum curvature necessary for the development of tension fractures in a 10-ft bed is approximately 2×10^{-5} /ft. Hence, as a first approximation, production should be restricted to the dotted and dashed areas. This appears to be empirically correct. The few producing wells in areas where the structural curvature is less than 2×10^{-6} /ft are all subcommercial.

The matter of sign is arbitrary. Downward curvature has been taken as negative and upward curvature as positive. However, the direction and sign of the curvature in a few cases could be significant with regard to fracture geometry. The widest part of a fracture is at the top of the competent bed if the curvature is downward. If the curvature is upward, the widest parts of the fractures are at the base of the bed.

After several similar cross sections were constructed, the areas where the curvature exceeds the critical value for the development of fracture permeability (dotted) and the areas where the curvature and fracture permeability are the greatest (dashed) were mapped. As indicated in the legend in Figure 4, the well spots are keyed to their productivity. The match between actual productivity and the theoretical fairway is not perfect, as shown by the presence of some of the best wells and a few very poor wells in the dotted areas. However, if the statistical variation which is inevitable in a fracture reservoir is considered, the match between theory and experience is remarkably good.

SANISH PRODUCTION AND RESERVES

There is a wide variation in productivity of the Sanish wells. Prior to recent drilling on the north end of the field, there were 14 wells along the fairway of maximum structural curvature which had produced most of the oil from the pool. Each of these 14 wells, as of January 1, 1966, had produced more than 250,000 bbl and together had produced 74 percent of the oil recovered from the pool. The average producing rate of each well was 178 bbl a day at that time. The other 19 wells had produced the other 26 percent of the total. The 16 of these 19 poorer wells which were still producing as of the first of 1966 had an average producing rate at that time of only 17 bbl a day apiece.

The five northernmost wells in the fairway have been drilled during the past $1\frac{1}{2}$ yr. Although there is some variation in the productivity of these recently completed wells, their average is as good as that of the best 14 older wells.

It is impossible to derive a meaningful reserve estimate for the Sanish from volumetric calculations. The better wells already have produced several times as much oil as could be estimated for the ultimate recovery from core analysis. For example, the discovery well, the No. 1 Woodrow Starr, SW¹/₄ SE¹/₄, Sec. 21, T. 152 N., R. 94 W., had a January 1, 1966, cumulative production of 607,467 bbl. (This includes production from the Starr No. 1-A which was drilled on the same 160-acre location after the casing collapsed in the original well.) The 14 best wells had a cumulative

FIG. 4.—Structural contour map of Antelope Sanish pool, McKenzie County, North Dakota. Structural datum, top of Mississippian Bakken Formation. As noted on legend, well spots are keyed to their productivity and values of structural curvature are mapped by patterned areas. Contour interval, 50 ft. Contour datum, sea level. Section A-B is location of Figure 5.

FIG. 5.—Comparison profiles of Bakken structure, dip magnitude, and structural curvature along line of section A-B of Figure 4.

production as of January 1, 1966 of 4,940,261 bbl, or an average of 2,200 bbl/acre. Average reservoir pressure at that time was 3,644 psi. Reservoir-pressure decline has been a straight-line function of barrels produced, indicating that production to date has been the result of fluid expansion.

SIGNIFICANCE OF RESERVOIR PRESSURE

The initial reservoir pressure of the Sanish pool was 7,670 psi at a datum of -8,400 ft. This is more than 2,500 psi above normal for the depth of the accumulation. For example, the original Sanish pressure was 2,150 psi greater than the original pressure in a Silurian reservoir which is about 1,500 ft deeper.

This indicates that the Sanish accumulation is in a closed, completely oil-saturated reservoir. The most important consequence of this fact is that the Sanish pool is independent of structure in the normal sense and there is no risk of venetrating a water column in the Sanish. To date, this conclusion generally has been supported by the productive history of the pool. There was essentially no water production until the reservoir pressure had declined considerably. There now are four or five wells with appreciable water cuts, but this water production is not structurally related because the wells with the largest cuts are very high on the structure. It is believed that this water may be true connate water—or "associated" water—being expelled from the Three Forks shale interbedded with the reservoir.

BAKKEN SHALE AS SOURCE OF OIL

Because the Sanish reservoir is performing much better than could be expected from volumetric calculations, it is believed that the Bakken shale beds are the immediate, as well as the ultimate, source of most of the oil. As has been outlined, the visual and log characteristics of the Bakken shale beds indicate that the pore space in the shales is oil-saturated. With approximately 30 ft of lower Bakken shale, containing 30-35 percent porosity (the pore space is oil-saturated), there is sufficient in-place oil to account for the Sanish production, provided that only a small percentage of this Bakken oil moves into the well bore. The role of the Sanish fracture system is primarily that of a gathering system for many increments of Bakken production.

These shale beds are, in a larger sense, saturated or even supersaturated oil reservoirs throughout the central basin area. If the internal pressures could be measured, they would be found to be abnormally high throughout the central basin. Indirect evidence for abnormally high internal pressures can be seen in the greaterthan-normal shale porosity (as indicated by mechanical logs) of these two units. The excess porosity and internal pressure result from the difficulty of expulsion of the oil from these beds through the overlying Lodgepole and the underlying Three Forks sections. As a consequence, any restricted reservoir in direct contact with either of the two shale units should be productive anywhere in the deeper part of the basin, regardless of structural position.

CONCLUSIONS

Analysis of the Sanish pool supports the immediate immediate the production is from

a tension-fracture system associated with the relatively sharp Antelope fold. In the local context of the Williston basin, one of the most important conclusions is the recognition that the upper and lower Bakken shale beds are supercharged oil shales and that they probably are the immediate source of most of the oil. Hence, discovery of permeability in beds adjacent to either of these two shale units-either in another fracture system or an area of matrix permeability in sandstone or carbonate rocks-would probably mean the discovery of prolific production comparable with that of the Sanish pool. Equally intriguing is the conclusion that, because the two shale beds are everywhere oil-saturated, such production is independent of structure in the normal sense and might be found in a synclinal location. Most important, it is believed that the relations between

fracture porosity, fracture permeability, bed thickness, and structural curvature may prove useful in the analysis of similar problems in other geologic provinces.

REFERENCES CITED

- Kidder, F. E., and compiled by a staff of specialists and Harry Parker, editor-in-chief, 1935, Kidder-Parker architects' and builders' handbook: 18th ed., New York, John Wiley and Sons, Inc., p. 296.
- New York, Dover Publications, p. 581-582.
- Pirson, S. J., 1950, Elements of oil reservoir engineering: New York, McGraw-Hill Book Company, Inc., p. 47.
- Sherwood, G. E. F., and Angus E. Taylor, 1946, Calculus: rev. ed., New York, Prentice-Hall, Inc., p. 206-209.
- Stephenson, R. J., 1952, Mechanics and properties of matter: New York, John Wiley and Sons, Inc., p. 245-246.

BENSON-MONTIN-GREER DRILLING CORP. <u>REBUTTAL TESTIMONY</u> <u>RESPECTING INTERFERENCE TESTS</u> <u>CANADA OJITOS UNIT</u>

With respect to Mr. Hueni's response to the Chairman's questions about interference tests conducted in the Canada Ojitos Unit, we assume that Mr. Hueni apparently did not understand the nature of the subject interference tests, for his responses were to the effect that:

- 1. Interference testing can only show information about the formation between the test wells, and is complicated by fracturing.
- 2. The EI straight line solution does not apply to a heterogeneous reservoir.
- 3. The best way to determine the reservoir characteristics is from individual well pressure build up tests.

Since all three of these statements are incorrect as to the subject reservoir and tests, it is assumed that Mr. Hueni didn't have time to study them, so his failure to correctly assess the tests is understandable; however his statements are in the record, and the record needs to be set straight.

First we note that it was the heterogeneity of the formation, whose <u>average</u> characteristics could not be determined from well testing that made need for the interference tests. A reservoir substantially larger than the drilled area was indicated from some of the pressure testing; and the Unit Operator required more information about the reservoir so that an orderly, and informed, development plan could be implemented. One option was pressure maintenance by gas injection and a question here was the degree of anticipated gas channelling; the answer to which turned on the level of transmissibility (Kh) - not of the "tight blocks" in which the wells were completed - but of the <u>reservoir average</u>.

Interference testing was decided on since it was the only method - then and now - available to determine the necessary characteristics of this fractured reservoir rock.

As set out in our direct testimony, the stratified reservoir of Gavilan presents problems in interference testing (as well as for individual well pressure build up surveys), but the Canada Ojitos Unit 1965 and 1968 interference tests were of only one zone and were thus not affected by this complication.

With respect to the above-numbered items, we state:

1. Although most interference tests may be those

conducted for a relatively short period of time (ordinarily "short" because of the cost of delayed production for a long test) and are in reservoirs whose rate of diffusion of pressure transients is slow (and consequently they "sample" only a small portion of the reservoir), in contrast, in the Canada Ojitos Unit, the diffusivity constant at the time of the 1965 test ranged up to 1×10^7 and tests of 15 to 20 days reflected average quantities for distances of 2 or 3 miles beyond the locations of the test wells. This is the consequence of the fractured formation's high transmissibility coupled with its low per acre volume of oil in place.

That the EI formula can be used to fairly describe the reservoir properties beyond the test wells can be confirmed by examining the transient pressure equations for a reservoir with a "large internal radius", as, for example, an oil field in a large aquifer; and comparing this with the EI solution as described herein. What we do here is to "expand" the wellbore radius to a distance equal to that of the interference observation well, and assume that the "wellbore" has a small volume (but infinite transmissibility).

This comparison shows very clearly how interference testing "filters out" the problems of induced fractures, wellbore resistance, heterogeneous rock characteristics, etc.

The example shown here derives from Muskat's solution to this problem; but others are available, as for instance, through use of the Laplace Transformation; and clearly shows the powerful potential of interference testing to "sample" a large part of the reservoir.

2. The degree of heterogeneity that can be tolerated by an interference test and give reliable results as to the <u>average</u> physical properties depends strictly on the rate of diffusion of the pressure transients in the affected areas. In the Canada Ojitos Unit test area the geometry of the reservoir is that of individual "tight blocks" surrounded by a high capacity fracture system. The information following shows clearly that the rate of diffusion is high enough that valid results can be anticipated. The proof, here, of course, is that such actually happened and was measured in observation wells in the 1965 interference test.

3. Individual well test Kh's had been determined prior to the 1965 test and they showed that transmissibility varied twentyfold, from .02 darcy feet to .45 darcy feet. (No way here to determine a reasonable "weighted average".) Moreover it appeared that the true reservoir average Kh was substantially higher than that shown for any of the wells; so any "average" of their properties would be totally incorrect. After the interference test was run, it revealed that the reservoir average Kh was on the order of 5 to 10 darcy feet ten to twenty times higher than the highest individual well test at that time.

Here again, the proof that the interference test provided more definitive data than the individual well tests was

revealed when a well drilled two years after the interference test was completed showed the high capacity system to exist; and when gas injection commenced it was possible to confirm under steady state conditions the transmissibility for a 2-1/2 mile distance to be in the same 5 to 10 darcy feet range.

Time does not permit introduction here of all the supporting data, however it is well documented in Case No. 3455 before the Oil Conservation Division in November 1966 and December 1969.

PHYSICAL PRINCIPLES OF OIL PRODUCTION

By MORRIS MUSKAT, Ph.D.

DIRECTOR OF PHYSICS DIVISION GULF RESEARCH & DEVELOPMENT COMPANY

FIRST EDITION

NEW YORK TORONTO LONDON McGRAW-HILL BOOK COMPANY, INC. 1949

PHYSICAL PRINCIPLES OF OIL PRODUCTION

542

The specific system to be analyzed here will be defined by the initial and boundary conditions (cf. Fig. 11.3)

$$t = 0 \quad : \quad \gamma = \gamma_i(p = p_i),$$

$$r = r_f \quad : \quad 2\pi r \gamma v_r = q(t),$$

where the radius r_{f} is taken as the equivalent oil-field radius, assumed circular, and p_i is the initial pressure in the water reservoir. In actual

145150W

complete-water-drive fields the mass flux q(t) at the field boundary is to be considered as representing the fluid withdrawal within the field, except for that replaced by expansion of its own fluid content.

By means of the solution of Eq. 11.3(13), subject to the conditions of Eq. (1), the fluid density and pressure at $r = r_{i}$, or field boundary, can be determined as a function of time. This solution can be verified to be¹

$$= \gamma_i + \frac{1}{\pi^2 f_{r_j}} \int_0^\infty \frac{e^{-\alpha_i v_j} J_0(ur) Y_1(ur_j) - Y_0(ur) J_1(ur_j)] \, du}{J_1^2(ur_j) + Y_1^2(ur_j)} \int_0^t q(\lambda) e^{\alpha_i v_j} \, d\lambda \quad (2)$$

where J_n , Y_n denote Bessel functions² of order n of the first and second kinds, respectively.

For the special case where q(t) is a constant q_0 , Eq. (2) reduces to

$$= \gamma_i + \frac{q_o}{\pi^2 a_j fr_j} \int_0^\infty \frac{(1 - e^{-au^2 j}) \left[J_0(ur) Y_1(ur_j) - Y_0(ur) J_1(ur_j) \right] du}{u^2 \left[J_1^2(ur_j) + Y_1^2(ur_j) \right]}$$
(3)

۲

¹ The solution for this problem, applying to the special case of Eq. (3), has been derived by J. C. Jaeger in an unpublished manuscript.

developing the analysis given in this chapter are briefly outlined in M. Muskat, "The Flow of Homogeneous Fluids through Porous Media," Sec. 10.2, McGraw-Hill Book ¹ These functions are treated exhaustively by G. N. Watson, "The Theory of Bessel Functions," (Ambridge University Press, 1922. Most of the properties required in

77 XAP to convert (Ny 646 James) (TT 3) 30.48 cm/c7 at /1 = 1 K & the converter (14:196 # atms) 30:43 cap) ~> 2 que tont

130 B 500

R = clarey X1= cp

** 1247 K.A. 2V Where

PLACE - STOCK TANK BARRELS PER ACRE

NI TIO

RELATION OF OIL IN PLACE

10

C

TRANSMISSIBILITY - (Kh) - DARCY FEET

APPENDIX II FIGURE NO. III-5 FILE: 13 A

Rev. 8/86

3 NS. K/ OF VALUE OF DIFFUSIVITY CONSTANT AS FUNCTION

64A

Rev. 8/86

.

MR. STAMETS
\langle	NMOCC/NMOCD Case No. 8950 Hearing Date 8/21/86 Berson - Montin - Greer
	Exhibit No

١

٠

AUGUST 7, 1986

BENSON-MONTIN-GREER DRILLING CORP. EXHIBITS IN CASE NOS. 8946 & 8950 BEFORE THE OIL CONSERVATION DIVISION OF THE NEW MEXICO DEPARTMENT OF ENERGY AND MINERALS

76 Geologic Analysis of Naturally Fractured Reservoirs

Effect of Variation in Fracture Spacing

Variation in fracture spacing can have a dramatic effect on both fracture porosity and permeability (Figures 1-55 and 1-56). The combined effect of both fracture width and spacing on these reservoir parameters is shown in Figures 1-55 and 1-56. A good qualitative feeling for the effect of outcrop or core observations of fracture spacing at an assumed fracture width, or vice versa, can be derived from these diagrams.

Techniques for Calculating Fracture Spacing

In simple fracture networks of regular, closely spaced fractures, fracture spacing is easily calculated in core or outcrop provided the sampling area or volume is large with respect to fracture spacing. This is accomplished by counting the number of fractures encountered along a line of some given length perpendicular to the fracture set of interest, for each of the fracture sets present and dividing the length of measurement line.

Figure 1-56. Fracture porosity as a function of fracture width and fracture spacing.

In more complex fracture systems, workers have gone to similar determinations along lines in specific directions. This author has often used two perpendicular measurement directions with one parallel to bedding strike and one parallel to bedding dip. Others have tried to reconstruct the entire vector/spacing distribution (at least in a plane) by measuring along three specific directions (120° apart) and statistically manipulating the data into a full 360° distribution. Hudson and Priest (1983) present an excellent statistical technique for determining the entire 2-D array of spacing vectors present in a rock. Narr and Lerche (1984) present a tistical/geometric method for accurately depicting fracture spacing from core data.

Utilization of Laboratory Data

Laboratory data can be quite useful in quantifying reservoir properties in fractured reservoirs. However, the extrapolation of these data to sub-

MEI	'HO	DS	$\mathbb{O}\mathrm{F}$	IN	TEF	RPRI	ETA	TI	ON	OF	PRI	ESS	SURE	1
	BE	HA	VIO.	R 🏾	IN 1	HE	ΟĪ	Ľ	PR	ODU	CIN	ž		
	FR	AC.	ľŪR	ED	SHA	LE	RE	SE	RV	OIR	<u>S</u> 01	7		
		TĤ	ΕP	UEF	<u>OTS</u>	_CH1	ເວັນ	TT	0	P <u>0</u> 0	L			
F	RIO	A	RRI	BA	COI	INTY	Γ,	NE	W	MEX	ICO			
						_								

November 1, 1966

•

В

,

FIGURE NO. 10

The Behavior of Naturally Fractured Reservoirs

J. E. WARREN P. J. ROOT MEMBERS AIME

GULF RESEARCH & DEVELOPMENT CO. PITTSBURGH, PA.

An idealized model has been developed for the purpose of studying the characteristic behavior of a permeable medium which contains regions which contribute significantly to the pore volume of the system but contribute negligibly to the flow capacity; e.g., a naturally fractured or vugular reservoir. Unsteady-state flow in this model reservoir bas been investigated analytically. The pressure build-up performance has been examined in some detail; and, a technique for analyzing the build-up data to evaluate the desired parameters has been suggested. The use of this approach in the interpretation of field data has been discussed.

ABSTRACT

As a result of this study, the following general conclusions can be drawn:

1. Two parameters are sufficient to characterize the deviation of the behavior of a medium with "double porosity" from that of a homogeneously porous medium.

2. These parameters can be evaluated by the proper analysis of pressure build-up data obtained from adequately designed tests.

3. Since the build-up curve associated with this type of porous system is similar to that obtained from a stratified reservoir, an unambiguous interpretation is not possible without additional information.

4. Differencing methods which utilize pressure data from the final stages of a build-up test should be used with extreme caution.

INTRODUCTION

In order to plan a sound exploitation program or a successful secondary-recovery project, sufficient reliable information concerning the nature of the reservoir-fluid system must be available. Since it is evident that an adequate description of the reservoir rock is necessary if this condition is to be fulfilled, the present investigation was undertaken for the purpose of improving the fluid-flow characterization, based on normally available data, of a particular porous medium.

DISCUSSION OF THE PROBLEM

For many years it was widely assumed that, for the purpose of making engineering studies, two parameters were sufficient to describe the single-phase flow properties of a producing formation, i.e., the absolute permeability and the effective porosity. It later became evident that the concept of directional permeability was of more than academic interest; consequently, the degree of permeability anisotropy and the orientation of the principal axes of permeability were accepted as basic parameters governing reservoir performance. 1,2 More recently, 3-6 it was recognized that at least one additional parameter was required to depict the behavior of a porous system containing regions which contributed significantly to the pore volume but contributed negligibly to the flow capacity. Microscopically, these regions could be "dead-end" or "storage" pores or, macroscopically, they could be discrete volumes of lowpermeability matrix rock combined with natural fissures in a reservoir. It is obvious that some provision for the inclusion of all the indicated parameters, as well as their spatial variations, must be made if a truly useful, conceptual model of a reservoir is to be developed.

A dichotomy of the internal voids of reservoir rocks has been suggested.^{7,8} These two classes of porosity can be described as follows:

a. Primary porosity is intergranular and controlled by deposition and lithification. It is highly interconnected and usually can be correlated with permeability since it is largely dependent on the geometry, size distribution and spatial distribution of the grains. The void systems of sands, sandstones and oolitic limestones are typical of this type.

b. Secondary porosity is foramenular and is controlled by fracturing, jointing and/or solution in circulating water although it may be modified by infilling as a result of precipitation. It is not highly interconnected and usually cannot be correlated with permeability. Solution channels or vugular voids developed during weathering or burial in sedimentary basins are indigenous to carbonate rocks such as limestones or dolomites. Joints or fissures which occur in massive, extensive formations composed of shale, siltstone, schist, limestone or dolomite are generally vertical, and they are ascribed to tensional failure during mechanical deformation (the permeability associated with this type of void system is often anisotropic). Shrinkage cracks are the result

С

Original manuscript received in Society of Petroleum Engineers office Aug. 17, 1962. Revised manuscript received March 21, 1963. Paper presented at the Fall Meeting of the Society of Petroleum Engineers in Los Angeles on Oct. 7-10, 1962.

¹ References given at end of paper.

4 Formation Evaluation By Well Testing

Various theories have evolved regarding pressure behavior in naturally fractured reservoirs. Since all naturally fractured reservoirs are not the same, the following techniques may vary in their application.

Pollard—Pirson Methods

One of the early papers on pressure buildup analysis of fractured reservoirs was published by Pollard in 1959. Pollard considered that the reservoir consisted of three regions: one around the wellbore, one in the fractured system, and one in the matrix. Consequently, he broke the pressure differential into three components: (1) pressure differential across "skin" near the wall of the hole, (2) pressure differential due to flow resistance in the coarse communicating fissures, and (3) pressure differential between the fine voids and the coarse fissures.

Pollard's method

Pollard's method assumes that during a late stage of buildup the flow rate (q_b) from the matrix into the fractures can be described by the equation:

$$q_b = -V_b c_b \frac{dp_b}{d\Theta} = A_1 (p_b - p_f) \qquad (4-1)$$

where:

 q_b = rate of flow from matrix into fractures V_b = pore volume of the matrix

 c_b = compressibility factor of fluids in the matrix

Aquilera

Naturally Fractured Reservoirs

FIg. 4-10 Idealization of the heterogeneous porous medium. (After Warren & Root)

Warren and Root-Kazemi-De Swaan

Warren and Root

They presented a model composed of rectangular parallelopipeds where the blocks represented the matrix and the space in between the fractures (Fig. 4-10).

They evaluated this heterogeneous double-porosity model using as a base the following general assumptions:

- The primary porosity (matrix) is homogeneous and isotropic, and is made up of identical rectangular parallelopipeds (Fig. 4-10).
- 2. The secondary porosity is contained within an orthogonal system of continuous, uniform fractures. A different fracture spacing or a different width may exist along each of the axis to simulate the proper degree of anisotropy.
- 3. Flow can occur between the primary and secondary porosities, but flow to the well can occur only through fractures. Flow through the primary-porosity elements cannot occur.

Warren and Root made an analytical investigation of the unsteadystate of flow in this model. The pressure buildup was analyzed in detail

Hguildra

Formation Evaluation by Well Testing

and they found that a conventional buildup plot could result in two parallel straight lines. The vertical separation of the two lines was related to the storage capacity of the fractures.

They concluded that two parameters were enough to characterize the behavior of the double-porosity system. One parameter (ω) represented a measure of the fluid capacitance and the other parameter (λ) was related to the degree of heterogeneity of the system. Mathematically, λ and ω can be written as:

$$\frac{\alpha k_1 \Gamma w^2}{2} \tag{4-23}$$

|| ~

and

$$\omega = \frac{\Phi_2 c_2}{\Phi_1 c_1 + \Phi_2 c_2}$$
(4-2)

4

where: α = geometric parameter for hetrogeneous region, 1/L².

- k, = matrix permeability
- r_w = well bore radius $\overline{K_2} = \sqrt{k_{2x}} \, k_{2y}$, effective permeability of anisotropic medium, L^2
 - $\phi_2 = x_{2x} x_{2y}$, cylocute points of an $\phi_2 = secondary porosity$
 - φ₂ = secondary porosu φ₁ = primary porosity

Fig. 4-11 Theoretical buildup curves. (After Warren & Root)

246

Reservoire
Fractured
Naturally

c2 = total compressibility in secondary system

 $c_1 = total compressibility in primary system$

Theoretical pressure buildup curves for an infinite reservoir and various combinations of λ and ω are shown in Figs. 4-11 and 12. Notice that when there is only primary porosity, $\omega = 0$, the buildup occurs almost instantaneously if λ is very small.

The behavior in Fig. 4-11, where the value of λ is assumed at 5 \times 10⁻⁶, implies a reservoir with a closed boundary. Note also that, if only

Formation Evaluation by Well Testing

the early portion of the curve were recorded, the pressure *p* determined

by extrapolations to $\Delta t/(t_s + \Delta t)$ would be in error by an amount equal to m log $(1/\omega)$, and the skin resistance (s_d) would be high by an amount equal to 1.15 log $(1/\omega)$.

This may lead to error in the interpretation; Warren and Root point out that this is one of the weaknesses of the Pollard method. It is possible to analyze the transitional curve between the initial linear portion and the asymptote just as if the reservoir actually had a finite drainage radius. Fig. 4-12, where the value of λ is assumed at 5×10^{-6} , shows the double-slope buildup performance.

Although Warren and Root's method is mathematically more rigorous, Matthews and Russel in SPE Monograph Vol. I indicate that the type of buildup displayed by Pollard and Pirson seems much more common than the one suggested by Warren and Root.

Kazemi

Kazemi studied the transient pressure behavior of naturally fractured reservoirs by means of a model which consisted of a finite circular reservoir with a well located in the center and two distinct porous regions, referred to as matrix and fractures (Fig. 4-13).

Fig. 4-14 depicts a representative section of the Kazemi model, which used as a basis the following assumptions:

Fig. 4-13 Idealization of naturally fractured porous medium. II, Warren-Root model; III, Kazemi model. (After Kazemi)

Hquiler

theory is based on the following assumptions:

described by the approximate solution of the radial infinite reservoir as applied to fracture media:

$$\iota p_f = \frac{q\mu}{4\pi h_f k_f} \quad \ln \left(\frac{4 \eta_f t}{\gamma' r_w^2}\right) \tag{4-31}$$

The outflow from the blocks is described through a convolu-

boundary condition.

tion:

Aquitera

CORE DESCRIPTION AND PETROGRAPHIC ANALYSIS OF THE GALLUP FORMATION IN THE NUMBER 1-11 HOWARD FEDERAL WELL

for

MALLON OIL COMPANY Denver, Colorado

D

MALLON OIL COMPANY No. 1-11 Howard Federal Well

DISCUSSION (Continued)

interval. From 7300 to 7280 feet the unit is dark gray in color and exhibits undisturbed, horizontal planar laminations. Silt laminae are very rare. Calcareous stringers, silty laminae, and fossil debris are in low abundance in this unit.

Fractures occur throughout the cored interval. They are oriented vertically to approximately 30 degrees from vertical, and spaced at intervals greater than four inches, these fractures are generally mineralized with calcite and pyrite. Fracture sets intersect at angles of ten to fifteen degrees, and commonly terminate one another. The dark gray units typically contain one dominant fracture two to three feet in length, with closely spaced (approx. 1/2 inch) subordinate fractures parallel to it. The gray-black, siltier unit contains a somewhat higher frequency of shorter (six to twelve inch long) fractures.

Thin Section Description

A thin section cut normal to bedding in a silty interval (7322.8 feet) revealed slightly compacted, moderately sorted, wavy laminated, burrowed units of coarse silt within a wavy laminated, silty shale matrix (plate 2A). The silt component is comprised principally of quartz grains, with a lower abundance of feldspar grains, volcanic rock fragments, and mica. Traces of zircon, glauconite, and detrital dolomite are also present. A significant component of both the silty and shaly units is calcareous foraminifer debris. This debris, plus the large bivalve shells, account for the calcareous nature of the entire interval. Carbonaceous matter is abundant in the shaly laminae.

Pyrite is the most abundant authigenic mineral. It has formed in close association with foraminifer tests, and as scattered framboids in both silty and shaly laminae. Calcite is abundant as sparry to poikilotopic, intergranular cement in the silty laminae; very minor dolomite cement has also formed in these units. No porosity is evident in thin section.

Wireline Log Analysis

Figure 1 is a compilation of all wireline log curves plus the measured percent shale curve generated in this study. No log except density porosity exhibits behavior parallel to the percent shale curve. This is a deception, however, as the density porosity reading in the silty zone (log depth 7294 to 7300 feet) indicates high porosity (sandstone matrix), whereas the core analysis from this zone reports porosities around 1 %. The measured grain density of the shale is 2.63 g/cc, which is very close to the assumed matrix

	MA No Ca
	LLO . 1
	-1 er
	low
	om arc
	PAN H F
	ed.
	er
73. 73.	al
	We
	C 11
	Into
	ben
	sa
	tec
	1
	eu
	tro
	on
5 <u> </u>	
	Por
	lsi
	t¥.
	Y
	Co
	mp
	ens
0	sat
	10
	Sho
	p
	Ind
	brm
	Fi
	le on
	No
	•
	PD-
	-85
	05
	C 0
	nd
	uct
	tiv
	it
	× .

FIGURE 1

	S LAW FOROSITY	ELEVATION: 7180 GL	
LUID SATS. OIL WTR	GRAIN DEN	DESCRIPTION	
9.0 39.0	2.46 SD GRY VFGRN 5	SHY SL/CALC	
4.6 40.3	2.66 SD GRY VFGRN S	SHY SL/CALC	
9.5 33.2 9.5 22.0	2.67 SD GRY VFGRN S 2.67 SD GRY VFGRN S	3HY CALC FYR 3HY CALC ***	×
9.8 1616	2.64 SD GRY VFGRN S	SHY CALC	
2.4 .22.1	2.70 SD GRY VFGRN S	NHY CALC PYR	
1.2 34.3	2.63 SD GKY VFGRN S	SHY CALC	
0.0 0.0 0.0	2.45 ST GRY UFGRN S	DHI BL/LALU Shy si /Eai C	
8.6 33.1	2.45 SD GRY VFGRN S	SHY SL/CALC	
8.8 32.4	2.63 SLTST DRKGRY V	JEGRN SHY CALC	
4.2 34.2	2.69 SD GRY VFGRN S	SHY CALC FYR	
	SHALE NC) ANALYSIS	
4.9 33.1	2.47 SD GRY VEGRN S	SHY CALC	
	2.67 SD GKY VFGKN S	SHY CALC	
0.5 30.5	2.67 SD GRY VF-FNGF	KN SHY CALC	
8.8 38.4	2.67 SD GRY VF-FNGF	NN SHY SL/CALC	
9.6 39.2	2.68 SD GRY VF-FNGF	RN SHY CALC	
2.0 42.7	2.67 SD GRY VF-FNGF	KN SHY CALC	
7.5 60.0	2.48 SD-GRY VF-FNGF	RN SHY PYR	
4.5 59.9	2.66 SD GRY VF-FNGF	NN SHY CALC	
e client to whom, and for	whose exclusive and confidential use, this repo	ort is made. The interpretations or opin	suol
vied); but Core Laboratori nimeral well or sand in con	es, Inc. and its officers and employees, assume nection with which such report is used or reliev	no responsibility and make no warrant d unon.	y ot
1 6660-6681 2 2 1 6660-6681 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 2 4 0 5 1 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 2 2 3 1 2 2 3 2 2 2 3 2 3 2 4 2 5 3 6 2 7 2 <	1 6.6.60-6.6.81 2.5 39.0 39.0 2.6 34.6 40.3 1.0 39.6 35.2 1.0 39.6 35.2 0.9 49.5 22.0 0.9 41.2 34.3 0.07 45.6 32.9 0.07 45.6 32.1 0.07 45.6 32.1 0.05 42.3 35.2 1.1 38.6 33.1 0.5 42.3 35.2 1.1 38.6 33.1 0.5 42.3 35.1 2.7 24.9 31.9 3.1 30.5 31.9 3.1 30.5 31.9 2.4 2.3 23.1 2.6 3.5 31.9 3.1 30.5 31.9 2.4 2.3 32.9 2.5 2.7 24.9 31.9 2.6 3.5 31.9 32.9 2.6 3.5 2.1 2.5 9 2.5 </td <td>1 6660-6681 1 6660-6681 2:5 39.0 39.0 29.6 5D 6RY VFGRN 2:0 34.6 35.2 2.65 5D 6RY VFGRN 9 2:0 34.6 35.2 2.65 5D 6RY VFGRN 9 2:0 34.5 35.2 2.65 5D 6RY VFGRN 9 0:0 49.5 16.6 2.65 5D 6RY VFGRN 9 0:0 41.2 34.3 2.65 5D 6RY VFGRN 9 0:0 41.2 34.1 2.65 5D 6RY VFGRN 9 0:0 41.2 34.1 2.65 5D 6RY VFGRN 9 0:1 33.1 23.1 2.65 5D 6RY VFGRN 9 1:1 38.6 33.1 2.65 5D 6RY VFGRN 9 0:5 33.1 2.65 5D 6RY VFGRN 9 2:5 3.1</td> <td>1 6660-6681 1 6660-6681 2:5 39:0 39:0 2:65 5D GRY VFGRN SHY SL/CALC 2:0 34:6 40:3 2:65 5D GRY VFGRN SHY CALC FYR 2:0 34:6 40:3 2:65 5D GRY VFGRN SHY CALC FYR 0:0 49:5 22:10 2:65 5D GRY VFGRN SHY CALC FYR 0:0 49:5 22:11 2:70 5D GRY VFGRN SHY CALC FYR 0:0 49:12 34:3 2:65 5D GRY VFGRN SHY CALC GRS CALC C</td>	1 6660-6681 1 6660-6681 2:5 39.0 39.0 29.6 5D 6RY VFGRN 2:0 34.6 35.2 2.65 5D 6RY VFGRN 9 2:0 34.6 35.2 2.65 5D 6RY VFGRN 9 2:0 34.5 35.2 2.65 5D 6RY VFGRN 9 0:0 49.5 16.6 2.65 5D 6RY VFGRN 9 0:0 41.2 34.3 2.65 5D 6RY VFGRN 9 0:0 41.2 34.1 2.65 5D 6RY VFGRN 9 0:0 41.2 34.1 2.65 5D 6RY VFGRN 9 0:1 33.1 23.1 2.65 5D 6RY VFGRN 9 1:1 38.6 33.1 2.65 5D 6RY VFGRN 9 0:5 33.1 2.65 5D 6RY VFGRN 9 2:5 3.1	1 6660-6681 1 6660-6681 2:5 39:0 39:0 2:65 5D GRY VFGRN SHY SL/CALC 2:0 34:6 40:3 2:65 5D GRY VFGRN SHY CALC FYR 2:0 34:6 40:3 2:65 5D GRY VFGRN SHY CALC FYR 0:0 49:5 22:10 2:65 5D GRY VFGRN SHY CALC FYR 0:0 49:5 22:11 2:70 5D GRY VFGRN SHY CALC FYR 0:0 49:12 34:3 2:65 5D GRY VFGRN SHY CALC GRS CALC C

E

SAMFLE JUMBER JUMBER 23 6685.0-87. 23 6687.0-88. 24 6688.0-87. 25 6689.0-99. 25 6699.0-99. 28 6697.0-92. 31 6695.0-92. 33 6697.0-98. 33 6697.0-98. 34 6698.0-98.	FERM. T0 FERM. T0 MAXIMUN 0.05 0.012 0.002 00000000	CONVENTIO AIR (MD) 90 DEG 	NAL AN FOR. 1.6 1.5	AALYSIE	3-BOYLE	VS LAW	FOROSITY	
ЗАМРЕЦЕ ЧИМВЕК ЧИМВЕК 23 6686.0-87. 23 6688.0-88. 23 6689.0-88. 23 6689.0-99. 25 6697.0-99. 27 6697.0-97. 29 6697.0-97. 31 6697.0-97. 33 6697.0-98. 33 6697.0-98.	FERM. T0 FERM. T0 MAXIMUN MAXIMUN 0.05 0.0120000000000	AIR (MU) 90 DEG 	FOR. He 1.6 1.5					
NUMBER 22 6686.0-87. 23 6687.0-88. 24 6688.0-88. 25 6687.0-88. 26892.0-90. 28 6691.0-92. 29 6691.0-92. 29 6691.0-92. 31 6692.0-94. 33 6697.0-98. 33 6697.0-98.	MAXIMUN MAXIMUN 0000 111.00 0000 0000 0000 0000 0000 0	90 LEG	He 1.6 1.5	r LU14	SATS.	GRAIN		- - - - -
 22 23 24 25 26885.0-87. 24 26887.0-88. 25 26897.0-99. 27 26991.0-92. 29 2692.0-91.0 21 2692.0-92. 23 2495.0-97. 23 2495.0-97. 25 25 2695.0-97. 27 28 29 29 20 20 21 22 24 25 25 26 27 28 29 29 20 29 20 20 21 22 23 24 24 29 20 21 22 23 24 24 25 2692.0-99. 29 29 29 29 29 20 21 22 23 24 24 25 2699.0-99. 29 29 29 20 21 22 23 24 24 25 26 27 28 29 29 29 29 29 29 29 29 29 20 29 20 29 29 20 20 20 20 21 22 23 24 24 26 27 28 29 29 20 20 20 21 22 24 25 26 26 27 29 29 20 20 20 20 20 21 22 24 	00000000000000000000000000000000000000	· · · ·	 • • •		WTR	DEN		DESCRIPTION
 23 24 25 26887.0-889.0 25 26889.0-90.0 2690.0-91.0 27 2691.0-92.0 29 2693.0-94.0 31 2695.0-95.0 33 2695.0-96.0 33 2695.0-98.0 33 2695.0-98.0 34 6698.0-99.0 35 6698.0-99.0 34 6698.0-99.0 35 6698.0-99.0 34 6698.0-99.0 	0000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000		1. 1	21.1 1	61.0	2,66	SD GRY VF-	-FNGRN SHY CALC
 24 6688.0-89.0 25 6689.0-90.0 26691.0-92.0 27 6691.0-92.0 29 6693.0-92.0 31 6695.0-94.0 33 6697.0-95.0 33 6697.0-98.0 		·		16.6	56.8	2.67	SD GRY VFC	3RN SHY FYR SL/CALC **
 26 27 2691.0-92. 29 20 20 20 21 22 24 24 24 29 20 29 20 2			0 0 0 0	22.3	50.9 56.4	2.68 .68 .68	SI GRY VFC SI DRKGRY	JRN SHY FYR SL/CALC * ** Ufgrn ghy fair fyr 40 +
27 6691.0-92. 28 6692.0-93. 29 6693.0-93. 30 6694.0-95. 31 6695.0-95. 33 6695.0-96. 33 6698.0-98. 34 6698.0-98.	000000000000000000000000000000000000000		10	20.1	57 • C	2.67	SD DRKGRY	UFGRN SHY CALC FYR
28 6692.0-93.0 29 6693.0-94.0 30 6694.0-95.0 31 6695.0-95. 33 6695.0-98. 33 6697.0-98. 34 6698.0-99.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.8	18.6	47.9	2.67	SD DRKGRY	UFGRN SHY CALC FYR
30 6693.0-94. 31 6695.0-95. 31 6695.0-95. 32 6695.0-97. 33 6698.0-98. 34 6698.0-98.			1.9	32.4	36.0	5.67 1	SD DRKGRY	UFGRN SHY CALC FYR
31 6695.0-95.1 31 6695.0-96.1 33 6697.0-98. 34 6698.0-98.		·	ы с 4 с	18.3	57,44 11,44	/ 9 · 0	SD DRNGRY	VEGRN SHY CALC FYR
32 6696.0-97. 33 6698.0-98. 34 6698.0-99.) ()) -	4 0 7 0 7 0		0 5 • 0 • 7	SU DEKGEY	VEGRN SHI CALC *** UFGRN GHY FALF
33 6697.0-98. 34 6698.0-99.	0 <0.01			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36.0	1.67	SD DRKGRY	VFGRN SHY CALC
34 6698.0-99.			เว ณ	34.7	30.8	2.67	SD DRKGRY	VFGRN SHY CALC
			1. 1.	24.6	49.1	2,65	SD DRKGRY	UFGRN SHY CALC
33 6644,0-00,	0 0.02		сі • •	30.2	51.7	2,68	SD DRKGRY	VFGRN SHY CALC FYR
6700.0-05.	0						SHALE SL/	SD ND ANALYSIS
36 6705.0-06.	0 0.36		2+6	21.8	48.5	2.69	SD DRKGRY	VFGRN SHY CALC PYR
37 6706.0-07.	0 0.01		сч •	26.2	29,9	2.71	SD DRKGRY	VFGRN SHY CALC FYR
38 6707+0-08+	0 <0.01		2.6	43.6	31.1	2.69	SD DRKGRY	VEGRN SHY CALC PYR
39 6708.0-09.	0 0.01		сч •	39.3	32.0	2.69 1	SD DRKGRY	VEGRN SHY CALC FYR
40 6709.0-10.	0 0.01		C4 C4	38.5	33.0	2,68	SD DRKGRY	VFGRN SHY CALC PYR
41 6710.0-11.	0 <0.01		1.3	40.0	26.7	2.66	SD DRKGRY	VEGRN SHY CALC
42 6711.0-12.	0 <0.01			39.3	26.2	2+67	SD DRKGRY	VFGRN SHY CALC
43 6712.0-13.	0 <0.01		1.3	39,1	17.4 4	5.62	SLIST DRN	JKY VFGRN SHY SL/CALC
44 6713.0-14.	0 <0.01		1.0	42.8	28.6	2,61	SD GRY VFC	BRN SHY SL/CALC
GALLUP FORM	ATION CORE	# 3 6714-€	1720					
45 6714.0-15. 6715.0-16.	0 <0.01		1.3	50.6	25.3	2.61	SIJ GRY VFC SHALE	3RN SHY SL∕CALC - NO ANALYSIS
46 6716.0-17.	0 0.01		₽.5	36.2	24.1	2+63	SD BRY VFC	JRN SHY CALC

LINDRIL F LINDRIL F	RODUCING TX & ≀ H B UNIT # 38	NM INC.	reif date formati	oleum ON t	ALLAS. ALLAS. 10-DEC GALLUP	11 Engi TEXAS 1985	neering	FILE ND : 38030-3424 ANALYSTS : DS\$EV
			CONVENTI	מאאר ג	יאער אפד	8-B0YLf	S LAW	POROSITY
SAMPLE NUMBER	DEPTH	FERM. TO MAXIMUM	AIR (MD) 90 DEG	POR. He	FLUID OIL	SATS. WTR	GRAIN DEN	DESCRIPTION
47 48	6717.0-18.0 6719.0-19.0 6719.0-20.0	0.01 0.01		0 0 4 0	41.7 44.7	34.7 31.9	2.68 2.68	SHALE NO ANALYSIS SD GRY VFGRN SHY CALC FYR SD GRY VFGRN SHY CALC FYR
	GALLUF FORMATI	ION CORE	₽ 4 6720-	6736	•			
49 110	6720.0-21.0	0.01		сі н сі н	35 tu.	31.6	2.67	SD GRY VFGRN SHY CALC PYR
5 1 1 1	6722.0-23.0	2E.0		- CI	32.8	32.80 32.80	2.66 2.66	SD GRY VFGRN SHY CALC FIK
ณ M ณ ณ	6723.0-24.0 6724.0-25.0	<0.01 0.02			10.6	40.4 40.9	2,70	SI GRY VFGRN SHY CALC PYR Si gry vfgrn shy calc pyr
5 4	6725.0-26.0	<0.01		1.1	30.3	34.6	2.69	SD GRY VFGRN SHY CALC FYR
יכו	6726.0-27.0	0.05		1,3	36.2	21 22 23	2.66	SD GRY VFGRN SHY CALC
0 2 7 0	6728.0-29.0	0.01 0.01		9 N.	10.6 44.6	2 0 2 0 2 0 2 0	2.64 66	SI GRY VFGRN SHY CALC SI GRY VFGRN SHY CALC
	6729.0-31.0			•	 	;	1 1 1	SHALE NO ANALYSIS
58	6731.0-32.0	0.01			25.8	29.U	2.64	STI GRY VFGRN SHY CALC
5 9 9	6732.0-33.0	0.05		8.0 0	0.0	35.2	2.64	ST GRY VFGRN SHY CALC
60 7	6/33.0-34.0 4734.0-35.0	90 ° 0			4 • 0 ° × c		0 0 4 0 4 4 0 4	SD DKKGRY VFGRN SHY CALC SD GRY HFGEN SHY CALC
63	6735.0-36.0	0.06		1.0	37.8	31.5	2. 6U	SI GRY VFGRN SHY CALC
	GALLUF FORMATI	ION CORE	∎ 5 6736-	6743				
63	6736.0-37.0	0.16		0,8	39,8	5 NE	2.61	SD GRY VFGRN SHY CALC **
44	6/3/.0-39.0 6739.0-40.0	0.01		9.0	4 B . B	4.45	22.5	SHALE NO ANALYSIS SD GEY ИЕСЕМ SHY CALY
	6741.0-43.0	-		•	•	- - -	0 0 +	SHALE NO ANALYSIS CORE LOSS
	GALLUF FORMATI	LON CORE	₩ 6 6743	6756				

These analyses, opinions or interpretations are based on observations and materials supplied by the cloint to whome succusive and confidential use, this report is made. The interpretations or opinions expensions of the test judgment of Core Laboratorias, Inc. and Ita officers and employees, assume no responsibility and make no warranty or expressed representative in the moder of Core Laboratorias, Inc. (all errors and compated); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or expressed representative modernitations, or profitableness of any oil, say on other mineral well or sand in conpaction with which such report is used or relied upon.

SAMPLE NUMBER				 NO	GALLUP			FILE ND : 38030-342 ANALYSTS : DSFEV
SAMPLE VUMBER			CONVENTI	ONAL A	NALYSI	3-royle	NG LAW	FOROSITY
	DEPTH	FERM. TO MAXIMUM	AIR (MD) 90 DEG	FOR.	FLUID	SATS. WTR	GRAIN DEN	DESCRIPTION
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5743.0-50.0 5750.0-51.0 5751.0-52.0 5752.0-56.0	0.21		1•6 1•0	40.4	26.9 30.2	2.64 2.61	SHALE NO ANALYSIS SD GRY VFGRN SHY CALC SD GRY VFGRN SHY SL/CALC SHALE NO ANALYSIS
0/	АLLUP FORMAT	ION CORE	* 7 6756-	6770				
67 68 68	5756.0-57.0 5757.0-58.0	<0.01 0.01		0.8 1.0	36.3	40.8 37.9	2.67 2.65	SD GRY VF-FNGRN SHY CALC FYR SD GRY VFGRN SHY SL/CALC
69	5759.0-70.0 5759.0-60.0 5760.0-70.0	0.01	•	н СЧ	- 4 • 22	21.6	2,59	SHALE NU ANALISIS SH BLK VFGRN SL/CALC SHALE NO ANALYSIS
67	ALLUP FORMAT	ION CORE	₽ 8 6770-	6809				
20	5770.0-71.0	4.16	ζί,	ء 1.0	37.9	52.1	2,59	SH BLK VFGRN SL/CALC SHALE NO ANALYETS
. 71	5785.0-86.0	0.65		1 • 1	28.4	52.1	2.64	SID DRKGRY VFGRN SHY SL/CALC **
2	5/86.0-88.0 5788.0-89.0 2708.0-89.0	0.01		ر 1.0	50.6	40.5 20.5	2.60 70	SHALE NU ANALYSIS SH BLK VFGRN SL/CALC SP GRY USGEN SUY FALF BYD **
	5790.0-91.0			-1 : + -i :	•	1 I • • •		SHALE ND ANALYSIS
47 25	5791.0-92.0 5792.0-93.0	0.03		1.0	45.3 35.1	30.2 40.2	0 M 9 9 N N	SU GRY VFGKN SHY SL/CALC SD GRY VFGRN SHY SL/CALC SUALE NO ANALYSTS
76	5794.0-95.0	0.01		0.8	48.4	27.6	2.63	STURE AND ANALISTS STURY VEGEN SHY CALC SHALE NO ANALYSTS
77	5798.0-99.0	0.01		1,1	35.0	40.0 75	2+68	SD GRY VFGRN SHY CALC
262	6800.0-01.0 5800.0-01.0	1.21	1. M	1.2	46.6	29.3	10 ° 10	SD GRY VFGRN SHY CALC **
These analy	rses, opinions or Interpreta	itions are based on of	bservations and materl	als supplied t	iy the client to	, whom, ∎nd fo	r whose exclusion	ve and confidential use, thus report is made. The interpretations or opinions

SMPLE CONVENTIONAL MAALYSIS-FIGYLE'S LAU FOROSITY SMPLE EEFTH PERM. IU 9.16. M.N. PERM. IU PERM. IU </th <th>CONVENTIONAL ANALYSIS-BOTLE'S LAW PORGITY SAMPLE FERN, TU AIR (MU) POR. FLUID SAME GRAIN MUDIBER FERN, TU AIR (MU) POR. FLUID SAME GRAIN MUDIBER 100 1001 001 001 001 0001 0001 0001 0</th> <th>CONVENTIONAL, ANALYSIS-BOYLE 'S LAM POROSITY SAMPLE DETH FERN, 10 AIR (MI) OR. FLUID SATS. GRAIN DESCRIPTION NUMBER DETH MAXIMUN 0.01 VI DIL UTR EIN DESCRIPTION NUMBER DETH MAXIMUN 0.01 VI DIL UTR EIN DESCRIPTION 060010-0710 0.01 VI 0.01 VI 0.01 VI DIL DIR DIR DESCRIPTION 06010-0710 0.01 VI 0.01 VI 0.01 VI DIR DIR</th> <th>MOBIL F LINDRIT</th> <th>ROPUCING TX & H B UNIT † 30</th> <th>NM INC.</th> <th>DATE FORMATI</th> <th>:</th> <th>10-DEC GALLUP</th> <th>-1985</th> <th></th> <th>FILE ND : 38030-3424 ANALYSTS : DS\$EV</th>	CONVENTIONAL ANALYSIS-BOTLE'S LAW PORGITY SAMPLE FERN, TU AIR (MU) POR. FLUID SAME GRAIN MUDIBER FERN, TU AIR (MU) POR. FLUID SAME GRAIN MUDIBER 100 1001 001 001 001 0001 0001 0001 0	CONVENTIONAL, ANALYSIS-BOYLE 'S LAM POROSITY SAMPLE DETH FERN, 10 AIR (MI) OR. FLUID SATS. GRAIN DESCRIPTION NUMBER DETH MAXIMUN 0.01 VI DIL UTR EIN DESCRIPTION NUMBER DETH MAXIMUN 0.01 VI DIL UTR EIN DESCRIPTION 060010-0710 0.01 VI 0.01 VI 0.01 VI DIL DIR DIR DESCRIPTION 06010-0710 0.01 VI 0.01 VI 0.01 VI DIR	MOBIL F LINDRIT	ROPUCING TX & H B UNIT † 30	NM INC.	DATE FORMATI	:	10-DEC GALLUP	-1985		FILE ND : 38030-3424 ANALYSTS : DS\$EV
SAMPLE DEFTH MAXTHUN POR. FLUID GATS. GANN DESCRIFTION NUMBER DEFTH MAXTHUN 90 EGB He 011 UTR EGN DESCRIFTION B0 68010-0210 0.01 0.01 0.03 59.6 27.9 2.57 SH RK VFGNN SIL/CALC B1 680210-0310 0.01 0.03 11.7 37.11 2.57 SH RK VFGNN SIL/CALC CALLUF FORMATION CORE # 9.6099-60433 21.7 2.5.7 SIGN LLOS CALC A6809-0-33.0 0.01 0.03 11.7 3.1.7 2.5.7 SIGN RL/CALC A809-0-33.0 SH RK VFGNN SIL/CALC SHALE NO ANALYSIS	SAMPLE FERN. TU AIX (ND) POR. FLUID AIX. BESCRIFTION NUMBER	SMMPLE FERM. IT0 AIX (NU) FOR. FLUID SATIS. GRAIN DESCRIPTION NUMERER 6601.0-0-02.0 0.01 10 11.0				CONVENT	IONAL A	ISAJUN	S-BOYLE	NAL 2'3	POROSITY
B0 6801.0-02.0 0.01 0.8 580.5 2.57 SH KI VEGN SH	B0 6901.0-02.0 0.01 7.0 58.6 27.7 2.57 SIR UFGRN SL/CALC 6803.0-09.0 0.01 1.0 41.7 37.1 2.67 SIR VEGRN SL/CALC 6803.0-09.0 0.01 1.0 41.7 37.1 2.67 SIR VEGRN SL/CALC 6803.0-09.0 0.01 0.01 2.0 SIR VEGRN SL/CALC 6804.0-09.0 0.01 0.01 2.0 SIR VEGRN SL/CALC 6809.0-043.0 0.01 CORE P.00 AMALYSIS ** FENDIES FRACTURE FERMEAPILITY SHALE - NO AMALYSIS	B0 6801.0-02.0 0.01 0.01 581.6 27.7 S.07 BLK UFGRN SL/CALC 6803.0-091.0 0.01 1.0 411.7 371.1 2.457 SID GRY UFGRN SL/CALC 6803.0-091.0 0.01 1.0 411.7 371.1 2.457 SID GRY UFGRN SL/CALC 6001.0-07.0 0.01 1.0 411.7 371.1 2.457 SID GRY UFGRN SL/CALC 601.0-13.0 0.01 2.67 37.1 2.47 SID SL/CALC 480.0-0-13.0 0.01 COKE 4.9 6809-6.043 SID SL/CALC 48. JENDTES FRACTURE FERMEABILITY SID SL SID SL/CALC NALYSIS	SAMPLE NUMBER	DEPTH	FERM. TO MAXIMUM	AIR (MD) 90 DEG	POR. He	FLUID	SATS. WTR	GRAIN DEN	DESCRIFTION
GALLUF FORMATION CORE # 9 4809-4843 4809-0-43.0 ** DENOTES FRACTURE FERMEABILITY ** DENOTES FRACTURE FERMEABILITY	GALLUF FORMATION CORE # 9 6809–6843 6809.0–43.0 ** DENOTES FRACTURE FERMEABILITY ** DENOTES FRACTURE PERMEABILITY ** DENOTES FRACTURE AND ADDRESS (CONTRACTURE AND ADDRESS (CONTRACTURE) (CONTR	GALLUP FORMATION CDRE # 9.6809-6843 GB09:043:0 X** DENOTES FRACTURE PERMEABILITY T** DENOTES FRACTURE PERMEABILITY T** DENOTES FRACTURE PERMEABILITY Teres and/or a minor and and a minor and a minor and and a minor and and a minor and a minor and and a minor and and a minor and a minor and and and a minor and and a minor and	80 81	6801.0-02.0 6802.0-03.0 6803.0-07.0	0.01	Х.	, 1.0 1.0	58.6 41.7	27.9	2.67	SH BLK VFGRN SL/CALC SD GRY VFGRN SHY CALC CORE LOSS
4809.0-43.0 HALVSIS FRACTURE FERHEABILITY - NO ANALVSIS ** DENDIES FRACTURE FERHEABILITY	6809-013.0 ** DENDTES FRACTURE FERHEADILITY The autors and an an interial suppled by the clean to element and contracted by the clean to element and clean to elem	6807.0–43.0 BIALE –– NO ANALYSIS ** DENDEES FRACTURE FERMEABILITY ** DENDES FRACTURE FERMEABILITY		GALLUP FORMAT	LION CORE	1 9 6809-	-6843				
** DENOTES FRACTURE PERMEADILITY	** DENDTES FRACTURE PERMEABILITY The answer administration of the control of the	** DENOTES FRACTURE FERMEABILITY The subset of the state		6809.0-43.0				•			SHALE NO ANALYSIS
	Tree anter andiana ni bard on obervation nad metidia toplad by the diant to whom, and for whose acclusive and confidential use, this report is made. The interpretations on operations and metidia topplad by the diant to whom, and for whose acclusive and confidential use, this report is made.	These amplest, optimons of interpretations and material ungoined by the client to where, and for whose and for whose and for whose and for whose and for those and a confluent lues. the report in made. The interpretations or provident repretations and material ungoined by the client to whome, and for whose and one excluders and confluent lues. the report in made. The interpretations or provident repretations are to provide a target by the client to whome, and for whose actuality and and a confluent lues, the report in made. The interpretations or provident repretations are to activity and material weighted by the client to endowed and and the confluent lues. the report in made. The interpretations or provident repretations are to activity and and activity and material weighted the constraint or experiments.		** nenotes F	FRACTURE FE	RMEABILIT	۲۲	••	•		
	These analyses continuous are based on observations and materials upplied by the data to whom, and for whose sacitative and confidential use, this report is made. The Interpretations on optimises	Thes anlys, ophion o incretation are based on obstrations and matchla upplied by the clean to whom, and for whom, and for whom, and for whom, and for whom and for the transition ver contions to the set in galaxies in the port is rande. The interpretations we continue the set in galaxies in a major set.						·			
	Thes aniver, ominon or interestations are based on observations and materials upplied by the data to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opninon	Tes antyst, opilon or interretation are based on observation and materials upplied by the client to abon, and for abon acclubre and confidential use. Hi repeit in mule. The interpretation or opinion express tigners on the set judginent of Cone L-bonatore, Jac. and and on the and actions and employees, anume not responsibility and make no warranty or									
	Tree antiver, ominon or interretutions are based on observations and metrikit upplied by the dient to whom, and for whose exclusive and confidential use, this report is made. The interpretations on opprions	Thes aniys, opinon or interpretation are based on observation and muscial, uspiled by the client to whom, and for whose secturies and confidential use. (Mi report in mude. The interpretations or opinions or expensibility, and make and surfacential use, this report in mude. The interpretations or opinions or expressible and for show secturies and confidential use. (Mi report in mude. The interpretations or opinions are strated and set to whom, and for whose secturies and confidential use. (Mi report in mude. The interpretations or opinions are and an and confidential the and its officer, and employee, and									
	Tree andron or internetations are based on observations and materials upplied by the clear to whose secturity and or whose and confidential use, this report is made. The interpretations on opinions	Thes antyse, opinions or interpretations are discriminated by the client to whom, and for whose acclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best before the rest bebraronts, inc. (all struers and confidential use, this report is made. The interpretations or opinions									
	Thes and/ver onlines of hittings and matching upplied by (b) client to whom and for whom and confidential use, this report is made. The interpretations on opprints	These andyse, opinions of interpretations are based on observations and materials upplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations on opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and controlet, Inc. and Ito officers and onfidential use, this report is made. The interpretations or opinions									
	Thes andves onlines of interactations are based on observations and materials supplied by the clear to whom, and for whose exclusive and confidential use, this report is made. The interpretations on optimions	These analyses, opinions or interpretations are based on observations and materials supplied by the cleat to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best of Core Laboratories, Inc. (all errors and confidential use, this report is made. The interpretations or opinions			-						
	The solutions of internetations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, titls report is made. The interpretations or opinions	Thes analyse, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed tepresent the best judgineat of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its offloses and comfidential use, interpretations or opinions									
	These analyses cointions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions	These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed tepesent the best judgment of Core Laboratories, inc. (all errors and materials are busitories, inc. (all errors and control of control employees); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or									
	These analyses oninions of interactations are based on observations and materials augplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions	These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expines and confidential use judgment of Core Laboratories, inc. (all errors and omissions and material); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or									
	These analyses animions of interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions	These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expires and confidential use, this report is made. The interpretations or opinions expires and confidential use, this report is made. The interpretations or opinions or expires and confidential use, the best judginent of Core Laboratories, inc. and interpretations on interpretations and mate no warranty or									
	These analyses animicans of interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions	These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or									
	These analyses animons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions	These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expended is experimented to experiment of core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or					-				

INTERPRETATION OF FLUID SATURATIONS ASSUMING 10% FLUSH AND 20% RECOVERY OF OIL-IN-PLACE AFTER FLUSH (FINAL PRESSURE ATMOSPHERIC)

					······		Less 20%		
	LA	BORATORY _			Initial		"Production"	Stock Tank	Column 8
Sample	Perm		Satur	ations	Reservoir	Less 10%	to Atmospheric	Volume	Minus
Number	(md)	Porosity	$\frac{011}{(2)}$	Water	Oil-in-Place	Flush	Pressure	Remaining	$\frac{\text{Column } 3}{(0)}$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	0.01	2.5	39.0	39.0	61.0	54.9	43.9	31.8	(7.2)
2	0.02	2.0	34.6	40.3	59.7	53.7	43.0	31.1	(3.5)
3	<0.01	1.0	39.6	35.2	64.8	58.3	46.7	33.8	(5.8)
4	0.42	0.9	49.5	22.0	78.0	70.2	56.2	40.7	(8,8)
5	< 0.01	0.6	49.8	16.6	83.4	75.1	60.0	43.5	(6.3)
6	<0.01	1.0	52.4	22.1	77.9	70.1	56.1	40.6	(11.8)
7	< 0.01	0.9	41.2	34.3	65.7	59.1	47.3	34, 3	(6,9)
8	0.02	0.7	45.6	32.9	67.1	60.4	48.3	35.0	(10.6)
9	< 0.01	0.5	42.3	35.2	64.8	58.3	46.7	33.8	(8.5)
10	0.02	1.1	38.6	33.1	66.9	60.2	48.2	34.9	(3.7)
11	0.10	0.5	38.8	32.4	67.6	60.8	48.7	35.3	(3.5)
12	<0.01	1.7	34.2	34.2	65.8	59.2	47.4	34.3	0.1
1.3	0.02	2.7	24.9	33.1	66.9	60.2	48.2	34.9	10.0
1.4	0.01	2.9	22.5	50.0	50.0	45.0	36.0	26.1	3.6
15	0.01	3.5	31.9	31.9	68.1	61.3	49.0	35.5	3.6
16	0.01	3.1	30.5	30.5	69.5	62.6	50.0	36.3	5.8
17	0.03	2.3	28.8	38.4	61.6	55.4	44.4	32.1	3.3
1.8	0.14	2.5	19.6	39.2	60.8	54.7	43.8	31.7	12.1
1.9	0.07	2.8	32.0	42.7	57.3	51.6	41.3	29.9	(2.1)
20	0.02	2.2	17.5	60.0	40.0	36.0	28.8	20,9	3.4
21	0.16	2.1	24.5	59.9	40.1	36.1	28.9	20.9	(3.6)
22	0.06	1.6	21.1	61.0	39.0	35.1	28.1	20.3	(0.8)
23	0.12	1.5	16.6	56.8	43.2	30.9	31.1	22.5	5.9
24	2.85	2.0	22.3	50.9	49.1	44.2	35.4	25.6	3.3
25	11.00	2.2	0.0	56.4	43.6	39.2	31.4	22.7	22.7
26	0.06	2.6	20.1	57.5	42.5	38.3	30.6	22.2	2.1
27	0.01	1.8	18.6	47.9	52.1	46.9	37.5	27.2	8.6
28	0.03	1.9	32.4	36.0	64.0	57.6	46.1	33.4	1.0
29	0.03	2.4	18.3	52.4	47.6	42.8	34.3	24.8	6.5
30	0.79	2.0	20.4	52.5	47.5	42.8	34, 2	24.8	4.4
31	0.02	1.5	23.9	47.9	52.1	46.9	37.5	27.2	3.3
32	<0.01	1.8	22.5	36.0	64.0	57.6	46.1	33.4	10.9
33	<0.01	2.5	34.7	30.8	69.2	62.3	49.8	36.1	1.4
34	0.06	1.5	24.6	49.1	50.9	45.8	36.6	26.6	2.0
35	0.02	2.2	30.2	51.7	48.3	43.5	34.8	25.2	(5.0)
36	0.36	2.6	21.8	48.5	51.5	46.4	37.1	26.9	5.1
37	0.01	2.5	26.2	29.9	70.1	63.1	50.5	36.6	10.4
38	<0.01	2.6	43.6	31.1	68.9	62.0	49.6	35.9	(7.7)
39	0.01	2.8	39.3	32.8	67.2	60.5	48.4	35.1	(4.2)
40	0.01	2.2	38.5	33.0	67.0	60.3	48.2	35.0	(3.5)
41	<0.01	1.3	40.0	26.7	73.3	66.0	52.8	38.2	(1.8)
42	<0.01	2.1	39.3	26.2	73.8	66.4	53.1	38.5	(0.8)
43	<0.01	1.3	39.1	22.4	77.6	69.8	55.9	40.5	1.4
44	<0.01	1.0	42.8	28.6	71.4	64.3	51.4	37.3	(5.5)
45	<0.01	1.3	0.UC	22.3	14.1	61.2	23.8	39.0	(11.0)

INTERPRETATION OF FLUID SATURATIONS ASSUMING 10% FLUSH AND 20% RECOVERY OF OIL-IN-PLACE AFTER FLUSH (FINAL PRESSURE ATMOSPHERIC)

PAGE 2

					CALCULAT	ED SATURATIO	NS FOR GIVEN CONDI	<u> </u>	
	T.A	BOBATORY			Initial		"Production"	Stock Tank	Column 8
Sample	Perm		Satur	ations	Reservoir	Less 10%	to Atmospheric	Volume	Minus
Number	(md)	Porosity	Oil	Water	Oil-in-Place	Flush	Pressure	Remaining	Column 3
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
46	0.01	2.4	36.2	24.1	75.9	68.3	54.6	39.6	3.4
47	0.01	2.4	41.7	34.7	65.3	58.8	47.0	34.1	(7.6)
48	0.01	2.0	44.7	31.9	68.1	61.3	49.0	35.5	(9.2)
49	0.01	2.2	35.5	31.6	68.4	61.6	49.2	35.7	0.2
50	0.01	1.5	26.7	30.6	69.4	62.5	50.0	36.2	9.5
51	0.32	2.2	32.8	32.8	67.2	60.5	48.4	35.1	2.3
52	<0.01	1.0	10.6	42.4	57.6	51.8	41.5	30.1	19.5
53	0.02	1.5	27.1	30.9	69.1	62.2	49.8	36.1	9.0
54	<0.01	1.1	30.3	34.6	65.4	58.9	47.1	34.1	3.8
55	0.05	1.3	36.2	32.2	67.8	61.0	48.8	35.4	(0.8)
56	0.09	1.8	10.6	42.5	57.5	51.8	41.4	30.0	19.4
57	0.01	1.7	44.6	29.8	70.2	63.2	50.5	36.6	(8.0)
58	0.01	1.2	25.8	29.5	70.5	63.5	50.8	36.8	11.0
59	0.05	0.8	0.0	35.2	64.8	58.3	46.7	33.8	33.8
60	0.08	0.5	30.4	27.1	72.9	65.6	52.5	38.0	7.6
61	0.03	0.8	26.0	23.1	76.9	69.2	55.4	40.1	14.1
62	0.06	1.0	37.8	31.5	68.5	61.7	49.3	35.7	(2.1)
63	0.16	0.8	39.8	33.2	66.8	60.1	48.1	34.9	(4.9)
64	0.01	0.6	48.8	24.4	75.6	68.0	54.4	39.4	(9.4)
65	0.21	1.6	40.4	26.9	73.1	65.8	52.6	38.1	(2.3)
66	0.01	1.0	42.3	30.2	69.8	62.8	50.3	36.4	(5.9)
67	<0.01	0.8	36.3	40.8	59.2	53.3	42.6	30.9	(5,4)
68	0.01	1.0	43.3	37.9	62.1	55.9	44.7	32.4	(10.9)
6 9	0.01	1.2	32.4	21.6	78.4	70.6	56.4	40.9	8.5
70	4.16	1.0	37.9	52.1	47.9	43.1	34.5	25.0	(12.9)
71	0.65	1.1	28.4	52.1	47.9	43.1	34.5	25.0	(3.4)
72	0.01	1.0	50.6	40.5	59.5	53.6	42.8	31.0	(19.6)
73	0.81	1.1	38.2	38.2	61.8	55.6	44.5	32.2	(6.0)
74	0.01	0.8	45.3	30.2	69.8	62.8	50.3	36.4	(8.9)
75	0.03	1.0	35.1	40.2	59.8	53.8	43.1	31.2	(3.9)
76	0.01	0.8	48.4	27.6	72.4	65.2	52.1	37.8	(10.6)
77	0.01	1.1	35.0	40.0	60.0	54.0	43.2	31.3	(3.7)
78	0.01	0.4	32.3	35.9	64.1	57.7	46.2	33.4	1.1
79	1.21	1.2	46.6	39.3	60.7	54.6	43.7	31.7	(14.9)
80	0.01	0.8	58.6	27.9	72.1	64.9	51.9	37.6	(21.0)
81	0.01	1.0	41.7	37.1	62.9	56.6	45.3	32.8	(8.9)

Column 1: Permeability, millidarcies. Column 2: Percent of bulk volume.

Column 3: Percent of pore space.

Column 4: Percent of pore space. Column 5: Initial oil-in-place, percent of pore space at initial reservoir pressure. 100 minus Column 4.

Column 5: Column 5 x .9 (reservoir volume after flushing, percent of pore space). Column 7: Column 6 x .8 (reservoir volume after "production" of 20% of oil-in-place after flushing). Column 8: Stock tank volume remaining in reservoir after "production" and expulsion of flushing water: Column 7 divided by FVF of 1.38.

Column 9: Column 8 minus Column 3, theoretical saturation less laboratory saturation. (Negative figure means sample is suspect - or flushing of less than 10% occurred).

INTERPRETATION OF FLUID SATURATIONS ASSUMING 0% FLUSH AND 20% RECOVERY OF OIL-IN-PLACE (FINAL PRESSURE ATMOSPHERIC)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		۲.۵	BUBATUBA			Initial		Less 20%	Stock Tank	Column 9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample	Perm	Dorogity	Satur	ations	Reservoir	Less 0%	to Atmospheric	Volume	Minus
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nullber	(1)	(2)	$\frac{011}{(3)}$	$\frac{water}{(4)}$	(5)	(6)	(7)	(8)	(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0.01	2.5	39.0	3 9. 0	61.0	61.0	48.8	35.4	(3.6)
3 24.01 1.0 35.0 35.2 64.8 64.8 31.6 31.6 (2.0) 4 0.42 0.9 49.5 22.0 78.0 78.0 62.4 45.2 (4.3) 5 <0.01	2	0.02	2.0	34.6	40.3	59.7	59.7	47.8	34.6	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	<0.01	1.0	39.6	35.2	64.8	64.8	51.8	37.6	(2.0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0.42	0.9	49.5	22.0	78.0	78.0	62.4	45.2	(4.3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	<0.01	1.0	52.4	22.1	77.9	77.9	62.3	45.2	(7.2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	<0.01	0.9	41.2	34.3	65.7	65.7	52.6	38.1	(3.1)
3 < 0.01 0.5 42.3 35.2 64.8 64.8 51.8 37.6 $(4,7)$ 10 0.02 1.1 38.6 33.1 66.9 67.6 57.6 54.1 39.2 0.4 12 < 0.01 1.7 34.2 34.2 65.8 65.8 52.6 38.1 3.9 13 0.02 2.7 24.9 33.1 66.9 66.9 53.5 38.8 13.9 14 0.01 3.1 30.5 50.0 50.0 40.0 29.0 6.5 15 0.01 3.1 30.5 69.5 69.5 55.6 40.3 98.8 16 0.01 3.1 30.5 30.5 69.5 55.6 40.3 35.7 6.9 18 0.14 2.5 12.6 57.3 57.3 45.8 33.2 1.2 22.6 1.5 22.6 1.5 22.6 1.5 22.6 1.5 22.6 1.5 <td< td=""><td>8</td><td>0.02</td><td>0.7</td><td>45.6</td><td>32.9</td><td>67.1</td><td>67.1</td><td>53.7</td><td>38.9</td><td>(6.7)</td></td<>	8	0.02	0.7	45.6	32.9	67.1	67.1	53.7	38.9	(6.7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	<0.01	0.5	42.3	35.2	64.8	64.8	51.8	37.6	(4.7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.02	1.1	38.6	33.1	66.9 67.6	66.9	53.5	38.8	0.2
13 0.02 2.7 24.9 33.1 66.9 50.5 50.6 50.6 50.7 <	12	< 0.10	1.7	34.2	34.2	65.8	67.8	54.⊥ 52.6	39.2	0.4 3.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00	~ 7	24.0				52.0	50.1	5.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	0.02	2.7	24.9	33.L 50.0	66.9 50 0	66.9 50 0	53.5	38.8	13.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	0.01	3.5	31.9	31.9	68.1	68.1	54.5	39.5	7.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	0.01	3.1	30.5	30.5	69.5	69.5	55.6	40.3	9.8
18 0.14 2.5 19.6 39.2 60.8 60.8 60.8 48.6 35.2 15.6 19 0.07 2.8 32.0 42.7 57.3 45.8 33.2 5.7 20 0.02 2.2 17.5 60.0 40.0 32.0 32.0 5.7 21 0.16 2.1 24.5 59.9 40.1 40.1 32.1 23.2 5.7 22 0.06 1.6 21.1 61.0 39.0 39.0 31.2 23.2 6.2 23 0.12 1.5 16.6 56.8 43.2 43.2 34.6 25.3 26.5 6.2 25 11.00 2.2 0.0 56.4 43.6 43.6 34.9 25.3 25.3 25.3 26 0.06 2.6 20.1 57.5 42.5 42.5 34.0 24.6 4.5 27 0.01 1.8 18.6 47.9 52.1 52.1 41.7 30.2 6.3 30 0.79 2.0	17	0.03	2.3	28.8	38.4	61.6	61.6	49.3	35.7	6.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	0.14	2.5	19.0	39.2	60.8	60.8	48.6	35.2	15.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	0.07	2.8	32.0	42.7	57.3	57.3	45.8	33.2	1.2
210.162.124.559.940.140.132.123.2(1.3)220.061.621.161.039.039.031.222.61.5230.121.516.656.843.243.234.625.028.5242.2852.022.350.949.149.139.328.56.22511.002.20.056.443.643.634.925.325.3260.062.620.157.542.542.534.024.64.5270.011.818.647.952.152.141.730.211.6280.031.932.436.064.064.051.237.14.7290.032.418.352.447.647.538.027.57.1310.021.523.947.952.152.141.730.26.332<0.01	20	0.02	2.2	17.5	60.0	40.0	40.0	32.0	23.2	5.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	0.10	4. 1	24.0	29.9	40.L	40.L	32.1	23.2	(1.3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	0.06	1.6	21.1	61.0	39.0	39.0	31.2	22.6	1.5
14 1.00 2.2 0.0 56.4 43.6 43.6 34.9 25.3 26.3 6.2 25 0.06 2.6 20.1 57.5 42.5 42.5 34.0 24.6 4.5 27 0.01 1.8 18.6 47.9 52.1 52.1 41.7 30.2 11.6 28 0.03 1.9 32.4 36.0 64.0 64.0 51.2 37.1 4.7 29 0.03 2.4 18.3 52.4 47.6 47.5 38.0 27.5 7.1 31 0.02 1.5 23.9 47.9 52.1 52.1 41.7 30.2 6.3 30 0.79 2.0 20.4 52.5 47.5 47.5 38.0 27.5 7.1 31 0.02 1.5 23.9 47.9 52.1 52.1 41.7 30.2 6.3 32 <0.01 1.8 22.5 36.0 64.0 64.0 51.2 37.1 14.6 33 <0.01 1.8 22.5 34.7 30.8 69.2 55.4 40.1 5.4 34 0.06 1.5 24.6 49.1 50.9 50.9 40.7 29.5 4.9 35 0.02 2.2 30.2 51.7 48.3 48.3 38.6 28.0 (2.2) 36 0.36 2.6 21.8 48.5 51.5 51.5 41.2 29.9 8.1 <t< td=""><td>23</td><td>2.85</td><td>1.5</td><td>10.0 22 3</td><td>50.8</td><td>43.2</td><td>43.2</td><td>34.6</td><td>25.0</td><td>8.4</td></t<>	23	2.85	1.5	10.0 22 3	50.8	43.2	43.2	34.6	25.0	8.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.05	2.0	240 ° J	50.5	47.1	49.1	59.5	20. J	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	11.00	2.2	0.0	56.4	43.6	43.6	34.9	25.3	25.3
2.7 0.01 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 28 0.03 1.9 32.4 36.0 64.0 64.0 51.2 37.1 4.7 29 0.03 2.4 18.3 52.4 47.6 47.6 38.1 27.6 9.3 30 0.79 20.4 52.5 47.5 47.5 38.0 27.5 7.1 31 0.02 1.5 23.9 47.9 52.1 52.1 41.7 30.2 6.3 32 <0.01 1.8 22.5 36.0 64.0 64.0 51.2 37.1 14.6 33 <0.01 2.5 34.7 30.8 69.2 69.2 55.4 40.1 5.4 34 0.06 1.5 24.6 49.1 50.9 50.9 40.7 29.5 4.9 35 0.02 2.2 30.2 51.7 48.3 48.3 38.6 28.0 (2.2) 36 0.36 2.6 21.8 48.5 51.5 51.5 41.2 29.9 8.1 37 0.01 2.5 26.2 29.9 70.1 70.1 56.1 40.6 14.4 38 <0.01 2.6 43.6 31.1 68.9 68.9 55.1 39.9 (3.7) 39 0.01 2.2 38.5 33.0 67.0 67.0 53.6 38.8 0.3 41 <	20	0.05	2.0	18.6	57.5	42.5	42.5	34.0	24.6	4.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	0.01	1.0	20.0		52.1	54.1	41.7	50.2	11.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	0.03	2.4	32.4 18.3	36.U 52.4	64.0 47.6	64.0 47.6	51.2	37.1	4.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	0.79	2.0	20.4	52.5	47.5	47.5	38.0	27.5	7.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	0,02	1.5	23.9	47.9	52.1	5 2. 1	41.7	30.2	6.3
33<0.01 2.5 34.7 30.8 69.2 69.2 55.4 40.1 5.4 34 0.06 1.5 24.6 49.1 50.9 50.9 40.7 29.5 4.9 35 0.02 2.2 30.2 51.7 48.3 48.3 38.6 28.0 (2.2) 36 0.36 2.6 21.8 48.5 51.5 51.5 41.2 29.9 8.1 37 0.01 2.5 26.2 29.9 70.1 70.1 56.1 40.6 14.4 38 <0.01 2.6 43.6 31.1 68.9 68.9 55.1 39.9 (3.7) 39 0.01 2.8 39.3 32.8 67.2 67.2 53.8 39.0 (0.3) 40 0.01 2.2 38.5 33.0 67.0 67.0 53.6 38.8 0.3 41 <0.01 1.3 40.0 26.7 73.3 73.3 58.6 42.5 2.5 42 <0.01 1.3 39.1 22.4 77.6 77.6 62.1 45.0 5.9 43 <0.01 1.3 39.1 22.4 77.6 77.6 62.1 45.0 5.9 44 <0.01 1.3 50.6 25.3 74.7 74.7 59.8 43.3 (7.3)	32	<0.01	1.8	22.5	36.0	64.0	64.0	51.2	37.1	14.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	<0.01	2.5	34./	30.8	69.2	69.2	55.4	40.1	5.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	0.06	1.5	24.6	49.1	50.9	50.9	40.7	29.5	4.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	0.02	2.2	30.2	51./ 48.5	48.3	48.3	38.6 41 2	28.0	(2.2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.0		1015	51.5	51.5	47.2	23.3	0.1
39 0.01 2.8 39.3 32.8 67.2 67.2 53.1 39.9 (3.7) 40 0.01 2.2 38.5 33.0 67.0 67.2 53.8 39.0 (0.3) 41 <0.01 1.3 40.0 26.7 73.3 73.3 58.6 42.5 2.5 42 <0.01 2.1 39.3 26.2 73.8 73.8 59.0 42.8 3.5 43 <0.01 1.3 39.1 22.4 77.6 77.6 62.1 45.0 5.9 44 <0.01 1.0 42.8 28.6 71.4 71.4 57.1 41.4 (1.4) 45 <0.01 1.3 50.6 25.3 74.7 74.7 59.8 43.3 (7.3)	37	0.01	2.5	26.2	29.9	70.1	70.1	56.1	40.6	14.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	0.01	2.8	39.3	32.8	67.2	67.2	53.8	39.9 39.0	(3,7) (0,3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	0.01	2.2	38.5	33.0	67.0	67.0	53-6	38.8	0.3
42 <0.01 2.1 39.3 26.2 73.8 73.8 59.0 42.8 3.5 43 <0.01 1.3 39.1 22.4 77.6 77.6 62.1 45.0 5.9 44 <0.01 1.0 42.8 28.6 71.4 71.4 57.1 41.4 (1.4) 45 <0.01 1.3 50.6 25.3 74.7 74.7 59.8 43.3 (7.3)	41	<0.01	1.3	40.0	26.7	73.3	73.3	58.6	42.5	2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	<0.01	2.1	39.3	26.2	73.8	73.8	59.0	42.8	3.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	<0.01	1.3	39.1	22.4	77.6	77.6	62.1	45.0	5.9
	44	< 0.01	1.3	42.8 50.6	25.3	74.7	71.4 74.7	57.L	41.4 43.3	(±.4) (7.3)

CALCULATED SATURATIONS FOR GIVEN CONDITIONS

INTERPRETATION OF FLUID SATURATIONS ASSUMING 0% FLUSH AND 20% RECOVERY OF OIL-IN-PLACE (FINAL PRESSURE ATMOSPHERIC)

PAGE 2

					CALCULATED SATURATIONS FOR GIVEN CONDITIONS								
	LA	BORATORY	Cabir	ations	Initial	Logg (P	Less 20% "Production"	Stock Tank	Column 8				
Sampre	Perm	Deresity	Satur	Water	Active Discontinue	Less 08	Drogging	Domaining	Column 2				
Number	$\frac{(m\alpha)}{(1)}$	$\frac{\text{porosity}}{(2)}$	$\frac{011}{(3)}$	$\frac{water}{(4)}$	(5)	(6)	(7)	(8)	(9)				
46	0.01	2.4	36.2	24.1	75.9	75,9	60.7	44.0	7.8				
47	0.01	2.4	41.7	34.7	65.3	65.3	52.2	37.9	(3.8)				
48	0.01	2.0	44.7	31.9	68.1	68.1	54.5	39.5	(5.2)				
49	0.01	2.2	35.5	31.6	68.4	68.4	54.7	39.7	4.2				
50	0.01	1.5	26.7	30.6	69.4	69.4	55.5	40.2	13.5				
51	0.32	2.2	32.8	32.8	67.2	67.2	53.8	39.0	6.2				
52	<0.01	1.0	10.6	42.4	57.6	57.6	46.1	33.4	22.8				
53	0.02	1.5	27.1	30.9	69.1	69.1	55.3	40.1	13.0				
54	<0.01	1.1	30.3	34.6	65.4	65.4	52.3	37.9	7.6				
55	0.05	1.3	36.2	32.2	67.8	67.8	54.2	39.3	3.1				
56	0.09	1.8	10.6	42.5	57.5	57.5	46.0	33.3	22.7				
57	0.01	1.7	44.6	29.8	70.2	70.2	56.2	40.7	(3.9)				
58	0.01	1.2	25.8	29.5	70.5	70.5	56.4	40.9	15.1				
59	0.05	0.8	0.0	35.2	64.8	64.8	51.8	37.6	37.6				
60	0.08	0.5	30.4	27.1	/2.9	72.9	58.3	42.3	11.9				
61	0.03	0.8	26.0	23.1	76.9	76.9	61.5	44.6	18.6				
62	0.06	1.0	37.8	31.5	68.5	68.5	54.8	39.7	1.9				
63	0.16	0.8	39.8	33.2	66.8	66.8	53.4	38. /	(1.1)				
64	0.01	0.6	48.8	24.4	75.6	75.6	60.5	43.8	(5.0)				
65	0.21	1.6	40.4	26.9	73.1	73.1	58.5	42.4	2.0				
66	0.01	1.0	42.3	30.2	69.8	69.8	55.8	40.5	(1.8)				
67	~0. 01	0.8	36.3	40.8	59.2	59.2	47.4	34.3	(2.0)				
68	0.01	1.0	43.3	37.9	62.1	62.1	49.7	36.0	(7.3)				
69	0.01	1.2	32.4	21.6	78.4	78.4	62.7	45.4	13.0				
70	4.16	1.0	37.9	52.1	47.9	47.9	38.3	27.8	(10.1)				
71	0.65	1.1	28.4	52.1	47.9	47.9	38.3	27.8	(0.6)				
72	0.01	1.0	50.6	40.5	59.5	59.5	47.6	34.5	(16.1)				
73	0.81	1.1	38.2	38.2	61.8	61.3	49.4	35.8	(2.4)				
74	0.01	0.8	45.3	30.2	69.8	69.8	55.8	40.5	(4.8)				
75	0.03	1.0	35.1	40.2	59.8	59.8	47.8	34.7	(0.4)				
76	0.01	0.8	48.4	27.6	72.4	72.4	57.9	42.0	(6.4)				
77	0.01	1.1	35.0	40.0	60.0	60.0	48.0	34.8	(0.2)				
78	0.01	0.4	32.3	35.9	64.1	64.1	51.3	37.2	4.9				
79	1.21	1.2	46.6	39.3	60.7	60.7	48.6	35.2	(11.4)				
80	0.01	0.8	58.6	27.9	72.1	72.1	57.7	41.8	(16.8)				
81	0.01	L.0	41.7	31.1	62.9	62.9	50.3	36.5	(5.2)				

Column 1: Permeability, millidarcies.

Column 2: Percent of bulk volume.

Column 3: Percent of pore space. Column 4: Percent of pore space.

Column 5: Initial oil-in-place, percent of pore space at initial reservoir pressure. 100 Minus Column 4.

Column 6: Same as Column 5 (assumes 0% flush of core by circulating fluid). Column 7: Column 6 x .8 (reservoir volume after "production" of 20% of oil-in-place). Column 8: Stock tank volume remaining in reservoir after "production": Column 7 divided by FVF of 1.38.

Column 9: Column 8 minus Column 3, theoretical saturation less laboratory saturation. (Negative figure means sample is suspect.)

INTERPRETATION OF FLUID SATURATIONS ASSUMING 0% FLUSH AND "PRODUCTION" REPRESENTED BY DIFFERENCE OF STOCK TANK VOLUMES

							"Production" to 0# (gauge) Reservoir Pressure (Stock Tank Volumes)		
	I.A	BORATORY			Initial O	il-in-Place	"Production"	"Production"	
Sample	Perm		Satura	ations	Reservoir	Stock Tank	Percent of	Percent of	
Number	(md)	Porosity	Oil	Water	Volume	Volume	Pore Space	Oil-in-Place	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
1	0.01	2 5	39.0	39.0	61 0	44 2	5.2	11.9	
2	0.01	2.0	34.6	40.3	59.7	13 3	87	20 0	
ว้	∠0.01	1.0	39.6	35.2	64.8	47 0	7 4	15.7	
5	-0.01	1.0	5510	55.2	0110	47.0	/ • •	13. /	
4	0.42	0.9	49.5	22.0	78.0	56.5	7.0	12.4	
5	<0.01	0.6	49.8	16.6	83.4	60.4	10.6	17.6	
6	<0.01	1.0	52.4	22.1	77.9	56.4	4.0	7.2	
7	< 0, 01	0.9	41.2	34.3	65.7	47.6	6.4	13.5	
8	0.02	0.7	45.6	32.9	67.1	48.6	3.0	6.2	
9	< 0.01	0.5	42.3	35.2	64.8	47.0	4.7	9.9	
10	0.02	1.1	38.0	33.L	66.9	48.5	9.9	20.4	
11	-0.01	0.5	20.0	34.4	67.0	49.0	12 5	20.8	
12	~0.0I	1. /	54.2	34.4	0.0	4/./	T3• 2	20.3	
13	0.02	2.7	24.9	33.1	66.9	48.5	23.6	48.6	
14	0.01	2.9	22.5	5 0. 0	50.0	36.2	13.7	37.9	
15	0.01	3.5	31.9	31.9	68.1	49.3	17.4	35.4	
16	0.01	3 1	30.5	30 5	69 5	50 4	19.9	20 /	
17	0.03	2.3	28.8	38.4	61.6	44.6	15.8	35.5	
18	0.14	2.5	19.6	39.2	60.8	44.1	24.5	55.5	
19	0.07	2.8	32.0	42.7	57.3	41.5	9.5	22.9	
20	0.02	2.2	1/.5	50.U	40.0	29.0	11.5	39.6	
21	0.10	2.1	24.0	59.9	40.1	29.1	4.0	15.7	
22	0.06	1.6	21.1	61.0	39.0	28.3	7.2	25, 3	
23	0.12	1.5	16.6	56.8	43.2	31.3	14.7	47.0	
24	2.85	2.0	22.3	50.9	49.1	35.6	13.3	37.3	
25	11 00	2 2	0.0	56 4	43.6	31.6	31.6	100.0	
26	0.06	2.6	20.1	57.5	42.5	30.8	10.7	34.7	
27	0.01	1.8	18.6	47.9	52.1	37.8	19.2	50.7	
20	0.07	1.0	22.4	26.0	64.0	A.C. A	14.0	20.1	
28	0.03	L.9 2 4	193	52 4	04.0 47.6	40.4	14.0	30.1 46 9	
30	0.03	2.0	20.4	52.5	47.5	34.4	14.0	40.9	
50				5-00		5	1.00	101 /	
31	0.02	1.5	23.9	47.9	52.1	37.8	13.9	36.7	
32	<0.01	1.8	22.5	36.0	64.0	46.4	23.9	51.5	
33	<0.01	2.5	34./	30.8	69.2	50.1	15.4	30.8	
34	0.06	1.5	24.6	49.1	50.9	36.9	12.3	33.3	
35	0.02	2.2	30.2	51.7	48.3	35.0	4.8	13.7	
36	0.36	2.6	21.8	48.5	51.5	37.3	15.5	41.6	
	0.01	2 5	26.2	20.0	70.1	50.9	24 6	49.4	
37 38	∠0.01	2.5	40.4 17 6	27.9	10.I	20.2	24.0	40.4 10 7	
39	0.01	2.8	39.3	32.8	67.2	48.7	9.4	19.3	
				-					
40	0.01	2.2	38.5	33.0	67.0	48.6	10.1	20.7	
4]	40.01	1.3	40.0	26.7	73.3	53.1	13.1	24.7	
42	<u.u1< td=""><td>2.1</td><td>39.3</td><td>20.2</td><td>/3.8</td><td>53.5</td><td>14.2</td><td>26.5</td></u.u1<>	2.1	39.3	20.2	/3.8	53.5	14.2	26.5	
43	<0.01	1.3	39.1	22.4	77.6	56.2	17.1	30.5	
44	<-0.01	1.0	42.8	28.6	71.4	51.7	8.9	17.3	
45	< 0.01	1.3	50.6	25.3	74.7	54.1	3.5	6.5	

INTERPRETATION OF FLUID SATURATIONS ASSUMING 0% FLUSH AND "PRODUCTION" REPRESENTED BY DIFFERENCE OF STOCK TANK VOLUMES

PAGE 2

							"Production" to 0# (gauge) Reservoir Pressure (Stock Tank Volumes)			
Sample	L2 Perm	BORATORY	Satu	rations	<u>Initial O</u> Reservoir	il-in-Place Stock Tank	"Production" Percent of	"Production" Percent of		
Numper	(md) (1)	Porosity (2)	$\frac{\text{Oil}}{(3)}$	Water (4)	Volume (5)	Volume (6)	Pore Space (7)	Oil-in-Place (8)		
46 47	0.01	2.4 2.4	36.2 41.7	24.1 34.7	75 . 9	55.0 47.3	18.8	34.2 11.9		
48	0.01	2.0	44.7	31.9	68.1	49.3	4.6	9.4		
49 50	0.01 0.01	2.2	35.5 26.7	31.6 30.6	68.4 69.4	49.6 50.3	14.1 23.6	28.4 46.9		
51	0.32	2.2	32.8	32.8	67.2	48.7	15.9	32.6		
52 53	<0.01 0.02	1.0 1.5	10.6 27.1	42.4 30.9	57.6 69.1	41.7 50.1	31.1 23.0	74.6 45.9		
54	<0.01	Te T	30.3	J4.0	0J.4	47.4	1/•1.	20• T		
55 56	0.05	1.3 1.8	36.2 10.6	32.2 42.5	67.8 57.5	49.1 41.7	12.9 31.1	26.3 74.6		
57	0.01	1.7	44.6	29.8	70.2	50.9	6.3	12.3		
58	0.01	1.2	25.8	29.5	70.5	51.1	25.3	49.5		
59 60	0.05 0.08	0.8 0.5	0.0 30.4	35.2 27.1	64.8 72.9	47.0 52.8	47.0 22.4	100.0 42.5		
61	0.03	0.8	26.0	23.1	76.9	55.7	29.7	53.3		
62 63	0.06 0.16	1.0 0.8	37.8 39.8	31.5 33.2	68.5 66.8	49.6 48.4	11.8 8.6	23.8 17.8		
64	0.01	0.6	48.8	24.4	75.6	54.8	6.0	10.9		
65 66	0.21 0.01	1.6 1.0	40.4 42.3	26.9 30.2	73.1 69.8	53.0 50.6	12.6 8.3	23.7 16.4		
67	< 0. 01	0.8	36.3	40.8	59.2	42.9	6.6	15 4		
68	0.01	1.0	43.3	37.9	62.1	45.0	1.7	3.8		
69	0.01	1.2	32.4	21.6	/8.4	56.8	24.4	43.0		
70 71	4.16	1.0	37.9 28.4	52.1 52.1	47.9 47 9	34.7	(3.2)	(9.2)		
72	0.01	1.0	50.6	40.5	59.5	43.1	(7.5)	(17.4)		
73	0.81	1.1	38.2	38.2	61.8	44.8	6.6	14.7		
74 75	0.01	0.8 1.0	45.3 35.1	30.2 40.2	69.8 59.8	50.6 43.3	5.3 8.2	10.4		
76	0.01	0.0	40.4	27.6	70.4	50.5				
77	0.01	1.1	40.4 35.0	40.0	60.0	43.5	4.⊥ 8.5	19.5		
78	0.01	0.4	32.3	35.9	64.1	46.4	14.1	30.5		
7 9	1.21	1.2	46.6	39.3	60.7	44.0	(2.6)	(5.9)		
80 31	0.01	1.0	58.0 41.7	27.9 37.1	62 . 9	52.2 45.6	(6.4) 3.9	(12.2) 8.5		

Column 1: Permeability, millidarcies. Column 2: Percent of bulk volume.

Column 3: Percent of pore space.

Column 4: Percent of pore space. Column 5: Initial oil-in-place, percent of pore space at initial reservoir pressure. 100 minus Column 4. Column 6: Initial stock tank volume of oil-in-place: reservoir volume divided by FVF.

Column 7: Stock tank volume "production" to 0# (gauge) reservoir pressure, percent of pore space (Column 6 minus Column 3).

Column 8: Stock tank volume "production" to 0# (gauge) reservoir pressure, percent of oil-in-place (Column 7 divided by Column 6 x 100). Low (less than 15 to 20%) means sample is suspect. High (30 to 40% or more) suggests substantial flushing or gas zone or sample is suspect.

8/86

G

CORE LABORATORIES, INC.

Page No._ 1

Н

• ,

Petroleum Reservoir Engineering DALLAS, TEXAS

CORE ANALYSIS RESULTS

Comp	any BENSON-MONT	IN-GREER]	Formation_	GALI	,UP	·	FileR	<u>P-3-2318</u>
Well	LA PLATA MAI	NCOS UNIT NO.3	(G-32) (Core Type_	DIAL	OND 3.5"		Date Report_9	-30-68
Field	LA PLATA (GA	ALLUP)	I	Drilling Fl	uid CRUI	E OIL	· · · · · ·	Analysts G	ALLOP
Coun	ty SAN JUAN	State NEW MEX.	Elev. 59	988 ' GL_	Location_]	650'FN&EL SH	C 32-T	32N-R1 3W	
	/		T :+h	alagian	Abbravia	tiona	-		
SAND	D DOLOMITE-DOL	ANHYDRITE ANHY	LILLI SANDY - SI	Ological A	ADDrevia 	CRYSTALLINE-XLN	BROWN - BRN	FRACTURED.	FRAG SLIGHTLY-SL/
SHALE- LIME-L	SH CHERT-CH M GYPSUM-GYP	CONGLOMERATE - CONG FOSSILIFEROUS - FOSS	SHALY-SHALY-SH	TY MED COA	IUM - MED RSE - CSE	GRAIN-GRN GRANULAR-GRNL	GRAY - GY VUGGY - VGY	STYLOLITIC-	-LAM VERY-V/ STY WITH-W/
SAMPLE NUMBER	DЕРТН РЕЕТ	PERMEABILITY MILLIDARCYS KA	POROSITY PER CENT	RESIDUAL S PER CEI	ATURATION NT PORE TOTAL WATER	-	5A)	MPLE DESCRIPTION	
No	TE: DE	DUCT 2	20'	FRO	pape	DELOIA	1 61	5780	PERTO
τ		CONVENTIONAL.	ANALYS"	(S) 76		PRREL	978	CUITO!	SCHOLON
		(CON ADALITOWED	ANADIO.		F5 2	06 R	SPA A	10-2-	
l	5075.0-76.0	0.03	5.8	12.1	75.8	Sh, Bl, V/	Fn Grn,	W/Lmy Slt	Strks, Frac
2	77.0-78.0	0.30	5.4	13.0	64.9	Sh, Bl, V/	Fn Grn,	W/Lmy Slt	Strks, Frac
3	79.0-80.0	0,38	5.9	8.5	67.8	Sh, Bl, V/	Fn Grn,	W/Lmy Slt	Strks, Frac
4	81.0-82.0	0.66	4.5	11.1	75.5	Sh, Bl, V/	Fn Grn,	Slty, Frac	
5	83.0-84.0	0.17	5.6	8.9	71.5	Sh, Bl, V/	Fn Grn,	W/Lmy Slt	Strks, Frac
6	85.0-86.0	0.01	5.3	3.8	75.5	Sh, B1, V/	fn Grn,	W/Lmy Sit	Strks, Frac
7	87.0-88.0	0.17	5.5	3.0	00.0	Sn, BL, V/.	rn Grn,	W/Lmy Sit	Strks, Frac
0	09.0-90.0	0.02	4.0	4.2	03.4 68.6	SN, BL, V/.	en Grn, En Gan	Slty, Frac	;
7	91.0-92.0	0.01	. <u>2</u> •⊥	9.0 73.0	00.0 71 7	Sh Bl V/	En Grn	Sity, Frac	•
עד רר	95.0-94.0		5.7	88	70 7	Sh Bl $\nabla/$	En Grn	Sltv Frac	•
12	97.0-98.0	0.02	7 2	20.8	59 7	Sh Bl $\nabla/$	En Grn.	W/Lmy Slt	Strks. Frac
13	5099 0-00 0	1 12	6.6	39 1	16.9	Sh. Bl. $V/$	Fn Grn.	W/Lmy Slt	Strks, Frac
עב 1)	5079.0-00.0	0.00	6.2	16.7	13.5	Sh. Bl. $V/$	Fn Grn.	W/Lmy Slt	Strks. Frac
15	03.0-01.0	0.02	6.9	13.5	37.7	Sh. Bl. $V/$	Fn Grn.	W/Lmy Slt	Strks. Frac
16	05.0-06.0	0.01	7.3	46.5	41.0	Sh. Bl. V/	Fn Grn.	W/Lmy Slt	Strks, Frac
17	07.0-08.0	0.03	6.7	41.8	44.7	Sh. Bl. V/	Fn Grn,	Slty, Frac	;
18	09.0-10.0	0.03	7.8	51.2	35.9	Sh, Bl, V/	Fn Grn,	Slty, Frac	;
19	11.0-12.0	0.17	6.7	49.2	40.3	Sh, Bl, V/	Fn Grn,	Slty, Frac	;
20	13.0-14.0	0.01	7.5	41.3	44.0	Sh, Bl, V/	Fn Grn,	W/Lmy Slt	Strks, Frac
21	15.0-16.0	0.03	6.6	53.0	30.3	Sh, Bl, V/	Fn Grn,	Slty, Frac	;
22	17.0-18.0	0.03	6.6	48.5	36.4	Sh, Bl, V/	Fn Grn,	Slty, Frad	;
23	19.0-20.0	0.24	6.7	49.2	37.3	Sh, B1, V/	Fn Grn,	Slty, Frac	;
24	21.0-22.0	0.22	5.2	40.3	46.2	Sh, Bl, V/	Fn Grn,	Slty, Frac	>
25	23.0-24.0	0.27	5.9	28.8	55.9	Sh, B1, V/	Fn Grn,	Slty, Frac	;
26	25.0-26.0	0.50	4.5	20.0	59.9	Sh, Bl, V/	Fn Grn,	Slty, Frad	2
27	27.0-28.0	0.03	6.1	27.8	57.3	Sh, Bl, V/	Fn Grn,	Sity, Frac	>
28	29.0-30.0	0.66	6.7	32.8	49.2	Sh, B1, V/	Fn Grn,	Sity, Frac	
29	31.0-32.0	0.03	6.8	27.9	57.5	Sh, BL, V/	rn Grn,	W/Lmy Sit	Strks, Frac
30	33.0-34.0	0.04	6.2	27.4	50.5	Sh, BL, V/	rn Grn,	W/Lmy SIt	Strks, Frac
⊥ز	35.0-30.0	0.17	2.2) ۵۷ م م	44•2 56 0	ענדם פוום V/ עירים אים ער	en orn,	CITAL DIC	SURAS, Frac
32	37.0-38.0	0.17	2.2	42.) 17.1	50.J	ע נומ אס //	rn urn,	Sltw Ema	<i>;</i>
<u> زر</u>	39.0-40.0	0.17	2•7 r 1	28 0	1.8 1	/ אינדם נווס אזו רפו מפ	FIL UTIL.	W/Imr Cl+	Stake Ema
34 25	44.0-42.0	0.00	2.4	JU•7 35 7	10.1 1.1. 6	Sh. Bl. V/	Fn Grn-	Sltv. Fra	Correst Lac
22 24		0.07	ט•ע בי	30 K	51.0	Sh. Bl. V/	Fn Grn.	Sltv Fra	2
363		114116-				/ · · · · //			

(Service #1-A) These analyses, opinons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinons expressed represent the best judgment of Cure Laboratories, Inc. (all errors and consistons exercicely, but the best users the and us officers and employees, assume no reportship and make no warranty or representations, as to the productively, reports the base to use as of any col, gas or other montral well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC.

Page No. 2

Petroleum Reservoir Engineering DALLAS, TEXAS

CORE ANALYSIS RESULTS

Company	, BENSON	-MONTIN-G	REER			Formation_	GALI	JUP		File	RP-3-2318
Well	LA PLA	PA MANCOS	UNIT	NO. 3(C	-32)	Core Type_	DIAN	(OND 3.5"		Date Report	9-30-68
Field	LA PLA	FA (GALLU	P)			Drilling Fl	uid_CRUI	E OIL		Analysts	GALLOP
County	SAN JU	<u>AN</u> St	ate <u>NE</u>	V MEX.	Elev. 2	5988'GL	Location	1650'FN&EL	SEC 3	2-T32N-R13W	

			Lith	ological	l Abbrevia	tions			
SAND-SD Shale-Sh Lime-Lm	DOLONITE - DOL CHERT - CH GYPSUM - GYP	ANHYDRIYE - ANHY CONGLOMERATE - CONG FOSSILIFEROUS - FOSS	SANDY - SD Shaly - Sh Limy - Lmy	ү F Ү М С	INE - FN IEDIUM - MED OARSE - CSE	CRYSTALLINE-XLN Grain+grn Granular-grnl	BROWN - BRN GRAY - GY VUGGY - VGY	FRACTURED - FRAC LAMINATION - LAM STYLOLITIC - STY	BLIGHTLY-SL/ Very-V/ With-W/
SAMPLE Number	DEPTH FEET	PERMEABILITY MILLIDARCYS	POROSITY PER CENT	RESIDUA PER (L SATURATION CENT PORE	_	SAMPL AN	E DESCRIPTION D REMARKS	

(CONVENTIONAL ANALYSIS)

37 39 41 43 45 67 89 01 55	5147.0-48.0 49.0-50.0 51.0-52.0 53.0-54.0 55.0-56.0 57.0-58.0 59.0-60.0 61.0-62.0 63.0-64.0 65.0-66.0 67.0-68.0 69.0-70.0 71.0-72.0 73.0-74.0 75.0-76.0	2.80 0.04 0.02 0.10 0.30 1.30 0.33 2.60 0.09 1.30 0.33 0.50 0.04 0.17 0.19 0.31	6.3 6.3 5.9 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	33.3 45.1 46.0 33.9 50.7 42.4 39.7 43.9 46.1 50.0 46.0 34.0 46.7 40.8 13.2	50.7 35.5 34.9 48.2 39.1 40.7 42.8 37.5 40.8 71.5 38.3 40.0 40.8 71.7	Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Frac Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Frac Sh, Bl, V/Fn Grn, Slty, Frac Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Frac Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Frac Sh, Bl, V/Fn Grn, Slty, Frac Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Frac Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Frac
5355555550123	5180.0-81.0 85.0-86.0 90.0-91.0 95.0-96.0 5200.0-01.0 05.0-06.0 10.0-11.0 15.0-16.0 20.0-21.0 25.0-26.0 30.0-31.0 35.0-36.0	0.21 0.02 0.01 0.01 0.01 0.02 0.01 0.04 0.32 0.09 0.01 0.01	5.422720884427	15.2 14.1 14.5 3.8 4.3 3.8 5.0 10.4 10.4 11.4 11.9 3.5	67.8 71.9 74.2 80.8 74.4 77.0 75.0 68.8 73.0 77.2 76.2 87.8	Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Frac Sh, Bl, V/Fn Grn, Slty, Frac Sh, Bl, Fn Grn, Slty, Frac Sh, Bl, Fn Grn, Slty, Frac Sh, Bl, V/Fn Grn, Slty, Frac

These analyses, opinons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed reporters the best pulch out of Gree Laboratories, Inc. (all errors and multions excepted); but does to be consistent of the observations of the observations of the discovery of the best pulch on warranty or representations, as to the productivity, particle of the second of the subject of the second of the discovery of the best pulch on warranty or representations, as to the productivity, particle of the second of the

CORE LABORATORIES. INC. Petroleum Reservoir Engineering DALLAS, TEXAS

Page No. 1

CORE ANALYSIS RESULTS

Company	BENSON-M	ONTIN-GREER	Formation	GALLUP	File	RP-3-2326
Well	LA PLATA	MANCOS UNIT NO.	4(N-31)Core Type	DIAMOND 3.5"	Date Rep	ort <u>10-25-68</u>
Field	LA PLATA	(GALLUP)	Drilling Fluid	CRUDE OIL	Analysts_	GALLOP
County_	SAN JUAN	State NEW MEX	Elev. 6113 GL Loca	tion 756'FSL 1208'F	TL SEC 31-T3	2N-R13W

	Lithological Abbreviations								
SAND - SI Shale-: Lime-Li	D DOLOMITE - DOL SH CHERT - CH N GYPSUM - GYP	ANHYDRITE - ANHY CONGLOMERATE - CONG FOSSILIFEROUS - FOSS	SANDY-SD Shaly-Sh Limy-Lmy	Y PINI Y MED COA	E • FN IUM • MED RSE • CSE	CRYSTALLINE-XLN Grain-grn Granular-grnl	BROWN - BRN GRAY - GY YUGGY - YGY	FRACTURED - FRAC LAMINATION - LAM STYLOLITIC - STY	SLIGHTLY-SL/ VERY-V/ WITH-W/
SAMPLE	DEPTH	PERMEABILITY	POROSITY	RESIDUAL S	ATURATION			APLE DESCRIPTION	
NUMBER	FEET.	MILLIDARCYS	PER CENT	011	TOTAL	-		AND REMARKS	
	NOTE	· SEG	17150	2711		SPRE	AT12	Nº5 111	
	(CONVE	NTTONAL ANALYS	IS) A	107-13	TION	- ON	PAG	F 2	
٦	2220.0-21.0	0.20	6.5	1.1.6	50.8	Sh. Bl. V	Fn Grn.	W/Imy Sit Strk	s. Frac
2	22.0-23.0	0.)1	8.3	39.7	56.6	Sh. Bl. V	Fn Gree.	W/Lmy Slt Strk	s. Frac
3	24.0-25.0	0.20	7.8	1.1.1	53.8	Sh. Bl. V	/Fn Grn.	Sltv. Frac	5, 1140
Ĩ.	26.0-27.0	0.20	8.1	18.8	16.1	Sh. Bl. V	/Fn Grn.	W/Lmv Slt Strk	s. Frac
ہ ج	28.0-29.0	0.31	8.8	19.8	15.5	Sh. Bl. V	/Fn Grn.	W/Lmy Slt Strk	s. Frac
6	30.0-31.0	0.08	9.6	15.8	50.0	Sh. Bl. V	/Fn Grn.	W/Lmy Slt Strk	s. Frac
7	32.0-33.0	0.20	6.8	51.1	12.7	Sh. Bl. V	/Fn Grn.	W/Lmy Slt Strk	s. Frac
8	3/1.0-35.0	0.10	8.6	17.7	50.0	Sh. Bl. V	/Fn Grn.	W/Imy Sit Strk	s. Frac
9	36.0-37.0	0.01	8.3	51.2	12.2	Sh. Bl. V	/Fn Grn.	Sltv. Frac	5, 1100
10	38.0-39.0	0.02	8.3	19.1	17.0	Sh. Bl. V	/Fn Grn.	Sltv. Frac	
11	40.0-41.0	0.05	7.0	17.1	17.1	Sh. Bl. V	/Fn Grn.	Sltv. Frac	
12	42.0-43.0	0.01	8.1	50.7	43.1	Sh. Bl. V	/Fn Grn.	Sltv. Frac	
13	44.0-45.0	0.01	8.9	43.9	50.5	Sh. Bl. V	/Fn Grn.	Slty, Frac	
14	46.0-47.0	0.02	8.4	34.5	58.5	Sh. Bl. V	/Fn Gm.	Slty, Frac	
15	48.0-49.0	0.01	8.3	45.7	45.7	Sh. Bl. V	/Fn Grn.	W/Lmy Slt Strk	s, Frac
16	50.0-51.0	0.20	8.9	50.6	41.6	Sh. Bl. V	/Fn Grn.	Slty, Frac	
17	52.0-53.0	0.01	8.1	54.3	35.8	Sh, Bl, V	/Fn Grn,	W/Lmy Slt Strk	s, Frac
18	54.0-55.0	0.01	7.8	42.3	47.5	Sh, Bl, V	/Fn Grn,	W/Lmy Slt Strk	s, Frac
19	56.0-57.0	0.04	7.7	45.3	48.0	Sh, Bl, V	/Fn Grn,	W/Lmy Slt Strk	s, ^F rac
20	58.0-59.0	0.01	8.2	42.7	47.6	Sh, Bl, V	/Fn Grn,	W/Lmy Slt Strk	s, Frac
21	60.0-61.0	0.62	9.6	40.5	51.0	Sh, Bl, V	/Fn Grn,	Slty, Frac	•
22	62.0-63.0	1.20	9.6	41.7	50.0	Sh, Bl, V	/Fn Grn,	Slty, Frac	
23	64.0-65.0	0.04	7.8	37.2	56.4	Sh, B1, V	/Fn Grn,	Slty, Frac	
24	66.0-67.0	0.08	7.8	37.2	53.8	Sh, Bl, V	/Fn Grn,	Slty, Frac	
25	67.0-68.0	2.10	8.8	29.8	47.7	Sd, Gy, V	/Fn Grn,	Lmy, W/Shale S	trks, Frac
2 6	68.0-69.0	0.03	4.8	41.6	48.0	Sd, Gy, V	/Fn Grn,	Lmy, W/Sh Strk	s, Frac
27	69.0-70.0	0.36	7.7	29.0	41.6	Sd, Gy, V	/Fn Grn,	Lmy, W/Sh Strk	s, Frac
28	70.0-71.0	1.60	9.6	44.8	42.8	Sh, Bl, V	/Fn Grn,	W/Lmy Slt Strk	s, Frac
29	2272.0-73.0	0.17	9.2	48.8	40.2	Sh, Bl, V	/Fn Grn,	W/Lmy Slt Strk	s, Frac
- 30	74.0-75.0	0.08	10.3	63.1	32.0	Sh, Bl, V	/Fn Grn,	Slty, Frac	

Service #1-A

These analyses, opinons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this remort is made. The interpretations or opinions excepted): but of Core Laboratories. Inc. and for whose and confidential use, the factories, inc. and its officers and confidential use, and the system of the statices, inc. and the probability system of the system of the

CORE LABORATORIES, INC.

2 Page No._

Petroleum Reservoir Engineering DALLAS, TEXAS

CORE ANALYSIS RESULTS

Company	BENS(<u> 011-110</u>	NTIN-GR	EER			Formation	GALLUP	·	File	RP-3-2326
Well	LA P	LATA	MANCOS	UNIT	NO. L	<u> </u>	Core Type	DIAMOND	3.5"	Date Report	10-25-68
Field	LA P	LATA	(GALLUP)	(N-33	L)	Drilling Fluid	CRUDE OI	(L	Analysts	GALLOP
Connty	SAN .	JUAN	State	NEW	MEX.	Elev	6113 GL Loc	tion 756	FSL 1208 FWL SE	C 31-T 32	V-R13W

			- Lith	ologica	l Abbrevia	tions						
SAND-S Shale- Lime-L	DOLOMITE-DOL SH CHERT-CH M GYPSUM-GYP	ANHYDRITE - ANHY CONGLOMERATE - CONG FOSSILIFEROUS - FOSS	BANDY - S Bhaly - S Limy - Lm		FINE - FN MEDIUM - MED COARSE - GSE	GRAIN - GRAIN - GRANUL	GRN GRN AR-GRNL	LN BRO GRA VUG	WN - BAN Y - GY GY - YGY	FRAC Lami Btyl	TURED - FRAC NATION - LAM OLITIC - STY	BLIGHTLY-BL/ Very-V/ With-W/
SAMPLE	DEPTH	PERMEABILITY	POROSITY	PER	CENT PORE				5AM	PLE DESCH	UPTION	
NUMBER	FEET	MILLIDARCYS	PER CENT	OIL	TOTAL WATER					AND REMA	RKS	
		-										
31	2276.0-77.0	0.60	8.9	50.5	37.1	Sh,	B1,	V/Fn	Grn,	Slty,	Frac	
32	78.0-79.0	0.07	9.2	56.5	36.9	Sh,	B1,	V/Fn	Grn,	Slty,	Frac	
33	80.0-81.0	0.02	8.5	52.8	41.1	Sh,	B1,	V/Fn	Grn.	Slty,	Frac	
34	82.0-83.0	0.03	8.4	44.1	46.4	Sh,	B1,	V/Fn	G _{rn} ,	Slty,	Frac	
- 35	84.0-85.0	. 0.57	7.2	18.1	69.5	Sh.	B1.	V/Fn	^u m.	Slty,	Frac	
36	86.0-87.0	0.14	7.3	9.6	75.3	Sh.	B1.	V/Fn	Grn.	W/Lmy	Slt Str	ks
37	88.0-89.0	0.01	5.8	88:6	74.1	Sh,	B1.	√/Fn	Grn,	W/Lmy	Slt Str	ks
38	90.0-91.0	0.02	7.4	6.7	81.0	Sh,	B1,	V/Fn	Grn,	W/Lmy	Slt Str	ks
39	92.0-93.0	0.03	6.8	3.0	.77.8	Sh,	B1,	V/Fn	Ġrn,	"/Lmy	Slt Str	ks
LO	94.0-95.0	0.11	6.1	3.3	78.7	Sh,	B1.	V/Fn	G _{rn} ,	Sity		
41	96.0-97.0	0.08	5.7	3.5	82.4	Sh,	B1,	V/Fn	Grn,	Slty		

Note:	To correspond wit	th Schlumberger	log depths:
	Add 91 to interva	al 2220 to 2245	feet
	Add 8' to interva	1 2245 to 2270	feet
	Add 7' to interva	al 2270 to 2297	feet

These analyses, opinous or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best informate it. For a laboratories, lor, (all errors and emissions excepted); but there is the result of the interpretations and employer, a source present the best information or presentations, as to the presentations, is enterpreted to be a source of a source of the source of

CORE LABORATORIES. INC. Petroleum Reservoir Engineering DALLAS, TEXAS

Page No. 1

_ .

CORE ANALYSIS RESULTS

Company_	BENSON-M	ONTIN-GREER		Formation	GALLUP	File	e <u>RP-3-2312</u>	
Well	LA PLATA	MANCOS UNIT	"I" NO. E	Core Type	DIAMOND 3.5"	Dat	te Report <u>8-21-68</u>	
Field	LA PLATA	(GALLUP)		Drilling Fluid	CRUDE OIL	Ana	alystsGALLOP	
County	SAN JUAN	State_NEW	MEX Elev.	6015 KB Loc	ation SEC 6-T32N-R13	N	•	

			Litho	logical A	Abbrevia	tions				
SAND.SC Shale.s Lime.lb	DOLOMITE-DOL SH CHERT-CH GYPSUM-GYP	AN HYDRITE - AN HY CONGLOMERATE - CONG FOSSILIFEROUS - FOSS	BANDY - SDI Shaly - Shi Limy - Lmy	Fine MED COAL	- FN IUM - MED ISE - CSE	CRYSTALLINE-XLN Grain-Grn Granular-Grnl	BROWN - BRH GRAY - GY VUGGY - VGY	FRA LAM STY	CTURED-FRAC IINATION-LAM LOLITIC-STY	SLIGHTLY-SL/ VERY-V/ WITH-W/
SAMPLE	DEPTH	PERMEABILITY Milijdarcys	POROSITY	RESIDUAL S	ATURATION	-	54	MPLE DESC	RIPTION	
NUMBER	* E E I	I KA	PERCENT	011	WATER	1		•		
		,				(Note: Add	91 to	below	listed con	e depths
		•				to	corresp	ond to	depths or	1 Schlum-
-		(CONVENTIONAL A	MALYSIS)		ber	ger Log	run 8	-29-58.)	_
1	3995.0-96.0	0.29	8.3	42.2	46.9	Sh, B1, V/	Fn Grn,	W/Lmy	SLt Strks	, Frac
2	97.0-98.0	0.11	9.0	41.1	42.2	Sh, BL, SL	ty, V/Fi	i Grn,	Frac	~
3	99.0-00.0	0.10	9.6	38.5	48.9	Sh, B1, V/	Fn Grn,	W/Lmy	Sit Strks	, Frac
4	4001.0-02.0	0.32	8.7	41.3	43.7	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
5	03.0-04.0	0.22	9.2	38.0	46.7	Sh, Bl, V/	Fn Grn,	Slty,	Frac	
6	05.0-06.0	0.07	8.6	39.5	51.2	Sh, B1, V/	Fn Grn,	Slty,	Frac	
7	07.0-08.0	0.16	9.1	37.4	50.6	Sh, Bl, V/	rn Grn,	Slty,	Frac	
8	09.0-10.0	0.06	9.1	39.5	52.7	Sh, Bl, V/	Fn Grn,	Slty,	Frac	
9	11.0-12.0	0.32	9.4	42.6	48.9	Sh, B1, V/	Fn Grn,	Slty,	Frac	
10	13.0-14.0	0.99	8.5	37.7	54.1	Sh, Bl, $V/$	Fn Grn,	Slty,	Frac	_
11	15.0-16.0	0.02	8.0	48.7	41.2	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
12	17.0-18.0	0.02	7.5	52.0	36.0	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
13	19.0-20.0	0.06	7.5	41.3	49.3	Sh, B1, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
14	21.0-22.0	0.19	7.7	48.2	41.2	Sh, B1, V/	rn Grn,	W/Lmy	SIt Stris	, Frac
15	23.0-24.0	0.11	7.9	44.2	44.2	Sh, B1, V/	rn urn,	"/Lmy	Slt Strks	, Frac
16	25.0-26.0	0.08	7.5	38.6	49.3	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
17	27.0-28.0	0.02	7.9	37.9	50.6	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
18	29.0-30.0	0.11	8.6	33.7	54.6	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
19	31.0-32.0	1.70	8.9	39.3	52.7	Sh, Bl, V/	Fn Grn,	Slty,	Frac	
20	33.0-34.0	0.07	7.9	36.7	57.0	Sh, Bl, V/	Fn Grn,	Slty,	Frac	
21	35.0-36.0	0.14	6.6	49.3	37.7	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
22	37.0-38.0	0.10	7.9	51.8	39.2	Sh, Bl, V/	Fn Grn,	Slty,	Frac	
23	39.0-40.0	0.07	7.0	44.3	47.2	Sh, Bl, V/	Fn Grn,	Slty,	Frac	
24	41.0-42.0	0.06	7.4	41.8	52.7	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
25	43.0-44.0	0.01	7.3	39.7	50.7	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
26	45.0-46.0	0.13	7.0	44.2	47.2	Sh, Bl, V/	Fn Grn,	Slty,	Frac	
27	47.0-48.0	0.02	7.0	40.0	45.7	Sh, Bl, V/	Fn Grn,	Slty,	Frac	
28	49.0-50.0	0.03	7.0	41.4	47.1	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
29	51.0-52.0	0.01	7.4	40.6	51.3	Sh, Bl, V/	Fn Grn,	Slty,	Frac	
30	53.0-54.0	0.03	8.1	38.3	35.8	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
31	55.0-56.0	0.06	6.8	30.9	61.7	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
32	57.0-58.0	0.09	6.3	31.8	55.6	Sh, Bl, V/	Fn Grn,	Slty,	Frac	
33	59.0-60.0	0.01	6.5	27.2	61.5	Sh, Bl, V/	Fn Grn,	Slty,	Frac	
34	61.0-62.0	2.0	7.2	40.2	48.5	Sh, Bl, V/	Fn Grn,	Slty,	Frac	
35	63.0-64.0	4.8	6.7	31.3	61.2	Sh, Bl, V/	Fn Grn,	W/Lmy	Slt Strks	, Frac
36	65.0-66.0	0.83	7.2	27.7	63.8	Sh. B1. V/	Fn Grn.	Sitv.	Frac	

Service #1-A	
These analyses, opineous or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confident the best induced of Core Laboratories. Inc. (all errors and conjugious except	tial use.
bles had been ble and de oners and engreers, assume name some some to an none so warrasty or representations, at to the productivity, properior of the such any oil, gas or other mineral well or sand in connection with which such report is used or telled upon.	trate To

CA-20

CORE LABORATORIES. INC. Petroleum Reservoir Engineering

Page No. 2

DALLAS, TEXAS

CORE ANALYSIS RESULTS

Company_	_BENSON_M	ONTIN-GREER			Formation *	GALLUP		File	RP-3-2312
Well	LA PLATA	MANCOS UNIT	"I" N	10.6	Core Type	DIAMOND 3.5"		Date Report	8-24-68
Field	LA PLATA	(GALLUP)			Drilling Fluid	CRUDE OIL		Analysts	GALLOP
Conuty	SAN JUAN	State NEW	MEX.	Flev 6	SOISIKB LOG	tion SEC 6-T32N-R1	312	,	

Lithological Abbreviations												
SAND-SI SHALE-S LIME-LN	DOLOMITE-DOL SH CHERT-CH GYPSUM-GYP	ANHYORITE - ANHY CONGLOMERATE - CONG FOSSILIFEROUS - FOSS	\$ANDY-SD Shaly-sh Limy-lmy	FINE MEDI COAR	FN UM - MED SE - CSE	GRASTAL GRAIN - G GRANUL	LINE + XI IRN AR - GRNI	LN 8 G	ROWN - BRN RAY - GY UGGY - YGY	FRAC Lami Styl	TURED - FRAC INATION - LAM OLITIC - STY	SLIGHTLY-EL/ Very-V/ With-W/
SANGLE	DEPTH	PERMEABILITY	POROSITY	RESIDUAL SA	TURATION	1			541		RIPTION	
NUMBER	FEET	MILLIDARCYS	PER CENT	OIL	TOTAL	-				AND REMA	RKS	
			<u> </u>	·····	HAIEA		··					· · · · · · · · · · · ·
	(CON	VENTIONAL ANAL	YSIS)									
37	4067.0-68.0	0.13	6.0	36.6	48.3	Sh,	Bl,	V/Fn	Grn,	W/Lmy	Slt Str	ks, Frac
38	69.0-70.0	. 0.37	4.8	41.7	43.7	Sh,	B1,	V/Fn	Grn,	W/Lmy	Slt Str	ks, Frac
39	71.0-72.0	0.10	5.1	43.1	45.1	Sh,	B1,	V/Fn	Grn,	W/Lmy	Slt Str	ks, Frac
40	73.0-74.0	0.66	6.1	42.6	40.9	Sh,	B1,	V/Fn	Grn,	W/Lmy	Slt Str	ks, Frac
41	75.0-76.0	0.07	7.1	39.4	45.1	Sh,	B1,	V/Fn	Grn,	W/Lmy	SIt Str.	ks, Frac
42	77.0-78.0	0.40	7.2	40.2	48.6	Sh,	B1,	מיז/ע	Grn,	Sity,	Frac	
43	79.0-80.0	0.13	7.6	32.9	50.5	Sh,	BL,	V/Fn	Grn,	Sity,	Frac	
44	4150.0-51.0	0.83	5.5	25.4	63.6	Sh,	Bl,	V/Fn	Grn,	W/Lmy	Slty St	rks, Frac
1.5	52.0-53.0	1.30	5.0	30.0	58.0	Sh,	B1,	V/Fn	Grn,	W/Lmy	Slt Str	ks, Frac
16	54.0-55.0	0.83	5.8	27.5	56.8	·Sh,	B1,	V/Fn	Grn,	W/Lmy	Slt Str	ks, Frac
47	56.0-57.0	5.3	5.1	33.4	52.9	Sh,	B1,	V/rn	Grn,	S/Lmy	Slt Str	ks, Frac
48	58.0-59.0	0.06	5.7	29.0	54.3	Sh,	B1,	V/rn	Grn,	S/Lmy	Sit Str	ks, frac
49	60.0-61.0	₹0.01	4.7	25.5	57.4	Sn,	BL,	V/Fn	Grn,	W/Lmy	Dit Str	xs, frac
50	62.0-63.0	0.21	2.9	. 2(.2	57.0	Sn,	BL,	V/FD	Grn,	Sity,	Frac	
51	64.0-65.0	0.00	5.0	32.0	50.9	Sn,	BT'	v/rn	Grn,	W/Lmy	SIC SUR	ks, Frac
52	60.0-07.0	0.03	0.1	41.0	49.2	Sn,	ΒL,	V/In	urn,	W/Lmy	SIT STR	ks, rrac
53	70 0 71 0	0.04	0.1	30.0	49.5	Sn,	BL,	v/rn v/rn	Grn,	Sity,	Frac	
54	70.0-72.0	0.03	0.) 4 4	20.2	20.2 52.5	Sn,	BL,	v/rn v/rn	Grn,	OTCA CITCA	rrac E	
22 56	72.0-73.0	0.02	0.0 6 E	2.0.2	21+2	وnc دn	נ⊥¤ רמ	v/rn v/r.	Grng	w/rmr	crac	les Emo
50 17	76 0 77 0	0.01	U.5 E 0	25 6	41.0 52 5	والات	נ בם רם	על גע מין גע	(Intro	SJ+	DANG DIC DUC	xs, Frac
21 21	78 0 70 0	0.01	2•9 5 0	27.2	24.2 1.2 3	و 11 ت ۲۵	, בם רם	ν/±Ω π/₩∽	Gring	UT/Tmr	C1+ C+~	ka Ema
50	80.0-87.0	2.2	2+7	28.2	42.J	ch ch	נים נים	V/F2	Gran	W/Imr	S14 7 St	nya Frac
50	82 0-83 0	0.06	8 7	1.2 0	16.8	Sh	وتر 1	V/Fm	Grn	S1+17	10109 00	Trac Flac
61	81 0-85 0	. 22	7 9	39.2	5) 1	Sh	B1	∇ / F_n	Grm	$S_1 + v$	Frac	
62	86.0-87.0	1.50	5.)	53.6	33.1	Sh.	BI.	V/Fn	Grn.	W/Im S	37t.v. St	rks. Frac
63	88.0-89.0	0.03	7.0	12.8	10.0	Sh.	B1.	V/Fn	Grn.	Sltv.	Frac	1
61	90.0-91.0	1.12	5.8	56.9	34.5	Sh.	B1.	V/Fn	Grn.	Sltv.	Frac	
65	92.0-93.0	0.33	6.7	52.2	10.3	Sh.	BI.	V/Fn	Grn.	Sltv.	Frac	
66	94.0-95.0	0.04	7.5	Lh.0	16.7	Sh.	Bl.	V/Fn	Grn	W/Lmv	Slt Str	ks. Frac
67	96.0-97.0	0.33	6.7	49.1	10.3	Sh.	B1.	V/Fn	Grn.	Sltv.	Frac	,
68	98.0-99.0	0.83	7.3	43.8	46.5	Sh,	Bl.	V/Fn	Grn,	i/Lmy	Slty St	rks, Frac
69	1200.0-01.0	0.09	6.9	50.7	42.0	Sh.	B1.	V/Fn	Grn.	W/Lmy	Slt Str	ks, Frac
70	02.0-03.0	0.50	9.4	42.4	52.0	Sh,	Bl.	V/Fn	Grn,	Sity.	Frac	-
71	04.0-05.0	0.08	8.5	43.5	43.5	Sh,	Bl,	V/Fn	Grn,	Slty,	Frac	
72	06.0-07.0	1.30	7.5	49.2	44.0	Sh,	Bl,	V/Fn	Grn,	W/Lmy	Slt Str	ks, Frac
73	08.0-09.0	0.01	8.2	51.2	34.2	Sh.	Bl.	V/Fn	Grn,	W/Lmy	Slt Str	ks. Frac

These analyses, opinons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, the server at its made. The interpretations or opinons expressed represes the left is lower to be advected. The interpretations of opinons exclusive and confidential use, the server at its made. The interpretations of opinons exclusive the left is lower to be advected to be advec

. CORE LABORATORIES. INC. Petroleum Reservoir Engineering DALLAS, TEXAS

Page No. 3

CORE ANALYSIS RESULTS

Company	BENSON-M	ONTIN-GR	EER				Formation	GALLUP		File	RP-3-2312
Well	LA PLATA	MANCOS 1	UNIT	nIn	NO.	5	Core Type	DIAMOND 3.	5"	Date Report	8-21:-68
Field	LA PLATA	(GALLUP)			_	Drilling Fluid	CRUDE OIL		Analysts	GALLOP
County	SAN JUAN	Stat	e NEW	MEX	Elev		6015'KB Loca	tion SEC 6-	T32N-R13W		

			Lith	ological A	bbrevia	tions			
SAND - SO SHALE - S LIME - LM	DOLOMITE-DOL H CHERT-CH GYPSUM-GYP	ANHYDRITE - ANHY CONGLOMERATE - CONG FOSSILIFEROUS - FOSS	\$ANDY-SC Shaly-Sh Limy-Lmy	Y FINE Y MEDI CQAR	- FN UM - MED SE - CSE	CRYSTALLINK-XLN Grain-grn Granular-grnl	BROWN - BRN GRAY - GY VUGGY - VGY	FRACTURED - FRAC LAMINATION - LAM STYLOLITIC - STY	SLIGHTLY-SL/ Very-V/ With-W/
5				RESIDUAL S	ATURATION				
NUMBER	FEFT	MILLIDARCYS	PERCENT	PER CEN	TOTAL	-	341	AND REMARKS	
		<u>NA</u>			WATER	<u> </u>		······································	
	(CONVENTI	ONAL ANALYSIS)							
74	1210.0-11.0	0.09	8.5	48.2	41.2	Sh, Bl, V	/Fn Grn,	W/Lmy Slt Strk	s, Frac
75	12.0-13.0	<0.01	6.9	50.7	42.0	Sh, B1, V	/Fn Grn,	W/Lmy Slt Strk	s, Frac
76	14.0-15.0	0.06	8.1	40.7	48.0	Sh, Bl, V	/Fn Grn.	Slty. Frac	
77	16.0-17.0	0.02	8.3	45.7	15.7	Sh. Bl. V	/Fn Grn.	Sltv. Frac	
73	18.0-19.0	2.5	7.9	39.2	hh.3	Sh. Bl. V	/Fn Grn.	W/Lmy Slt Strk	s. Frac
79	20.0-21.0	1.80	8.0	11.3	51.2	Sh. Bl. V	/Fn Grn.	W/Lmy Slt Strk	s. Frac
Ś	22.0-23.0	0.17	7.3	1.6.6	J.1.1	Sh. Bl. V	/Fn Grn.	W/Imv Slt Strk	s. Frac
81	21,0-25.0	0.10	6.5	19.7	10.0	Sh. Bl. V	/Fn Grn.	Sity. Frac	-,
82	25.0-27.0	0,10	7.0	55.8	31.1	Sh. Bl. V	/Fn Grn.	Sltv. Frac	
83	28.0-29.0	0.02	7.5	50.7	37.3	Sh. Bl. V	/Fn Grn.	W/Lmy Slt. Strk	J. Frac
81	30.0-31.0	8.3	6.6	15.1	39.1	Sh. Bl. V	/Fn Grn.	W/Lmy Sit Stric	s. Frac
85	32.0-33.0	0.37	6.5	17.7	11.6	Sh. Bl. V	/Fn Grn.	W/Imy Slt Stric	s. Frac
85	31.0-35.0	0.10	73	35.6	1,5.2	Sh. Bl. V	/Fn Grn	W/Lmy Slt Strk	s. Frac
87	36.0-37.0	0.06	63	22 2	1.9.2	Sh BI W	/Fn Grn	W/Imr Slt Stak	a 7770
88	38.0-39.0	0.02	6.0	35 0-	1,5 0	Sh BI I	/Fn Grn	W/Imy SIt Strik	a Frac
Ra	10 0-10 0	0.02	70	35 1.	1.2 0	Sh BI V	Fn Grn	W/Imv Sl + St v'c	s, Frac
00	12 0-13 0	0.02	7.0	100	12.0	Sh BI U	Fr Grr	Sltr Trac	s, Frac
67	11. 0-15 0		6.8	17 6	66.2	ערבי איייי	/Fn Gnn	Slty Frac	
02	16 0-17 0	0.83	82	36 5	1.6 3	Ch RI I	/Fn Gm	W/Tmr SI+ Stal	
03	1.8 0 1.0 0	0.05	4.2	22 8	1.8 3	ע נדם לא	The Car	ALLING OTO OUTA	s, Frac
رو ان		0.19	6.6	10 2	20.1	۷ ولک والک ۱۱ دک م	/Fn Grn	Olty, Frac	
94	50.0-51.0	0.02	0.0	42.0	ンソ・4 ング・5	OI, DL, V	/rn Grn,	Sity, Frac	T. Proce
72		0.20	0.2	50.0	12.2	ע נדם נוס. ע רם אס	/Fn Grn,	WAT SIL SURK	s, Frac
90	54.0-55.0	0.00	7.0	43.0	45.0 1.7 1.	۷ وللط وامدت	/rn urn,	W/Imy SIt Strk	s, Frac
27	50.0-57.0	0.55	1.0	1:2 2	41.4	Sh Di V	/Fn Orn,	W/Lmy -10 Strk	s, rrac
90	50.0-59.0	0.17	0.1	43.3	40.2	Sh, BL, V	/In Grn,	W/Imy SIt Stra	s, frac
99	00.0-01.0	0.01	(.0		10.7	۷ و⊥ط وΩد	/Fn Grn,	Winy Sit Strk	s, frac
100		0.01	0.(49.2) C . O	SI, BL, V	/rn Grn,	Sity, Frac	
TOT	04.0-05.0	2.2	2.1	49.1	72.7	SI SI V	/rn Grn,	W/INY SLU SURK	s, rrac
102	0.0-0.00	0.17	1.4	44.0			/rn Grng	W/Iny Sit Strk	s, rrac
202	00.0-09.0	0.07	0.4	50.0	22.2	Sn, BL, V	/rn Grn,	W/LEY SIT STR	s, Frac
104	/0.0-/1.0	0.19	<u>د.</u> ٥	52.5	34.9	V eld end	/in Gm,	W/Lmy Sit Strk	s, Frac
105	12.0-13.0	12	0.0	42.4	42.4	Sh, Bi, V	/fn Grn,	Sity, Frac	
105	74.0-75.0	0.21	0.0	49.3	30.7	Sn, BL, V	/rn Grn,	Sity, Frac	7
107	76.0-77.0	0.14	- 6.1	50.8	59.5	Sh, BL, V	/Fn Grn,	W/Lmy Slt Strk	s, Frac
TOQ	78.0-79.0	0.66	5.0	40.5	57.9	Sh, BL, V	Vrn Grn,	W/Lmy Slt Strk.	5, Frac
109	80.0-81.0	0.01	7.0	57.1	31.4	Sh, B1, V	/Fn Grn,	Sity, Frac	
110	62.0-83.0	⊲.01	5.6	39.2	L8.2	Sh, Bl, V	/Fn Grn,	W/Lmy Slt Strk	s, Frac
111	84.0-85.0	3.0	6.3	39.7	46.0	Sh, Bl, V	/Fn Grn,	W/Lmy Slt Strk	s, Frac

These analyses, opinons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, the second of the interpretations or opinons expressed representation in the transmitter of presentations, and or interpretations expressed representation in the transmitter of presentations, as to the presentations expressed representation with which such as possible or relied upon.

C.X-20
CORE LABORATORIES. INC.

Page No. 4

Petroleum Reservoir Engineering DALLAS, TEXAS

CORE ANALYSIS RESULTS

Company_	BENSON-M	ONTIN-GREER			Formation	GALLUP	File	RP-3-2312
Well	LA PLATA	MANCOS UNI	T "I"	NO. 6	Core Type	DIALOND 3.5"	Date Report	8-21-68
Field	LA PLATA	(GALLUP)	_		Drilling Fluid	CRUDE OIL	Analysts	GALLOP
County	SAN JUAN	State NE	W MEX.	Elev.	6015'KB Loca	tion SEC 6-T32N-R13W		

Lithological Abbreviations										
SAND - S Shale - Lime - Li	D DOLOMITE-DOL SH CHERT-CH M GYPSUM-GYP	ANHYDRITE - ANHY Conglomerate - Cong Fossiliferous - Foss	SANDY - SDY Shaly - Shy Limy - Lmy	FINE MEDI COAF	- FN IUM - MED RSE - CSE	CRYSTALLINE - XLN GRAIN - GRN GRANULAR - GRNL	BROWN - BRN GRAY - GY VUGGY - VGY	FRACTUL LAMINA STYLOLI	RED - FRAG TION - LAM ITIC - STY	SLIGHTLY-EL/ Very-V/ With-W/
SAMPLE	DEPTH	PERMEABILITY	POROSITY	RESIDUAL S	ATURATION	1		MPLE DESCRIP	TION	
NUMBER	FEET	MILLIDARCYS	PER CENT	OIL	TOTAL WATER			AND REMARKS	;	
	(CONVEN	TIONAL ANALYSIS	5)							
112	1286.0-87.0	0.02	6.6	13.9	16.9	Sh. Bl. V/	Fn Grn.	Sltv. F	rac	
2.2.3	88.0-89.0	0.33	6.9	15.9	47.8	Sh. Bl. V/	Fn Grn.	Sltv. F	rac	
114	90.0-91.0	⊲0.01	8.2	40.2	17.5	Sh. Bl. V/	Fn Grn.	Sltv. F	rac	
115	92.0-93.0	⊲.01	8.3	42.2	47.0	Sh. Bl. V/	Fn Grn.	W/Lmy S	lt Strk	cs. Frac
116	94.0-95.0	0.50	5.1	17.6	68.5	Sh, Bl, V/	Fn Grn,	V/Slty		
117	96.0-97.0	3.3	5.2	13.5	76.8	Sh, Bl, V/	Fn Grn,	V/Slty		
118	98.0-99.0	0.02	7.2	6.9	79.2	Sh, Bl, V/	Fn Grn,	V/Slty		
119	4300.0-01.0	0.01	5.2	13.4	69.2	sh, Bl, V/	Fn Grn,	V/Slty		
120	02.0-03.0	⊲.01	4.2	16.6	76.2	Sh, Bl, V/	Fn Grn,	V/Slty,	W/Lmy	Slt Strks
121	04.0-05.0	0.50	5.0	10.0	84.0	Sh, B1, V/	Fn Grn,	V/Slty,	W/Lmy	Slt Strks
122	06.0-07.0	⊲.01	5.0	10.0	76.0	Sh, B1, V/	Fn Grn,	V/Slty,	W/Lmy	Slt Strks
123	08.0-09.0	0.22	5.4	9.2	77.8	Sh, Bl, V/	Fn Grn,	V/Slty,	W/Lmy	Slt Strks
1214	10.0-11.0	0.09	6.0	8.3	73.3	Sh, Bl, V/	Fn Grn,	V/Slty,	W/Lmy	Slt Strks
125	12.0-13.0	3.0	6.3	7.9	76.2	Sh, Bl, V/	Fn Grn,	V/Slty,	"/Lmy	Slt Strks
126	14.0-15.0	⊲.01	5.4	9.3	81.5	Sh, Bl, V/	Fn Grn,	V/Slty,	W/Lmy	Slt Strks
127	16.0-17.0	0.05	6.0	8.3	76.6	Sh, Bl, V/	Fn Grn,	V/Slty,	W/Lmy	Slt Strks
128	18.0-19.0	0.01	6.3	7.9	69.9	Sh, Bl, V/	Fn Grn,	V/Slty		
129	20.0-21.0	0.07	5.4	9.3	74.0	Sh, Bl, V/	Fn Grn,	v/Slty,	W/Lmy	Slt Strks
130	22.0-23.0	0.18	5.7	8.7	70.1	Sh, Bl, V/	Fn Grn,	V/Slty,	"/Lmy	Slt Strks
131	24.0-25.0	⊲.01	4.6	10.9	71.7	Sh, Bl, V/	Fn Grn,	V/Slty,	W/Lmy	Slt Strks
132	26.0-27.0	0.08	5.8	8.6	74.1	Sh, Bl, V/	Fn Grn,	V/Slty,	"/Lmy	Slt Strks
133	28.0-29.0	0.09	6.2	8.1	77.3	Sh, Bl, V/	Fn Grn,	V/Slty,	W/Lmy	Slt Strks
134	30.0-31.0	0.07	6.8	7.3	82.4	Sh, B1, V/	Fn Grn,	V/Slty		

These analyses, opinons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use. This report is made The interpretations or opinions expresses that the formation is the client to whom and for whose exclusive and confidential use. This report is made to be the set of the client to whom and for whose interpretations or opinions expresses that the client to whom and for whose exclusive and confidential use. This report is made to be the set of the client to whom and for whose exclusive and opinions exclusive and the client to be the set of the client to be and the client to be and the set of the client to be and the client to be and the set of the client to be and the client to be and the client to be and the set of the client to be and the client to be an and the client to be an and the client to be analytis and the client

CORE LABORATORIES. INC.

Page No. 1-A

Petroleum Reservoir Engineering DALLAS, TEXAS

CORE ANALYSIS RESULTS

Company BENSON-MONTIN-GREER	Formation	GALLUP	File	RP-3-2312
W'ell LA PLATA MANCOS UNIT "I" NO. 6	Core Type	DIAMOND 3.5"	Date Report.	8-24-68
Field LA PLATA (GALLUP)	Drilling Fluid_	CRUDE OIL	Analysts	GALLOP
County SAN JUAN State NEW MEX. Elev 6	O15'KB Loca	tion_SEC 6-T32N-R13W		

Lithological Abbreviations

\$

SAND SI Smale-Sh L(Me LM	POLOMITE-DOL Chert Ch Gyfsum Gyp	AN HYDRITE - ANNY CONGLOMERATE - CONG FOSSILIFEROUS - FOSS	\$4NDY - 5DY Shaly - 5HY LIMY - LMY	FINE FN MED-UM MED COARSE - CSE	CRYSTALLINE-XLN Grain-Grn Granular-Grnl	BROWN-BRN Gray gy Vuggy-Vgy	FPACTURED FRAC LAMINATION - LAM 5" + LOLITIC + STY	5LIGHTLY-8L/ VERY-V/ WITH-W/
SAMPLE	DEPTH	PERMEABILITY	POROSITY P	DUAL SATURATION	· · · · · · · · · · · · · · · · · · ·	SAMPLE	DESCRIPTION	
NUMBER	FEET	MILLIDARCYS	PER CENT OIL	TOTAL WATER		ANC	0 REMARKS	

(WHOLE-CORE ANALYSIS)

1234567890112	4000.0-01.0 04.0-05.0 10.0-11.0 14.0-15.0 20.0-21.0 24.0-25.0 30.0-31.0 34.0-35.0 40.0-41.0 44.0-45.0 50.0-51.0 51.0-55.0	** ** *1.12 ** ** ** ** ** ** ** **	6.7 6.6 8.3 5.6 7.0 6.9 5.0 7.0 6.2 8	19.8 19.4 15.3 22.0 19.8 17.2 20.6 13.6 19.4 12.9 21.7	60.3 59.7 66.9 54.5 66.5 62.2 57.5 63.3 62.6 71.3 62.2 66 8	Sh, Sh, Sh, Sh, Sh, Sh, Sh, Sh, Sh, Sh,	<pre>Bl, Bl, Bl, Bl, Bl, Bl, Bl, Bl, Bl, Bl,</pre>	V/Fn Grn, V/Fn Grn,	Slty, Slty, Slty, W/Lmy W/Lmy Slty, Slty, Slty, Slty, Slty,	Frac Frac Slt Strks, Slt Strks, Slt Strks, Frac Frac Frac Frac Frac	Frac Frac Frac
13	60.0-61.0	*0.07	5.0	15 3	62.5	Sh.	, ופ	V/Fn Grn.	W/Imv	Slt Strks.	Frac
1),	64.0-65.0	×0•01 × ×	7.0	12.6	72.7	Sh.	B1.	V/Fn Grn.	Sltv.	Frac	
15	70.0-71.0	*0.99	5.3	20.2	59.4	Sh.	B1,	V/Fn Grn.	W/Lmy	Slt Strks,	Frac
16	74.0-75.0	*0.03	4.4	21.4	55.9	Sh,	B1,	V/Fn ^G rn,	W/Lmy	Slt Strks,	Frac
						~ •				_	
17	4155.0-56.0	**	4.7	12.0	78.3	Sh,	B1,	V/Fn Grn,	Slty,	Frac	
18	59.0-60.0	*1.8	3.5	12.1	73.5	Sh,	B1,	V/Fn Grn,	Slty,	Frac	-
19	65.0-66.0	*⊲.01	6.0	16.2	62.8	Sh,	B1,	V/Fn Grn,	W/Lmy	Sit Strks,	Frac
20	69.0-70.0	**	5.1	16.6	74.6	Sh,	B1,	V/Fn Grn,	w/Lmy	Sit Strks,	Frac
21	75.0-76.0	**	5.4	23.9	62.7	Sh,	B1,	V/Fn Grn,	W/Lmy	Slt Strks,	Frac
22	79.0-80.0	**	5.5	22.0	69.8	Sh,	B1,	V/Fn Grn,	/Lmy	Sit Strks,	rac
23	85.0-86.0	**	5.6	20.7	68.3	Sh,	B1,	V/Fn Grn,	W/Lmy	Slt Strks,	Frac
24	89.0-90.0	**	5.3	26.5	63.3	Sh,	B1,	V/Fn Grn,	W/Lmy	Slt Strks,	Frac
25	95.0-96.0	*⊲.01	5.5	25.7	68.2	Sh,	B1,	V/Fn Grn,	Slty,	Frac	_
26	4201.0-02.0	*⊲.01	5.3	17.7	69.8	Sh,	B1,	V/Fn Grn,	ii/Lmy	Sit Strks,	Frac
27	05.0-06.0	××	5.3	26.9	59.6	Sh,	B1,	V/Fn Grn,	Slty,	Frac	
28	09.0-10.0	*⊲0.01	5.9	25.0	66.6	Sh,	B1,	V/Fn Gm,	Slty,	Frac	
29	15.0-16.0	*⊲.01	6.3	23.1	66.0	Sh,	B1,	V/Fn Grn,	Slty,	Frac	
30	19.0-20.0	*0.01	6.2	22.9	68.3	Sh,	B1,	V/Fn Grn,	W/Lmy	Slt Strks,	Frac
31	25.0-26.0	**	7.3	23.7	56.3	Sh,	B1,	V/Fn Grn,	W/Lmy	Slt Strks,	Frac
32	29.0-30.0	**	4.3	22.6	56.4	Sh,	B1,	V/Fn Grn,	W/Lmy	Slt Strks,	Frac
33	35.0-36.0	**	-5.1	26.4	54.1	Sh,	B1,	V/Fn Grn,	W/Lmy	Slt Strks,	Frac

#Indicates Plug Permeability
**Indicates Sample Unsuitable for Permeability Measurement

(Service #5-8) These analyses, ophicus of interpretations are based on observations and nuterials supplied by the client to whom, and for whose exclusive and condent d user, this report is made. The interpretations of ophicus expressed represent the best indement of Core Laboratories, his call enters and enterpretations of ophical supplied by the client to whom, and for whose exclusive and enterpretations of ophical supplied by the client to whom, and for whose exclusive and condents d user, for Laboratories, his, and g officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, processions, or prohibilities of any add gas or other minimal well of stand in connection with which such report is used or refirst up to

CA-20

CORE LABORATORIES. INC.

Page No. 2-A

s = 565

Petroleum Reservoir Engineering DALLAS, TEXAS

CORE ANALYSIS RESULTS

Company	BENSON-MONTIN-GREER	Formation GALLUP	File RP-3-2312
Well	LA PLATA MANCOS UNIT "I" NO. 6	Core Type DIAMOND 3.5"	Date Report_ 8-24-68
Field	LA PLATA (GALLUP)	Drilling Fluid CRUDE GIL	Analysts GALLOP
County	SAN JUAN State NEW MEX. Elev. 6	6015 KB Location_SEC 6-T32N-R13W	

Lithological Abbreviations

SANU SC Bhale Sh Limeilw	DOLOMITE DOL CHERTICH GYPSUM-GYP	ANHYDRITE - ANMY Conglomehate Cong Fossiliferous - Foss	SANDY SUN Shaly Shy Liny Liny	FINE FN MEDIUM - MED COARGE - CSE	CRYSTALLINE XLN Grain-Grn Granulah-Grnl	BROWN - BRN GRAY - GY VUGGY - VGY	FRACTURFD-FRAC LAMINATION-LAM STILOLITIC-STY	SLIGHTLY-SL/ VERY-V; WITH-W;
RESIDUAL SATURATION								
SAMPLE	DEPTH	PERMEABILITY	POROSITY	PER CENT PORE		SAMPLE	DESCRIPTION	
NUMBER	FEET	MILLIDARCYS Ka	PER CENT OI	TOTAL		AND	REMARKS	
		A		WATER				

(WHOLE-CORE ANALYSIS)

۰. .

с. А.д

34	4239.0-40.0	*0.0 2	4.9	20.0	61.4	Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Fr	ac
35	45.0-46.0	**	5.2	22.3	60.3	Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Fr	ac
36	49.0-50.0	**	3.7	18.5	55.1	Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Fr	э с
37	55.0-56.0	*0.01	5. 6	18.9	62.0	Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Fr	ac
38	59.0-60.0	*0.01	5.9	19.4	57.8	Sh, Bl, V/Fn Grn, "/Lmy Slt Strks, Fr	ac
39	65.0-66.0	*0 .02	5.1	23.6	59.8	Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Fr	э с
<u>цо</u>	69 .0-7 0.0	**	4.1	13.0	52.8	Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Fr	ac
41	75.0-76.0	**	6.9	16.0	62.0	Sh, Bl, V/Fn Grn, Slty, Frac	
42	79.0-80.0	*⊲0.01	5.2	14.9	61.5	Sh, Bl, V/Fn Grr, Slty, Frac	
43	85 .0-8 6.0	*⊲.01	5.4	22.0	55.8	Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Fr	aC
44	89.0-90.0	*0.01	4.7	21.5	61.5	Sh, Bl, V/Fn Grn, W/Lmy Slt Strks, Fr	ac
45	95.0-96.0	*0.01	5.5	4.7	73.0	Sh, Bl, V/Fn Grn, Slty	
46	4299.0-00.0	*0 .01	4.7	1.5	67.2	Sh, Bl, V/Fn Grn, V/Slty	
47	4305.0-06.0	*< 0.01	5.8	1.2	77.7	Sh, Bl, V/Fn Grn, V/Slty	
48	09.0-10.0	*< 0.01	5.7	0.9	77.0	Sh, Bl, V/Fn Grn, V/Slty	
49	15.0-16.0	*0.01	7.2	1.3	70.5	Sh, Bl, V/Fn Grn, V/Slty	
50	19.0-20.0	*⊲.01	6.3	1.3	70.2	Sh, Bl, V/Fn Grn, V/Slty	
51	25.0-26.0	*0.70	6.9	1.4	73.8	Sh. Bl. V/Fn Grn. V/Slty	
52	29.0-30.0	*0.03	7.7	0.9	71.8	Sh, Bl, V/Fn Grn, V/Slty	

*Indicates Plug Permeability **Indicates Sample Unsuitable for Permeability Measurement

These onlyses, opinions of interpretations are based on observations and materials supplied by the client to whom, and to who e excusive and contoninatal use, this reject is made. The interpretations of opinions expressed represent the best indement of Core Laborationes, Inc. (II) error and one-consisters excepted); but 'Core Laborationes, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, is to the productivity, proper operations, or productively of any oil, gas or other mineral well or said in connection which such or report is used or rehed upon

CA+2++

LA PLATA MANCOS UNIT I-6

CORE DESCRIPTION

Cored 3995' to 4055'. Cored 60', recovered 60'. Average penetration rate 10 minutes/foot. CORE NO. 1 Bedding plane partings and hairline fractures throughout entire core.

DEPTH	DESCRIPTION	INDICATED VERTICAL FRACTURES	OBSERVED HAIRLINE FRACTURE PATTERN
		·	
3 995 - 4008'	Black shale		Fair
		Vertical	
4008 - 4009'	Black shale	fracture	Fair
4009 - 4012'	Black shale		Fair
4012 - 4028'	Black shale with limey siltstone laminations		Fair
4028 - 4031'	Black shale with limey siltstone laminations	Vertical fracture	Fair
4031 - 4043'	Black shale with limey siltstone laminations	•	Poor
halo halica	·	Vertical	
4043 - 4046'	Black shale	fracture	Fair to good
4046 - 4055'	Black shale	Fracture vertical to bedding planes	Good
<u>م</u>		. •	
CORE NO. 2	Cored 4055' to 4080'. Co Average penetration rate Bedding plane partings an throughout entire core.	ored 25', recove 9.6 minutes/foo nd hairline frac	red 25'. t. tures

4055 - 4067'	Black shale	Fair
4067 - 4077'	Black shale with limey siltstone laminations	No good
4077 - 4080'	Black shale	Poor to f

Poor to fair

LA PLATA MANCOS UNIT I-U

CORE DESCRIPTION

. -

<u>CORE NO. 3</u>: Cored 4150' to 4210'. Cored 60', recovered 60'. Average penetration rate 12.2 minutes/foot. Bedding plane partings and hairline fractures throughout entire core. Occasionally throughout core bedding planes are offset.

DEPTH	DESCRIP	TION	· ·	INDICATED VERTICAL FRACTURES	OBSERVED HAIRLINE FRACTURE PATTERN
4150-4153'	Black s siltsto	hale n ne lar	with limey ninations		Fair
4154-4155'	tt	11	ff	Vertical fracture	Fair
4155-4159'	TT .	11	11	Fracture	Fair to poor
4160-4179 '	ff	11	11	bedding plane	Poor to absent
4180-4185'	11	11	11		Fair to poor
4185-4188'	. н	11	n	Healed fractures at angles to bedding planes	Absent
4189-4191'	11	71	11		Poor to absent
4192-4197 '	11	Ħ	11		Poor to fair
4197-4200'	*1	11	n	- - 	Fair
4201-4203 '	13	.11	17	fracture	Fair
4204-4210'	• 11	11	11	Large healed vertical fracture 4005-06'	Good to fair

NOTE: General fracture pattern indicates larger fractures than in La Plata Mancos Unit No. P-31 well for comparative depth interval.

LA PLATA MANCOS UNTT 1-5

CORE DESCRIPTION

<u>CORE NO. 4</u>: <u>Average penetration rate 13.5 minutes/foot.</u> <u>Bedding plane partings and hairline fractures</u> <u>throughout entire core.</u> <u>Occasionally throughout</u> <u>core bedding planes are offset.</u>

DEPTH	DESCRIPTION	INDICATED VERTICAL FRACTURES	OBSERVED HAIRLINE FRACTURE PATTERN		
4210-4212'	Black shale with limey siltstone laminations		Fair		
4212-4216 '	Black shale with limey siltstone laminations	Vertical fracture	Good		
4216-4220'	Black shale		Fair to good		
4220-4230'	Black shale with limey siltstone laminations		Good to fair		
4230-4238 1	Black shale with limey siltstone laminations	All directions	Fair		
4238-4242'	Black shale with limey siltstone laminations		Good		
4242-4246'	Black shale with limey siltstone laminations		Fair		
4246-4249 '	Black shale with limey siltstone laminations	Vertical fracture	Fair		
4 249-4263 '	Black shale with limey siltstone laminations		Fair		
4263-4265'	Black shale with limey siltstone laminations	Vertical fracture	Fair		

.

NOTE: General fracture pattern indicates larger fractures than in La Plata Mancos Unit No. P-31 well for comparative depth interval.

LA PLATA MANCOS UNIT I-6

CORE DESCRIPTION

CORE NO. 5: Cored 4265' to 4294'. Cored 29', recovered 29'. Average penetration rate 16 minutes/foot. Bedding plane partings and hairline fractures throughout entire core.

DEPTH	DESCRIPTION	INDICATED VERTICAL FRACTURES	OBSERVED HAIRLINE FRACTURE PATTERN	
4265-4269 '	Black shale with limey siltstone laminations		Fair to good	
4269-	Approximately 2" section of slickenside			
4269-42781	Black shale with limey siltstone laminations		Fair	
4278-4281	Black shale with limey siltstone laminations	Vertical fracture	Good	
4281-4288 '	Black shale with limey . siltstone laminations		Fair	
4288-4289	Black shale with limey siltstone laminations	Vertical fracture	Poor to fair	
4289-42921	Black shale with limey siltstone laminations		Poor	
4292-4294	Black shale with limey siltstone laminations	Vertical fracture	Poor	

NOTE:

General fracture pattern indicates larger fractures than in La Plata Mancos Unit No. P-31 well for comparative depth interval.

LA PLATA MANCOS UNIT I-6

CORE DESCRIPTION

CORE NO. 6: Cored 4294' to 4334'. Cored 40', recovered 37'. Occasional bedding plane partings and infrequent hairline fractures in part of core as described below. As compared to previous cores, the limey siltstone laminations are more infrequent and thinner.

DEPTH	DESCRIPTION	INDICATED VERTICAL FRACTURES	OBSERVED HAIRLINE FRACTURE PATTERN	
4294-4296'	Black shale with limey siltstone laminations	None	. Fair	
4296-4303 '	11 11	11	Poor	
4303-4305'	11 11	11	Fair	
4305-4325'	11 11	11	Poor to absen	
4325-4331 '		11	Poor to fair	

NOTE: Compared to Cores 3, 4 and 5, this core contains less frequent connections of bedding plane partings with hairline fractures at an angle to the bedding planes. La Plata Mancos Unit #2 (I-6) San Juan County, NM

Page 5

9-25-68 (cont'd)

9-26-68

Pressured up on annulus between tubing on top of packer with tubing open. Pressure held. Did not get any returns through tubing. Swabbed back 12 barrels acid displacement oil.

> Fraced with 6 Dowell Allisons at 625 HHP (total 3750 HHP), 3 Dowell Turbines at 825 HHP (total 2475 HHP) and 1 Dowell Turbine Experimental at 1000 HHP. Total HHP on location 7225. HHP delivered during frac job 6334. Treated with 200,000# 20/40 sand plus estimated 26,000# 10/20 sand, mixed with 3,400 barrels crude oil. Total sand volume 226 barrels. Average overall injection rate 86 BPM. No apparent breakdown pressure. Minimum TP 2900#, maximum 4500#, average 3100#. Well sanded off at 4800#.

1:18 PM Shut pumpers down at 4800# pressure.

		Dowell Gauge	<u>B-M-G Gauge</u>
	1:19 PM	3000#	
	1:20 PM	2300#	
	1:22 PM	1900#	
	1:24 PM	1500#	
	1:26 PM	1300#	
	1:29 PM	1250#	1440#
	1:30 PM		1420#
	1:33 PM		1410#
	1:45 PM		1380#
	2:00 PM		1260#
	2:15 PM		1340#
	2:30 PM		1380#
	2:45 PM	,	1450#
	3:00 PM		1440#
	3:15 PM		1440#
	3:30 PM		. 1440#
	3:45 PM		1430#
	4:00 PM		1420#
	4:15 PM		1415#
	4:30 PM		1410#
	4:45 PM		1405#
	5:00 PM		1400#
	5:15 PM		1400#
	5:30 PM		T382#
	5:45 PM	•	T380#
	6:00 PM		13/5#
	6:15 PM		13/04
	6:30 PM		13037
	0:43 PM		13037
	7:00 PM		13504
	7:13 PM		12464
	7:30 PM		1340#
	2.00 PM		13404
	0:00 PM		1325#
	10+00 PM		1320#
	11.00 PM		1300#
	Midnight		12904
			22201
9-27-68	1:00 AM		1280#
	2:00 AM		1280#
	3:00 AM		1300#
	4:00 AM		1300#
	5:00 AM		1280#
	6:00 AM		1260#
	7:00 AM		1260#
	8:00 AM		1240#
	9:00 AM		1240#

6·86