PROPOSED SOUTH JUSTIS UNIT TECHNICAL COMMITTEE REPORT JUSTIS BLINEBRY AND JUSTIS TUBB/DRINKARD FIELDS LEA COUNTY, NEW MEXICO

BEFORE EXAMINER CATANACH
OIL CONSERVATION DIVISION
ARCO EXHIBIT NO. 20
CASE NO. 10552, 10553, 10554

TABLE OF CONTENTS

. •

	<u>Page</u>
Introduction	1
Charge to the Technical Committee	3
Conclusions	4
Recommendations	6
Reservoir Geology	7
Summary Geological Analysis	
Primary Performance	10
Blinebry Water Production	11
Blinebry Gas Production	12
Regional Clearfork Study	13
Summary Introduction Discussion General Information Conclusions	
Secondary Forecasts	18
80-Acre Line Drive 40-Acre Five-Spot Mobility Ratio	
Economics	20
Development Costs	22
New Wells, Workovers, Conversions Facilities Injection Water Engineering Design and Construction	
Unit Boundary	28
Unitized Interval	29
Participation Parameters	30

•

•

Tables	Page
Table 1 - Yearly Production History by Reservoir	31
Table 2 - Yearly Production History by Combined Reservoirs	33
Table 3 - Cumulative Production Data by Reservoir, Operator, and Tract	35
Table 4 - Primary Recovery Summary	44
Table 5 - Running Total Blinebry Oil and Water Cumulative Production	45
Table 6 - Recovery Estimates - 20-Acre Secondary Development	49
Table 7 - Secondary Recovery versus Pore Volume Injected - 80-Acre Line Drive	50
Table 8 - Secondary Recovery versus Pore Volume Injected - 40-Acre Five-Spot	51
Table 9 - Cost Summaries - Blinebry and Tubb/Drinkard Development	52
Table 10 - Cost Summaries - Blinebry DevelopmentTable 11 - Proposed Tracts	53 54

Figures

.--.

Figure 1 - Blinebry Production	56
Figure 2 - Tubb/Drinkard Production	57
Figure 3 - Combined Blinebry and Tubb/Drinkard Production	58
Figure 4 - Blinebry Cumulative Water Production	59
Figure 5 - Comparison of Blinebry Cumulative Oil and Water Production	60
Figure 6 - Glorieta Completions	61
Figure 7 - Injectivity versus Displaceable Pore Volume Injected	62
Figure 8 - 80-Acre Line Drive Patterns	63
Figure 9 - Secondary Recovery Versus Pore Volume Injected - Central Drinkard Unit	64
Figure 10 - Secondary Recovery Forecast - 80-Acre Line Drive Development	65
Figure 11 - 40-Acre Five-Spot Patterns	66
Figure 12 - Secondary Recovery Forecast - 40-Acre Five-Spot Development	67
Figure 13 - Water Compatibility Analysis	68
Figure 14 - Proposed Unit Boundary and Tracts	71
Figure 15 - Type Log - AHC Ida Wimberley #4	72

•

• •

.

.

	Page
Appendix A - Geological Data	73
Figure 1A - Blinebry Structure Map	74
Figure 2A - East-West Stick Cross Section A-A'	75
Figure 3A - East-West Stick Cross Section B-B' Figure 4A - East-West Stick Cross Section C-C'	76 77
Figure 5A - East-West Stick Cross Section D-D'	78
Figure 6A - East-West Stick Cross Section E-E'	70
Figure 7A - East-West Stick Cross Section F-F'	80
Figure 8A - Blinebry Core Description - ARCO Justis Federal #2	81
Figure 9A - Blinebry Core Description - ARCO Langlie Federal #2	83
Appendix B - Glorieta Gas Production Data	87
Figure 1B - ARCO Eaton B #1	88
Figure 2B - Bruno Carlson A 25 #1	89
Figure 3B - Chevron McBuffington #3	90
Figure 4B - Chevron McBuffington #7	91
Figure 5B - Chevron Ramsay F #3	92
Figure 6B - El Paso Langlie #1 Figure 7B - Hendrix Wimberly #1	93 94
Figure 8B - Lanexco Justis F #2	94 95
Figure 9B - Lanexco Justis F #3	96 96
Figure 10B - Meridian Carlson #1	97
Figure 11B - Meridian Carlson A #1	98
Figure 12B - Meridian Carlson B #1	99
Figure 13B - Texaco Coates C #1	100
Figure 14B - Texaco Coates C #13	101
Figure 15B - Texas Pacific SW Eaton #1	102

• . •

	Page
Appendix C - Regional Clearfork Study	103
Figure 1C - Map of Key Clearfork Projects	104
Figure 2C - Reservoir Comparison, OOIP	105
Figure 3C - Reservoir Comparison, Net Pay	106
Figure 4C - Reservoir Comparison, Porosity	107
Figure 5C - Reservoir Comparison, Permeability	108
Figure 6C - Reservoir Comparison, Depth	109
Figure 7C - Production Comparison, 40-Acre Primary Recovery Efficiency	110
Figure 8C - Production Comparison, Recovery Per 40-Acre Well	111
Figure 9C - Production Comparison, 40-Acre and 20-Acre Well Count	112
Figure 10C - Production Comparison, Ultimate Recovery Efficiency	113
Figure 11C - Dimensionless Project Performance	114
Figure 12C - Performance Characterization - Robertson CF Unit	115
Figure 13C - Performance Characterization - Russell CF Unit	116
Figure 14C - Performance Characterization - Flanagan Unit	117
Figure 15C - Performance Characterization - Fullerton CF Unit	118
Figure 16C - Performance Characterization - Dollarhide Unit	119
Figure 17C - Performance Characterization - N. E. Prentice Unit	120
Figure 18C - Performance Characterization - C. A. Goldsmith Lease	121
Figure 19C - Correlation Between Primary Recovery and S/P Ratio	122
Figure 20C - Correlation Between 40-Acre and 20-Acre Primary Recovery	123
Figure 21C - Time Rating South Justis Reserves	124
Appendix D - Economic Forecasts	125
Part 1 - Incremental Economics - 80-Acre Line Drive Part 2 - Incremental Economics - 40-Acre Five-Spot	126 135
•	

-

•

	Page
Appendix E - Drilling and Completion Cost Estimates	144
Figure 1E - Drill and Complete New Producer - Prognosis and Cost Estimate	145
Figure 2E - Drill and Complete New Injector - Prognosis and Cost Estimate	149
Figure 3E - Core New Well - Prognosis and Cost Estimate	153
Figure 4E - Work Over Old Producer - Procedure and Cost Estimate	157
Figure 5E - Convert Well to Injector - Procedure and Cost Estimate	160
Appendix F - Facilities Design and Cost Estimates	163
Figure 1F - Cost Summaries	164
Figure 2F - Optional Cost Summaries	165
Figure 3F - Pumping Well Equipment Cost Estimate	166
Figure 4F - PERT Diagram	169
Appendix G - Participation Parameters	170
Table 1G - Tract Participation Parameters	171
Appendix H - Tract Production Plots	175
Appendix II - ITact Floduction Flots	175
Figure 1H - Tract 1 - Chevron Stuart	177
Figure 2H - Tract 2 - Union Texas Stuart	178
Figure 3H - Tract 3 - Union Texas O. Stuart	179
Figure 4H - Tract 4 - ARCO J. A. Stuart Figure 5H - Tract 5 - ARCO Jal	180 181
Figure 6H - Tract 6 - ARCO Langlie B (JH)	182
Figure 7H - Tract 7 - Union Texas Justis	183
Figure 8H - Tract 8 - ARCO Justice Federal	184
Figure 9H - Tract 9A - ARCO N.W. Eaton (JH) Nos. 15, 16, and 17 (Bly)	185
Figure 10H - Tract 9B - ARCO N.W. Eaton (JH) Nos. 15, 16, and 17 (T/D)	186
Figure 11H - Tract 10A - ARCO N.W. Eaton (JH) No. 14 (Bly)	187
Figure 12H - Tract 10B - ARCO N.W. Eaton (JH) No. 14 (T/D)	188
Figure 13H - Tract 11 - ARCO S.W. Eaton (JH) Nos. 9 and 11	189
Figure 14H - Tract 12A - ARCO S.W. Eaton (JH) No. 8 (Bly) Figure 15H - Tract 12B - ARCO S.W. Eaton (JH) No. 8 (T/D)	190 190a
Figure 16H - Tract 13 - ARCO S.W. Eaton (JH) No. 10	1904
Figure 17H - Tract 14 - ARCO S.E. Eaton (JH) No. 13	192
Figure 18H - Tract 15 - ARCO S.E. Eaton (JH) No. 12	193

• •

	Page Page
Figure 19H - Tract 16 - ARCO Stuart A WN	194
Figure 20H - Tract 17 - Amerada Hess W. F. Stuart	195
Figure 21H - Tract 18 - Union Texas Langlie D	196
Figure 22H - Tract 19 - ARCO Langlie B Federal	197
Figure 23H - Tract 20 - ARCO Langlie A Federal	198
Figure 24H - Tract 21 - ARCO Langlie Federal	199
Figure 25H - Tract 22 - Union Texas Langlie B	200
Figure 26H - Tract 23 - Union Texas Blocker	201
Figure 27H - Tract 24 - Chevron McBuffington	202
Figure 28H - Tract 25 - Pacific Enterprises Carlson B-13	203
Figure 29H - Tract 26 - ARCO Wimberly WN	204
Figure 30H - Tract 27 - Pacific Enterprises Carlson A-23	205
Figure 31H - Tract 28 - Texaco Las Cruces C	206
Figure 32H - Tract 29 - ARCO Wimberly (JH) No. 2	207
Figure 33H - Tract 30 - Hendrix Wimberly (JH) No. 3	208
Figure 34H - Tract 31 - ARCO Carlson A Federal	209
Figure 35H - Tract 32 - American Exploration El Paso Federal	210
Figure 36H - Tract 33 - Union Texas Carlson B	211
Figure 37H - Tract 34 - Amerada Hess Ida Wimberley	212
Figure 38H - Tract 35 - Texaco Coates C	213
Figure 39H - Tract 36 - Texaco Coates D	214
Figure 40H - Tract 37 - Texaco C. E. Penny Federal NCT-4	215
Figure 41H - Tract 38A - Union Texas Buffington B Nos. 3 and 4	216
Figure 42H - Tract 38B - Texaco Buffington B No. 2 (T/D)	217
Figure 43H - Tract 39 - ARCO Carlson (JH)	218
Figure 44H - Tract 40 - Bruno Carlson B-26	219
Figure 45H - Tract 41 - ARCO Carlson Federal	220
Figure 46H - Tract 42 - Union Texas Carlson A	221
Figure 47H - Tract 43 - ARCO State Y	222
Figure 48H - Tract 44 - Bruno Carlson B-25	223
Figure 49H - Tract 45 - Texaco Hobbs A	224
Figure 50H - Tract 46 - Amoco State A J	225
Figure 51H - Tract 47 - ARCO Federal 35	226
Figure 52H - Tract 48 - Union Texas Gregory A Federal	227
Figure 53H - Tract 49 - Chevron Ramsay NCT-F	228
Figure 54H - Tract 50 - Chevron Ramsay NCT-B	229
Figure 55H - Tract 51 - Fina Ginsberg Federal	230
Figure 56H - Tract 53 - Texaco Riggs B Nos. 6 and 8	231

INTRODUCTION

Efforts to unitize the Justis Blinebry and Justis Tubb/Drinkard Fields in southeastern Lea County, New Mexico, for the purpose of conducting waterflood operations, have been ongoing since 1984. A Technical Committee was formed and elected to hire a local consulting firm, T. S. Hickman and Associates, to conduct a feasibility study of secondary recovery operations in the Justis fields. The Hickman report was published in August 1987 and Hickman recommended forming two units, the North Justis Unit and the South Justis Unit. Based on that recommendation, ARCO announced in February 1988 its intention to expedite the formation of the proposed South Justis Unit. A meeting with working interest owners was held in March 1988 and a five-part charge to the Technical Committee was approved. Since that time, ARCO has conducted a study to supplement the Hickman feasibility study and to address the charges made to the Technical Committee.

The Technical Report for the proposed South Justis Unit is attached. The geological characteristics of the Blinebry and Tubb/Drinkard are similar due to similar depositional environments. The major differences are that the Blinebry is 200' thicker than the Tubb/Drinkard and covers a broader area than the Tubb/Drinkard. Correlating individual zones on logs from both reservoirs proved to be very difficult over two to three 40-acre well locations. As is typical with other carbonate reservoirs, individual pay members are continuous only over limited distances.

A data base was established with yearly production statistics from 1957 through 1989 for each well completed in the Justis Blinebry and Justis Tubb/Drinkard. The plots generated from the data base helped address questions such as water and gas production from the Blinebry. No evidence of a strong water drive exists in the Blinebry although cumulative water production exceeds 15 MMBW. Approximately 12% of the wells located along the western and southern edges of the structure have recovered 40% of the water but only 16% of the oil. The evidence suggests that a weak edge water drive exists in some zones, but that flooding operations will not be adversely affected.

The Blinebry has produced approximately 12 BCFG more than the volumetrically calculated original gas in place. A data base of production statistics for the overlying Justis Glorieta gas wells was created. Plots based on this data indicate that some Blinebry wells which were perforated between 5000' and 5100' may have been influenced by wellbore communication with the Glorieta.

Seven nearby Clearfork waterfloods that are well documented have been surveyed. The compiled data became the basis for reserve recovery estimates and production forecasts under two development plans. The expected secondary to primary ratio (S/P) for 80-acre line drive development is 0.85:1 and the reserve estimate is 22 MMBO. The S/P ratio for 40-acre five-spot development is 1.15:1 and the overall reserve estimate is 34 MMBO. Flooding with 80-acre line drive patterns is characterized by low total injectivity, delayed responses, a low peak rate that does not occur for more than 20 years after injection begins, high operating costs, and marginal economics. Infill drilling to 20 acres and flooding with 40-acre five-spots is characterized by higher unit injectivity, quicker response time, a higher peak rate, a higher initial rate due to the recovery of additional primary reserves, and more favorable economics.

The two development plans require capital investments of \$34.0MM (\$1.55/BO) for 80acre line drive patterns and \$69.7MM (\$2.05/BO) for 40-acre five-spots. Generic AFIT project economics for the 80-acre line drive development show a present worth discounted at 10% of -\$13.8MM. For the 40-acre five-spot plan, the PW₁₀ is \$44.6MM. The development plans utilized by most of the operators of other Clearfork floods include infill drilling to 20-acre spacing.

A table of possible participation parameters is included in this study. Insufficient tract working interest ownership data has been received to generate accurate participation parameters by working interest owner.

CHARGE TO THE TECHNICAL COMMITTEE

PROPOSED SOUTH JUSTIS UNIT

- A. Prepare a map of the proposed Unit Area with boundary lines showing each tract in the Unit.
- B. Define the Unitized interval with a description of the upper and lower limits of the interval and with specific log markers from a certain well log adequately referenced.
- C. Develop an improved recovery plan for the area along with the economics of such a plan for presentation to the Working Interest Owners.
- D. Prepare a tabulation of values of the following parameters under the plan presented for each tract. The tract parameter values will be used for negotiating a Tract Participation Formula.
 - 1. Cumulative oil and gas production
 - 2. Current oil and gas production
 - 3. Remaining primary oil and gas reserves
 - 4. Improved recovery oil reserves
 - 5. Other parameters deemed necessary by the Technical Committee
- E. Investigate and evaluate any other factors pertinent to allowing an improved recovery program to be carried out for the area.

AGREE:		

NAME:_____

COMPANY	·

D/	Ι.	TE:		 	

CONCLUSIONS

- 1. The Justis Tubb/Drinkard reservoir has similar porosity and permeability characteristics to the Justis Blinebry reservoir due to similar depositional environments. The major differences between the two are that the Blinebry is a thicker reservoir and has a greater areal extent than the Tubb/Drinkard.
- 2. The stratigraphy of the Blinebry and Tubb/Drinkard is a complex sequence of interfingering reservoir and non-reservoir dolomitic rock units. The reservoir units are generally discontinuous laterally between two to three 40-acre well locations. No evidence exists to support systematic vertical permeability.
- 3. The Justis Blinebry and Justis Tubb/Drinkard reservoirs originally contained approximately 207,950 MBO in the proposed South Justis Unit area. Through December 31, 1989, the cumulative production from these reservoirs was 28,693.8 MBO, 176,373.3 MMCFG, and 18,776.6 MBW.
- 4. Approximately 1668 MBO of primary reserves remain to be recovered from the Justis Blinebry and the Justis Tubb/Drinkard reservoirs. The ultimate primary recovery is 30,361 MBO, or 14.6% of the original oil in place (OOIP).
- 5. The cumulative water production from the Justis Blinebry area was 15,734.0 MBW through December 31, 1989. The 18 wells with the highest Blinebry water recoveries comprise 12% of all Blinebry wells and have recovered 40% of the water but only 16% of the oil. A partial edge water drive may exist along the southern and western flanks of the Blinebry structure, but it is not expected to adversely impact flooding operations.
- 6. The cumulative gas production from the Justis Blinebry through December 31, 1989 was 138.3 BCF and exceeds the volumetrically calculated original gas in place (OGIP) of 126.6 BCF. Evidence suggests that some wells completed near the top of the Blinebry may have communicated with the overlying Justis Glorieta gas field.
- 7. A study of seven mature and well-documented Clearfork waterfloods provides a basis to estimate reserves associated with various spacing densities and also a means to time rate the reserve recovery for economic evaluations.
- 8. The proposed South Justis Unit is quite similar to the other Clearfork waterflood projects reviewed, particularly Mobil's Russell (Clearfork 7000') Unit in Gaines County, Texas.
- 9. The expected secondary to primary ratio associated with flooding on 40-acre spacing is 0.85:1 and the secondary reserves are 22 MMBO.
- 10. The expected secondary to primary ratio associated with flooding on 20-acre spacing is 1.15:1 and the total recovery is expected to be 34 MMBO.

11. The estimated costs to develop the proposed South Justis Unit on 80-acre and 40-acre patterns are \$34,035M (\$1.55/BO) and \$69,737M (\$2.05/BO), respectively.

÷ .

- 12. Due to low total injectivities and long response times, the economics of flooding on 80-acre patterns are unprofitable.
- 13. Infill drilling and flooding on 40-acre patterns is expected to result in additional primary recovery, shorter waterflood response times, higher peak rates, and better economics.
- 14. The unitized interval for the proposed South Justis Unit should extend from the top of the Justis Blinebry as defined by the NMOCD to the top of the Abo.

RECOMMENDATIONS

- 1. Compile an accurate list of working interest owners in each tract and begin immediate negotiations on a unit participation formula.
- 2. Prepare the proper instruments for unitizing the South Justis Unit and obtain the necessary federal, state, royalty owner and working interest owner approval to form the unit.
- 3. Conduct 20-acre infill drilling operations and waterflood the proposed South Justis Unit with 40-acre five-spot patterns. The infill wells should primarily be water injectors and conversions of old wells to injectors should be minimized.

RESERVOIR GEOLOGY

Summary

A geological study was undertaken to compare the reservoir quality of the Blinebry with that of the Tubb/Drinkard and to evaluate pay continuity. Based on log surveys and core descriptions, the lithologies of the two zones are very similar due to similar depositional environments. The Blinebry is about 200' thicker than the Tubb/Drinkard and is about onehalf mile longer and wider. Attempts to correlate porous zones throughout the Blinebry and Tubb/Drinkard intervals over distances of two or three well locations were generally unsuccessful due to the complex sequence of depositional settings and subsequent modification by dolomitization. Several stick cross sections which show the original zones of completion and subsequent workover zones as well as two core descriptions are included in Appendix A.

Geological Analysis

The Justis Field is located in south central Lea County, New Mexico, on the Central Basin Platform. The field is an elongated north-south trending anticline which is about two miles wide and nine miles long. Figure 1A is a structure map contoured on the top of the Blinebry formation which shows the area of interest. At the Blinebry level, the field has about 250' of structural closure. Details of the lithology and stratigraphy have been reported by S. J. Mazzullo in a study conducted by Hickman and Associates (dated August 27, 1987).

The Blinebry-Tubb/Drinkard formations, which are of Leonard age (lower Permian), produce from a complex dolomite facies which has a gross thickness of about 1200'; the gross thicknesses of the Blinebry and Tubb/Drinkard are about 700' and 500', respectively. The sequence was deposited in a broad flat, shallow-shelf setting which persisted on the Central Basin Platform throughout Leonardian time. Subsequent to deposition, the area was deformed into the configuration as mapped. Deposition was controlled by fluctuating sea level conditions which probably began during Abo time and continued in this area throughout Leonardian and Guadalupian time. The resulting stratigraphic intervals consist of a complex sequence of reservoir and non-reservoir rock types. The primary facies are eolian, intertidal to supratidal, shallow subtidal, and deeper subtidal. The productive facies are the intertidal to shallow subtidal intervals; the other facies are tight non-reservoir rock types. The units combine to form a complex interfingering sequence of reservoir and nonreservoir rock types, such that the reservoir components are generally separated laterally and vertically from each other.

The reservoirs are primarily dolomites which were originally fine to medium grained calciclastics with primary porosity and permeability. The dolomitization process modified (increased or decreased) the original reservoir properties masking the original rock fabric. Reservoir conditions are similar across the area regardless of structural position and characterized as pinpoint biomoldic to leached matrix type porosity. Locally, the reservoir is enhanced by vugs and micro fractures. Reservoir distribution is generally discontinuous (except locally) in both lateral and vertical directions.

Log and Core Analysis

Electric logs, cores, and well samples were analyzed in the South Justis area in an attempt to better understand the issues of reservoir continuity and lithological differences between the Blinebry-Tubb/Drinkard formations. Figure 1A (Blinebry structure contour map) in Appendix A shows the location of a series of six East-West stick cross sections (labeled A-A' through F-F') which provide a framework for stratigraphic correlation as related to perforated intervals in the Blinebry-Tubb/Drinkard formations. Well sample and core descriptions were provided on selected wells by S. J. Mazzullo which are included in a report by Hickman and Associates (dated June 26, 1987). Two Blinebry cores, one from ARCO's Justis Federal #2 located in Section 11-T25S-R37E and the other from ARCO's Langlie Federal #2 located in Section 14-T25S-R37E, were described and are included (Figures 8A and 9A) in this report. Thin sections were also prepared from selected intervals of the core and are available for examination. Based on the analysis conducted by Hickman on the limited core data available, the average porosity is estimated to be 5.4%. The average permeability is 3 md with a range of .1 md to 50 md.

Pay Continuity

A series of E-W stick cross sections, hung stratigraphically, was constructed and shows the productive zones. Noted are the original completion intervals and subsequent workover zones. The original perforated intervals, generally considered to represent the better reservoirs, occur at various stratigraphic levels at different locations across the field. Reservoir continuity relationships can be determined by examining the series of E-W stick cross sections (Figures 2A through 7A) and mapping the various reservoir groups.

The stick cross sections were initially constructed to show the structural and stratigraphic framework, and originally included all formations from surface to TD with subsequent focus on the Blinebry-Tubb/Drinkard. The results showed that individual reservoir zones are only locally correlative and that they would not have communication laterally with other Blinebry-Tubb/Drinkard intervals more than one-quarter to one-half mile away. In addition, no evidence was found to suggest the existence of a systematic fracture network also precluding vertical communication between reservoir units. It was also concluded that, in any given wellbore, the better reservoir intervals were properly evaluated and included in the original completion programs. Generally, subsequent workover projects produced only a fraction of the oil recovered from initial completion work and are generally characterized by fairly rapid decline rates.

All rock samples and log data indicate the Blinebry and Drinkard formations to be very similar lithologically. The two dolomite units are separated from each other by the Tubb formation which is described as a sandy dolomite. In both formations, the reservoir units are encased in tight dolomite or dolomitic limestones which contain varying amounts of anhydrite. The significant difference between the Blinebry formation and the Tubb/Drinkard formation is the extent of reservoir development which controls the limits of productivity. The Tubb/Drinkard reservoirs are not as well developed as the Blinebry reservoirs. The Tubb/Drinkard Field limits range from 1/2 to 1-1/2 miles wide by 6-1/2 miles long, whereas the Blinebry Field ranges from 1-1/2 to 2 miles wide by 9 miles long. The cumulative recovery from the Tubb/Drinkard is significantly less than that of the Blinebry.

Conclusions

A preliminary geological evaluation has been conducted which provides a structural and stratigraphic understanding of the South Justis area. Further geological studies are planned as the unitization efforts proceed. This phase of the evaluation involved approximately 1/4 of the 200 wells in the subject area. Conclusions of the preliminary evaluation are:

- (1) The stratigraphy is a complex sequence of interfingering reservoir and non-reservoir dolomitic rock units.
- (2) The reservoir units are generally laterally discontinuous, except locally, with no evidence to support systematic vertical permeability.
- (3) The best reservoirs are generally included in the original completion interval, disregarding reservoir pressure decline.
- (4) The lithologies of the Blinebry and Tubb/Drinkard units are very similar due to similar environments of deposition.
- (5) The Blinebry reservoirs are 200' thicker with a larger areal distribution than those in the Tubb/Drinkard.

PRIMARY PERFORMANCE

Yearly oil, water, and gas production data from 1957 (year of discovery) through 1989 for each well in the entire Justis Blinebry and Justis Tubb/Drinkard Fields were entered into a database. Table 1 lists yearly oil, gas, and water production by reservoir for wells in the proposed unit area. Table 2 lists the same information for the combined reservoirs. Table 3 lists cumulative production data through 1989 by reservoir, operator, and well for the South Justis Unit.

Figures 1, 2, and 3 are historical plots of oil, gas, and water production for the Blinebry, Tubb/Drinkard, and combined reservoirs, respectively. There are 123 active Blinebry and Tubb/Drinkard completions currently in the unit. The cumulative production through December 31, 1989 from the tracts in the proposed unit is 28,694 MBO. The remaining primary oil (from January 1, 1990) is 1668 MBO. The ultimate primary oil recovery from the area in the proposed unit should be 30,361 MBO. Hickman's volumetrically calculated OOIP for all of the South Justis area (209,540 MBO) was reduced using the same primary recovery factor (0.146) to 207,952 MBO. Table 4 summarizes the primary performance of the tracts in the proposed unit.

Based on the results of a regional Clearfork study that will be presented later in this report, a primary recovery efficiency of $\pm 15\%$ under 40-acre development is a reasonable recovery for a Clearfork reservoir and verifies the accuracy of Hickman's volumetric OOIP. An attempt was made to verify the OOIP with a material balance but the results were inconsistent and are not considered a reliable indicator of the OOIP. Factors which may make utilizing material balance equations an inadequate tool to describe the Justis reservoir include poor pressure decline data, water influx data, and gas production data. Also, most material balance models assume a radial reservoir which is not applicable at Justis.

BLINEBRY WATER PRODUCTION

Significant water production (15.7 MMBW cumulative as of January 1, 1990) from the Blinebry in the South Justis area has been observed. In 1989, the average water production rate from the Blinebry in the unit area was 1078 BPD, or only about 9 BPD/well. Most of the water has been produced along the western and southern edge of the structure (Figure 4). Table 5 ranks the cumulative water produced by the top water producing wells with the cumulative oil produced and provides the running totals. The top 12% of the wells which have recovered the most water (18 of a total of 154 wells in the field) have produced 40% of the total water cumulative (6.4 MMBW) but only 15.7% of the total oil cumulative (3.4 MMBO). A plot of this data is presented in Figure 5.

A strong edge water drive does not appear to exist. A strong edge water drive would have exhibited pressure support and a gradation in water cut and cumulative up the flank of the structure. Also, substantially higher current water rates would have been observed if a strong water drive existed. Tubb/Drinkard production below the Blinebry has not been affected by a strong water drive. The producing histories suggest that water is encroaching into some Blinebry wells through individual stringers along the western and southern edges of the reservoir. This is not expected to adversely impact potential waterflood operations.

BLINEBRY GAS PRODUCTION

T. S. Hickman's study reported that the Blinebry in the South Justis area had produced more gas than was volumetrically possible (page 12 and Table 7, Volume I). Based on Hickman's volumetric OOIP (154,047 MBO) and the original gas-oil ratio (822 SCF/STB) for the Blinebry, the original solution gas in place should be 126.6 BCF. The Blinebry has produced 138.3 BCF as of January 1, 1990 from the unit area.

PVT evidence suggests that a gas cap did not originally exist. The estimated original reservoir pressure of 2500 psig is based on initial pressure tests of the discovery wells. The bubble point pressure determined from a recombined sample from Gulf's Learcy McBuffington #6 is only 2170 psig which indicates an undersaturated reservoir.

To explain the excessive gas production from the Blinebry, Hickman suggested the formation of secondary gas caps shortly after development began and/or wellbore communication with an overlying gas zone, the Glorieta formation. A study was undertaken to evaluate the relationship between the Glorieta and the excessive gas production from the Blinebry. Fifteen Glorieta completions have been reported along the Justis structure (Figure 6) in the unit area. The total cumulative production from these wells through December 31, 1989 is 64 BCF. Individual decline curves for each Glorieta well showing gas, water, and oil production along with tubing pressures (Appendix B, Figures 1B through 15B) were generated. Histories of the Blinebry wells offsetting the Glorieta wells were compiled and summaries of stimulations were added to the production plots.

In some instances, a correlation appears to exist between the addition of perforations between 5000' and 5100' in a Blinebry well and a change in the production decline and/or pressure decline in the nearby Glorieta well. Examples include ARCO's Eaton B #1, Chevron's Ramsay F #3, and El Paso's Langlie #1. Since numerous Blinebry wells have been completed near the top of the zone, it is possible that Glorieta production could be a factor behind the apparent excessive Blinebry gas production. The apparent communication of the Blinebry and the Glorieta in individual wellbores will influence the completion techniques and injection well design procedures in secondary operations.

A higher OOIP than the volumetrically derived value could be an alternate explanation for the large Blinebry gas production. Material balance calculations, although derived from insufficient data, suggest that the OOIP in the Blinebry is greater than the volumetrically calculated OOIP which could account for the extra gas production.

REGIONAL CLEARFORK STUDY

Summary

Several West Texas Clearfork waterfloods on the Central Basin Platform close to Justis were studied to evaluate the technical success of waterflooding the Clearfork, which correlates to the Blinebry, Tubb, and Drinkard in southeast New Mexico. The seven units for which the most information was available were Amoco's Northeast Prentice Unit, Chevron's C. A. Goldsmith Unit, Exxon's Fullerton Clearfork and Robertson Clearfork Units, Mobil's Russell (Clearfork 7000') Unit, Shell's Flanagan Unit, and Unocal's Dollarhide Clearfork Unit (Appendix C, Figure 1C). Each Unit was characterized and compared to the proposed South Justis Unit. Mobil's Russell Unit appears to be most like the South Justis Unit.

A key correlation was developed relating 40-acre primary recovery efficiency to secondary/primary ratios for 20- and 40-acre spacing (Figure 19C). Approximately 4.4 MMBO of reserves around the edge of the proposed unit will not be available for recovery because peripheral development is not justified. For the South Justis Unit, the expected primary recovery is 30.4 MMBO, or 14.6% of the OOIP. The expected S/P ratios and recoveries are 0.85 (22 MMBO) for 40-acre spacing and 1.15 (34 MMBO) for 20-acre spacing. Time rating curves (Figure 21C) were also developed for 20- and 40-acre spacing and incorporated into the unit forecasts of performance.

Introduction

The South Justis Field reservoirs (Blinebry and Tubb/Drinkard) are similar in age and lithology to a number of Clearfork reservoirs in West Texas. Several of these West Texas reservoirs have been waterflooded and infill drilled. There is enough performance information to suggest that these reservoirs are somewhat predictable even though their reservoir properties, operations, and performance have varied considerably. Based on correlations developed from these other floods, a reasonable estimate for the waterflood and infill drilling performance and for related reserve recovery for the proposed unit has been determined.

The South Justis Blinebry and Tubb/Drinkard Fields in the proposed unit have an estimated OOIP of 208 MMBO. Nearly 31 MMBO, or 14.6% of the OOIP, should be produced under 40-acre primary development. The following study shows that 22 MMBO of additional recovery, or 10.6% of the OOIP, is the expected benefit from waterflooding on 40-acre spacing. Also, full 20-acre development under secondary operations should increase recovery by an additional 12 MMBO, or 5.8% of the OOIP.

Discussion

The Justis Field Blinebry and Tubb/Drinkard reservoirs are very difficult to describe physically because both continuity and the relationship between porosity and permeability, which are critical in characterizing the reservoir, vary too widely to define accurately on a reservoir-wide basis. Because of the difficulty of using reservoir parameters to project the secondary and infill drilling project performance, it was determined that a regional study of the Blinebry and Tubb/Drinkard (Clearfork) reservoirs would provide the most reliable indication of how the South Justis project would perform.

Data Collection

As many as 17 Clearfork projects were identified with various levels of secondary operations and infill drilling. A number of these projects were eliminated because waterflooding was implemented too recently or the nature of the project made the data difficult to use and compare with other projects. As a result, seven projects were used and studied in great detail and are reviewed in this discussion. The seven projects that were utilized, as well as the proposed South Justis Unit, are shown geographically on Figure 1C.

Once the key projects were selected, the parameters that would be used to characterize the reservoirs and related operations were identified. The projects were characterized using three general categories, namely: reservoir description, production performance, and operating scheme.

The reservoir description parameters included basic data such as net pay, average porosity, and permeability as well as more interpretive data, such as vertical permeability variation, continuity, and aquifer contribution. Also, reservoir fluid and end-point saturation information was obtained whenever it was available. The sources for this data includes: SPE papers, working interest owner reports, Secondary Recovery Hearings from the TRC, and direct contact with the operator. Generally, the reservoir parameters vary considerably from project to project and cannot be relied on for performance projections. Not only are the reservoirs themselves varied but the methods used to generate the data no doubt varied from project to project. Figures 2C through 6C summarize the important reservoir data for each project.

The second type of information assembled for this study was the production performance data. This data is the most valuable for two reasons: (1) it is the most reliable since these values are public record and not based on interpretation, and (2) it provides the best correlation among the projects for predicting waterflood and infill drilling results. All oil production and water injection data was compiled for the seven key projects from the beginning of water injection. Also, well count information was noted throughout the life of these waterfloods. Figures 7C through 10C summarize production characteristics of the various projects.

The last type of information extracted from the various sources was related to the operation of the projects. This includes details such as injection pattern, well spacing, and injection pressures, among other items. Observations regarding operation of the seven projects are reviewed later in this report.

Characterizing the Projects

Once all the data was collected, the performance of the units was characterized to determine if that performance could have been predicted accurately from pre-waterflood information. This characterization took the form of a dimensionless plot of recovery efficiency versus displaceable hydrocarbon pore volume injected. Figure 11C shows the performance history of the seven projects. It is apparent that all the projects are relatively mature and are performing well, with the possible exception of the Robertson Clearfork Unit.

To define the reserve benefits of waterflooding and infill drilling separately at Justis Field, it was critical to first determine these separate benefits for the seven projects in this study. Fortunately. Barbe and Schnoebelen with Exxon documented a detailed quantitative analysis of the separate benefits of waterflooding and infill drilling at the Robertson Clearfork Unit (JPT, December 1987). In their analysis, they segmented the ultimate production into the following categories: 40-acre primary, 40-acre secondary, 20-acre primary, 20-acre secondary, 10-acre primary, and 10-acre secondary recoveries. This was done by using a nonlinear regression analysis on the performance data. The validity of the regression was verified in this study and it appears to be reasonable. Once the ultimate contribution of each category was known, it was possible to generate the curves in Figure 12C which shows the performance of waterflooding and infill drilling separately. Using a similar approach for the remaining six projects yielded Figures 13C through 18C. Note that all the other projects were developed on 20-acre spacing except for two projects. The Flanagan Unit still remains on 40-acre spacing, and the C. A. Goldsmith Lease had very limited 10-acre development. While this technique appears to give reasonable results, it is an estimate. Even so, it is important to keep in mind that several of the curves in each of these figures are based on projections of historical data. For example, there was usually sufficient data to comfortably extrapolate by constant percentage decline analysis the recoveries from 40-acre primary, 40-acre secondary, and 20-acre secondary phases. The result of this effort provides characterizations of these seven projects which were used to develop a performance prediction model for all Clearfork projects.

The Prediction Model

To develop a predictive model, it was necessary to determine if any pre-waterflood information (i.e., reservoir data, primary production) consistently foretold waterflood and infill drilling performance. Primary oil production proved to be the most reliable pre-waterflood indicator of waterflood and infill drilling performance. Figure 19C shows the relationship between secondary to primary ratio (20- and 40-acre spacing) and 40-acre primary recovery efficiency. The two lines on the plot represent the best fit for the projects in this study, not including the Robertson Clearfork Unit. The Robertson Clearfork Unit was not included because the reservoir was much more discontinuous than the other projects' reservoirs, as evidenced by its very low primary recovery. The nature of the two lines on the plot suggests that a higher S/P ratio would be expected in the case of lower primary recovery. It is likely that these cases had lower initial reservoir energy compared to the high primary recovery cases which probably had a greater primary or secondary gas cap or aquifer support, which reduced the benefit for secondary operations. Also, reservoir discontinuities may have impacted recoveries.

Figure 19C can be used to forecast secondary reserves on any Clearfork project, including South Justis, where ultimate primary recovery efficiency is known. An exception to this would be a project with a particularly discontinuous reservoir, or one of poor quality. To determine the S/P ratio on 40-acre well development for the Justis Field, simply enter the X-axis at 14.6% recovery efficiency and read the S/P ratio associated with the 40-acre S/P ratio line. The S/P ratio is about 0.85 in this case. Using the same process on 20-acre spacing yields an S/P ratio of about 1.15. Note that the S/P ratios would be greater if the OOIP has been underestimated, and the ratios would be reduced if OOIP has been overestimated. Historically, Clearfork reservoir OOIP estimates have increased as projects develop.

To complete the estimate of secondary and infill drilling reserves, it was necessary to determine how much to expect from the primary recovery mechanism with 20-acre spacing. Once again, 40-acre primary recovery efficiency (RE) provides an indication of expected 20-acre recovery. Figure 20C reflects this relationship. Figure 20C might suggest that a higher 40-acre primary recovery efficiency would result in a higher 20-acre primary recovery efficiency. However, the projects with high 20-acre RE's were also those projects with 20-acre development on a reduced and selective scale. Only the better part of these units had infill drilling. Therefore, these properties showed higher RE's for the limited level of 20-acre development as compared to those units that were fully developed on 20-acre spacing. Since this study assumes full field development at the South Justis Field, it is necessary to weigh more heavily those projects (i.e., Robertson, NE Prentice) that also were fully developed on 20 acres. Based on Figure 20C, South Justis may expect a 2.5% RE from the primary mechanism on 20-acre spaced wells. If selective 20-acre development were implemented at Justis, the affected OOIP would be reduced, but the RE would improve because the best part of the reservoir would be developed.

The total primary production under 40-acre and 20-acre spacing for South Justis would be 17.1% (14.6% + 2.5%) of the OOIP. Using the 1.15 S/P ratio from Figure 19C for 20-acre spacing indicates the total secondary performance will yield 16.8% (14.6% \times 1.15) of the OOIP. However, as was pointed out, 12.4% (14.6% \times 0.85) of the OOIP could have been recovered by secondary operations on 40-acre spacing. Therefore, the difference in 16.8% and 12.4%, or 4.4% of the OOIP, yields an apparent incremental secondary recovery for 20-acre spacing. Based on the reservoir characterization plots, most of the projects recover no more than 33% of the OOIP. From the above analysis and the upper limit for overall recovery, the expected secondary recovery from 20-acre spacing is about 3.5% of the OOIP.

Time Rating Reserves

For South Justis, it has been shown that 40-acre primary, 40-acre secondary, 20-acre primary, and 20-acre secondary will provide estimated recoveries of 14.6%, 12.4%, 2.5%, and 3.5% of the OOIP, respectively (Table 6). The maximum overall recovery is estimated to be 33% of the OOIP. These reserves were time rated so that a revenue forecast could be generated for the economic analysis. A comparative analysis among all seven projects was done to determine which type of response, as seen in Figures 13C through 18C, might be expected at South Justis Field.

Prior to actually comparing the character of the oil recovery curves, there were two units that were considered the most likely to be the model for Justis: Dollarhide and Russell. The Dollarhide Unit was attractive because of its proximity to Justis Field while the Russell Clearfork Unit was attractive because many of its reservoir characteristics were similar to those of South Justis.

When the various curves were overlaid (Figure 11C), it was obvious that the Dollarhide Unit was not very representative of the group of projects, primarily because the early injection efficiency problems resulted in a very sluggish waterflood response. These injection containment problems were addressed in a Unocal study that justified an attempt to correct the problem. Apparently, the problem was corrected because the project is currently enjoying very good secondary and infill drilling response. Certainly water injection containment should be a priority at Justis Field. The time rating of the Russell curves appeared to be one of the most representative of the group of projects as a whole. This, coupled with the reservoir similarities between the Russell Clearfork Unit and South Justis, suggested that the "Russell type" response would be most appropriate. Figure 21C illustrates the time rated responses to waterflooding and infill drilling as a fraction of total expected recovery based on the Russell Clearfork Unit response. Note that there are two 20-acre infill curves: one to represent concurrent waterflood and drilling projects and another to represent infill drilling delayed until after fill-up. Delayed drilling has no apparent advantage.

General Information

During the data gathering phase of this study, additional information was found that is worth mentioning in a qualitative fashion. First, all seven projects claimed to have limited or no aquifer support whatsoever as is the case with Justis. Also, the projects' operators claimed that no primary gas cap existed. It follows that solution gas drive was the predominant primary mechanism in the seven projects studied. However, at Justis, there has been a tremendous volume of gas produced either from a gas reservoir source connected behind pipe or at the top of the Blinebry structure. Regarding injection patterns, they varied between five spots and nine spots while two projects had a portion of the field with a line drive scheme. A directional permeability with a northeast-southwest orientation was mentioned in a few project studies and is expected at Justis. This was considered during the design of the South Justis waterflood pattern. Finally, it appeared that with most projects, the estimates of OOIP increased as time progressed and infill wells were drilled.

<u>Conclusions</u>

This regional study provides one approach to forecasting waterflood and infill drilling response in Clearfork reservoirs and particularly, Justis Field. The approach is supported by performance from seven mature and well documented Clearfork projects. A method is provided to determine the reserves associated with various levels of development and also to time rate the reserves for economic evaluations.

Using a value for OOIP of 208 MMBO for the South Justis area, an estimated 34 MMBO (16.4%) can be assigned to full unit 20-acre development.

The South Justis Blinebry and Tubb/Drinkard reservoirs are quite similar to the other projects reviewed in this study and should perform in the fashion this study predicts. The only important difference is the relatively large volume of gas produced in the Justis Blinebry Field. This may not be a problem if this gas has been produced behind pipe from the Glorieta reservoir as is currently believed. If this is the case, then a completion philosophy that addresses the gas channeling should resolve this issue.

SECONDARY FORECASTS

Two development plans were investigated during this study: 80-acre line drive and 40acre five-spots. Hickman's normalized injectivity model (Figure 7) formed the basis for predicting how individual injectors would perform after injection began. Based on core analysis, an average KH of 485 md-ft is expected for a Blinebry-Tubb/Drinkard well. Since not all injectors will include the Tubb/Drinkard, a weighted average KH of 448 md-ft per well was used to estimate injectivity on a unit basis. The S/P and time rating curves provided by the regional Clearfork study (Figures 19C through 21C) became the basis for predicting the amount of secondary reserves and the timing of their recovery for both development plans.

An attempt to forecast the secondary response with a simplistic five-spot model was made and the results were too optimistic. Modeling carbonate reservoirs usually yields poor results due to optimistic sweep efficiencies built into the model and discontinuities in the reservoir.

80-Acre Line Drive

The Hickman study only addressed an 80-acre line drive development (Figure 8) in which there were 70 producers and 65 injectors. The calculated total pore volume of 48,305 acre-feet (Table 3, Volume I - Hickman Study), and fluid saturations were used to estimate a displaceable pore volume of 187,375 MRVB. Table 7 is the projected secondary recovery versus pore volume injected. The following reservoir parameters from PVT data were used to calculate a fill-up volume (75 MMRVB) and an ABAR (the ratio of the gas saturation at the time of waterflooding to the original oil saturation) of 0.4.

The total KH for the unit's 65 injectors is 29,120 md-ft. The calculated initial injectivity (87.4 MBWPD) is greater than the proposed plant capacity (71 MBWPD for the 80-acre line drive case) and was reduced. Injectivity falls below plant capacity during the first year of waterflooding. An injection efficiency of 60% was assumed and the initial net injection is 42.6 MBWPD. Net injection was projected to decline to 19 MBWPD within four years with fill-up expected to occur in about 18 years.

The time rating plot in the regional Clearfork study forecasted insignificant secondary recovery on 40-acre spacing until almost 40% of the displaceable pore volume is injected (Figure 21C). This is projected to occur in about nine years. Data generated by a pilot test at the Central Drinkard Unit (which is about 25 miles north of Justis) was utilized to time rate the recovery of reserves (Figure 9). The two time rating forecasts closely resemble each other and validates the use of this technique.

A correlation between primary recovery efficiency and S/P ratio (Figure 19C) developed in the regional Clearfork study is the basis for the secondary reserve estimate. The primary recovery efficiency expected in the unit (14.6%) should result in an S/P ratio of 0.85, or 22 MMBO of secondary reserves for 40-acre spacing. Table 7 summarizes the details of the injection and production forecasts for 80-acre line drive patterns and Figure 10 presents the forecasts. The GOR profile in Figure 10 reflects the recovery of approximately 16 BCF of remaining primary gas during waterflood operations. Make-up water should satisfy the unit's injection requirements during the early life of the project. By the time 70% of the reserves are recovered, produced water should match injectivity (20 MBWPD) and make-up water should no longer be needed. Because Clearfork floods exhibit low injectivities on 40-acre patterns, peak rates are low and project lives are extended.

40-Acre Five Spot

Most of the waterfloods investigated in the regional Clearfork study are developed on 20acre spacing and generally with 40-acre five spots. A similar infill program for the proposed South Justis Unit was investigated (Figure 11). After careful review of several plans of development, the Technical Committee recommended developing the unit on 20acre spacing by drilling mainly new injectors. Because of efficiency and environmental concerns, converting old wells to injectors will be minimized.

Time rating of the reserves for 40-acre five-spot patterns is based on the upper curve of the regional study forecast (Figure 21C). There should be 102 injectors and initial injectivity is estimated to be 137 MBWPD. Most injection needs will be met with make-up water. Injection efficiency is predicted to be 85% with fill-up occurring in about five years. Table 8 summarizes the injectivity and recovery forecasts for 40-acre five-spot patterns and Figure 12 presents the forecasts. The four proposed infill producers are expected to produce 50 BOPD per well initially (based on production results from other Clearfork floods) and increase overall unit production by ± 200 BOPD. The GOR for the new wells should be approximately 5000:1 and the expected gas recovery during secondary operations for all wells is 42 BCF.

The injection plant for the 40-acre five spot case is designed to supply 123 MBWPD at 1500 psig discharge pressure to the Unit. For 40-acre five-spot development, three multistage centrifugal pumps with 1500 HP electric motors will be utilized. The expected initial injectivity of the unit of 137 MBWPD decreases to less than 100 MBWPD within one year of startup. The plan is designed to economically meet injection needs of the unit during startup and to provide a back-up pump once injectivity has stabilized.

Mobility Ratio

The mobility ratio (M) is a ratio of the relative permeability to viscosity ratio of the displacing phase to the displaced phase and can be used to predict the success of a waterflood. No relative permeability data has been gathered at Justis. Based on correlations, the mobility ratio is estimated to lie in a range of 0.6 and 1.0. Mobility ratios less than 1.0 are considered favorable for waterflooding.

ECONOMICS

Uninflated economic projections were made for both development plans using the costs which are provided later in this report. The results conclusively demonstrate that infill drilling and flooding on 40-acre five-spots can be a very profitable investment. The Clearfork has a proven record of successful secondary recovery operations. However, due to the heterogenous nature of the reservoir rock, infill drilling on 20-acre spacing will be essential to an economical project. Closer spaced wells result in higher injection rates into the reservoir and quicker fill up, a higher production rate as infill wells recover additional primary reserves, quicker response times and a higher peak response rate, improved sweep efficiencies, better conservation of resources, and prudent management of assets in the field.

Cash flow projections for both development plans are shown in Appendix D with 100% working interest and 87.5% net revenue interest. The following assumptions were made:

Severance Taxes	3.75%
Ad Valorem Taxes	3.54%
Oil Price	\$18.00/BO
Gas Price	\$2.00/MCF
Overhead	\$400/weil/month
Operating Cost	\$2000/well/month - producers
	\$500/well/month - injectors
Water Cost	8¢/BW
Unitization	1-1-91
Initial Injection	1-1-92
-	

Projections were made for non-unitized primary operations and for unitized operations. The difference between the two is the incremental cash flow for secondary recovery operations. The incremental economics for 80-acre line drive and 40-acre five-spot development are the following:

	80-Acre Line Drive	40-Acre <u>Five-Spot</u>
Total Cost (MM\$)	34.00	69.70
Incremental Reserves (MMBO)	22.00	34.00
Development Cost (\$/BO)	1.55	2.05
Investor's Rate of Return (%)	2.90	15.50
Expected Payout (Years)	29.63	8.15
Expected Present Worth (M\$) As of 1/1/91 (AFIT)		
Undiscounted	41,093.5	218,213.6
At 6%	-16,802.2	78,523.6
At 10%	-24,389.8	34,050.3
At 15%	-26,628.1	2,409.6
At 25%	-26,060.9	-25,642.7

•

DEVELOPMENT COSTS

New Wells, Workovers, Conversions

The estimated cost to develop both the Blinebry and Tubb/Drinkard reserves (22 MMBO) in the unit on 80-acre line drive patterns is \$34,035M, or \$1.55/BO. The estimated cost for 40-acre five-spot development (34.0 MMBO) is \$69,737M, or \$2.05/BO (Table 9). Generic workover procedures, WIW conversion procedures, and drilling prognoses are included in Appendix E along with their cost estimates. Due to the lack of good geological data, cores are planned for five wells and repeat formation tests are planned for 20 wells. A suite of modern porosity and resistivity logs are planned for new wells. Also, all wells will be tested for casing integrity and repaired as needed.

For comparison purposes, the estimated cost to develop the Blinebry is 90-95% of the cost to develop both the Blinebry and Tubb/Drinkard depending on the waterflood pattern (Table 10). The latest cumulative production data from the proposed unit area (Blinebry - 20.9 MMBO, Tubb/Drinkard - 7.8 MMBO) suggests that the Tubb/Drinkard contains approximately 27% of the recoverable reserves, assuming that the recovery efficiencies and production lives are the same. On 20-acre spacing, the estimated overall recoverable reserves are 34 MMBO. Approximately 27%, or 9.2 MMBO, are estimated to be recoverable from the Tubb/Drinkard. The incremental cost to develop those reserves on 40-acre five-spots is \$4533M, or 49¢/BO.

Facilities

Preliminary designs were centered around four plans of development: (1) 80-acre line drive, (2) 80-acre five-spot, (3) 40-acre five-spot/80-acre line drive, and (4) 40-acre five-spot. Options 2 and 3 were not viable because of their inefficiencies and lack of flexibility. The cost summaries for two cases are shown in Figure 1F. Optional items (Figure 2F) include positive displacement pumps, a filtration system, and a spare pump rotor. No optional equipment was included in the economics. The cost estimate to equip each producing well is \$46.3M (Figure 3F).

Once the project is approved and all governmental approvals have been obtained, final design, equipment selection, bid awards, equipment fabrication, and facility installation will take about one year (Figure 4F).

Injection Water

Most of the water can be supplied by either Texaco's Jal Salt Water Supply System or Capitan Enterprises' West Texas Water Supply System. Texaco's Jal system appears to be the most viable option. However, no negotiations have been undertaken with any water suppliers. The injection system will also utilize produced Blinebry and Tubb/Drinkard water along with water from the Fusselman. Initially, Blinebry, Tubb/Drinkard, and Fusselman water sources should provide 3,000-5,000 BWPD. Analysis of all of these waters indicates they are all compatible (Figure 13). Presently, Blinebry and Tubb/Drinkard production is commingled in numerous wellbores and the waters are compatible.

Texaco's Jal system can supply 120 MBWPD for approximately 8¢/BW. For 40-acre fivespot development, initial injectivity for the reservoir (137 MBWPD) is expected to exceed the produced water plant capacity (123 MBWPD) for the first three months of injection. After that, plant capacity exceeds the injectivity and the need for large volumes of Jal water should decrease. The line to Texaco is sized to handle 120 MBWPD.

The Jal water system is utilized at the nearby Seven Rivers Queen Unit with good results. No filtration other than settling tanks upstream of the pumps and strainers at the wellhead are planned. Sand filters are not considered necessary and are not planned for the South Justis Unit.

Engineering Design and Construction

1. Introduction and General Assumptions

Only start-up spares have been included (no long term or warehouse spares). An optional price will be provided for one (1) spare centrifugal rotating pump element. No office or dog house facilities have been provided at any of the batteries or the water plant with the exception of the field office. No sales gas distribution facilities have been provided, i.e., all gas sales will take place at the battery limits of the satellite batteries and the central battery. It was also assumed that no sweetening or compression will be required. None of the injection water supply, injection water distribution system, or production gathering system pipelines contain pigging facilities.

There has not been any consideration in the design of any of the pipeline and facility systems for any future tertiary recovery, i.e., handling of CO_2 , etc. The pipeline and facility materials assumed in the estimate could handle CO_2 with little cost impact. However, no consideration has been given to the different flow and pressure requirements for the use of CO_2 in a tertiary recovery scheme. All materials of construction will meet NACE MR-01-75 requirements for the production equipment and gathering system as the hydrocarbon production contains 5,000 to 10,000 ppm of H₂S. There is a negligible CO_2 contained in the hydrocarbon production.

2. Field Office and Lay Down Yard

The office and adjoining lay down yard will be located south of and adjacent to State Highway 128 at the intersection of an existing lease road. The fenced lay down yard will be two acres in size.

3. Electrical Power Distribution System

Southwestern Public Service Company has a 115 KV transmission system and sub-station six miles northwest of the proposed Unit. It is assumed that Southwestern Public Service will serve the waterflood unit at 12.47 KV and provide service at the northwest corner of the unit. A single meter will be provided by the power company at that point. A 477 MCM ACSR express feeder will be run from the service point down to the water injection central battery facility. From that point, all new overhead distribution to all producing wells and production facilities will be provided. This will include all new transformers and services to producing wells. The field and plant loads will be segregated into three sections. The field will be separated into a northern and southern section and the central facility will be on the third section. A maximum 60 hp load at each producing well was assumed. For the largest load case at the water injection plant, 4500 hp was assumed (3-1500 hp machines). At this time, it is assumed that the system can handle the starting of these 3-1500 hp motors.

For operators on Unit property who operate facilities not included in the Unit, the existing power service will remain unchanged. The exception will be where a portion of the Operator's facilities are in the Unit and a portion are not. In this case, the portion belonging to the Unit will be disconnected and power will be supplied by the new Unit power distribution system. The estimate assumes power is existing at the Fusselman leases (ARCO's State "Y" and Wimberly leases for instance) for the new booster pumps.

4. Injection Water Supply to Plant (Texaco and Fusselman)

Produced water from Fusselman sources and the Unit production will be supplemented by a supply of salt water from Texaco or from Capitan Enterprises. The supply line from Texaco will require 25,300' of 10" polylined carbon steel piping to deliver this water from Texaco's tie-in point to the water injection plant. The line has been sized for 120,000 barrels of water per day. It was assumed that the supply pressure at the Texaco tie-in point is 125 psig and that no booster pumps will be required. Water from the Fusselman sources will be delivered in 8000' of 6" fiberglass pipeline. It was assumed that this water will be taken from an existing atmospheric storage tank and that booster pumps will be required to pressure the water from the Fusselman sources to the injection water plant. This line has been sized for 6000 barrels of water per day.

5. Injection Plant

This plant will be located approximately 1/4 mile south of State Highway 128 adjacent to an existing lease road. This plant will supply pumps and tankage to take injection water supply from atmospheric tanks up to 1500 psig discharge pressure for distribution to the injection wells. The plant will be manned eight hours per day, seven days per week.

There are three sources of injection water. The first source would be the produced water from the Unit. The second source would be from leases producing from the Fusselman. The balance of the water will be supplied from an outside supply system. Various laboratory tests have been conducted on these waters and it was assumed that there would be no compatibility problems with mixing these three waters.

The base estimate assumed the use of three centrifugal electric motor driven pumps operating in parallel. Additional cost savings could be realized by using two centrifugal pumps in parallel. However, due to flexibility considerations, it was thought that the three pump case would be more appropriate as the estimate basis. Optional prices have been provided for each case using the required number of 600 hp positive displacement pumps. The use of centrifugal pumps is recommended due to capital and operating cost considerations as well as potential pulsation problems. For the initial design rates, no spare pumps are included in the estimate scope. Pump discharges are designed for 900 ANSI.

A pump building will be supplied to house the injection pumps, booster pumps, plant switch-gear and injection water headers. The prime consideration in supplying a building was freeze protection. The building will be a steel frame building on a concrete slab. It will be uninsulated but will contain catalytic heaters for low ambient temperature conditions. A bridge crane and overhead doors will be provided for ease of pump maintenance. Suction and discharge headers will be located in trenches in the concrete slab. Three 50% booster pumps will be provided to supply NPSH requirements for the injection pumps.

Injection water lines will either be insulated or underground. No heat tracing has been provided. Above ground piping will be on sleepers. All piping will be I.P.C. carbon steel.

In the event of increasing water level in the tanks due to pump shut-down, etc., a level control system will gradually shut-off water supply from Texaco via an inlet control valve. If the level continues to rise in the tank, next the Fusselman will gradually be shut-off by an inlet control valve. Finally, the level controller will shut-off the water supply from the central battery by an inlet control valve which will cause produced water to overflow from the skim water tank to the emergency pit. This will allow lead time prior to production being shut-in from the Unit.

A single pad mounted 5 MVA transformer feeding a lineup of 5 KV Class motor control center was assumed for the water injection pumps. The motor control center would be housed in a separate room in the pump house. 480 volt distribution for all facilities would come from pole top mounted distribution transformers at each facility feeding a lineup of motor control and distribution equipment.

No filters have been included in the estimate. However, an optional price will be provided. Orifice meters will be provided on both north and south trunk lines. The plant will be fenced-in with the central battery. The plant will contain area lighting and will utilize local contracts. Tanks will be internally coated.

6. Injection Water Distribution System (To Wells)

The waterflood pumps will be centrally located in the Unit. For lines 6" and greater in size, carbon steel poly-lined pipe will be used with a design pressure rating of 2000 psig. For lines less than 6" in size, fiberglass pipe with a 2000 psig design pressure rating will be used. These lines will all be buried 3' deep. No cathodic protection system will be required provided, however, that anytime the steel trunk line's path crosses another steel line, a 32# magnesium anode shall be installed (cost approximately \$100 per anode).

7. Injection Well Hook-up/Metering Assembly

Each injection well will be provided with a prefabricated injection assembly. It will utilize screwed fittings and a 1" Halliburton turbine meter with totalizer. Control of the flow of water to each injection well will be accomplished at satellite injection manifolds.

8. Central Battery

The central battery will receive produced water and crude from each of the satellite batteries in the Unit. It will be located one-quarter mile south of State Highway 128 adjacent to the water injection plant. It will be manned eight hours per day, seven days per week. The crude is assumed to be 32° API gravity. The allowable BS&W content is 1%. Two 100% trains of treating will be provided to handle the crude. In-line booster pumps will be provided to boost pressure as required from the gathering system. With the exception of the produced fluid booster pumps, the pumps in the central battery will not have installed spares.

The earthen fire wall around the three storage tanks are sized for 1.5 times the total tankage volumes. All piping inside the central battery limits will be above ground on sleepers and will be I.P.C. carbon steel construction. Production gathering and injection water trunk lines will run north/south through the pipeway between the injection plant and the central battery. Electrical power service, motor control, etc. is common with the injection plant. A description of the system is provided in the injection plant section. The area of the central battery and the injection water plant will be fenced. A remote vent with a berm is included. The plant will contain area lighting. Four H₂S monitors and alarms will be provided with remote annunciation to the field office. Instrument air compressor will be supplied. Sweet fuel gas will be brought to the central battery via 2000' of 2" carbon steel line from the ARCO Wimberly Lease. This fuel will be used for blanket gas and chemelectric treater fuel. The central battery will utilize local controls. In the event of an ESD of the central battery, pressure will be allowed to build-up back to the satellites which will in turn shut in the satellites and individual wells. All vessels and tanks will be internally coated. It is assumed that the crude and gas purchasers will take custody at the central battery limits. No compression or sweetening has been allowed for.

9. Satellite Batteries

Skid mounted satellite batteries will be located at seven locations throughout the field. Each satellite will handle production from approximately 20 wells. Each well will have individual flowlines (flowline costs are included in the production gathering system). Manual well tests will be performed with two test separators. Each separator will handle approximately ten of the wells. However, all wells will be manifolded to each test separator. The group separator and the two test separators will dump oil and produced water into the production gathering system trunk lines. No blowcase has been provided; however, booster pumps will be provided at the central battery which will boost pressure as required in the gathering trunk lines from the satellite batteries. The gas purchaser will take custody of the gas at each satellite battery limit. No compression or sweetening has been included in the estimate. A remove vent has been included. No area lighting has been included. Piping inside the battery limits will be carbon steel construction and mounted above ground on sleepers. The batteries will utilize local controls. Net oil computers will be provided on each separator. All steel piping inside battery limits will be IPC (internally plastic coated). A visual alarm light will be provided. An instrument air compressor has been included.

10. Production Gathering System

The production gathering system consists of individual flow lines from each well to a satellite battery and a trunk line system from the satellite batteries to the central battery. One trunk line gathers production from the northern satellite batteries and one trunk line gathers production from the southern satellite batteries.

11. Data Acquisition System

A solar powered RTU will be mounted outdoors at each satellite battery to provide for group separator oil and water volumes. An RTU will be mounted outdoors at the central battery to provide for water volumes, LACT data, and 32 digital alarm points, which will remotely annunciate at the field office. A PC and printer will be supplied at the field office for alarm annunciation. An auto-dialer will be provided for automatic dial-up during unmanned periods. The system is radio based. Automatic well testing is part of the RTU base level automation. A separate PCbased system is planned to monitor production pumps and provide pump-off controls.

UNIT BOUNDARY

The unit includes tracts which have a reasonable chance of contributing economically recoverable reserves to the waterflood. The tracts removed from Hickman's original study area have low primary recoveries or plugged wellbores that are not currently usable by the unit. Table 11 lists the tracts that were included. The revised unit area contains approximately 5360 acres. The following lists the tracts removed from Hickman's area of study:

<u>Operator</u>	Lease	Location	Cum. Recovery MBO (1-1-90)
UTP Rhodes	2 States Stuart #1 Corrigan #1 (SWD)	L-11 M-11	24.1 8.4
Rice	SWD Well #B-12	G-12	0.4
Amoco	Langlie B #5 & #6	L,M-14	1.0
Westbrook	Buffington C #1	M-18	26.0
Leeser	El Paso Fed #2	N-23	75.7
UTP	Sunray #1	K-26	4.5
ARCO	Gregory Fed #1	1-35	37.8
Fina	Ginsberg #13	K-31	10.0
Texaco	Riggs A #3	C-1	24.6
Texaco	Riggs B #7	H-1	93.3
Maralo	Self #5 & #6	D,E-6	<u>167.0</u>
Total			472.8

UNITIZED INTERVAL

The vertical limits of the unitized interval will extend from the top of the Justis Blinebry Field to the base of the Justis Tubb/Drinkard Field. The NMOCD defined the top of the Justis Blinebry in 1961 as 4980' on the electrical log of Amerada's Ida Wimberley #4 (Figure 15). Previously, the NMOCD had designated the top of the Justis Drinkard at 5784' of the log from Amerada's Ida Wimberley #5. The base of the Tubb/Drinkard rests on top of the Abo at 6180' in the Wimberley #4.

PARTICIPATION PARAMETERS

Potential tract participation parameters are assembled in Table 1 of Appendix G. The active well count is as of March 1990. A cross reference between the South Justis Unit Technical Committee tract numbers and the Hickman study's tract numbers is provided. A participation parameter table sorted by working interest owner will be generated after the working interest of each individual tract has been collected and verified.

Individual tract production plots are included in Appendix H. Production histories (BOPD, BWPD, MCFD, and the GOR) were obtained from NMOCD supplied data and downloaded to a personal computer. A graphics package was used to plot data from 1970 through March 1990. The historical gas-oil ratios were used to calculate an oil production rate equivalent to 2 BOE per day per active well. A gas equivalency of 10 MCF/BO was used. The production history indicates a solution gas drive reservoir, and a constant percent decline analysis was performed to determine remaining oil and gas reserves for each tract. Results are tabulated on each of the tract production plots.

TABLE 1SOUTH JUSTIS UNITYEARLY PRODUCTION HISTORY BY RESERVOIR

• . •

ì

RESERVOIR	YEAR	OIL (BBLS)	GAS (MCF)	WATER (BBLS)	UNIT
 BB	1958	17,921	4,000	560	2
	1959	168,299	570,320	10,485	· 2
	1960	530,219	977,660	46,578	2
	1961	716,434	1,588,416	\$1,801	2
	1962	829,263	1,949,091	106,988	2
	1963	1,105,396	2,488,945	176,540	2
	1964	1,273,399	3,333,577	321,207	2
	1965	1,307,973	4,030,262	456,326	2
	1966	1,529,389	5,226,001	460,693	2
	1967	1,433,665	6,927,439	455,679	2
	1968	1,194,679	7,290,770	465,268	2
	1969	1,195,204	7,811,783	739,020	2
	1970	1,011,869	8,843,009	738,588	2
	1971	990,776	8,950,735	772,187	2
	1972	926,911	8,107,564	672,877	2
	1973	781,405	7,547,967	574,621	2
	1974	803,756	7,312,408	633,012	2
	1975	703,321	7,149,412	617,247	2
	1976	581,923	5,950,691	603,571	2
	1977	470,377	4,912,336	528,074	2
	1978	457,472	4,514,951	550,801	2
	1979	401,412	4,166,282	504,641	2
	1980	369,847	4,080,085	558,592	2
	1981	336,852	3,653,313	490,986	2
	1982	288,589	3,364,234	458,231	2
	1983	265,813	3,108,502	403,099	2
	1984	238,973	2,813,743	370,799	2
	1985	222,067	2,616,449	363,905	2
	1986	216,097	2,486,442	410,360	2
	1987	203,989	2,472,166	492,988	2
	1988	180,129	2,140,054	363,891	2
	1989	166,829	1,938,000	393,711	2
×TOTAL BB		20,920,248	138,326,607	13,823,326	
TD	1957	978	0	0	2
	1958	111,205	11,449	9	2
	1959	405,335	403,220	21,048	2
	1960	697,297	1,232,571	61,456	2
	1961	780,020	2,169,483	170,377	2
	1962	714,250	2,326,345	149,879	2
	1963	632,991	2,325,001	187,442	2
	1964	590,251	2,649,629	221,626	2
	1965	544,757	2,489,112	212,575	2

TABLE 1 SOUTH JUSTIS UNIT YEARLY PRODUCTION HISTORY BY RESERVOIR

•,

•

RESERVOIR	YEAR	OIL (BBLS)	GAS (MCF)	WATER (BBLS)	
TD	1966	530,926	2,292,735	237,088	2
	1967	442,380	2,154,574	226,566	2
	1968	312,040	1,931,284	226,950	2
	1969	213,933	1,409,216	178,681	2
	1970	124,660	903,256	177,759	2
	1971	133,093	1,079,379	127,894	2
	1972	118,587	1,006,486	119,535	2
	1973	121,986	1,200,549	108,328	2
	1974	109,816	967,439	80,347	2
	1975	93,247	857,689	92,006	2
	1976	123,245	1,404,235	163,295	2
	1977	108,158	1,204,671	133,817	2
	1978	104,050	1,141,245	130,066	2
	1979	80,365	975,299	132,181	2
	1980	83,454	835,026	169,841	2
	1981	83,324	742,827	146,939	2
	1982	77,350	706,724	171,460	2
	1983	74,721	655,493	172,506	2
	1984	70,994	618,691	214,708	2
	1985	68,793	479,779	193,220	2
	1986	64,403	563,668	182,645	2
	1987	58,066	484,176	173,094	2
	1988	50,259	396,278	197,908	2
	1989	48,623	429,144	172,070	2
XTOTAL TD		7,773,557	38,046,673	4,953,316	
TOTAL		28,693,805	176,373,280	18,776,642	

32

TABLE 2 SOUTH JUSTIS UNIT YEARLY PRODUCTION HISTORY COMBINED RESERVOIRS

,

YEAR	OIL (BBLS)	GAS (MCF)	WATER (BBLS)	UNIT
1957	978	0	0	2
1958	129,126	15,449	569	2
1959	573,634	973,540	31,533	2
1960	1,227,516	2,210,231	108,034	2
1961	1,496,454	3,757,899	252,178	2
1962	1,543,513	4,275,436	256,867	2
1963	1,738,387	4,813,946	363,982	2
1964	1,863,650	5,983,206	542,833	2
1965	1,852,730	6,519,374	668,901	2
1966	2,060,315	7,518,736	697,781	2
1967	1,876,045	9,082,013	682,245	2
1968	1,506,719	9,222,054	692,218	2
1969	1,409,137	9,220,999	917,701	2
1970	1,136,529	9,746,265	916,347	2
1971	1,123,869	10,030,114	900,081	2
1972	1,045,498	9,114,050	792,412	2
1973	903,391	8,748,516	682,949	2
1974	913,572	8,279,847	713,359	2
1975	796,568	8,007,101	709,253	2
1976	705,168	7,354,926	766,866	2
1977	578,535	6,117,007	661,891	2
1978	561,522	5,656,196	680,867	2

TABLE 2 SOUTH JUSTIS UNIT YEARLY PRODUCTION HISTORY COMBINED RESERVOIRS

YEAR	OIL (BBLS)	GAS (MCF)	WATER (BBLS)	UNIT
1979	481,777	5,141,581	636,822	2
1980	453,301	4,915,111	728,433	2
1981	420,176	4,396,140	637,925	2
1982	365,939	4,070,958	629,691	2
1983	340,534	3,763,995	575,605	2
1984	309,967	3,432,434	585,507	2
1985	290,860	3,096,228	557,125	2
1986	280,500	3,050,110	593,005	2
1987	262,055	2,956,342	666,082	2
1988	230,388	2,536,332	561,799	2
1989	215,452	2,367,144	565,781	2

TOTAL

.

28,693,805 176,373,280 18,776,642

·

•.

			THROUGH 1				
OPERATOR	RESERVOIR	WELL	CUM OIL	CUM GAS	CUM WATER	UNIT	ARCO TRACT
AMER EXPL	BB	EPASO F 1	159,682	542,340	412,869	2	32
XTOTAL RESE	RVOIR BB		159,682	542,340	412,869		
	ATOR AMER EX	(PL	159,682	542,340	412,869		
AMER HESS	BB	IDA WM 10	257,626	1,379,481	109,601	2	34
		IDA HM 11	171,837	1,009,263	50,393	2	34
		IDA WM 13	71,078	219,517	40,901	2	34
		IDA WM 14	70,434	603,573	33,067	2	34
		IDA WM 15	111,971	837,230	42,325	2	34
		IDA WM 16	79,544	750,604	43,307	2	34
		IDA WM 17	109,893	2,996,052	65,963	2	34
		IDA WM 9	146,296	1,808,762	74,950	2	34
		STUART 1	217,403	1,190,260	271,918	2	17
×TOTAL RESE	RVOIR BB		1,236,082	10,794,742	732,425		
	TD	IDA WM 10	73,899	229,818	26,157	2	34
		IDA WM 3	141,168	214,182	66,883	2	34
		IDA HM 4	167,984	696,189	230,357	2	34
		IDA WM 5	81,331	574,126	21,995	2	34
		IDA HM 6	126,679	637,633	52,204	2	34
		IDA WM 7	74,647	667,434	41,413	2	34
		IDA WM 8	100,646	478,294	29,447	2	34
		IDA WM 9	75,487	322,470	18,297	2	34
XTOTAL RESE	RVOIR TD		841,841	3,820,146	486,753		
XTOTAL OPER	ATOR AMER HE	SS	2,077,923	14,614,888	1,219,178		
AMOCO	BB	ST AJ 5	125,133	534,913	54,679	2	46
		ST AJ 6	95,204	200,299	88,685	2	46
XTOTAL RESE	RVOIR BB		220,337	735,212	143,364		
	TD	ST AJ 5	16,062	22,546	7,794	2	46
*TOTAL RESE	RVOIR TD		16,062	22,546	7,794		
*TOTAL OPER	ATOR AMOCO		236,399	757,758	151,158		
ARCO	BB	CARL AF 1	77,335	478,854	68,256	2	31
		CARL AF 2	96,420	293,998	87,055	2	31
		CARL F 1	158,592	2,092,022	55,020	2	41
		CARL F 2	196,857	2,289,458	77,355	2	41
		CARLSON 1	154,705	567,012	150,794	2	39
		CARLSON 2	105,160	499,036	186,669	2	39

			THROUGH 19	89			
OPERATOR	RESERVOIR	WELL	CUM DIL	CUM GAS	CUM WATER		ARCO TRACT
ARCO	BB	ETON NW14	158,459	417,761	65,582	2	10
		ETON NW15	-89,004	275,627	192,316	2	9A
		ETON NW16	178,662	829,928	68,853	2	9A
	•	ETON NW17	73,263	275,166	85,263	2	9A
		ETON SE12	80,289	308,011	52,392	2	15
		ETON SE13	26,400	136,490	33,086	2	14
		ETON SH 8	197,564	1,425,722	56,869	2	12
		ETON SW 9	156,764	1,220,800	44,762	2	11
		ETON SW10	229,217	1,147,773	64,255	2	13
		ETON SW11	226,014	1,321,228	113,347	2	11
		FED 35 1	139,318	237,902	61,116	2	47
		JAL 2	252,947	1,056,404	90,495	2	5
		JAL 3	97,531	1,989,674	99,301	2	5
		JUST F 2	182,244	656,225	25,437	2	8
		JUST F 3Y	98,403	494,211	60,453	2	8
		LGL AF 1	244,496	1,136,217	36,062	2	20
		LGL AF 2	287,161	1,391,336	24,134	2	20
		LGL B 1	206,683	909,092	74,886	2	6
		LGL B 2	119,861	2,422,575	133,956	2	6
		LGL BF 1	121,386	512,589	9,796	2	19
		LGL BF 2	130,268	475,644	142,685	2	19
		LGL F 1	285,320	2,135,722	37,176	2	21
		LGL F 2	291,912	1,632,813	65,996	2	21
		STATE Y 3	120,229	2,046,708	24,591	2	43
		STATE Y 6	114,216	708,088	24,424	2	43
		STATE Y 7	171,307	1,382,706	13,957	2	43
		STATE Y 8	8,710	89,758	47	2	43
		STUART 1	100,110	327,712	86,551	2	4
		STUT AWN2	139,821	487,181	177,052	2	16
		WIMB WN 3	122,585	2,380,481	25,146	2	26
		WIMB WN 5	102,411	1,726,726	36,907	2	26
		WIMB WN 6	124,627	503,488	12,022	2	26
		WIMB WN 7	271,703	1,913,197	47,010	2	26
		WIMB WN 8	219,176	772,810	223,016	2	26
		WIMB WN 9	84,219	297,057	47,186		26
		WIMB WN10	146,131	554,720	376,596		26
		WIMB 2	240,458	2,513,060	93,847		29
		WIMB 3	240,168	2,318,326	115,783	2	30
XTOTAL RES	ERVOIR BB		6,868,106	46,651,308	3,567,502		
	TD	CARL AF 1	54,618	253,688	24,488	2	31
		CARL AF 2	45,033	111,141	167,944	2	31
		CARL F 1	75,097	238,426	2,882	2	41
		CARL F 2	80,267	354,705	36,802	2	41

• •

-

.

			THROUGH 1	989			
OPERATOR	RESERVOIR	WELL	CUM OIL	CUM GAS	CUM WATER	UNIT	ARCO TRACT
ARCO	 TD	CARLSON 1	2,171	4,741	46,615	2	39
		ETON NW14	23,301	149,114	9,009	2	10
		ETON NW15	13,747	20,349	23,421	2	9B
		ETON SE12	26,273	60,588	7,888	2	15
		ETON SW 8	76,000	305,173	34,329	2	12
		ETON SW 9	17,752	127,230	11,072	2	11
		ETON SW10	43,399	327,121	52,122	2	13
		ETON SW11	77,319	371,885	42,201	2	11
		FED 35 1	14,238	0	0	2	47
		JA STUT 1	17,957	29,258	2,348	2	4
		JAL 2	166,346	1,201,533	69,162	2	5
		JAL 3	99,718	395,278	96,941	2	5
		LGL AF 1	31,651	64,543	14,506	2	20
		LGL B 1	86,068	497,710	43,935	2	6
		LGL B 2	73,008	635,928	47,819	2	6
		LGL BF 1	2,540	7,984	1,101	2	19
		LGL F 1	10,276	14,534	9,142	2	21
		STATE Y 5	69,083	1,148,078	908	2	43
		STATE Y 8	80,827	217,548	81,813	2	43
		STATE Y 9	27,910	573,941	309	2	43
		STATE Y10	17,661	321,787	15,852	2	43
		STUT AWN2 WIMB WN 2	23,533	61,998 882,428	27,676 38,660	2 2	16 26
		WIMB WN 3	154,243 121,628	384,357	25,088	2	26
		WIMB WN 4	99,293	256,920	33,666	2	26
		WIMB WN 6	60,094	552,573	17,672	2	26
		WIMB WN 7	51,065	207,877	31,688	2	26
		WIMB WN10	586	2,076	1,765	2	26
		WIMB WN11	9,013	49,366	30,085	2	26
		WIMB 2	51,508	502,823	35,391	2	29
		WIMB 3	129,938	919,171	100,208	2	30
XTOTAL RESE	ERVOIR TD		1,933,161	11,251,872	1,184,508		
XTOTAL OPER	RATOR ARCO		8,801,267	57,903,180	4,752,010		
BRUNO	BB	CARLB25 2	182,868	1,589,587	34,099	2	44
		CARLB25 5	161,947	1,169,338	13,950	2	44
		CARLB25 6	80,145	1,223,418	76,328	2	44
		CARLB26 5	184,615	692,157	98,177	2	40
		CARLB26 6	167,622	546,573	25,272	2	40
		CARLB26 7	39,903	108,152	48,458	2	40
XTOTAL RESE	ERVOIR BB		\$17,100	5,329,225	296,284		
	TD	CARLB25 2	94,633	543,621	28,680	2	44

• •

1

			THROUGH 19	189			
OPERATOR	RESERVOIR	WELL	CUM DIL	CUM GAS	CUM WATER	UNIT	ARCO TRACT
BRUNO	 TD	CARLB25 3	86,369	313,689	106,525	2	44
		CARLB25 4	169,137	613,460	73,182	2	44
		CARLB25 5	135,351	415,485	1,845	2	44
		CARLB26 5	74,613	297,847	156,008	2	40
		CARLB26 6	84,527	245,732	1,150	2	40
XTOTAL RES	ERVOIR TD		644,630	2,429,834	367,390		
XTOTAL OPEI	RATOR BRUNO		1,461,730	7,759,059	663,674		
CHEVRON	BB	JA STUT 8	56,880	93,183	211,583	2	1
		L MCBUF 4	118,629	693,742	30,835	2	24
		L MCBUF 5	133,619	2,367,950	14,409	2	24
		L MCBUF 6	221,727	2,001,522	16,878	2	24
		L MCBUF 9	13,782	1,078,711	4,448	2	24
		L MCBUF10	163,301	916,879	29,136	2	24
		L MCBUF12	131,005	642,803	35,949	2	24
		L MCBUF13	187,879	2,543,080	39,282	2	24
		L MCBUF14	138,463	1,100,480	10,308	2	24
		L MCBUF15	20,422	1,954,705	9,979	2	24
		RAMSY B 1	70,327	167,475	464,713	2	50
		RAMSY B 6	217,097	588,241	124,927	2	50
		RAMSY B 7	196,701	748,043	198,260	2	50
		RAMSY B 8	196,336	887,181	73,192	2	50
		RAMSY B 9	100,810	560,439	209,517	2	50
		RAMSY B10	158,188	688,763	175,380	2	50
		RAMSY B11	93,149	432,718	337,937	2	50
		RAMSY B12	215,256	604,623	68,042	2	50
		RAMSY F 4	225,558	1,067,674	68,386	2	49
		RAMSY F 5	119,807	783,482	126,148	2	49
		RAMSY F 6	245,436	3,059,053	255,613	2	49
		RAMSY F 7	111,279	475,422	181,358	2	49
		RAMSY F 9	173,323	1,056,115	122,514	2	49
		RAMSY F10	212,939	470,332	250,717	2	49
		RAMSY F11 RAMSY F12	183,543 127,338	647,429 413,260	80,812 128,711	2 2	. 49 49
*TOTAL RES	ERVOIR BB		3,832,794	26,043,305	3,269,034		
	TD	JA STUT 8	48,505	109,407	233,325	2	1
		L MCBUF 3	42,752	317,258	22,488	2	24
		L MCBUF 4	8,978	94,337	0	2	24
		L MCBUF 7	107,693	445,516	7,066	2	24
		L MCBUF10	114,466	538,846	10,838	2	24
		L MCBUF11	14,832	120,161	4,706	2	24
		L MCBUF14	11,952	58,968	3,783	2	24

× . .

OPERATOR	RESERVOIR	WELL	CUM OIL	989 CUM GAS	CUM WATER	UNIT	ARCO TRACT
CHEVRON	TD	RAMSY B 6	53,166	108,350	52,793	_	50
		RAMSY B 7 Ramsy B 8	14 8, 290 132,634	668,052	63,852	2	50 50
		RAMSY B 9		528,655	17,508 1,212	2 2	50
			18,573	25,633		-	50
		RAMSY B10	13,031	17,186	1,551 4,791	2 2	
		RAMSY B11 RAMSY B12	6,980 10,887	8,016 15,654	38,960	2	50 50
		RAMSY F 4			12,777	2	50 49
			55,442 50,246	178,952		2	49
		RAMSY F 5		105,105	37,075	2	49
		RAMSY F 6	45,784	142,708	6,494	-	49
		RAMSY F 7	32,832	143,300	6,392	2	
		RAMSY F 9	55,689	262,245	66,132	2	49
		RAMSY F11	20,764	218,096	3,312	2	49 40
		RAMSY F12	21,594	35,021	6,242	2	49 48
		RAMSY F13	26,289	104,772	73,535	2	49
XTOTAL RES	ERVOIR TD		1,041,379	4,246,238	674,832		
XTOTAL OPEI	RATOR CHEVRON	•	4,874,173	30,289,543	3,943,866		
FINA	BB	GIBRG F 8	82,770	94,433	103,267	2	51
		GIBRG F 9	123,496	277,308	185,865	2	51
		GIBRG F10	123,624	265,419	124,514	2	51
		GIBRG F11	77,190	666,378	92,841	2	51
XTOTAL RES	ERVOIR BB		407,080	1,303,538	506,487		
	TD	GIBRG F 9	11,758	64,182	32,089	2	51
		GIBRG F11	55,462	121,580	32,132	2	51
XTOTAL RESE	ERVOIR TD		67,220	185,762	64,221		
XTOTAL OPER	RATOR FINA		474,300	1,489,300	570,708		
PAC E	BB	CARLA23 1	21,310	70,232	49,063	2	27
		CARLB13 5	78,923	365,118	21,614	2	25
		CARLB13 6	112,388	709,483	98,210	2	25
		CARLB13 7	117,756	540,346	62,273	2	25
		CARLB13 8	7,616	63,019	27,622	2	25
*TOTAL RESE	ERVOIR BB		337,993	1,748,198	258,782		
	TD	CARLB13 5	73,300	580,309	15,521	2	25
		CARLB13 8	5,648	54,007	10,223	2	25
XTOTAL RESE	ERVOIR TD		78,948	634,316	25,744		
XTOTAL OPER			416,941	2,382,514	284,526		
TUTAL UPER	ATUR PAL E		710/791	C) JOC) JIM	207/320		

•

OPERATOR	RESERVOIR	WELL	THROUGH 19 CUM OIL	CUM GAS	CUM WATER	UNIT	ARCO TRACT
							
TEXACO	BB	A COAT C8	38,435	719,116	14,655	2	35
		A COAT C9	13,808	363,029	11,260	-2	35
		A COATCIO	52,600	1,440,729	33,507	2	35
		A COATC14	113,413	1,389,908	35,800	2	35
		A COATC16	41,790	604,810	57,799	2	35
		A COATC18	190,302	1,046,057	102,755	2	35
		A COATC19	100,765	795,283	32,574	2	35
		A COATC21	67,629	539,144	7,574	2	35
		A COATC22	134,077	546,837	21,572	2	35
		A COATC23	139,163	742,382	34,201	2	35
		A COATC24	148,743	938,859	9,713	2	35
		A COATC25	91,554	572,981	14,106	2	35
		A COATC26	128,166	1,497,024	13,967	2	35
		A COATC27	144,111	2,888,834	95,845	2	35
		A COATC28	48,250	684,830	36,899	2	35
		A COATDO3	110,722	414,875	28,323	2	36
		HOBBS A 6	142,704	442,467	56,599	2	45
		HOBBS A 7	153,465	400,355	101,350	2	45
		LCRUCS C1	303,983	1,546,594	256,785	2	28
		PENNEYF 6	50,200	93,503	13,651	2	37
		PENNEYF 7	55,222	87,605	46,924	2	37
		RIGGS B 6	147,303	702,407	225,406	2	52
		RIGGS B 8	136,946	511,461	286,356	2	52
XTOTAL RES	ERVOIR BB		2,553,351	18,969,090	1,537,621		
	TD	A COATC 6	4,183	174,347	5,182	2	35
		A COATC 7	9,981	58,181	12,397	2	35
		A COATC 8	86,899	176,781	67,825	2	35
		A COATC 9	101,948	298,959	17,790	2	35
		A COATC11	281,804	1,943,939	244,156	2	35
		A COATC12	242,582	1,610,270	521,836	2	35
		A COATC14	181,826	813,406	44,149	2	35
		A COATC16	154,507	1,364,263	77,701	2	35
		A COATC18	70,631	223,522	50,773	2	35
		A COATC19	24,617	296,586	11,371	2	35
		A COATC21	238	1,003	21,605	2	35
		A COATC23	94,821	345,080	21,686	2	35
		A COATC24	56,417	236,601	4,503	2	35
		A COATC25	93,107	646,866	11,617	2	35
		A COATD 2	137,800	1,912,292	393,373	2	36
		HOBBS A 6	77,686	336,226	24,378	2	45
		HOBBS A 7	81,099	212,959	37,547	2	45
		L BUF B 2	1,497	2,723	2,325	2	38
		LCRUCS C1	93,403	246,872	27,713	2	28

.

• •

OPERATOR RESERVOIR HELL CUM OIL CUM GAS TEXACO TD PENNY F 4 18,961 19,632 PENNY F 6 18,994 11,507 11,809 XTOTAL RESERVOIR TD 1,839,418 10,943,914	14,505 1,526 10,465 1,624,423	UNIT 2 2 2 2	ARCO TRACT 37 37 52
PENNY F 6 18,994 11,507 RIGGS B 8 6,417 11,899 *TOTAL RESERVOIR TD 1,839,418 10,943,914	1,526 10,465 1,624,423	2	37
PENNY F 6 18,994 11,507 RIGGS B 8 6,417 11,899 *TOTAL RESERVOIR TD 1,839,418 10,943,914	1,526 10,465 1,624,423	2	37
RIGGS B 8 6,417 11,899 *TOTAL RESERVOIR TD 1,839,418 10,943,914	10,465		
*TOTAL RESERVOIR TD 1,839,418 10,943,914	1,624,423	-	
	3,162,044		
XTOTAL OPERATOR TEXACO 4,392,769 29,913,004			
·			
UN TEX BB BLOCKER 4 46,339 967,730	27,410	2	23
BLOCKER 5 244,357 1,763,595	25,626	2	23
BLOCKER 6 161,364 1,228,244	23,307	2	23
BLOCKER 7 196,223 1,604,680	49,547	2	23
BUFFIN B3 107,894 485,715	49,172	2	38
BUFFIN B4 64,251 119,160	49,712	2	38
CARL A 1 20,751 168,672	10,741	2	42
CARL A 3 250,426 2,715,201	97,657	2	42
CARL A 4 228,040 2,358,534	152,417	2	42
CARL A 5 146,528 979,491	59,789	2	42
CARL A 6 149,716 1,153,721	50,685	2	42
CARL B 1 260,597 1,497,289	106,889	2	33
CARL B 2 269,457 1,337,837	62,894	2	33
GRERY AF1 133,314 364,668	314,550	2	48
JUSTIS 1 133,057 434,781	22,235	2	7
JUSTIS 2 122,989 817,718	24,484	2	7
LGL B 1 362,020 2,142,775	124,872	2	22
LGL B 2 348,696 2,780,473	129,601	2	22
LGL D 1 213,508 678,068	350,889	2	18
LGL D 2 165,912 444,285		2	18
O STUART1 4,067 O	444	2	3
O STUART2 78,631 253,857	177,507	2	3
STUART 6 342,650 1,165,469	213,540	2	2
STUART 7 274,758 521,493		2	2
STUART 8 162,178 226,193	522,384	2	2
*TOTAL RESERVOIR BB 4,487,723 26,209,649	3,098,958		
TD BLOCKER 4 71,629 251,498	37,716	2	23
BLOCKER 5 38,095 156,109	6,260	2	23
BLOCKER 6 76,022 379,117	7,168	2	23
BLOCKER 7 19,827 99,749	67,571	2	23
BUFFTN B3 49,045 97,321	18,536	2	38
BUFFTN B4 17,897 39,489	2,771	2	38
CARL A 1 77,165 109,016	15,354	2	42
CARL A 3 64,559 173,384	48,961	2	42
CARL A 4 92,813 576,773	41,865	2	42
CARL A 5 83,157 238,719	20,387	2	42

			Inkuuun 1	707			
OPERATOR	RESERVOIR	WELL	CUM OIL	CUM GAS	CUM WATER	UNIT	ARCO TRACT
							
UN TEX TD	CARL AF 2	23,172	31,829	264	2	42	
		CARL AF 6	24,519	230,648	607	2	.42
		CARL B 1	61,706	360,511	30,622	2	33
		CARL B 2	124,686	428,220	26,949	2	33
		JUSTIS 1	79,303	201,937	19,600	2	7
		JUSTIS 2	65,272	171,907	16,521	2	7
		LGL B 1	88,232	240,260	10,579	2	22
		LGL B 2	52,852	104,591	28,081	2	22
		0 STUT 1	5,380	7,548	430	2	3
		D STUT 2	23,742	98,664	76,412	2	3
		STUART 6	76,085	234,701	18,113	2	2
		STUART 7	95,740	280,054	22,884	2	2
XTOTAL RESE	RVOIR TD		1,310,898	4,512,045	517,651		
XTOTAL OPER	ATOR UN TEX		5,798,621	30,721,694	3,616,609		

TOTAL

28,693,805 176,373,280 18,776,642

• •

SOUTH JUSTIS UNIT PRIMARY RECOVERY SUMMARY BLINEBRY AND TUBB/DRINKARD RESERVOIRS

Cumulative Oil Production (1-1-90) Cumulative Gas Production (1-1-90) Cumulative Water Production (1-1-90)

Remaining Primary Oil (1-1-90) Remaining Primary Gas (1-1-90)

Ultimate Primary Oil Ultimate Primary Gas

Estimated Original OOIP Primary Recovery Factor 28,693.8 MBO 176,373.3 MMCF 18,776.6 MBW • •

1,668 MBO 17,981 MMCF

30,361 MBO 194,354 MMCF

207,952 MBO .146 TABLE 5 SOUTH JUSTIS AREA SOUTH JUSTIS AREA RUNNING TOTAL WATER & OIL CUMS (BBLS) FOR BLINEBRY WELLS RANKED BY HIGHEST CUM WATER PRODUCTION

0108 RUNNING TOTAL OIL K MI RUNNING TOTAL MATER CUM 01 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,001 1859,0000 1859,0000 1859,0000 1859,0000 1859,0000 1859,0000 18 CUM WATER MD SELF 6 STUART 8 STUART 8 STUART 8 STUART 8 FAASO F 2 EFPASO F 2 LEC D 2 CEL D 2 CEL D 1 FLGL D 1 RIGGS AF1 RAMSY F10 RAMSY HEL HEL MARALO UN TEC AMERER AM OPERATOR UNIT

TABLE 5 SOUTH JUSTIS AREA RUNNING TOTAL WATER & OIL CUMS (BBLS) FOR BLINEBRY WELLS RANKED BY HIGHEST CUM WATER PRODUCTION

554.71 554.71 555.555.556.555 556.557.322 556.57119 556.571100000000000000000000000000 RUNNING TOTAL DIL $\begin{array}{c} 10633384\\ 107429834\\ 107429834\\ 107429834\\ 107429834\\ 1110555896\\ 1115555896\\ 1115555896\\ 11155579575\\ 11155579575\\ 11155579575\\ 1115557956\\ 1115557956\\ 1115557956\\ 11256057936\\ 11256057936\\ 11256057936\\ 11256057936\\ 11256057936\\ 11256057936\\ 1125605757\\ 11256057936\\ 1125605757\\ 1125605$ RUNNING TOTAL MATER WATER X OF TOTAL 5 M WELL ETON SW11 IDA WM 10 CARL B 1 CARL B 1 CARL B 1 JAL 3 A CARL B 3 CARL B 3 CARL B 3 JAL 3 A CARL B 3 OPERATOR ARCO TRACT UNIT

TABLE 5 SOUTH JUSTIS AREA SOUTH JUSTIS AREA RUNNING TOTAL WATER & OIL CUMS (BBLS) FOR BLINEBRY WELLS RANKED BY HIGHEST CUM WATER PRODUCTION

NO UII RUNNING TOTAL OIL CUM X WTR RUNNING Total Mater

 13922

 13922

 13922

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107

 14107
WATER X OF TOTAL 65666666673886902222222223333456262388899999333333 10 MO CARL A BUDTELA BUDTELA BUDTELA BUDTELA BUDTELA BUDTELA BUDTELA BUDTELA BUDTELA CARLA2 CARLA2 CARLA2 CARLA2 IDA WM 15 CARLA2 CARLA2 CARLA2 CARLA2 STATE 7 JUST F 7 JUST F 7 JUST F 7 STATE Т П UN TEX AMER HESS UN TEX UN TEX UN TEX UN TEX UN TEX AMER HESS AMER **OPERATOR** ARCO UNIT

TABLE 5 SOUTH JUSTIS AREA RUNNING TOTAL WATER & OIL CUMS (BBLS) FOR BLINEBRY WELLS RANKED BY HIGHEST CUM WATER PRODUCTION

CUM x OIL 19463312 19562355 196663312 196863317 199866317 2008098 2008098 2008098 200807899 200807899 200807899 200807899 2008078992 2008078992 2008078992 2008078992 2008078992 2008078992 20082458 20082458 20082272319 20082272319 20082272319 20082272319 20082272319 20082223 2008222319 20082223 20082223 20082223 20082223 20082223 20082223 20082223 20082223 20082223 20082223 20082223 20082223 20082223 20082223 20082223 20082223 20082223 2008223 2008223 2008223 2008223 2008223 2008223 2008223 2008223 2008223 2008223 2008223 2008223 2008223 2008223 2008223 2008223 2008223 2008 RUNNING Total Oil RUNNING TOTAL MATER IS45454311 IS45454311 IS5476351 IS5476351 IS554348054 IS55633459481 IS556334599441 IS565739569481 IS56575394941 IS56575394941 IS5657531515453 IS772073135 IS772073135 IS772074333 IS772074333 IS772074333 IS772074333 IS772074333 IS772074333 IS772074333 IS7734433 IS774433 IS77433 IS774433 IS774433 IS77433 IS774433 IS77433 IS7743 IS77433 IS77433 IS77433 IS77433 IS77433 IS77433 IS7743 IS77433 IS77433 IS77433 IS77433 IS77433 IS77433 IS77433 IS7743 IS7743 IS77433 IS77433 IS77433 IS77433 IS77433 IS77433 IS77433 IS7743 IS7743 IS77433 IS77433 IS77433 IS77433 IS77433 IS77433 IS77433 IS7743 IS7743 IS77433 IS77433 IS77433 IS77433 IS77433 IS77433 IS7743 IS77433 IS77433 IS77433 IS77433 IS77433 IS77433 IS77433 IS77433 IS7743 IS77433 IS7743 IS7743 IS77433 IS77443 IS77443 IS77443 IS7743 IS7743 IS77443 IS77443 IS77443 IS77443 IS7744 WATER X OF TOTAL MATER 222 MATER 222 22122 22122 22122 22152 222 2222 2 WND JUSTIS JUSTIS JUSTIS JUSTIS JUSTIS JUSTIS A COARLBIS 5 A COARC22 GIBRG F13 H MCBUF 6 L MCBUF 6 L MCBUF 5 A COATC26 A COATC21 L MCBUF 15 LG BF 6 A COATC21 LG BF 6 JUSTIE γ s state γ s state γ s state γ s MEL AMOCO **DPERATOR** ARCO 1 178C0 1

٠

• •

Recovery Estimates 20-Acre Secondary Development

OOIP - 208 MMBO

-

1

	Recovery Efficiency % OOIP	Reserves (MMBO)
<u>Development</u>	<u>76 001F</u>	
40-Acre Primary	14.6	30.4
40-Acre Secondary*	10.3	21.4
20-Acre Primary	2.5	5.2
20-Acre Secondary	3.5	<u>7.3</u>
Total	30.9	64.3

*Reduced by 4.4 MMBO of peripheral reserves unavailable for recovery.

TABLE 7 SECONDARY RECOVERY VS PVI SOUTH JUSTIS UNIT 80 ACRE LINE DRIVE

DISPLACEABLE PORE VOL = 50% GROSS PORE VOLUME GROSS PV = 374,750 MRVB; DISP PV = 187,375 MRVB AVERAGE KH = 448 MD-FT/WELL PLANT CAPACITY = 71000 BWPD INITIAL INJECTIVITY = 87,400 BWPD (65 WELLS) ULTIMATE SECONDARY = 22 MMBO S/P=.85

•.

		CUM			AVG	AVG	INJ	NET				CUM	
GROSS	DISPL	DISPL	TOTAL	INJ	INJ	INJ	EFF.	INJ	TIME	SEC	SEC REC	SEC REC	RATE
PVI	PVI	PVI	KH	(BPD/KH)	(BPD/KH)	(BWPD)	(FRAC.)	(BWPD)	(YRS)	REC FRAC	(MBO)	(MBO)	(BOPD)
0.000	0.00	0	29120	3.00	3.000	71000	0.6	42600	0.0	0.0000	0	0	0
0.030	0.06	11243	29120	2.23	2.615	71000	0.6	42600	· 0.7	0.0000	0	0	0
0.050	0.10	18738	29120	2.00	2.115	61589	0.6	36953	1.3	0.0022	48	48	239
0.075	0.15	28106	29120	1.80	1.900	55328	0.6	33197	2.1	0.0050	62	110	218
0.100	0.20	37475	29120	1.00	1.400	40768	0.6	24461	3.1	0.0094	97	207	253
0.125	0.25	46844	29120	0.97	0.985	28683	0.6	17210	4.6	0.0150	123	330	226
0.1 50	0.30	56213	29120	0.95	0.960	27955	0.6	16773	6.1	0.0250	220	550	394
0.175	0.35	65581	29120	0.93	0.940	27373	0.6	1 6424	7.7	0.0350	220	770	386
0.200	0.40	74950	29120	0.90	0.915	26645	0.6	1 5987	9.3	0.0500	330	1100	563
0.225	0.45	84319	29120	0.89	0.895	26062	0.6	15637	10.9	0.0650	330	1430	551
0.250	0.50	93688	29120	0.87	0.880	25626	0.6	15375	12.6	0.0800	330	1760	542
0.275	0.55	103056	29120	0.86	0.865	25189	0.6	15113	14.3	0.1000	440	2200	710
0.300	0.60	112425	29120	0.85	0.855	24898	0.6	14939	16.0	0.1200	44 0	2640	702
0.325	0.65	121794	29120	0.83	0.840	2446 1	0.6	14676	17.8	0.1400	44 0	3080	689
~0	0.70	131163	29120	0.80	0.815	23733	0.6	14240	19.6	0.1700	660	3740	1003
5	0.75	140531	29120	0.78	0.790	23005	0.6	13803	21.4	0.2000	660	4400	972
J. 400	0.80	149900	29120	0.75	0.765	22277	0.6	13366	23.4	0.2300	660	5060	942
0.425	0.85	1 59269	29120	0.74	0.745	21 694	0.6	13017	25.3	0.2600	660	5720	917
0.450	0.90	168638	29120	0.73	0.735	21403	0.6	12842	27.3	0.3000	880	6600	1206
0.475	0.95	178006	29120	0.71	0.720	20966	0.6	12580	29.4	0.3500	1100	7700	1477
0.500	1.00	187375	29120	0.70	0.705	20530	0.6	12318	31.4	0.3800	660	8360	868
0.525	1.05	196744	29120	0. 69	0.695	20238	0.6	12143	33.6	0.4300	1100	9460	1426
0.550	1.10	206113	29120	0. 69	0.690	20093	0.6	12056	35.7	0.4800	1100	10560	1415
0.575	1.15	215481	29120	0.68	0.685	1 9947	0.6	11968	37.8	0.5000	440	11000	562
0.600	1.20	224850	29120	0.68	0.680	19802	0.6	11881	40.0	0.5200	440	11440	558
0.625	1.25	234219	29120	0.67	0.675	19656	0.6	11794	42.2	0.5900	1540	12980	1939
0.650	1.30	243588	29120	0.66	0.665	19365	0.6	11619	44.4	0.6100	440	13420	546
0.675	1.35	252956	29120	0.66	0.660	19219	0.6	11532	46.6	0.6400	660	14080	812
0. 700	1.40	262325	29120	0.65	0.655	19074	0.6	11444	48.8	0.6800	880	14960	1075
0.725	1.45	271 694	29120	0.65	0.650	18928	0.6	11357	51.1	0.7000	440	15400	533
0.750	1.50	281063	29120	0.65	0.650	18928	0.6	11357	53.4	0.7200	440	15840	533
0.775	1.55	290431	29120	0.64	0.645	18782	0.6	11269	55.6	0.7500	660	16500	794
0.800	1.60	299800	2912 0	0.64	0.640	18637	0.6	11182	57.9	0.7700	440	1 694 0	525
0.825	1.65	309169	2912 0	0.64	0.640	18637	0.6	11182	60.2	0.7900	440	17380	525
0.850	1.70	318538	2912 0	0.64	0.640	18637	0.6	11182	62.5	0.8100	440	17820	525
0.875	1.75	327906	29120	0.63	0.635	1 849 1	0.6	11095	64.8	0.8200	220	18040	261
0.900	1.80	337275	29120	0.63	0.630	18346	0.6	11007	67.2	0.8400	440	18480	517
0.925	1.85	346644	29120	0.63	0.630	18346	0.6	11007	69.5	0.8500	220	18700	258
0710	1.90	356013	29120	0.63	0.630	18346	0.6	11007	71.8	0.8600	220	18920	258
ز	1.95	365381	29120	0.62	0.625	18200	0.6	10920	74.2	0.8700	220	19140	256
00 0	2.00	374750	29120	0.61	0.615	1 7909	0.6	10745	76.6	0.8900	44 0	19580	50 5

TABLE 8 SECONDARY RECOVERY VS PVI SOUTH JUSTIS UNIT 40 ACRE 5 SPOT

DISPLACEABLE PORE VOL = 50% GROSS PORE VOLUME GROSS PV = 337,000 MRVB; DISP PV = 168,500 MRVB AVERAGE KH = 448 MD-FT/WELL PLANT CAPACITY = 123000 BWPD INITIAL INJECTIVITY = 137,000 BWPD (102 WELLS)

ULT. SEC.=34 MMBO S/P=1.15 • •

		CUM			AVG	AVG	INJECTION	NET				CUM	
GROSS	DISPL	DISPL	TOTAL	INJECTIVITY	INJECTIVITY	INJ.	EFFICIENCY	INJ.	TIME	SEC REC	SEC REC	SEC REC	RATE
PVI	PVI	PVI	KH	(BPD/KH)	(BPD/KH)	(BWPD)	(FRACTION)	(BWPD)	(YRS)	FRAC	(MBO)	(MBO)	(BOPD)
											_		
0.000	0.00	0	45696	3.00	3.000	123000	0.85	104550	0.0	0.000	0	0	0
0.030	0.06	10110	45696	2.17	2.585	118124	0.85	100406	0.3	0.010	340	340	3377
0.050 0.075	0.10 0.15	16850 25275	45696 45696	2.00 1.80	2.085 1.900	95276 86822	0.85 0.85	80985 73799	0.5 0.8	0.015 0.022	170 238	510 748	2043 2085
0.100	0.13	33700	45696	1.00	1.900	63974	0.85	54378	1.2	0.022	250 272	1020	2065 1756
0.125	0.25	42125	45696	0.97	0.965	45011	0.85	38259	1.8	0.035	170	1190	772
0.150	0.30	50550	45696	0.95	0.960	43868	0.85	37288	2.5	0.040	170	1360	752
0.175	0.35	58975	45696	0.93	0.940	42954	0.85	36511	3.1	0.070	1020	2380	4420
0.200	0.40	67400	45696	0.90	0.915	41812	0.85	35540	3.7	0.100	1020	3400	4303
0.225	0.45	75825	45696	0.89	0.895	40696	0.85	34763	4.4	0.120	680	4060	2806
0.250	0.50	84250	45696	0.87	0.880	40212	0.85	34181	5.1	0.150	1020	5100	4138
0.275	0.55	92675	45696	0.86	0.865	39527	0.85	33598	5.8	0.180	1020	6120	4068
0.300	0.60	101100	45696	0.85	0.855	39070	0.85	33210	6.5	0.220	1360	7480	5361
0.325	0.65	109525	45696	0.83	0.840	38385	0.85	32627	7.2	0.280	2040	9520	7900
0.350	0.70	117950	45696	0.80	0.815	37242	0.85	31656	7.9	0.340	2040	11560	7665
0.375	0.75	126375	45696	0.78	0.790	36100	0.85	30685	8.7	0.400	2040	13600	7430
0.400	0.80	134800	45696	0.75	0.765	34957	0.85	29714	9.4	0.470	2380	15960	8394
0.425	0.85	143225	45696	0.74	0.745	34044	0.85	28937	10.2	0.520	1700	17680	5839
0.450	0.90	151650	45696	0.73	0.735	33587	0.85	28549	11.0	0.580	2040	19720	6913
0.475	0.95	160075	45696	0.71	0.720	32901	0.85	27966	11.9	0.610	1020	20740	3386
0.500 0.525	1.00 1.05	168500 176925	45696 45696	0.70 0.6 9	0.705 0.695	32216 31759	0.85 0.85	27383 26995	12.7 13.6	0.650 0.670	1360 680	22100 22780	4420 2179
0.550	1.10	185350	45696	0.69	0.690	31739	0.85	26595 26801	14.4	0.200	1020	23800	3245
0.575	1.15	193775	45696	0.68	0.685	31302	0.85	26606	15.3	0.730	1020	24820	3221
0.600	1.20	202200	45696	0.68	0.680	31073	0.85	26412	16.2	0.770	1360	26180	4264
0.625	1.25	210625	45696	0.67	0.675	30845	0.85	26218	17.0	0.800	1020	27200	3174
0.650	1.30	219050	45696	0.66	0.665	30388	0.85	25830	17.9	0.830	1020	28220	3127
0.675	1.35	227475	45696	0.66	0.660	30159	0.85	25635	18.8	0.840	340	28560	1035
0.700	1.40	235900	45696	0.65	0.655	2993 1	0.85	25441	19.7	0.850	340	28900	1027
0.725	1.45	244325	45696	0.65	0.650	29702	0.85	25247	20.7	0.855	170	29070	509
0.750	1.50	252750	45696	0.65	0.650	29702	0.85	25247	21.6	0.860	170	29240	509
0.775	1.55	261175	45696	0.64	0.645	29474	0.85	25053	22.5	0.875	510	29750	1517
0.800	1.60	269600	45696	0.64	0.640	29245	0.85	24859	23.4	0.890	510	30260	1505
0.825	1.65	278025	45696	0.64	0.640	29245	0.85	24859	24.4	0.895	170	30430	502
0.850	1.70	286450	45696	0.64	0.640	29245	0.85	24859	25.3	0.900	170	30600	502
0.875	1.75	294875	45696	0.63	0.635	29017	0.85	24664	26.2	0.905	170	30770	498
0.900	1.80	303300	45696	0.63	0.630	28788	0.85	24470	27.2	0.910	170	30940	494
0.925 0.950	1.85 1.90	311725 320150	45696 45696	0.63 0.63	0.630 0.630	28788 28788	0.85 0.85	24470 24470	28.1 29.0	0.915 0.920	170 170	31110 31280	494 494
0.950	1.90	328575	45696	0.62	0.625	28560	0.85	2447/0	30.0	0.920	340	31280	424 960
1.000	2.00	337000	45696	0.61	0.615	28360	· 0.85	23888	31.0	0.940	340	31960	964
1.100	2.20	370700	45696	0.61	0.610	27875	0.85	23693	34.9	0.970	1020	32960	717
1.200	2.40	404400	45696	0.61	0.610	27875	0.85	23693	38.8	1.000	1020	34000	7 17

•

Cost Summaries Blinebry and Tubb/Drinkard Development

80-Acre Line Drive

<u>ttem</u>	Per Well Cost (M\$)	Tangibles (M\$)	Intangibles (M\$)	Total (M\$)
Stimulate 70 Producers Convert 65 Wells Equip 70 Producers Facilities	97.65 105.95 46.30 0	308.0 1,774.5 3,241.0 <u>17,072.0</u>	6,527.5 5,112.3 0	6,835.5 6,886.8 3,241.0 <u>17,072.0</u>
Total		22,395.5	11,639.8	34,035.3
40-Acre Five-Spot				
Item	Per Well Cost (M\$)	Tangibles (M\$)	Intangibles (M\$)	Total (M\$)
Stimulate 125 Producers Drill & Complete 4 Producers Convert 11 Producers Drill and Complete 86 Injectors Core and Complete 5 Injectors RFT 20 wells Equip 129 Producers Facilities	97.65 348.30 105.95 299.00 299.00 397.10 46.30 0	550.0 369.2 300.3 8,092.6 537.0 0 5,972.7 21,220.0	11,656.3 1,024.0 865.2 17,621.4 1,448.5 80.0 0	12,206.3 1,393.2 1,165.5 25,714.0 1,985.5 80.0 5,972.7 21,220.0

Total

69,737.2

32,695.4

37,041.8

Cost Summaries Blinebry Development Only

80-Acre Line Drive

Total (M\$)	5,596.5 6,175.0 3,241.0 17,072.0 32,084.5
Intangibles (M\$)	5,344.3 4,583.9 0 9,928.2
•••	252.2 1,591.1 3,241.0 <u>17,072.0</u> 22,156.3
Per Well Cost (M\$)	79.95 95.00 46.30 0
ttem	Stimulate 70 Producers Convert 65 Wells Equip 70 Producers Facilities Total

% of Blinebry and Tubb/Drinkard Development - 94.3

40-Acre Five-Spot

ttem	Per Well Cost	Tangibles	Intangibles	Total
	(M\$)	(M\$)	(M\$)	(M\$)
Stimulate 125 Producers	79.95	550.0	9,443.8	9,993.8
Drill & Complete 4 Producers	292.70	19.2	1,151.6	1,170.8
Convert 11 Producers	95.00	11.2	1,033.8	1,045.0
Drill & Complete 86 Injectors	277.90	7,791.6	16,107.8	23,899.4
Core & Complete 5 Injectors	366.60	415.5	1,417.5	1,833.0
RFT 20 Wells	3.50	0	70.0	70.0
Equip 129 Producers	46.30	5,972.7	0	5,972.7
Facilities	0	<u>21,220.0</u>	0	21,220.0
Total		35,980.2	29,224.5	65,204.7

•

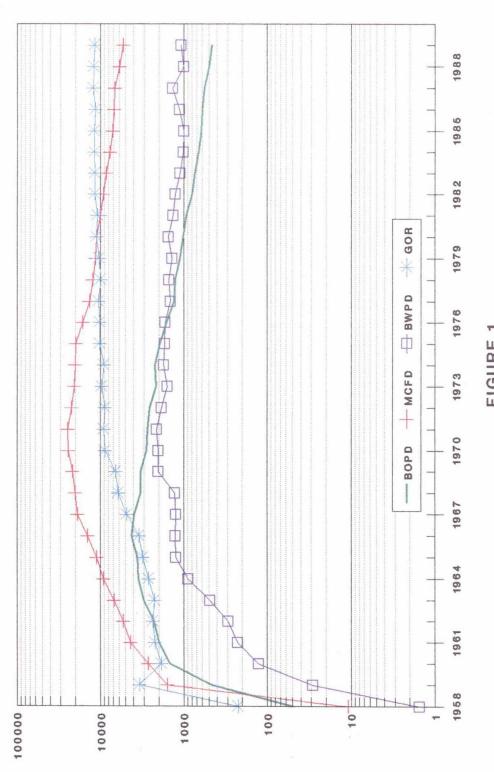
% of Blinebry and Tubb/Drinkard Development - 93.5

ч., s

PROPOSED SOUTH JUSTIS UNIT TRACTS AND CURRENT OPERATORS

TRACT_NO.	OPERATOR	LEASE NAME
1	Chevron USA, Inc.	J. A. Stuart
2 3	Union Texas Petroleum Corp.	Stuart
3	Union Texas Petroleum Corp.	Olsen Stuart
4	ARCO Oil and Gas Company	J. A. Stuart
5	ARCO Oil and Gas Company	Jal
4 5 6 7	ARCO Oil and Gas Company	Langlie "B" (JH)
	Union Texas Petroleum Corp.	Justis
8	ARCO Oil and Gas Company	
9A	ARCO Oil and Gas Company	Eaton, N.W. (JH) Nos. 15,
		16, and 17 (Bly)
9B	ARCO Oil and Gas Company	Eaton, N.W. (JH) Nos. 15,
404		16, and 17 (T/D)
10A	ARCO Oil and Gas Company	Eaton, N.W. (JH) No. 14 (Bly)
10B	ARCO Oil and Gas Company	Eaton, N.W. (JH) No. 14 (T/D)
11	ARCO Oil and Gas Company	Eaton, S.W. (JH) Nos. 9 and 11
12A	ARCO Oil and Gas Company	Eaton, S.W. (JH) No. 8 (Bly)
12B	ARCO Oil and Gas Company	Eaton, S.W. (JH) No. 8 (T/D)
13 14	ARCO Oil and Gas Company	Eaton, S.W. (JH) No. 10 Eaton, S.E. (JH) No. 13
15	ARCO Oil and Gas Company ARCO Oil and Gas Company	Eaton, S.E. (JH) No. 12
16	ARCO Oil and Gas Company	Stuart "A" WN
17	Amerada Hess Corp.	W. F. Stuart
18	Union Texas Petroleum Corp.	Langlie "D"
19	ARCO Oil and Gas Company	Langlie "B" Federal
20	ARCO Oil and Gas Company	Langlie "A" Federal
21	ARCO Oil and Gas Company	Langlie Federal
22	Union Texas Petroleum Corp.	Langlie "B"
23	Union Texas Petroleum Corp.	Blocker
24	Chevron USA, Inc.	Learcy McBuffington
25	Pacific Enterprises	Carlson "B" 13
26	ARCO Oil and Gas Company	Wimberly WN
27	Pacific Enterprises	Carlson "A"-23
28	Texaco Inc.	Las Cruces "C"
29	ARCO Oil and Gas Company	Wimberly (JH) No. 2
30	ARCO Oil and Gas Company	Wimberly (JH) No. 3
31	ARCO Oil and Gas Company	Carlson "A" Federal
32	American Exploration	El Paso Federal
33	Union Texas Petroleum Corp.	Carlson "B"
34	Amerada Hess Corp.	Ida Wimberley
35	Texaco Inc.	A. B. Coates "C"
36	Texaco Inc.	A. B. Coates "D"

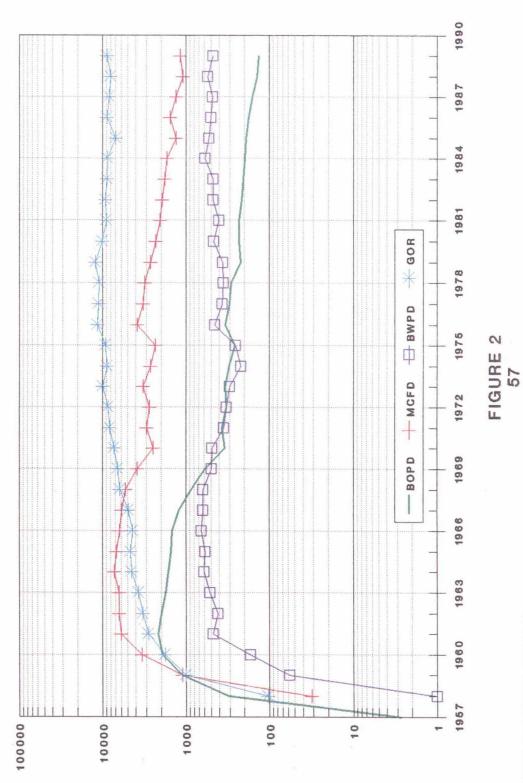
PROPOSED SOUTH JUSTIS UNIT TRACTS AND CURRENT OPERATORS (continued)


TRACT NO.	OPERATOR
37	Texaco Inc.
38A	Union Texas Petroleum Corp.
38B	Texaco Inc.
39	ARCO Oil and Gas Company
40	Bruno, Earl R.
41	ARCO Oil and Gas Company
42	Union Texas Petroleum Corp.
43	ARCO Oil and Gas Company
44	Bruno, Earl R.
45	Texaco Inc.
46	Amoco Production Company
47	ARCO Oil and Gas Company
48	Union Texas Petroleum Corp.
49	Chevron USA, Inc.
50	Chevron USA, Inc.
51	Fina
52	Texaco Inc.

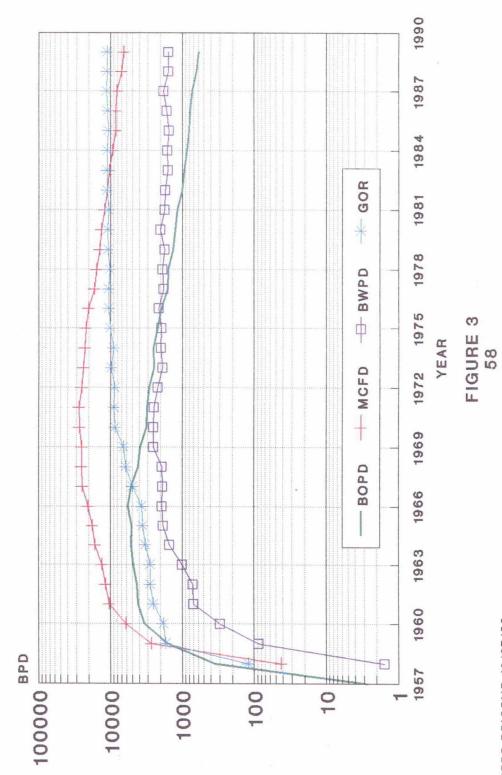
LEASE NAME

C. E. Penny Federal NCT 4 Buffington "B" L. M. Buffington B Carlson (JH) Carlson "B"-26 Carlson Federal Carlson "A" State "Y" Carlson "B"-25 Hobbs "A" State "AJ" Federal 35 Gregory "A" Federal Arnott Ramsay NCT "F" Vinson Ramsay NCT "B" Ginsberg Federal G. D. Riggs "B" • •

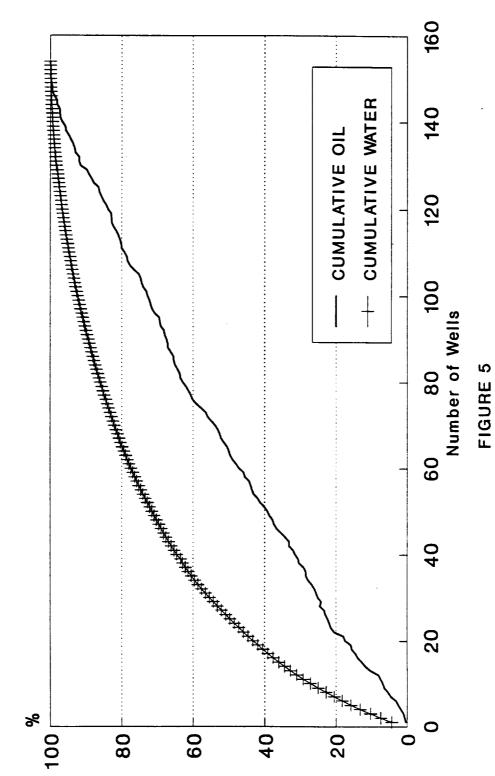
FIGURES


SOUTH JUSTIS UNIT AREA BLINEBRY PRODUCTION

RSP/EEG SJUBLBY 12/27/90


FIGURE 1 56

SOUTH JUSTIS UNIT AREA TUBB/DRINKARD PRODUCTION


RSP/EEG SJUTBDRK 12/28/90

BLINEBRY & TUBB/DRINKARD RESERVOIRS PRIMARY PERFORMANCE HISTORY SOUTH JUSTIS UNIT - LEA COUNTY, NM

RSP/EEG PRICOMB 12/27/90

A COMPARISON OF CUM. OIL & WATER PROD. FOR WELLS RANKED BY HIGHEST WATER PROD. Blinebry Field - South Justis Unit

RSP/EEG 10/23/89

INJECTIVITY VS. GROSS PORE VOLUME INJECTED JUSTIS FIELD, LEA COUNTY, NM

INJECTIVITY (BPD/kh)

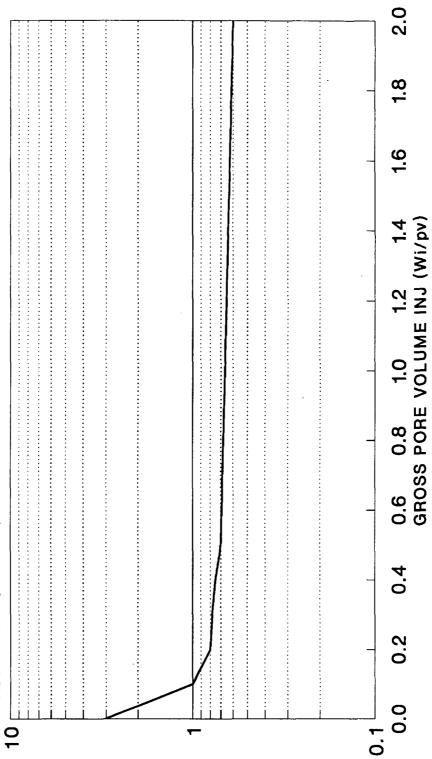
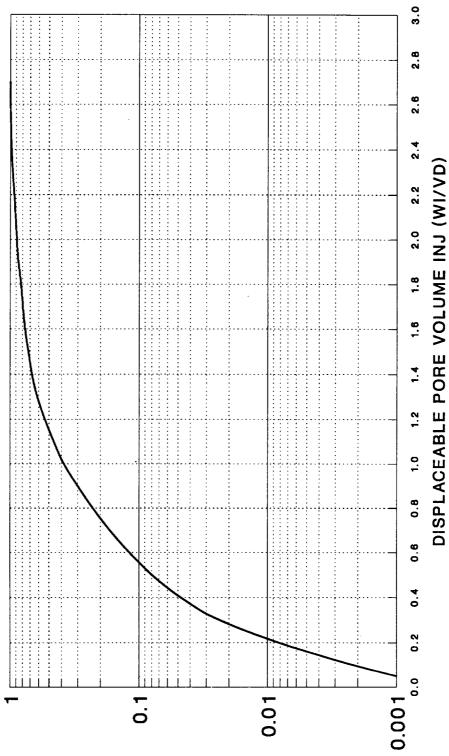
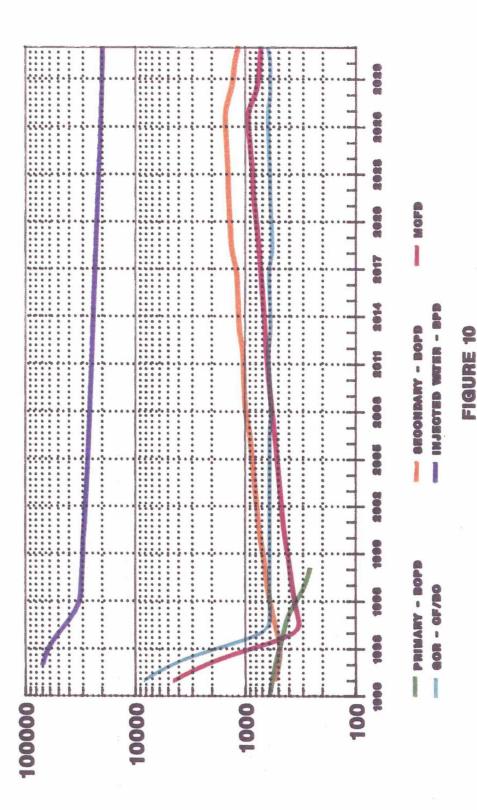



FIGURE 7

RSP/EEG 10/23/89

SECONDARY RECOVERY VS. PORE VOLUME INJECTED CENTRAL DRINKARD UNIT


FRACTION OF ULTIMATE SECONDARY RECOVERY

CWE/RSP/EEG 10/23/89

FIGURE 9

PROPOSED SOUTH JUSTIS UNIT 80-ACRE LINE DRIVE REGIONAL STUDY FORECAST

Rep/EEG BOADRE 01/17/01

PROPOSED SOUTH JUSTIS UNIT **REGIONAL STUDY FORECAST** 40-ACRE 5-SPOTS

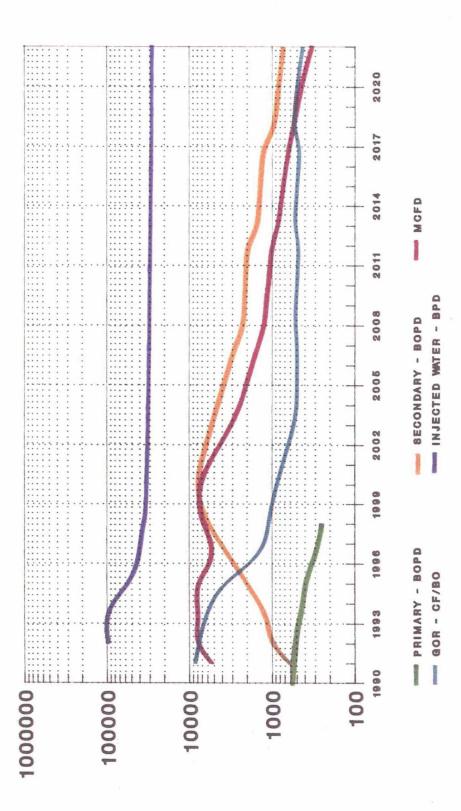


FIGURE 12

RSP/EEG 40ACRE 11/29/90

FIGURE 13

P.O. BOX 1468 MONAHANS, TEXAS 79756 • PH. 943-3234 or 563-1040 Martin Water Laboratories, Inc. WATER CONSULTANTS SINCE 1953 BACTERIAL AND CHEMICAL ANALYSES

709 W. INDIANA MIDLAND, TEXAS 79701 PHONE 683-4521

July 21, 1988

Mr. Randy Thompson ARCO Oil & Gas Company P.O. Box 949 Andrews, Texas 79714

Dear Mr. Thompson:

The objective of this letter is to respond to your request to evaluate certain compatibilities regarding the waters represented in the discussion below.

The primary need for compatibility is understood to be between your State "Y" Fusselman water and Texaco's Jal Water System water. In order to represent Fusselman, we have utilized records of State "Y" #5 and #8 reported on laboratory #588105 (5-16-88); and for Texaco's Jal Water System water, we have utilized records reported to them last February. In comparing these records, we have encountered no evidence of any incompatibility between the Fusselman water and Texaco's water. Therefore, we would classify these two waters to be compatible without reservation.

Also, we have studied the possibility of including your Wimberly Fusselman, Blinebry, and Tubb-Drinkard waters as represented from wells #6, #10, and #11 respectively and reported on laboratory #1087236 (10-28-87). We have examined these waters regarding their compatibility with your State "Y" Fusselman and also Texaco's water. Again, we have encountered no evidence of any incompatibility between these Wimberly waters and either the State "Y" Fusselman water or the Texaco water. However, in this comparison, we do have one mild concern in that a majority of our Blinebry records show slight hydrogen sulfide as does the Wimberly #10 water, but we have a few records which do not show sulfide. In the absence of sulfide, it would be possible that the Blinebry water might have some soluble iron. However, based on records available, this is very unlikely but would lead us to suggest that the composite Blinebry water that might be combined with the other waters in this study should be re-checked to confirm this aspect of this water.

Very truly yours,

Waylan C. Martin

WCM/sn

cc: Mr. Robert Patterson, Texaco @ Eunice

709 W INDIANA MIDLAND, TEXAS 79701 PHONE 683-4521

RESULT OF WATER ANALYSES

TO: Mr. Arley Stafford P.O. Box 949, Andrews, Texas	SA	ABORATORY AMPLE RECE ESULTS REP(NO. 1087	236 5-87 5-87	**************************************	
COMPANY ARCO 011 & Gas Company		1	limber 1y			
FIELD OR POOL	Justice					-
SECTION BLOCK SURVEY	COUNTY	Lea	STATE	RM .		_

SOURCE OF SAMPLE AND DATE TAKEN:

NO. 1 Produced water - taken from Wimberly #6. 10-22-87

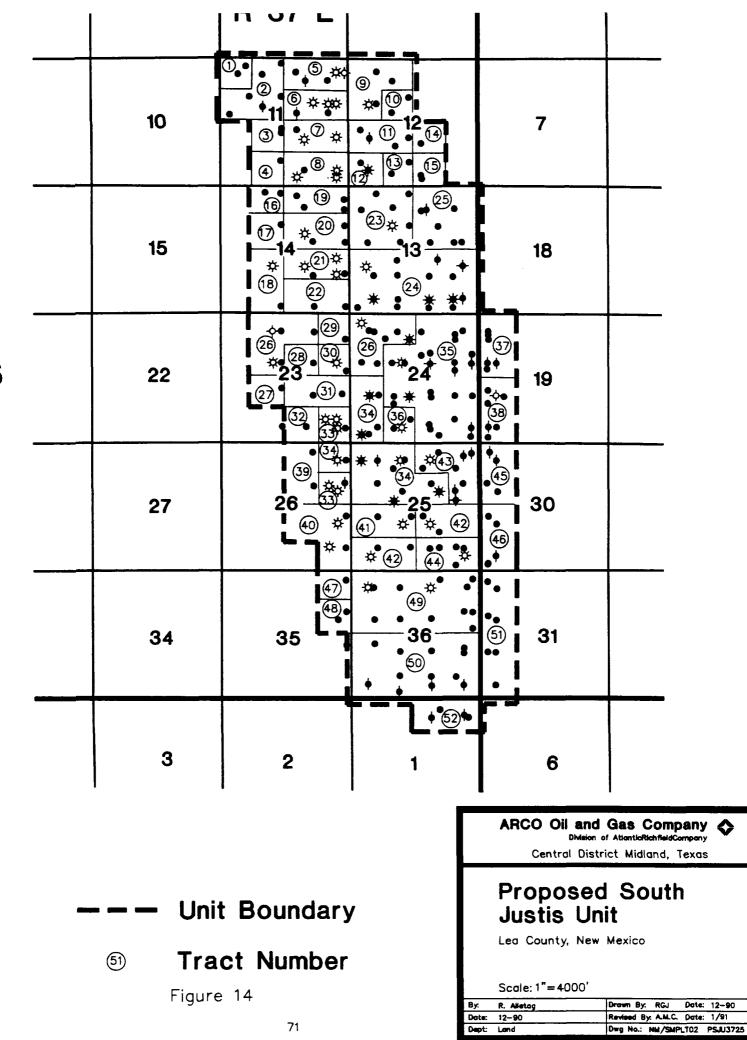
NO. 2 Produced water - taken from Wimberly #10. 10-22-87

MARKS:1	. Fusselman /	2. Bliabry	Blinebry	
CHEM	AICAL AND PHYSICAL PE	OPERTIES		
	NO. 1	me/l	NO. 2	me/l
opecific Gravity at 60° F.	1.0478		1.0675	
H When Received	7.60		7.30	
Larbonate as CO3	0	0.0	0	0.0
Bicarbonate as HCO3	1,013	16.6	714	11.7
Supersaturation as CaCO3	130		75	
Undersaturation as CaCO3	-10-0-1 (10)		uni-1(0-1)(0	
Total Hardness as CaCO3	10,900		17,300	
Calcium as Ca	2,780	139.0	4,760	238.0
lagnesium as Mg	960	79.0	1,312	108.0
iodium and/or Potassium	21,365	929.0	31,208	1,356.9
oulfate as SO4	2,829	58.9	1,869	38.9
Chloride as Cl	37,995	1,071.5	58,591	1,652,3
ron as Fe	0.24	0.0	0.40	0.0
Barium as Ba				
furbidity, Electric			1	
Color as Pt				<u></u>
fotal Solids, Calculated	66,942		98,434	
emperature °F.		······································	1	
Carbon Dioxide, Calculated				······································
Dissolved Oxygen, Winkler				
Galan Sulfide ~ Total	437		3.8	
lesistivity, ohms/m at 77° F.	0.127		0.096	
uspended Oil				
······································				
	Results Reported As Milligrams	Per Liter	*	
Additional Determinations And Remarks				
······································		<u></u>		
	······································			

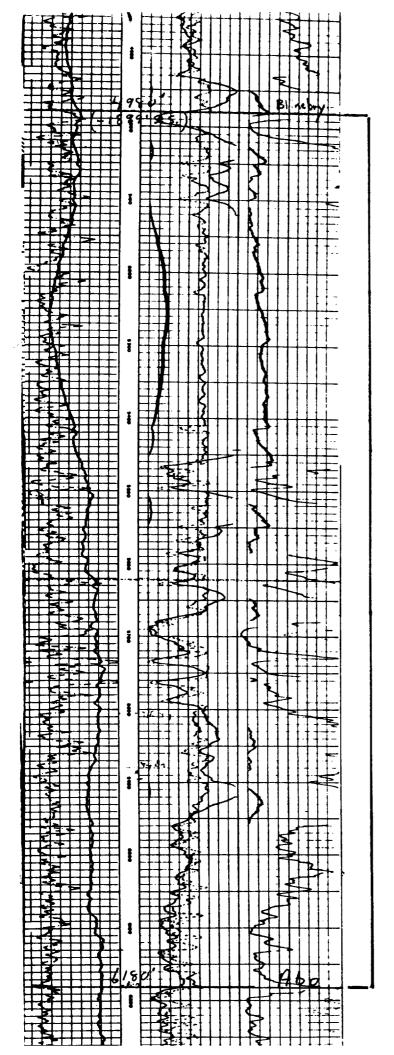
Form No. 2

Ву ____

709 W. INDIANA MIDLAND. TEXAS 79701 PHONE 683-4521


RESULT (OF W	VATER	ANAL	YSES
----------	------	-------	------	------

TO: Mr. Arley Stafford	SAMPLE REC	Y NO. 1087236 (Page 2) EIVED 10-23-87 PORTED 10-28-87	
COMPANY ARCO 011 & Gas Company LEASI	E	Wimberly	
SECTION BLOCK SURVEY COUNTY	Lea	STATE	
SOURCE OF SAMPLE AND DATE TAKEN: NO. 1 Produced water - taken from Wimberly #11	L. 10-22-	87	


NO. 2 -

MARKS:	Tubb-Dri	nard		
СНЕМ	ICAL AND PHYSICAL P	ROPERTIES		
	NO. 1	me/l	NO. 2	me/I
Specific Gravity at 60° F.	1.0857			
pH When Received	7.50			
Carbonate as CO3	0	0.0		
Bicarbonate as HCO3	506	8.3		
Supersaturation as CaCO3	85			
Undersaturation as CaCO3				
Total Hardness as CaCO3	21,700			
Calcium as Ca	5,640	282.0		
Magnesium as Mg	1,847	152.0		
Sodium and/or Potassium	38,997	1,695.6		
Sulfate as SO4	1,844	38.4		
Chloride as Cl	73,860	2,082.8		
Iron as Fe	5.12	0.2		
Barium as Ba				
Turbidity, Electric				
Color as Pt				
Total Solids, Calculated	122,694			
Temperature °F.				
Carbon Dioxide, Calculated				
Dissolved Oxygen, Winkler				
Total	52.5			
Resistivity, ohms/m at 77° F.	0.081			
Suspended Oil				
			<u> </u>	
R	esults Reported As Milligrams	Per Liter		
Additional Determinations And Remarks	comparing the resu	lts of these	analyses, we	344 no e
Gance of any incompatibility	between any combin	ation of the	waters repre	sented be
in. This is to say that a co				
	mental condition.			

Form No. 2

T 25 S

Type Log

•

Ida Wimberly #4 Schlumberger Electrical Log Sec. 24-T25S-R37E DF 3079' 660' FSL, 990' FWL Figure 15

Amerada Hess

Unitized Interval

Top 4980'

Bottom 6180'

		_							T255										FIGURE	8 A
			COJU	-	the second second	-	660	05	1980E	-		L	ea	-	-	ST	TE _	N. Mex	1	
r	STRAT	IGRA	HIC INTERVA	L	BLIN	JEB	ey			LOGGE	DBY		45.	7_		-	-	DATE 2-9-88		
		PORE	MINERAL COMPOSITION	CONTACT	STRUCTURE		TEXTURE	FABRIC	GRAIN SIZE (DOLOMITE- CRYSTAL SIZE)	COLOR COLOR	T	Aur/	201 FDS	SILS/	ACCE	2:001	CEMENT			
0	540				TYPE			FA	01 12 1.0 1.0 2.0 6.4	5 00	P	AN LI	AN PLUCEIA BRACE	Foran	Bayo	CK 194	CEI			
			0 /0 /0.			m.x	lloidel	13			i									
			0890 B			lute	chestere			M B.	1			10 10 10						
	5115	12	43 0 895 9 0 0 0 0 0 0 0 0				and id				1	-	1		a series				-	
	and the	Incrimit	a fantista	-	Laminart	10.5	med stone				and the				-			Mold. cp 3-59	(
	中用		A Mark		Lans					MBr	124	-		1 10 10 10 10 10 10 10 10 10 10 10 10 10						
	5120		171	+	Laminal	100	and stone												-	
	dan series		2-1-1	T	wispy					MBr	1.12			and and	1			Pinpt Welly a moidic & 6-		
	5125	and a second	The Ma		Linms					i lor					a contra			moidie & 6-	7%	
			11/1		1		lloida !! dstone				4	and second								
		-	0/@ @ o	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		clostan			MBr	1			-	the service and					
	5130		1 1-1			1							male prove						-	
							lloide /											INTERGOAN S. 6	8%	
		a contra	111				chester	e		Mer	State of the									
-	5135		19 1. 1			Tra	loidel									11			-	
			1 11			min	detone			M Br	Sugar							INTERGRANULAR P	6-84	
	5140	and the second se	111			60	cleaster	ne			at the				-					
	3170		10101	of allowing			ilardal			1	た夏			and a strength of the					1	
0			0/0/0	Second and and			id stone			M Br	1012	-		Production of the local division of the loca				INTERSCONULARD 6-B %		
	5145	and a state	10/00	The second second									-							
			0,0,0	Contract Color and			elloida	1111			Anton		WE KI	and some	and the second second			NTERSEAN Ø	4-5%	
			0/0/0/			wer	chesto	e		MBr			-		1.					
J.	5150	1	100/001	+1	p-ue clas	1 1 2	111111		steel made-o	a Vs					Sarro or Co	and the second			-	
					1111	M	ind story			MB.	1.1							Minor pinpt		
	515		W. W. W.	10	are go h	5	achasto	ne								- interest		ruggy & 3-4%	1	
	5155		1 1 1	-			ladel						and and a second		1		TIC	fractares	54-57	
						MA	dstene cleasten			MBr				Colorest Colorest						
	5160	1	111	-							1		and the second se							
			0/0 0/d				Aston-F.			H Br	The second							Propt vuggyd		
			25/0/167		arrows	s hu	cheston	4		ta	a serial de 1140								1	
	5165		11/								11.440 (Sec.1)								-	
			111				laide detare			4-Br						International State				
	-	-	0/0 0/0	-		1 5 1	cheston	al		66								NID Ø		
	5170		0000			1	10.0					T								
			10 tod			Me	lla da l debra			4-6-	1-1-1-1-				-			Wo vis &	-	
-	5175	14	1 1 1	H		Wa	ttesto	reit						-						
0			0 0			1/4	minita	4		494	-									
		1 1 1		-		M	munieta na stonie											NO VIS Ø	81	
	5180		1115			PA	rtially			C46r								···· · · · · · · · · · · · · · · · · ·	-	
				No.		14	distone			DAG	PY					- Andrewski				
				1		Fela	F			L+B+			1			in the second		No VIS Ø		
	5/85	14	N年月はN	41	4411			[[-]-		1111				11						

WELL	AR	CO_JU	157	15 #	2		COUNTY _			LE	a				-		N	Mex	2
		PHIC INTERV												-		TATE	DAT	TE 9-9-88	
	PORE	MINERAL COMPOSITION	TACT	STRUCTURES	TEXTURE	FABRIC	GRAIN SIZE (DOLOMITE- CRYSTAL SIZE)		coton		U	FO	5511 5	Jar	ortal	A#S			
85		(INCL. POROSITY)	HATURE	TYPE 1		FAB	10	CAY	COL	a	an LATH'S	BANCI	wwwa	CORNE	CALINO	CEMENT			
		010 00	XHI.		Laminated mudstome			4	Br					11					
		$\frac{\ell}{\ell}$	X		Delloidal				1							-			
190	14	000000			mudstene	har	eetene	4	Br	(and		and the second s					m	in pieptulius	
					Pellada/			4	Br			and the factor					0	3%	
	i stan	111			mind stone	wa	cleestone					Solution .							
195		AVAS WSU			pelloidel			-		i i			1	1 1		11			
		2/0 4/0 0/0		dist.	Foram mod		suicke stone	4	Br	the state of the			-				P	nat unggy 3-5860	
200		0 % . U \$ 0 4			(minifiple sta		fdiagenesis					- Weidenstein						3-5%0	
		18:10	10	nerthole	1 1 1 1 1 1 1 1 1 1	1													
		81 XX. A.		n	epelloida packeste	re		27	Br			- H			*				
205		1/20/ 00/		Grinai	l hash"	Ste	positit			+				-			1	TERECOVELAR DE	
		1	Ke	rogen	skeletel Packesterne	100	ickestone					-							
		10000		9				4	Br					1			Pi	net #1937 0 =	5%
10		10 010 10			Pelloidal				1				+	-				Gov	
		1011		100 miles	mud store / 1				Br								1	40 VIS	
215	311	0/0/0/0			biotur be	teo	2	1	Pr									Ø	
		111			-pelloide !							-						npt vugey & 30	/
	and the second second	444			Mudstone	pac	ustre	4	Br			the second						1999	
20					bintur be	te							+		+++				
		getes	to	rogen	pellorda							-							
		111			mindistone/pa		ed .	4	Pr	5				1			91	npt vuggy of 3%	/
225					pelloida !	att	ed.								-			ANY ANGRA & SK	
	Les 1				mindistane/	pack	estre	4	Br		-								
30		00000			Bisturd	ate	d	T									- pin	er. vusty 2-	5%
	H				pelloidel			4	R	-	an in the	and a long							
-		0/0/4			Milstone,	/pac	kestene	-										la vis Ø	
35		0/0/010/			DIOTAY	11	ted			-		1		-					
		0/0/0			pellorda			4	B-	A CAN							P	not wwggy &	3-5%
40	1-1-	////			madstone/	pace	ers with										18	intergreation	
	TH	1.1.1.			pelloide	1			FI-				1			TE			
					mindstanie/	par	lessione	4	Br				-					No VIS of	
145	1-1-14	070 10 010		Cerogen									1						
	4-1-1-		III		De Horda Laminato madsto	10		4	+	-									
			24			ne								- +	FIL			vo vis Ø	
50																			
														-			-		8
																	-		0.
								F					11				-		

8.A

		1	T	T	-	T	GRAIN SIZE	1	1		1		SILS/					DATE 9-8-88
PORE	MINERAL COMPOSITION (INCL POROSITY)	NATURE OF	STRUCTUR	TEXTURE		LABRIC	(DOLOMITE- CRYSTAL SIZE)	CATATAL	COLOR		AN GRTHS		FURAMS		T		CEMENT	
70	8977828	-		1 11.011		1			1	A	AN	2 2	2 3	P	E	-		DINPOINT VUSOV & TO
	00500			MEDSTON E		1		- Br	1 AL		Phil Phil		19					MOLDIC & LEAKED FASSILS
				PELLOIDAL	7	1	li farilli	Ma	g				E					FORAM MOUDS FILLED WITH ANHYDRITE Ø== 2%
5	0/0./0/0			MUDSTONE	1	1		B	1						-			ANASTOMOSING STYLDLITES
	1000000			MOLDIC D	11			B	-		時代に		h					SOME WITH DREANIC LANAME MINOR VERT FRACS
	1.1.1.			PELLOIDAL		3-1	4%	3										d = 2%
20	1	T	11-11	WALKESTON	E	-		3.			1					-		MOLDIC OF 2-3%
	1 1 1 1		11-11	PELLOIDAL														1
	20-21-20 1-1-2-2-			LAMINATE				6						i			-	WORM BURROWS FLATTENED DENATERING STRUCTURES
5		D	C.SHALE	MUDSTON,	NODU	LE	s.Scm				+						+	NUMEROUS BLACK SH LAMINIAE
	ドレニノ ユ レース ス ユ			UNIVATED I														WAVY LAMINATIONS
	12741			MUDSTONE				6									11	& DEWATER NO STRUCTURES
2	7-1-1-	-		MUD STON	E				-	++	-	4		+	1			
	7=1=1 7=1=1			LAMINATE				G	-									NO VISIBLED
	F-Z-Z																	
5		-		PELOIDA		-		4						11	1			5117.5 6000 MOLDIC 0
				PALKESTON	ei i			Ta	2									56% oil stained
	111			XTLS & N	ODUL	ES		L										BRACHIOPOD MOLOS
0		-		MUDSTON	184	LE	STONE	Br	-	A L	1				-		1	Some INTERERAULAR Q MUCH & OSCUDE D W/ANMYOR, TE
	111			RELICT 6	CATAN	STP	NE	Ta			and and	No.	東田					SIZO - ARENDANT DIL STRAL
	e a a a a a	1						4		隶	Contraction of the local division of the loc				1			6 + 617469 3104 0A HORIZONTA DACTAL B-BETTER & G-B % 5121-24
5		SH	MEACEONS	EN BIOTURA	ALIERS	Tod	E	to B		T.		-					+	Mapic p
	Kali K			MUDSTONE	AMAL	KES		6	1 124			1						AFTER SIZT NOVISIBLE &
	tity y			NO POSEILE	7				-									LG. VERT. ANHYDRITE FILLED
0	27.7.7	-		MUAMINATED	e						-				-			THURS SUT AGATED
	7-1-1- 		-	TO BOTUR	ENTE	DINE	STONE?	6										
	120150	14	ELEP RETOBEN	WACKESTO	NO	5		6			- Contraction	Ta						
	7.7.5/							LA B	r				5			-		GOOD STOR W/OIL STAIN
11111	1,1	1		WALKESTO	UE													
	60/06			BIOTURBAT	0			L+ B	- 10	1		dist. and						6000 d St % W/OIL STAIN
n	111	11		WACKESTD	-6	-		L+B.		-							1	ABUNDANT AN HYDRITE
	e de de							LT B		-	and and		a started					PLUSE AND (PORES
					1											*		
5					+++													
		-																
																-	+	
		H													11-			
					-										-			
						-			T						1			
												111	111	11.	1			
						-												
									ţ.									
		+						1-1-			-	111			1		-	
		11		4 1 4 4 4 4 4 4 4	111	11		1 1	11			111	111	111				83

Sec 14 1255 KS7F

FIGURE 9A

						1650 5 YE			7E							FIGUR
	RCO_LAN					COUNTY	LEA		Y _	0	87				N. Mex	2
PORE	POROSITY)	1	STRUCTURES	TEXTURE	FABRIC	GRAIN SIZE (DOLOMITE- CRYSTAL SIZE)	COLOR	a	OIT STAN				Camold P	CEMENT		
NS I.				Pelleida (Wackschane			46-								No VIS Ø	
85	0 0 0						LBr				-					
.iac 1'	999			Pello de 1	2.1		L+B-				100				ASUNDANT HAIRL	NE
	70,000			Wackssteine			L+B-	L								
90	0/0/0/0	41		Pellorde /				-			1	1			2-3% pupe of VAR	14 P
	10 0 10,0			he cleastone			L+B-				-				No VIC Ø	
95	0/0/0/0															
	0/0/0/0			Polloide (L+B-			F		T				
	10/0/01			he che store				-							7-29/	d
0	10/0/0	1		Palla da 1			4+B-	14							2-3% Pirpt Vagg	4
	1110			his checense			-	tide the								
5	6/0/0/0				1			10000			1100				3-6% propt Vi	\$ Fossils
	111	4		Pelloidal			L+ Br	State of		-					7-8% pinpt vug	ly to
	0/0/0/0			Wacke cton	2	the definition of the definiti		1. A							malidic of Small viert frac Anhydrife enfi	s led pores
	0/0/0/0			Pelloidal	1		Libr	198					++++	111	abandant and	Idrite
	0/0/0/0			wickesto	ne		4 Br	-		-	4				abendant and plagging Brack motes 4% 8	/
-	0/0/0/0	1					+	1			+				CRINOID STERS	- SOLITARY
	0/0/0/0		RELICT				L+B-	Constanting of the second			Y		ALC: NO		Brac molds Crinoid Frag	ments
	To al al a			Rellordal	e		Tan	A statistical statisti statistical statistical statisticae statisticae statisticae statist							L L L L L L L L L L L L L L L L L L L	
	of a lake		rogen	madetone			144	1					11		3-5-20 abundant ha fractures	rline
	11/23		led ylolite	uncleastine			Tan	statility of the			3.0				Pinet vugay Ø	
5	0/0/0			mudstone							-					
	10/0/0			muastone			L+Br	T			the state				NO VISCALE	
	-/-/ A						L+B,								Minor hairine	Fracs
0	6/0/0/0			Relloidel	T		111						1		No VISUBLE	
				mndstone			LTB			-					ø	
5	0/0/00			mudstane				3							3-4% 0	
	/ 0 /0 ·/			madstene			LtBr									
0	010101	-					4-6-	-		1					3-5%0	
	0/0/0		DEARS W/	mulisterie/un	et	stone		10			ALC: NO.				5-67.0	
	1 1 1		BINORIN	wickester	4		Tee								2-4%.0	
15	1.4.8.1.4		RAUSPE	Relict				111							2-4-1/2	
	10 010			Grainstern	21		Tar								220 % 0	-
	p/0 e/ e/	-	ALING CE	Pelloidal	me			and the second		1					4-10-26	++ 8
	10/0/			Packeste	e	haceestae	Tan								pinpt vugg)	intergran
	ptoto			Proheste	ne	Inachestone	t+B,	and and	No.						3-6%	
55	XIXI	11		Wackestone	1	ndstome										

				RAL #2	SEC 14 16505 FE COUNTY	1255 K 37E	STATE	N. MEX	FIGURE 9
	PORE	MINERAL COMPOSITION (INCL. POROSITY)	STRUCTUR		GRAIN SIZE IDOLOMITE CRYSTAL SIZE	CORGED BY CARACTER CARACTER CONCOL	FOSSILS ACTESSORES	DATE _ 9-8-88	
Ó	5455	1 1 1 1 1 1 1 1 1 1 1 1 1		malstone/ packestone		48-		Pinp+ Veggy & vf 3 to 6 % P?	
	5460			pelloidal mud stones pocheestone		L+ B-		(3% 6	
	5465	0/0 /0/0/0 0/0/0/0/0 0/0/0/0/0/0		pelloid ~ / madstone packe stone		L+B-		Lumeraus Hairline TRACTURES	
	5470			pelloidel		LeBr 🖛 💻		23% d	
	5475	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		pachestone pelloidel		L+ B-		< 39/2 ¢	
	5460'	109000 100000		mudstone peckostone		46-		ko Visible Ø	
0									
0									85
2									05

	IGHA	PHIC INTERV	AL	- 12-11	VE	Dry					OGG	ED B		9	OSSIL					DA	TE -	2-	0	-06	FIC	JURE
	PORE	MINERAL COMPOSITION (IN CL. POROSITY)	NATURE OF	STRUCTUR	ES 3/16	TEXTURE	FABRIC	(D) CRY	AIN SIZE	- 8'4 -	SHAPE SHAPE	0	MIRIN TH	AN PLUCAIN	CRAM'S P	PRAS 4	ZC/ng	411 05 H	CEMENT							
5500-		0/0/0			-	packe stone /	1				Ta	1 1 2 3	•						11	1	inor Dia	144	eri	grad	nular P	
		In alast				grainsto	ne				TR.	ATT:		-							1%			127	1	
5505		00000			1		11				LE					-				n	inor	hai	rh	ne	Fraces	
		0/0/0/0				pelloidal packe stone					43	r								Ŧ	inpt	VAG	34	ø	5-4%	
	1	1 / F				frace stoney	WAR	Kest	ene						Same.					F	inp	t yn	99	y q	5 3-4%	
5510		00000			-			-				-			R	-						1			-	
++++++	+	10 00 00				pelloid. (1				L-Br	+			T						linor	ø	:2	0%		
		X 1 X			1	price stone	- all	-223				译			1	C a margane de la					mold	ic -	Ē.	ara	ms	
5515		0.0.6			-		-									-						1 1			-	
		10/0/0				pelloidal packeston	0/0	backs	the		48,	1 and		and the second							inor	ø	NC	-5%	age in s	
		0/0/0/0					1									-				11		1				
5520		00/0/00				Pelloidel	1				L-B.		-													
		10 6 010				packe store	lun	chas	tone		-TO			and the second se						T	inor	pin	pt	ø	3% t	
5525		1111			1								-													
		0/0/0 00				pelloid 1					L+B-	-									minor	P	ine	at g	Z 3%±	
	4					packe shone,	wo	chee	some					Conception of							ibu	ndo	ant	+	ty lolite	5
5530	14	0000°			-						L+Br														_	
	+ + + + + + + + + + + + + + + + + + + +	/00000				Pelloidal	1		1		4B.	-		1110						1					1 20/ -	
		0/0/0/0				packs ston	e/1	a ce	ester-	FII	LB,			「日本の							MINO	TR	in	PT 9	3%1	
5535		0/0/00/			-	pelloidal	T		- 4.4		L+B.	11000				-	F		III				T	TIT	-	(Tana
	-	0/0 0 0				packetone		dee	some					東京			-				m	-	PI	PAT	\$ 3%1	
FEIL		0/0/00									4-B.			1 alert												
5540					T	TPe lloidel					4+B															
		2010				packe stong	wa	dus	bre			3									mino	1	Pur	P	Ø 3%±	
5545		111									4+6	-						-					-		-	
		al ala d				pelloidel				-	48.	-									mino	+	þ	1 dt	\$ 3%+	
		0/00/0				packe som	Ya	acke	stone		48,	-		Statter.												
5550		10 0/0/0			-		+						-									-			-	
					1		1			11												T			-	
							-												-							
	111															-				-		11				
					-						1 1	-						-								
			+													-						1	-			
					-							111				1-										
					-																				-	
			-																			-				86
			1-		F		11						1						111			11		11-1		

APPENDIX A

Appendix A - Geological Data

- Figure 1A Blinebry Structure Map Figure 2A East-West Stick Cross Section A-A'
- Figure 3A East-West Stick Cross Section B-B'
- Figure 4A East-West Stick Cross Section C-C'
- Figure 5A East-West Stick Cross Section D-D'

- Figure 6A East-West Stick Cross Section E-E' Figure 7A East-West Stick Cross Section F-F' Figure 8A Blinebry Core Description ARCO Justis Federal #2 Figure 9A Blinebry Core Description ARCO Langlie Federal #2