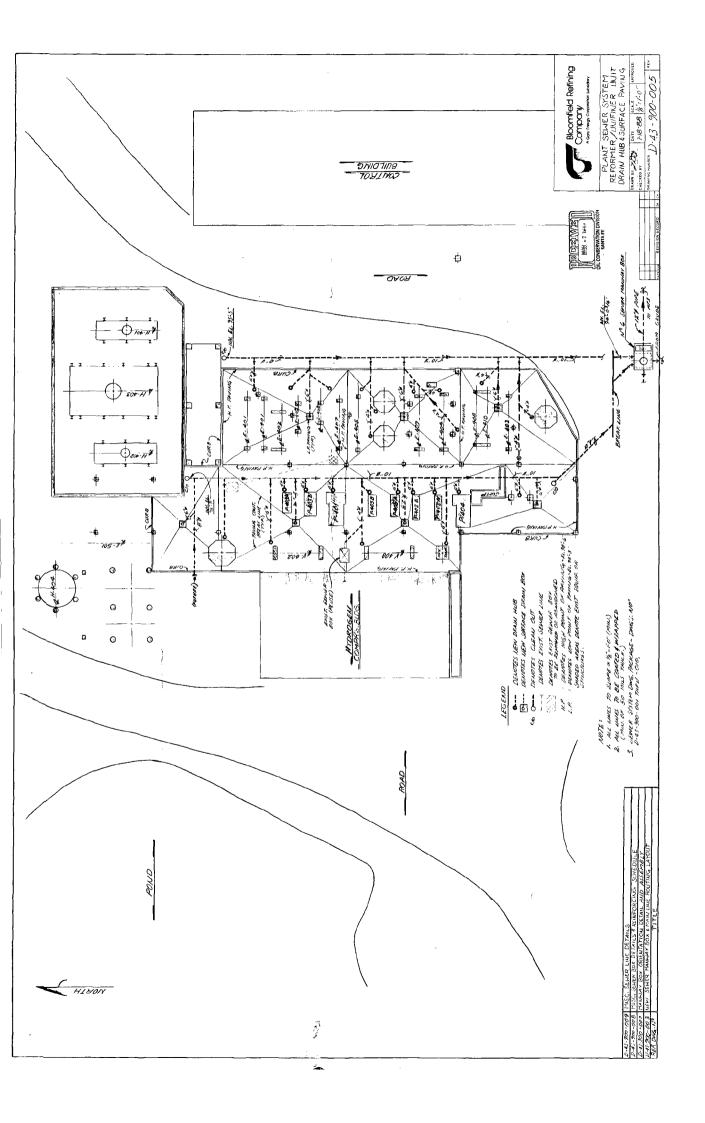

GW - 001


GENERAL CORRESPONDENCE

2007 - 1982 7 of 11

Attachment 3

7

Robert Hills

130 H F 1 H

Groundwater Remediation

REPORT ON SOIL VAPOR SURVEY, WELL INSTALLATION, AND HYDROCARBON RECOVERY SYSTEM BLOOMFIELD REFINING COMPANY

February 24, 1989

Prepared for:

CHRIS HAWLEY BLOOMFIELD REFINING COMPANY P.O. Box 159 Bloomfield, New Mexico 87413

Prepared by:

GEOSCIENCE CONSULTANTS, LTD.

HEADQUARTERS 500 Copper Avenue, NW Suite 200 Albuquerque, New Mexico 87102 (505) 842-0001 FAX (505) 842-0595

WEST COAST REGIONAL OFFICE 1400 Quail Street Suite 140 Newport Beach, CA 92660 (714) 724-0536 FAX (714) 724-0538

THE AGE OF A

1.1 1.5.8 1

EASTERN REGIONAL OFFICE 1109 Spring Street Suite 706 Silver Spring, Maryland 20910 (301) 587-2088 FAX (301) 587-3625

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY
2.0	SOIL VAPOR SAMPLING22.1 GOALS AND OBJECTIVES22.2 TECHNICAL APPROACH22.3 RESULTS22.4 DISCUSSION2
3.0	INSTALLATION OF RECOVERY WELLS AND PIEZOMETERS263.1GOALS AND OBJECTIVES263.2TECHNICAL APPROACH283.3RESULTS293.3.1Lithology293.3.2Well Yield293.3.3Pre-Recovery Water Table and Saturated Thickness313.3.4Water Quality31
4.0	4.1 GOALS AND OBJECTIVES 41 4.2 TECHNICAL APPROACH 41 4.2.1 Installation of Hydrocarbon-Recovery Pumps 41 4.2.2 Operation and Maintenance of Hydrocarbon-Recovery Pumps 41 4.3 RESULTS 41
5.0	REFERENCES

LIST OF FIGURES

FIGURE	2-1	LOCATIONS OF SOIL VAPOR SAMPLING POINTS	3
FIGURE	2-2	BENZENE VAPOR CONCENTRATION (PPM)	9
FIGURE	2-3	BENZENE VAPOR LOG CONCENTRATION (LOG PPM)	10
FIGURE	2-4	TOLUENE VAPOR CONCENTRATION (PPM)	11
FIGURE	2-5	TOLUENE VAPOR LOG CONCENTRATION (LOG PPM)	12
FIGURE	2-6	ETHYLBENZENE VAPOR CONCENTRATION (PPM)	13
FIGURE	2-7	ETHYLBENZENE VAPOR LOG CONCENTRATION (LOG PPM)	14
FIGURE		XYLENE VAPOR CONCENTRATION (PPM)	15
FIGURE	2-9	XYLENE VAPOR LOG CONCENTRATION (LOG PPM)	16
FIGURE	2-10	PCE VAPOR CONCENTRATION (PPM)	17
FIGURE	2-11	PCE VAPOR LOG CONCENTRATION (LOG PPM)	18
FIGURE	2-12	TCE VAPOR CONCENTRATION (PPM)	19
FIGURE	2-13	TCE VAPOR LOG CONCENTRATION (LOG PPM)	20
		BENZENE CONCENTRATION IN GROUND WATER, SEPTEMBER 1988 .	35
FIGURE	3-2	ETHYLBENZENE CONCENTRATION IN GROUND WATER,	
		SEPTEMBER 1988	36
FIGURE	3-3	TOLUENE CONCENTRATION IN GROUND WATER, SEPTEMBER 1988 .	37
FIGURE	3-4	M-XYLENE CONCENTRATION IN GROUND WATER, SEPTEMBER 1988 .	38
FIGURE	3-5	O-XYLENE CONCENTRATION IN GROUND WATER, SEPTEMBER 1988 .	39

and and the state of the

CONTRACTOR OFFICE

1

1

3

.

;;∶

and the many provides the second second in the second second second second second second second second second s

	P-XYLENE CONCENTRATION IN GROUND WATER, SEPTEMBER 1988.	40
FIGURE 3-7	1,2-DICHLOROETHENE CONCENTRATION IN GROUND WATER,	
	SEPTEMBER 1988	41
FIGURE 3-8	TRANS 1,2-DICHLOROETHENE CONCENTRATION IN GROUND	
	WATER, SEPTEMBER 1988	
FIGURE 3-9	PHENOL CONCENTRATION IN GROUND WATER, SEPTEMBER 1988	43

LIST OF TABLES

TABLE		PHYSICAL PROPERTIES OF VOLATILE ORGANIC CONSTITUENTS	
		OBSERVED AT BLOOMFIELD REFINING COMPANY	5
TABLE	2-2	BLOOMFIELD REFINING COMPANY SOIL VAPOR	
		SURVEY RESULTS	8
TABLE		CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUND	
		WATER AND SOIL VAPOR AT MONITOR WELL LOCATIONS	23
TABLE	3-1	WATER LEVEL AND PRODUCT THICKNESS AT RECOVERY WELLS	
		AND PIEZOMETERS (FEET)	32
TABLE	3-2	BLOOMFIELD REFINING COMPANY GROUND WATER QUALITY	33

APPENDICES

APPENDIX .	A	ICL STANDARD OPERATING PROCEDURES FOR SOIL VAPOR SAMPLING
		ND ANALYSIS
APPENDIX	В	ITHOLOGIC LOGS AND STRATIGRAPHIC SECTIONS

LIST OF PLATES

PLATE 1 WELL LOCATIONS

÷.....

1111

- PLATE 2 SIMULATED STEADY-STATE HYDRAULIC HEAD DURING THREE-WELL RECOVERY (FEET)
- PLATE 3 ELEVATION OF TOP OF NACIMIENTO BEDROCK (FEET MSL)
- PLATE 4 PRE-RECOVERY WATER TABLE OBSERVED ON SEPTEMBER 9, 1988 (FEET)

LIDER DE STR

In It bad

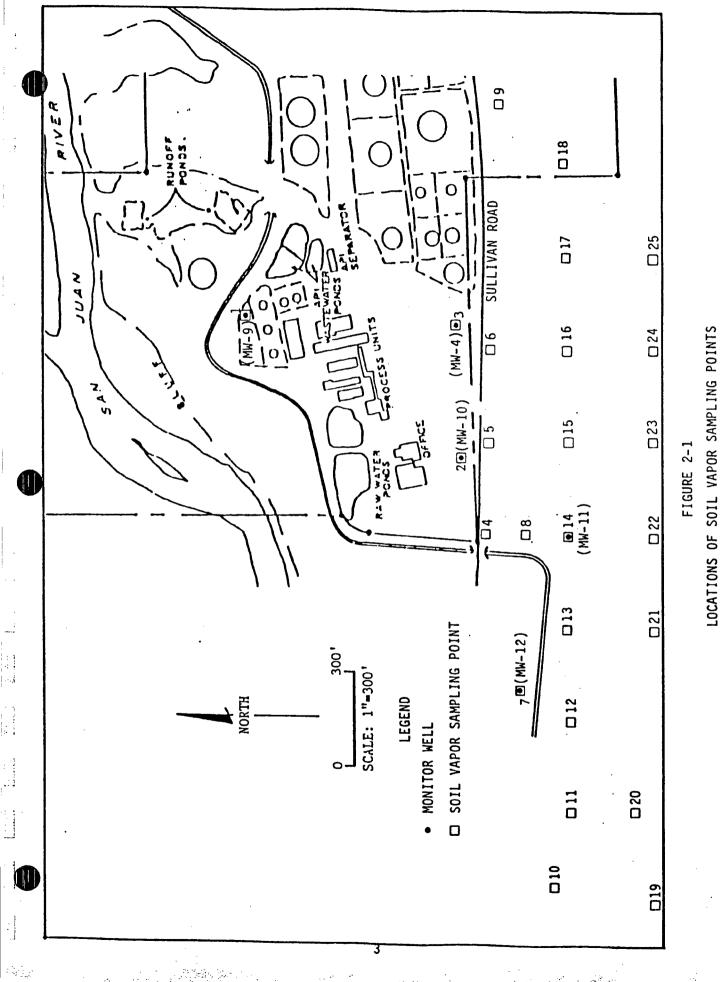
- PLATE 5 WATER TABLE OBSERVED FOLLOWING 12 DAYS OF RECOVERY (FEET)
- OBSERVED WATER-LEVEL DECLINE FOLLOWING 12 DAYS OF PLATE 6 RECOVERY (FEET) WATER TABLE OBSERVED FOLLOWING 42 DAYS OF RECOVERY (FEET)
- PLATE 7
- OBSERVED WATER-LEVEL DECLINE FOLLOWING 42 DAYS OF PLATE 8 **RECOVERY (FEET)**

1.0 EXECUTIVE SUMMARY

A soil vapor survey was conducted during the week of July 18, 1988 on U.S. Bureau of Land Management (BLM) property south of the Bloomfield Refining Company (BRC) facility in order to determine if solvents were present in ground water and to assess the extent of dissolved or floating petroleum product migration in the subsurface. Survey results suggest that a buried stream channel in the underlying Nacimiento Formation controls movement of volatile organic compounds (VOCs) in ground water beneath BLM land. Based on this information, installation of recovery wells on Bloomfield Refining Company property was expected to be sufficient to capture most of the dissolved and immiscible hydrocarbons in perched ground water beneath the refinery and some hydrocarbons from beneath BLM property.

H

Two recovery wells were installed on BRC property between August 29 and September 2, 1988. These wells, in addition to existing well MW-10, comprised the hydrocarbon recovery system. Based on a numerical groundwater flow model, these three wells were considered to be sufficient to capture hydrocarbons from beneath refinery property. Four piezometers were also installed to assess the hydraulic impacts of recovery operations on the perched alluvial aquifer. After 42 days of recovery, significant hydraulic capture of ground water and hydrocarbons was evident. Operation of the recovery system over longer periods of time is expected to further increase the extent and rate of hydraulic capture in the alluvial aquifer.


2.0 SOIL VAPOR SAMPLING

2.1 GOALS AND OBJECTIVES

A soil vapor survey was conducted during the week of July 18, 1988 on U.S. Bureau of Land Management (BLM) property in order to determine if halogenated hydrocarbons were present in ground water and to assess the extent of dissolved or floating petroleum product migration in the subsurface from beneath Bloomfield Refining Company (BRC) property. Soil vapor surveys have proven effective in identifying the extent of volatile organic compounds (VOCs) in ground water. The purpose of the survey was to assist in the identification of the source of hydrocarbons observed in ground water south of the refining facility and to better define the areal extent of these hydrocarbons. Results of the survey were also used to assist in determining the location of on-site ground water recovery wells.

2.2 TECHNICAL APPROACH

The survey was not conducted on refinery property due to significant chemical interference from normal refinery operations. However, soil vapor samples were collected at monitor well locations where concentrations of organic constituents in ground water were known. A grid initially constructed on 300-foot centers was used to perform the soil vapor survey on BLM property. The large distance between grid centers was chosen in order to avoid small-scale heterogeneities influencing vapor migration in the subsurface. The original grid, which extended southward from Sullivan Road and westward from the edge of the terminal area, was oriented parallel and perpendicular to the general direction of westward ground water flow. The grid spacing was continuously redefined on the basis of the vapor concentration observed at the most recently sampled grid point. A total of 25 points included 3 vapor samples collected on BRC property and 22 vapor samples collected on BLM land. Locations of the soil vapor sample points are shown in Figure 2-1.

Soil vapor sampling was performed pursuant to guidelines presented in the <u>GCL Standard Operating Procedures for Soil Vapor Sampling and</u> <u>Analysis</u> (Appendix A). Prior to sampling on the grid, soil vapor samples were obtained near monitor wells at which concentrations of VOCs were known. This permitted estimation of the degree of correlation between soil vapor concentrations and observed concentrations of VOCs in ground water.

The sampling system employed driven 3/4-inch diameter hollow steel probes and a Photovac 10S50 gas chromatograph (GC). Analysis of soil vapor grab samples extracted from the shallow subsurface at depths of 5 feet helped to identify the presence of VOCs in the soil and underlying ground water. Analyses made at each sample point consisted of:

- Benzene
- Toluene
- Ethylbenzene
- Xylenes
- Trichloroethylene (TCE)
- Tetrachloroethylene (PCE)

Table 2-1 lists the physical properties of these volatile organic compounds. All VOCs sampled during the soil vapor survey were characterized by Henry's law constants in excess of 5 x 10^{-4} atm·m³/mole and vapor pressures of at least 1 mmHg, and were therefore considered suitable for soil-vapor sampling (Marrin, 1988). Quality control of the analyses included daily calibrations, air blanks, equipment blanks, and retention time checks for all constituents of interest. Calibration standards, analyzed to $\pm 2\%$, were supplied by Scotty Specialty Gases. Based upon analysis of concentrations of "background" VOCs located 800 feet from the refinery, a significant level of aromatic or halogenated hydrocarbons was considered to exist if:

TABLE 2-1

PHYSICAL PROPERTIES OF VOLATILE ORGANIC CONSTITUENTS OBSERVED AT BLOOMFIELD REFINING COMPANY

	Solubility in Water (20-25°C) (mg/l)	Vapor Pressure (14-32°C) _(mmHg)_	Henry's Law Constant <u>(atm·m³/mole)</u>	Log of Octanol/ Water Partition <u>Coefficient</u>
Benzene	1780-1800	95.2	5.55 x 10 ⁻³	2.13
Toluene	535	28.7	5.93 x 10 ⁻³	2.69
Ethylbenzene	206	7	6.44 x 10 ⁻³	3.15
Xylenes	insoluble	10(O-Xylene)	6.12 x 10 ⁻³	
Tetrachloro- ethylene (PCE)	150	14	28.7 x 10 ⁻³	2.88
Trichloroeth- ylene (TCE)	1100	57.9	11.7×10^{-3}	2.29
1,2-Dichloro- ethane (DCA)	6300-8300	61-200	(1.10-5.32) x 10 ⁻³	1.48
Phenol	67000	insignificant	1.3 x 10 ⁻⁶	1.46

Source: U.S. EPA, 1981, Treatability Manual, Volume I. Treatability Data, Office of Research and Development, Washington, D.C.

6. 11.1

11.11

TELLAN

- Total hydrocarbons in soil vapor were found to exceed 50,000 μg/l (50 ppm)
- Either benzene or toluene in soil vapor was found to exceed 1500 $\mu g/l~(1.5~\text{ppm})$
- The concentration of PCE in soil vapor exceeded 10,000 $\mu g/l$ (10 ppm).

2.3 RESULTS

2.1

Interpretation of soil vapor survey results should account for source location, soil moisture content, organic carbon content, and volatility and solubility of the VOC under investigation. The primary transport mechanism for VOCs in unsaturated soil is by upward diffusion from the underlying saturated zone through air- and gas-filled voids. The presence of soil moisture tends to inhibit transport of vapors by reducing the volume of open voids through which volatile organic vapors can diffuse, but has less influence on highly-volatile VOCs than on compounds characterized by low volatility. The presence of organic matter may also inhibit diffusion through physical sorption of VOCs. Silka (1988) has shown that sorption in soils containing as little as 0.1% organic carbon can act as a significant sink for VOC vapors. Since soil moisture and organic matter act as sinks for VOC vapors and inhibit free movement of vapors from the ground water to the overlying soil, use of soil vapor concentrations to define the extent of hydrocarbons dissolved in underlying ground water is especially well-suited to coarse-grained, freely-draining deposits that do not contain significant amounts of organic material.

As indicated by lithologic logs of boreholes recently drilled in the area, the upper 10 to 20 feet of deposits underlying the site are comprised of silt and clay. These fine-grained deposits tend to trap infiltrating moisture and thereby inhibit upward diffusion of organic vapor that partitions out of the underlying ground water. The deposits might include minor amounts of organic matter that can easily adsorb organic vapors. Since the shallow clay layer appears to extend continuously across the site north of Sullivan Road, the diffusion-

inhibiting effects of the clay would be expected to be uniform across refinery property. Thus, it can be assumed that soil vapor concentrations observed north of Sullivan Road are reliable indicators of the extent of dissolved hydrocarbon plumes in the underlying ground water, especially when overall trends in the soil vapor plumes for a number of constituents are consistent. The relative concentrations of soil vapors are also useful for identifying source areas where hydrocarbons are likely to have been released into the subsurface. Since the shallow clay layer appears to be absent from at least a portion of BLM property, soil vapor concentrations would be expected to be higher beneath BLM land for a given ground water concentration.

benzene, toluene, Concentrations of ethylbenzene, total xylenes, tetrachloroethylene (PCE) and trichloroethylene (TCE) observed in the vapor samples are listed in Table 2-2. Plots of vapor concentrations and the logarithms of concentrations are shown in Figures 2-2 through 2-13. The distribution of log concentration is useful when vapor concentrations vary over several orders of magnitude because the logged concentration data are less subject to averaging during machine con-The Golden Software "Surfer" touring than raw concentration data. graphics package was used to perform kriging of the data over a 1000foot search radius, a procedure that tended to smooth the data with respect to space. X- and y-coordinates used for plotting were referenced to monitor well MW-11. Locations of the monitoring wells relative to the vapor sample points are approximate and can be more accurately defined by means of a topographic survey of well head locations.

The largest concentrations of benzene, toluene, total xylenes, and PCE were observed at sample point 1 (well MW-9). Although the area near well MW-9 is not considered to be the sole source of hydrocarbons, it appears to have been the site of significant hydrocarbon release during the history of the refinery. An air blank analysis was performed at point 1 because of the strong odor evident at this sample point. Results of the

ABLE 2-2

:

....

;

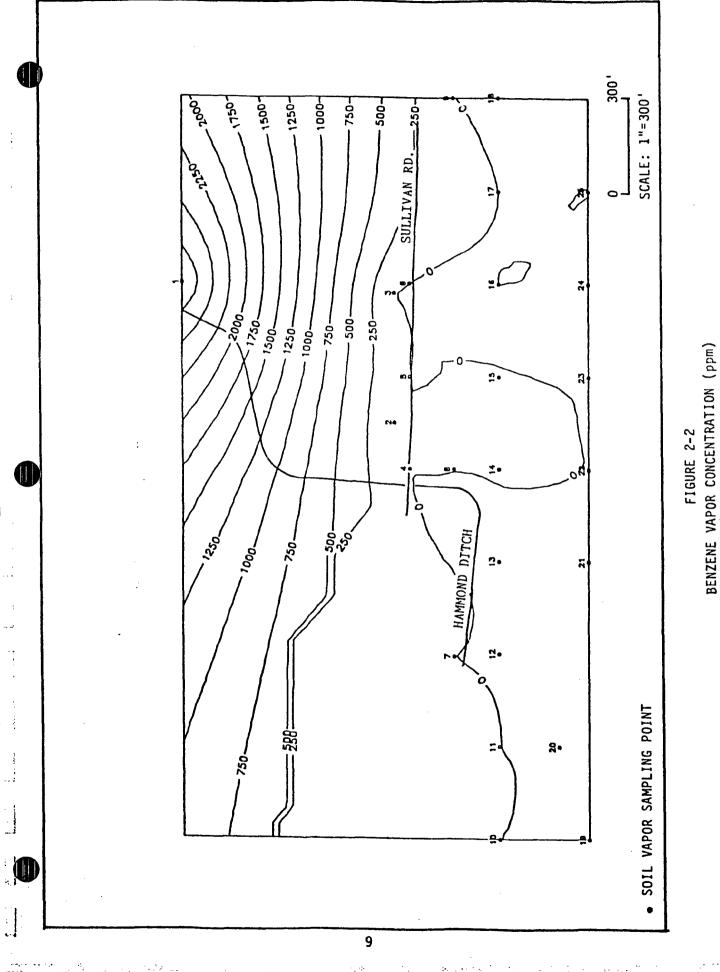
.....

~

....

••••••

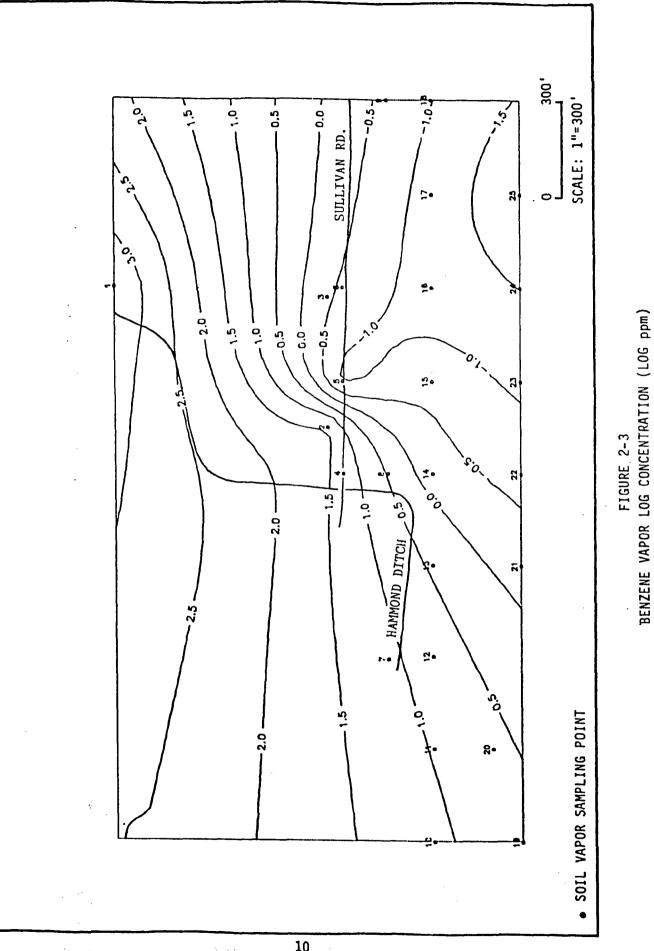
BLOOMFIELD REFINING COMPANY SOIL VAPOR SURVEY RESULTS


						Concentration (ppm)	(ppm)		
	Point or Sample	x(ft) ^a	y(ft) ^b	Benzene	Toluene	Ethylbenzene	Total Xylenes	PCE	TCE
		600	1070	2995	4655	ND	634	110	QN
		150	350	38.2	11.9	74.5	QN	QN	QN
			350	ND	710	102	20.6	78	ON
	(+-ME)0	0/6			1025	CN	10195	QN	QN
	d 1			0 060	0 149	ON ON	0.071	0.011	QN
	היי	200		ND ND	0.041	QN N	0,006	Q	0.086
		000	150	Q N	0 285	Q	QN	QN	QN
	(21-WT)/	070-	150		1.95	QN	25.58	QN	6.49
	0 0	1200	150	Q	0.448	0.349	0.442	0.513	0.380
		-1200		Q	0.085	QN	0.038	QN	0.034
	011	- 000	• c	GN	0.125	QN	0.430	QN	2.14
	11	009-	• -	CN	0.130	QN	0.037	QN	Q
8	21	000-	• C	Q	0.100	QN	0.042	QN	0.037
B	11/W//11/		• =	•	10.9	QN	9.70	QN	QN
	15/110-41/	300		0.230	1.24	QN	0.126	QN	ON
	15	500 600	• C	•	0.584	0.146	QN	QN	Q
		000	• c	QN	1.88	9.27	0.979	Q	23.8
	01	1200	• c	UN	0.143	QN	0.107	0.003	0.082
	0	-1200	-300	Q	0.061	QN	0.028	0.002	0.003
	۲ د د	000-	-200	QN	0.060	QN	0.033	0	0.072
	20	- 300	-300	QN	0.088	QN	0.127	Q	0.033
	12	200	-300	Q	0.044	QN	0.016	QN	QN
	57 57	300	100-	UN	0.925	QN	0.661	QN	QN
	7C	200	-300	QN	0.979	QN	0.310	QN	QN
	25 25	006	-300	0.014	0.107	ND	0.055	0.006	0.067
			1 1 3 9	UN	0.049	0.008	0.091	QN	0.074
	Soil Blank	-700	-600	0.016	0.547	QN	0.037	Q	QN

bill f

4. (11.4)

approximate distance east from well MW-11 approximate distance north from well MW-11 ND = not detected a approximate di b approximate di

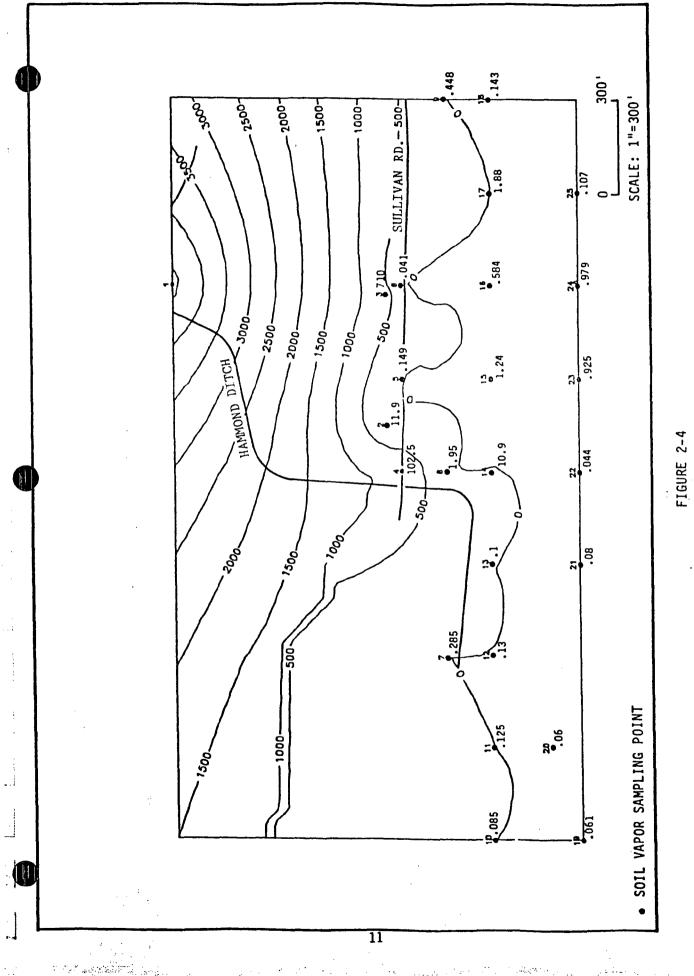

1.6.1.1

TELET THE

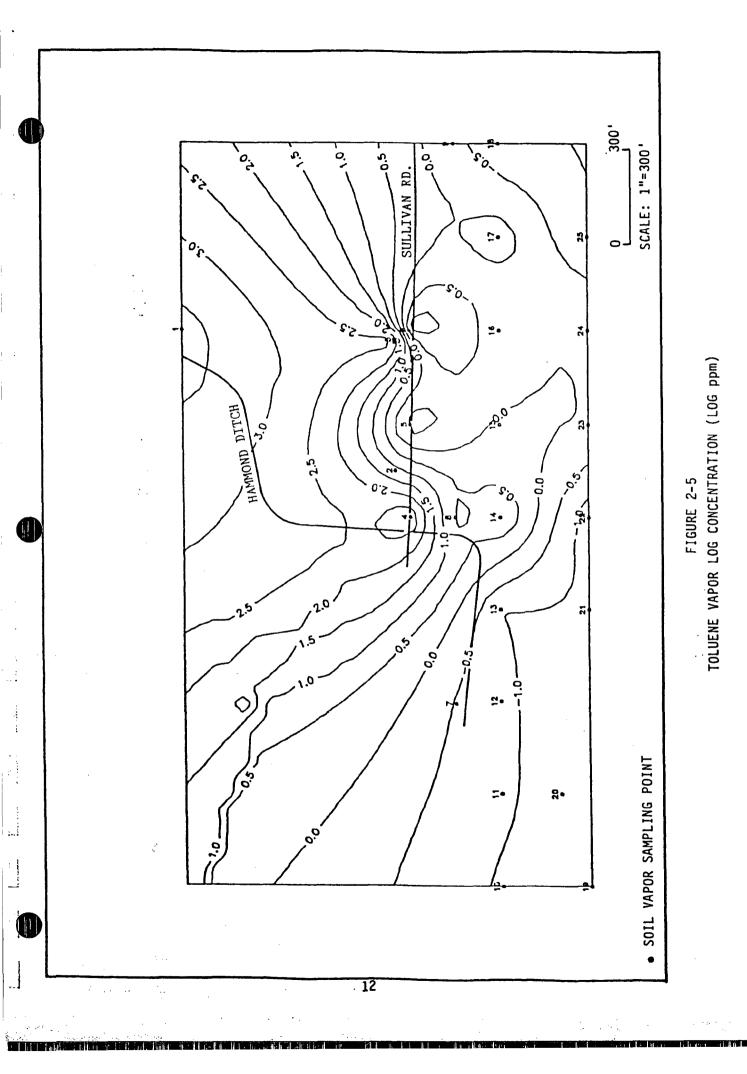
A ALA. AL HI

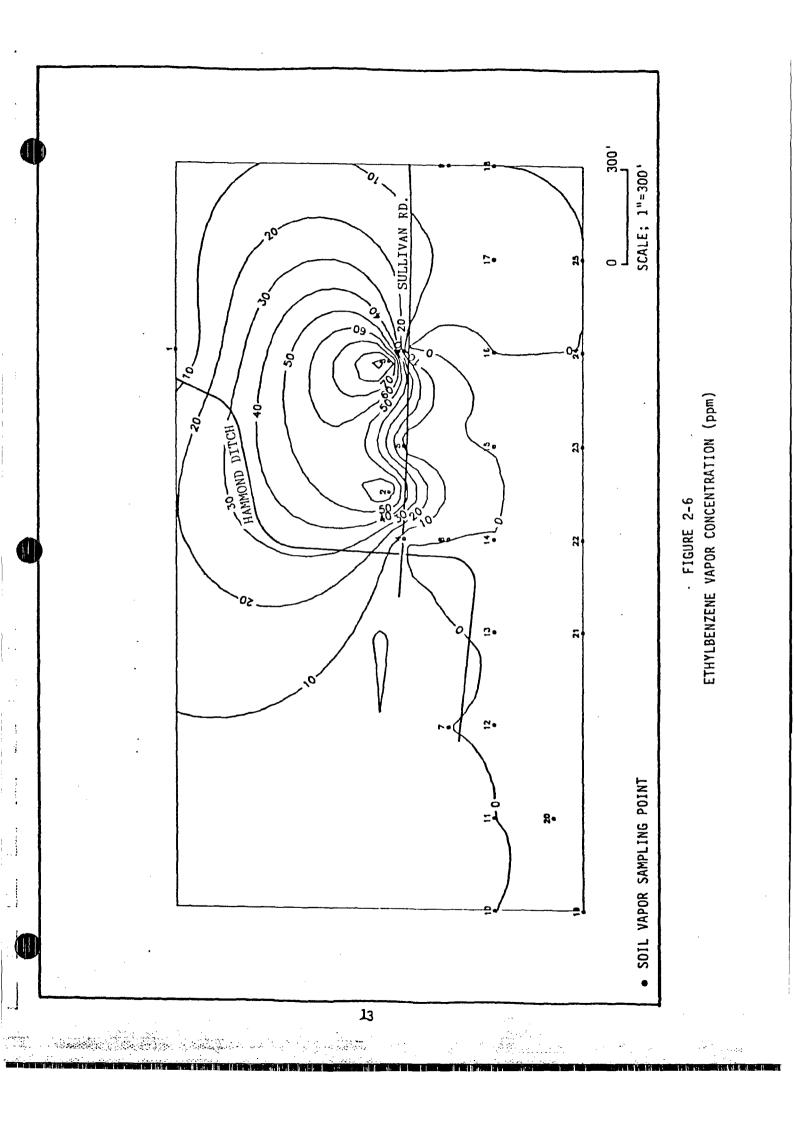
· ·

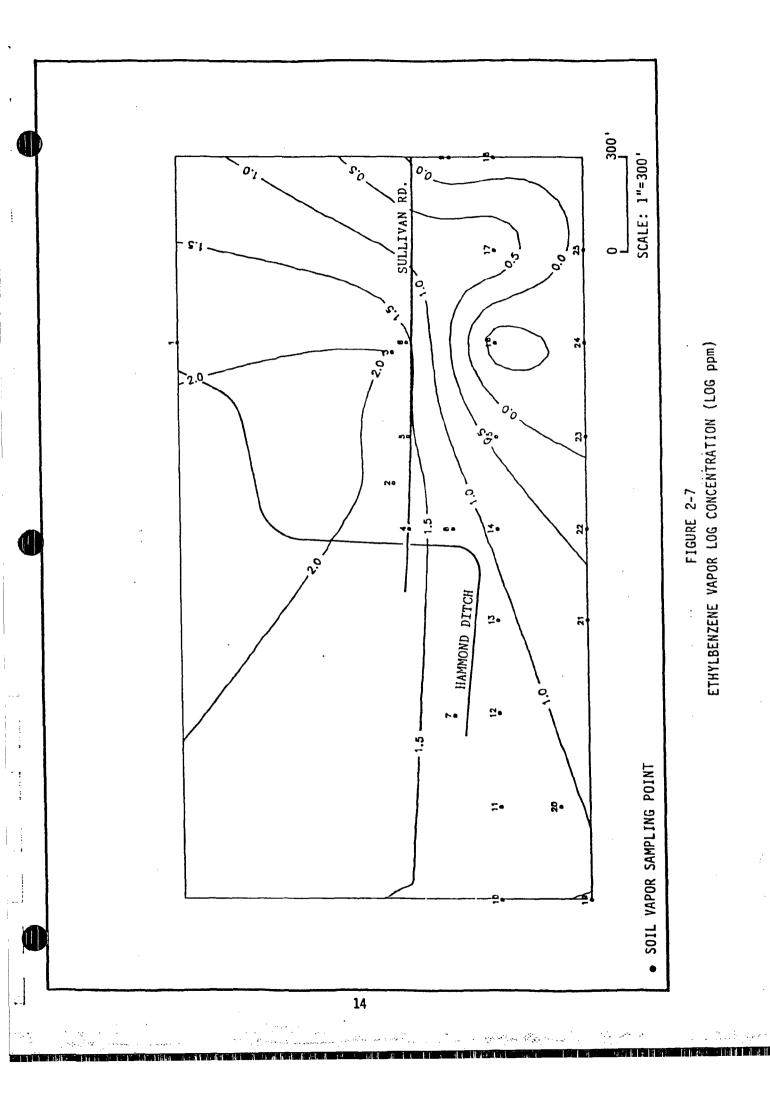
11 1246

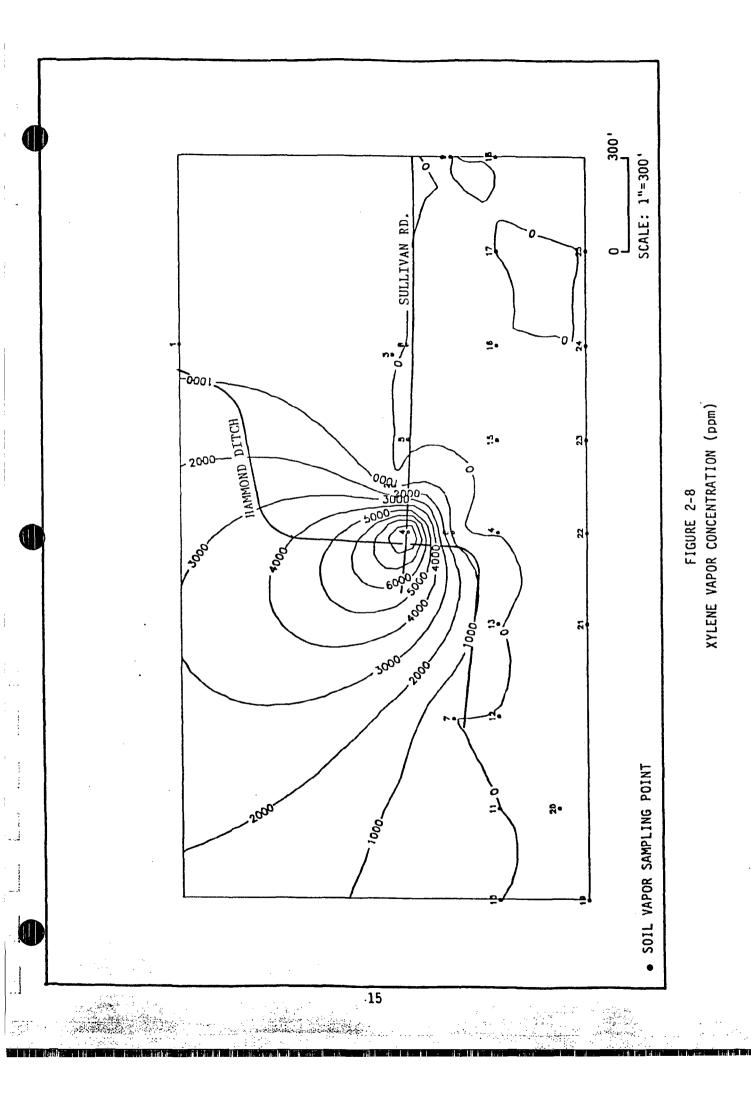

T YERA

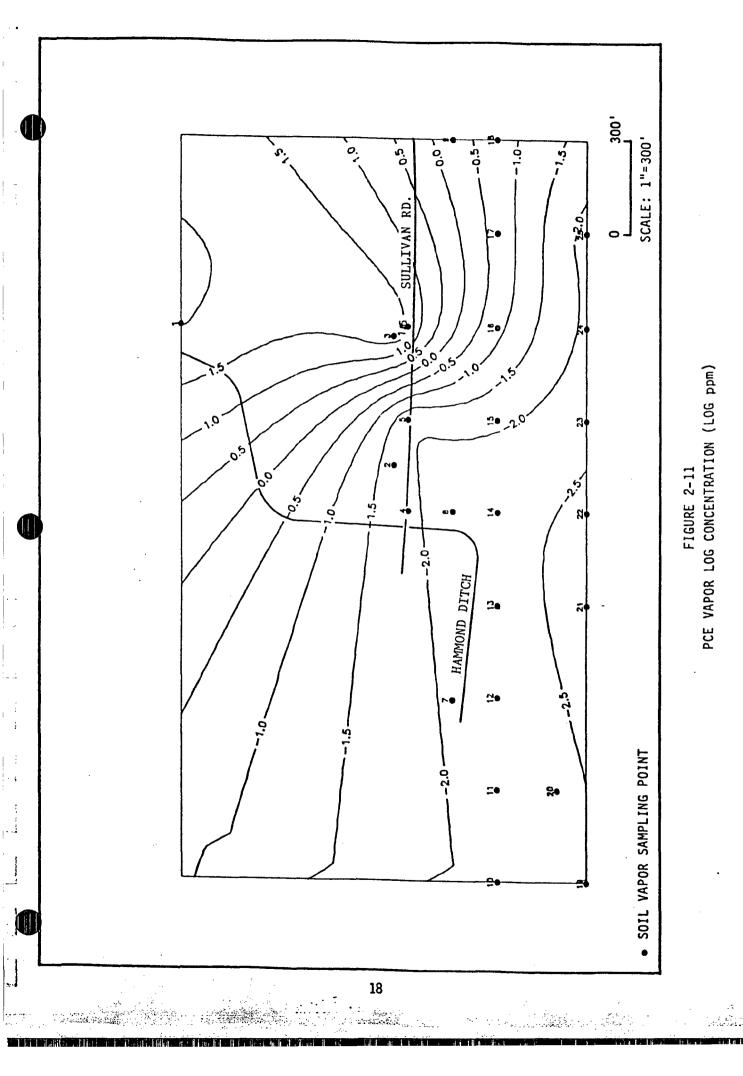
10

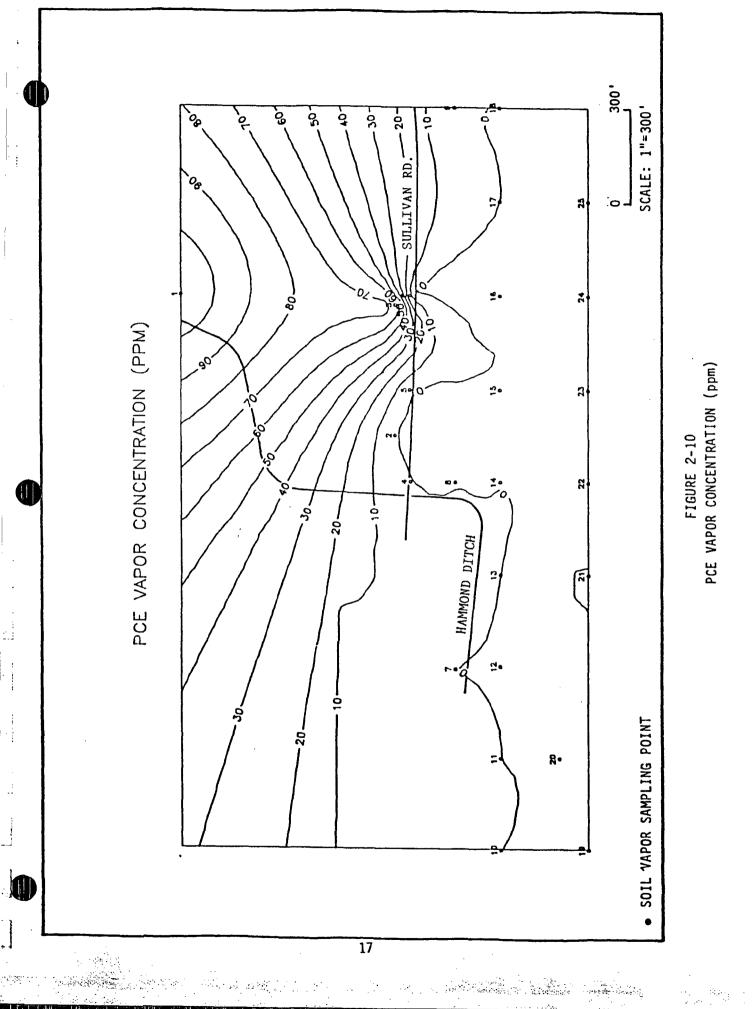

si's.


**1.51 }____

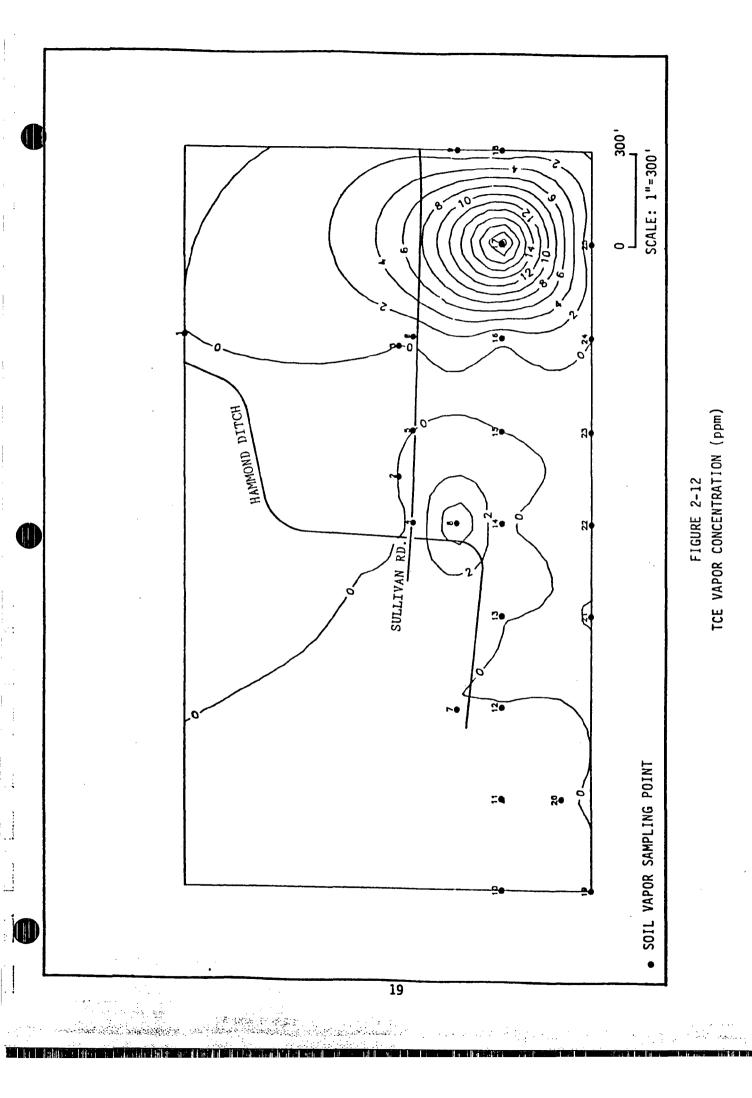

ash of h

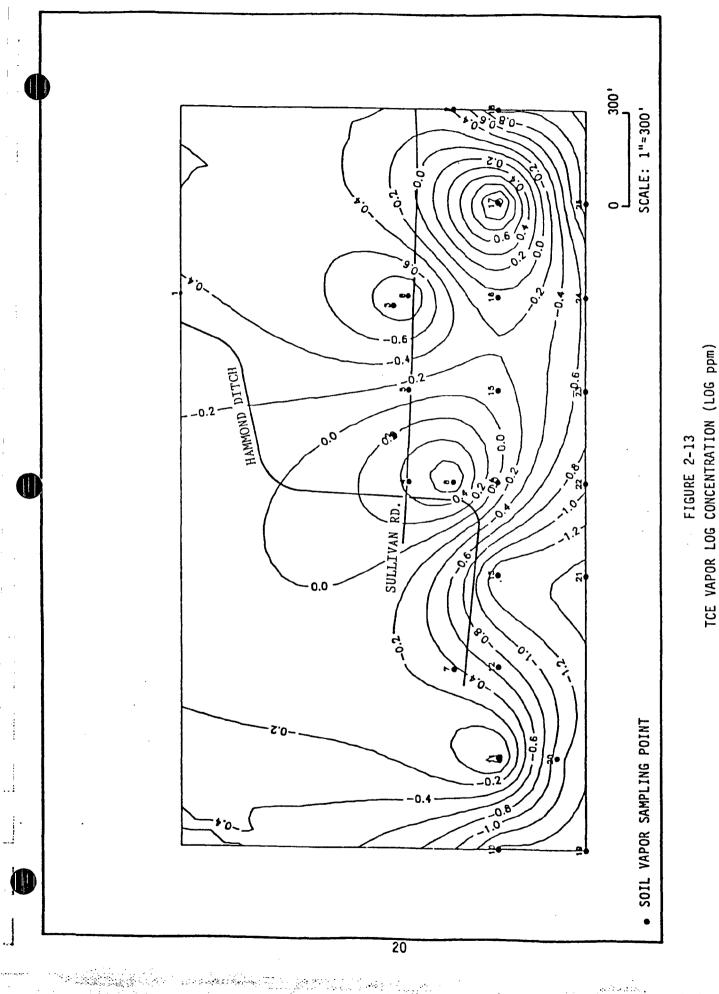

TOLUENE VAPOR CONCENTRATION (ppm)




il :

Ę


140.0


. D Hata

a 11 a 11 a 13 13 b

Uhin

JULE I L & H

had the particular of the state of the state

1.418

air blank analysis, which are presented in Table 2-2, indicate the presence of toluene, ethylbenzene, total xylenes, and TCE in the ambient air. However, the observed air concentrations are not sufficient to explain the high subsurface concentrations of these constituents beneath the site. It was assumed that the source of high vapor concentrations of these VOCs is hydrocarbons in ground water beneath the site or in the unsaturated zone overlying the water table.

Analysis of a soil blank sample collected on BLM land at a point 700 feet west and 600 feet south of well MW-11 indicated the presence of benzene, toluene, and xylenes at elevated concentrations in the subsurface (see Table 2-2). The location of the soil blank was outside of the area of hydraulic influence associated with the perched system underlying the site. Background concentrations of 0.02 ppm, 0.55 ppm, and 0.36 ppm for benzene, toluene, and xylenes were defined on the basis of these soil blank concentrations. The occurrence of elevated concentrations of VOCs outside of the area potentially impacted by BRC operations is attributed to the large amount of oil-field activity in the area and to the presence of a natural gas pipeline east and hydraulically-upgradient of the soilblank sampling point.

2.4 DISCUSSION

the second statement of the second statement of

Concentrations of VOCs in soil vapor depend on local geology, moisture conditions, the pH-redox environment in the subsurface, and the unique physical characteristics of the organic compound. The concentration distributions presented in Figures 2-2 to 2-13 suggest that hydrocarbons in the subsurface occur primarily beneath the site and do not extend more than a few hundred feet south of the refinery beneath BLM property. The tendency for vapor concentrations to decrease from north to south is related to the large concentrations observed at sample point 1 (MW-9) and the absence of data in an east-west direction through the center of the site, where samples were not collected because of chemical interference from normal refinery operations. In general, concentrations less than or of the same order of magnitude as background were observed west and south of well MW-11 and east of the sample point located 300 feet east of well

MW-11. In the case of toluene, the sample collected at MW-11 was roughly equal to background. The consistent tendency for VOCs in soil vapor to rapidly decrease to background levels west and south of MW-11 and east of the sample point located 300 feet east of MW-11 may be evidence that geologic controls influence the presence of soil vapor beneath BLM property.

Volatile organic vapor and ground water concentrations at locations where both sets of data were available between July and September, 1988 are listed in Table 2-3. Only toluene vapor concentrations exhibited a systematic relation to toluene ground water concentrations. Soil vapor and ground water concentrations of toluene showed strong correlation when the order of magnitude of the concentrations was considered. Toluene ground water concentrations in milligrams per liter of water were, with the exception of the concentration at MW-13, two orders of magnitude smaller than vapor concentrations in microliters of gas per liter of air, suggesting that a general correlation exists between toluene dissolved in the ground water and toluene vapor in the overlying unsaturated zone. The distribution of toluene concentrations observed in ground water during September of 1988, in fact, shows peak concentrations at approximately the same locations as peak vapor concentrations previously observed during July of that year.

Given that toluene appears to act more like a conservative tracer than other aromatic hydrocarbons, the distribution of toluene vapor is probably representative of the distribution of dissolved toluene in the ground water and can be used to approximate the extent of dissolved aromatic hydrocarbons in the saturated subsurface in areas where ground water concentrations are not known. Assuming that this is true, the toluene soil vapor log distribution shown in Figure 2-5 suggests that local aromatic hydrocarbon concentration peaks occur near wells RW-3 (MW-10) and RW-2, the locations of which are shown in Plate 1. High groundwater concentrations of aromatic hydrocarbons have actually been observed in the vicinity of RW-2 and RW-3 and have also been observed near RW-1, immediately south of RW-3 in piezometer P-3, and near monitor well HW-11. TABLE 2-3

Mill Strade

CONCENTRATIONS OF VOLATILE ORAGANIC COMPOUNDS IN GROUND WATER AND SOIL VAPOR AT MONITOR WELL LOCATIONS

centration <u>por (ppm)</u>	74.5	102	QN	QN	QN
Ethylbenzene Concentration Water (mg/l) Vapor (ppm)	0.00286	1.27	QN	0.063	0.00029
entration <u>Vapor (ppm)</u>	11.9	710	0.149	10.9	0.143
Toluene Concentration Water (mg/l) Vapor (ppm)	0.062	4.19	0.00435	0.840	0.00024
Concentration 1/1) <u>Vapor (ppm)</u>	38.2	QN	0.062	0.56	QN
Benzene Concentration <u>Water (mg/l) Vapor (ppm</u>)	12	8.23	19.4	44.4	0.00023
Well I.D.	RW-3	MW-4, P-2, RW-2 (average)	P-3	11-MM	MW-13
Soil Vapor Point(s)	2	m	S.	14	18

(See Plate 1 for locations of RW and P wells)

Since there are no source areas at these locations, it is likely that these hydrocarbons originated near the process units or storage tanks and migrated west and southwest under the hydraulic gradients that prevail in the perched alluvial aquifer. Assuming an average hydraulic gradient of 0.003, a hydraulic conductivity of 1.8 x 10^{-4} ft/sec from slug and pump tests performed near RW-3, and an effective porosity of between 0.10 to 0.20, the average linear ground water velocity could range from 2.7 to 5.4 x 10^{-6} ft/sec. If dissolved aromatic hydrocarbons move primarily under advective transport mechanisms, hydrocarbons originating in the storage area and currently observed near RW-3 (MW-10) would have migrated through the western edge of the storage area under a predominantly westward flow direction between 4½ and 9 years ago. Similarly, a release that is presently evident at RW-2 as a peak concentration may have originated from the western edge of the tank storage area between 2 and 4 Peak concentrations of aromatic hydrocarbons presently years ago. evident at RW-3 and P-3, as well as aromatic hydrocarbons observed near RW-1 and P-1, may have originated in the process area and migrated southwestward along a curvilinear flow path caused by southward flow from the northern reaches of Hammond Ditch. If this is the case, and if the hydraulic gradient increases to 0.04 under the influence of Ditch recharge, hydrocarbons currently arriving at RW-1 could have been released 4 to 8 years ago. Hydrocarbons presently at RW-3 and P-3 may have been released from the process area 5 to 10 years ago.

The absence of elevated concentrations of volatile organic constituents at soil vapor sample points located along Hammond Ditch, including a point at MW-12 where no organic constituents have previously been observed in the perched ground water, suggests that either flow in the Ditch is very effective in flushing out organic compounds that may have migrated through the alluvial ground water system beneath BLM land or that lateral recharge from the Ditch to the alluvial deposits is inhibiting the upward diffusion of vapor. The occurrence of belowdetection levels of tetrachloroethylene (PCE) and trichloroethylene (TCE) at the soil blank location and the presence of large concentrations of these compounds near MW-4 and west of the terminal area is an indication

that PCE and TCE are limited to the subsurface directly beneath the site or near the site boundary. PCE and TCE were presumably released from solvents used for degreasing equipment in the terminal area or, perhaps, at off-site locations.

Given the limited extent of organic compounds in soil vapor underlying BLM property, recovery wells installed north of Sullivan Road will be probably be adequate for effective capture of organic constituents in the underlying ground water. The southern extent of the capture zones induced by operation of recovery wells north of Sullivan Road will be the determining factor when deciding the need for additional recovery of ground water near well MW-11, where soil vapor and elevated ground water concentrations of benzene, toluene and xylene have been detected. Hydraulic head and water quality data observed at piezometer P-3 located south of Sullivan Road will be used to estimate the effectiveness of the proposed recovery system with respect to capture of hydrocarbons currently present beneath BLM land.

3.0 INSTALLATION OF RECOVERY WELLS AND PIEZOMETERS

3.1 GOALS AND OBJECTIVES

IL TOTAL AND A DATE OF A D

The perched alluvial aquifer underlying the Bloomfield Refining Company is recharged along upstream reaches of Hammond Ditch and beneath the spray irrigation area in the southwestern part of the facility property, as evidenced by the peak water levels observed beneath the spray irrigation area and the addition of a westward ground water flow component along the Ditch. The aquifer is underlain by the Nacimiento Formation, which acts as a barrier to significant downward movement of ground water and dissolved hydrocarbons. Perched ground water containing hydrocarbons is, however, migrating laterally from the spray irrigation area and from the areas adjacent to upstream reaches of the Ditch towards BLM property and downstream western reaches of Hammond Ditch. A recovery strategy has been formulated to intercept ground water containing hydrocarbons that would otherwise migrate into the downstream reaches of the Ditch or beneath BLM property.

Due to the moderately-large hydraulic conductivity and 8-foot average saturated thickness of the alluvial aquifer, it was expected that broad, shallow cones of depression would develop during hydrocarbon recovery operations. Because of the anticipated shallow capture zones, at least two recovery wells, in addition to existing recovery well RW-3 (MW-10), were believed to be needed to ensure capture of all hydrocarbons originating from the site. A recovery well was installed near existing well MW-4, which was constructed with torch-slotted casing and was not considered suitable as a recovery well. Recent observations of hydrocarbon seepage into Hammond Ditch west of the process units suggest that a recovery well would be needed west of the office building and southwest of the raw water ponds. An additional recovery well was therefore installed east of Hammond Ditch and west of the office building to capture ground water that was not expected to be intercepted by upgradient recovery well RW-3. The location of this well was selected based upon results of the numerical flow model previously developed to define a remedial-action strategy, and modified to reflect conditions during non-irrigation seasons when water from Hammond Ditch would not be

Gel

available to contain ground water on BRC property. A third well was installed west of the terminal area within the facility boundary to determine if aromatic or halogenated hydrocarbons observed under BLM land could have migrated from this area as a consequence of refinery pigging operations.

Simulated steady-state hydraulic head during recovery at the three recovery wells, shown in Plate 2, indicates that long-term recovery of 3, 1.5, and 1.5 gpm at wells RW-1, RW-2, and RW-3, respectively, should be sufficient to capture on-site hydrocarbons and a portion of hydrocarbons present on BLM property. In order to demonstrate that the recovery system is effectively capturing flow from the refinery, several piezometers were also installed. The locations of these piezometers were selected to provide hydraulic head data critical for assessing the hydraulic impacts of recovery well operation. A minimum of three piezometers was considered necessary to assess the effectiveness of the proposed recovery system north of Sullivan Road.

One piezometer was located between existing well RW-3 and the RW-2 well replacing well MW-4 in order to assess the well losses associated with recovery well operation. Since this piezometer is sufficiently far from recovery wells to not be significantly influenced by well losses, it should give a true indication of the depth of the hydraulic "trough" induced by pumping at the line of recovery wells north of Sullivan Road. A second piezometer, located south of Sullivan Road, was used to measure how effective the recovery system north of the Road is in capturing ground water from or preventing migration of ground water towards BLM A third piezometer was placed immediately west of the RW-1 land. recovery well located east of Hammond Ditch and west of the office building. Water level measurements obtained from this piezometer were used to determine whether the recovery well located between the Ditch and the office building is effective in capturing westward-moving ground water during non-irrigation periods when there is no water in the Ditch to help contain hydrocarbons on BRC property. Locations of all existing and new wells and piezometers are shown in Plate 1.

Installation of monitor/recovery wells and piezometers, in addition to supplying a means of remediating the ground water beneath the refinery, also made it possible to further assess the extent and magnitude of hydrocarbons in the perched alluvial aquifer underlying the site. Samples of ground water collected from the alluvial wells and piezometers were used to define the extent of the hydrocarbon plume in the alluvial aquifer and will also be critical for tracing changes in hydrocarbon concentrations induced by remedial clean-up operations. These samples, along with measurements of hydraulic head observed in the wells and piezometers, will make it possible to determine the need for additional recovery wells and to evaluate the effectiveness of the recovery strategy.

3.2 TECHNICAL APPROACH

Two monitor/recovery wells and four piezometers were drilled and installed by Beeman Brothers Drilling Company between August 20 and September 2, 1988 using an air-rotary casing-driver drill rig. The depth of the boreholes were selected by GCL's on-site geologist based on the depth to water observed in each borehole during drilling. A conventional rotary drill bit was advanced while cuttings were simultaneously blown upward and out of the borehole with compressed air. An in-line air filter ensured that hydrocarbons were not introduced into the borehole from the compressor during drilling operations. After a selected depth was reached with the rotary drill bit, 8-inch diameter steel casing was hammered into the borehole around the drill rods to the same depth as the drill bit using a hydraulic casing driver attached to the drill rig. This process was repeated until the target depth of each borehole was Samples of the drill cuttings were collected at approximately 5 reached. foot intervals and logged by the on-site geologist.

After the target depth of each borehole was attained and the temporary casing advanced to the total depth of the borehole, recovery of ground water was monitored until a static level could be estimated and a total depth for the well casing selected. Four-inch screen and well casing was then installed in the borehole through the temporary steel casing. The

top of the screen was set 5 feet above the static water level and the well. The filter pack and bentonite seal were inserted into the borehole through the annulus of the temporary casing as it was retrieved from the borehole. The borehole was grouted above the bentonite seal using a neat cement slurry with 5% bentonite. After the grouting was completed, a concrete pad was constructed, complete with locking guard pipe. Recovery-well completion diagrams are shown in Appendix B, Figures B-1 to B-3. The monitor/recovery wells were constructed with polyvinyl chloride (PVC) and stainless steel components, with the parts of the well casing that were in contact with ground water composed of stainless steel. Piezometers were similarly constructed using 4-inch PVC casing, with piezometer completion diagrams shown in Figures B-4 to B-7.

After the grout in the borehole cured, the wells were developed utilizing a 4-inch submersible pump. Wells with stainless steel screens were bailed prior to installation of the submersible pump. The wells were pumped until produced water was clear and free of sand. The developed water was stored in 55-gallon drums at each well head. After the water level in each well had recovered to static conditions, a water sample was collected and analyzed in the field for pH in order to identify potential invasion of the filter pack by emplaced grout.

Following installation and development of the recovery wells and piezometers, all wells and piezometers were sampled by Bloomfield Refinery Company personnel for New Mexico WQCC parameters.

3.3 RESULTS

3.3.1 Lithology

Based on lithologic logs of the boreholes shown in Figures B-8 to B-14 (Appendix B), the subsurface geology is dominated by three lithologies: an uppermost clayey silt, a sandy gravel unit and the underlying Nacimiento shale of Early Tertiary age. As indicated in the stratigraphic sections presented in Figures B-15 and B-16 of Appendix B, the uppermost clayey silt is present throughout the site except between holes P-3 and MW-11, where this unit has probably been removed by erosion.

C P

This unit ranges in thickness from 0 feet in P-3 and MW-11 to 27 feet in P-4. In boreholes located on refinery property, this unit is at least partly composed of fill dirt.

Underlying the uppermost silt are coarse-grained gravel and sand deposits of the ancestral San Juan River. This unit is poorly sorted; the gravel is moderately rounded and is up to two inches in diameter. In all boreholes drilled, the lowermost portion of the gravel unit was watersaturated and under unconfined conditions. The unit appeared to be lithologically homogeneous over the site and ranged in thickness from 14 feet to 18.5 feet. However, borehole P-4 showed some variation from the typical lithology of this unit. In this borehole, a distinctive, relatively well-sorted three-foot thick orange sand overlies the gravel unit. Additionally, a two-foot thick clay horizon was encountered near the base of gravel unit; this clay unit is underlain by typical San Juan gravels. Clay units were not encountered in other boreholes and are presumably restricted to the southeastern portion of the site.

The lowermost unit encountered in the boreholes was the Nacimiento Shale of Paleocene age. This unit consists primarily of a fine-grained dusky yellow to olive-gray shale, and acts as an aquitard beneath the facility. Boreholes were drilled into this unit to accommodate the silt trap at the base of each well. Once again, borehole P-4 showed variation from the typical Nacimiento Formation in the project area. In this borehole, the Nacimiento consisted of weathered bluish well-sorted, fine-grained clayey sand. This sand unit was not encountered in other boreholes and is presumed to be of limited areal extent.

Plate 3 shows the structural contours of the Nacimiento Formation obtained from data collected by Engineering-Science (1986) and GCL. The contour map shows an overall decrease in the elevation of bedrock from southeast to northwest toward the San Juan River. There is some evidence that a buried stream channel, oriented N30°E and traversing both BRC and BLM land, occurs in the entreme southwestern part of the site. This stream channel may influence the distribution of VOCs in the subsurface

Real and the state of the second second

GCL

by inhibiting eastward or westward migration of organic compounds in this area, causing the observed "tongues" of soil vapor beneath BLM land evident in Figures 2-2, 2-5, 2-6, and 2-9.

3.3.2 Well Yield

Each well was developed following installation using a submersible pump. The largest yield was obtained from piezometer P-4, which was pumped for one hour at a rate of slightly less than 13.5 gallons/minute. Recovery wells RW-1 and RW-2 sustained rates of approximately 3 and 8 gpm, respectively. Based on a previous pump test performed at the refinery, the yield of well RW-3 was estimated to be 1.5 gpm.

3.3.3 Pre-Recovery Water Table and Saturated Thickness

Table 3-1 lists and Plate 4 shows the distribution of pre-recovery water levels observed at all existing and newly-installed wells on September 9, 1988. In the absence of ground water recovery, it is clear that ground water and dissolved contaminants migrate into Hammond Ditch and beneath BLM property. The three recovery wells are located in an area where up to 10 feet of initial saturated thickness was available for propagating recovery stresses into adjacent portions of the aquifer.

3.3.4 Water Quality

THE PERMIT AND A DATE OF THE ACTIVITY AND A DATE OF THE ACTIVITY AND A DATE OF THE ACTIVITY AND A DATE OF THE A

Table 3-2 lists the results of the BRC sampling effort. Neither TCE or PCE were above detection limits in any of the ground water samples. These VOCs have likely degraded to daughter-product DCE, a biological transformation can be completed within a matter of a few years (Vogel, 1987). Figures 3-1 to 3-9 show the areal distributions of aromatic and halogenated hydrocarbons in September, 1988. In general, the shape of each plume can be explained on the basis of hydrogeological conditions and physical properties of the associated VOC.

All contaminant plumes show a longitudinal axis oriented in a northeastsouthwest direction parallel to the direction of ground-water flow, as indicated by water-table contours observed on September 9, 1988 and shown

TABLE 3-1

WATER LEVEL AND PRODUCT THICKNESS AT RECOVERY WELLS AND PIEZOMETERS (FEET)

	Pre-Recovery (Sept. 9, 1988)			Recovery 6, 1989)	42-Day Recovery (Feb. 15, 1989)		
Well or <u>Piezometer</u>	Water Level	Product <u>Thickness</u>	Water Level	Product <u>Thickness</u>	Water Level	Product Thickness	
RW-1	5499.23	0	5498.44	0	5497.51	0.17	
RW-2	5500.11	0	5498.46	0.21	5498.39	0.042	
RW-3	5499.06	0	5497.09	0	5496.51	0	
P-1	5499.09	0	5498.16	0	5497.36	0.04	
P-2	5500.06	0	5499.25	0	5498.41	0	
P-3	5498.89	0	5498.10	0	5496.62	0	
P-4 (MW-13)	5500.51	0	5500.27	0	5499.07	0	
MW-11	5497.59	0	5496.84	0	5496.37	0	

32

· server network at

1. 64.

.

1.11

100

i differ

ALCONT IN

TABLE 3-2

.....

د...

BLOOMFIELD REFINING COMPANY GROUND MATER QUALITY

Parameter	<u>Units</u>	Detection Limit	New Mexico Standards 3-103 (A)	6-3-88 MW-4	9-9-88 RW-2	9-9-88 P-2
Benzene	l∕bm	0.0002	0.01	8.9		4.80
Ethylbenzene	mg/1	0.0002	0.75	;		006.0
Toluene	l/gm	0.0002	0.75	0.93		1.430
M-Xy]ene	l/gm	0.0002	0.62 0.62	::		4.500 1.460
u-Aylene P-Xylene	L/6m	0.0002	0.62	:		1.570
1,2-Dichloroethane	l∕pm	0.001	0.01	:	0.0016	QN
Trans 1,2-Dichloroethene	1/2m	0.001	, ,	:		Q
Nitrate as N	mg/1	0.01	10.0	0.14		! !
Phenol	mg/1	0.001	0.005	0.069	0.13	;
Sulfate	mg/1	1	600.	ε		8 1
TDS	mg/1	10	1000	1820		8

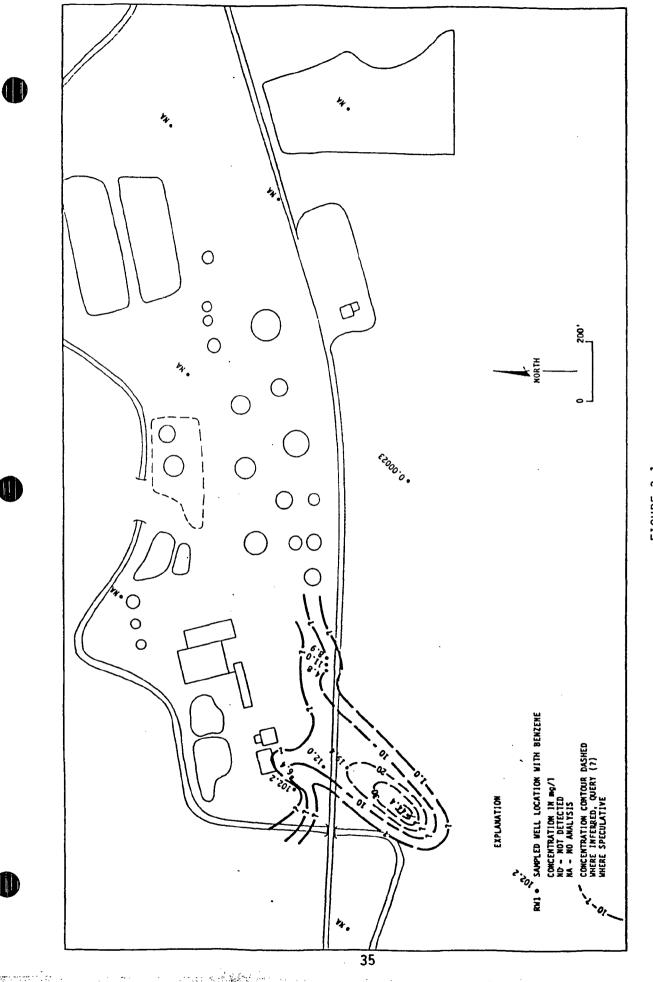
33

THE REPORT OF MARKEN FOR MALE AND THE REPORT OF A DATA AND T

TABLE 3-2 (Continued)

0

Parameter	Units	Detection <u>Limit</u>	New Mexico Standards 3-103 (A)	9-9-88 RV-3	9-9-88 P-3	9-9-88 RW-1	9-9-88 P-1	9-9-88 MV-11	9-9-88 MV-13
Benzene	mg/1	0.0002	0.01	12.000	19.400	6.400	102.200	44.400	0.00023
Ethylbenzene	l∕bm	0.0002	0.75	0.00286	QN	0.540	0.00143	0.063	0.00029
Toluene	l∕gm	0.0002	0.75	0.062	0.00435	0.070	0.034	0.840	0.00024
M-Xylene O-Xylene P-Xylene	1/6m 1/6m	0.0002 0.0002 0.0002	0.62 0.62 0.62	3.500 0.103 1.800	22.800 3.600 8.700	4.800 8.300 1.700	0.483 0.061 0.322	2.600 0.061 0.745	0.00065 0.00056 0.00035
1,2- Dichloroethane	l∕ɓш	0.001	0.01	QN	QN	QN	QN	0.0022	0.0156
Trans 1,2- Dichloroethene	Г/дт	0.001	;	QN	QN	QN	0.0015	QN	QN
Nitrate as N	mg/l	0.01	10.0	<0.01	;	<0.01	3 2	0.06	13.1
Phenol	l/lm	0.001	0.005	0.05	1 1	0.34	:	0.06	0.03
Sulfate	l∕bm	1	600.	9.5	:	4.5	:	30.	728.
TDS	l/gm	10	1000	3250	1	3130	1 1	1900	3220


34

De f

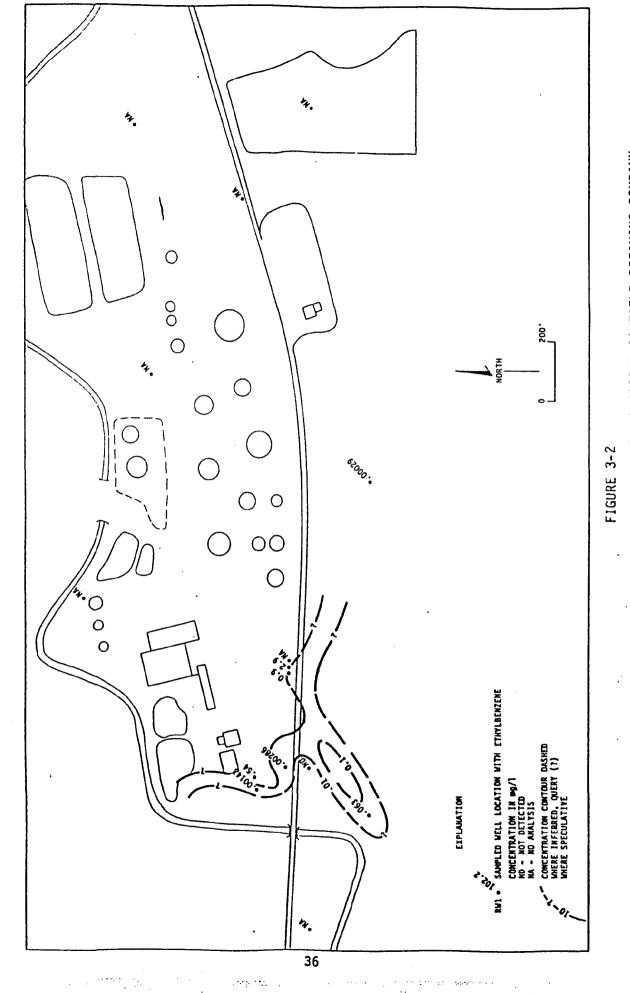
1.17.11

a mela di de sal - I

1 1 N

Ø

·永阳上市。他并且

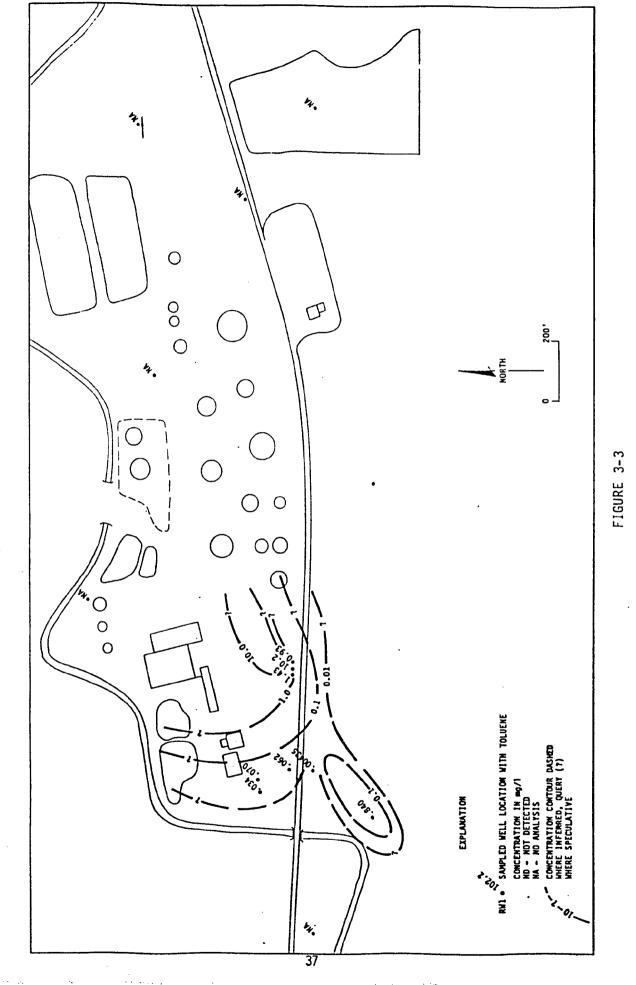

19

BENZENE CONCENTRATION IN GROUND WATER SEPTEMBER 1988 BLOOMFIELD REFINING COMPANY

FIGURE 3-1

la illa.

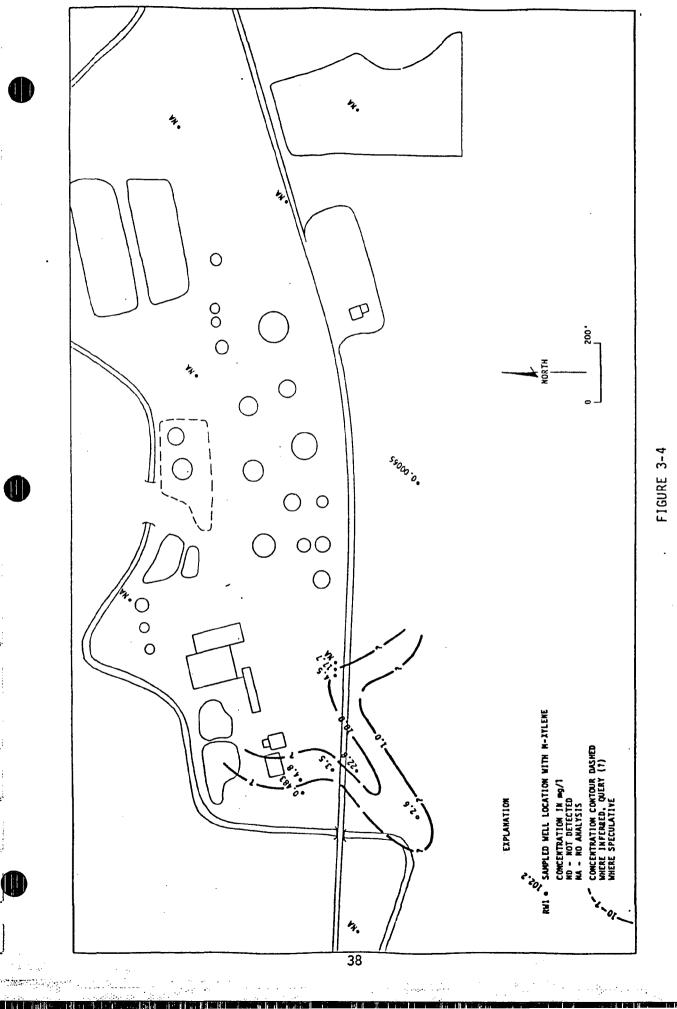
國主義主任



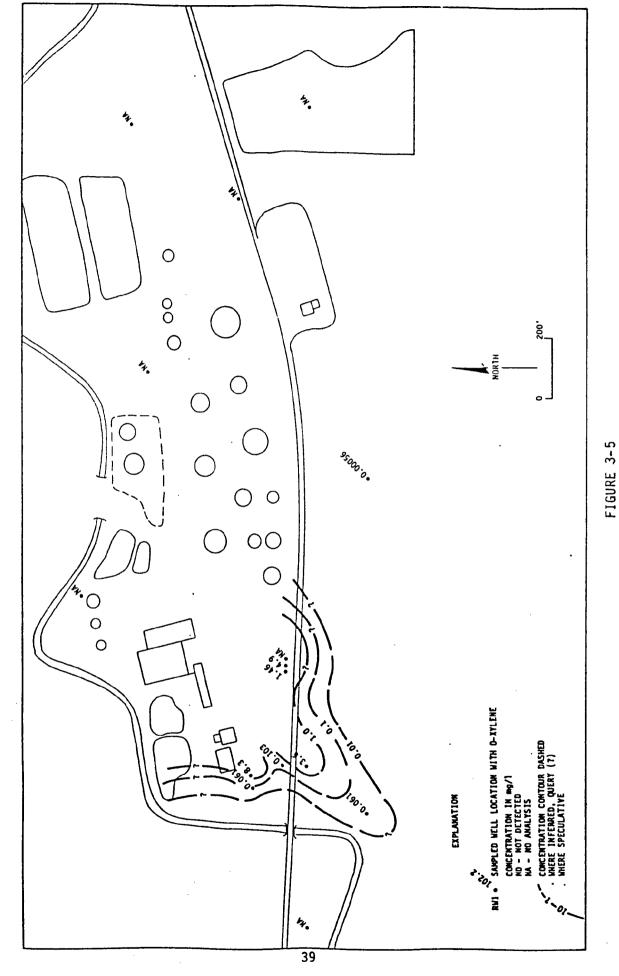
.....

0

Trath

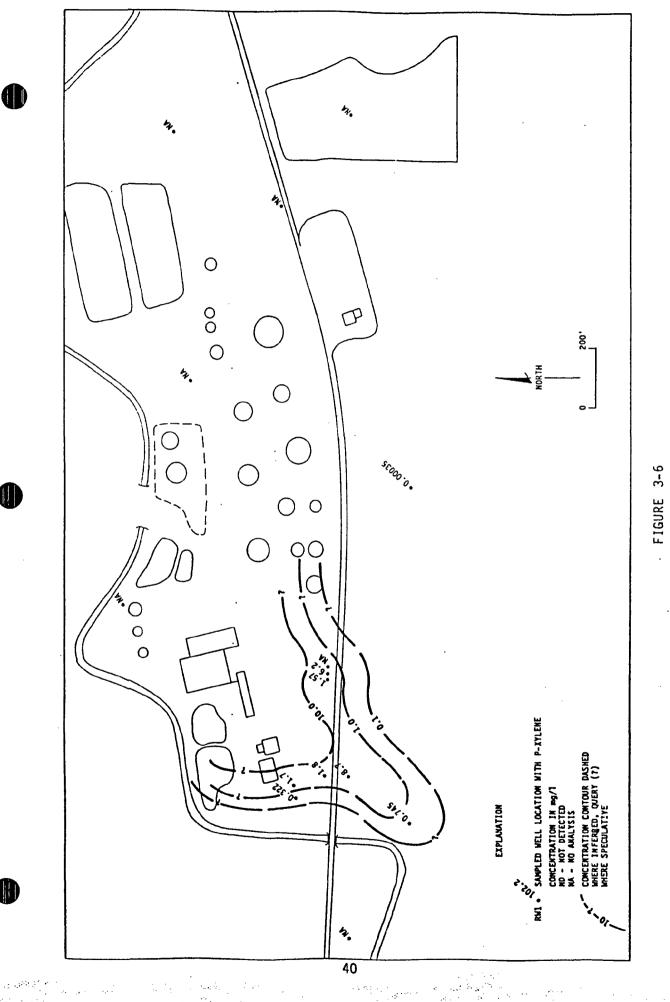

ETHYLBENZENE CONCENTRATION IN GROUND WATER SEPTEMBER 1988 BLOOMFIELD REFINING COMPANY

1999


TOLUENE CONCENTRATION IN GROUND WATER SEPTEMBER 1988 BLOOMFIELD REFINING COMPANY

i and i state

M-XYLENE CONCENTRATION IN GROUND WATER SEPTEMBER 1988 BLOOMFIELD REFINING COMPANY

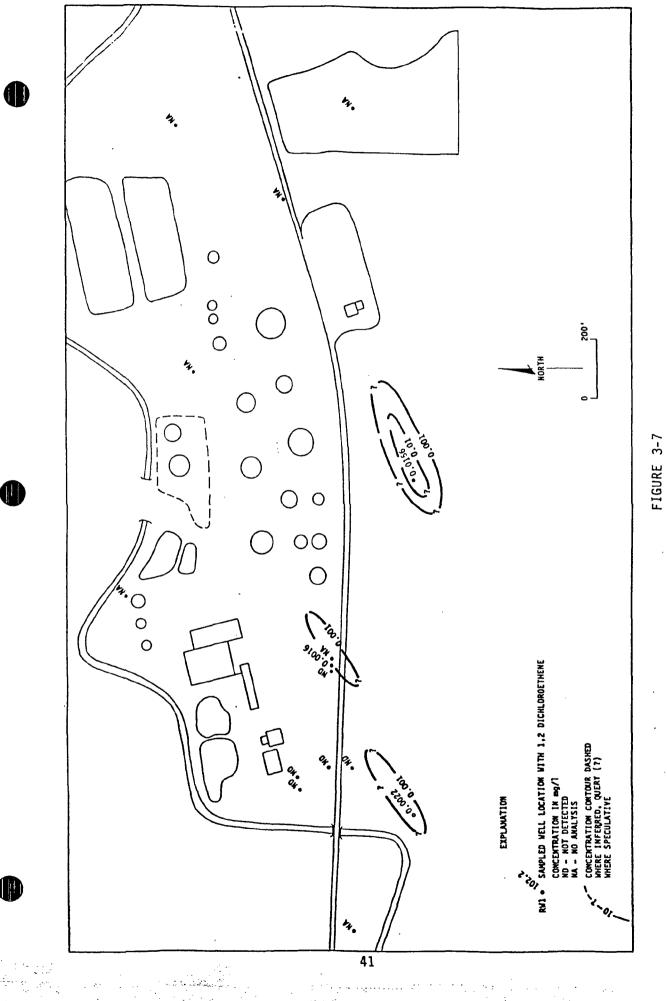


l all bit

an a territa

O-XYLENE CONCENTRATION IN GROUND WATER SEPTEMBER 1988 BLOOMFIELD REFINING COMPANY

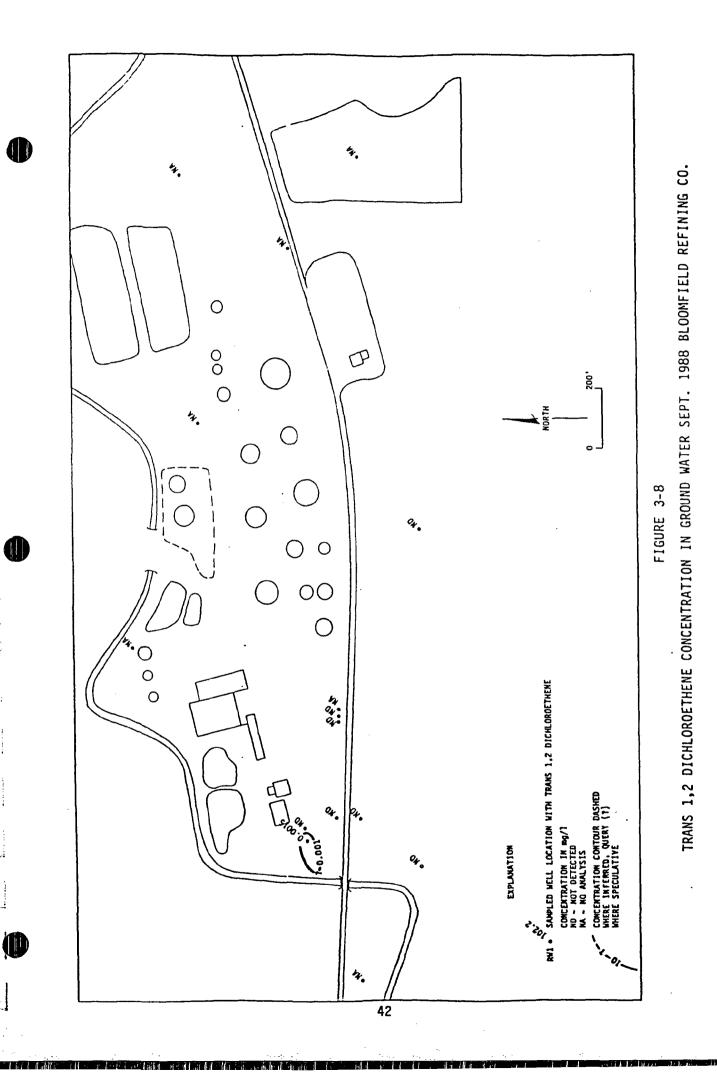
e and frank and a second


....

Ø

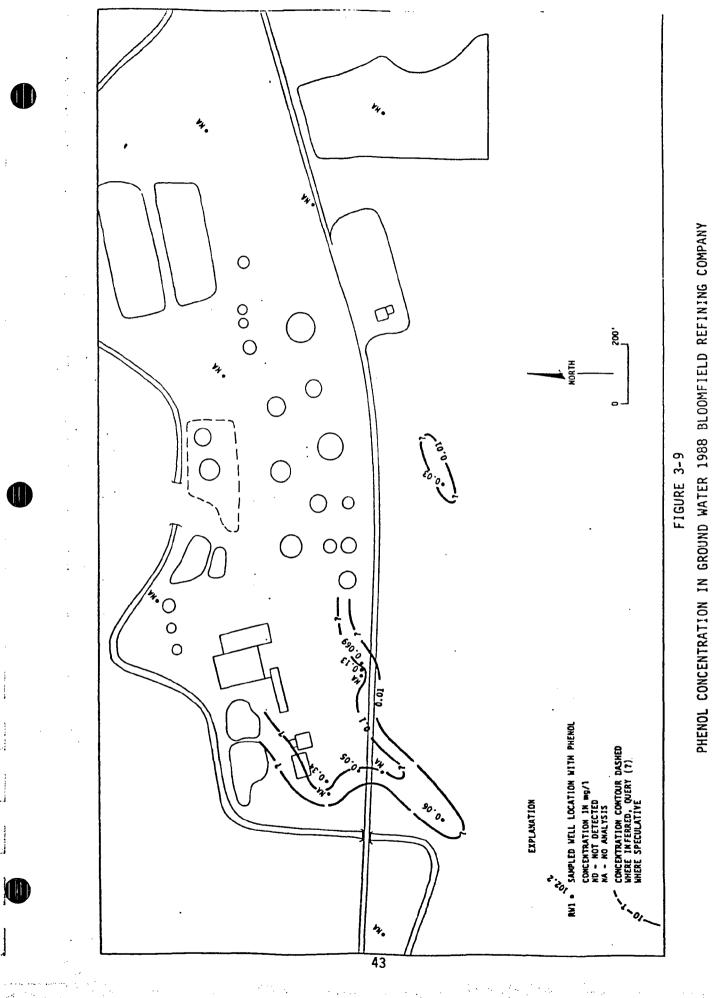
HILL Jolen

1 411 5011


. . . .

L h l half

da we


11 -1

1,2 DICHLOROETHENE CONCENTRATION IN GROUND WATER SEPTEMBER 1988 BLOOMFIELD REFINING CO.

.

<u>.</u>

I I I I I I II

in Plate 4. In most cases, maximum VOC concentrations occur along the southern boundary of the facility in piezometer P-3, suggesting either that hydrocarbon release from the unsaturated zone is ongoing or that previous releases from the tank storage area or process units have yet to migrate completely off the site. A few peak VOC concentrations occur at monitor well MW-11. These results tend to be supported by the soil vapor survey data, which indicate that hydrocarbons are generally confined to beneath the refinery site, with some hydrocarbons evident south of Sullivan Road on BLM property. The occurrence of VOCs in ground water beneath BLM property may be controlled by a buried stream channel located south of Sullivan Road. Structural contours of the Nacimiento Formation presented in Plate 3 substantiate the existence of a local bedrock depression in this area.

Considering the small amount of precipitation that occurs in the area, it is likely that a portion of the hydrocarbons which were released several years ago have been retained in the unsaturated zone above the water table and act as an intermittent source of dissolved or immiscible hydrocarbons to the ground water during the late summer and early fall when rainfall is at a maximum. Regardless of whether the hydrocarbons have been entirely released to the saturated zone, the three-well recovery system is expected to intercept hydrocarbons that would otherwise migrate beneath off-site property.

4.0 INSTALLATION AND OPERATION OF HYDROCARBON RECOVERY SYSTEM

4.1 GOALS AND OBJECTIVES

The overall goal associated with operation of the hydrocarbon recovery system is capture and remediation of ground water in the perched alluvial system underlying the refinery. Remediation of ground-water quality is being implemented through operation of three hydrocarbon recovery wells and treatment of recovered water in the refinery wastewater treatment system. Wastewater treatment involves separation of immiscible petroleum product from ground water in API separator tanks, volatilization of remaining VOCs in evaporation ponds, and spray irrigation of the treated water to the land surface. This type of treatment was considered the most efficient and cost-effective method of removing dissolved and immiscible hydrocarbons from ground water. If concentrations of VOCs in treated wastewater exceed discharge plan requirements, an air-stripper may be used to further reduce levels of these volatile organic constituents.

4.2 TECHNICAL APPROACH

4.2.1 Installation of Hydrocarbon-Recovery Pumps

The pumps installed at the Bloomfield Refinery are air-operated skimmer pumps designed to remove floating product and ground water from the upper portion of the aquifer. Each pump is made primarily of stainless steel and is 3 feet long, with an outside diameter of 2-3/8 inches. It fills from the top by gravity in order to provide the skimming action. When a pump becomes full of liquid, a float switch inside the pump activates the pumping cycle and compressed air is applied to the pump, forcing the liquid to the surface. The pump then rests until it becomes full again and the pumping cycle repeated. In this manner, the pump can be set near the water surface to skim off hydrocarbons while withdrawing a relatively small amount of clean water.

The pump intakes were set several feet below the water table. Control boxes were installed on supports close to each well head. An air-supply hose of 1/4 inch inside diameter and a product return hose of 3/8 inch inside diameter were used to connect each pump to its control box and to

the main discharge line. Both of these hoses are made of oil-resistant rubber. A check valve was included in the product line to prevent liquid from flowing back into the well and a flow indicator was provided for visual inspection of the operation.

Air is supplied to the recovery system from the refinery's central compressed-air system. An air filter was installed at each control box, which maintains air pressure at approximately 50 psi. Pumped liquids are discharged into a 10,000-gallon above-ground intermediate storage tank which can discharge to the refinery's wastewater treatment system at appropriate times. Air lines, product lines and electrical cable serving each control box are buried in a single trench approximately 2 feet deep. Both air lines and product lines were wrapped with electrical heat tape and insulated wherever they are exposed in order to protect the lines from freezing.

A cycle counter was installed inside each control box for the purpose of determining the quantity of liquid pumped at each location. Each cycle produces approximately 1/2 gpm. Therefore, the number of gallons pumped equals 1/2 the number of cycles indicated on the counter. Operation of recovery pumps began on January 4, 1989.

4.2.2 Operation and Maintenance of Hydrocarbon-Recovery Pumps

The output per cycle from each pump should be measured periodically to verify the cycle capacity. The pump cycle is determined by the timer module located in the control box. The cycle is initiated by the float switch inside the pump and its duration is determined by the setting of the timer dial. The optimal setting is determined by gradually increasing the time until all liquid is ejected from the pump followed by a burst of air. It is recommended that air be allowed to follow the water in order to completely flush particulates through the discharge line. This prevents plugging of the lines with sediment and also reduces the potential for freezing of the lines. The pumps should be inspected weekly and a log should be kept of weekly counter readings and other observations. The flow indicator should be inspected to make sure that liquid is flowing in only one direction. If liquid appears to flow back toward the well, the check valve at the well head must be cleaned or replaced.

4.3 RESULTS

Table 3-1 lists water levels observed at the recovery wells and piezometers prior to the onset of recovery and following 12 and 42 days of Although no floating petroleum product was recovery-well operation. encountered in any of the wells or piezometers prior to recovery, operation of the recovery pumps caused development of depressions in the water table that tended to accumulate low-density product over time. In cases where a layer of floating petroleum product was encountered, water levels were corrected for confining pressures caused by the hydrocarbon layer by subtracting product thickness times the relative density of diesel fuel, assumed to be equal to 0.8, from measured depth to water. Only well RW-2 contained floating product after the first 12 days of recovery. The hydrocarbon recovery pump in well RW-1, which froze several days after the onset of pumping, was not operative until January 16, 1989. After 30 days of recovery at well RW-1, both well RW-1 and piezometer P-1 began to show evidence of floating product. Product thickness at well RW-2 decreased dramatically between the 12th and 42nd day of recovery, presumably due to flushing of product from the aquifer. Up to 2.6 feet of water-level decline was recorded at the recovery wells during the 42-day period ending on February 15, 1989.

Plate 5 shows the hydraulic impacts associated with operation of the hydrocarbon recovery system for 12 days. Recovery pumps in wells RW-2 and RW-3 were operating at average rates of 0.94 and 0.73 gpm, respectively, throughout this 12-day period. These rates were estimated on the basis of 32713 and 25367 recovery cycles at wells RW-2 and RW-3, with a recovery volume of 0.5 gal/cycle and a total elapsed recovery time of 17352 minutes. Comparison of the pre-recovery water table presented in Plate 4 with the 12-day recovery water table presented in Plate 5 shows

GCL

clear evidence that intermittent pumping of recovery wells RW-2 and RW-3 at average rates of 0.94 and 0.73 gpm during the first 12 days of recovery resulted in capture of some of the ground water that normally flows off-site to the west and southwest. A map of water-level decline obtained by subtracting water levels observed 12 days following recovery from water levels observed prior to recovery and shown in Plate 6 depicts the extent of hydraulic stress caused by operation of wells RW-2 and RW-3 for the 12-day period following onset of recovery.

The distribution of hydraulic head following 42 days of recovery at all three recovery wells is shown in Plate 7. Average pumping rates of 1.2, 0.50, and 0.42 gpm were estimated from a cumulative total of 103991, 60917, and 50251 cycles recorded at wells RW-1, RW-2, and RW-3 during the 60550 minutes comprising the 42-day period. Average rates of withdrawal at wells RW-2 and RW-3 during the entire 42-day recovery operation decreased relative to rates calculated for the first 12 days of recovery because residual hydraulic stresses from prior pumping help to maintain water levels at the pump intakes at lower discharge rates. Intermittent pumping of ground water at these average pumping rates throughout this period resulted in the development of an extensive capture zone around well RW-3 that obscured the localized depression near well RW-2 previously evident in Plate 5. The relatively large, deep cone of depression surrounding well RW-3 may be attributed to a small saturated thickness or hydraulic conductivity near this well. Recovery test data observed at this well suggest that hydraulic conductivity at RW-3 may be almost an order of magnitude smaller than conductivity estimated from slug tests performed at wells MW-1, MW-2, and MW-4 (GCL Site Investigation and Remedial Action Conceptual Design). The 42-day recovery water table appears to be minimally impacted by discharge at well RW-1 due to the large transmissivity near this well, as demonstrated by its large yield during development. Again, this could be due to the very broad cone of depression induced by operation of well RW-3, which tends to obscure less pronounced depressions in the water table. Plate 8 shows that water-level decline observed following 42 days of recovery is more

48

E E ANKES STATE

areally-extensive and of greater magnitude than drawdown observed after 12 days of recovery.

The drawdown caused by recovery-well pumping was much larger than would be expected on the basis of field-measured values of hydraulic conductivity and saturated thickness. Drawdown observed after 12 and 42 days at well MW-11 and piezometer P-3, which are both located approximately cross-gradient to recovery well RW-3, was analyzed according to the Theis equation using an average conductivity of 2 \times 10⁻⁴ ft/sec and a transmissivity of 1.14 X 10^{-3} ft²/sec estimated from results of pump testing at well RW-3. The analysis indicates that estimated specific yield is much smaller than could be physically possible for the unconfined, coarse-grained aguifer. The analysis also indicates that calculated specific yield decreases dramatically over time, a highly unlikely situation for the relatively incompressible gravel comprising the aquifer. Alternatively, aquifer response can more realistically be explained by using a constant specific yield of 0.10 typical of the type of alluvial aquifer present beneath BRC property. The calculated transmissivity is smaller than the original estimate and decreases over time, suggesting that dewatering of the aquifer or the interception of lateral barriers caused by local bedrock highs, or some combination of the two conditions, may be responsible for the larger-than-anticipated hydraulic response of the aquifer. These conditions may be of particular importance south of well RW-3, where stresses propagating through the buried stream channel may be encountering adjacent bedrock as the buried channel becomes dewatered.

It appears that recovery well RW-3 will play an important role in capturing hydrocarbons from the alluvial aquifer. The extent and degree of capture at all recovery wells will continue to increase with time until steady-state conditions are attained.

5.0 REFERENCES

TAK BARAN

- Engineering-Science, 1986, 'A Final Report on Section 3013 Administrative Order Work Elements'.
- Marrin, D.L., 1988, 'Soil-Gas Sampling and Misinterpretation', Groundwater Monitoring Review, Spring, p. 51-57.
- Silka, L.R., 1988, 'Simulation of Vapor Transport Through the Unsaturated Zone - Interpretation of Soil-Gas Surveys', Groundwater Monitoring Review, Spring, p. 115-123.
- Vogel, T.M., C.S. Criddle and P.L. McCarty, 1987, 'Transformations of Halogenated Aliphatic Compounds', Environmental Science and Technology, v. 2, n. 8, p. 722.

GARY\REM.RPT

÷.,

29. C.;

APPENDIX A

1

- 3

-- 1

_

GCL STANDARD OPERATING PROCEDURES FOR SOIL VAPOR SAMPLING AND ANALYSIS

MANUAL OF STANDARD OPERATING PROCEDURES

DATE: April 22, 1988

PROCEDURES FOR SOIL VAPOR SAMPLING AND ANALYSIS

1.0 PURPOSE

To describe and illustrate the methods and procedures used in sampling and analyzing shallow subsurface soil vapor for various contamination evaluations.

2.0 SCOPE

A shallow soil-vapor survey is commonly a rapid and cost-effective method for roughly delineating the areal extent of a known spill involving hydrocarbons or other volatile constituents. Shallow soil-vapor investigations are also used to determine the presence or absence of specific constituents in the subsurface at sites where spills or leaks are possible but have not been identified.

3.0 PROCEDURES

3.1 EQUIPMENT AND SUPPLIES

- A. Necessary equipment at all sites will include:
 - Probes (3/4" I.D. steel pipe, schedule 20 or similar)
 - Drive Points
 - Adapters
 - Floor jack (2-ton capacity)Pipe clamp

 - Pipe wrenches
 - Pipe cutter
 - Pipe reamer - Portable gas chromatograph (GC) (Photovac), syringes and other necessary GC supplies (kit)

- Internal tank filling adapter - Vacuum pump (battery operated) - Slide hammer - Duct tape - Teflon tubing - Black inert rubber hose - Battery pack for GC - Zero-grade air cylinders

- Calculator

B. Optional equipment and supplies needed at some sites:

- Rotary hammer with bit - Steam cleaner - Extension cords - Metal detector - Generator - Sand and asphalt or concrete patching material - Brunton compass and tape measure

C. Safety Equipment for Persons Driving Probes:

- Hard Hats	- Safety Glasses
- Coveralls	- Steel-toed Boots
- Gloves	

Page 1 of 4

- 3.2 Define the area to be surveyed. This may include an entire gas station, a large area of property, or as small as the area around a single tank.
- 3.3 Divide the survey area into a grid or other appropriate pattern, and number each location on the grid. Grid spacing may vary depending on the size of the survey area, site conditions and the level of detail required. 20 to 50 foot grid spacing is generally used for a survey at a service station. <u>Note</u>: One may want to number points as field work progresses, so expansion of the grid will be consistently numbered.
- 3.4 Be sure all sampling equipment, including probes, vacuum adapters, points, and slide hammer (inside and outside) is thoroughly steam cleaned prior to use.
- 3.5 Prior to soil sampling, an "air sample" of the ambient air should be analyzed with the GC. Be sure the air sample is collected a distance away from or upwind from any running vehicle or other source of hydrocarbon emissions (20-30 feet is sufficient).
- 3.6 Next, collect a "system blank" to be analyzed prior to sampling. The vacuum pump should be attached to a clean probe with point attached, via an adapter, and a sample collected. This will provide background data of ambient air passing through a probe.
- 3.7 If it is necessary to drill through concrete or asphalt, start the generator (make sure it is positioned downwind of probes) or plug an extension cord into an available electrical outlet. Locate the rotary hammer over the hole and drill through the concrete or asphalt to underlying soil. Remove drill.
- 3.8 Insert the drive point into base of probe. Tape point loosely with duct tape to probe (so it won't fall out during insertion into hole).
- 3.9 Remove lift plate (white) from floor jack, and place hole in lifting arm of the jack over the drilled hole.
- 3.10 Insert the probe through the hole in the jack's lifting arm, and into the drilled hole or the soil surface.
- 3.11 Place slide hammer over the top of the probe and drive to the target depth. Generally, a target depth of 5 feet is used, except for vertical profiles. Remove the slide hammer.
- 3.12 Promptly after driving the probe, place an adapter over it and connect it to the vacuum pump.
- 3.13 Place pipe clamp around probe at the lifting arm of the jack. Tighten clamp. Turn jack handle clockwise to activate hydraulics. Use jack to retract probe 1-3 inches immediately before sampling.

Page 2 of 4

. Della d'alla del dir

THE STORE NO.

3.14 When the chemist is ready to take the sample, activate the vacuum pump. It is necessary to evacuate approximately 5 probe volumes of soil vapor prior to sampling. This can be approximated by the vacuum reading on the pump.

VACUUM PUMP	EVACUATION
GAGE READING	TIME
(Inches Hg)	(Seconds)
2 - 5	30
5 - 10	45
10 - 15	60
15 - 17	90

<u>Note</u>: Vacuum pressures above 17 in. Hg. suggest either a clogged probe, a very tight formation, or water. If there is a possibility of shallow ground water, <u>be sure water is not evacuated and passed into the vacuum pump</u>. Above 17 in. Hg. the pump will not collect a good soil vapor sample and the problem should be investigated.

- 3.15 After the evacuation time is satisfied, insert a clean syringe (equipped with a mini-enert valve) through the flexible latex (self-sealing) tubing at the top of the adapter. Flush the syringe 3 times with the soil vapor while the evacuation pump is running. Turn the evacuation pump off and immediately withdraw a 2cc sample and close the mini-enert valve on the syringe.
- 3.16 Analyze the sample by gas chromatography. This task will be performed by a person experienced in GC operations.
- 3.17 With the pipe clamp still tightened around the probe, extract the probe. The jack can be reset by turning the handle counterclock-wise. This will allow the lifting arm to drop, and the pipe clamp can be loosened and lowered.
- 3.18 After extraction, the used probe and adaptor should be set aside in a designated area so as to prevent confusion with clean probes or adapters.
- 3.19 For each soil vapor point, record in log book the following items:

SITE LOCATION

A Dates of the state of the sta

	WEATHE	R	JOB #			
	TIME	POINT #	DEPTH	VACUUM	EVAC TIME	REMARKS
<u>Example</u>	10:00 10:30	# 5 # 7	5' 5'	3" Hg 18" Hg	30 Sec.	Probe clogged removed, cleaned redrove to 6'

Page 3 of 4

- 3.20 Steam clean all probes and adapters prior to re-use.
- 3.21 After QA/QC of field data, results should be submitted to Data Management for processing and mapping.

Prepared By: _	
Reviewed By: _	and Honny

المجريد والمحاجب والمحاجب والمحاجب

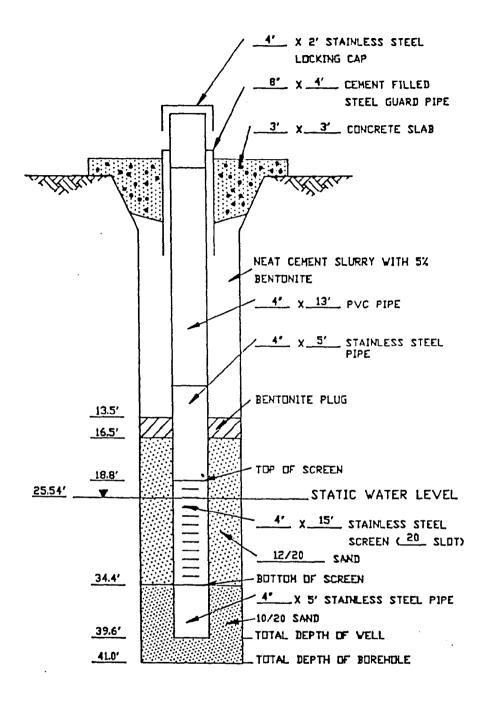
INCOMENTS AND A DESCRIPTION

1

SOP\SOILGAS.SNS

Page 4 of 4

. . .


APPENDIX B

LITHOLOGIC LOGS AND STRATIGRAPHIC SECTIONS

:...

1.11.1

Little da

COMPLETION DIAGRAM RECOVERY VELL RV-1

Sector Sec. Cont

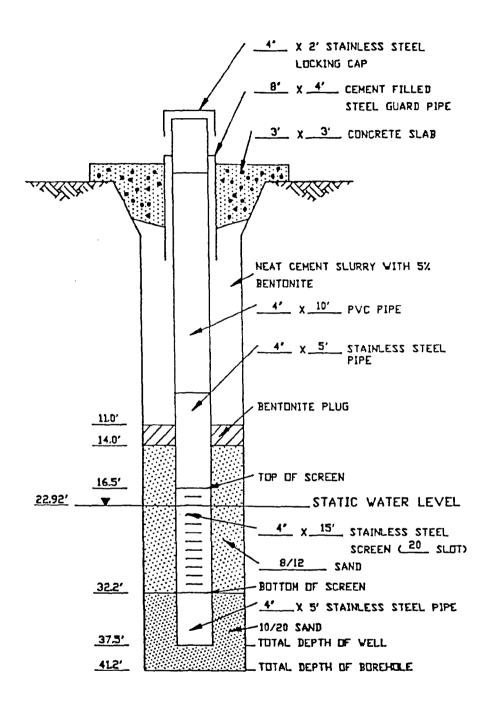
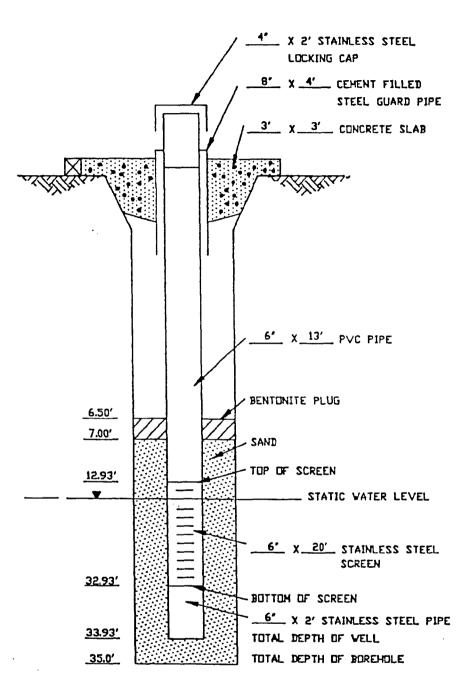



FIGURE B-2 COMPLETION DIAGRAM RECOVERY VELL RV-2

FIGURE B-3

COMPLETION DIAGRAM RECOVERY VELL MV-10 (RV-3) (RECONSTRUCTED FROM VERBAL DESCRIPTION SUPPLIED BY ENGINEERING-SCIENCE, 1987)

14 K 16 1. L

1 11

THE REAL PROPERTY AND A REAL PROPERTY AND A

14

10.0007807

1 1 1 1 1 1 1

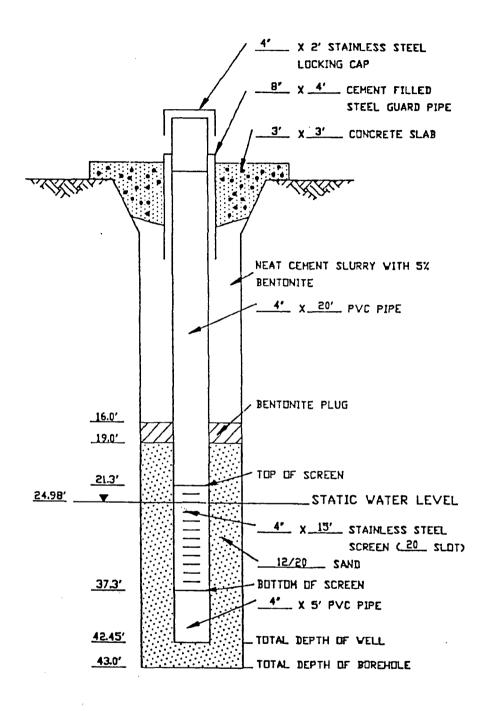
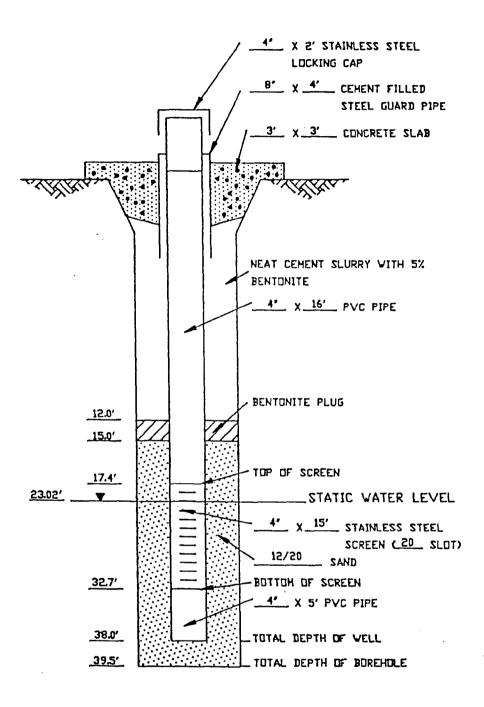



FIGURE B-4

COMPLETION DIAGRAM PIEZOMETER P-1

de Hilled Pr

A CLARK AND A

FIGURE 8-5

COMPLETION DIAGRAM PIEZOMETER P-2

& b 1

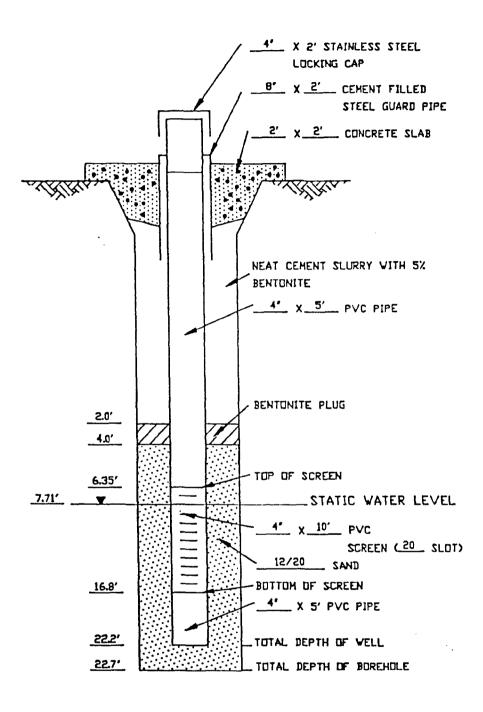


FIGURE B-6 COMPLETION DIAGRAM PIEZDMETER P-3

1.5 12.4

4 14 13 21

14 D. 36 J

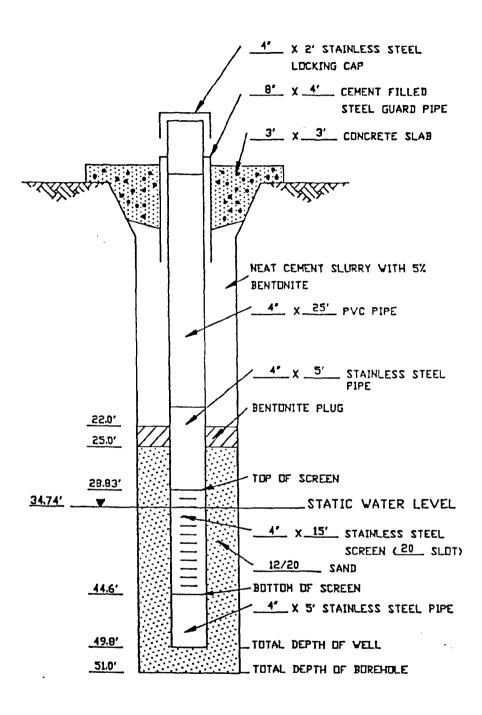
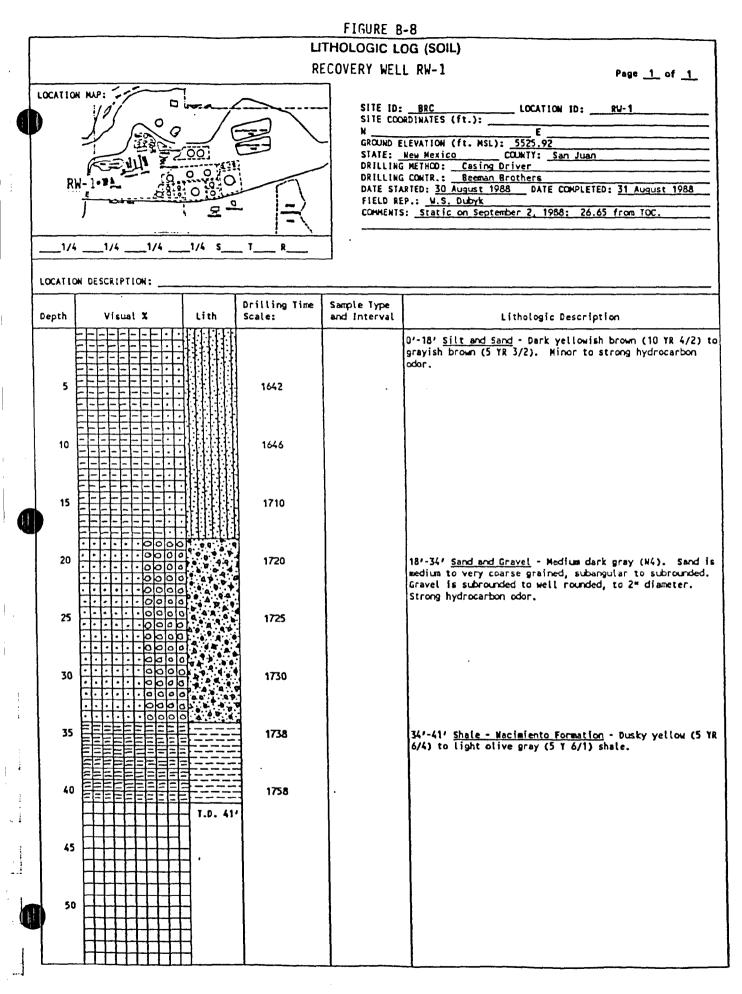
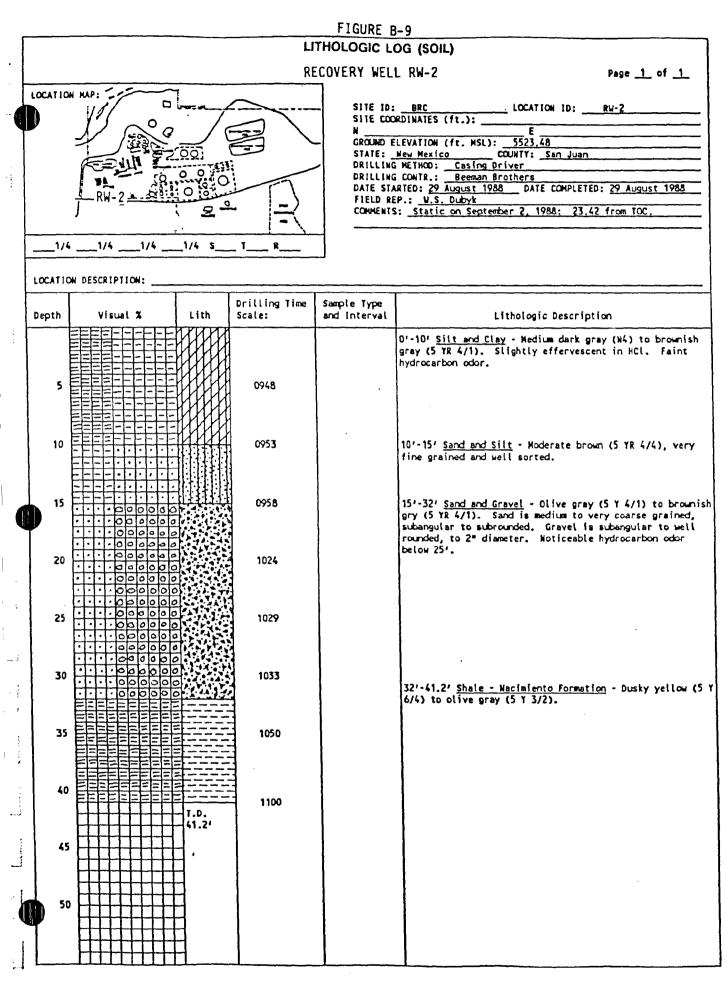
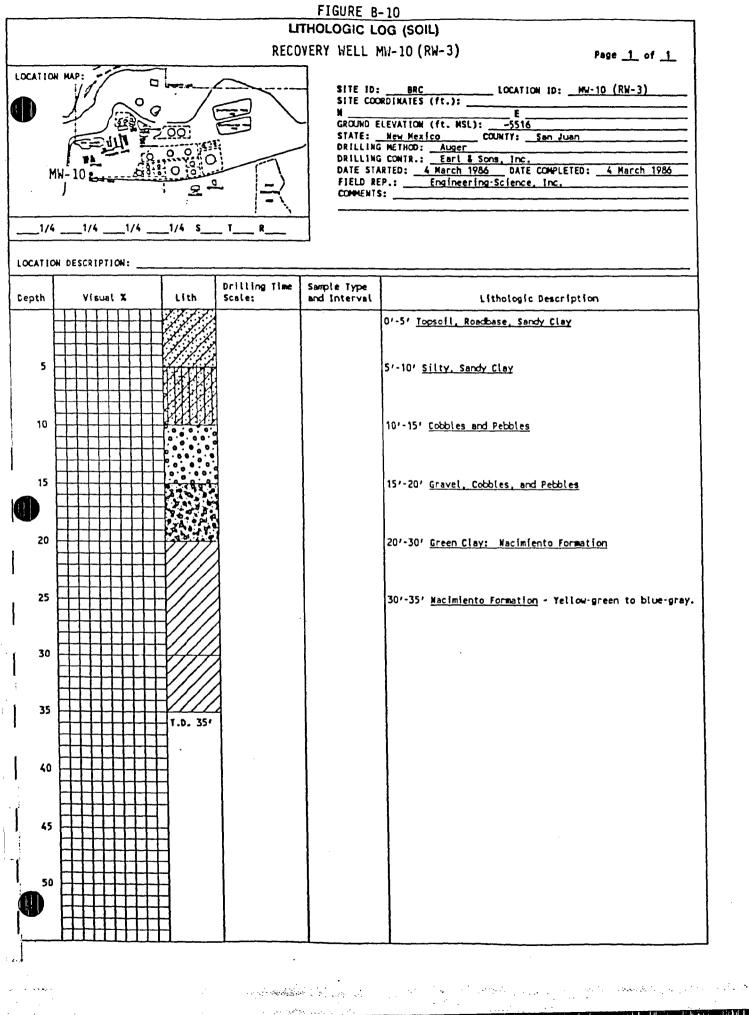


FIGURE B-7

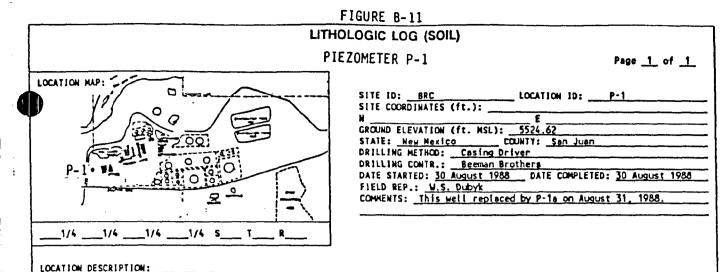

. .

COMPLETION DIAGRAM PIEZOMETER P-4


111 1 2

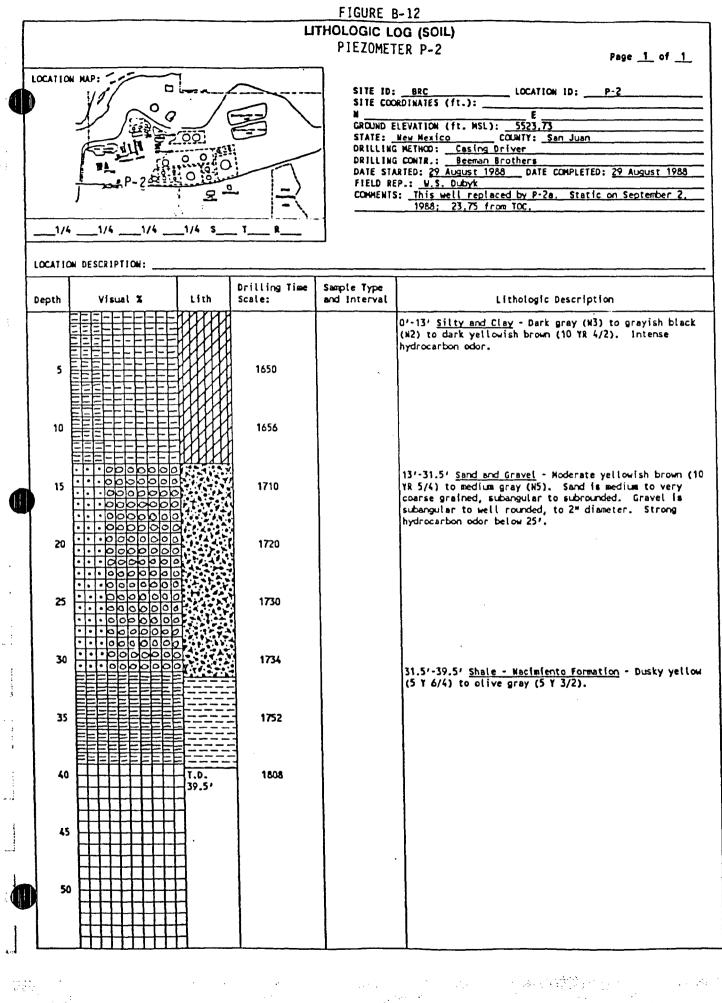

NUMBER OF STREET, STRE

8 a - 1 8 aŭ



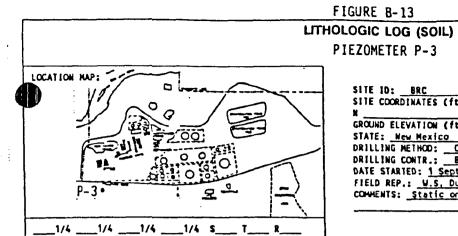
. di illi il i

6 4 4


Drilling Time Sample Type Lith Depth Visual X Lithologic Description Scale: and Interval ____ 0'-20' Silt and Clay - Dark yellowish brown (10 YR 4/2) to grayish brown (5 YR 3/2). Weak hydrocarbon odor. ----1135 5 10 1140 15 1145 · 0 0 0 0 0 20 1200 201-36.51 Sand and Gravel - Dark gray (N3) to grayish black (N2). Sand is fine to very coarse grained, subangular to rounded. Gravel is subangular to well rounded, to 2" diameter. Very strong to intense hydrocarbon odor. • 0000 25 1205 · · 00000 . · · 0000 0001 1.0000 30 1210 o000 00 ·101010 35 1220 36.5'-42.0' Shale - Nacimiento Formation - Dusky yellow (5 Y 6/4) to olive gray (5 Y 3/2) shale. 40 1225 1240 T.D. 42' 45 50

4

Ξ,


6.8 5 18 2

1.22.20

HT FL

8. 18.8. 4.1

SITE ID: BRC	LOCATION ID: P-3
SITE COORDINATES (ft.):	
X	E
GROUND ELEVATION (ft. MSL):	5507,20
STATE: New Mexico	COUNTY: San Juan
DRILLING METHOD: Casing D	
DRILLING CONTR.: Beeman B	rothers
DATE STARTED: 1 September 1	988 DATE COMPLETED: 1 September 1988
FIELD REP .: W.S. Dubyk	
COMMENTS: Static on Septem	ber 2, 1988: 8,30' from TOC.

Page 1 of 1

LOCATION DESCRIPTION:

, [Depth	Visual X	Lith	Drilling Time Scale:	Sample Type and Interval	Lithologic Description
	5			0902		0'-14' <u>Sand and Gravel</u> - Medium gray (N5) to dark gray (N3). Sand is medium to coarse grained, subangular to subrounded. Gravel is subrounded to rounded, to 2" diameter. Strong hydrocarbon odor.
	10			0913		
	15			0920		14'-22.7' <u>Shale: Macimiento Formation</u> - Dusky yellow (5 YR 6/4) to light olive gray (5 Y 6/1) shale.
	20		T.D.22.7	0925		
. :	25					
هب. 1 1	30					
	35					
•••	40					
	45					•
	50					

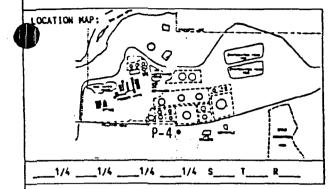
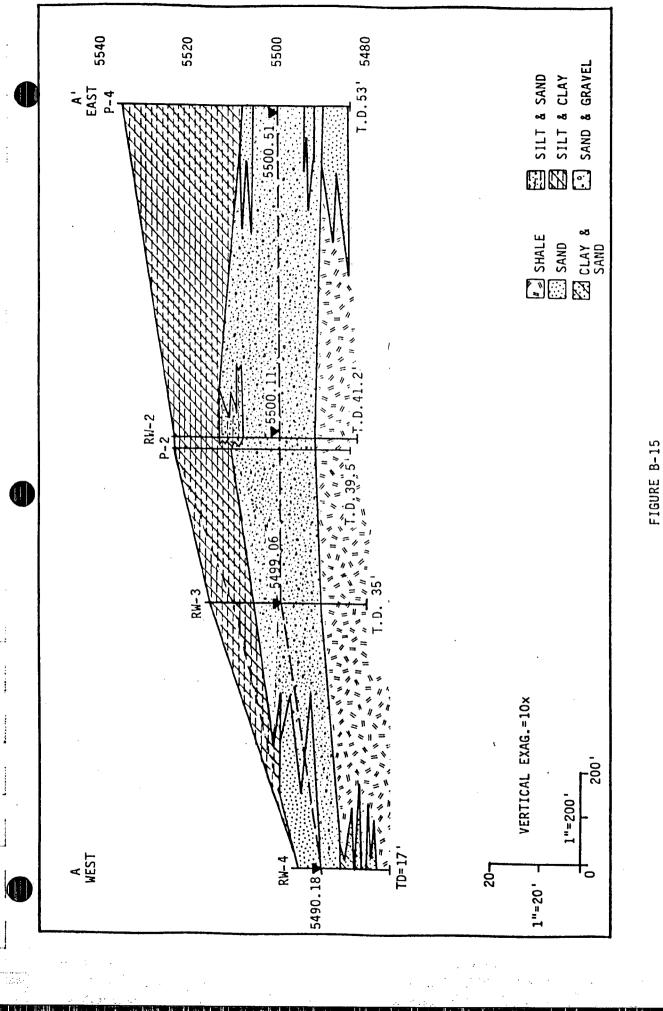

REVE STREET - ł i 3.5 1.8 5

FIGURE B-14

PIEZOMETER P-4

Page <u>1</u> of <u>1</u>

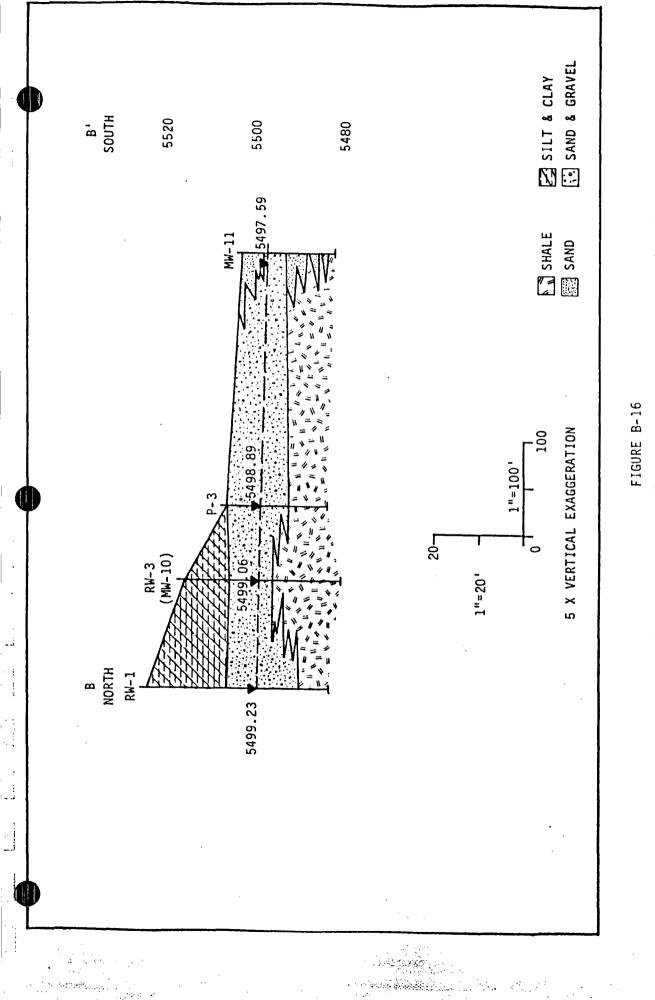
SITE ID: BRC	LOCATION ID: P-4 (MW-13)
SITE COORDINATES (ft.):	:
N	E
GROUND ELEVATION (ft.)	HSL): 5538,42
STATE: New Hexico,	COUNTY: San Juan
DRILLING METHOD:Cas	ing Driver
DRILLING CONTR .: Been	man Brothers
DATE STARTED: 2 Septem	ber 1988 DATE COMPLETED: 3 September 1988
FIELD REP .: U.S. Duby	k
COMMENTS: Static on S	eptember 9, 1988: 37.91' from TOC.
CUMPENIS: Static on S	eptemper 4, 1900: 37,91' from TOC.

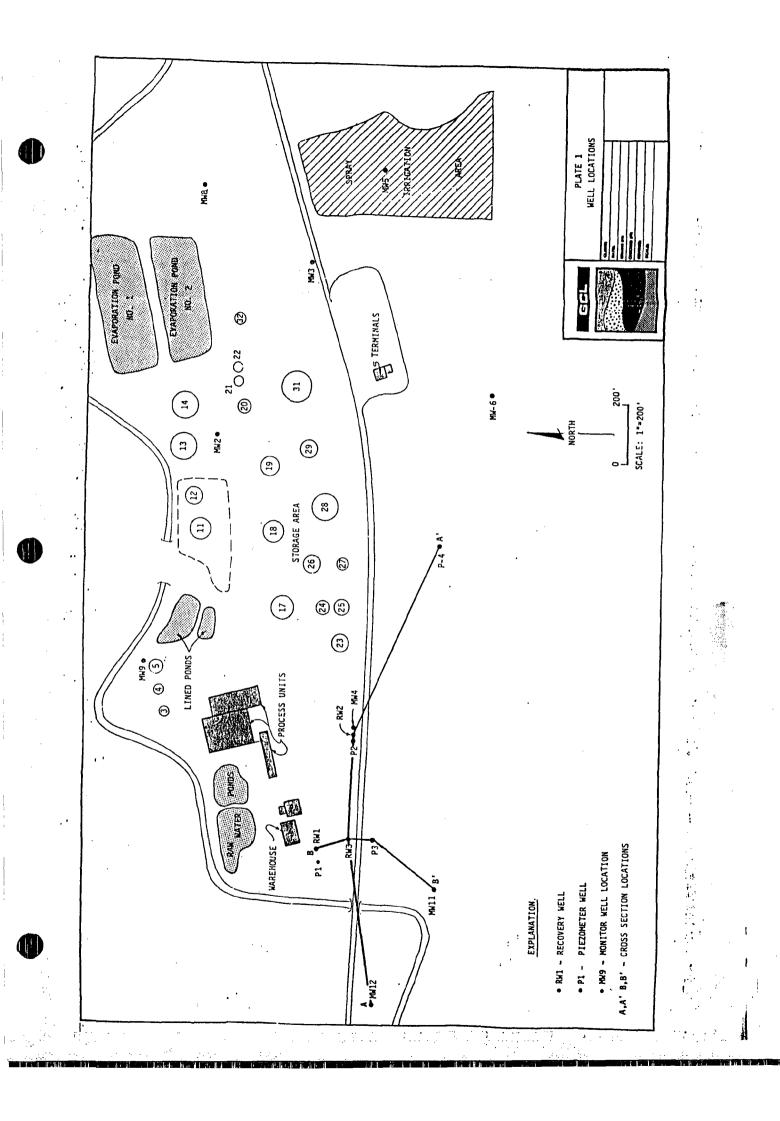

LOCATION DESCRIPTION: _

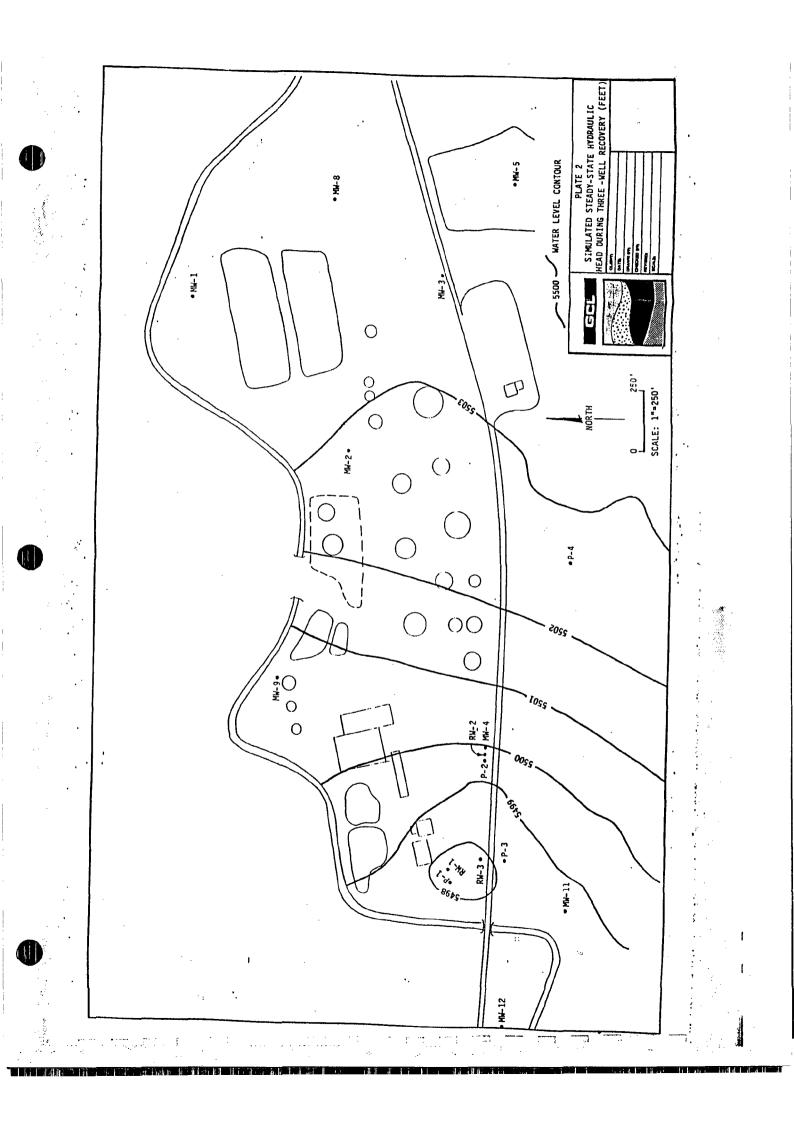
.____

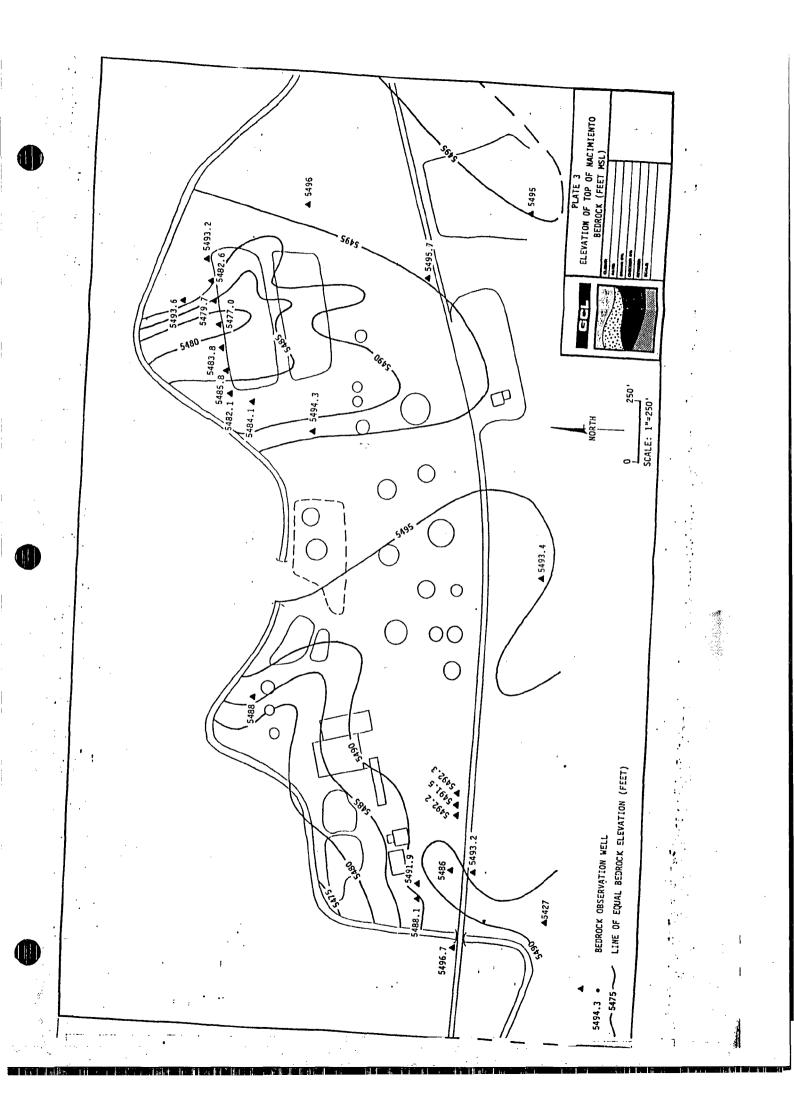
111

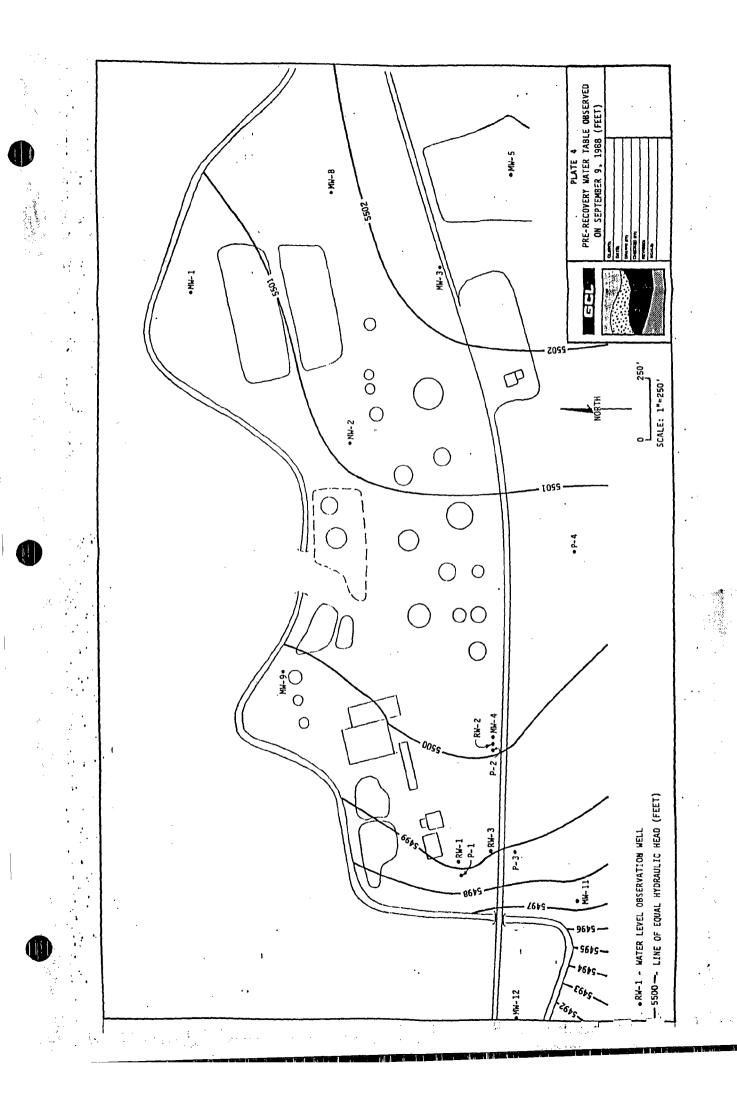
A DER HALLSEL HI AND ME BELLE


Depth	Visual X	Lith	Drilling Time Scale:	Sample Type and Interval	Lithologic Description
5					0'-27' <u>Silt and Clay</u> - Moderate brown (5 YR 4/4) to light brown (5 YR 5/6).
10					
15					
20					
25			1233		27'-30' <u>Sand</u> - Very pale or (5 YR 8/2) fine to coarse grained, angular to subangular predominantly quartz.
30					30'-40' <u>Gravel and Sand</u> - Light gray (N7). Sand is medium to coarse grained, subrounded to rounded. Gravel is subangular to rounded, up to 3" diameter.
35	· · · 000000				
40	· · · 000000 · · · 000000		1415		41'-43' <u>Clay</u> - Pale olive (10 Y 6/2), plastic. 43'-45' <u>Gravel and Sand</u> - As above.
45			2 1420		45'-51' <u>Sand : Naclmiento Formation</u> -light bluish grey (587/1) Fine grained, silty.
50		T.D. 51	1455		
L		<u> </u>	<u> </u>	· ·	

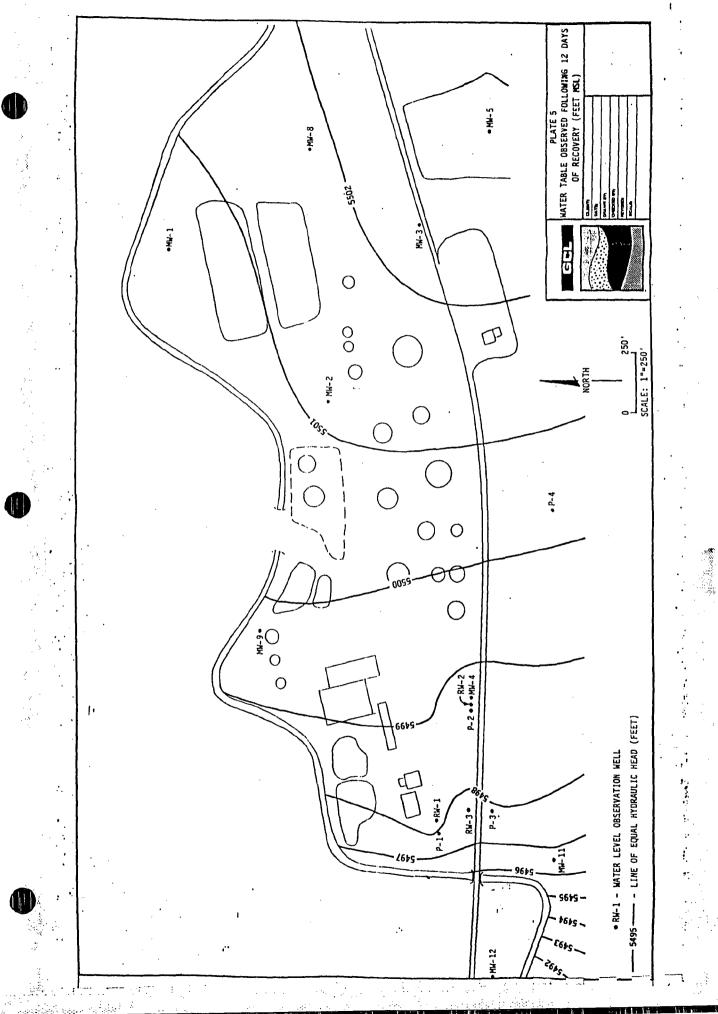

_

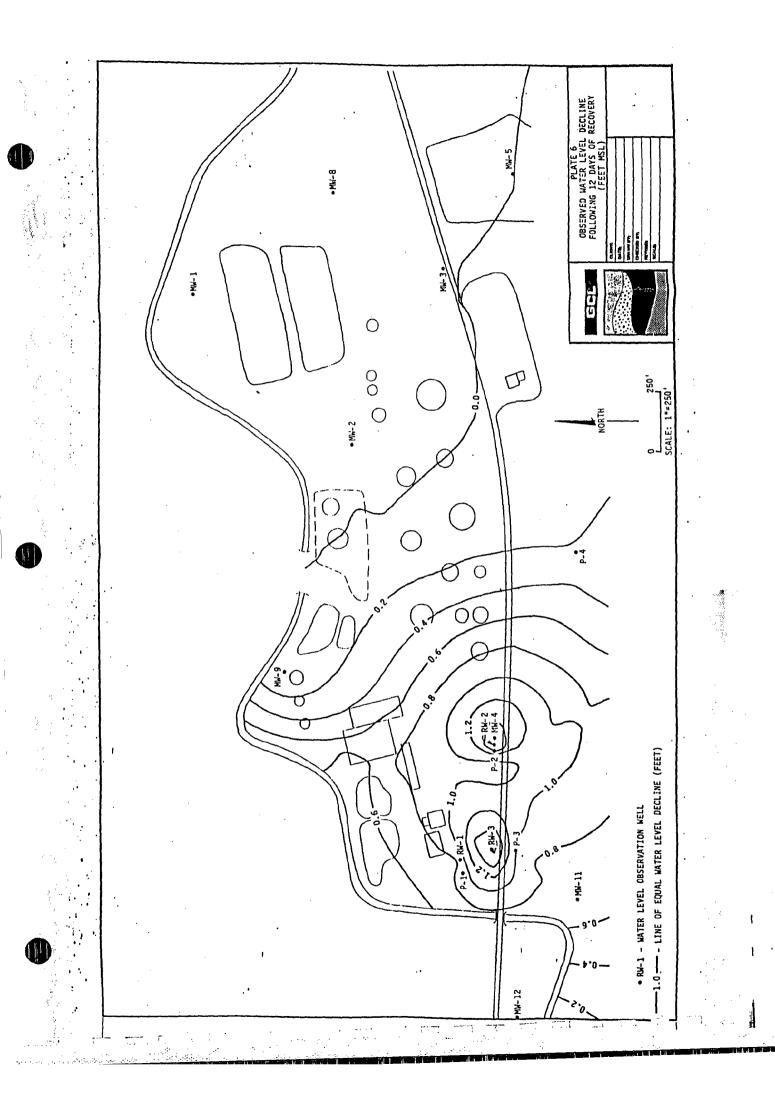


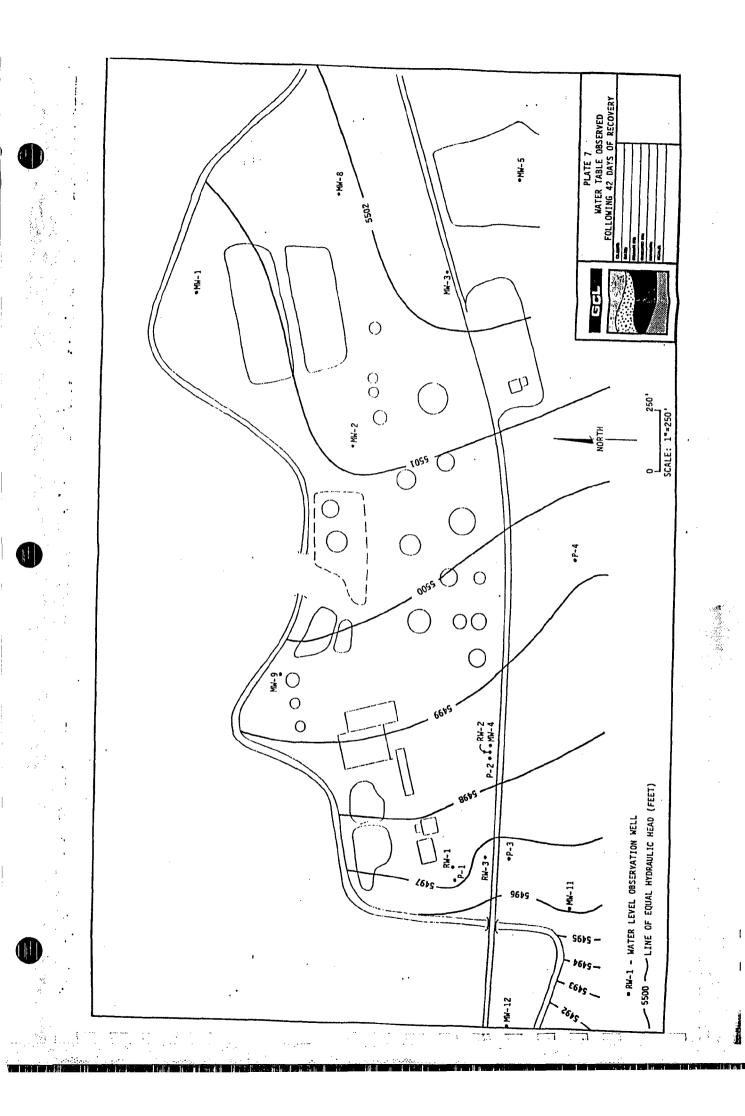


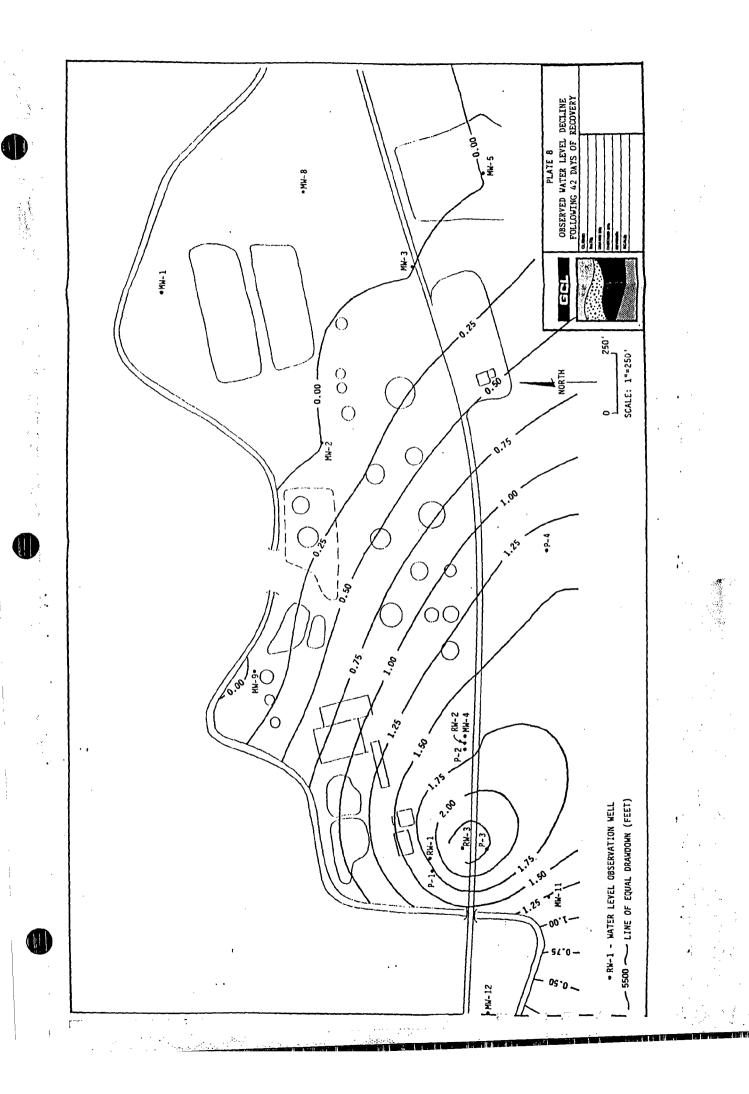

STRATIGRAPHIC SECTION AT BLOOMFIELD REFINING COMPANY (B-B')

, ,









l

Attachment 4

Analytical Data

1 8 1 1

	Page
Evaporation Pond Data	1 - 15
Discharge Plan Groundwater Monitoring	16- 26
Groundwater Elevations	27- 31
Remedial Action GW Monitoring	32- 65
RCRA 3013 GW Monitoring	66- 86
San Juan River & Hammond Ditch	87-113

National States

×a.

EWUINFIELD REFINITIO LOMPANT

1

1111 **- 1**111 - 1111

SUMMANY OF ADNO DATA

		A	SSAIGA		NACCO	5	1
		Saur WATTR		N.EUAP	N. EJAN	PTS USED	.
	PARAMETR	4/1/37	7/1/37	7/10/37		IN AUG	AVERAGE
-		204.		93.75	•		
	BOD		159.3		160-	4	154
		234	107.	146	210.	4	174
		97.	63.	120.	73.	4	88
	755	50.	24.	104.	43	4	55
	NH13 20 N	50	1.5	2.5	39' im	#	23
· · ·	FLOW						
	TEMP. WINTER						
	TEMP SAMPER				·····		
		8.99	7,79	7.21	;	3	8.0
	BROMIDE			,	1.3 ipm		1.3
	C. 4512 0E						
	COLOR						
	FELTL COLIFORM	1					1
	FLUORIDE		0.050	0.061	CIO DOM	2	0.056
	NITRA E-NITRIEGON	1 <0.01	40.01	<0.01	21	3	<0.01
	NITRIEN -TOTAL GIEAN				1		l i
	DIL & GREASE	23.7	33,7	22.8		3	26.7
;	PHOSPICEUS AS P				1.9	1	1.9
	RADIDACTIVITE						
i	alpha						
	Beta						
	Radium						
Ţ	Radium 226 Tot	23+37 (1)	2.7+2.906:1	2.0+2.306/		3	2.33 = 2.90
	SULFATE as 504	545.	345.	345	410	4	411
	SULFIDE an S	20.11	0				ND
	SULFITE as SO3						
+	SUR FACTANTS			╢╼┼┼┵┼┾┾╼╴		╢╾┼┼╋╸┼╄╴╎╌╸	╶╢╸┊╌┊╴┠╶┊
+	u	0.46*	20.5	20.5	<0.1 *	2	
+	ALUMINUM	1.70	2.5	4.70	0,3	4	0.28
\dashv	BARIUM	X0.01				3	
-+	BORON		0.34	0.63	20.01		29
	COBOLT		<0.3		0.13	++++++	0.3
-	IRON, TOT	0.62	20.3	0.170		3	
	MAGNESIUM	╫╌╁┼┟╌┝╌┝╌	╟─┼╌┼╌┝╾┼╶┼╌┼╴╴	$\left\ \begin{array}{c} \\ \end{array} \right\ \rightarrow \left\ \end{array} \right\ \rightarrow \left\ \begin{array}{c} \\ \end{array} \right\ \rightarrow \left\ \end{array} \right\ \rightarrow \left\ \begin{array}{c} \\ \end{array} \right\ \rightarrow \left\ \end{array} \ \rightarrow \left\ $	96	╢┽┦┼┽╽╸	96
\neg	MOLYBENUM	╢╸┼╍┼╺┠╺┟╸╁╶┟╴╸			<0.1	╶╢╾┼╌┼╶┼╌┝╌┼╌	< 0.1
	MANGANESE	0.07	0.093	0.089	0.09	4	0.09
	TIN	╢┼┼┾┼┼┽╴	╫╌┼╌┼╌┼╌┼╌	╫─┼┼┽┽┼╴	<0.1		<0.(
	TITANIUM	╢┼┼┼┼┼	╢╋┥	╢╶┼┽┼┼┼╴	60.01	╢┼╫╢┼┼┼	K0.01
-	ANTIMONY	╢┼┼┼┼╢	╟┼┼┼┼┼	╢╌┼┽┟┽┥┯	<0.1	╶╫╶┼┸╎┼┼┼╴	< d. 1
-	ARSENIC 1	0,13	50.05	10:05	0.025	#	0.06
	BERYLLIUM	╫┾┼┼┼┼	╫┼┼┼┼┼	╫┽┼┼┼┼┼	╫┼┼┼┼┼	╫┽┼┼┼┼┼	╺╫╌┼┼┦╎╎╎
. :	CADMINM	0.03	ka.a/	0.06	Ka.al	4	0.03

W. Alla shit

	CHROMINM	5000 AMJER 4/1/87	NEVAP	N. FLAD	11 0100	PTS USED	П
	NHROMIUM	4/10-					······
	MARDMINM	7/10/	7/1/87	7/10/37		IN ANG	AUEPASE
	1	60.05	10.05	<0.05	<0.01	3	<0.05 1
	COPPER	<0.03	<0.01	0.015		3	0.01 2
	LEAD	0.14		0.175			0.15 3
· ·	MERCURY		<0.002			1	0.0006 +
	NICKEL	0.05	0.262			4	0,15 5
; 	SELENIUM	0.02	0.070			4	0.05 6
	SILVER	<0.05	<0.05	<0.05	20.01	3	20.05 7
	THALLIUM		ļ		<0.1		<0.01 3
	ZINC	0.17	0.032	11	0.02	- 4	0.07 °
	CTANIDE	<0.01	1 20,005	·		2	<0.005 10
	PITENOLS	14	20.001	0.008		3	4.7
							12
							13
							15
					↓		
<u>-</u>							
							15
	 						20
							2
							22
					╢┈┊╌┼╌┠╍┝╍╏╌┤╌╴		2:
					╢╌┝		
			╫╶┼┼┝┼╧┼╴	╋╶┼┆┼┼┽┼			20
				╫╍┾┼┼┼┾		╢╌┼┽╞╌┥╂┲╸	
		╾╟╶┼╌┝╶┼╌┥╶┼╸		╋┿┼┼╆┾╫┈	╢╌┝╌┝╌┝╌┝╌┝		
			╢╶┾╋╅┿┿	╋╍┼┿╊┾╋╋	╟╶┼┼┟┟┟┝┾╌	╢─┼┼┼┼┼	
		╼╫╍┼┼┼┼┼	╶╢┈┼╌┾╌┾╌┾╌┾╌┾		╢╌╎┼┟┞┟┼		
		╼╫┼┼┼┼┼		╫╌┼┼┼┼┼	╫╴┼╌┟┼╼╂┼╴		3
					╢┼┾┼┾┼╌		3
		╾╟╍┼┽┟┝┾╌┝╴	╶╢╌┝╼┝╴┨╶┾╌┼╼╄╍╸	╢┼┼┼┼┼	╢╍┾┼╎╾┾╋╋╼		3
			╶╢╾┾╼┽╌╄╶┾╌┾╶╁	╢┼┼┼┼┼	╶╢─┼┼┽┽┼┼┼	╢╍┧┥┥┥┝	3
		╾╟┼┼┼┼┼┼	╶╢╶┼┼┾╞┊╼┾╊╼	╶╢┈┾╶┾╌┼╼┽╴┼╶╸	╢╹┼┼┼┼┼┼	╫╌┼╌┼╌┼╶┼╴┼	3
							3
			╸╢╶┝╌┼╼┾╶┾╼┾╴┾╼	╶╢╼┾┼┼┾┾┼╼	╶╢─┼┼┼┼┼		3
	· · ·			╢╸┼┼┼┼┼┼	╢╌┾┼╍┝╼┾╌╀╼╸	╢╎╎╎╎	3
			╶║╶┼┽┼┾┼┼╼	╢┼┼┼┼	╢┼┼┼┼┼	╢┼┼┼┾┾┾	3
.:		┉┉┉╽╷┈╻╷┈╽┈╻╽┈╻		╶╢╶┼┽┼┼┼┼┼		╢╎╎╎╎	
		\$					
	The second second	and and a second se Second second second Second second		<u>and and and and and and and and and and </u>		and the second	

.....

2

	YTICAL IRY REPORT
From: Bloomfield Refining Company Bloomfield, NM.	Analysis No. W 154759 Date Sampled 7/13/87 Date Received 7/24/87
Sample Marked: North Evaporation Pond	Date Printed 8/13/87 Page 1
<<< WATER ANALYSIS >	»>>
CATIONS:	PPM
Sodium (CaCO3) Potassium (K)	1900.
Ammonia (CaCO3)	16. 39.
	<i></i>
ANIONS:	PPM
Fluoride (F) - Free and Combined Fluoride (F) - Free	< 10.
Chloride (CaCO3)	< 10. 2100.
Broride (Br)	1.3
Sulfate (CaCO3)	410.
Nitrate (CaCO3)	< 1.
Nitrite (NO2) Phosphorus (PO4) - Total	< 0.1
Phosphoras (PO4) - Totar	5.5
OTHERS:	PPM
Turbidity-Nephelometric Turbidity Units	18.
Total Dissolved Solids at 180 C	2900.
Total Suspended Solids at 105 C APHA Color Number (Units)	43./
Barium (Ba) - Soluble and Insoluble	50. 0.3
Boron (B)	0.2
Phosphorus (P) - Soluble and Insoluble	1.9
Total Sulfur (S)	160.
Total Silica (SiO2) Calcium (CaCO3) - Soluble and Insoluble	36.
Magnesium (CaCO3) - Soluble and Insoluble	370.
Iron (Fe) - Soluble and Insoluble	96. 0.13
Manganese (Mn) - Soluble and Insoluble	0.09
Strontium (Sr) - Soluble and Insoluble	2.4
Zinc (Zn) - Soluble and Insoluble	0.02
/	
بروج والمحمد والمحمد والمحمد والمحمد والمحمد المحمد المحمد المحمد المحمد والمحمد والمحم	DMPANY Form 738 (3

المحديد المسالم

One Nalco Center Naperville, IL 60566-1024

ti.

LUI CALINIA

I KI I dala

111

. . . .

100

2. g)Žec. j

Ha Barris H

ANALYTICAL

ABORATORY REPORT

From: Bloomfield Refining Company Analysis No. W 154759 Bloomfield, NM. Date Sampled 7/13/87 Date Received 7/24/87 Sample Marked: Date Printed 8/13/87 North Evaporation Pond Page 2 Last Silver (Ag) - Soluble and Insoluble < 0.01 Arsenic (As) - Soluble and Insoluble 0.025 Mercury (Hg) - Soluble and Insoluble 0.0006 Selenium (Se) - Soluble and Insoluble 0.093 Chemical Oxygen Demand (02) 210. Total Organic Carbon (C) 73. Freon Extractables 2. Nitrogen (N) - Organic 9.1 The following elements were < 0.1 PPM: NI TLAL MO SB SN PB The following elements were < 0.01 PPM: CO CR CD CU TI v \mathbf{ZR} Lab Comments: Cyanide, sulfide and phenol were not determined because the sample was not properly preserved.

NALCO CHEMICAL COMPANY

Form 738 (3-85)

Box 87

Sugar Land, TX 77478

One Nalco Center Naperville, IL 60566-1024

AN/ALYTICAL ABORATORY REPORT

From: Bloomfield Refining Company Bloomfield, MN.

Sample Marked: North Evaporation Pond Analysis No. B 154759 Date Sampled 7/13/87 Date Received 7/23/87 Date Printed 7/31/87

>>> BOD EVALUATION <<<

5-DAY BOD (mg/l or ppm)

160.

NALCO CHEMICAL COMPANY ANALYTICAL LABORATORIES

Form 738 (3-85)

A CALLER AND A CALL

One Naico Center Naperville, IL 60566-1024

Box 87 Sugar Land, TX 77478

NEVES DATA NORTH EVAPORATION POND SAMPLE : JULY 10, 1987

TO: Bloomfield Refining DATE: 10 August 1987 ATTN: Chris Hawley 1086 PO Box 159 Bloomfield, NM 87413

SAMPLE ID: Wastewater Evaluation

ANALYTE	ANALYTICAL RE	ESULTS	NOMINAL	DETEC	NOIT	LIMITS
No 3 as N	<0.01 mg/	1		0.01	$m\sigma/1$	
NH 3 as N	2.5 mg/			0.01		
COD	146 mg/				mg/l	
Cr, T	<0.05 mg/			0.05	-	
Cr, Hex	<0.01 mg/			0.01		
Phenols	0.008 mg/		ſ).001		
Sulfides	None Detect				шâут	
Oil & Grease	22.8 mg/			0.01	ma/1	
BOD	93.75 mg/			0.01		
TSS	104 mg/				mg/l	
TDS	2976 mg/				mg/l	
рH	7.21			0.01	mg/ I	
Alkalinity	198 mg/	1			mg/l	
Fluoride	0.061 mg/			0.01		
Nitrite as N	<0.01 mg/			0.01		
Boron	0.63 mg/			0.04		
Cl	1100 mg/				mg/l	
SO 4	345 mg/				mg/l	
Al, Dissolved	<0.5 mg/	11			mg/l	
As	<0.05 mg/	1		0.05		
Ва	4.70 mg/	1		0.05	-	
Cđ	0.06 mg/	1		0.01		
Cu	0.015 mg/			0.01		
CN	<0.005 mg/	1	C	0.005		
Fe, D	0.122 mg/	1			mg/l	
Fe, T	0.170 mg/				mg/l	
Pb, T	0.175 mg/			0.05	mg/l	
Mn, D	0.088 mg/		C	.005		
Mn, T	0.089 mg/		C	0.005	mg/l	
Hg, T	<0.002 mg/		C	0.002	mg/l	
Ni, T	0.202 mg/			0.01		
Se	0.036 mg/		C	.002		
Ag	<0.05 mg/			0.05		
Zn	0.074 mg/		C).004		
Urnaium	<0.02 mg/			0.02	mg/l	
Ra 226/228	$2.0 \pm 2.3 \text{ pCi}$			0.01		-
Phosphates	1.29 mg/	1		0.06	mg/l	

San States

ور وبه رم

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964

6

⊳

Na	605	mg/l
TOC	120	mg/l
TOX	178	ug/l
Benzene	<0.001	mg/l
Toluene	<0.001	mg/l
Ethyl Benzene	<0.001	mg/l
Xylenes	<0.001	mg/l
PCB	<1	ppm

0.1 mg/l 1 mg/l 5 ug/l 0.001 mg/l 0.001 mg/l 0.001 mg/l 0.001 mg/l 1 ppm 7

REFERENCE: "Test Methods for Evaluating Solid Waste, Physical/ Chemical Methods", USEPA, SW 846, EMSL-Cincinnati, 1982.

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

muth

Jennifer V. Smith, Ph.D. Laboratory Director

MINNI NI TI

61 (13) (14)

North Oxidation 10-9 =S Suplidate: 7/10/37

TO: Bloomfield Refinery Attn: Chris Hawley PO Box 159 Bloomfield, NM 87413

DATE: 14 October 1987 1086, Updated

ANALYTE

ANALYTICAL RESULTS NOMINAL DETECTION LIMIT

Acrolein	<0.01 mg/l	0.01 mg/l
Acrylonitrile	<0.01 mg/l	0.01 mg/l
Bis(chloromethyl)Ether	<0.001 mg/l	0.001 mg/l
Dichlorodifluoromethane	<0.001 mg/l	0.001 mg/l
Trichlorofluoromethane	<0.001 mg/l	0.001 mg/l
Aldrin	<0.001 mg/l	0.001 mg/l
<i>А</i> -внс	<0.001 mg/l	0.001 mg/l
r ⁵ − BHC	<0.001 mg/l	0.001 mg/l
Y-BHC	<0.001 mg/l	0.001 mg/l
J-BHC	<0.001 mg/1	0.001 mg/l
Chlordane	<0.001 mg/l	0.001 mg/l
4,4'-DDT	<0.001 mg/l	0.001 mg/l
4,4'-DDE	<0.001 mg/l	0.001 mg/l
4,4'-DDD	<0.001 mg/l	0.001 mg/l
Dieldrin	<0.001 mg/1	0.001 mg/l
2-Endosulfan	<0.001 mg/l	0.001 mg/l
/>-Endosulfan	<0.001 mg/l	0.001 mg/l
Endosulfan	<0.001 mg/l	0.001 mg/l
Endrin	<0.001 mg/l	0.001 mg/l
Endrin Aldehyde	<0.001 mg/1	0.001 mg/l
Heptachlor	<0.001 mg/1	0.001 mg/l
Heptachlor Epoxide	<0.001 mg/l	0.001 mg/l
PCB-1242	<0.001 mg/l	0.001 mg/l
PCB-1254	<0.001 mg/l	0.001 mg/l
PCB-1221	<0.001 mg/l	0.001 mg/l
PCB-1232	<0.001 mg/l	0.001 mg/l
PCB-1248	<0.001 mg/l	0.001 mg/l
PCB-1260	<0.001 mg/l	0.001 mg/l
PCB-1016	<0.001 mg/l	0.001 mg/l
Toxaphene	<0.001 mg/l	0.001 mg/l

REFERENCES: Standard Methods for the Examination of Water and Wastewater, 16th Edition, APHA, NY, 1985.

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely, Kean Lupree

Jennifer V. Smith, Ph.D. Laboratory Director

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964

مى بىرى ئىرى ئىلغان بىرى. ئىرى خەرجىي ئىلى ئالىرى

1 . 1 . 91

B

MORTH OXIDATION POND

TO: Bloomfield Refinery Attn: Chris Hawley PO Box 159 Bloomfield, NM 87413 DATE: 8 September 1987 1086

ANALYTE

ANALYTICAL RESULTS

	VOLATIDES							
	Benzene	ND					- 1	
	Bronoform	NE	-		. ^	0 0 0	- tor	
	Carbon Terrachuoride	0.265	ing/1	ND	bud	data p		
	Chlorobenzene	ND		·				
	Chlorodibromomethane	ND						
	Chloroethane	ND						
	2-Chloroethylvinyl ether	ND ND						
	Chloroform	0.064	ma/1					
	Dichlorobromomethane	0.00⊒ ND	41Q/1					
	1,1-Dichloroethane	ND ND						
	1,1-Dichloroethane	ND						
	1,1-Dichloroethylene	ND ND						
	1,2-Dichloropropane							
	1,2-Dichloropropylene	ND ND						
	Ethylbenzene Nathul Promite							
	Methyl Bromide	ND						
	Methyl Chloride	ND						
	Methylene Chloride	ND						
	1,1,2,2-Tetrachloroethane	ND				,		
	Tetrachloroethylene	ND						
	Toluene	ND						
	1,2-Transdichloroethylene	ND						
	1,1,1-Trichloroethane	ND						
	1,1,2-Trichloroethane	ND						
	Trichloroethylene	0.020	mg/l					
	Vinyl Chloride	ND						
		(7				*		
	NOMINAL DETECTION LIMIT: 0.001	mg/l						
	,							
	Acid Compounds							
	2-Chlorophenol	ND						
	2,4-Dichlorophenol 2,4-Dimethylphenol	ND ND						
	4,6-Dinitro-o-cresol	ND						
	2,4-Dinitrophenol	ND						
`	2-Nitrophenol	ND						
)	4-Nitrophenol	ND		. i			· ·	
				1 9 1 1			·	

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964

a Bartonka Santa

يتجو والميبية الجريع

THE REPORT

5-5 ·

والمراجع والمحرف والمحرف المحاص

-2-

P-chloro-m-cresol		ND
pentachlorophenol	•	ND
Phenol		ND
2,4,6-Trichlorophenol		ND

NOMINAL DETECTION LIMIT: 0.010 mg/l

Base Neutrals	
Acenaphthylene	ND
Anthracene	ND
Benzidine	MD
Benzo(a)anthracene	ND
Benzo(a)pyrene	ND
3,4-Benzofluoranthene	ND
Benzo(g,h,i)perylene	ND
Benzo(k)fluoranthene	ND
Bis(2-chloreethoxy)methane	ND
Bis(2-chlroroetbyl)ether	ME
Bis(2-chloroisopropyl)ether	ME
Bis(2-othylhexyl)phthalate	ND
4-Bronophenyl phenyl ether	ND.
Butylbenzyl phthalate	ЖD
2-Chloronapthalene	ND
4-Chlorophenyl phenyl ether	NE
Chrysene	ND
Dibenzo(a,h)anthracene	NE
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
3,3-Dichlorobenzidine	NĽ
Diethyl phthalate	NE
Dimethyl phthalate	ND
Din-n-butyl phthalate	NĽ
2,4-Dinitrotoluene	NE
2,6-Dinitrotoluene	NE
Di-n-octyl phthalate	· NE
1,2-Diphenylhydrazine	NE
Fluoranthene	NE
Fluorene	NE
Hexachlorobenzene	NE
Hexachlorobutadiene	NE
Hexachlorocyclopentadiene	NE
Hexachloroethane	NI
Indeno(1,2,3-cd)pyrene	NE
Isophorone	NE
Naphthalene	NI
Nitrobenzene	NI
N-nitrosodimethylamine	NI
N-nitrosodie-n-propylamine	NI

1111

. مەرىمە بەلمۇرىتەرىي

11.1

1.1

N-nitrosodiphenylamineNDPhenanthreneNDPyreneND1,2,4-TrichlorobenzeneND

NOMINAL DETECTION LIMIT: 0.010 mg/l

REFERENCES: "Test Methods for Evaluating Solid Waste, -Physical/Chemical Methods", USEPA, SW 846, 3rd Edition.

An invoice for services is included. Thank you for contacting Assaigai Laboratories.

Sincerely,

Jennifer V. Smith, Ph.D. Laboratory Director

S.

1 10.61

A REPORT OF A REAL PROPERTY OF A

-3-

NPDES DATA NORTH EVAPORATION AND SAMPLE: JULY 1, 1987

DATE: 10 August 1987 1041

TO: Bloomfield Refining ATTN: Chris Hawley PO Box 159 Bloomfield, NM 87413

SAMPLE ID: Wastewater Evaluation

ANALYTE	ANALYTICAI	RESULTS	NOMINAL DETE	CTION LIMITS	;
No 3 as N	<0.01	mg/l	0.01	mg/l	
NH 3 as N		mg/l		mg/l	
COD		mg/l		mg/l	
Cr, T	<0.05			mg/l	
Cr, Hex	<0.01			mg/l	
Phenols	<0.001	mg/l	0.001		
Sulfides	None Det	cected			
Oil & Grease	33.7	mg/l	0.01	mg/l	
BOD	159.3	mg/l		mg/l	
TSS	24	mg/l		mg/l	
TDS	2764			mg/l	
рH	7.79		0.01		
Alkalinity			5	mg/l	
Fluoride	0.050	mg/l		mg/l	
Nitrite as N				mg/l	
Boron	0.34	mg/l		mg/l	
Cl	1072	mg/l	1.0	mg/l	
SO 4	345		1.0	mg/l	
Al, Dissolved	<0.5		0.5	mg/l	
As	<0.05			mg/l	
Ba		mg/l		mg/l	
Cu	<0.01	-	0.01	mg/l	
Cu	<0.01			mg/l	
CN	<0.005		0.005		
Fe, D	<0.3			mg/l	
Fe, T	<0.3			mg/l	
Pb, T	0.180			mg/l	
Mn, D	0.085		0.005		
Mn, T	0.093		0.005		
Hg, T	<0.002		0.002		
Ni, T	0.262			mg/l	
Se	0.070		0.002		
Ag	<0.05			mg/l	
Zn	0.032		0.004		
Urnaium	<0.02			mg/l	
	2.7 ± 2.8	- ·		pCi/l	
Phosphates	0.32	mg/l	0.06	mg/l	

ala da ser

7 RITT

1994

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964

Na	1522 mg/l	0.1 mg/l
TOC	63 mg/l	1 mg/l
TOX	363 ug/l	5 ug/l
Benzene	<0.001 mg/l	0.001 mg/l
Toluene	<0.001 mg/l	0.001 mg/l
Ethyl Benzene	<0.001 mg/l	0.001 mg/l
Xylenes	<0.001 mg/l	0.001 mg/l

REFERENCE: "Test Methods for Evaluating Solid Waste, Physical/ Chemical Methods", USEPA, SW 846, EMSL-Cincinnati, 1982.

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

V Drull

Jennifer V. Smith, Ph.D. Laboratory Director -2-

SAMPLE FROM PUMP SUMP PRIOR TO EVAPORATION PONDS. Copy to: Macy, King, Traylor

TO: Bloomfield Refining Company ATTN: Chris Hawley PO Box 159 Bloomfield, NM 87413

DATE: 30 April 1987 0533

SAMPLE ID: Sour Water, 4/1/87.

ANALYTE	ANALYTICA	L RESULTS	NOMINAL	DETE	CTION	LIMITS
NO 3 as N	<0.01	mg/l		0.01	ma/l	
NE 3 as N	50	mg/l			mg/l	
COD		mg/l		2	mg/l	
Cr, Total	<0.05	mg/l		0.05		
Cr, Hexavalent	<0.05	mg/l		0.05		
Phancis	14	mg/l		0.01		
Sulfides	14 <0.1	mg/l		0.1		
Oil & Grease	23.7	mg/l		0.01		
BOD	204	mq/l		0.01		
TSS		mg/l		1	mg/l	
TDS	2136	mg/l		1	mg/l	
Нq	8.99			0.01		
Ca	88.5	mg/l		0.1		
F	0.35			0.01		
Boron	<0.01			0.01		
Cl	952	mg/l			mg/l	
SO 4	545	mg/l			mg/l	
Al, Dissolved	0.46	mg/l		0.05		
As	0.13	mg/l	(0.002		
Ba	1.70	mg/l		0.05		
Cd	0.03	mg/l	(0.002		
Cu	<0.03			0.03		
CN	<0.01			0.01		
Fe, Dissolved	0.44	mg/l		0.05		
Fe, Total	0.62	mg/l		0.05	mg/l	
Pb, Total	0.14	mg/l		0.05	mg/l	
Mn, Dissolved	0.05		(0.005	mg/l	
Mn, Total	0.07		(0.005	mg/l	
Hg, Total	<0.002		(0.002	mg/l	
Ni		mg/l		0.01	mg/l	
Se	0.02		(0.002	mg/l	
Ag	<0.05			0.05	mg/l	
Zn	0.17		(0.004	mg/l	
Uranium	<0.07	mg/l		0.07	mg/l	
Ra 226 & 228	2.3 ± 3.7	pCi/l			pCi/I	1
Phosphates		mg/l		0.01	mg/l	
TOC		mg/l	•	1	mg/l	
TOX		ug/l	÷	1	ug/l	
Benzene	2.2	mg/l	(0.001	mg/l	
	, ^t ine , <u>s</u>					

REAL STREET IN A REAL AND A DATE OF THE REAL OF

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964

والمحافظ والمتحد والمحافظ والمحافظ

فلأغو فيهد فانتزر

-2-

Toluene	2.6 mg/l	0.001 mg/l
Ethyl Benzene	0.47 mg/1	0.001 mg/l
Xylenes	2.6 mg/l	0.001 mg/1

REFERENCE: "Test Methods for Evaluating Solid Waste,-Physical/Chemical Methods," USEPA, SW 846, EMSL-Cincinnati, 1982

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

LA PART PROFESSION

Jennifer V. Smith, Ph.D. Laboratory Director 45-806 - .8-Ease* 45-706 - 0-20 Buit

National

Made in USA .

BLOOMFIELD REFINING COMPANY 16 SAMPLE DATE: NOVEMBER 18, 1988

l			NOMINAL		MONITORING	MONITORING	MONTORING
			DEFECTION	nmwa	WELL	WELL	WELL
	PARAMETER	WITS	WMITS	STANDARD	PI	P4	P5
	Arsenic	mall	0,005	0.1	<0.005	<0.005	20,005
:	Barium		0.5	1.0	20.5	1.8	<0.5
	Cadmium	4	0.002	0.01	<0.002	<0.002	· · · · · · · · · · · · · · · · · · ·
	Chromium		0,02	0.05	10.02	<0.02	<0.02
	Lead	4	0.02	0.05	20.02	<0.02	0.07
1	Mercury	4	0.001	0.002	* * · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	
	Selenium	se .	0.005	0,05	<0,005		· • • • • • • • • • • • • • • • • • • •
	Silver	A	0.01	0.05	<0.01	<0.01	<0.01
	Come		0.01	1.0	<0.01	6.01	<0.01
	Copper Iron	a	0.05	1.0	11	5.95	<0.05
	Manganese	4	0.02	0.2	2.11	<u> </u>	<0.02
	Tinc	4	0.01	10.0	20.01	2.13	<0.01
		u.		5.0		20.01	
	Uranium Chloride			250.	1140.	490.	1480,
	Guífate	n		600.	+		777.
	FCB	4		0.001	665.	<1.	
	Phenols	и	0.001		0.05	0.101	0.16
	Cyanite			0.005	20.01	<0.01	20.01
	Nitrate as N	H LA	0.01	0,2		·//	
			0.02	10.	4.03		27.8
	Alumisum	n	0.01	5.	<0.1	<0.1 0.57	
	Boron	54				<0.02	0.45
	Cobolt	A	0.02	0.05	KO.02 KO.02	<0.02	20.02
	Molybdenum	4	0.02	0.2		20.02	
	Nickel	4	0.01		<0.01		<0.01
	Fluoride	4	0.01	1.6	0.92	0.30	0.35
	Paula a			1000.	3430.	1830-	4080.
	Benzene	A	0.0007	0.01	0.0075	- 11. 130 8.916	0.00186
	Toluene	4	0.0002	0.15	0.00268	8.916	╢┿┾╋
	Carbon Etrachlorid		0.0005	0.0/	ND		MA
_1/2-	Dichloroethane	- 4	0.0005	0.005	ND		ND
1/02	Dichloroethylene		0.0005	╾╢╾┼╼┞╍┾╾┼╾┼╶┼┈	NO	ND	NP
5712	Trichloroethylene		0.0005	0.02	ND	ND	ND
-44-	Irichiorde Ingrene		0.0005	6 70 9		╢┼┼╔╘┝┼╴	NO
	<i></i>	S.K.		6709	7.0	6.7	6.9
		╢╾┾╾┝╼┝╌┝╍┝			╫┿┾┾┼┼┼╴	╫╺╆╼╁┼┼┼┼	╶╟╌┼┼┼┼┼┼
			╶╢╌┼┼┼┼┼	╫╌┼┼┼┼┼	╢╍┝┼┼┼┼┼	╢╌┼┼┼┼┼┼	╺╫╾┾┼┾┽┾╆┾╾
		TECTEL	╯╢╶┼┼┼┝┼┝╴	╺╫╶┧┼┼┼┼┼	╢┼┼┼┼┼┼	╋┾┼┼┼┼	╺╫╼╁┼┼┼╂╄╌╸
<u>.</u>		╢╌┾┾┾┾┾┾┾	╾╫┼┼┼┼┾┾╼	╶╢╶┼┼┼┼┼┼	╫┼┼┼┼┼	╢┼┼┼┼┼	╫┼┼┼┼┼┼
		╫╌┼┼┼┼┼┼	╺╫┽┼┼┼┼╄╸	╶╢╶┼┼┼┼┼┼	╫┽┼┼┼┼	╢┼┼┼┼┼┼	╫┼┼┼┼┼
<u></u>							

BLOOMFIELD REFINING COMPANY SAMAE DATE: JUNE 3, 1988

			NOMINAL		MONTORING	MONITORINE	MONITORING
	1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • • •	DETECTION	NMWQ	WELL	WELL	WEL
	PARAMETER	UNITS	LIMITS	STANDARD	PI	P4	P5
	Arsenic	mall	0.005	0.1	20.005	<0.005	20.005
	Barinm		0.5	1.0	<0.5	1.4	20.5
1	Cadmium	'n	0.002	0,01	20.002	60,002	
	Chromium	n	0.02	0.05	<0.0Z	<0,02	<0.02
	head	и	0.02	0.05	<0.02	<0.02	20.02
· · · · · · · · · · · · · · · · · · ·	Mercury	h	0.001	0,002	<0.001	40,001	20.001
······································	Selenium		0,005	0.05	20.005		
	silver	ÿ	0.01	0,05	20.01	<0.01	20.01
	Copper	4	0.01	1.0	0.02	10.01	10.01
	-11		0.05	1.0	10.05	6.44	20.05
2	Manganese	h	0.05	0.2	0.85	3.51	1.45
	Finc	И	0.01	10,0	0.03	0,01	20,01
· · · · · · · · · · · · · · · · · · ·				5,0			
	Uvanium	и	7	250,	1040.	401.	1300.
	Chloride						1000,
	Sultate	4		600.	951.	3,	1000,
	PCB			0,001		0 010	0 0/1
	Phenols	· · · · · · · · · · · · · · · · · · ·	0.001		0.021	0.069	
	Cyanide		0,005		0.022	20.005	
	Nitvate as N		0.02	10.	3.22	0.14	32.9
	Auminum	<u>n</u>	0.1	5	20,1	<0,1	20,1
	Boron	1	0.01	0.75	0.25	0.47	0.48
	Cobolt	4	0.02	0.05	20.02	<0.02	<0.0Z
	Molybaknum		0.02	1,0	0.21	20,02	< 0.02
	Nickel	<i>P</i> 1	0,02	0.2	0.03	0.02	
	Fluoride		0.01	1.6	0.60	0.28	0.22 4200.
	TDS			1000.	3500.	1820.	
	Benzene		0.001	0.01	ND	8.9	ND
	Benzene Toluenc Carbon Etrachlo Dichloroethane Dichloroethylene Etrachloroethyle Trichloro ethylene		0.00/	0,75	MD		ND
	Carbon Rtrachlo	næ	0,001	0.01	MD	NO	Np
_1,2	-Uchloroethane	╢╌┝┼┥┝┾╞	0.001	0.01		ND	ND
-1,1	-Dichloroethylene		0,001	0.005	ND	NU	ND
1,1,2,2	-krachloroethyk	R	0,001	0,02	MD	ND	ND
1,1,2	- Mchloro ethy kn		0.001	0.01	ND	ND	ND
	pH '	3.N.		6 70 9	7.3	6-8	2
		╶╢╼┽┊╸┝╼┾╌┾╼		╢┈┝╴┝╌┝╌┥╼╿╼┥╌	╾╢╾┾╌┝╌┠╶┞╶╢╌┥		
╟		╶╫╼┼╼┼╌┠╌┠╴┠		╶╢╾┼╾┼╾┾╾┾╼┾	╶╢╌┟┼╸┠╶┼╴┼╶┥╸		
		╫┿┾┾┝┾┼┼	╾╫╾┾┾┼┼╌	╺╢╍┥╾┝╼┝╼┝	╶╫┼┼┼┼┼	╺╢╼╆┼╁┼┟┤┥	╺╫┼┼┼┼┼
				┫┽┼┼┼┼┽	╺ _{╋╋} ╋╋	╶╫╾┽┼┽┥┥┥	
		╺╫┊╴╴╻	╾╢┽┟╏╎╎	╢┼┼┼┼┼╸	╺╫╾┟┟╽╎┝╿╸	╶╢┥┥┥┥┥	
1					<u> </u>		
O WILSON J	DONES COMPANY G7206 GREEN	7106 BUFF	Balan mala in a said		An Article States (1997) Annual States (1997) Annual States (1997)	a standard a Standard a standard a st	MADE IN U.S.

BLOOMEIELD REFINING COMPANY SAMPLE DATE: NOV. 17, 1987

		i	NOMINAL		17	Manitoring	
	0		DETECTION	NMWQ	WELL	WELL	WELL
	PARAMETER	UNITS	LIMITS	STANDARD	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	P4	P5
	Arsenic	mgle	0.005	0.1	20.005	<0.005	the mark of burners to and the second
	Barian	4	0.5	1.0	20.5	1.8	05
	Cadmium	<u> </u>	0.002	0.01	<0.002	<0.002	20.002
	Chromium	h	0,02	0.05	<0.02	<0.02	20.02
1	head	1	0.02	0.05	<0.02	<0.02	<0.02
	Mercury	<u>h</u>	0.001	0,002	<0.001		<0.001
	Selenian	<u>n</u>	0.005	0.05	<0.005	and a second sec	<0.005
1	silver	4	0.01	0.05	<0,01	<0.01	<0.01
	Copper	<u>n</u>	0.01	1.0	<0.01		0.01
	Iron	H	0.05	1.0	<0.05	4.59	20.05
	Manganese	1	0.02	0.2	1.45	4.77	10.02
	Ene	h	0.01	10.0	<0.01	<0.01	<0.01
	Uranium	H		5.0		· · · · · ·	
	Chloride	<u>n</u>	1	150	910.	588.	1310.
	Suifate	#	1	600.	655.	<1	1060.
	PCB	н		0.001			
	Phenols	<i>w</i>	0.005	0.005	0.02	0.73	<0.005
	Cyanide	<u>h</u>	0.005	0.2	<0.005	0.005	0.016
	Nitrate as N		0.01	10.	5.66	0.03	36.4
	Aluminum	<u>n</u>	0.1	5.	<a.1< td=""><td>20.1</td><td><0.1</td></a.1<>	20.1	<0.1
	Boron	h	0.1	0.75	0.32	0.59	0.54
	Cobolt.		0.02	0.05	10.02	K0.02	20.02
	Molybdenum))	0.02	1.0	20.02	0.03	20.02
	Nickel	9	0.01	0.2	20.01	20.01	20.01
	FInoride	4	0.1	1.6	0.76	0.19	0,24
	TDS	4		1000.	3050.	2050.	4300.
	Benzene	4	0.001	0.01	ND	8.5	ND
	Benzene Toluene Carbon Tetrachbr	<u>h</u>	0.001	0.75	NO	0.023	NO
	Carbon Tetrachbr	ide a	0.001	0.01	NO	ND	ND
1.2	Dichbroethane Dichbroetlylene	4	0.001	0.01	ND	ND	ND
<u>_j </u>	-Dichbroetly/ene		0.001	0.005		ND	ND
1.1.2.2	-Tetrachloroethy len Trichloroethy lend	e n	0.001	0.02	ND	ND	ND
112	Trichbroethylene	2 4	0.001	0.01	ND	NO	ND
	OH	5. R.	0.1	6 70 9	7.0	6.5	6.9
	/						
i i							
	: *						
	y						
WRLSON JO	ONES COMPANY G7206 GREEN	7206 BUFF					MADE IN U.S.A

(

18

45-606 Eye-Ease* ____ 45-706 20:20 Bull Made in USA __

BLOOMFIELD KEFINING COMPANY GAMPLE DATE: May 28, 1987

·			Nomina			MONITORING	11
)			DETECTION	NMWQ	WELL	WELL	WELL
	PARAMETER	UNITS	LIMITS	STANDARD	PL	P4	<u>P5</u>
	Arsenic	mg/l	0.05	0.1	<0.05	<0.05	<0.05
	Barium	n	1.0	1.0	<1.0	9.88	<1.0
	Cadmium		0.01	0.01	0.023	0.018	0.026
	Chromium	16	0.05	0.05	<0.05	<0.05	<0.05
	head	14.	0.05	0.05	0.20	0.14	0.20
,	Mercury	и	0.002	0.002	<0.002		<0.002
	Seknium	11	0.01	0.05	0.10	0.08	a.14
1	Silver		0.05	0.05	<0.05	<0.05	40.05
	Copper		0.01	1.0	0.013	in	
	Iron	u u	0.04	1.0	0.14		0.19
	Mangmese	3	0.01	0.2	1.51	,	the second of the second secon
~	ZINC	11	0,004	formation of the second	0.024		
	Uranium	11		5.0			0.027
	Chloride	11	0.1	250.	794	635.	11/2.
	Sulfate		1.0	600.	827-6	4.8	772.4
,	PCB		1.0	0.001		T-0	116.7
	Phenols		0.01	0.005	······································	0.278	0.334
	Cyanide	"	0.005			H	· · · · · · · · · · · · · · · · · · ·
:				10.2	0,0056		
	Nitrate as N	<u> </u>	0.01		12.9	0.035	
	Aluminum		0-/	5.	<0.1	<0.1	
	Boron	<u> </u>	0.01	0.75	0:70	0.97	0.24
	Cobolt			0.05	0.07	0.04	0.06
	Molybdenum		0.05	1.0	0.79	0.13	<0.05
	Nickel	<u> </u>	0.06	0.2	0.72		0.25
	Finoride		0.01	1.6	0.0353		0.0156
	TDS			1000-	3272.	2038.	3902.
	Benzene	- <u> - - - </u> -	0.001	0.01	<0.001	10.7	<0.001
	Toluene		0.001	0.75	<0.001	0.71	<0.001
	Carbon Tetrachb	vide "	0.08	0.01	<0.08	20.08	<0.08
	Tolvene Carbon Tetrachb 2-Dichlovoethane Dichlovoethy kni	- <u>n</u>	0.001	0.01	20.08 20.00/ 20.00/ 20.00/ 20.00/	20.001	0.72
	Dichloroethykn	e //////	0.001	0.005	<0.001	<0.001	<0.001
1, 5, 2,	2-Tetrachloroethyk 2-Trichloroethyk	e "	0.00/	0.02	<0.001	<0.001	<0.001
-64	2 Trichloroethy ke	10 11	0.00/	0.01	<0.001	<0.001	20.001
	pH	S. K.	0.1	6 70 9			
		╺╫╼┽┽┼┼┼┼┼		╟┥┥┥┙			╢┊┊┊┊┊
		╶╢╌┼┽┼┽┽┼			╢─┼┽┼┼┼╌	╢╎╎╎	╢┼┼┼┼┼┝┝
		╺╫╌┽┽┽┽┽┽	╶┈║╾╎╴╎╶╎╺╿╸	╟╍┼┼┽╎╎╎	╟┥┥╢╷	╢╌┟┼┟╽╷╽╴╽	
		╺╫╼┼┼┽┽┽	╾╫┼┼┼┼┼┼	╫┼┼┼┼┼		╢╷╎╷╷╷	
<u> </u>							
All Chip. New of the		a state of the second second	ي الم	فأحدث والمستعدين فالمستند والمستند والمستند	and a start of the	well	

19

National* 45-80

THANK THE FEP

TARRA BARTERINT D

45-606 Eye-Ease= 45-706 20/20 Buit Made in USA

GAMPLE DATE : SEP. 18, 1986

MONTORING MONITORING MONITORING NOMINAL NMWQ WEL WELL WELL DETECTION PARAMETER INITS P4 P5 HMITS STANDARD PI 1 1 • mall 0.07 Arsenic 0.002 0.1 0.05 0.08 2 2 Borium 3 ; i 1.0 3 M Codmium 0.01 20.01 0.01 <0.01 4 20.01 4 Chronium <0.05 0.05 <0.05 <0.05 5 ų 0.05 5 Lead 0.05 5 20.05 6 0,05 0.15 20.05 5 Mercury Seknium 0.002 7 0.002 <0.002 <0.002 20.002 7 n 0.05 3 h 0.01 0.033 0.063 0.030 3 Silver 9 4 0.05 0.05 <0.05 <0.05 <0.05 9 Copper Iron n 0.03 1.0 20.03 <0.03 <0.03 10 10 5 11 1.0 11 mongmese n 0.2 12 12 Enc 0.008 0.04 10 1 10.0 <0.008 0.02 3 Uroniam 5.0 14 η 14 754 814 7 1151. 15 Chloride 250. 15 2 Sulfate 673 15 4 0.01 600. <0.01 1237. Ξó PCB 0.001 17 0.19 0.034 Phenols 0.005 0.085 0.001 :3 Cymide 0.2 20.01 0.01 0.07 0.24 19 Nitrate as N h 10. 20 20 Aluminum j 5. 21 ч 21 Ť 0.75 22 Boron 4 22 Cobolt 0 23 .05 23 1 Molybdenum T Z 24 0 24 2 0.09 Nickel 0.01 0.07 25 0 0.12 25 Fluoride 6 26 26 1 2866 27 TDS 3184 4 1000. 1308. 27 0.01 0.75 0.01 6.65 4 28 Benzene ND 001 0. ND 28 0 .001 ND 0.407 29 Tomene NO 4 29 . 001 6 Corbon Tetro chloride 30 ч ND 30 0.01 0.005 0.02 001 L 31 2 -Dichloroethane 0 ND 31 1, 1 - Dichloroethylene 1, 2, 2 - Tetrachloroethylene 1, 1, 2 - Trichloroethylene ×. .001 32 6 ND 32 0 001 33 ND ų 33 0.01 6 TO 9 4 34 0 .001 ND 34 5 35 pH .01 7 6.70 19 35 27 7. იგ 36 37 38 ÷ 39 -3 39 in Faster 40 40 (1) [] []

National*

15-606 Eye-Ease+ 45-706 20/20 Built Made in IJSA

SAMPLE DATE : DEC. 16, 1986

				Nom	NAL		ĺ	MON	ITORING	MONT	DRING	MONIT	ORING
						NMW			ar	WE			au-
PAR	AMETER	Un	ITS	łſ		STANI		P		PL		F	5
											•		
Arei	enic		12	2	. 05	0,	1	10	.05	20,	05	10	.05
	ium	0	<u>и</u>		.005	1.		\$ } } -	.055		3	N 2014	.010
Dor	in					1		*******************************	.01			· · · · · · · · · · · · · · · · · · ·	.01
	mium		и И		.01	<u>a</u> .				20.		II	
	mium		M:		.05	1	05		,05	<0.		*****	.05
hea			и. И		,05		05	1 I-	.05		05	11	.05
mer	cury				.002		002	T I	.002		002		.002
Se/e	nium		И.		.002		05		.03	f f f f	03		.03
<u></u>	<i>icr</i>		n		.05	the second	05		.05	<0.		· • • • • • • • • • • • • • • • • • • •	.05
Cop	per	i i	n		.03	1.	0		.03	<0.		++	,03
Ire	2		1		.3	· · · · · · · · · · · · · · · · · · ·	0		.3	18.	6	0	.3
Man	ngmese		4	0	.005	0.	2	1	. 11	5.	70	<0	.005
Zin			n	0	.001	10.	0	0	.012	0.	040	0	.016
	mian		7			5,	0		-		-		
	oride		n	1		250,		774		675.	. 1	1118	,
11	fate		11	1		600,		579		*****	.01	1132	
PC			1		-		∞		-	-			
Phe	inols	:	и	D	.001		005	0	.012	10	096	0	. 021
	onide		и		.01		2		.01	20,			.01
	rate as N		и			10.			.9	20.	·····	36	
	ninum		1		.05	5.			.54		8		.34
	nnum Ion		4		.004		75		.27		7		.24
1.1			и –	0			13 05		.05		05		,05
- LOE	olt	╟╌┼╌┼	n		.05					$\langle 0 \rangle$	_		.08
1 11	podenum	$\ \cdot \ $	n N		.06	d.	0		. 17 . 06		.06		
	<u>cel</u>	╟╌┼┼	┼┼┽┼			0.						0	
FIL	voride	╢┼┼		-	. 91		6		-960		410		-580
	5	$\ - \ - \ $	M			1000.	┼┼┼┈	2498		2128	•	3788	
Be	nzene nene on Tetrachloria broethane	$\ - \cdot $.001	<u> </u>	0/	≮?	.001	_ / .	.91	1 < 9	.00/
Tol	nene	╟┼┼			.001	19.	75	4	.001	<u> </u>	.78	1-4	.001
Carb	on Tetrachloria	k		0	.001	19-	91	<0	,001	<u> <q< u=""></q<></u>	.001	0	.001
2 -Dich	broethane_	$\parallel - \mid - \mid$,001	10	01	0	.002	<u> <q< u=""></q<></u>	.001	<0	.001
1-Dich	lovoethylene achlovoethykne	┨			.001	0.	005		1.001	<0	,001	<0	descent restances and
2,2- Tetr	achlovoethy kne	2	11	0	,001	0.	02	10	.001	<0	.001	<0	.001
1,2-Tric	h lovoethylene		"		.001	d.	01	20	1.001	<0	,001	<0	1001
	PH '		5. U.		,01	67	09	7	.19	6.	73	7	.28
	-												
0	\$G												
>													
			$\uparrow \uparrow \downarrow \downarrow$								+++	╶╢╶╞╌┟╴	
			1111										
				II . 1 . L	1		1 1 1	11 1 1			.1.1.1	11 1 1	1 1 1 1

-21

	1	2		4	5	6
		Nominal				
Rem	11 1 1	Detection		Well	Well	Well
Prrometer	Units	Limits	Standard	PI	P4	P5
Decenie						
Brian	mg/2	0.05	0.1	0.077	0.070 3.54	and the second s
Cadium	N	0.010	0.01	BDL BDL	BDL	BDL
Chromium		0.050	0.05	BDL	BDL	BDL BDL
Lead		0.050	0.05	0.065		0.055
Mercury		0.002	0.002	BDL	BDL	BDL
Seleniam		0,010	0.05	0-035	0.080	0.071
Silver	h	0.050	0.05	BDL	BDL	BDL
Copper	,,	0.03	1.0	BDL	BDL	BDL
Iron	, p	0.04	1.0	BDL	12.0	0.05
Marganese	1	0.005	0.2	0.25	3.5	0.025
Eine	"	0.01	10.0	0.020	0.019	0.02
Uranium	<i>"</i>		5.0			-
<u> </u>	<i>n</i>	1.0	250.	994.7	989.7	1339.6
Sulfate_	<i>µ</i>	1.0	600.	630.	12.5	1900.
PCB	<u>n</u>	0.001	0.001			
Phenois	//	0.002	0.005	0.017	0.430	
<u>Cyanide</u>		0.01	0.2	0.1	0.5	0.2
Nitrate as 1		0.01	10.0	0.1	BDL	12.5
Aluminum		0.05	5.0	2.07	1.93	2.75
Boron		9.01	<u>┤</u> ╊╼╼╋╾┢╼╋╼╍╊╍╍╊╍╼╼	BDL	BD4	BDL
Cobolt		0.05	0.05	BDL	BD4	BDL
Molybdenu. Nickel	M	0.01	02	BOL	BDL	BPL
Fluoride		0.06	0.6	0.54	BDL	BDL
TDS		0.1	1000.	2960.	2266.	0.30
Benzene		0.001	0.01	LID .	3.1	3778.
Toluene		0.001	0.75	ND I	0.290	
Carbon Tetrach	bride	0.001	0.01		1 Jun 1	
Toluene Carbon Tetrach 1,2-Dichloro ethan	e ·	0.001	0.01	NO	NO	NO
11-Dichlovoethyk	ne a	0.001	0.005	ND	MO	Malt
1,12,2-Tetrachlovoethy	kne n	0.001	0.02	ND	MO	ND
1,1,2-Trichloroethy	lene "	0.001	0.01	ND	Ma	NO
pH	- 5 H.	9.91	6709	7.25	6.85	7.18
			╢╴┝╴╽╴╽╴╽╴╽		╢╷╽╻╽╻╽╻	
	╾╍╢┥┫		╟ _╋ ╎╎	╟╱╎╷╎╴┝╴╎╭╎╌╴	╫╌┠┼┟╽╷	
	BP4=	Kelow te	tection	himit_	╫┼┼┼┼┼	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
		Not let	cred	╟╌┧╌┧╴┧╴┧╶┧	╫╍╁┾╍┠╁┠┠╌	╫┼┼┼┼┼
			╫╌┼╌┼╴┼╶┼╶┥	╟┼┼┼┼┼	╫┼┼┞╎┼╌	╶╫╼┟╍╁╺┞┥┥

Bloomfield Retining Company Sample Date: 3/26/86

				NOMINAL		Monitoring	
			NMUJQ	DETECTION	Well	Well	Weil
	Parameter	Units	standard	LIMITS	Pl	P4	P5
	1 1 1						
	Arsenic	ng/e	0.1	0.050	<0.050	<0.050	20.050
	Barium	<u> </u>	1.0				
	Cadmium	11	0.01	0,002	0-050	0.060	0.10
1	Chromium		0.05	0.050	20.050	<0.050	<0.050
	Lead		0.05	0.001	0.085	0.074	0.16
	Mercury		0.002	0.002	<0.002	0.002	<0.002
	Selenium	4	0.05	0.010	<0.010	<0.010	<0.010
	Silver		0.05	0.050	<0.050	anna annan anna àran àran ann ann àran an	<0.050
	Copper		1.0	0.03	CO.03	<0.03	<0.03
1	Iron	1	1.0				
	Manganese	41	0.2				
•••	FILE	H	10.0	0.01	20.01	0.012	0.012
	Uranium		5.0			0.07 -	<u> </u>
	Chloride	····	250.		750.	500.	1100.
·	Sulfate		600.		7.5	0.3	14.
	PCB		0.001			0.5	17.
		H	0.005	0.001	0.009	0.633	0.006
	Fhenols		0.2	 −− −− −− −− −− −− −− 	**************************************		
	Cyanide			0.01	<0.01	<0.01	<0.01
	Nitrate 25 N	<u> </u>	10.0				
	Aluminum		5.0 0.75			╢╌┝╌┝╴┠╴┯╴╴	
	Boron	//				$\ - + + - - $	
	Cobolt		0.05		╟─╎╌╎╌┝╾╡╶╎╌╴	╟─┼┼┼┍┯	
	Molybdenum		1.0				
	Nickel		0.2	0.01	0.08	0.08	0.10
	Fluoride			╟┼┼┼┲╡┼┈	╫╌┟╌┟╻┝╼┥	╢┼┼┟┍╡┼╴	<mark>╢╷╷╷╷┍┿</mark>
	TDS		1000.		2936.	1868.	3840.
	Benzene		0.01	0.001	ND	11-8	ND
	Toluene Corbon Tetrachbrid 1,2-Dichloroethane 1,1-Dichloroethylene 1,1,2,2-Tetrachbroethylen 1,1,2-Trichloroethylene		0.75	0.001	ND	7.5	NO
	Carbon Tetrachbrid	e #	0.01	0.001		ND	
	1,2-Dichloroethane		0.01	0.001	║╷╷╷╷╞╍┥╷╴	NO	
	1,1-Dichloroethylene		0.005	0.001	╟╫┥	ND	<u> </u>
	1,1,2,2-Tetrachbioethyk	e · 4	0.02	0.001		ND	╨┼┼┼┍┥┼╴
	1,1,2-Trichbroethykn		0.1	0.001	╢╌┞╌┝╴┝╺┿╴╎	NP	╷║╌┞╴┠╴┠╴╞╾╇╴╽
	PH	S.W.	6703	10.01	7.30	6.84	7-23
		┝╼┝╌┽╸┠╌╅╸╉╼╸			╟╢╢╟╢		
		┝╇┽┠╊╂┨╴	╶╢╌┝┼┝┞┝╿╴┤╌╸	╢┥┥┥┥			╢┿╞╼┝┥
		┝-┟-╎-╎╶╎	┹	╢╌┝┤┍┝╷╽╽	╫╎┼┝┟┝	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
		┝┿╋┝		╟┼┥┥	╢╷╽╷╽	╟┥┥┥┙	
in the second					╢╻┥╴		
Section Section							
WILSON J	INES COMPANY G7506 GREEN		•				MADE IN U.S.A

MW-1

			1st atr	2nd Qtr	3rd Rfr	4th Rt
STD		1	September		movely	June
) 	PARAMETER	LINITS	1984	1984	1985	1985
0.1	Arsenic	mgle	ND	0.054	0.010	ND .
	Borium		1.0	ND	ND	ND .
3 0.01		$\langle \cdot \rangle$. 0.014	ND	0.027	ND
0.05	Chromium	2.	, ND	0.070	NO	ND
	head		0,125	0.18	0.040	ND
· 0.002	mercury	5	ND	ND	ND	ND
1 0.05	Selenium		0.35	0.120	0.022	0.02
a 0.05	Silver	· · · · ·	ND	ND	0.024	NO
* 1.0	Copper	· · · ·	0.10	0.11	ND	ND
* 1.0	Iron		57.0	123.0	0.07	113
	Mongonese	. (1.70	1.05	0.50	0.52
¥ 10.0	Zinc	2	0.30	0.36	0.08	10
	Uranium		ND	ND	ND	12
	Rodium 226 \$ 228	plill	ND	ND		
	Chloride	mg/l	1059.0	1135.0	1135.0	953.0
- 600,0	Sulfate	mg/L	825.0	700.0	855.0	832.0
10.001	PCB	ppm	ND	ND	ND	ND
#6-9	pH	S.U.,	7.2	7.2	7.35	7.5
e 0.005	Phenols	mgll	0.024	0.065	0.13	ND
	Cyanide	<i>a</i>	ND	ND	ND	ND
	Nitrate & N		7.2	ND	0.3	15.4
2 5.0	Aluminum)	2.0	3.68	ND	ND
3 0.75	Boron)	ND	0.25	0.69	0.13
	Cobolt	S	0.08	0.20	0.32	ND
	Molybdenum	<u> </u>	ND	ND	0.41	0.28
16 0.2	Nickel		0.3	ND	0.13	ND
1.6	Fluovide	2	0.284	0.56	0.657	0.65
\$ 1000.0		<u>}</u>	3582.0	3512.0	3726.0	3246.0
0.01	Benzene	5	ND	0.015	ND	ND
10 15.0		ζ	ND	ND	ND	ND
0.01	Carbon Fetrachloride	(ND	ND	ND	N.D.
12 0.02	1,2-Dichlorvethone		ND	ND	ND	ND
0.005	1,1-Dichloroethy kne.	1	ND	ND	ND	ND
0.02	11,2,2-Etrachlovoethatene		ND	ND	NO	ND
15 0.1	41,2-Trichloroethykene		ND	ND	NO	ND
36	DEPTH TO STATIC WATER (R			17' 7"	16.63	115.57
p	DEPTH OF WELL FROM !		+	24' 5"		
6	STICKUP	FT		1'10"		
19	ND = <	NOMINAL I	ELECTION	imite		
	· · · · · · · · · · · · · · · · · · ·					
	li internet interne					

10 10 10 1

BLOOMFIELD REFINING MUJ-4

			1	2	DEZ 13, 1984	MATICH 21, 1985	JULY 10 1985
				1ST Qtr	2nd Qtr	3rd Qtr	4th Rtr
		· · · · · · · · · ·	· -	September	December	morch	June
	STD	PARAMETER	LINITS	1984	1934	1935	1935
-	0.1	Arsenic	mgle	ND	0.118	0.005	ND
1		Borium	0	4.0	7.0	2.5	ND
	1	Codmium		ND	ND	ND	ND
		Chromium 1		0.10	0.28	ND	ND
•		head		0.088	0.22	0.015	ND
		marcuny		ND	ND	ND	ND
		Selenium 1		0,40	0.42	0.008	0.026
		Silver		ND	ND	0.004	ND
		Copper		0.03	0.35	ND	ND
	1.0	Iron		43.7	132.0	6.8	12.0
		Thongonese		7.8	25.4	5.2	5.0
		Zinc		0.18	0.38	0.03	ND
		Uranian .	*	ND	ND	ND	ND
		Rodium 226 9 228	plill	ND	ND	_	_
2	250.0	Chloride	mg/l	410.0	431.0	466.0	556.0
		Sulfate	mg/L	10.0	4.0.	9.0	3.0
	9001		ppm	ND	ND	ND	ND
	6-9		S.U.	7.1	6.9	7.01	7.4
		phenols v	mgll	0.55	0.120	0.005	0.08
		Cyanide	2 N	ND	ND	ND	ND
		Nitrate as N		0.02	ND	ND	ND
		Alumiaum)	ND	4.49	ND	ND
		Boron		ND	0.32	0.89	0.05
		Cobolt Y	5	ND	0.15	0.14	ND
	1.0	Molybdenum	(ND	ND	0.18	ND
 	0.2	Nickel		0.2	ND	0.16	ND
	1.6	Fluovide		0,597	0.29	0.254	0.23
1	1000.0			1860.0	2408.0	1860.0	2004.0
11 - I		Benzene		0.419	3.64	14.81	8.64
55		Toluene	I I I S	0.296	4.47	1.92	1.74
	0.01	Carbon Fetrachloride		ND	ND	ND	ND
(1,2-Dichlowethone		ND	ND	ND	ND
C	0.005	1,1-Dichloroethylene		ND	ND	ND	ND
		11,2,2-Etrachlovodhyten		ND	ND	ND	ND
	: 1	1,1,2. Trichlowethy kene		ND	ND	ND	ND
		DEPTH TO STATIC NATER A			24'5"	24.98'	24.50
<u> </u>		DEPTH OF WELL FROM	li 14 (1 (1)		31'2"		
Ŋ		стіскир			194		
_		ND= <	NOMINAL	DETECTION			
			╟╌┤┥╎╿╎╿╷				

25

a T

.

RLOOMFIELD REFINING MW-5

ľ			1st atr	2nd Qtr	3rd Rbr	4th Rtr
STO		_	September	December	movely	June
	PARAMETER	LINITS	1984	1984	1985	1985
0.1	Arsenic	mg/L		· · · · · · ·	0.011	ND
11	Borium				ND	AD .
	Codmium	$\langle \rangle$			0.046	. ND
	Chromium)			ND	ND .
	Lead	<u> </u>			0.046	NO
0.002	mercury	· · · 5 · · · ·			ND	1) 2
0.05	Selenium	<u>(</u>			0.022	0.026
0.05	Silver	· · · /.	1 4 • · · · · ·		0.037	$\mathcal{O}\mathcal{O}$
1.0 .	Copper				ND	NO
1.0	Iron	<u> </u>	l:		0.095	<u>ND</u>
0.2	Manganese .	ζ	······································		0.093	0.24
10.0	Enc	2			0.060	ND
	Uranium	1 A	9 . 19 .		NO	こう
	Radium 226 \$ 228	pcill				-
250.0	Chloride	mg/l	······		1257.0	13:0.0
	Sulfate	mg/l		· · ·	1153.0	1200,0
	PCB	ppm		•	ND .	ND
	PH.	5.U,		- 		7.6
	Phenols	mgll		· • • • ·	0.004	
	Cyanide				ND	ND ND
	Nitrate as N	; <u>(</u>			29.0	35.0
	Aluminum	(ND	0.78
	Boron	1 /	· · · · · · ·		1.29	0.15
	Cobolt				0.15	0.04
1.0	Molybdenum	 			ND 0.19	ND
0.2	Nickel	····· · · · · · · · · · · · · ·			0.19 0.391	10
1.6	Fluovide	····				0.37
1000,0	TDS	<u> </u>			4758.0	4746.0
0.01 15:0	Benzene Toluene	··· (···		• • •	ND ND	ND ND
0.01	Carbon Fetrachloride	<u>↓</u>			ND	ND
0.02	1,2-Dichlowethone)			ND	ND
0.005	1.1-Dichlorothy lene	i)		h	NO	ND
0.02	1, 2, 2-Etrachlovothyten	<u>∎ · · · </u> } · · · · ·		· · · · · · · · · · · · · · · · · · ·	ND	ND.
0.1	1,1,2-Trichloroethykne				ND	ND.
	DEPTH TO STATE WATER	The second secon			41.60	41.80
•						
	• • • • • •					
WILSON JON	S COMPANY G7205 GREEN 7	205 BUFF		مىيى قىرىيە بىرى بىرى بىرى ق ىرىمە بىرىمە بىرى بىرى بۇ يۇنۇرىغۇر بىرى بىرىيە بىرى قىرىمە بىرى	and the second	182 MADE IN U.S

`

43-904 278-62887 45-704 20/20 Bulf Made in USA

Manonai

STREET, STREET

61 4 6

11.11

1.19.2018-5

TIFICLE REFINITION LUNIPANY

GROUNDWATER ELEVATIONS 9-9-1988

		T.O.P.	TOTAL ?	DEPTH	DEPTH TO	ELEVATIO
		ELEVATION	OF WEL	L FROM	WATER FROM	OF TOP O
	WELL DESIGNATION	(FT)	T.O.P.	(FT)	T.O.P. (FT)	WATER (F
	MW - 1	5515.77	22	,84	15,52	5500.25
-#-		~~~				
	MW-2	5519.45	26.	.67	18.31	5501.14
	MW-3	5535.85	36.	.90	33.44	5502.41
	MW- 5	5545,10	44	.40	42.17	5502.93
	······································				······································	
	MW - 6	5551.23	49	.60	DRY	DRY
	I					
·····	MW - 7	5524.09	62	,10	24.37	5499.22
				· • • • • • • • • • • •	0	고
	MW-3	5531.12	24	94	29.33	5501.79
				· • • •		
 .i	mw-9	5519.70	33	.90	19.39	5499.31
	MW-13	5538.42	53	.00	37,91	3500.51
	MW-4	5524.30	31	.44	24.10	5500,20
	C <u></u>					
	RW-2	5523.48	38	,03	23.37	5500.11
	P-2	5523.73	38	.33	23.67	5500.04
	RW - 3 ($MW - 10$)	5516.86	33	.92	17.80	5499.06
	P-3	5507.20	22	.80	8.31	5498.89
	RW - 1	5525.92	40	.98	26.69	5499.23
÷						
	P-1	5524.62	39	.17	25.53	5499.09
	m W - 11	5506.83	24	.73	9.24	5497,99
	mw-12	5498.36	14	.22	8.18	5490.18
	HAMMOND AT SULLIVAN RD.	5504.82			6.62	5498.20
	HAMMOND NEAR MW-9	5522.95			22.99	5499.90
	and the second second					

National *

45-608 tye-base* 45-708 20/20 Buit Made in USA

BLOOMFIELD REFINING COMPANY GROUND WATER ELEVATIONS

28

		MW-2		Contraction of the second seco			$m\omega - 7$
-1.0.7	5515,17	5519.45	5535 85	5524.30	5545,10	5551.23	5524.09
1/27/87	5499.44	5500.92	5502.60	5500,22	5503.10	DRY AT5501.63	5499.29
41 2/87	5499.76	5501.20	5502.86	5500.37			5499.59
~	DIMES RE	MOJED 4/	3/87 IR	RIGATION	STARTED	4/13/87	
4/23/87	5499,33	5500.71	5502.94	55 00.32	5504.01	Der	5499.55
5/27/87	5499.71	5500.33	5502.94	5500.22	5503.95	1	5499.62
10/ 3/37	5499.63	<i>559</i> 0.82	5502,63	5500,03	5503.54	4 4 4	5499.20
11/17/87	5498.46	• • •		5499.94	5503.17	 ·	
1	5499.85		5502,52	- 5499,74	- 5503,03	, <i>11</i>	5499.34
11 /18/38	5498.27	·· · · · · · · · · · · · · · · · · · ·		5499.95	5502.90) 	
	$\left\ - \left - $	•					
╟╾┼┼┼┼┼┼							
╟─┼┼┼╎╌╸							
╟╌┼┼┼┼┽┥┥╸	╢╌┼┼┼┟┝┝╼		╢─┼┼┼┼┼		╫╌┼┼┼┤╴┨─╴	╢╌┼┽┽┼┼┼	
╟╌┼┼┼┼┼┼	╢╌┼┼┼┼┾┨╾	╢┼┼┼┼┼┼	╢┽┼┼┼┼┥╾	╫╌┼┼┼┼┼┼	╫╶┧┼┝┝┝┝	╫┽┽┼┼┼	╫╌┼┼┾┼┼┦╌╴╢
┠━┿┽╎┼┽╿┥╾	╢╌╎┤┼┼┼╎╌	╢┼┼┼┼┼┼	╢╍┼┽┟┦┥┥╸	╟╌┼┼┼┼┼┼	╫┼┼┼┼┼	╢┼┼┼┤┤┽┨╌╴	╫╌┊┊╞┊┝╎╼╌╢
╟╾┼┼┼┼┼┼	╢┼┼┼┼┼┼	╫┼┼┼╎╎	╢╌┼┼┼┼╎╷	- + + + + + + + + + + + + + + + + + + +	╢┽╎╎╷		╢╌┼┼┽┼┼┤╌┦

S Halional"

45-008 Eve-case* 45-708 20/20 Butf Made in USA

BLOOMFIELD REFINING COMPANY GROUNDWATER ELEVATIONS

MW-8	mill_a	RW-3 MW-10	MW-11	MUL	HAMMOND	· · · · · · · · · · · · · · · · · · ·	~A
5531.12		5516.86			AT SULLIUAN 5504.82		
2221.16	2217.10	2510.00	2206.53	97 90. 20	5507.04	5522.75	<u> </u>
5501.85	5498.98	5499.09			5498.59	5498.60	1/27/8
				, , ,			
5502. IZ	5498.92	5499.33			5498.55	5498.55	4/2/
· · · · · · · · · · · · · · · · · · ·	DIKES RE	MOVEO 4	+/3/87, 2	PRIGATION) STANTED	4/13/87	
· · · · · · · · · · · · · · · · · · ·				· · · · · ·	1		
550Z.03	5498.29	5479.07	-		5497.55	5497.92	4/23/
3501.95	5498.73	5499.04	_		5498.09	5498.61	5/27/2
· ·			INSTALLED	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
5501.65	5499.16	5493.66			5497.75		
 	: —	5498.H			116/37 , DI - 5497.45		
	· · · · · ·	· · · · · · · · · · · · · · · · · · ·					
• :	•••• ••••••••••••		مے ا	· · · · · · · · · · · · · · · · · · ·	6		11/17/
······································	- · · · · · · · · · · · · · · · · · · ·		5497,43	5490.57	· · · · · · · · · · · · · · · · · · ·	19	6/3/8
· · · · · · · · · · · · · · · · · · ·	• • • • • • •	· · · · · · · · · · · · · · · · · · ·				·· ·· ·· · · · · · · · · · · · · · · ·	· ·· ·· · · · · · · · ·
							· · · · · · · · · · · · · · · · · · ·
			$\ - + + + - $				
╟─┼┽┽┽┽		╟╼┼┽┽┽┊╎					
╟─┼┼┽┼╎┼──	╟╍╎┥╿╎	╟─┼┼┼┼┼	╟╍╎┝╷╷╷╷		╢╌╎╴╎╴╷╷		
		╟╌┼┼┟┟╽╽	╢╸╎╎╎╵╵				
and the second second						أوبالأور وحصرتم فأفاشتهم	

GROUNDWATER LIEVATIONS

)				m	ω-	١	MW-2	, ,	MW-3	M .J-	t	100-5	,	mw-6	
		DATE	T.O.I	?, <u>→ 5</u> ≞	515.	77	5519.45	.	5535.35	5524.	30	5545.	10	5551.2	23
 , ,		2/2	4/34	54	98.	91	5500.4	4	5501.74	5499	. 46	5502	. 26	DRY	-
· · · · · · · · · · · · · · · · · · ·		2/2	3/35	57	99	.07	5500.5	5	5502.15	5499	.30	5507	.75	DRY	-
			3/35	11	99.	14	5500.8	2	5502.55	5499	. 32	5503	, 50		-
WATER	<u>n</u>	4/1	1.35	54	98.	99	5500.6	2	5502.73	5:499	. 30	5503	. 67	n n generationen N	
		5/3		54	99.	67	5500.9	7	5002.74	5499	. 80	5503	. 64		
		•	4/35		99.	BO	5520.9	9	5502.63	5499	.30	5503	,40	1	ł
•• ••			37.35	54	99	.94.	5500.9	3	5502.49	5499	. 73	5503	.24		
			2, 55	ځې	00.	20	وأمريكما حط	2	5502.43	5499	. 30	5503	.30	••••	!
			<u>2/35</u> 7/35	<u></u>	$\frac{\partial \Gamma}{\partial n}$	2.1	<u></u>	2	EE02.43	3499	.73	5503.	<u>27</u>		
					00 00	بې تو. د زن	5501.0	∕⊃∷ ∕⊐•	5502.25 5502.42	5777	. 50	5503	.00		
UNAN" 2	্টার্বন	10/2)/*E 4/35		G.G	22	- 5000,0 - 5500-4	27. 12:	5502.28	-7.2	c.j	5502	• = /		.
			3/35	54	93.	77	5500.0	5	5502.20	- 5499 - 5499	-60		ر ۲۰ ۱		•••••
			7/35	5+	98	:5	5499.8	5	5501.35	5499	40	550%	•. /. •??	. 77	
			3/36_	54	98.	59	5500.0	8	5501.3	5499	.35	5502	.77	D.C.Y	: !
			4156						5502.04					11	
	;; 		0/36	54	98.	93	5500.6	2	5502.43	5499	. 25	5503	30	<i>i</i> .	
	·····		1/36						5502.39						
SAMP		11	6/36						5502.91						
DIKE I	REMON		4/36						5502.98						
WATE 4/21	ear		8/86						5502.98 5502.92					#	
14		5/2	5/86		• f	Б 05	5500.9		5502.35	5477	- 52 11			//	
		6/	4/86	55	00.	41	5500.0		5502.95	[P	· 10	5504	· 22	H:	+
Same	LE	6/2	3/86	55	01	21		8	5503.05		. 45	5504	13	И	+
		7/	8/86	55	01.	34	5501.2	27	5502.%	5499	. 44	5503	. 87	1 11	+
ļ		8/	4/86_	55	00	25	5501.1	3	5502.92	5499	.67	5503	. 77	4	
		3/	2/86	55	00.	23	5501.3	52	5502.94	5499	. 75	5503	. 58	1	
SAM	re	9/1	8/86_	55	00,	03	550(.2	2	5502.77	5499	<i>. 9</i> 8	5503.	52	И	
WATER	OFF	10/	8 186	54	99.	83	5501.0	27	5502.65	5506	. 13	5503.	46	μ	
10/15		11/	7/86	54	99.	45	5500.8		5502.72	5500		5503	. 49	- 4	
DIKED		12/	8/86	54	99.	45		2/	5502.78	5500	<u>+</u>	5503	. 43		
Srini	LE	1/2	- 195	54 C 1	30,	45	5501.0	5	5502.80		. 28	5503	. 41	4	
		41	2/87	54	99	7/	55010	14	5502.60	5500 5500	127	5503		DRYATS	SP1.
REMOVE 4/3/8	7	4/2	3/87	54	39	33	5500 17		5502 96	5000	27	5503			+
1713/8	low	5/8	7/87	54	99	71	5500.8	33	5502 94	5500	. 22	5502	95	++7++	+
															+

MALE AND I

11111

NE STREET

30

NOT THE R. P.

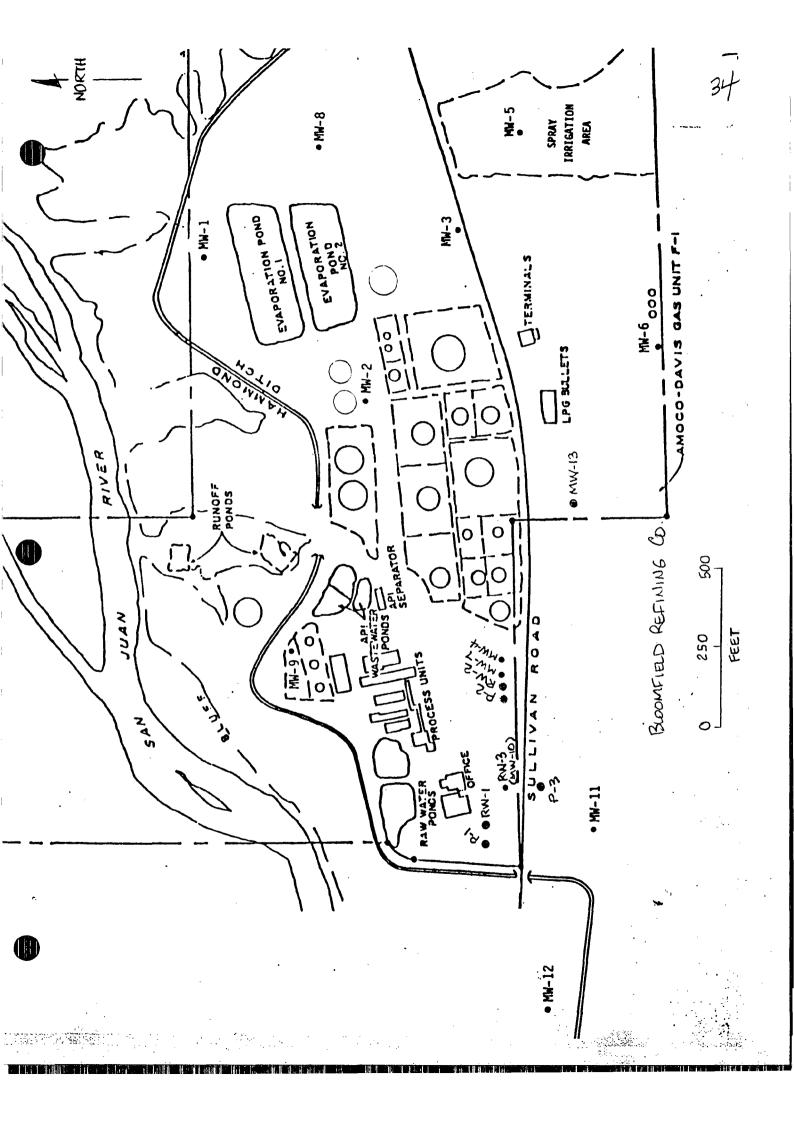
GROUNDWAER ELEVATIONS

						· · · · ·								HA	MMC	ND	1-17	Minist	0
				MW-	7	Mu	N-8		MIN-	9		Mi	-10	AT	SUL	1 JAN	AT	WALK	un
		DATE	T.O.P	5524	09	553	31.1	2	55.3	1.70	0	5516	.36	55	50+.	32	55	522.1	95
														· ::		· · ·	;		<u>د منبعہ</u> ا
	· · · · · · · · · · · · ·			••••••••••••••••••••••••••••••••••••••		•• •···•			- • • • • • • •		• •••	• • •		····*· 			** ** *		
						1			··· ···· · ··· · ··· ·			• • • • • •	•	1			• • • • - • - • - • • •		
· · •							•• •• • •			•• • - •	••			, _44 44 10		•	•• ••• •		
			· · ·	• • • • •			: 										•• •• •	• • •	
				· • • • • • • • • • • • • • • • • • • •											· · · · · · · · · · · · · · · · · · ·				
				-		4			• • • •					··· •• •	••		•		••••
	,	· · · · · · · · ·				· · · · · · ·				·· · ·				· · · · · ·			4		
• ••••				••• •				· ·							· · · · · ·	• ••••	···· ·	· · ·	
		· · · · ·		·••	:			• •;											
				+ 					· · · · ·						<u>+</u>		;÷		
		· ····· · · · · · ·		••		·					; 				: 				
				•••	 					-			!						
							b <i>f</i>						i		1	1			
		_		•••				:											
-				 															
						••		: 1					İ				1		;
				· · · ·					!							•			
									·····			i i						·····	an : 4
				· · · · ·											ا سلمه ا		· · · · · ·	سینی د ان زار م سر	-
•••••		3/21	136	549	8 02	55	n.	95	549	a	15	54	77 /	<			•		
SA	MPLE	3/26			8.0		501.						97.6					+1	
	at the same of the same	04/4			8.77	14	501.	1 11		5 1			37.6	11 1	549	6.5		493	71
UK 4	EREMOV	4/18	126		7.92		501.)7.6			0.0		496	
WA	TER ON	5/5			7.28		501.			- • - F			37.8		549	3.0		499	
_7		5/21			3.86		501.		and the second		00	54				3.2		499	
			186	H	8.85)9.)9.	00					<u> </u>	in survey of the		
		6/4/		541	0, 23		501.	89			//			<u>.</u> 2'	549	8.2	, 5	£99	- 6-
1	IMPLE	6/10	186	FILO	70-		02.	04	549	1.1	47		38.1			_ 0			0
	+	8	186	549		7 54	202	. 22	54	<u>99.</u>	20	549	28.1		549	7.8	9_5	779	. 9
	+	8/4	/86	549	· +++	4 65	202	./2	54	. 5	40	54	18.5	4	549	7-8	15	479	.6
6	ama n	9/2	/86	549	8.9	5 55		. 21	549	19.	55	54	28.	53	549	8.2	<u>H 5</u>	500	. 1.
7	mole	9/18	186	╟╌┾┧╌┝╴			502	, 12	549	19.	57	54	36	75		┝╺┝╶┝			┝╌╽╌╴
WAI	ELOFE	10/8	136	540	8.96	55	501	.97	_54	19.	42	54	78.0	9_	549	7.0	a 5	498	r=1
10	115	11/7	186	549	9.21		501	. 90	540	1 1	56	54	1.1.1	····· •• ····	549	1 - 1 - 1 - 1	· · · · · · · · · · · · · · · · · · ·		. 8
DIK	(ED ·	12/8	/86	540	19.4		502	. 10	549	39.	14	54	·····	-	549	8.7	2 5	498	.7.
9	mple	12/16	186	54	9.4	1 55	502	, 10	544	99.	15	54	99.	30					<u> </u>
REM	OVEDIRES	1/27	187	549	9.2	9 55	501	, 85	54	18.	98	54	99.4	29	549	8.5	9 5	498	. 6
4/	13 187 2164 170N	4/2	/87	549	9.5	9 5	502	.12	54	18,	92	54	99.	33	549	8,5	5 5	498	.5
	3/87	4/23	/87	549	9.5	5 55	50Z	.03	54	38,	29	54	99.	27	549	7.5	5 5	497	_ 9
		5/27	/87	549	9.6	2 5	501	. 95	54	38.	73	54	39.	,4	549	B.0	9 5	498	.6
			٤.																
1				N	111	N TT	ITT			IT	1						T	TTT	\square

i di

SLOOMFIELD REFINING COMPANY

GROUNDWATER MONITORING SUMMARY OF DETELTED PARAMETERS


				NEW MELICO	an	31 	
				••••••••••••••••••••••••••••••••••••••		9-9-88	
	PARAMETER	WITS	HMIT	3-103 (A)	mw-4	RW-2	P-2
	Benzene	mg/(0.0002	0.01	8.9	11.000	4.800 2
	Ethylbenzene	mg/l	0,0002	0.75		2.900	0.900
	Toluene	mg/L	0.0002	0.75	0.93	10.200	1.430
	m-Xylere	mg/l	0.0002		· · · · · · · · · · · · · · · · · · ·	17.700	4.500
	O-Xylene	mg/L	0 000 2	0.62		4.900	1.460 10
	P-Xylene	mg/L	0.0002)	······································	6.200	1.570
1,7	z Dichloroethane	mg/1	0.001	0,01	· · · · · ·	0.0016	ND
115	1,2 Dichbroethe.re	mg/L	0.001		· · · · · · · · · · · · · · · · · · ·	ND	ND ::
	Nitrate as N	mg11	0.01	10.0	0.14	<0.01	
•	Prenal	ing/L	0.001	0.005	0.069	0.13	20
	Sulfate	mg/L	I	600.	3	<	21
	TDS	mg/L	10	1000	1820	1980	23
							25
	UTHERS NOT	DETECTEL					27
	Chlorome thane	zene 13 Bronom		ingl chlor	de, Chla	benzene C roethane	<i>hloro ben zene</i> 29 30
	Bromochloron	ethane,	1, 1. Dichl	ovorethan ovoethane	e I Di Chlorot	chloroethe	nc 31 nichlosothan
	Larbontetrach		er, Trans	3 Dichlor	Trichlo	10 Ethene c, Cis 1,3 1,0	hloropropene 34
	F	romethene hloroethe	Bromotor e Tetraci	hlovoethen	e la	Thane,	35
							37
;							39
	· · · · · · · · · · · · · · · · · · ·						

ジレ

		PARAMETER	RW-3	P-3	RW-1	P-1	mw-11	MW-13
· · · · · · · · · · · · · · · · · · ·	· · · ·	Benzene	12.000	19.400	6.400	102.200	44.400	0.00023 2
		Ethyl benzene	0.0028	6 ND	0.540	0.00143	0.063	0.00029
	······································	Toluene	0.062	0.00435	0.070	0.034	0.340	0.00024;
	· · · · · · · · · · · · · · · · · · ·	M-Xylene	3.500	22.300	4.800	0.483	2.600	0.00065
· · · ····		O-Xylene	0,103	3.600	8.300	0.061	0.061) 0.00056 1
		P-Xylene	1.800	8.700	1.700	0.322	0.745	0.00035 2
·	, 2.	Dichloroethane	ND	ND	ND	ND	0.0022	0.0156 11
Tra	nsljä	2 Dichloroethene	ND	ND	ND	0.0015	ND	ND 3
·		Nitrate as N	< 0.01		< 0. 01	· · · · · · · · · · · · · · · · · · ·	0.06	13.1 3
: :		Phenol	0.05		0.34	· · · · · · · · · · · · · · · · · · ·	0.06	0,03
		Sulfate	9.5		4,5		30.	728. 22
 								23
		TDS	3250		3130		1900	3220 24
								25
								20
								21
	+							28
			┢╼╞╴┢╌┢╴┼╶╋╼╊		╢╴╎╸╎╶╽╸╢╴┤╸			29
'	+	 			╫╌╌╌┝┾┥┝		╺╫╍┟┥┥┥┥	30
 			╟╍┽┼┼┼┼					31
								32
							╺╢╷┼┾╋┼┥┛┝╸	3:
			╟┊╎╎╢╢				┉╠╍┼┅┞╌┠╼┞╌┞╸	34
i		 						3:
•		·						31
/								
	<u>i</u>							3
7 11		· .						3
<u> </u>	1							4
			<u>H </u>					

The last in

 γ_{11}

2506 West Main Street Farmington, New Mexico 87401 Tel. (505) 326-4737

BLOOMFIELD REFINING COMPANY Attn: Chris Hawley P.O. Box 159 Bloomfield, NM 87413

September 27, 1988

Dear Chris:

On September 09, 1988, our laboratory received eight (8) water samples for analysis. Samples were analyzed for parameters requested.

Samples were analyzed according to 40 136, "Guidelines Establishing Test Procedures for Analysis", as amended.

Enclosed are the results of the analyses performed. If you have any questions, please don't hesitate to call.

Sincerel (nod

<u>____</u>

Íon R. Richardson Lab Director

BLOOMFIELD REFINING COMPANY Attn: Chris Hawley P.O. Box 159 Bloomfield, NM 87413

September 26, 1988

36

RE: Environmental Analysis:

Sample Site: RW-1 Lab No: F1872 Date Sampled: 09/09/88 @ 1245 Date Received:09/09/88

Parameter

Nitrate + Nitrite as "N", mg/l	<0.01
Phenol, mg/1	0.34
Sulfate, mg/l	4.5
Total Dissolved Solids @ (180C), mg/l.	3130

5.0×105.2×

			-	• •
Client: BLOOMFIELD	D REFINING CO.			
Sample ID: Laboratory Number: Analysis Requested Sample Matrix:	::Purgeable Arom	atics	Date Sampled: Date Received: Date Extracted: Date Analyzed:	09/09/88 09/16/88
Parameter		Concent:	ration	Units
1,3-DICHL	OROBENZENE OROBENZENE OROBENZENE	6400 540 70 4800 8300 1700 ND ND ND ND	(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l

Method 8020: Aromatic Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection limit.

Report Date: 09/26/88

Ron R. Richardson Laboratory Director

38

Report Date: 09/

09/26/88

Client: BLOOMFIELD REFINING CO.

Laboratory Number:	F1872	Date	Received:	09/09/88 09/09/88
Analysis Requested: Sample Matrix:	Purgeable Aromatics Water			09/22/88 09/22/88

CHLOROMETHANEND(1.0)ug/lBROMOMETHANEND(1.0)ug/lBROMOMETHANEND(1.0)ug/lCHLOROETHANEND(1.0)ug/lCHLOROETHANEND(1.0)ug/lMETHYLENE CHLORIDEND(1.0)ug/lTRICHLOROFLUOROMETHANEND(1.0)ug/l1,1 DICHLOROETHENEND(1.0)ug/lBROMOCHLOROMETHANEND(1.0)ug/l1,1 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,1,1 TRICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROPROPANEND(1.0)ug/l1,2 DICHLOROPROPANEND(1.0)ug/lTRANS 1,2 DICHLOROETHENEND(1.0)ug/l2 CHLOROETHYL VINYL ETHERND(1.0)ug/l2 CHLOROETHANEND(1.0)ug/l1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,	Parameter	Conce	entration	Units	
BROMOMETHANE ND (1.0) ug/1 VINYL CHLORIDE ND (1.0) ug/1 CHLOROETHANE ND (1.0) ug/1 METHYLENE CHLORIDE ND (1.0) ug/1 METHYLENE CHLORIDE ND (1.0) ug/1 TRICHLOROFLUOROMETHANE ND (1.0) ug/1 1,1 DICHLOROETHENE ND (1.0) ug/1 1,1 DICHLOROETHANE ND (1.0) ug/1 1,1 DICHLOROETHANE ND (1.0) ug/1 1,1 DICHLOROETHANE ND (1.0) ug/1 1,2 DICHLOROPROPANE ND (1.0) ug/1 1,2 DICHLOROPROPANE ND (1.0) ug/1 TRICHLOROETHENE ND (1.0) ug/1 1,2 CHLOROETHENE ND (1.0) ug/1 <t< th=""><th>CHLOROMETHANE</th><th>ND</th><th>(1.0)</th><th></th></t<>	CHLOROMETHANE	ND	(1.0)		
VINYL CHLORIDEND(1.0)ug/lCHLOROETHANEND(1.0)ug/lMETHYLENE CHLORIDEND(1.0)ug/lTRICHLOROFLUOROMETHANEND(1.0)ug/l1,1 DICHLOROETHENEND(1.0)ug/lBROMOCHLOROMETHANEND(1.0)ug/l1,1 DICHLOROETHANEND(1.0)ug/l1,1 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,1 TRICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHENEND(1.0)ug/lTRICHLOROETHENEND(1.0)ug/lTRANS 1,2 DICHLOROETHENEND(1.0)ug/lCIS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l	BROMOMETHANE			-	
CHLOROETHANEND(1.0)ug/lMETHYLENE CHLORIDEND(1.0)ug/lTRICHLOROFLUOROMETHANEND(1.0)ug/l1,1 DICHLOROETHENEND(1.0)ug/lBROMOCHLOROMETHANEND(1.0)ug/l1,1 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,1,1 TRICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/lTRICHLOROETHENEND(1.0)ug/lTRICHLOROETHENEND(1.0)ug/lTRANS 1,2 DICHLOROETHENEND(1.0)ug/lCIS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,0ug/l1.0)ug/l1,1,0ug/l1.0)ug/l1,1,2,2	VINYL CHLORIDE				
METHYLENE CHLORIDEND(1.0)ug/lTRICHLOROFLUOROMETHANEND(1.0)ug/l1,1 DICHLOROETHENEND(1.0)ug/lBROMOCHLOROMETHANEND(1.0)ug/l1,1 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROPROPANEND(1.0)ug/lTRICHLOROETHENEND(1.0)ug/lTRANS 1,2 DICHLOROETHENEND(1.0)ug/l2 CHLOROETHYL VINYL ETHERND(1.0)ug/lCIS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l	CHLOROETHANE			_	
TRICHLOROFLUOROMETHANEND(1.0)ug/l1,1 DICHLOROETHENEND(1.0)ug/lBROMOCHLOROMETHANEND(1.0)ug/l1,1 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,1 TRICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROPROPANEND(1.0)ug/lTRANS 1,2 DICHLOROETHENEND(1.0)ug/l2 CHLOROETHYL VINYL ETHERND(1.0)ug/lCIS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,	METHYLENE CHLORIDE			-	
1,1 DICHLOROETHENEND(1.0)ug/lBROMOCHLOROMETHANEND(1.0)ug/l1,1 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,1,1 TRICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROPROPANEND(1.0)ug/lTRICHLOROETHENEND(1.0)ug/lTRANS 1,2 DICHLOROETHENEND(1.0)ug/lCHLOROETHYL VINYL ETHERND(1.0)ug/lTRANS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l	TRICHLOROFLUOROMETHANE			-	
BROMOCHLOROMETHANEND(1.0)ug/l1,1 DICHLOROETHANEND(1.0)ug/lCHLOROFORMND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,1,1 TRICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROPROPANEND(1.0)ug/l1,2 DICHLOROPROPANEND(1.0)ug/lTRICHLOROETHENEND(1.0)ug/lTRANS 1,2 DICHLOROETHENEND(1.0)ug/l2 CHLOROETHYL VINYL ETHERND(1.0)ug/lCIS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l0 CHOROMETHENEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l0 CHOROMETHENEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l0 CHOROMETHENEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l0 CHOROMETHENEND(1.0)ug/l0 CHOROMETHENEND(1.0)ug/l0 CHOROMETHENEND(1.0)ug/l0 CHOROMETHENEND(1.0)ug/l0 CHOROM	1,1 DICHLOROETHENE			-	
1,1 DICHLOROETHANEND(1.0)ug/lCHLOROFORMND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,1,1 TRICHLOROETHANEND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,2 DICHLOROPROPANEND(1.0)ug/l1,2 DICHLOROPROPANEND(1.0)ug/lTRICHLOROETHENEND(1.0)ug/lTRANS 1,2 DICHLOROETHENEND(1.0)ug/l2 CHLOROETHYL VINYL ETHERND(1.0)ug/lTRANS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l000001,1,2,2 TETRACHLOROETHANEND(1.0)ug/l00000000001,1,2,2 TETRACHLOROETHANEND(1.0)ug/l000<	BROMOCHLOROMETHANE	ND		_	
CHLOROFORMND(1.0)ug/l1,2 DICHLOROETHANEND(1.0)ug/l1,1,1 TRICHLOROETHANEND(1.0)ug/lCARBONTETRACHLORIDEND(1.0)ug/l1,2 DICHLOROPROPANEND(1.0)ug/lTRICHLOROETHENEND(1.0)ug/lTRANS 1,2 DICHLOROETHENEND(1.0)ug/l2 CHLOROETHYL VINYL ETHERND(1.0)ug/lTRANS 1,3 DICHLOROPROPENEND(1.0)ug/lCIS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l0 (1,0)ug/l(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l0 (1,0)ug/l(1.0)ug/l0 (1,0)ug/l(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l0 (1,0)ug/l(1.0)ug/l0 (1,0)ug/l(1.0)ug/l0 (1,0)ug/l(1.0)ug/l0 (1,0)ug/l(1.0)ug/l	1,1 DICHLOROETHANE	ND		-	
1,2 DICHLOROETHANEND(1.0)ug/l1,1,1 TRICHLOROETHANEND(1.0)ug/lCARBONTETRACHLORIDEND(1.0)ug/l1,2 DICHLOROPROPANEND(1.0)ug/lTRICHLOROETHENEND(1.0)ug/lTRANS 1,2 DICHLOROETHENEND(1.0)ug/l2 CHLOROETHYL VINYL ETHERND(1.0)ug/lTRANS 1,3 DICHLOROPROPENEND(1.0)ug/lCIS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l0 (1.0)ug/l(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/l0 (1.0)ug/l(1.0)ug/l0 (1.0)ug/l(1.0)ug/l0 (1.0)ug/l(1.0)ug/l	CHLOROFORM	ND	, .	_	
1,1,1TRICHLOROETHANEND(1.0)ug/lCARBONTETRACHLORIDEND(1.0)ug/l1,2DICHLOROPROPANEND(1.0)ug/lTRICHLOROETHENEND(1.0)ug/lTRANS 1,2DICHLOROETHENEND(1.0)ug/l2CHLOROETHYLVINYLETHERND(1.0)ug/lTRANS 1,3DICHLOROPROPENEND(1.0)ug/lCIS 1,3DICHLOROPROPENEND(1.0)ug/lDIBROMOCHLOROMETHANEND(1.0)ug/l1,1,2TRICHLOROETHANEND(1.0)ug/l1,1,2,2TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l000001,1,2,2000000000000001,1,2,20000000000000000000100	1,2 DICHLOROETHANE	ND		-	
CARBONTETRACHLORIDEND(1.0)ug/l1,2 DICHLOROPROPANEND(1.0)ug/lTRICHLOROETHENEND(1.0)ug/lTRANS 1,2 DICHLOROETHENEND(1.0)ug/l2 CHLOROETHYL VINYL ETHERND(1.0)ug/lTRANS 1,3 DICHLOROPROPENEND(1.0)ug/lCIS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l	1,1,1 TRICHLOROETHANE	ND		ug/l	
TRICHLOROETHENEND(1.0)ug/lTRANS 1,2 DICHLOROETHENEND(1.0)ug/l2 CHLOROETHYL VINYL ETHERND(1.0)ug/lTRANS 1,3 DICHLOROPROPENEND(1.0)ug/lCIS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/lBROMOFORMND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l		ND	(1.0)	_	
TRANS 1,2 DICHLOROETHENEND(1.0)ug/12 CHLOROETHYL VINYL ETHERND(1.0)ug/1TRANS 1,3 DICHLOROPROPENEND(1.0)ug/1CIS 1,3 DICHLOROPROPENEND(1.0)ug/1DIBROMO CHLOROMETHANEND(1.0)ug/1BROMOFORMND(1.0)ug/11,1,2 TRICHLOROETHANEND(1.0)ug/11,1,2,2 TETRACHLOROETHANEND(1.0)ug/1TETRACHLOROETHENEND(1.0)ug/1	1,2 DICHLOROPROPANE	ND	(1.0)	ug/l	
2 CHLOROETHYL VINYL ETHER TRANS 1,3 DICHLOROPROPENE NDND(1.0)ug/lTRANS 1,3 DICHLOROPROPENE NDND(1.0)ug/lCIS 1,3 DICHLOROPROPENE DIBROMO CHLOROMETHANE NDND(1.0)ug/lDIBROMO CHLOROMETHANE NDND(1.0)ug/l1,1,2 TRICHLOROETHANE NDND(1.0)ug/l1,1,2,2 TETRACHLOROETHANE NDND(1.0)ug/lTETRACHLOROETHENE NDND(1.0)ug/l	TRICHLOROETHENE	ND	(1.0)	ug/l	
TRANS 1,3 DICHLOROPROPENEND(1.0)ug/lCIS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/lBROMOFORMND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l		ND	(1.0)	ug/l	
CIS 1,3 DICHLOROPROPENEND(1.0)ug/lDIBROMO CHLOROMETHANEND(1.0)ug/lBROMOFORMND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l		ND	(1.0)	ug/l	
DIBROMO CHLOROMETHANEND(1.0)ug/lBROMOFORMND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l		ND	(1.0)	ug/l	
BROMOFORMND(1.0)ug/l1,1,2 TRICHLOROETHANEND(1.0)ug/l1,1,2,2 TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l			(1.0)	ug/l	
1,1,2TRICHLOROETHANEND(1.0)ug/l1,1,2,2TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l			(1.0)	ug/l	
1,1,2,2TETRACHLOROETHANEND(1.0)ug/lTETRACHLOROETHENEND(1.0)ug/l			(1.0)	ug/l	
TETRACHLOROETHENE ND (1.0) ug/1				ug/l	
CHLOROBENZENE ND (1.0) ug/1				-	
	CHLOROBENZENE	ND	(1.0)	ug/l	

Method 8010: Halogenated Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection limit.

2000 Δ

Ron R. Richardson Laboratory Director

BLOOMFIELD REFINING COMPANY Attn: Chris Hawley P.O. Box 159 Bloomfield, NM 87413

September 26, 1988

RE: Environmental Analysis:

Sample Site: RW-2 Lab No: F1873 Date Sampled: 09/09/88 @ 1330 Date Received:09/09/88

Parameter

Nitrate + Nitrite as "N", mg/l	<0.01
Phenol, mg/l	0.13
Sulfate, mg/l	<1
Total Dissolved Solids @ (180C), mg/l.	1980

Report Date: 09/26/88

Client: BLOOMFIELD REFINING CO.

Sample ID:	RW-2	Date	Sampled:	09/09/88
Laboratory Number:			Received:	,,
	Purgeable Aromatics	Date	Extracted:	09/16/88
Sample Matrix:	Water	Date	Analyzed:	09/16/88

Parameter	Concent	Units	
BENZENE	11000	(0.2)	uq/1
ETHYLBENZENE	2900	(0.2)	ug/l
TOLUENE	10200	(0.2)	ug/l
M-XYLENE	17700	(0.2)	ug/l
O-XYLENE	4900	(0.2)	ug/l
P-XYLENE	6200	(0.2)	ug/l
1,2-DICHLOROBENZENE	ND	(0.2)	ug/l
1,3-DICHLOROBENZENE	ND	(0.2)	ug/1
1,4-DICHLOROBENZENE	ND	(0.2)	ug/l
CHLOROBENZENE	ND	(0.2)	ug/l

Method 8020: Aromatic Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection limit.

Ron R. Richardson Laboratory Director

41

. بياس بيدغانيه

			Report Date:	09/26/88
Client	BLOOMFIELD REFINING CO.			
Analysi	ID: RW-2 tory Number: F1873 is Requested:Purgeable Aromat Matrix: Water	ics	Date Sampled: Date Received: Date Extracted: Date Analyzed:	
	Parameter	Concen	tration	Units
	CHLOROMETHANE	ND	(1.0)	ug/1
	BROMOMETHANE	ND	(1.0)	ug/l
	VINYL CHLORIDE	ND	(1.0)	ug/l
	CHLOROETHANE	ND	(1.0)	ug/1
	METHYLENE CHLORIDE	ND	(1.0)	ug/l
	TRICHLOROFLUOROMETHANE	ND	(1.0)	ug/l
	1,1 DICHLOROETHENE	ND	(1.0)	ug/l
	BROMOCHLOROMETHANE	ND	(1.0)	ug/l
	1,1 DICHLOROETHANE	ND	(1.0)	ug/l
	CHLOROFORM	ND	(1.0)	ug/l
	1,2 DICHLOROETHANE	1.6	(1.0)	ug/l
	1,1,1 TRICHLOROETHANE	ND	(1.0)	ug/l
	CARBONTETRACHLORIDE	ND	(1.0)	ug/l
	1,2 DICHLOROPROPANE	ND	(1.0)	ug/l
	TRICHLOROETHENE	ND	(1.0)	ug/l
	TRANS 1,2 DICHLOROETHENE	ND	(1.0)	ug/l
	2 CHLOROETHYL VINYL ETHER	ND	(1.0)	ug/l
	TRANS 1,3 DICHLOROPROPENE	ND	(1.0)	ug/l
	CIS 1,3 DICHLOROPROPENE DIBROMO CHLOROMETHANE	ND	(1.0)	ug/l
	BROMOFORM	ND ND	(1.0)	ug/l ug/l
	1,1,2 TRICHLOROETHANE	ND	(1.0) (1.0)	ug/l
		ND	(1.0)	ug/l
	1,1,2,2 TETRACHLOROETHANE TETRACHHOROETHENE	ND	(1.0)	ug/l

Method 8010: Halogenated Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection \mathbf{A}

Ron R. Richardson Laboratory Director

BLOOMFIELD REFINING COMPANY Attn: Chris Hawley P.O. Box 159 Bloomfield, NM 87413

September 26, 1988

14

11

RE: Environmental Analysis:

Sample Site: RW-3 Lab No: F1874 Date Sampled: 09/09/88 @ 1415 Date Received:09/09/88

Parameter

PHONE

Nitrate + Nitrite as "N", mg/l	<0.01
Phenol, mg/l	0.05
Sulfate, mg/l	9.5
Total Dissolved Solids @ (180C), mg/l.	3250

33.6

من المراجع الم المراجع
Client:	BLOOMFIELD	REFINING CO.			
Analysis	ry Number:	Purgeable Arom	atics	Date Sampled: Date Received: Date Extracted: Date Analyzed:	09/09/88 09/20/88
	Parameter		Concent	ration	Units
	BENZENE		12000	(0.2)	ug/l
	ETHYLBENZE	NE	2.86	(0.2)	ug/l
	TOLUENE		62.	(0.2)	ug/l
	M-XYLENE		3500	(0.2)	ug/l
	O-XYLENE		103	(0.2)	ug/l
	P-XYLENE		1800	(0.2)	ug/l
	1,2-DICHLO		ND	(0.2)	ug/l
	1,3-DICHLO		ND	(0.2)	ug/l
	1,4-DICHLO		ND	(0.2)	ug/l
	CHLOROBENZ	ENE	ND	(0.2)	ug/l

Method 8020: Aromatic Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection limit.

12.10

Report Date: 09/26/88

Ron R. Richardson Laboratory Director

MARY WAR

Report Date: 09/26/88 Client: BLOOMFIELD REFINING CO. Sample ID: RW-3 Date Sampled: 09/09/88 Laboratory Number: F1874 Date Received: 09/09/88 Analysis Requested: Purgeable Aromatics Date Extracted: 09/23/88 09/23/88 Sample Matrix: Water Date Analyzed: Parameter Concentration Units -----_ _ _ _ _ _____

CHLOROMETHANE	ND	(1.0)	ug/l
BROMOMETHANE	ND	(1.0)	ug/l
VINYL CHLORIDE	ND	(1.0)	ug/l
CHLOROETHANE	ND	(1.0)	ug/l
METHYLENE CHLORIDE	ND	(1.0)	ug/l
TRICHLOROFLUOROMETHANE	ND	(1.0)	ug/l
1,1 DICHLOROETHENE	ND	(1.0)	ug/l
BROMOCHLOROMETHANE	ND	(1.0)	ug/l
1,1 DICHLOROETHANE	ND	(1.0)	ug/l
CHLOROFORM	ND	(1.0)	ug/l
1,2 DICHLOROETHANE	ND	(1.0)	ug/l
1,1,1 TRICHLOROETHANE	ND	(1.0)	ug/l
CARBONTETRACHLORIDE	ND	(1.0)	ug/l
1,2 DICHLOROPROPANE	ND	(1.0)	ug/l
TRICHLOROETHENE	ND	(1.0)	ug/l
TRANS 1,2 DICHLOROETHENE	ND	(1.0)	ug/l
2 CHLOROETHYL VINYL ETHER	ND	(1.0)	ug/l
TRANS 1,3 DICHLOROPROPENE	ND	(1.0)	ug/l
CIS 1,3 DICHLOROPROPENE	ND	(1.0)	ug/l
DIBROMO CHLOROMETHANE	ND	(1.0)	ug/l
BROMOFORM	ND	(1.0)	ug/l
1,1,2 TRICHLOROETHANE	ND	(1.0)	ug/l
1,1,2,2 TETRACHLOROETHANE	ND	(1.0)	ug/l
TETRACHLOROETHENE	ND	(1.0)	ug/l
CHLOROBENZENE	ND	(1.0)	ug/l
		•	

Method 8010: Halogenated Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection limit

STREAM THE REPORT OF A DURING THE PROPERTY OF A

ž

On

Ron R. Richardson Laboratory Director

all the termine

BLOOMFIELD REFINING COMPANY Attn: Chris Hawley P.O. Box 159 Bloomfield, NM 87413

September 26, 1988

RE: Environmental Analysis:

Sample Site: MW-11 Lab No: F1875 Date Sampled: 09/09/88 @ 1445 Date Received:09/09/88

Parameter

Nitrate + Nitrite as "N", mg/l	0.06
Phenol, mg/l	0.06
Sulfate, mg/l	30
Total Dissolved Solids @ (180C), mg/l.	1900

Report Date: 09/26/88

Client: BLOOMFIELD REFINING CO.

Sample ID:	MW-11	Date	Sampled:	09/09/88
Laboratory Number:	F1875	Date	Received:	09/09/88
Analysis Requested:	:Purgeable Aromatics	Date	Extracted:	09/20/88
Sample Matrix:	Water	Date	Analyzed:	09/20/88

Parameter	Concent	Units	
BENZENE	44400	(0.2)	ug/l
ETHYLBENZENE	63.	(0.2)	ug/l
TOLUENE	840	(0.2)	ug/l
M-XYLENE	2600	(0.2)	ug/l
O-XYLENE	61.	(0.2)	ug/l
P-XYLENE	745	(0.2)	ug/l
1,2-DICHLOROBENZENE	ND	(0.2)	ug/l
1,3-DICHLOROBENZENE	ND	(0.2)	ug/l
1,4-DICHLOROBENZENE	ND	(0.2)	ug/l
CHLOROBENZENE	ND	(0.2)	ug/l

Method 8020: Aromatic Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection limit.

Ron R. Richardson Laboratory Director

09/26/88 Report Date: Client: BLOOMFIELD REFINING CO. Sample ID: MW-11 Date Sampled: 09/09/88 Laboratory Number: F1875 Date Received: 09/09/88 Analysis Requested: Purgeable Aromatics Date Extracted: 09/22/88 Sample Matrix: Water Date Analyzed: 09/22/88 Parameter Concentration Units _____ ____ CHLOROMETHANE ND ug/l (1.0)BROMOMETHANE ND ug/l(1.0)VINYL CHLORIDE ug/l ND (1.0)CHLOROETHANE ND (1.0)ug/l METHYLENE CHLORIDE ND ug/l(1.0)TRICHLOROFLUOROMETHANE ND (1.0)uq/l1,1 DICHLOROETHENE ND (1.0)ug/lBROMOCHLOROMETHANE ND (1.0)ug/l 1,1 DICHLOROETHANE ND (1.0)ug/l CHLOROFORM ND (1.0)ug/l1,2 DICHLOROETHANE 2.2 (1.0)ug/11,1,1 TRICHLOROETHANE ND (1.0)ug/lCARBONTETRACHLORIDE ND (1.0)uq/11,2 DICHLOROPROPANE ND (1.0)ug/1TRICHLOROETHENE ND (1.0)uq/lTRANS 1,2 DICHLOROETHENE ND (1.0)uq/l2 CHLOROETHYL VINYL ETHER ND (1.0)ug/l TRANS 1,3 DICHLOROPROPENE ND (1.0)ug/l CIS 1.3 DICHLOROPROPENE ND (1.0)ug/l DIBROMO CHLOROMETHANE ND ug/l (1.0)BROMOFORM ND ug/l (1.0)1,1,2 TRICHLOROETHANE ND ug/l (1.0)1,1,2,2 TETRACHLOROETHANE ND (1.0)ug/l **TETRACHLOROETHENE** ND ug/1(1.0)CHLOROBENZENE ND (1.0)ug/l

Method 8010: Halogenated Volatile Organics, SW-846, USEPA, (1982).

IN THE FEATURE AND IN BUILDING

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection/

THE REPORT OF THE PARTY OF THE PARTY OF

Ron R. Richardson Laboratory Director BLOOMFIELD REFINING COMPANY Attn: Chris Hawley P.O. Box 159 Bloomfield, NM 87413

September 26, 1988

RE: Environmental Analysis:

Sample Site: MW-13 Lab No: F1876 Date Sampled: 09/09/88 @ 1145 Date Received:09/09/88

THE P

Parameter

Nitrate + Nitrite as "N", mg/l	13.1
Phenol, mg/l	0.03
Sulfate, mg/l	728
Total Dissolved Solids @ (180C), mg/l.	3220

Report Date: 09/26/88

Client: BLOOMFIELD REFINING CO.

Sample ID:	MW-13	Date	Sampled:	09/09/88
Laboratory Number:	F1876	Date	Received:	09/09/88
Analysis Requested:	Purgeable Aromatics	Date	Extracted:	09/19/88
Sample Matrix:	Water	Date	Analyzed:	09/19/88

Parameter	Concent	Concentration		
BENZENE	0.23	(0.2)	ug/l	
ETHYLBENZENE	0.29	(0.2)	ug/l	
TOLUENE	0.24	(0.2)	ug/l	
M-XYLENE	0.65	(0.2)	ug/l	
O-XYLENE	0.56	(0.2)	ug/l	
P-XYLENE	0.35	(0.2)	ug/l	
1,2-DICHLOROBENZENE	ND	(0.2)	ug/l	
1,3-DICHLOROBENZENE	ND	(0.2)	ug/l	
1,4-DICHLOROBENZENE	ND	(0.2)	ug/l	
CHLOROBENZENE	ND	(0.2)	ug/l	

Method 8020: Aromatic Volatile Organics, SW-846, USEPA, (1982).

11

前前

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection limit.

Ron R. Richardson

Laboratory Director

Report Date: 09/26/88

50

Client: BLOOMFIELD REFINING CO.

Sample ID:	MW-13	Date Sampled:	09/09/88
Laboratory Number:	F1876	Date Received:	09/09/88
Analysis Requested	:Purgeable Aromatics	Date Extracted:	09/23/88
Sample Matrix:	Water	Date Analyzed:	09/23/88

Parameter	Concentration		Units
CHLOROMETHANE	ND	(1.0)	ug/l
BROMOMETHANE	ND	(1.0)	ug/l
VINYL CHLORIDE	ND	(1.0)	ug/l
CHLOROETHANE	ND	(1.0)	ug/l
METHYLENE CHLORIDE	ND	(1.0)	ug/l
TRICHLOROFLUOROMETHANE	ND	(1.0)	ug/l
1,1 DICHLOROETHENE	ND	(1.0)	ug/l
BROMOCHLOROMETHANE	ND	(1.0)	ug/l
1,1 DICHLOROETHANE	ND	(1.0)	ug/l
CHLOROFORM	ND	(1.0)	ug/l
1,2 DICHLOROETHANE	15.6	(1.0)	ug/l
1,1,1 TRICHLOROETHANE	ND	(1.0)	ug/l
CARBONTETRACHLORIDE	ND	(1.0)	ug/l
1,2 DICHLOROPROPANE	ND	(1.0)	ug/l
TRICHLOROETHENE	ND	(1.0)	ug/l
TRANS 1,2 DICHLOROETHENE	ND	(1.0)	ug/l
2 CHLOROETHYL VINYL ETHER	ND	(1.0)	ug/l
TRANS 1,3 DICHLOROPROPENE	ND	(1.0)	ug/l
CIS 1,3 DICHLOROPROPENE	ND	(1.0)	ug/l
DIBROMO CHLOROMETHANE	ND	(1.0)	ug/l
BROMOFORM	ND	(1.0)	ug/l
1,1,2 TRICHLOROETHANE	ND	(1.0)	ug/l
1,1,2,2 TETRACHLOROETHANE	ND	(1.0)	ug/l
TETRACHLOROETHENE	ND	(1.0)	ug/l
CHLOROBENZENE	ND	(1.0)	ug/l

Method 8010: Halogenated Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection

DIGITIZATION DE LA CONTRACTO

∖limî

Ron R. Richardson Laboratory Director

51

09/26/88

			-	
Client: BLC	OOMFIELD REFINING CO.			
Analysis Rec	P-1 Number: F1877 Quested::Purgeable Aromati x: Water	.cs	Date Sampled: Date Received: Date Extracted: Date Analyzed:	09/20/88
Par	rameter	Concentra	ation	Units
BEN	IZENE	102200	(0.2)	ug/1
ETH	IYLBENZENE	1.43		ug/l
TOI	LUENE	34.	(0.2)	ug/l
M-3	YLENE	483	(0.2)	ug/l
0-3	YLENE	61	(0.2)	ug/l
P-3	KYLENE	322	(0.2)	ug/l
1,2	2-DICHLOROBENZENE	ND	(0.2)	ug/l
1,3	B-DICHLOROBENZENE	ND	(0.2)	ug/l
1,4	4-DICHLOROBENZENE	ND	(0.2)	ug/l

ND

(0.2)

Method 8020: Aromatic Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection limit.

CHLOROBENZENE

ug/l

Ron R. Richardson Laboratory Director

Report Date:

رو این از میتوند به والموی در این از مرا مادر است مستخد مدارد در است.

52

09/26/88 Report Date:

Client: BLOOMFIELD REFINING CO.

Sample ID:	P-1	Date	Sampled:	09/09/88
Laboratory Number:	F1877	Date	Received:	09/09/88
Analysis Requested	:Purgeable Aromatics	Date	Extracted:	09/23/88
Sample Matrix:	Water	Date	Analyzed:	09/23/88

Parameter	Concentration		Units	
CHLOROMETHANE	ND	(1.0)	ug/l	
BROMOMETHANE	ND	(1.0)	ug/l	
VINYL CHLORIDE	ND	(1.0)	ug/l	
CHLOROETHANE	ND	(1.0)	ug/l	
METHYLENE CHLORIDE	ND	(1.0)	ug/l	
TRICHLOROFLUOROMETHANE	ND	(1.0)	ug/l	
1,1 DICHLOROETHENE	ND	(1.0)	ug/l	
BROMOCHLOROMETHANE	ND	(1.0)	ug/l	
1,1 DICHLOROETHANE	ND	(1.0)	ug/l	
CHLOROFORM	ND	(1.0)	ug/l	
1,2 DICHLOROETHANE	ND	(1.0)	ug/l	
1,1,1 TRICHLOROETHANE	ND	(1.0)	ug/l	
CARBONTETRACHLORIDE	ND	(1.0)	ug/l	
1,2 DICHLOROPROPANE		(1.0)	ug/l	
TRICHLOROETHENE	ND	(1.0)	ug/l	
TRANS 1,2 DICHLOROETHENE	1.5	(1.0)	ug/l	
2 CHLOROETHYL VINYL ETHER	ND	(1.0)	ug/l	
TRANS 1,3 DICHLOROPROPENE	ND	(1.0)	ug/l	
CIS 1,3 DICHLOROPROPENE	ND	(1.0)	ug/l	
DIBROMO CHLOROMETHANE	ND	(1.0)	ug/l	
BROMOFORM	ND	(1.0)	ug/l	
1,1,2 TRICHLOROETHANE		(1.0)	ug/l	
1,1,2,2 TETRACHLOROETHANE	ND	(1.0)	ug/l	
TETRACHLOROETHENE	ND	(1.0)	ug/l	
CHLOROBENZENE	ND	(1.0)	ug/l	

Method 8010: Halogenated Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection limi

 ∞

Ron R. Richardson Laboratory Director

THE REPORT OF LAND

Report Date: 09/26/88

Client: BLOOMFIELD REFINING CO.

Sample ID:	P-2	Date	Sampled:	09/09/88
Laboratory Number:	F1878	Date	Received:	09/09/88
Analysis Requested:	:Purgeable Aromatics	Date	Extracted:	09/21/88
Sample Matrix:	Water	Date	Analyzed:	09/21/88

Parameter	Concentration		Units
BENZENE	4800	(0.2)	ug/l
ETHYLBENZENE	900	(0.2)	ug/l
TOLUENE	1430	(0.2)	ug/l
M-XYLENE	4500	(0.2)	ug/l
O-XYLENE	1460	(0.2)	ug/l
P-XYLENE	1570	(0.2)	ug/l
1,2-DICHLOROBENZENE	ND	(0.2)	ug/l
1,3-DICHLOROBENZENE	ND	(0.2)	ug/l
1,4-DICHLOROBENZENE	ND	(0.2)	ug/l
CHLOROBENZENE	ND	(0.2)	ug/l

Method 8020: Aromatic Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection limit.

/ Ron R. Richardson Laboratory Director

THE REAL PROPERTY OF THE

54

Report Date: 09/26/88

Client: BLOOMFIELD REFINING CO.

Sample ID:	P-2	Date	Sampled:	09/09/88
Laboratory Number:	F1878	Date	Received:	09/09/88
Analysis Requested	:Purgeable Aromatics	Date	Extracted:	09/23/88
Sample Matrix:	Water	Date	Analyzed:	09/23/88

Parameter	Concentra	ation	Units
CHLOROMETHANE	ND	(1.0)	ug/l
BROMOMETHANE	ND	(1.0)	ug/l
VINYL CHLORIDE	ND	(1.0)	ug/l
CHLOROETHANE	ND	(1.0)	ug/l
METHYLENE CHLORIDE	ND	(1.0)	ug/l
TRICHLOROFLUOROMETHANE	ND	(1.0)	ug/l
1,1 DICHLOROETHENE	ND	(1.0)	ug/1
BROMOCHLOROMETHANE	ND	(1.0)	ug/l
1,1 DICHLOROETHANE	ND	(1.0)	ug/l
CHLOROFORM	ND	(1.0)	ug/l
1,2 DICHLOROETHANE	ND	(1.0)	ug/l
1,1,1 TRICHLOROETHANE	ND	(1.0)	ug/l
CARBONTETRACHLORIDE	ND	(1.0)	ug/l
1,2 DICHLOROPROPANE	ND	(1.0)	ug/l
TRICHLOROETHENE	ND	(1.0)	ug/l
TRANS 1,2 DICHLOROETHENE	ND	(1.0)	ug/l
2 CHLOROETHYL VINYL ETHER	ND	(1.0)	ug/l
TRANS 1,3 DICHLOROPROPENE	ND	(1.0)	ug/l
CIS 1,3 DICHLOROPROPENE	ND	(1.0)	ug/l
DIBROMO CHLOROMETHANE	ND	(1.0)	ug/l
BROMOFORM	ND	(1.0)	ug/l
1,1,2 TRICHLOROETHANE	ND	(1.0)	ug/l
1,1,2,2 TETRACHLOROETHANE	ND	(1.0)	ug/l
TETRACHLOROETHENE	ND	(1.0)	ug/l
CHLOROBENZENE	ND	(1.0)	ug/l

Method 8010: Halogenated Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection/limit.

101

Ron R. Richardson Laboratory Director

Client: BLOOMFIELD REFINING CO. 09/09/88 Sample ID: P-3 Date Sampled: Date Received: 09/09/88 Laboratory Number: F1879 Date Extracted: 09/21/88 Analysis Requested::Purgeable Aromatics Date Analyzed: 09/21/88 Sample Matrix: Water Units Parameter Concentration _____ _________ ____ BENZENE 19400 (0.2)ug/l ETHYLBENZENE ND (0.2)ug/l TOLUENE 4.35 (0.2)ug/l M-XYLENE 22800 (0.2)ug/lO-XYLENE 3600 (0.2)ug/lP-XYLENE 8700 uq/l $\{0.2\}$ ug/l1.2-DICHLOROBENZENE ND (0.2)1,3-DICHLOROBENZENE ND (0.2)uq/l1,4-DICHLOROBENZENE ND (0.2)ug/l ug/l CHLOROBENZENE ND (0.2)

Method 8020: Aromatic Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection limit.

Ron R. Richardson Laboratory Director

Report Date:

09/26/88

Client: BLOOMFIELD REFINING CO. Sample ID: P-3 Date Sampled: 09/09/88 Laboratory Number: F1879 Date Received: 09/09/88 Analysis Requested: Purgeable Aromatics Date Extracted: 09/23/88 Sample Matrix: Date Analyzed: 09/23/88 Water Units Parameter Concentration _____ _____ ---ua/l CHLOROMETHANE (1.0)ND

Report Date:

CHLOROMETHANE	ND	(1.0)	ug/1
BROMOMETHANE	ND	(1.0)	ug/l
VINYL CHLORIDE	ND	(1.0)	ug/l
CHLOROETHANE	ND	(1.0)	ug/l
METHYLENE CHLORIDE	ND	(1.0)	ug/l
TRICHLOROFLUOROMETHANE	ND	(1.0)	ug/l
1,1 DICHLOROETHENE	ND	(1.0)	ug/l
BROMOCHLOROMETHANE	ND	(1.0)	ug/l
1,1 DICHLOROETHANE	ND	(1.0)	ug/l
CHLOROFORM	ND	(1.0)	ug/l
1,2 DICHLOROETHANE	ND	(1.0)	ug/l
1,1,1 TRICHLOROETHANE	ND	(1.0)	ug/l
CARBONTETRACHLORIDE	ND	(1.0)	ug/l
1,2 DICHLOROPROPANE	ND	(1.0)	ug/l
TRICHLOROETHENE	ND	(1.0)	ug/l
TRANS 1,2 DICHLOROETHENE	ND	(1.0)	ug/l
2 CHLOROETHYL VINYL ETHER	ND	(1.0)	ug/l
TRANS 1,3 DICHLOROPROPENE	ND	(1.0)	ug/l
CIS 1,3 DICHLOROPROPENE	ND	(1.0)	ug/l
DIBROMO CHLOROMETHANE	ND	(1.0)	ug/l
BROMOFORM	ND	(1.0)	ug/l
1,1,2 TRICHLOROETHANE	ND	(1.0)	ug/l
1,1,2,2 TETRACHLOROETHANE	ND	(1.0)	ug/l
TETRACHLOROETHENE	ND	(1.0)	ug/l
CHLOROBENZENE	ND	(1.0)	ug/l
		•	

Method 8010: Halogenated Volatile Organics, SW-846, USEPA, (1982).

(Detection limit in parenthesis.) ND - Parameter not detected at the stated detection limit

G

Ron R. Richardson Laboratory Director 56

09/26/88

2506 West Main Street Farmington, New Mexico 87401 Tel. (505) 326-4737

June 24, 1988

Bloomfield Refining Company Attn.: Chris Hawley Environmental Engineer P.O. Box 159 Bloomfield, NM 87413

Dear Mr. Hawley:

On June 06, 1988, our laboratory received five (5) water samples for analysis. Samples were analyzed for parameters requested.

Of the five samples received, sample MW4 and MW11 were the only two that had the presence of anything. Benzene and Toluene was found in both of these samples. As per conversation, MW11 was to have had Carbontetrachloride in the past and when analyzed this time there was no presence of it.

Methods referenced on the enclosed reports.

Enclosed are the results of the analyses performed. If you have any questions, please don't hesitate to call.

Sinceré

Ron R. Richardson Lab Director

enclosures:

2506 West Main Street Farmington, New Mexico 87401 Tel. (505) 326-4737

Bloomfield Refining Company Attn: Chris Hawley Environmental Engineer PO Box 159 Bloomfield, NM 87413

22 June, 1988

Re: Water Analysis

Sampl	e Site:	MW1
IML I	ab No:	F1448
Date	Sampled:	06/03/88
Date	Received:	06/06/88

 pH, (s.u.).....
 7.3

 Chloride, mg/l.....
 1040

 Fluoride, mg/l....
 0.60

 Nitrate + Nitrite as "N", mg/l....
 3.22

 Sulfate, mg/l....
 851

 Total Dissolved Solids (180), mg/l...
 3500

 Phenol, mg/l....
 0.021

 Cyanide, mg/l....
 0.022

Trace Metals (Dissolved Concentrations), mg/1

Aluminum	-0.1	Iron	-0.05
Arsenic	-0.005	Lead	-0.02
Barium	-0.5	Manganese	0.85
Boron	0.25	Mercury	-0.001
Cadimum	-0.002	Molybdenum	0.21
Chromium	-0.02	Nickel	0.03
Cobalt	-0.02	Selenium	-0.005
Copper	0.02	Silver	-0.01
		Zinc	0.03

Inter: Mountain Laboratories, Inc.

2506 West Main Street Farmington, New Mexico 87401 Tei. (505) 326-4737

Bloomfield Refining Company Attn: Chris Hawley Environmental Engineer PO Box 159 Bloomfield, NM 87413

22 June, 1988

Re: Water Analysis

Sample Site: MW4 IML Lab No: F1449 Date Sampled: 06/03/88 Date Received: 06/06/88

pH, (s.u.).... 6.8 Chloride, mg/l.... 401 Fluoride, mg/1..... 0.28 Nitrate + Nitrite as "N", mg/l..... 0.14 Sulfate, mg/l..... 3 Total Dissolved Solids (180), mg/l... 1820 Phenol, mg/l..... 0.069 Cyanide, mg/l.... -0.005

Trace Metals (Dissolved Concentrations, mg/l)

THE REAL PROPERTY OF

Aluminum	-0.1	Iron	6.44
Arsenic	-0.005	Lead	-0.02
Barium	1.4	Manganese	3.51
Boron	0.47	Mercury	-0.001
Cadimum	-0.002	Molybdenum	-0.02
Chromium	-0.02	Nickel	0.02
Cobalt	-0.02	Selenium	-0.005
Copper	-0.01	Silver	-0.01
		Zinc	0.01

60

Inter Mountain Laboratories, Inc.

2506 West Main Street Farmington, New Mexico 87401 Tel. (505) 326-4737

Bloomfield Refining Company Attn: Chris Hawley Environmental Engineer PO Box 159 Bloomfield, NM 87413

22 June, 1988

Re: Water Analysis

Sampl	e Site:	MW5
IML L	ab No:	F1450
Date	Sampled:	06/03/88
Date	Received:	06/06/88

pH, (s.u.)	
Chloride, mg/l	1300
Fluoride, mg/l	0.22
Nitrate + Nitrite as "N", mg/l	32.9
Sulfate, mg/1	1000
Total Dissolved Solids (180), mg/l	4200
Phenol, mg/l	0.064
Cyanide, mg/l	0.030

Trace Metals (Dissolved Concentrations, mg/l)

d sile it

346 T 6113

Aluminum		Iron	-0.05
Arsenic	-0.005	Lead	-0.02
Barium	-0.5	Manganese	1.45
Boron	0.48	Mercury	-0.001
Cadimum	-0.002	Molybdenum	-0.02
Chromium	-0.02	Nickel	0.04
Cobalt	-0.02	Selenium	-0.005
Copper	-0.01	Silver	-0.01
		Zinc	-0.01

2506 West Main Street Farmington, New Mexico 87401 Tel. (505) 326-4737

Client:

Bloomfield Refining Company

Sample ID:MW1Laboratory Number:F1448Analysis Requested:Method 602, 8010Sample Matrix:WaterDate Sampled:06/03/88Date Received:06/06/88

e official de cara

Parameter	Method	Concentration		Units
BENZENE	602	ND	(0.001)	mg/l
TOLUENE	602	ND	(0.001)	mg/l
CARBONTETRACHLORIDE	8010	ND	(0.001)	mg/l
1,2-DICHLOROETHENE	8010	ND	(0.001)	mg/l
1,1-DICHLOROETHYLENE	8010	ND	(0.001)	mg/l
1,1,2,2-TETRACHLOROETHYLENE	8010	ND	(0.001)	mg/l
1,1,2-TRICHLOROETHYLENE	8010	ND	(0.001)	mg/l

Method: 602, Purgeable Aromatics, Methods for Organic Chemical Analysis of of Muicipal and Industrial Wasrewater, USEPA (1984).

Method: 8010, Halogenated Volatile Organics, SW-846, USEPA (1982).

(Detection limit in Parenthesis) ND - Parameter not detected at the stated detection limit.

Ron R. Richardson Lab. Director

2506 West Main Street Farmington, New Mexico 87401 Tel. (505) 326-4737

Client:

Bloomfield Refining Company

Sample ID:MW4Laboratory Number:F1449Analysis Requested:Method 602, 8010Sample Matrix:WaterDate Sampled:06/03/88Date Received:06/06/88

Parameter	Method	Concentration		Units
BENZENE	602	8.9	(0.001)	mg/l
TOLUENE	602	0.93	(0.001)	mg/l
CARBONTETRACHLORIDE	8010	ND	(0.001)	mg/l
1,2-DICHLOROETHENE	8010	ND	(0.001)	mg/l
1,1-DICHLOROETHYLENE	8010	ND	(0.001)	mg/l
1,1,2,2-TETRACHLOROETHYLENE	8010	ND	(0.001)	mg/l
1,1,2-TRICHLOROETHYLENE	8010	ND	(0.001)	mg/l

Method: 8010, Halogenated Volatile Organics, SW-846, USEPA (1982).

(Detection limit in Parenthesis) ND - Parameter not detected at the stated detection limit.

San Shi a

Ron R. Richardson Lab. Director

Method: 602, Purgeable Aromatics, Methods for Organic Chemical Analysis of of Muicipal and Industrial Wasrewater, USEPA (1984).

Inter:Mountain Laboratories, Inc.

2506 West Main Street Farmington, New Mexico 87401 Tel. (505) 326-4737

Client:

Bloomfield Refining Company

Sample ID:MW5Laboratory Number:F1450Analysis Requested:Method 602, 8010Sample Matrix:WaterDate Sampled:06/03/88Date Received:06/06/88

Parameter	Method	Concentration		Concentration		Units
BENZENE	602	ND	(0.001)	mg/l		
TOLUENE	602	ND	(0.001)	mg/l		
CARBONTETRACHLORIDE	8010	ND	(0.001)	mg/l		
1,2-DICHLOROETHENE	8010	ND	(0.001)	mg/l		
1,1-DICHLOROETHYLENE	8010	ND	(0.001)	mg/l		
1,1,2,2-TETRACHLOROETHYLENE	8010	ND	(0.001)	mg/l		
1,1,2-TRICHLOROETHYLENE	8010	ND	(0.001)	mg/l		

Method: 602, Purgeable Aromatics, Methods for Organic Chemical Analysis of of Muicipal and Industrial Wasrewater, USEPA (1984).

Method: 8010, Halogenated Volatile Organics, SW-846, USEPA (1982).

(Detection limit in Parenthesis) ND - Parameter not detected at the stated detection limit.

unt de Truix a company a parametri della formazione della fina para parametri della della della della della del

istal in the last .

Ron R. Richardson Lab. Director

2506 West Main Street Farmington, New Mexico 87401 Tel. (505) 326-4737

Client:

Bloomfield Refining Company

Sample ID:MW11Laboratory Number:F1528Analysis Requested:Method 602, 8010Sample Matrix:WaterDate Sampled:06/03/88Date Received:06/06/88

Parameter	Method	Concent	ration	Units
BENZENE	602	3.0	(0.001)	mg/l
TOLUENE	602	0.46	(0.001)	mg/l
CARBONTETRACHLORIDE	8010	ND	(0.001)	mg/l
1,2-DICHLOROETHENE	8010	ND	(0.001)	mg/l
1,1-DICHLOROETHYLENE	8010	ND	(0.001)	mg/l
1,1,2,2-TETRACHLOROETHYLENE	8010	ND	(0.001)	mg/l
1,1,2-TRICHLOROETHYLENE	8010	ND	(0.001)	mg/l

Method: 602, Purgeable Aromatics, Methods for Organic Chemical Analysis of of Muicipal and Industrial Wasrewater, USEPA (1984).

Method: 8010, Halogenated Volatile Organics, SW-846, USEPA (1982).

(Detection limit in Parenthesis) ND - Parameter not detected at the stated detection limit.

Ron R. Richardson Lab. Director Inter:Mountain Laboratories, Inc.

2506 West Main Street Farmington, New Mexico 87401 Tel. (505) 326-4737

Client:

Bloomfield Refining Company

Sample ID:MW12Laboratory Number:F1529Analysis Requested:Method 602, 8010Sample Matrix:WaterDate Sampled:06/03/88Date Received:06/06/88

Parameter	Method	Concentration		Concentration		Units
······································						
BENZENE	602	ND	(0.001)	mg/l		
TOLUENE	602	ND	(0.001)	mg/l		
CARBONTETRACHLORIDE	8010	ND	(0.001)	mg/l		
1,2-DICHLOROETHENE	8010	ND	(0.001)	mg/l		
1,1-DICHLOROETHYLENE	8010	ND	(0.001)	mg/l		
1,1,2,2-TETRACHLOROETHYLENE	8010	ND	(0.001)	mg/l		
1,1,2-TRICHLOROETHYLENE	8010	ND	(0.001)	mg/l		

Method: 602, Purgeable Aromatics, Methods for Organic Chemical Analysis of of Muicipal and Industrial Wasrewater, USEPA (1984).

Method: 8010, Halogenated Volatile Organics, SW-846, USEPA (1982).

(Detection limit in Parenthesis) ND - Parameter not detected at the stated detection limit.

Ron R. Richardson Lab. Director

CHAPTER 4

GROUNDWATER MONITORING WELL SAMPLING

66

THE REPORT OF A DESCRIPTION OF A DESCRIP

BACKGROUND

Based on the requirements of the approved work plan, each of the groundwater monitoring wells at the Bloomfield refinery has been sampled by Bloomfield staff quarterly over a period of 12 months. Water samples from wells 1 through 3 and 5 were analyzed for priority pollutant heavy metals, cyanide, phenols, TOC, TDS, chloride, sulfate, and volatile organics including benzene, toluene, xylene, and ethylbenzene. In addition, at monitoring well 1, selected organic priority pollutants (see Appendix A) were analyzed during the second and fourth quarters. Water samples from monitoring wells 4 and 7 through 10 were analyzed for base/ neutral priority pollutants in addition to the constituents already listed. Monitoring well 6 has been dry and therefore has never yielded any water for analyses.

FINDINGS

The laboratory results corresponding to each of the quarterly sampling efforts are presented in Appendix A to this report. In addition, sampling results for Hammond Ditch (covered in chapter 7) are presented in Appendix B to this report. Summaries of these data provide concentrations of detectable substances and laboratory detection limits. Field measurements of pH, conductivity, and water levels are also included. These summaries give a concise picture of each well's performance through the sampling period in Tables 4.1 through 4.9. As a reference, Appendix C presents EPA ambient standards and criteria for superfund remedial sites.

DISCUSSION

A review of the summaries shows that monitoring wells 1, 4, 7, 8, and 10 all show appearance of low levels of priority pollutants in only a single quarter's sampling effort. The lack of consistency in appearance

DTG.6

TABLE 4.1

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-1

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nomina Detectio Limits
aboratory Analysis (m	g/1)				
Cyanide		0.1	0.07		0.01
Total phenols	0.009	0.017	0.19	0.012	0.001
тос	18	24	24	18	0.1
TDS	2,936	2,960	2,866	2,498	1
Chloride	750**	994.7	814	774	1
Sulfate	7.5**	630	673	579	1
Antimony			0.0	0,25	0.01
Arsenic		0.077	0.05	0.20	0.05
Beryllium			0.00	0.02	0.01
Cadmium	0.050			0002	0.01
Lead	0.085	0.065	0.15		0.05
Nickel	0.08		0.07	0.06	0.06
Selenium		0.035	0.033	0.03	0.01
Zinc		0.20	0.04	0.012	0.01
Barium				0.055	0.005
Manganese		0.25		1.11	0.005
Aluminum		2.07		4.54	0.05
Boron				0.27	0.01
Molybdenum				0.17	0.01
Nitrate-nitrogen		0.54		2.9	0.1
1,2-dichloroethane				0.002	0.001
hysical Measurements				,	
pH, field, s.u.	7.30	7.25	7.27	7.19	
Conductivity		4600	4600	4400	
T.O.C. eleva-					
tion, ft	5515.77	5515.77	5515.77	5515.77	7

4-2

. Maria

DTG.33

1

67

11

THE FULL PARTY IN THE PARTY INTERPARTY IN THE PARTY INTERPARTY INTERP

189 - C. C. C. C.

68

RCRA 3013 GROUNDWATER RESULTS SUMMARY¹ MW-1

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
Depth to groundwater, ft Elevation of	16.70	14.56	15.74	16.32	
groundwater, ft	5499.07	5501.21	5500.03	5499.45	

*Summary includes only pollutants determined to be present at concentrations greater than detection limits.

4-3

IL ER ID

**Laboratory technique error detected.

2

DTG.33

. . .

THE DE L

TABLE 4.2

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-2

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
Laboratory Analysis (n	ng/1)				
Cyanide		0.1	0.18		0.01
Total phenols	0.063	0.023	0.17	0.110	0.001
TOC	18	27	23	15	0.1
TDS	2,796	3,650	3,598	3,664	1
Chloride	200**	1,204.6	993	1,012	1
Sulfate	11.0**	1,750	1,104	1,372	1
Antimony		-	-	0.48	0.01
Arsenic		0.094	0.08		0.05
Lead	0.12		0.08		0.05
Nickel	0.07		0.12	0.08	0.06
Selenium		0.070	0.104	0.04	0.01
Silver	0.003				0.002
Zinc		0.020	0.02	0.009	0.01
Physical Measurements					
pH, field, s.u.	7.23	7.17	6.78	7.22	
Conductivity		5400	5500	5800	
T.O.C. eleva- tion, ft Depth to	5519.45	5519.45	5519.45	5519.45	
groundwater, ft Elevation of	18.80	18.27	18.23	18.4	
groundwater,					
ft	5500.76	5501.18	5501.22	5501.05)

*Summary includes only pollutants determined to be present at concentrations greater than detection limits.

**Laboratory technique error detected.

DTG.32

NER HAR DU AN

4-4

3

TABLE 4.3

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-3

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
aboratory Analysis (mg	/1)				
Cyanide		0.25	0.17	0.07	0.1
Total phenols	0.006	0.006	0.082	0.012	0.001
TOC	29	17	16	12	0.1
TDS	4,836	5,362	5,514	4,860	1
Chloride	1,500**	1,584	1,290	1,290	1
Sulfate	29.5**	1,950	2,056	2,204	1
Toluene		0.003			0.001
Xylene		0.030			0.001
Antimony				0.67	0.01
Arsenic		0.15	0.21		0.05
Cadmium	0.12	0.015		0.11	0.01
Lead	0.14	0.070	0.18		0.05
Mercury	0.004				0.002
Nickel	0.08	0.08	0.14	0.10	0.06
Selenium		0.010	0.100	0.05	0.01
Zinc		0.018	0.018	0.01	0.01
Physical Measurements					
pH, field, s.u.	7.08	7.10	7.06	7.12	
Conductivity		6900	7200	6900	
T.O.C. eleva-					
tion, ft	5535.85	5535.85	5535.85	5 5535.85	5
Depth to					
groundwater,					
ft	32.94	32.80	33.08	33.05	
Elevation of					
groundwater,					
ft	5502.91	5503.05	5502.7	7 5502.8	

*Summary includes only pollutants determined to be present at concentrations greater than detection limits.

**Laboratory technique error detected.

DTG.31

Sec. Substitution

4-5

110.005115

1.01

H B BUT

71

TABLE 4.4

We HARRY . 13

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-4

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
Laboratory Analysis (r	ng/1)				
Cyanide		0.5			0.01
Total phenols	0.633	0.430	0.085	0.096	0.001
тос	110	130	63	170	0.1
TDS	1,868	2,266	2,398	2,128	1
Chloride	500**	989.7	754	675	1
Sulfate		12.5			1
Benzene	11.8	3.1	6.65	1.91	0.001
Toluene	7.5	0.290	0.407	1.78	0.001
Ethylbenzene	0.107	0.070	0.140	4.48	0.001
Antimony				0.40	0.01
Arsenic		0.070	0.08		0.05
Cadmium	0.060				0.01
Lead	0.074	0.066			0.05
Nickel	0.08		0.12		0.06
Selenium		0.080	0.063	0.03	0.01
Zinc		0.019	0.008	0.04	0.01
Barium		3.54		2.3	0.005
Iron		12.0		18.6	0.3
Manganese		3.5		5.7	0.005
Aluminum		1.93		3.8	0.05
Boron				0.7	0.01
Fluoride		0.21			0.01
Nitrate-nitrogen				0.41	0.1
2,4-Dichloro-					
phenol	0.200				0.001
2,4-Dimethyl-		_			
phenol		0.058			0.001
4,6-Dinitro-o-					
cresol	0.100				0.001
2,4-Dinitro-					
phenol	0.050				0.001
2-Nitrophenol		0.108	0.026		0.001
4-Nitrophenol	0.090	0.302	0.331		0.001

DTG.30

Cat 1

المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع

1719.

TABLE 4.4 (Continued)

ina.

Ð

u Ca Kana

U

TALL UMA

÷.

DTG.30

Ser En

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-4

Parameter		3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
Phenol Benzo(a)anthra-	0.202			•	0.001	
cene		0.016	0.010		0.001	
Chrysene		0.012			0.001	
Fluorene	0.150			0.02		
Naphthalene	0.036	0.019	0.015			
Pyrene	0.166		0.005		0.001	
2-Chloro-						
phenol			0.001		0.001	L
P-chloro-m-						
cresol			0.045		0.001	
Acenaphthene	0.044			0.04	0.001	l
hysical Measuremen	nts					
pH, field, s.u.	6.84	6.85	6.70	6.73	}	
Conductivity T.O.C. eleva-		3800	3900	3800)	
tion, ft	5524.3	30 5524.	30 5524.	30 5524	4.30	
Depth to ground- water, ft Elevation of	24.9	24.85	24.32	24.0)2	
groundwater, ft	5499.3	31 5499.	45 5499.	.98 5500	0.28	

*Summary includes only pollutants determined to be present at concentrations greater than detection limits.

**Laboratory technique error detected.

1 1 1 1 1 1 1

4-7

M2

I. h. Per

ATTA DA MAG

317

TABLE 4.5

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-5

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
			 		
Laboratory Analysis (1	ng/1)				
Cyanide		0.2	0.24		0.01
Total phenols	0.006	0.007	0.034	0.021	0.001
TOC	14	21	20	9	0.1
TDS	3,840	3,778	3,184	3,788	1
Chloride	1,100**	1,339.6	1,151	1,118	1
Sulfate	14**	1,800	1,237	1,132	1
Antimony			-,	0.5	0.01
Arsenic		0.087	0.07		0.05
Cadmium	0.10				0.01
Lead	0.16	0.055			0.05
Nickel	0.10		0.09	0.07	0.06
Selenium		0.071	0.03	0.03	0.01
Zinc	0.012	0.02	0.02	0.016	0.01
Barium				0.01	0.005
Manganese		0.025			0.005
Aluminum		2.75		4.34	0.05
Boron				0.24	0.01
Molybdenum				0.08	0.01
Fluoride		0.3		0.580	0.01
Nitrate-nitrogen		12.5		36	0.1
hysical Measurements					
pH, field, s.u.	7.23	7.18	7.19	7.28	
Conductivity		5400	6000	5700	
T.O.C. eleva-	5545.10	EEAE IA	EE/E 10		`
tion, ft	5545.10	5545.10	5545.10	5545.10)
Depth to					
groundwater,	40.06	40.07	41 50	44:00	
ft	40.86	40.97	41.58	44.69	

DTG5.TT.39

2.

al de la

4-8

L DICH

TABLE 4.5 (Continued)

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-5

11.4

1. 19 **6 8 34 8 3**4 1. 11.

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
Elevation of groundwater, ft	5404.24	5504.13	5503.52	5500.41	

*Summary includes only pollutants determined to be present at concentrations greater than detection limits.

4-9

I Window

1145

**Laboratory technique error detected.

C. S. C. Berger T.

1

驟.

÷,

DTG5.TT.39

TABLE 4.6

f

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-7

een a B

75

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
aboratory Analysis (1	ng/1)				
Cyanide		0.25	0.10		0.01
Total phenols		0.006	0.036	0.025	0.001
TOC	11	4	4	2	0.1
TDS	6,076	6,406	6,348	6,940	1
Chloride	30**	79.9	20	29	1
Sulfate	5.5**	2,400	5,802	3,630	1
Benzene	0.015	·	0.058	0.009	0.001
Toluene	0.053		0.006		0.001
Ethylbenzene	0.007		0.004		0.001
Antimony				0.83	0.01
Arsenic		0.36	0.22		0.05
Cadmium	0.050	0.030		0.02	0.01
Chromium		0.052		0.08	0.05
Lead		0.24	0.05	0.26	0.05
Nickel	0.08	0.07	0.08	0.07	0.06
Selenium		0.65	0.36	0.09	0.01
Silver		0.060			0.05
Zinc	0.018	0.016	0.02	0.017	0.001
4,6-Dinitro-o-	0.010				0 001
cresol	0.013				0.001
Benzo(a)anthra-		0 001			0 001
cene		0.001		0 000	0.001 0.001
Chyrsene A-Nitrephenel			0,007	0.002	0.001
4-Nitrophenol P-chloro-m-			0.007		0.001
cresol			0.001		0.001
Benzo(k)fluor-			0.001		0.001
				0.001	0.001
anthene				0.001	0.001

DTG.28

1.73 1.61

劉

1

171.4

THREE

:--**/**

4-10

66 H

. . .

TABLE 4.6 (Continued)

.

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-7

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
Physical Measurements					
pH, field, s.u. Conductivity T.O.C. eleva-	12.15	11.08 8100	11.35 8600	10.58 8000	
tion, ft Depth to groundwater,	5524.09	5524.09	5524.09	5524.09	
ft Elevation of groundwater,	26.07	51.00	31.30	24.68	
ft	5498.02	5473.09	5492.79	5499.41	

*Summary includes only pollutants determined to be present at concentrations greater than detection limits.

4-11

**Laboratory technique error detected.

J

3

DTG.28

76

TABLE 4.7

.

1.00

DTG.27

al subort

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-8

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
Laboratory Analysis (mg/1)				
Cyanide				0.1	0.01
Total phenols		0.005	0.097		0.01
TOC	5	13	8	0.042	0.001
TDS	806	2,910	•	8	0.1
Chloride	160**		2,284	3,450	1
Sulfate	4.0**	839.7	576	913	1
Ethylbenzene	0.107	1,500	586	1,270	1
Antimony	0.101			0.45	0.01
Arsenic		0.072	0 0 0	0.67	0.01
Lead		0.072	0.03		0.05
Nickel		0.035	0 01	0 40	0.05
Selenium		0.21	0.21	0.43	0.06
Zinc			0.00	0.04	0.01
		0.020	0.02	0.016	0.01
4-Nitrophenol			0.008		0.01
Physical Measurements					
pH, field, s.u.	7.86	7.26	7.47	7.44	
Conductivity		4400	4000	5000	
T.O.C. eleva-				0000	
tion, ft	5531.12	5531.12	5531.12	5531.12	
Depth to					
groundwater,					
ft	29.15	29.08	29.00	29.02	
Elevation of					
groundwater,					
ft	5501.97	5502.04	5502.12	5502.1	
	5501.97	5502.04	5502.12	5502.1	

*Summary includes only pollutants determined to be present at concentrations greater than detection limits.

-12

a Barrister

the sea

**Laboratory technique error detected.

. Ю.

٥.

T

DTG.26

Reins

WIT.

-60

78

TABLE 4.8

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-9

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
aboratory Analysis (mg/1)				
Cyanide		0.4			0.01
Total phenols	0.304	0.372	0.17	0.16	
TOC	143	1,809	240	275	0.001
TDS	2,360	1,718	1,428	-	0.1
Chloride	149**	1,009.7	89	1,684	1
Sulfate	13.0**	114	09	109 20	1
Benzene	7.4	4	17.7	20 1 .49	-
Toluene	6.3	4 1.7	10.6		0.001
Ethylbenzene	3.2	0.71	0.015	0.754	0.001
Antimony	012	0.11	0.015	0.504 0.4	0.001
Arsenic			0.02	0.4	0.01
Lead		0.059	0.02		0.05
Nickel	0.30	0.25	0.13	0 10	0.05
Selenium	0.00	0.040	0.13	0.16	0.06
Zinc	0.012	0.015	0.05	0.03 0.011	$0.01 \\ 0.01$
A A B A			0100	0.011	0.01
2,4-Dimethyl-					
phenol	0.160	0.150			0.001
Phenol	0.149	0.170	0.013	0.133	0.001
Fluorene	0.012				0.001
4-Nitrophenol			1.10		0.001
Acenaphthalene	·		0.028		0.001
Benzo(a)anthra-					
cene			0.007		0.001
Pyrene			0.010		0.001
Naphthalene				0.029	0.001

4-13

 $i = i \gamma i$

TABLE 4.8 (Continued)

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-9

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
Physical Measurements					
pH, field, s.u. Conductivity T.O.C. eleva-	7.01	6.98 2500	6.89 2200	6.91 2600	
tion, ft Depth to ground-	5519.70	5519.70	5519.70	5519.70	
water, ft Elevation of	21.50	20.23	20.13	20.55	
groundwater, ft	5498.20	5499.47	5499.57	5499.15	

 $\ast Summary$ includes only pollutants determined to be present at concentrations greater than detection limits.

**Laboratory technique error detected.

1

82

N

đ

DTG.26

1201-1111

TABLE 4.9

÷,

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-10

1999 1999 1999

Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
Laboratory Analysis (1	ng/1)				
Cyanide			0.050		0.01
Total phenols	0.147	0.186	0.065	0.055	0.001
TOC	34	76	125	114	0.001
TDS	1,546	2,820	2,408	3,272	
Chloride	245**	569.8	2,408 587	3,272 457	1
Sulfate	5.3**	165	201	457 10	1 1
Benzene	0.093	105	0.041	14.1	-
Toluene	0.000		0.041	7.4	0.002 0.001
Ethylbenzene			0.034	0.03	0.001
Antimony				0.03	0.001
Arsenic		0.053		0.50	0.01
Beryllium		0.000		0.04	0.03
Cadmium	0.020			0.04	0.01
Lead	0.020	0.059	0.05		0.01
Nickel	0.08	0.25	0.03	0.08	0.05
Selenium	0.00	0.040	0.071	0.03	0.00
Zinc		0.015	0.16	0.03	0.01
		0.013	0.10	0.01	0.01
2,4-Dimethyl-					
phenol	0.025				0.001
4,6-Dinitro-o-	01020				0.001
cresol	0.020				0.001
Phenol	0.090				0.001
Anthracene	0.039				0.001
Fluoranthene	0.034				0.001
Fluorene	0.033				0.001
Pyrene	0.030				0.001
2-Nitrophenol			0.002		0.001
4-Nitrophenol			0.016		0.001
Naphthalene			0.010	0.004	0.001

4-15

DTG.25

for a boling

2-488 (3+ 1-1-1

62.5

TABLE 4.9 (Continued)

RCRA 3013 GROUNDWATER RESULTS SUMMARY* MW-10

					.**
Parameter	3/26/86	6/23/86	9/18/86	12/16/86	Nominal Detection Limits
Physical Measurements					
pH, field, s.u. Conductivity T.O.C. eleva-	7.07	7.08 4400	6.93 4800	7.05 5100	
tion, ft	5516.86	5516.86	5516.86	5516.86	
Depth to ground- water, ft Elevation of	19.20	18.75	18.11	17.56	
groundwater, ft	5497.66	5498.11	5498.75	5499.3	

*Summary includes only pollutants determined to be present at concentrations greater than detection limits.

**Laboratory technique error detected.

(f

DTG.25

4-16

of these compounds is believed to suggest the possibility of laboratory error - particularly when the reported concentration of the substance is very near detection limits.

A good example of the singularity of results is seen in Table 4.6, which reports a summary of monitoring well 7 results. Every hydrocarbon substance detected was at low levels close to the detection limit. Laboratory error may be responsible for detection of these substances.

The monitoring well sampling method is also important in assessing the significance of sample results. Basically, the technique involved BRC staff collection of a sample of water such that the air/liquid interface was acquired in the sample. This process maximized the possibility of acquiring any free-phase hydrocarbons and thus the highest concentrations in the sample. Therefore, sample concentrations for each sampling effort constitute a worst-case assessment of the well water when floating separate-phase contaminants are present.

The significance of concentrations measured at the BRC monitoring wells should be judged from two different standpoints: (1) water use, and (2) subsurface hydrocarbon contamination. From a water use standpoint, the concentrations of pollutants under the BRC site are insignificant. Groundwater is not currently used, and there are no plans for its use in the future.

The monitoring well sampling results include an indicator parameter in total organic carbon (TOC). This parameter can be useful in identifying suspected locations of significant concentrations of subsurface hydrocarbon since TOC values are generally higher in samples having free product.

A review of Tables 4.1 through 4.10 show that TOC values measured in monitoring well 4 were higher than all wells except 9 and 10. Well 9 has exhibited an indication of films of hydrocarbon material at the surface (reported by BRC staff on January 27, 1987). The fact that the TOC results from this well are the highest is consistent with an indication of films in this well. Films have also been indicated in monitoring well 10 during the third and fourth quarter sampling efforts recorded by

4-17

1-14-016-7

DTG8.6

BRC staff January 27, 1987. This evidence is consistent with the highest TOC values recorded for these two sampling efforts. The proximity of well 10 to well 4 and the similarity of their respective TOC values during periods of indications of floating hydrocarbon evidence suggest they may be influenced by the same source of hydrocarbon material.

18

M

DTG8.6

R4

MW 7

ND

ND

ND

ND

ND

ND

ND

ND

TO: Bloomfield Refinery

DATE: 0502 revised Page 2 of 8

SAMPLE ID/ ANALYTICAL RESULTS

MW 4

<0.01 mg/1

0.633 mg/l

110 mg/l

500 mg/l

0.3 mg/l

7.5 mg/l

11.8 mg/l

ND

0.107 mg/l

<0.01 mg/l

<0.01 mg/l

0.060 mg/l

<0.050 mg/l

<0.03 mg/l

0.074 mg/l

0.002 mg/1

<0.010 mg/l

<0.050 mg/l

<0.01 mg/l

0.012 mg/l

ND

0.08 mg/l

<0.050 mg/l

1868 mg/l

SAMPLE DATE : 3/26/86

MW 5

ANALYTE

Phenols

Benzene

Toluene

Xylenes

Ethylbenzene

CN

TOC

TDS

SO 4

C1

Sb

As

Be

Cd

Cr

Cu

Pb

Hg

Ni

Se

Aq

T1

Zn

Acrolein

Bromoform

Acrylonitrile

Chlorobenzene

Chloroethane

Chloroform

Carbon Tetrachloride

Chlorodibromomethane

Dichlorogromomethane

1,1-Dichloroethylene

1,3-Dichloropropylene

1,2-Dichloropropane

1,1-Dichloroethane

1.2-Dichloroethane

2-Chloroethylvinyl Ether

æ,	9	

•	1		
	j.		
		an a	

<0.10 mg/l <0.01 mg/l 0.006 mg/l <0.001 mg/l 14 mg/l 11 mg/l 3840 mg/l 6076 mg/l 1100 mg/l 30 mg/l 14.0 mg/1 5.5 mg/l 0.015 mg/l ND 0.053 mg/l ND ND ND ND 0.007 mg/l <0.01 mg/l <0.01 mg/l <0.050 mg/l <0.050 mg/l <0.01 mg/l <0.01 mg/l 0.10 mg/l 0.050 mg/l <0.050 mg/l <0.050 mg/l <0.03 mg/l <0.03 mg/1 0.16 mg/l <0.050 mg/l <0.002 mg/l <0.002 mg/l 0.10 mg/l 0.08 mg/l <0.010 mg/l <0.010 mg/l <0.050 mg/l <0.050 mg/l <0.01 mg/1 <0.01 mg/l 0.012 mg/l 0.018 mg/l ND ND ND ND ND ND ND

Shirts On it i give/= >

TO: Bloomfield Refinery

ANALYTE

Ę

5

M

0502 Page 3 of 8

SAMPLE ID/ ANALYTICAL RESULTS

	· · ·	MW 4		MW	5	MW	7	
	Methyl Bromide	ND	1				ND	
	Methyl Chloride	ND)				ND	
	Methylene Chloride	ND)				ND	
	1,1,2,2-Tetrachloroethane	NE)				ND	
	Tetrachloroethylene	NE)				ND	
	1,2-Transdichloroethylne	NE					ND	
	1,1,1-Trichloroethane	NE)				ND	
	1,1,2-Trichloroethane	NE)				ND	
	Trichloroethylene	NE)				ND	
	Vinyl Chloride	NE)				ND	
	Acid Compounds		•					
	2-chlorophenol	NE) .				ND	
	2,4-dichlorophenol	0.200) mg/l				ND	
	2,4-dimethylphenol	NI	-				ND	
	4,6-dinitro-o-cresol	0.100) mg/l			0.	013	mg/l
	2,4-dinitrophenol) mg/l				ND	
	2-nitrophenol	NI	-				ND	
ý	4-nitrophenol	0.090) mg/l				ND	
	p-chloro-m-cresol	NI	-				ND	
	pentachlorophenol	NI)				ND	
	Phenol	0.202	2 mg/l				ND	
	2,4,6-trichlorophenol	NI	-				ND	
	Base Neutrals							
	Acenaphthene	0.044	1 mg/l				ND	
	Acenaphthylene	NI	0				ND	
	Anthracene	NI	כ				ND	
	Benzidine	NI	0				ND	
	Benzo(a) anthracene	NI	כ				ND	
	Benzo(a)pyrene	NI	C				ND	
	3,4-benzofluoranthene	NI	C				ND	
	Benzo(ghi)perylene	NI	כ				ND	
	Benzo(k)fluoranthene	NI	C				ND	
`	Bis(2-chloroethoxy)methane	NI	D				ND	
	Bis(2-chloroethyl)ether	NI	D				ND	
	Bis(2-chloroisopropyl)ether	NI	D				ND	
	Bis(2-ethylhexyl)phthalate	N	D				ND	
	4-bromophenyl phenyl ether	N	D				ND	
	Butylbenzyl phthalate	N	D				ND	
	2-chloronaphtalene	N	D				ND	
	4-chlorophenyl phenyl ether	N	D				ND	
	Chrysene	N	D				ND	
-								

SAMPLE DATE: 3/20/36 86

TO: Bloomfield Refinery

0502 Page 4 of 8

ANALYTE

Ĩ

(

M

SAMPLE ID/ ANALYTICAL RESULTS

	MW	4		MW	5	MW	7
Dibenzo(a,h)anthracene		ND					ND
1,2-Dichlorobenzene		ND					ND
1,3-Dichlorobenzene		ND					ND
1,4-Dichlorobenzene		ND					ND
3,3-Dichlorobenzidine		ND					ND
Diethyl phthalate		ND					ND
Dimethyl phthalate		ND					ND
Din-n-butyl phthalate		ND					ND
2,4-dinitrotoluene		ND					ND
2,6-dinitrotoluene		ND					ND
Di-n-octyl phthalate		ND					ND
1,2-diphenylhydrazine		ND					ND
Fluoranthene		ND					ND
Fluorene	0.1	L50	mg/l				ND
Hexachlorobenzene		ND					ND
Hexachlorobutadiene		ND					ND
Hexachlorocyclopentadiene		ND					ND
Hexachloroethane		ND					ND
Indeno(1,2,3-cd)pyrene		ND					ND
Isophorone		ND					ND
Naphthalene	0.0)36	mg/l				ND
Nitrobenzene		ND	-				ND
N-nitrosodimethylamine		ND					ND
N-nitrosodie-n-propylamine		ND					ND
N-nitrosodiphenylamine		ND					ND
Phenanthrene		ND					ND
Pyrene	0.1	66	mg/l				ND
1,2,4-trichlorobenzene		ND	-				ND

CHAPTER 7

SURFACE WATER SAMPLING

87

BACKGROUND

Surface water sampling of Hammond Ditch and the San Juan River was required by the approved work plan. This sampling was specified to be accomplished during worst-case, low-flow conditions.

Low-flow conditions were determined in the work plan to be at the beginning of the irrigation season for Hammond Ditch (generally mid-April). During this period, the potential for flushing hydrocarbons downstream is the greatest. BRC installs berms in Hammond Ditch at the end of the irrigation season to retain and remove hydrocarbons that may seep into the ditch. Just before resumption of irrigation, the berms are removed. The potential for downstream contamination is therefore greatest when upstream irrigation flows are released and flush the ditch.

Low-flow conditions in the San Juan River generally occur during winter months. Precipitation is generally low during winter. Throughout 1986, flows in the river were unusually high, and low-flow conditions did not occur. Maintenance activities for Navajo Dam (controlling San Juan River flows) in April and May 1987 required lowering the upstream reservoir approximately 31 feet from normal operating level. The lowering of the reservoir has resulted in unseasonably high discharge rates from the dam, which precluded low-flow sampling efforts. Therefore, an extension for sampling of the San Juan River has been requested to permit future sampling during representative low-flow conditions.

SAMPLING PROTOCOL

The Hammond Ditch was sampled by BRC staff on April 22, 1986 within 24 hours after initiation of irrigation flows in the ditch. Flows were observed to be intermittent during this period, so a second sampling effort was conducted on April 28, 1986 to assure acquisition of a representative data set.

7-1

DTG.3

All samples were collected consistent with the protocol stated in the approved work plan. As specified, depth-integrated samples were collected from a location just downstream of the refinery property south of Sullivan Road, and just downstream of the API wastewater ponds.

68

FINDINGS

DTG.3

Results from both Hammond Ditch sampling efforts are contained in Appendix B to this report. Tables 7.1 and 7.2 are summaries of compounds detected during the April 22, 1986 and April 28, 1986 sampling efforts, respectively. Table 7.1 shows that very low levels of pollutants were found during worst-case conditions. Table 7.2 shows that no priority pollutants were detected during the second survey, conducted after irrigation flows had been reestablished.

The results of the April 28, 1986 survey are consistent with the finding in Chapter 5 showing that Hammond Ditch irrigation flows create a hydraulic gradient directed towards the BRC site that minimizes the potential for groundwater transport into the ditch.

TABLE 7.1

÷.

DTG.22

SUMMARY OF DETECTED ORGANIC COMPOUNDS FROM HAMMOND DITCH ON 4/22/86

4 8 ^w

89

Laboratory Parameter	Hammond Ditch Near Sullivan Road Results (Downstream) (mg/l)	Hammond Ditch Near API Ponds Results (Upstream) (mg/l)	Detection Limits (mg/l)
Phenols	0.002	0.002	0.001
Benzene	0.006		0.001
Toluene	0.003		0.001
Anthracene	0.006		0.001
Benzo(a)anthracene	0.003		0.001
Chrysene	0.005		0.001
Fluoranthene		0.001	0.001
Naphthalene	0.13		0.001
Phenanthrene	0.008		0.001
Pyrene	0.008		0.001

7-3

.

s te stal

TABLE 7.2

ما مروقها وي ما موجوع الرواح الع

1

astr L.

THE

DTG.15

Trans Pro-

 $\{ e_{i} \}^{t}$

a state and the

0.10.701

. ف في الحالي

1.3 1

SUMMARY OF DETECTED ORGANIC COMPOUNDS FROM HAMMOND DITCH ON 4/28/86

Laboratory Parameter	Hammond Ditch Near Sullivan Road Results (Downstream) (mg/l)	Hammond Ditch Near API Ponds Results (Upstream) (mg/l)	Detection Limits (mg/l)
----------------------	--	--	-------------------------------

NONE DETECTED

7-4

an the second

	ASSAIGAI ANALYTICAI LABORATOF	RIES	
	TO: Bloomfield Refinery Attn: Chris Hawley P.O. Box 159 Bloomfield NM 87413	• • • • • • • • • • • • • • • • • • •	HAMMOND DITCH DATE: 22 May 1986 0660 completed Page 1 of 4 SAMPLE DATE: 4/22/86
	analyte NEA	SAMPLE ID/ R SULIVAN ROAD HSRD 5	ANALYTICAL RESULTS
	CN Phenols Sb As Be	<0.01 mg/l 0.002 mg/l <0.2 mg/l <0.050 mg/l	<pre><0.01 mg/l 0.002 mg/l <0.2 mg/l <0.050 mg/l</pre>
	Cd Cr Cu Pb	<0.01 mg/l <0.010 mg/l <0.050 mg/l <0.03 mg/l <0.050 mg/l	<0.01 mg/1 <0.010 mg/1 <0.050 mg/1 <0.03 mg/1 <0.050 mg/1
6	Hg Ni Se Ag Tl	<0.002 mg/l <0.06 mg/l <0.010 mg/l <0.050 mg/l <0.01 mg/l	<0.002 mg/l <0.06 mg/l <0.010 mg/l <0.050 mg/l <0.01 mg/l
	Zn Acrolein Acrylonitrile Benzene Bromoform	<0.01 mg/l ND ND 0.006 mg/l	<0.01 mg/1 <0.01 mg/1 ND ND ND
	Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane	ND ND ND ND ND	ND ND ND ND ND
	2-Chloroethylvinyl Ether Chloroform Dichlorogromomethane 1,1-Dichloroethane 1.2-Dichloroethane	ND ND ND ND	ND ND ND ND
	1,1-Dichloroethylene 1,2-Dichloropropane 1,2-Dichloropropylene Ethylbenzene	ND ND ND ND ND	ND ND ND ND ND

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964

91

H II an i

REAL PROPERTY

TO: Bloomfield Refinery

0660 Page 2 of 4

F-7

. •

ANALYTE

. 🕯

M

10

11250

er sjeker

SAMPLE ID/ ANALYTICAL RESULTS

	HSRD 5	HAPI 5	5
Methyl Bromide	ND	ND	•
Methyl Chloride	ND	ND	
Methylene Chlorid	le ND	ND	
1,1,2,2-Tetrachlo		ND	
Tetrachloroethyle	ene ND	ND	
Toluene	0.003	mg/l Nd	
1,2-Transdichlord		ND	
1,1,1-Trichloroet	thane ND	ND	
1,1,2-Trichloroet		ND	
Trichloroethylene	≥ ND	ND	
Vinyl Chloride	ND	ND	
Acid Compounds			
2-chlorophenol	ND	ND	
2,4-dichlorophend	DI ND	ND	
2,4-dimethylphend	סא חס	ND	
4,6-dinitro-o-cre		ND	
2,4-dinitropheno:	L ND	ND	
2-nitrophenol	ND	ND	
4-nitrophenol	ND	ND	
p-chloro-m-creso		ND	
pentachloropheno:	L ND	ND	
Phenol	ND	ND	
2,4,6-trichloroph	nenol ND	ND	
Base Neutrals		,	
Acenaphthene	ND	ND	
Acenaphthylene	ND	ND	
Anthracene	0.006	mg/l ND	
Benzidine	ND	ND	
Benzo(a) anthracen	ne 0.003	mg/l ND	
Benzo(a)pyrene	ND	ND	
3,4-benzofluorant	thene ND	ND	
Benzo(ghi)peryler		ND	
Benzo(k)fluorant)		ND	
Bis(2-chloroetho:	xy)methane ND	ND	
Bis(2-chloroethy)	l)ether ND	ND	•
Bis(2-chloroisop	ropyl)ether ND	ND	
Bis(2-ethylhexyl))phthalate ND	ND	
4-bromophenyl phe	enyl ether ND	ND	
Butylbenzyl phtha	alate ND	ND	
2-chloronaphtale	ne ND	ND	
4-chlorophenyl pl		ND	
Chrysene	0.005	mg/l ND	

0660 completed Page 3 of 4

ANALYTE

TO: Bloomfield Refinery

SAMPLE ID/ ANALYTICAL RESULTS

	HSRD 5	5 .	HAPI 5	
Dibenzo(a,h)anthracene	ND		ND	
1,2-Dichlorobenzene	ND		ND	
1,3-Dichlorobenzene	ND		ND	
1,4-Dichlorobenzene	ND		ND	
3,3-Dichlorobenzidine	ND		ND	
Diethyl phthalate	· ND		ND	
Dimethyl phthalate	ND		ND	
Din-n-butyl phthalate	ND		ND	
2,4-dinitrotoluene	ND		ND	
2,6-dinitrotoluene	ND		ND	
Di-n-octyl phthalate	ND		ND	
1,2-diphenylhydrazine	ND		ND	
Fluoranthene	ND		0.001	mσ/1
Fluorene	ND		ND	
Hexachlorobenzene	ND		ND	
Hexachlorobutadiene	ND		ND	
Hexachlorocyclopentadiene	ND		ND	
Hexachloroethane	ND		ND	
Indeno(1,2,3-cd)pyrene	ND		ND	
Isophorone	ND		ND	
Naphthalene	0.013	ma/l	ND	
Nitrobenzene	ND	ų.	ND	
N-nitrosodimethylamine	ND		ND	
N-nitrosodie-n-propylamine	ND		ND	
N-nitrosodiphenylamine	ND		ND	
Phenanthrene	0.007	mg/l	ND	
Pyrene	0.008		ND	
1,2,4-trichlorobenzene	ND		ND	

ND = None Detected

REFERENCE: "Test Methods for Evaluating Solid Waste Chemical/Physical Methods", USEPA, SW 846, EMSL-Cincinnati, 1982.

NOMINAL DETECTION LIMITS CN 0.01 mg/l Phenols 0.002 mg/l Benzene 0.001 mg/l Toluene 0.001 mg/l Xylenes 0.001 mg/l Ethylbenzene 0.001 mg/l Sb 0.2 mg/l As 0.050 mg/l Be 0.010 mg/l Cd 0.010 mg/l Cr 0.050 mg/l Cu 0.03 mg/l Pb 0.050 mg/l Ni 0.06 mg/l Se 0.010 mg/l Ni 0.06 mg/l Se 0.010 mg/l Ni 0.050 mg/l Ni 0.050 mg/l Ni 0.050 mg/l	TO: Bloomfield Refinery		completed 4 of 4
Phenols 0.002 mg/l Benzene 0.001 mg/l Toluene 0.001 mg/l Xylenes 0.001 mg/l Ethylbenzene 0.001 mg/l Sb 0.2 mg/l As 0.050 mg/l Be 0.010 mg/l Cd 0.010 mg/l Cr 0.050 mg/l Cu 0.050 mg/l Pb 0.050 mg/l Hg 0.002 mg/l Ni 0.06 mg/l Se 0.010 mg/l Ag 0.050 mg/l	NOMINAL DETECTION LIMITS		
Zn 0.01 mg/1	Phenols Benzene Toluene Xylenes Ethylbenzene Sb As Be Cd Cr Cu Pb Hg Ni Se Ag Tl	0.002 mg/l 0.001 mg/l 0.001 mg/l 0.001 mg/l 0.001 mg/l 0.001 mg/l 0.050 mg/l 0.010 mg/l 0.050 mg/l 0.050 mg/l 0.050 mg/l 0.002 mg/l 0.010 mg/l 0.050 mg/l 0.050 mg/l 0.050 mg/l 0.050 mg/l 0.050 mg/l	

Detection limits for Volatiles, Acid Compounds, and Base/Neutrals are all 0.001 mg/l

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

Jennifer V. Smith, Ph.D. Laboratory Director

		KILO	
	TO: Bloomfield Refinery		E: 22 May 1986
	Attn: Chris Hawley	069	
	P.O. Box 159	Pag	e 1 of 3 nple date: 4/28/86
	Bloomfield NM 87413	J. SAN	1PLE DATE: 4/28/86
			ND DITCH
	ANALYTE	SAMPLE ID/ ANA	LYTICAL RESULTS
		U4	D4
	NEAR	R APT WASTE PONDS	NEAR SULLIVAN ROAD
	Phenols	0.003 mg/l	0.002 mg/l
		UGA	D6A
	Acrolein	ND	ND
	Acrylonítrile	ND	ND
	Benzene	ND	ND
-	Bromoform	ND	ND
	Carbon Tetrachloride	ND	ND
	Chlorobenzene	ND	ND
	Chlorodibromomethane	ND	ND
	Chloroethane	ND	ND
	2-Chloroethylvinyl Ether	ND	ND
	Chloroform	ND	ND
	Dichlorogromomethane	ND	ND
	1,1-Dichloroethane	ND	ND
	1.2-Dichloroethane 1,1-Dichloroethylene	ND ND	ND ND
	1,2-Dichloropropane	ND	ND
	1,2-Dichloropropylene	ND	ND
	Ethylbenzene	ND	ND
	Methyl Bromide	ND	ND
	Methyl Chloride	ND	ND
	Methylene Chloride	ND	ND
	1,1,2,2-Tetrachloroethane	ND	ND
	Tetrachloroethylene	ND	ND
	Toluene	ND	ND
	1,2-Transdichloroethylene	ND	ND
	1,1,1-Trichloroethane	ND	ND
	1,1,2-Trichloroethane	ND	ND
	Trichloroethylene	ND	ND
	Vinly Chloride	ND	ND
	Base Neutrals		
	Acenapthene	ND	ND
	Acenphthylene	ND ND	ND ND
	Anthracene Benzidine	ND	ND ND

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964

l Ar

TO: Bloomfield Refinery

0695 Page 2 of 3

ANALYTE

đ

SAMPLE ID/ ANALYTICAL RESULTS

	UGA	D6A
Benzo(a)anthracene	ND	ND
Benzo(a)pyrene	ND	ND
3,4-benzofluoranthene	ND	ND
Benzo(ghi)perylene	ND	ND
Benzo(k)fluoranthene	ND	ND
Bis(2-chloroethoxy)methane	ND	ND
Bis(2-chloroethyl)ether	ND	ND
Bis(2-chloroisopropyl)ether	ND	ND
Bis(2-ethylhexyl)phthalate	ND	ND
4-bromophenyl phenyl ether	ND	ND
Butylbenzyl phthalate	ND	ND
2-chloronaphtalene	ND	ND
4-chlorophenyl phenyl ether	ND	ND
Chrysene	ND	ND
Dibenzo(a,h)anthracene	ND	ND
1,2-Dichlorobenzene	ND	ND
1,3-Dichlorobenzene	ND	ND
1,4-Dichlorobenzene	ND	ND
3,3-Dichlorobenzidine	ND	ND
Diethyl phthalate	ND	ND
Dimethyl phthalate	ND	ND
Din-n-butyl phthalate	ND	ND
2,4-dinitrotoluene	ND	ND
2,6-dinitrotoluene	ND	ND
Di-n-octyl phthalate	'ND	ND
1,2-diphenylhydrazine	ND	ND
Fluoranthene	ND	ND
Fluorene	ND	ND
Hexachlorobenzene	ND	ND
Hexachlorobutadiene	ND	ND
Hexachlorocyclopentadiene	ND	ND
Hexachloroethane	ND	ND
Indeno (1,2,3-cd) pyrene	ND	ND
Isophorone	ND	. ND
Naphthalene	ND	ND
Nitrobenzene	ND	ND
N-nitrosodimethylamine	ND	ND
N-nitrosodie-n-propylamine	ND	ND
N-nitrosodiphenylamine	ND	ND
Phenanthrene	ND	ND
Pyrene	ND	. ND
1,2,4-trichlorobenzene	ND	ND

ND = None Detected

THE FAMILY FOR THE STREET STREET, WALK AND A AND A DESCRIPTION OF A STREET, AND A STREET, AND A STREET, AND A S

REFERENCE: "Test Methods for Evaluating Solid Waste Chemical/Physical Methods". USEPA. SW 846. EMSL-Cincinnati 1982

iii I d

and a straight for the state of the

THE FLAT IN THE R

7 H I I I I I I

1.1.

18 18 10

180.0

Bloomfield Refining Company A Gary Energy Corporation Subsidiary

September 14, 1987

Mr. William H. Taylor, Jr. Chief, Enforcement Section (SA-HE) U. S. Environmental Protection Agency Region VI 1201 Elm Street Dallas, Texas 75270

RE: Administrative Order (AO) Docket No. RCRA-3013-00-185

Dear Mr. Taylor:

Enclosed are the sampling results obtained from the San Juan River during a low-flow condition on July 24, 1987. The samples were taken as stipulated in the approved work plan. We trust that the attached data submitted as an Amendment to the Final Report fulfills the requirements of the subject Administrative Order.

Again, the data submitted herewith was done in fulfillment of a unilaterally issued Administrative Order. It should not be construed, for any purpose, as an admission of liability under any governmental statute or rule or an admission of any question of law. Furthermore, given the complexity of the investigation, Bloomfield Refining Company reserves the right to further interpret or modify any statements or data contained here, if appropriate, in the future.

Sincerely,

R W They Co

Richard Traylor Refinery Manager

RT/jm

Attachment

cc: Mr. Jack Ellvinger New Mexico Environmental Improvement Division Mr. David G. Boyer New Mexico Oil Conservation Division bcc: Joe Warr Mike Leger Mike Macy

Sent syntax ley

PO. Box 159 • Bloomfield, New Mexico 87413 • 505/632-8013

 \mathbf{A}_{i}

45-704 20/20 Bull Mede in USA	SAN.	JUAN RI	ER	7-24-9	37 0
		ary of	RESULTS	Pank	EASE: 1070C
		(mg/L)	2	3	•
		HWY 44	Hur 44	HWY 44	
	DETECTION	BRIDGE	BRIDGE	BRIDGE	
	WMIT	NEARSIDE	MIDDE	FARSIDE	UPSTREAM
CN	0.005	0.066	0.038	0.053	0.044
Phenols	0.001		<0.001	0.013	0,018
TDS		238	228	248	232
 	1.0	4.96	4.96	4.96	4.46
504	1.0	64.5	75.0	64.9	62.4
		5	5	6	5
TOC	0.05	<0.05	<0.05	20.05	20.05
As Ba	0.05	<1.0	<1.0	41.0	<1.0
Ed	1.0	<0.01	<0.01	20.01	10,01
Cr	0.01	<0.05	K0.05	20.05	10.05
	0.05		0.054		<0.05
Pb	0.05	<0.061	0.037 Ko.002	×0.05 ×0,002	<0.002
Hg	0.002			X0.01	40.01
Ag	0.01	<0.0/	10.05	20.05	40.05
<u></u>	0.05	<0.05	<0.05		
					ND
Volatiles	0.001	ND	NO	ND	
Acid Compound:	s l				IND
\$ Pase Neutra	5 0.01	NP	ND -	ND	
				╶╫╌┼┼┊┼┊╎┼╌	
		╫╌┼┼┼╎┼┼┼	╾╫╾┼┼┼┼┼┼		╺╫╼┥╀┾┾┊┊┼
		╢╌┞╎╎╎╎		╶╢──┼┼┼┼┼┼	╶╢╶┠┞┊╂┊╪┼╴
				╺╫╍┼┽┟┟┟┟╏╸	╾╫╾┢╂╎┠┊┽┠╸
		╫╶┼┼┼┼┼┼	╾╢╼┼┼┼┾┼┼┼╴	╺╫╌┼┟┼┼┼┼	╶╢╾┾┼┬┼┼┼
		╫╍╁┼┾┼┼┼	╼╫╌┾┼┾┼┾┾	╺╢╍┽┽┼┼┼┼┾╸	╾╫╾╂╂╂╂╂╊╊╊
		╶╫╼┼┼┼┼┼┼┼	╾╟╴╂┞╂┾╂┾	╶╫╾┼┼┼┼┼┼	┈╢┈╂╞┠┠┝╋
		╺╫╾┽┾┼┾┾┾┾	╾╫╾╁┼┼┼┼┼┼	╶╫╌┼┼┼┼┼┾╋╴	╤╫╾┼┼┼┼┼┼┼
<u> </u>		╶╫╾╂╁╂╂╂╄	╾╟╌┽┾┽┼┼┼┼	╾╢╾┾┾┾┾┾┾┾╌	╾╟╾┽┼┾┼┼┼
	······	╺╫╶┼┼┾┼┼┼┼	╾╫╾┼┼┼┼┼┼┾	╾╫╼┼┼┼┼┼┼┽	╾╟╾┼┼┼┼┼┼┼
		╶╫╼╂┼┼┼┽┼┾	╾╫╶┼┼┼┼┼┼	╾╫╾┼┼┼╎╎┼┼┼	╾╢╾╾┼┼┼┼┼┼┼
l		╶╫╍╌┠╞┼┠┝┝┝	╾╫╼┼┼┼┼┼┼	╾╫╴┼┼┼┼┼┼	╾╫╾┼┼┼┾┼┾┼
		╾╫╼╂┼┼╄┾┼┼	╾╫╾┼┼┾┤┤┼┼	╾╫╾┼┼┼┼┼┼┼	╾╫╶┼┼┼┼┼┼
		╶╫╌┠┼┞┼┼┼	╌╢╼┼┼┼┽┼┼┼	╼╫╼┾┽┼┼┾┽┼	╾╫╌┾┼┼┼┼┼
		╶╢╾┼╎┼┽┤┤┤	╾╫╼╁┼╁┼┊┼┾	╾╫╌╂╏╏╂╋╋	╾╫╾╂╂╂╊╂╀╊
		╶╢╾┽┼┼┾┝┼┼	╌╟╺┧╎┝╎╎╎	╾╫╍╁╂┾┠┼┽┼	╾╫╾┼┼┼┼┼┼
		╾╫╾┽┼┾┼┼┼┼	╾╫╌┽┼╁┼┾┼┾	╾╫╾┼┼┼┼┼┾┼	╾╫╼┼┼┼┼┾┼╢
		╾╫╾┼┼┼┼┼┼┼	─╟╌╎╎╎╎	╾╫╾┼┼┼┼┼┼	╍╫╾┼┼┼┼┼┤
	<u></u>	╾╫╾┾┼┼┼┼┼	╌╫╾╂╂┼┽┼┼╂	╍╢╵╎┦╿ ╎┼┼	╾╫╾┼┼┼┾┼┤
		╾╫╾┼┼┼┼┼┼┤	╾╫╼╂┾┼┼┼┼	╾╢╾┽╂╂┠┤┼┼	╾╢╶╂╂╂╂╬╫┨
<u></u>					

112 15 18 20

SAMPLE DATE: 7-24-87 10:00 AM 99 HIGHWAY 44 BRIDGE 20 FEET FROM REFINERY SIDE OF RIVER

DATE: 28 August 1987 1174

TO: Bloomfield Refining ATTN: Chris Hawley PO Box 159 Bloomfield, NM 87413

SAMPLE ID: Plant 1

ANALYTE	ANALYTICAI	RESULTS
CN	0.066	mg/l
Phenols	0.018	mg/l
TDS	238	mg/l
C1	4.96	mg/l
SO 4	64.5	mg/l
TOC	5	mg/1
As	<0,05	mg/l
Ba	<1.0	mg/l
Cd	<0.01	mg/l
Cr	<0.05	mg/l
Pb	0.061	mg/l
Hg	<0.002	mg/l
Se	<0.01	mg/l
Ag	<0.05	mg/l

NOMINAL DETECTION LIMITS

0.005 mg/l 1 mg/l 1.0 mg/l 1.0 mg/l 1.0 mg/l 0.05 mg/l 0.01 mg/l 0.05 mg/l 0.05 mg/l 0.05 mg/l 0.002 mg/l 0.01 mg/l 0.01 mg/l 0.05 mg/l

REFERENCE: "Test Methods for Evaluating Solid Waste, Physical/ Chemical Methods", USEPA, SW 846, EMSL-Cincinnati, 1982.

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

Jennifer V. DSmith, Ph.D. Laboratory Director

7300 Jefferson, N.E. •

Albuquerque, New Mexico 87109
 (505) 345-8964

والمواجعة والمواجعة

TO: Bloomfield Refinery Attn: Chris Hawley PO Box 159 Bloomfield, NM 87413 DATE: 28 August 1987 1174

SAMPLE ID: Plant 1

ANALYTE

ANALYTICAL RESULTS

VOLATILES	
Acrolein	ND
Acrylonitrile	ND
Benzene	ND
Bromoform	ND
Carbon Tetrachloride	ND
Chlorobenzene	ND
Chlorodibcomomethane	ND
Chloroethane	ND
2-Chlorosthylvinyl ether	ND
Chleroform	NÐ
Dichlorobromomethane	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane	MD
1,1-Dichloroethylene	ND
1,2-Dichloropropane	ND
1,2-Dichloropropylene	ND
Ethylbenzene	ND
Methyl Bromide	ND
Methyl Chloride	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachloroethylene	ND
Toluene	ND
1,2-Transdichloroethylene	ND
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND ND
Trichloroethylene Vinyl Chloride	ND ND
ATHAT CUTOLING	UND

NOMINAL DETECTION LIMIT: 0.001 mg/l

ACID COMPOUNDS & BASE NEUTRALS 2-Chlorophenol ND 2,4-Dichlorophenol ND 2,4-Dimethylphenol ND 4,6-Dinitro-o-cresol ND 2,4-Dinitrophenol ND 2-Nitrophenol ND 4-Nitrophenol ND P-chloro-m-cresol ND

150

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964

100

-2-

pentachlorophenol	ND
Phenol	ND
2,4,6-Trichlorophenol	ND
Acenaphthylene	ND
Anthracene	ND
Benzidine	ND
Benzo(a)anthracene	ND
Benzo(a)pyrene	ND
3,4-Benzofluoranthene	ND
Benzo(g,h,i)perylene	ND
Benzo(k)fluoranthene	ND
Bis(2-chloroethoxy)methane	ND
Bis(2-chlroroethyl)ether	ND
Bis(2-chloroisopropyl)ether	ND
Bis (2-ethylhexyl) phthalate	ND
4-Bromophenyl phenyl ether	ND
Butylbenzyl phthalate	ND
2-Chloronapthalene	ND
4-Chlorophenyl phenyl ether	ND
Chrysene	ND
Dibenzo(a,h)anthracene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
3,3-Dichlorobenzidine	ND
Diethyl phthalate	ND
Dimethyl phthalate	ND
Din-n-butyl phthalate	ND
2,4-Dinitrotoluene	ND
2,6-Dinitrotoluene	ND
Di-n-octyl phthalate	ND
1,2-Diphenylhydrazine	ND
Fluoranthene	ND
Fluorene	ND
Hexachlorobenzene	ND
Hexachlorobutadiene	ND
Hexachlorocyclopentadiene	ND
Hexachloroethane	
	ND
Indeno(1,2,3-cd)pyrene	ND
Isophorone	ND
Naphthalene	ND
Nitrobenzene	ND
N-nitrosodimethylamine	ND
N-nitrosodie-n-propylamine	ND
N-nitrosodiphenylamine	ND
Phenanthrene	ND
Pyrene	· ND
1,2,4-Trichlorobenzene	ND

NOMINAL DETECTION LIMIT: 0.01 mg/l

Y RAMING

يوه فتبني

-

UT I FLERET

in the second

REFERENCES: "Test Methods for Evaluating Solid Waste, -Physical/Chemical Methods", USEPA, SW 846, 3rd Edition.

An invoice for services is included. Thank you for contacting Assaigai Laboratories.

Sincerely,

. Militi

HNIMI

Smith, Ph.D. Je V. fer

Laboratory Director

SAMPLE DATE: 7-24-87 9A.M. 103 HIGHWAY 44 BRIDGE 103 MIDDLE OF RIVER (TOTAL WIDTH= 280')

DATE: 28 August 1987 1174

Bloomfield, NM 87413

PO Box 159

TO: Bloomfield Refining

ATTN: Chris Hawley

SAMPLE ID: Plant 2

ANALYTE	ANALYTICA	L RESULTS
CN	0.038	mg/l
Phenols	<0.001	mg/l
TDS	228	mg/l
Cl	4.96	mg/l
SO 4	75.0	mg/l
TOC	5	mg/l
As	<0.05	mg/l
Ba	<1.0	mg/l
Cd	<0.01	mg/l
Cr	<0.05	mg/l
Pb	0.054	mg/l
Hg	<0.002	mg/].
Se	<0.01	mg/l
Ag	<0.05	mg/1

NOMINAL DETECTION LIMITS

0.005 mg/l 0.001 mg/l 1 mg/l 1.0 mg/l 1.0 mg/l 0.05 mg/l 0.01 mg/l 0.05 mg/l 0.05 mg/l 0.05 mg/l 0.002 mg/l 0.01 mg/l 0.01 mg/l 0.05 mg/l

REFERENCE: "Test Methods for Evaluating Solid Waste, Physical/ Chemical Methods", USEPA, SW 846, EMSL-Cincinnati, 1982.

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Service State

ETT 1

Sincerely,

THE REAL FOR

Jennifer V.

Jennifer V. Smith, Ph.D. Laboratory Director

7300 Jefferson, N.E.

• Albuquerque, New Mexico 87109 • (505) 345-8964

a a thursday

TO: Bloomfield Refinery ATTN: Chris Hawley PO Box 159 Bloomfield, NM 87413 DATE: August 28. 1987 1174

SAMPLE ID: Plant 2

ACID COMPOUNDS & BASE NEUTRALS	
2-Chlorophenol	ND
2,4-Dichlorophenol	ND
2,4-Dimethylphenol	ND
4,6-Dinitro-o-cresol	ND
2,4-Dinitrophenol	ND
2-Nitrophenol	ND
4-Nitrophenol	ND
P-chloro-m-cresol	ND
pentachlorophenol	ND
Phenol	ND
2,4,5-Trichlorophenol	ND
Acenaphthylene	MD
Anthracene	ND
Benziáine	ND
Benzo(a)anthracene	ND
Benzo(a)pyrene	ND
3,4-Benzofluoranthene	ND
Benzo(g,h,i)perylene	ND
Benzo(k)fluoranthene	ND
Bis(2-chloroethoxy)methane	ND
Bis(2-chlroroethyl)ether	ND
Bis(2-chloroisopropyl)ether	\mathbb{ND}
Bis(2-ethylhexyl)phthalate	ND
4-Bromophenyl phenyl ether	ND
Butylbenzyl phthalate	ND
2-Chloronapthalene	ND
4-Chlorophenyl phenyl ether	ND
Chrysene	ND
Dibenzo(a,h)anthracene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
3,3-Dichlorobenzidine	ND
Diethyl phthalate Dimethyl phthalate	ND
Din-n-butyl phthalate	ND ND
2,4-Dinitrotoluene	ND
2,6-Dinitrotoluene	ND
Di-n-octyl phthalate	ND
1,2-Diphenylhydrazine	ND
Fluoranthene	ND
Fluorene	ND
	an i

7300 Jefferson, N.E. Albuquerque, New Mexico 87109 . (505) 345-8964

a an in the state

de esta de tradición

dia.

-2-

Hexachlorobenzene	ND
Hexachlorobutadiene	ND
Hexachlorocyclopentadiene	ND
Hexachloroethane	ND
Indeno(1,2,3-cd)pyrene	ND
Isophorone	ND
Naphthalene	ND
Nitrobenzene	ND
N-nitrosodimethylamine	ND
N-nitrosodie-n-propylamine	ND
N-nitrosodiphenylamine	ND
Phenanthrene	ND
Pyrene	ND
1,2,4-Trichlorobenzene	ND

NOMINAL DETECTION LIMIT: 0.01 mg/l

REFERENCES: "Test Methods for Evaluating Solid Waste,-Physical/Chemical Methods", USEPA, SW 846, 3rd Edition.

An invoice for services is included. Thank you for contacting Assaigai Laboratories.

The second s

لأيلة والمزوجة والمستركاني

Sincerely,

mith

Jennifer V. Smith, Ph.D. Laboratory Director

TO: Bloomfield Refining

ATTN: Chris Hawley

Bloomfield, NM 37413

SAMPLE DATE: 7-24-87 9:30 AM 106 HIGHWAY 44 BRIDGE 20 FEET FROM BLOOMFIELD SIDE OF

RIVER

-TRUT

DATE: 28 August 1987 1174

SAMPLE ID: Plant 3

PO Box 159

ANALYTE	ANALYTICAL R	ESULTS	NOMINAL DETH	ECTION LIMITS
CN	0.053 mg	/1	0.00	5 mg/l
Phenols	0.013 mg	/1	0.001	. mg/l
TDS	248 mg	/1	-	mg/l
Cl	4.96 mg	/ ٦.	1.() mg/l
SO 4	64.9 mg	72	1.() mg/l
'TOC	6 mg	/1	-	mg/l
Às	<0.05 mg	/1	0.01	5 mg/l
Зa	<1.0 mg	/1	1.() mg/1
Cđ	<0.01 mg	/1	0.01	l mg/l
Cr	<0.05 mg	/1	0.0	5 mg/l
Pb	<0.05 mg	/1	0.0	5 mg/1
Hg	<0.002 mg	/1	0.001	2 mg/l
Se	<0.01 mg	/1	0.03	l mg/l
Ag	<0.05 mg	/1	0.0	5 mg/l

REFERENCE: "Test Methods for Evaluating Solid Waste, Physical/ Chemical Methods", USEPA, SW 846, EMSL-Cincinnati, 1982.

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

neth Jennifer V. Smith, Ph.D. Laboratory Director

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964

TO: Bloomfield Refinery ATTN: Chris Hawley PO Box 159 Bloomfield, NM 87413 DATE: August 28. 1987 1174

SAMPLE ID: Plant 3

ACID COMPOUNDS & BASE NEUTRALS	
2-Chlorophenol	ND
2,4-Dichlorophenol	ND
2,4-Dimethylphenol	ND
4,6-Dinitro-o-cresol	ND
2,4-Dinitrophenol	ND
2-Nitrophenol	ND
4-Nitropkenol	ND
Proalooprarduesol	ND
pentachlorophenol	ND
Phenol	ND
2,4,6 Tricalorophenol	M0
Acenaphthylene	ND
Anthracene	ND
Benzidine	ND
Benzo(a)anthracene	ND
Benzo(a) pyrene	ND
3,4-BenzoEluoranthene	ND
Benzo(g,h,i)perylene	ND
Benzo(k) fluoranthene	
	ND
Bis(2-chloroethoxy)methane	ND
Bis(2-chlroroethyl)ether	ND
Bis(2-chloroisopropyl)ether	ND
Bis(2-ethylhexyl)phthalate	ND
4-Bromophenyl phenyl ether	ND
Butylbenzyl phthalate	ND
2-Chloronapthalene	ND
4-Chlorophenyl phenyl ether	ND
Chrysene	ND
Dibenzo(a,h)anthracene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
3,3-Dichlorobenzidine	ND
Diethyl phthalate	ND
Dimethyl phthalate	ND
Din-n-butyl phthalate	ND
2,4-Dinitrotoluene	ND
2,6-Dinitrotoluene	ND
Di-n-octyl phthalate	ND
1,2-Diphenylhydrazine	ND
Fluoranthene	ND
Fluorene	ND

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964

er and the state of the second se

107

-2-

Hexachlorobenzene	ND
Hexachlorobutadiene	ND
Hexachlorocyclopentadiene	ND
Hexachloroethane	ND
Indeno(1,2,3-cd)pyrene	ND
Isophorone	ND
Naphthalene	ND
Nitrobenzene	ND
N-nitrosodimethylamine	ND
N-nitrosodie-n-propylamine	ND
N-nitrosodiphenylamine	ND
Phenanthrene	ND
2yrana	ND
1,2,4-Trichlorobenzene	ND

NOMEMAL DETECTION LIMIT: 0.01 mg/l

REFERENCES: "Test Methods for Evaluating Solid Waste,-Physical/Chemical Methods", USEPA, SW 846, 3rd Edition.

An invoice for services is included. Thank you for contacting Assaigai Laboratories.

Sincerely,

Ennifer V. S Inith Jennifer V. Smith, Ph.D.

Laboratory Director

Bloomfield, NM 87413

SAMPLE DATE: 7-24-87 10:30 A.M. 109 N/2 MILE UPSTREAM FROM REFINERY FROM BANK ON REFINERY SIDE.

TO: Bloomfield Refining ATTN: Chris Hawley 1174

DATE: 28 August 1987

SAMPLE ID: Plant 4

PO Box 159

ANALYPE	ANALYTICAL	RESULTS	NOMINAL DETEC	CTION LIMITS
CN	0.044 m	ig/1	0.005	mg/l
Phenols	0.018 m	Ig/1	0.001	mg/l
TOS	232 m	1g/1	1	mg/1
an e th Tarain	4.46 m	ig/1	1. O	$m_0/2$
SD 4	62.6 r	ig/l	1.0	mg/l
TOC	5	.g/1	1	mg/l
As	<0.05 m	G/2	0.05	$m_{cl}/3$
Зa	<1.0 m	ng/1	1.0	ng/l
Cđ	<0.01 m	lg/1	0.01	mg/l
Cr	<0.05 m		0.05	mg/l
Pb	<0.05 m	ng/l	0.05	mg/l
Hg	<0.002 m	ng/1	0.002	mg/l
Se	<0.01 m	ng/l	0.01	mg/l
Ag	<0.05 m	ng/l		mg/l

REFERENCE: "Test Methods for Evaluating Solid Waste, Physical/ Chemical Methods", USEPA, SW 846, EMSL-Cincinnati, 1982.

An invoice for services is enclosed. Thank you for contacting Assaigai Laboratories.

Sincerely,

Jennifer V. Smith, Ph.D. Laboratory Director

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964

TO: Bloomfield Refinery Atth. Chris Hawley PO Box 159 Bloomfield, NM 87413 DATE: 28 August 1987 1174

SAMPLE ID: Plant 4

ANALYTE

ANALYTICAL RESULTS

VOLATILES	
Acrolein	ND
Acrylonitrile	ND
Benzene	MD
Bromoform .	ND
Carbou Petrachioride	VII)
Chlorobenzene	MD.
Chlerod; 5 conceptione	MD
Chloze sthan -	£40
2-Chlorosthylviny. ether	ND
Caloreises	ND
Dichloropromomethane	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane	ND
1,1-Dichloroethylene	ND
1,2-Dichloropropane	ND
1,2-Dichloropropylene	ND
Ethylbenzene	ND
Methyl Bromide	ND
Methyl Chloride	ND
Methylene Chloride	ND
1,1,2,2-Tetrachloroethane	ND
Tetrachloroethylene	ND
Toluene	ND
1,2-Transdichloroethylene	ND
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND
Trichloroethylene	ND
Vinyl Chloride	ND

NOMINAL DETECTION LIMIT: 0.001 mg/1

ACID COMPOUNDS & BASE NEUTRALS 2-Chlorophenol ND 2,4-Dichlorophenol ND 2,4-Dimethylphenol ND 4,6-Dinitro-o-cresol ND 2,4-Dinitrophenol ND 2-Nitrophenol ND 4-Nitrophenol ND P-chloro-m-cresol ND

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964

1.2.6

Non-Alexander

110

Mar Beer

-2-

pentachlorophenol	ND
Phenol	ND
2,4,6-Trichlorophenol	ND
Acenaphthylene	ND
Anthracene	ND
Benzidine	ND
Benzo(a) anthracene	ND
Benzo(a)pyrene	ND
3,4-Benzofluoranthene	ND
Benzo(g,h,i)perylene	ND
Benzo(k)fluoranthene	ND
Bis(2-chloroethoxy)methane	ND
Bis(2-chlroroethyl)ether	ND
Bis(2-chloroisopropyl)ether	ND
Bis(2-ethylhexyl)phthalate	MD
4-Bromophenyl phenyl ether	ND
Butylbenzyl phthalate	ND
2-Chloronapthalane	C.S.
4-Chlorophenyl phenyl ether	NO
Chrysene	ND
Dibenzo(a,h)anthracene	ND
1,2-Dichlorobenzene	ND
1,3-Dichlorobenzene	ND
1,4-Dichlorobenzene	ND
3,3-Dichlorobenzidine	ND
Diethyl phthalate	ND
Dimethyl phthalate	ND
Din-n-butyl phthalate	ND
2,4-Dinitrotoluene	ND
2,6-Dinitrotoluene	ND
Di-n-octyl phthalate	ND
1,2-Diphenylhydrazine	ND
Fluoranthene	ND
Fluorene	ND
Hexachlorobenzene	ND
Hexachlorobutadiene	ND
Hexachlorocyclopentadiene	ND
Hexachloroethane	ND
Indeno(1,2,3-cd)pyrene	ND
Isophorone	ND
Naphthalene	ND
Nitrobenzene	ND
N-nitrosodimethylamine	ND
N-nitrosodie-n-propylamine	ND
N-nitrosodiphenylamine	ND
Phenanthrene	ND
Pyrene	ND
1,2,4-Trichlorobenzene	ND

NOMINAL DETECTION LIMIT: 0.01 mg/l

1.000

REFERENCES: "Test Methods for Evaluating Solid Waste,-Physical/Chemical Methods", USEPA, SW 846, 3rd Edition.

An invoice for services is included. Thank you for contacting Assaigai Laboratories.

Sincerely,

th Ph.D. Je Laboratory Director

PROCESSED ON: 03 AUG 87

r 9

ţ

OJECT а တ ۵ æ **V Ο Ι** AGE x ш œ 0 တ ធ EH S æ G. а ធ 0 > တ н STATU œ

00 4 α 0 Ц 0 υ

MARIN

DATE ELEV					: : :			
87 F	SURFACE ELEVATION	LIVE STORAGE	BANK STORAGE	RELEASE AAAAAAAAA Power	RELEASE AAAAAAAAAAA Power other	DIVERSION TO NIIP	EVAP	INFLOW
	EET	ACRE-FT	ACRE-FT	CFS	CFS	CFS	CFS	CFS
							Ċ	050 5
.9	53.9	1,268,500		0	D, 040	086		
9.	53.5	1,263,800		0	5,040	580	2	0,0,0
9	53.1	1,259,100		0	5,040	500	70	3,250
) u	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 254 800		0	5,040	330	70	3,270
. .	• • •	1 251 200		C	5.040	330	70	3,620
•					5 040	500	70	3,150
<i>.</i>	20	1, 240, 20U			5 040		20	2.540
. .		1, 1732 EAD			5.040	550	20	2.340
. .	7. 				5 040	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20	2.540
С	4 . 0 .	1, 220, 200					20	2.090
•••	ט פ ה מ קיים	1, 220, 200		~ ~			20	2,090
, о, П	7.7	1,213,100					02	060 0
2 6.	48.6	1,206,000		> <				
з 6,	47.9	1,197,800		э ·	040,0	000		
46,	47.2	1,190,500		0	5,040	480		1,410
5 6.	46.5	1,182,300		•	5,040	600	2	1 , 28U
	45. H	1,174,000		9	5,040	600	0.	1,230
2 6.	45.2	1,167,300		0	5,040	550	10	7,280
8 6.0	44.6	1,161,100		0	5,040	550	10	2,540
0.9	43.9	1,152,400		0	5,040	550	60	1,270
0.9	43.2	1,145,000		0	5,040	550	60	1,930
1 6.0	42.8	1,140,500		0	3,180	600	60	1,570
2 6.0	42.6	1,138,100		0	1,750	600	60	1,200
6.0	42.4	1,136,800		0	1,020	550	60	086
9.0	42.4	135,800	SAMPLE DATE	0	1,010	580	60	1,140
5.0	42.3	134.900		0	1,010	580	60	1,190
9.0	42.2	1.134.100		0	1,010	. 580	60	1,240
5.0	42.1	1,133,500		0	1,010	580	60	1,340
Ч	42.0	1.132.400		0	1,010	590	60	1,100
) d n a	42.0	1,132,000		0	760	580	60	1,200
	0.04	132,000		0	760	550	60	1,380
31 6,0	42.01	1,131,500		0	710	280	60	290
			11111	ACRE-ET	ACRE-FT	ACRE-FT	ACRE-FT	ACRE-FT
TOTALS				•	226,230	33,240	3,980	122,960
SN				CFS	CFS 3,679	CF3 540		1,999
				† † †	A CLASS FOR THE CHARTER FOR THE CONTRACT OF THE CASE O	۰.		

وميشوه

1111

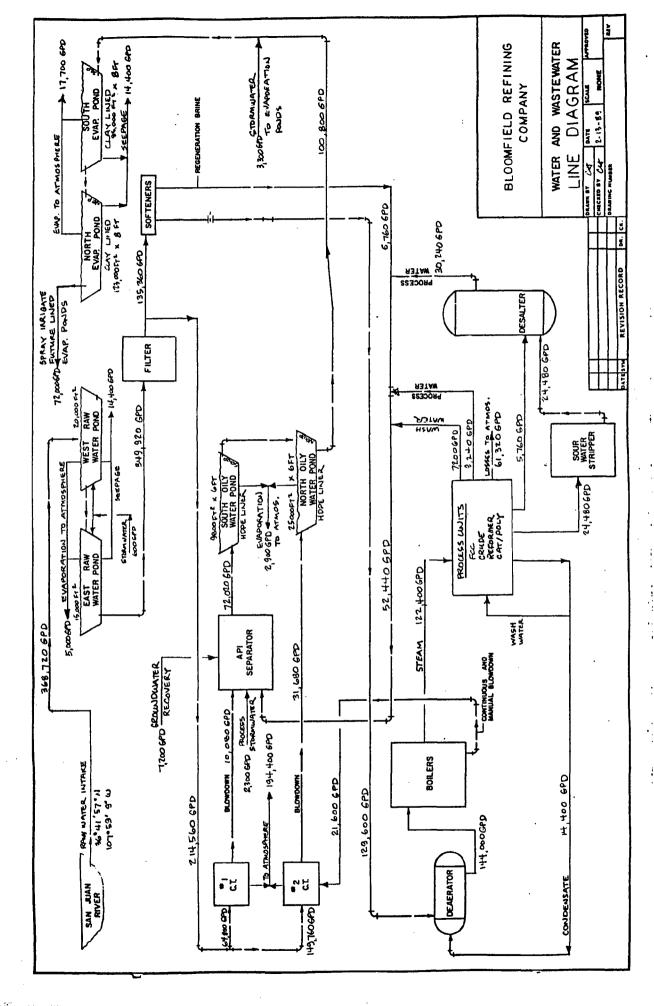
113

120

ترفيقه :

Attachment 5

Water and Wastewater Flow Schematics


- 1. Water and Wastewater Line Diagram
- 2. Water and Wastewater TDS Balance

. Marine Ra

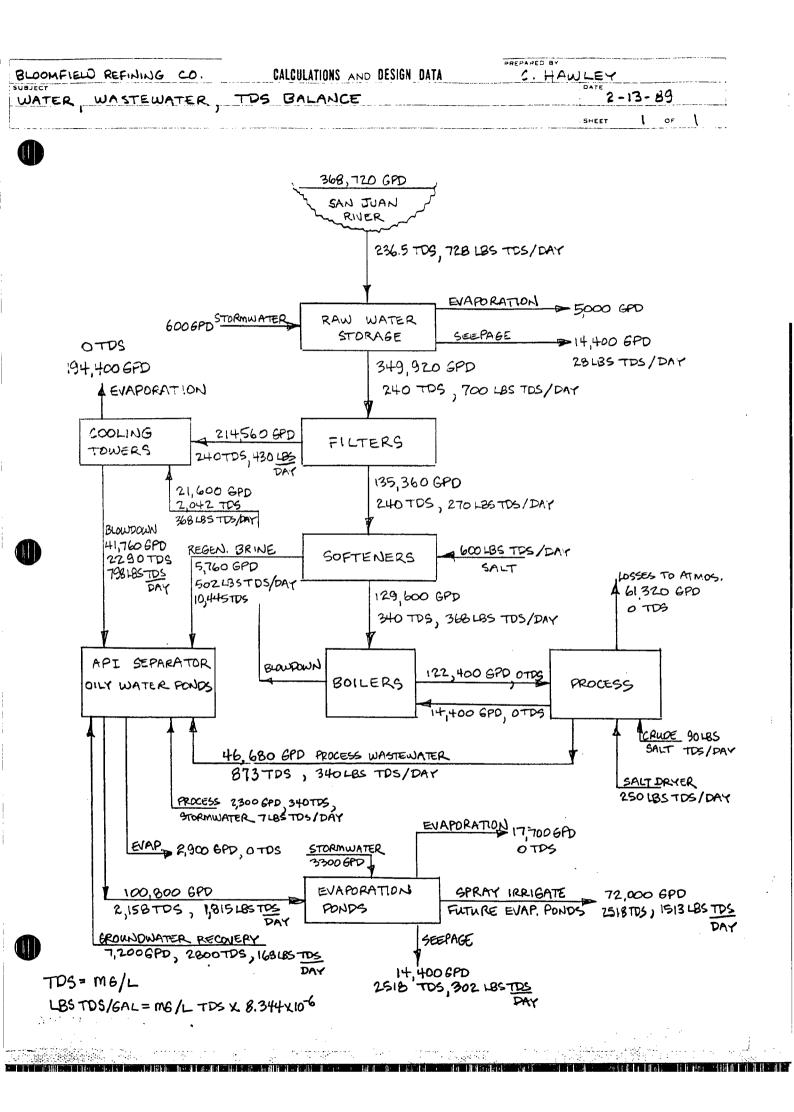
11

i se

81.41

a tala di Maria

li Wiler


(II)

ŧ

1

.

TTT 131.6

Attachment 6

RCRA Contingency Plan & Spill Prevention Control and Countermeasure Plan

NER WORKS

i i inge

ALL ALL AND ALL AND

die (RPA die 1-

181

TABLE OF CONTENTS

Contingency Plan SPCC Plan Waste Description Manifest System Closure Requirements Personnel Records Organizational Chart Plot Plan

AL REAMERAL MAD

5

BLOOMFIELD REFINING COMPANY

EMERGENCY PLAN Revised: 2-12-86

The purpose of the contingency plan is to outline the actions to be taken, and to assign the responsibility for these actions in the event that explosions, fires, or serious accidents occur. In addition, the plan includes the specific requirements of the Resource Conservation and Recovery Act Part 265 Subpart C - Preparedness and Prevention and Subpart D - Contingency Plan and Emergency Procedures as they apply to Bloomfield Refining Company as a generator only of hazardous waste.

The persons qualified to act as emergency coordinators in response to fires, explosions, or any unplanned, sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water at the facility are given in Attachment III to the Plan.

The list of emergency equipment at the facility is provided in Attachment IV to the Plan.

In that each person in the refinery has assigned duties with respect to any fire or emergency, evacuation is not indicated for refinery employees unless as part of the fire fighting and emergency reaction procedures. All contractors and persons other than Bloomfield Refinery employees are instructed to immediately evacuate the refinery premises upon sounding of the siren/alarm and assemble at a safe distance from the front gate. Evacuation, if necessary, will be the responsibility of the Emergency Coordinator on-scene at the time and shall be accomplished based upon the extent of the fire or other emergency and the necessity for evacuation from the area in which such fire emergency is contained. Each employee shall follow the instructions of the on-site Emergency Coordinator with respect to evacuation and shall be responsible for communicating to others any such evacuation instructions.

States and the states of the

In HILL ALL ...

网络银银 化黄银合合物 医前向子 网络银色 化连接合 化合金

EMERGENCY PLAN

GENERAL

Explosions, fires, or serious accidents may occur despite the finest possible safety precautions. In these times of emergency, it is essential for the protection of personnel and property that preplanned, well rehearsed action be taken. It is the purpose of this emergency plan to outline the action to be taken, and to assign the responsibility for these actions.

This plan is intended to cover foreseeable types of emergencies. Examples are:

- 1. Fire and/or explosions.
- 2. Release of Flammable Vapor or Gas.
- 3. Release of Toxic Vapor or Gas.
- 4. Bomb Threats,

All Bloomfield Refinery personnel are part of the emergency organization and are expected to carry out their assigned duties of fire fighting operations involving incipient stage fires as well as more advanced fire and emergencies to the ability of received training. Each employee will participate in a minimum of 16 hours per year of combined academic and practical training to better equip them with the knowledge and skill required for performance of their duties.

All members of the emergency organization should remain currently informed as to their roles in handling these emergency situations.

Each employee will receive the following aspects of industrial firefighting and emergency control:

- a. Hose handling and appliances
- b. Inspection, maintenance and use of portable fire extinguishers
- c. Agents and modes of extinguishment
- d. Tank fire fighting (pressure and atmospheric)
- e. Operation of mobile fire equipment
- f. Operation of fire pumps
- g. Use of protective clothing
- h. Use and inspection of breathing apparatus
- i. Control of hazardous materials j. Control of leaks (with or without fire)

k. Control of spills (with or without fire)

PAGE 1

TABLE OF CONTENTS

GENERAL.	PAGE
GENERAL.	. 1
RESPONSIBILITIES	. 3
ORGANIZATIONAL CHART	. 5
FIRE AND/OR EXPLOSION.Reporting the Fire.Fire Zones.Immediate Corrective ActionDirection of Fire Fighting Efforts.Fire Water SupplyEmergency Call Out Procedure.Emergency Command Post.Emergency Control Center.Requests for Outside AssistanceRecall.Public Relations.Plant Security.Injuries and First Aid.Emergency Shut Down Procedures.	. 6 . 6 . 7 . 7 . 7 . 7 . 8 . 9 . 9 . 9 . 9 . 10 . 10 . 10
RELEASE OF FLAMMABLE VAPOR OR GAS	. 11
RELEASE OF TOXIC VAPOR OR GAS	. 11
INCIDENTS INVOLVING RADIATION SOURCES	. 12
BOMB THREATS	. 13
RADIO SYSTEM	. 15
CONTRACTORS AND VISITORS	. 15
PIPELINE EMERGENCIES	. 16 . 17
EVACUATION OF BUILDINGS	. 18
COMMUNICATION CONTINGENCY.	. 18
EMERGENCY PHONE NUMBERS (Attachment I)	. 19
EQUIPMENT RESOURCES (Attachment I)	. 19
THREATENING PHONE CALL FORM (Attachment II)	20

e Settadie Gebe

T.I. Baler Ene ha h

115

1 69 (1

i ki ki ki

REFERENCE REFAILS THE FULL FOR THE REFERENCE

BLOOMFIELD REFINING CO.

I RESPONSIBILITIES

OPERATING SHIFT SUPERVISOR

It is realized that the Operating Shift Supervisor has special knowledge of operating equipment and process flows and is generally most available at any time day or night. For this reason it will be the Operating Supervisor's responsibility to assume command of emergency control efforts and act as Fire Chief until arrival of a member of the Safety Department. The Shift Supervisor will then continue to assist the control effort as a member of the command team.

SAFETY SUPERVISOR

Direct field command at emergency scene and assure all functions pertaining to the emergency operation are being carried out in an efficient manner. Later references in this order may signify this position by the title of "Fire Chief".

SAFETY REPRESENTATIVE

Assist the direction of field command by establishing an Emergency Command Post to coordinate activities and establish lines of communication. In the absence of the Safety Supervisor the Safety Representative will assume duties required as Fire Chief.

OPERATION DAY SUPERVISOR

Coordinate activities between emergency command post at emergency scene and process equipment control in control room.

CHIEF OPERATOR

Maintain control of process unit(s) left operating and act as dispatch operator until an Emergency Control Center can be established. The Chief Operator is responsible for maintaining an updated list of employees and their phone numbers in a readily accessible location in the control room. It is also the Chief Operators responsibility to know the call out system and how to activate it on moments notice.

OPERATORS

Perform necessary shut down of involved equipment as required by the situation and assist emergency control efforts as fire crew member.

PUMPER/GAUGER

Assist as fire crew member until relieved by the Fire Chief to take command of gate guard duties as outlined in the

PAGE 3

ATTICE AND AND THE CONTRACTOR AND A SECOND AND A S

and the state of the

SPECIAL MODE

ORGANIZATIONAL CHART

(D)

1 10/1

FIRE CREW LEADER MAINTENANCE SUPERVISOR **LIRE** CREW FIRE CREW LEADER MAINTENANCE SUPERVISOR SAFETY REPRESENTATIVE (ASST.FIRE CHIEF) SAFETY SUPERVISOR (FIRE CHIEF) ON DUTY SHIFT SUPERVISOR F IRE CREW FIRE CREW LEADER SHIFT SUPERVISOR EMERGENCY FIRE CREW PLANT MANAGER INFORMATION CHIEF FIRE CREW LEADER SHIFT SUPERVISOR ADMINISTRATION MANAGER 1 SUPPORT SERVICES FIRE CREW MAINTENANCE SUPERINTENDENT EMERGENCY CONTROL CENTER FIRE CREW LEADER SHIFT SUPERVISOR FIRE CREW

OPERATIONS SUPERINTENDENT

÷

1.1711

2

141

ga kili sirki

DAY SUPERVISOR DUTY OPERATORS فبهرا 121

ેલ્ડ

4.1 101 13660

Ĩ, 2.3.

5

14 10

II FIRE AND/OR EXPLOSION

A. REPORTING THE FIRE

Upon discovering a fire, unless it is obvious that the fire is so small that it can be easily extinguished, proceed immediately to the alert sounding station south of the control room and signal the alarm. The alarm signals will determine the general location of the emergency by use of fire zones. (See Chart).

If the nearest alert station is not readily accessible, the alert should be communicated to the control room by radio or telephone, who will in turn sound the alert over the alarm system. When contact is made to the control room, give your name, the location of the fire, and the fire zone. Be calm; be sure that the person answering has received the proper information before discontinuing the conversation.

B. FIRE ZONES

To make it possible to quickly designate the general area of a fire or emergency, the Bloomfield Complex has been divided into three fire zones. The fire alarms should be sounded in a manner to identify the general location of the emergency. The alarm should sound a long blast, followed by short blast(s) which indicate the fire zone and then repeated after a short time lapse. The following table lists the fire zones, location, and corresponding alarm.

Zone No.	Locations	Alarm Signal
Zone 1	Process Unit	1 long-1 short
Zone 2	Tank Farm	1 long-2 short
Zone 3	Term./Trans.	1 long-3 short

For Toxic Leaks or Gas Leaks Without Fire

2 longs & above coding

1411 1 1

A recall or all clear signal will be sounded when requested by the Fire Chief and will be characterized by five short blasts of the fire alarm.

C. IMMEDIATE CORRECTIVE ACTION

Most fires are relatively small when first ignited, but can spread very rapidly. Many serious fires and explosions have been prevented by taking immediate action to extinguish the

PAGE 6

1 1 66

fire or prevent the escape of the flammable liquid, vapor or gas, yet not endangering personal safety. While the fire is being reported, operations and maintenance personnel at the scene should immediately proceed to block off the feed to the fire and put to use available emergency equipment as needed. Do not wait for the fire crews to arrive; in most instances, the fire can be extinguished or contained before fire crews arrive.

D. DIRECTION OF FIRE FIGHTING EFFORTS

The ultimate responsibility as Fire Chief rests with the Safety Supervisor. However, until he arrives, direction of the fire fighting effort must be assumed by others at the scene of the emergency. When the alarm is sounded the first Operating Shift Supervisor at the scene should assume responsibility for directing the fire fighting effort and isolating process equipment. Command should be transferred to a member of the safety department upon arrival and briefing, releasing the supervisor for fire crew leader duties.

E. FIRE WATER SUPPLY

Water for fire fighting purposes is provided by automatic start stand-by pumps, and a system of underground piping.

If long duration fire fighting is evident all possible water resources from in-plant storage and city water supplies shall be made available and periodic checks of the fire pumps should be made. The fire officer in charge shall make the determination when the above items become necessary and designate an available operator to assume the duties.

F. EMERGENCY CALL OUT PROCEDURE

THE REPORT OF THE CONTRACT

An emergency occurring after normal working hours can pose serious manpower problems. To minimize these problems the following call out procedure should be followed.

Alert lists are provided to notify appropriate refinery personnel of an emergency in an orderly manner. Each list has a specific purpose and is designated as to who makes the call, who is called and at what times these lists are used.

ALERT LIST # 1

The following people should be contacted by the Shift Supervisor in the event of a bomb threat, suspected radiation accident or a fire or emergency that has been controlled by personnel on duty:

2. Operation Superintendent or Operation Day Supervisor

1. Safety Supervisor or Safety Representative

"江湖"的2015年11日本任何出生。

PAGE 7

3 1 41 6 1 41 2.3

ALERT LIST # 2

This call out list is designed to notify personnel of a major emergency situation that requires additional manpower. The Chief Operator, upon request of the Fire Chief, will call Contact of New Mexico at 327-4666 who will make the actual contact with our people. For reference purposes this list consists of:

- 1. Safety Department Personnel
- 2. Maintenance Supervisors
- 3. Operation Supervisors
- 4. Maintenance Employees
- 5. Operation Employees

ALERT LIST # 3

To be called by Chief Operator when extended emergency control efforts are evident and the Fire Chief determines the necessity for an Emergency Control Center:

- 1. Plant Manager
- 2. Administrative Manager

THE THE REAL PROCESSION OF THE PERSON OF T

The Administrative Manager will be responsible for contacting personnel to perform support services as necessary.

All phone calls made should calmly identify the caller and explain the situation as completely and briefly as possible. The desired course of action should be explained.

G. EMERGENCY COMMAND POST

During a major emergency, it will be necessary to establish communication between members of management at the scene and the Emergency Control Center outside the immediate area of the fire.

This Emergency Command Post will be a base for the direction of all fire fighting activities as well as a communication post to all involved. All information from this post will be transmitted by way of radio or communicated directly by the Information Chief to the Emergency Control Center.

Outside aid organizations should report to this command post after arrival and clearance at the front gate.

All off duty employees should contact this post upon arrival for fire crew assignments.

PAGE 8

PRESERVICE AND A DESCRIPTION OF A DESCRIPT A DESCRIPTION OF A DESCRIPANTA DESCRIPTION OF A DESCRIPTION OF A

-511411711151

H. EMERGENCY CONTROL CENTER

During a major emergency, it will be necessary to establish an Emergency Control Center where senior management have means of communication with the Emergency Command Post, with personnel outside the plant, with necessary corporate offices, and with press and news media personnel.

The maintenance office building has been designated as the Emergency Control Center. In anticipation of its use, a radio receive-transmitter will remain in this center at times of emergency.

When the necessity arises that requires establishing an Emergency Control Center, the Administration Manager or another member of this team will be responsible for contacting secretarial, purchasing and warehousing personnel to aid in the emergency effort through actions within their departmental control.

I. REQUESTS FOR OUTSIDE ASSISTANCE

In the event that outside assistance is needed, we can request this aid from the local fire departments-primarily the Bloomfield Department. It shall be the responsibility of the Chief Operator to request this aid, by telephone, upon the direction of the Fire Chief.

Mutual aid personnel and equipment will assemble outside the main refinery gate in the roadway southwest of the gate. The person in charge of each group should report to the main gate and stand by. Personnel and equipment will be admitted to the refinery only after specific authorization and instruction is given by the Emergency Command Post. Each responding Fire Chief or Officer is responsible for the specific safety of their personnel. Each responding fire chief will work with and under the direction of the Bloomfield Refinery Fire Chief at the scene.

J. RECALL

As soon as the emergency is under control and in a safe condition, the Fire Chief will ask for the recall signal to be sounded. After the recall signal is sounded the Chief Operator will repeat over the radio three times on each channel that all is clear and under control.

The fire equipment will then be cleaned and returned to its designated locations for future use. When all equipment is

returned to operable condition, fire crew members will return to their regular jobs, or may return home when released by the Fire Chief.

K. PUBLIC RELATIONS

A spectacular fire is a very newsworthy event, and we can expect visitations by members of the news media. It is quite important that factual information be made available as soon as possible.

This general policy is based on recognition that the press has a legitimate interest in any disaster that strikes a company facility. It is to the company's benefit to cooperate with news media when emergencies occur. This is the company's best guarantee that the resulting news reports are factual and accurately present the company's position. Only the facility manager or designee will release information to the news media.

A press waiting center will be set up in the main shop complex until such time as the Emergency Control Center is prepared to make a statement. A person designated by the Emergency Control Center team will remain with press personnel and assure them they will be furnished information and updates as soon as possible. Under no circumstances will news media personnel be allowed at the fire scene without explicit consent from the Fire Chief and never unaccompanied.

L. PLANT SECURITY

During a major emergency, the main entrance gate becomes an important center of activity. Entry of personnel and vehicles into the plant must be curtailed or stopped completely. Congestion of vehicles must be prevented to make it possible to bring in emergency equipment without delay.

The activities at the main gate will be supervised by the Pumper/Gauger when relieved of his fire crew duties by the Fire Chief. These activities should include closing the east entrance gates in the boneyard and at the roadway by the burnerfuel rack and taking station at the front gate to restrict and eliminate all unnecessary traffic.

If additional security is needed along the frontage road, contact will be made to the county sheriff's office at 334-6107. The gate guard will request this assistance through the Emergency Control Center if one has been established.

M. INJURIES AND FIRST AID

A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A DATE OF A

Injuries will be handled in accordance with Safety Order S-12. If a major explosion or fire results in multiple serious injuries the Office Staff is to coordinate first aid and

PAGE 10

medical treatment of these individuals. The Shift Supervisor or Fire Chief should consider the injuries when requesting outside assistance. If ambulances or medical assistance is needed, it can be obtained from the Bloomfield Fire Department and the San Juan Emergency Center.

After medical treatment for the individuals has been taken care of, the first aid coordination group should see that contact is made with the injured parties families. A member of the Emergency Control Center will make this contact with the information supplied by the first aid group.

N. EMERGENCY SHUT DOWN PROCEDURE

A quick efficient shut down of equipment is a necessity in emergency action situations. Each situation will be different but the main objective is to eliminate flow to the involved area. This may include closing a suction valve to a pump for seal fires or may require complete unit shut down for more involved emergencies. Each operator should know the safe emergency shut down procedure for this unit.

Emergency shut down procedures are found in the unit operating manuals as laid down by the engineering department for your information.

III RELEASE OF FLAMMABLE VAPOR OR GAS

In general, releases of flammable vapors or gas are handled in much the same way as fires. The reporting of these emergencies, sounding of the alarm, and reporting of fire crews should be identical to the procedure outlined in the other sections of this emergency plan.

All sources if ignition near the release should be extinguished immediately. Large quantities of water should be directed upon the area of discharge to disperse the flammable material and isolate it from sources of ignition. Every effort should be made to quickly isolate and depressure the leaking equipment.

The formation of a flammable vapor cloud can be extremely hazardous. Every effort should be made to prevent personnel from entering the cloud, because they can be engulfed in the flame if ignition occurs.

IV RELEASE OF TOXIC VAPOR OR GAS

In the event of a major release of a toxic vapor or gas, it may be desirable to absorb or disperse the toxic material with large volumes of water. In this event, the regular alarm should be sounded, as outlined in other sections of this plan, and fire crews will respond.

PAGE 11

ALC: UNATORIAL

BLOOMFIELD REFINING CO.

When responding to a release of, or fire involving toxic material, all personnel should respond to the upwind side of the emergency. All personnel should be prepared to use the protective equipment required for such a case as directed by the supervisor in charge.

It should be remembered that water solutions of some chemical vapors are extremely corrosive (chlorine, HC1). For this reason, if water sprays are directly on the leak, the resulting corrosion could intensify the leak. However, a curtain of water spray may be played on the vapor cloud downwind of the leak, until such time as the equipment can be isolated and the leak stopped.

V INCIDENTS INVOLVING RADIATION SOURCES

Radiation is a form of energy and as such can be put to use for a variety of purposes. As with other forms of energy it can be dangerous when uncontrolled. To control radiation intelligently it is necessary to understand its seriousness and proceed in practical aspects with respect.

The radioactive elements in use at the refinery (i.e. precipitator hopper level indicators and "Princeton Gamma-Tech Chemical Analyzer in the lab) are sealed sources with controlled directional energy output and present no personnel physical danger under normal operating conditions. However, as with any other hazardous material, when one of these sources enters an uncontrolled state through physical damage to the sealed housing, proper precautions and definite action steps must be taken to rectify the situation.

No employee is to attempt operation or repairs on any equipment containing a radioactive source without specific authorization, instruction and training in the operation and handling of the equipment.

The following procedure is to be used in the case of suspected damage or leakage of a radiation device. (The cause for concern could be the result of physical evidence of damage, fire involving the area of the source housing or general surveys conducted using the portable radiation detection meter).

- 1. Clear the area of all personnel as quickly as possible, to distance of 15 feet from the source.
- 2. Contact the Shift Supervisor and the Safety

PAGE 12

ALC: PROVEMENT

Department.

- 3. A 2 mRem/hr boundary line will be established using radiation detection instruments.
- 4. Avoid confusion and assist in maintaining control of established boundaries.
- 5. A report or log will be established listing:
 - a. Time of suspected incident.
 - b. Names of personnel in the area and their exact location.
 - c. Incidental meter readings and their location taken while establishing boundaries.
 - d. Cause of disturbance of radioactive material (if known).
- 6. Contact Kay-Ray if additional assistance or information is needed.
- 7. All reports to governmental and other agencies will be made by the Safety Department.

VI BOMB THREATS

It is the purpose of this section to establish a policy and procedure that will provide for personal safety of employees, protection of company property and products, and assure continuance of safe operations in the event that a threat of destruction is directed against a Bloomfield Refinery facility.

Action to be taken in response to these threats is the responsibility of the Operations Superintendent or Safety Supervisor. The Operations Superintendent also has the responsibility of:

- a. Communications with senior management.
- b. Requesting law enforcement assistance.
- c. Notifying other industry of a possible threat to their location.

Information concerning a threat of destruction should not be released to non-Bloomfield Refining persons or news media by anyone except the Operations Superintendent or Plant Manager.

A. PROCEDURES

THE A TRANSPORT OF A REPORT
Threats would probably be received by the receptionist in the office during office hours or a shift operator in the control room after hours. However, a threat could be directed to any person working at the plant. Any person receiving a bomb threat should respond as follows:

PAGE 13

THE REPORT OF THE CANES.

- 1. Remain calm. DO NOT PANIC!!!
- 2. STALL. Keep the party talking and get as much information as possible.
- 3. Listen closely to the individual and any other background noises. If possible, have another person listen to the conversation from another phone.
- Have available, and fill out, the accompanying phone call form with as much detail as possible. (Attachment II)
- 5. Immediately, upon completion of the telephone call, relay the information to the Operation Superintendent and Safety Department.

When a call is received, the Safety Department or available supervision will set up emergency headquarters to coordinate and direct the search, and address the following:

- 1. Only authorized personnel will be admitted to the refinery.
- 2. Designate someone to watch for suspicious persons or cars outside the plant and record any descriptions or license numbers of any such person.
- 3. If more help is needed, the Operation Superintendent is the only person authorized to call off duty employees to assist.
- 4. Two-way radios are to be left in the control room or offices and not to be used while the refinery is under alert.
- 5. In instituting a search for possible bomb location, each operator should perform a search of his unit paying special attention to column skirts, debris and cluttered areas, and areas around major pieces of equipment. Only general visual inspection will be conducted by in-house personnel. Contact will be made with the State Police for assistance and more extensive search efforts.
- 6. If a time of explosion was indicated by the caller, the search will continue to within ten minutes of the set time. At that time and until clearance is given, all personnel will be withdrawn, except those required in the control room.. The units will not be

PAGE 14

TRANTING IN THE REPORT OF THE PART OF T

7.8.8

shut down or left unattended. If a specific time was not given, contact the Operations Superintendent for direction. Operating units will not be shut down or left unattended.

- 7. If a bomb is discovered:
 - a. Notify the emergency headquarters.

 - b. Do not touch, attempt to remove, or disarm.c. "Bomb Removal" personnel (from the State Police Office) will be rushed to the site.
- 8. Outside agencies-Only after approval of Operations Superintendent or Safety Supervisor:
 - a. New Mexico State Police.
 - b. San Juan County Sheriff.

VII RADIO SYSTEM

Two-way radios provide a valuable means of communication in an emergency situation. With the aid of a two channel system we are able to use number two channel only for direction of fire fighting efforts. When an alarm is sounded, channel two will be cleared except for emergency purposes. Channel one will be used for the activities involved in isolating the involved equipment by the operating department. All other use of the radios will be discontinued until such a time as the . situation is in hand and the recall is given.

VIII CONTRACTORS AND VISITORS

When an emergency alarm is sounded, all contractors and visitors are to be directed to leave the process area and assemble at the main shop area. Contract foreman is to account for each of their employees and report any missing to the Emergency Command Post with information to their assigned work area. Contractors and visitors are not to return into the plant without authorization from the Emergency Command Post.

IX PIPELINE EMERGENCIES

Pipeline emergencies are to be handled in the same manner as any other fire or hydrocarbon release encountered at the refinery. Of prime concern to Bloomfield Refining Co. is

> PAGE 15

protection of exposures from a fire until such time as the feed can be isolated from the involved line(s) and final extinguishment is made. The responsibility for isolating the feed will be with the pipeline company whose facilities are involved.

If fire occurs involving the LACT unit or piping between our receiving point and storage tank we will take the responsibility for isolating the equipment as well as extinguishment.

More detailed information is given in the following summaries stating responsibilities, block valve location, emergency phone numbers, product identification and any special procedures.

SAN JUAN PIPELINE

Product Involved:

Origin:

Arrives Refinery:

On Site Destination:

Securing Responsibility:

Block Valve Location:

Telephone Numbers:

Crude Oil.

Bisti Station near El Paso Chaco Plant.

Through the southwest gates by tank # 23 (CBI-2) Bloomfield Refining receiving surfaces at LACT unit.

Tank # 31 (GATX-1). North 8" valve on west side of tank, or tank # 28 (CBI-3) 8" valve on north side of tank.

On Site-Pumper/Gauger Off Site- San Juan Pipeline.

6" plug valve immediately preceding the west meter (or) block valve located where line surfaces in right-of-way.

Bob McCoy 632-3425 or 325-1873 car 2385.

STRAFTING MO

EL PASO - ANGEL PEAK FIELD LINES

Product Involved:

20" on west in rightof-way; High Pressure Natural Gas.

8" center of right-ofway; Liquid Gas Product. (Drip)

34" east in right-ofway; High Pressure Natural Gas.

Right-of-way travels northeast to southwest between tank farm and process units.

None.

El Paso Natural Gas Company.

El Paso Natural Gas Dispatching: 325-1162.

SOUTHERN UNION

Product Involved:

On Site Destination:

Securing Responsibilities:

Emergency Telephone Numbers:

Origin:

Origin:

Arrives:

On Site Destination:

Securing Responsibility:

Block Valve Location:

Emergency Phone Numbers:

PAGE

Natural Gas.

Gas Company of New Mexico mainline.

Southwest property corner by Warehouse

Fuel Gas Drum.

On Site-Pumper/Gauger Off Site-Gas Company of New Mexico.

2" quarter turn plug valve at southwest property corner (or) 2" gate valves at control valve run behind shop.

Gas Company of New Mexico-325-2889.

X EVACUATION OF BUILDINGS

If the decision is made or an emergency requires evacuation of a building structure, each individual should follow the closest path of travel to an exit. Time should not be spent in trying to take any articles with you. Of prime importance is the safety of personnel, and article rescue should be left to trained personnel. Every individual should familiarize themselves with the exits (both primary and secondary) in the buildings that require their presence.

XI COMMUNICATION CONTINGENCY

Should an emergency arise that would damage or render inoperative the public telephone system at a location, alternative methods of communication should be used. This communication can be accomplished by the use of the terminals phones if the refinery was affected and the use of the refinery phones if terminals phones are affected. The operating crews in each area are responsible for aiding in this manner should the need arise.

PAGE

EMERGENCY PLAN

ATTACHMENT I

EMERGENCY PHONE NUMBERS

Bloomfield Fire Department. 632-8011 . . .632-8011 Bloomfield Police Department. Ambulance (dispatched through Farmington Fire). . . 325-3501 County Fire Departments (through Farmington Fire) .325-3501 CHEMTREC (Chemical Emergencies)1-800-424-9300 City of Farmington (Electric Utility) .

EQUIPMENT RESOURCES

Water Tankers & Vacuum Trucks Chief Transport.
Earth Moving Equipment
Adobe Construction (Ernie Motto)
Welding & Cutting Henry Vigil
Wrecker or Rig Up Trucks Sandia Detroit

general second

THE A LEAD

A HEALTHARD

G-HARLON, I.

ALC: NO. 1

EQUIPMENT RESOURCES (cont.)

Aerial Ladder or Basket City of Farmington Utility Farmington Fire	, .	•	•	•	•	•	•	327-7701 325-3501
Foam Supplies								
Seagull Roosevelt Refinery	•	•		•				.801-722-5128
Thunderbird Sales						•		.505-881-6222
F & M Chemical	•	•	•	•				.714-983-9551

Sec.

CHIER .

ht i

25 (jan

EMERGENCY PLAN

	ATTACHMENT II	
Т	THREATENING PHONE CALL FORM	
'ime call recei	vedTime caller hung up	
xact words of	person placing call:	
Questions to as	5k:	
. When is bomb	o going to explode?	
?. Where is bom	nb right now?	
	f bomb is it?	
	t look like?	
5. Why did you	place the bomb?	
	ing) (monitoring) call	-
	Telephone	
	·	
Home Telephone 1	NoDate DESCRIPTION OF CALLER'S VOICE	
Male	FemaleTone of Voice	
Young	Middle AgedOld	
Accent	Background Noise	
Voice Familiar	?If so, who did it sound like?	
Remarks:		
	tify following persons when call is comple erintendent and Safety Department.	ete

30011

ब स्टब्स कि न से दिन

9 W 32

S-1

	SPILL PREVENTION	CONTROL &	COUNTERMEASURE	PLAN
--	------------------	-----------	----------------	------

PART I GENERAL INFORMATION

()

Ś

1.	. Name of facilityBloomfield Refining Company, Inc	
· 2.	. Type of facility Onshore Facility - Petroleum Refinery	
3.	. Location of facilityOne mile south of Bloomfield on Sullivan Road	
	off New Mexico Highway 44.	
4.	Name and address of owner or operator:	
	NameBloomfield Refining Company, Inc	
	Address P. 0. Box 159	
	Bloomfield, New Mexico 87413	н В
		- - - -
5.	5. Designated person accountable for oil spill prevention at facility:	
N	Name and title Chad King, Operations Manager	
6.	5. Facility experienced a reportable oil spill event during the twelve months prior to Jan. 10, 1974 (effective date of 40 CFR, Part 112). (If YES, complete Attachment ± 1 .) <u>No</u>	
	MANAGEMENT APPROVAL	,
	This SPCC Plan will be implemented as herein described.	
	Signature	
	Name <u>Richard Traylor</u>	
	Title <u>Refinery Manager</u>	
CF	CERTIFICATION hereby certify that I have examined the facility, and being familiar with the provisions of 40 FR, Part 112 with this SPCC Plan has been prepared in accordance with good engineering ractices.	
(S	Seal) William Charles Carpenter, Jr. Printed Name of Registered Professional Engineer William Charles Cuperter H. Signature of Registered Professional Engineer	×
Da	Date $2/18/86$ Registration No. $\frac{#15937}{5020}$ State COLO.	
) .		
	(Part 1) Page 1 of 3	an a

and the second 7. Potential Spills - Prediction & Control:

1.11

THEFT BLUE THE LEFT

				Total		· · .	
	NO.		Major Type of Failure	Quantity (bbls)	Rate (bbls/hr)	Direction of Flow*	Secondary Containment
	3	Unleaded	Rupture	10,000	See (1)	See Blueprints	Yes
t nav	4	Unleaded	11	10,000		17 .	.,
	5 ·	Unleaded	11	10,000		11	17
	o 9	Crude Slop	11	500		11	
	10	Crude Slop	11	500		11	**
.*	10	Spent Caustic	11	400	11	11	11
	12	Basegas Cat and	11	55,000			·
	17	Cat gas Reduced Crude	11	55,000	11	11 .	
	18	Reduced Crude		40,000	11	11	
	19	Regular Gasoli Diesel	ne u	55,000	11		11
	20	FCC Slop	11	36,000	11	11	11
	21	FCC Slop	11	5,000	11	11	18
a Seren	22	Gasoline Slop	. 11	3,000 1,500	11	· 11	11
	23	Reformate	. 11			/ 11	11
	24	Reformer Feed	11	10,000	11		
	25	Sweet Naphtha	11	10,000	"	"	11
	26	Kerosene	11	4,000	" ~ R	· "	11
	27	Heavy Burner	11	10,000	, cv	/ H	11
	28	Crude	11	80,000		<u>к</u> и	11
	29	Regular Gasoli	ine "	.17,000	oX "	\mathcal{O} "	11
	30	Regular Gasoli		17,000	V' "NX		**
	31	Crude	11	110,000	1210		
	B1	LPG Slop	11	300	(NA	× "	n
	B2	LPG Slop		XING	U C	$\langle 1 \rangle$	**
	B12	Lt. Natural		700	~ · · ·	"	17
	B13	Lt. Natural	**	500	C' Ju	11	
	B14	Lt. Natural	н,	500	N ^r "	11	11
	B15	Propane	. 11	つ 700	A	17	11
	B16	Propane	11	700	· \' II	11	**
	. B17	Propane	11	700	11	11	FT
	B18	Butane	11	700		· 11	ft
	B19	Butane	18	700	11	11	11
	B20	Butane		700	11	11	**
$(1,1,1,1,1)^{-1}$	B21	Butane	11	700	11	11	11
		FCC	18	,	**	11	11
		Crude	17		11	**	17
		Reformer	11		11	11	11
		Loading	0verflow	200	11	11	11
	41	Crude Treating	g Rupture	800	11	**	17
	42	Crude Treating		. 800	11	**	11
	43	Crude Treating	-	800	11	11	11
		Discussion:	able Depe	nding Upon Notes	no and Eutone	e E Feilume	
				nding Upon Natu oomfield Refini:		or raiture.	

(Part 1) Page 2 of 3

16 Ballin

ALL THE CASE

ernan ein a heinde

PART I GENERAL INFORMATION

[Response to statements should be : YES, NO, or NA (Not Applicable).]

	spections and Records	
	= = = = = = = = = = = = = = = = = = =	Yes
В.	The written procedures and a record of inspections, signed by the appropriate supervisor or inspector, are attached	No
	Discussion:Inspections are done by plant employees.	
•		
		<u> </u>
	· · · · · · · · · · · · · · · · · · ·	
P	ersonnel Training and Spill Prevention Procedures	
A.	Personnel are properly instructed in the following:	37
	(i) operation and induced interest to prevene on detailing et, and	Yes Yes
	(2) applicable pollution control laws, rules, and regulations. Describe procedures employed for instruction: On the job training of new	
	by experienced personnel and instructions by the Supervisors of	critic
	aspects of the job.	
	Applicable training by the Safety Supervisor and the Environment	
	Applicable training by the Safety Supervisor and the Environment Engineer is given for pollution control laws, rules, and regulat	
B	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre-	tions.
B	Engineer is given for pollution control laws, rules, and regulat B. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan.	tions. Yes
B	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: <u>Periodic non-scheduled briefings will be conducted</u>	Yes conduct
B	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: <u>Periodic non-scheduled briefings will be o</u> by plant supervision concerning various operating procedures per	Yes conduct
B	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: <u>Periodic non-scheduled briefings will be a</u> by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan.	Yes conduct
В	Engineer is given for pollution control laws, rules, and regulat Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: Periodic non-scheduled briefings will be a by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur with	Yes conduct rtinent ithin
B	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: Periodic non-scheduled briefings will be a by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur we the refinery. Supervision discusses the incident with the respon	Yes conduct rtinent ithin nsible
В	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: <u>Periodic non-scheduled briefings will be of</u> by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. <u>Spill incident reports are prepared for all spills that occur we</u> the refinery. Supervision discusses the incident with the respon- party and determines a course of action to avoid future occurrent	Yes conduct rtinent ithin nsible nces.
В	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: Periodic non-scheduled briefings will be of by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur we the refinery. Supervision discusses the incident with the respon party and determines a course of action to avoid future occurrent Small incidences are considered serious and the briefings are in	Yes conduct rtinent ithin nsible nces.
В	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: <u>Periodic non-scheduled briefings will be of</u> by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. <u>Spill incident reports are prepared for all spills that occur we</u> the refinery. Supervision discusses the incident with the respon- party and determines a course of action to avoid future occurrent	Yes conduct rtinent ithin nsible nces.
В	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: Periodic non-scheduled briefings will be of by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur we the refinery. Supervision discusses the incident with the respon party and determines a course of action to avoid future occurrent Small incidences are considered serious and the briefings are in	Yes conduct rtinent ithin nsible nces.
В	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: Periodic non-scheduled briefings will be of by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur we the refinery. Supervision discusses the incident with the respon party and determines a course of action to avoid future occurrent Small incidences are considered serious and the briefings are in	Yes conduct rtinent ithin nsible nces.
В	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: Periodic non-scheduled briefings will be of by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur we the refinery. Supervision discusses the incident with the respon party and determines a course of action to avoid future occurrent Small incidences are considered serious and the briefings are in	Yes conduct rtinent ithin nsible nces.
В	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: Periodic non-scheduled briefings will be of by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur we the refinery. Supervision discusses the incident with the respon party and determines a course of action to avoid future occurrent Small incidences are considered serious and the briefings are in	Yes conduct rtinent ithin nsible nces.
	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: Periodic non-scheduled briefings will be a by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur with the refinery. Supervision discusses the incident with the respon- party and determines a course of action to avoid future occurrent Small incidences are considered serious and the briefings are in in avoiding major reportable spills.	Yes conduct rtinent ithin nsible nces.
	Engineer is given for pollution control laws, rules, and regulat S. Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: Periodic non-scheduled briefings will be of by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur we the refinery. Supervision discusses the incident with the respon party and determines a course of action to avoid future occurrent Small incidences are considered serious and the briefings are in	Yes conduct rtinent ithin nsible nces.
Nai	Engineer is given for pollution control laws, rules, and regulat Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: <u>Periodic non-scheduled briefings will be a</u> by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. <u>Spill incident reports are prepared for all spills that occur way</u> the refinery. Supervision discusses the incident with the respon party and determines a course of action to avoid future occurrent Small incidences are considered serious and the briefings are in in avoiding major reportable spills. <u>Bloomfield Refining Company</u>	Yes conduct rtinent ithin nsible nces.
Nai	Engineer is given for pollution control laws, rules, and regulat Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program: <u>Periodic non-scheduled briefings will be a</u> by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur with the refinery. Supervision discusses the incident with the respon- party and determines a course of action to avoid future occurrent Small incidences are considered serious and the briefings are in in avoiding major reportable spills. me of facility <u>Bloomfield Refining Company</u>	Yes conduct rtinent ithin nsible nces.
Nai	Engineer is given for pollution control laws, rules, and regulat Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program:Periodic non-scheduled briefings will be of by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur with the refinery. Supervision discusses the incident with the respon- party and determines a course of action to avoid future occurrents Small incidences are considered serious and the briefings are in in avoiding major reportable spills. me of facilityBloomfield Refining Company eratorSame	Yes conduct rtinent ithin nsible nces.
Nai	Engineer is given for pollution control laws, rules, and regulat Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program:Periodic non-scheduled briefings will be of by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur with the refinery. Supervision discusses the incident with the respon- party and determines a course of action to avoid future occurrents Small incidences are considered serious and the briefings are in in avoiding major reportable spills. me of facilityBloomfield Refining Company eratorSame	Yes conduct rtinent ithin nsible nces. nstrume
Nai	Engineer is given for pollution control laws, rules, and regulat Scheduled prevention briefings for the operating personnel are conducted fre- quently enough to assure adequate understanding of the SPCC Plan. Describe briefing program:Periodic non-scheduled briefings will be of by plant supervision concerning various operating procedures per to the implementation of the SPCC Plan. Spill incident reports are prepared for all spills that occur with the refinery. Supervision discusses the incident with the respon- party and determines a course of action to avoid future occurrents Small incidences are considered serious and the briefings are in in avoiding major reportable spills. me of facilityBloomfield Refining Company eratorSame	Yes conduct rtinent ithin nsible nces. nstrume

In HEIMIG

4.55

PART II. ALTERNATE A DESIGN AND OPERATING INFORMATION ONSHORE FACILITY (EXCLUDING PRODUCTION)

Facility Drainage

1. Drainage from diked storage areas is controlled as follows (include operating description of valves, pumps, ejectors, etc. (Note: Flapper-type valves should not be used):_ Any spills within diked storage areas will be controlled by the use of

mobile pumping/vacuuming units to recover the material.

2. Drainage from undiked areas is controlled as follows (include description of ponds, lagoons,

or catchment basins and methods of retaining and returning oil to facility):______ Drainage in the process areas is controlled by oily/water sewers routed

·	to	the	API	separator	or	by	collection	in	sumps	that	can	be pumped to
				parator.								

The water effluent from the separator (and oil carryover in the event of an overloading incident) goes to a series of two lined ponds and then to two evaporation ponds. Any oil carried over would be skimmed and returned to the API separator.

3. The procedure for supervising the drainage of rain water from secondary containment into a storm drain or an open watercourse is as follows (include description of (a) inspection for pollutants, and (b) method of valving security). (A record of inspection and drainage events

			<u></u>							
 per	year.	Secondary	containment	<u>will</u>	not	be	impacted	by	100	year
 stor	cms.									
 			····							· · ·
 					<u> </u>		<u> </u>			
 							·			
 			······					·		
 										. <u></u>

Name of facility _____ Bloomfield Refining Company

R. B. B. Brudk Rock M.

Operator___

Same

(Part II, Alternate A) Page 1 of 5

Plan and

PART II, ALTERNATE A DESIGN AND OPERATING INFORMATION ONSHORE FACILITY (EXCLUDING PRODUCTION)

[Response to statements should be ; YES, NO, or NA (Not Applicable).]

B. Bulk Storage Tanks

- 1. Describe tank design, materials of construction, fail-safe engineering features, and if needed. cerrosion protection: Circular tanks above grade, welded and bolted steel plate tanks, Tanks 10 and 11 are on a tank ring and sand cushion, all others are on sand cushion only. Corrosion protection has been applied to the external surfaces.
- 2. Describe secondary containment design, construction materials, and volume: ____ Secondary containment consists of earthen dikes with adequate volume to handle catastrophic failure of the tanks.

3. Describe tank inspection methods, procedures, and record keeping: _ Tanks throughout the plant are manually gauged each day. The gauger is on the alert for any leaks or tank disorders. Daily inventory logs are checked to detect any disorders. Inventory balances are done to determine losses. When a problem is detected or during cleaning turnarounds, tanks are carefully inspected for leaks, corrosion, etc. and not put back into service until necessary repairs are made.

4. Internal heating coil leakage is controlled by one or more of the following control factors: (a) Monitoring the steam return or exhaust lines for oil. Yes

Describe monitoring procedure: Daily product sampling and continuous lookout for oil in the steam return lines.

THE DEPOSITE

THE E LITES

(b) Passing the steam return or exhaust lines through a settling tank, skimmer. or other separation system. _Yes.__ <u>N/A</u>

(c) Installing external heating systems.

5. Disposal facilities for plant effluents discharged into navigable waters are observed frequently for indication of possible upsets which may cause an oil spill N/A event.

Describe method and frequency of observations:

Name of facility _____ Bloomfield Refining Company

Operator_____Same

(Part II, Alternate A) Page 2 of 5

PART II. ALTERNATE A DESIGN AND OPERATING INFORMATION ONSHORE FACILITY (EXCLUDING PRODUCTION)

[Response to statements should be: YES, NO, or NA (Not Applicable).]

() C.	Fac	cility Transfer Operations, Pumping, and In-plant Process Corrosion protection for buried pipelines:	
	1.	(a) Pipelines are wrapped and coated to reduce corrosion. <u>Yes</u>	
		(b) Cathodic protection is provided for pipelines if determined necessary by elec-	
		trolytic testingN/A	
		(c) When a pipeline section is exposed, it is examined and corrective action taken as necessary.	
	2.	Pipeline terminal connections are capped or blank-flanged and marked if the pipe- line is not in service or on standby service for extended periods. <u>Yes</u> Describe criteria for determining when to cap or blank-flange: <u>We are eliminating buried lines as we change the service. All abandoned</u> <u>lines are plugged or capped.</u>	
	3.	Pipe supports are designed to minimize abrasion and corrosion and allow for expansion and contraction. <u>Yes</u>	
		Describe pipe support design: Supports are steel and concrete structures of various shapes. Shoes are provided on process piping. Fireproofing has been applied to some critical, vertical steel members.	
Ţ	4.	Describe procedures for regularly examining all above-ground valves and pipelines (includ- ing flange joints, valve glands and bodies. catch pans. pipeline supports, locking of valves. and metal surfaces): Daily visual inspections are done by plant personnel.	
	5.	Describe procedures for warning vehicles entering the facility to avoid damaging above-	
		ground piping: <u>A rigid permitting procedure is followed to authorize vehicl</u> in the process area. Roads in the tank farm area cross over the pipes. <u>The one overhead piperack is very high at the road crossing to allow</u> <u>clearance for all types of vehicles.</u>	es
	N	ame of facilityBloomfield Refining Company	
· .		peratorSame	
	· .	(Part II, Alternate A) Page 3 of 5	
			100

11113

CONTRACTOR OF STREET, S

PART IL ALTERNATE A DESIGN AND OPERATING INFORMATION ONSHORE FACILITY (EXCLUDING PRODUCTION)

[Response to statements should be: YES, NO, or NA (Not Applicable).]

1 Loading (un)	oading procedures meet the minimum requirements and r	egulations
	tment of Transportation.	
2. The unloadi	ng area has a quick drainage system.	<u> </u>
ment of a ta Describe con <u>The true</u> <u>curbing</u>	ment system will hold the maximum capacity of any single onk truck loaded/unloaded in the plant. utainment system design, construction materials, and volume <u>ck product loading area controls spills with a co</u> . The slab is designed to drain spills to a sump to Tank 22 from which the material is blended bac e.	Y <u>oncrete slab</u> p which is t
and cur	ck crude unloading area controls spills with a co bing. The slab is designed to drain spills to a pumped to the crude treating tanks or the API so	sump which
Both ar	eas have secondary containment in the event of su	ump overfill
<u></u>		
vided in loa of transfer Describe m	nethods, procedures, and/or equipment used to prevent	disconnect <u>Y</u> premature vel
vided in loa of transfer Describe m departure: <u>trained</u> <u>Instruc</u>	.ding/unloading areas to prevent vehicular departure before lines.	disconnect <u>Y</u> premature vel w drivers ar g_equipment.
vided in loa of transfer Describe m departure: <u>trained</u> <u>Instruc</u>	iding/unloading areas to prevent vehicular departure before lines. Methods, procedures, and/or equipment used to prevent Warning signs are provided in the area. New in the proper operation of the loading/unloadin tion signs are provided. Company personnel are	disconnect <u>Y</u> premature vel w drivers ar g_equipment.
vided in loa of transfer Describe m departure: <u>trained</u> <u>Instruc</u>	iding/unloading areas to prevent vehicular departure before lines. Methods, procedures, and/or equipment used to prevent Warning signs are provided in the area. New in the proper operation of the loading/unloadin tion signs are provided. Company personnel are	disconnect <u>Y</u> premature vel w drivers ar g_equipment.
 vided in loa of transfer Describe m departure: trained Instruc area to area to 5. Drains and 	iding/unloading areas to prevent vehicular departure before lines. Methods, procedures, and/or equipment used to prevent Warning signs are provided in the area. New in the proper operation of the loading/unloadin tion signs are provided. Company personnel are	disconnect Y premature_vel w_drivers_ar g_equipment. present_in_t
 vided in loa of transfer Describe m departure: trained Instruc area to area to 5. Drains and 	<pre>ding/unloading areas to prevent vehicular departure before lines. nethods, procedures, and/or equipment used to prevent</pre>	disconnect Y premature_vel w_drivers_ar g_equipment. present_in_t
 vided in loa of transfer Describe m departure: trained Instruc area to area 5. Drains and loading/un 	<pre>ding/unloading areas to prevent vehicular departure before lines. nethods, procedures, and/or equipment used to prevent</pre>	disconnect Y premature_vel w_drivers_ar g_equipment. present_in_t
 vided in loa of transfer Describe m departure: <u>trained</u> <u>Instruc</u> area to 5. Drains and loading/un Name of facility 	<pre>ding/unloading areas to prevent vehicular departure before lines. nethods, procedures, and/or equipment used to prevent</pre>	disconnect Y premature_vel w_drivers_ar g_equipment. present_in_t

:闇目

PART II. ALTERNATE A DESIGN AND OPERATING INFORMATION ONSHORE FACILITY (EXCLUDING PRODUCTION)

[Response to statements should be: YES, NO, or NA (Not Applicable).]

E. Security

I. Plants han	dling, processing, or storing of	oil are fenced.	Yes
2. Entrance ; production		ed when the plant is unattende	nd or not inYes
	a which permit direct outwar in in non-operating or standby	d flow of a tank's contents status.	are locked <u>No</u>
(a) locked	ntrols on all oil pumps in nor I in the off position; d at site accessible only to aut	n-operating or standby status a horized personnel.	re: <u>No</u> Yes
All pro	cess valves on active ta system. The refinery is	propriate: nks or vessels are tied t operated on a 24-hour ba horized personnel.	o a closed sis with all
draw-of constar	f are operated only by a atly when in operation.	to tank sumps. The valv uthorized personnel and a If piping is disconnected ted to the valves.	re attended For maintenance
		•	
6. Discussion	n of the lighting around the	facility: <u>Adequate for a 2</u>	4-hour operatio
Name of facil	ityBloomfield Refini	ing Company	
Operator			
	Same		
	Same	(Part)	I. Alternate A) Pare !
	Same	(Part)	II, Alternate A) Page 5

his and a sala

 1 A COL 17, 1860

SPCC PLAN, ATTACHMENT =1 SPILL HISTORY

I -			Cause:			
- (Corrective acti					
-						
-	<u></u>					
•		······	Cause:			
	Corrective act	ion taken:				
	Plans for prev	venting recurrence:				
	Date		Cause:			
	Corrective ac	tion taken :				
	Plans for pre	venting recurrence:				·
		ity	·····			
	Operator			(Attachment #	1, SPCC Plan)	
÷?	الحريف التي في العربي عن المراجع . المراجع التي في المراجع . الأحري الحق (مراجع)		the North Contract of the State	and an easy line in the second se	an a	

Li la Marti

31.16

WASTE DESCRIPTION

RCRA Part 262 - Standards Applicable to Generators of Hazardous Waste

Applicability

Bloomfield Refining Company is subject to the requirements of RCRA Part 262 as a generator of hazardous waste only. As a generator only, Bloomfield Refining Company accumulates hazardous waste on-site for 90 days or less. The waste is placed in containers pursuant to the requirements of RCRA Part 262 Subpart C and shipped offsite to an approved disposal site.

Applicable Hazardous Waste

1. K-050-Heat Exchanger Bundle Sludges

Heat exchanger bundle sludges, which are generated when exchangers are cleaned, are listed hazardous wastes. The refinery generates approximately 5,000 pounds of the waste during a major refinery turnaround. Major turnarounds are done approximately every three years. An exchanger, on the average, will generate 100 pounds of waste per cleaning.

2. K-051-API Separator Sludge

Sludges that accumulate in the API separator are considered a hazardous waste when they are removed from the separator. The separator is cleaned approximately every two years. The method of cleaning is to filter press the entire contents of the separator. An outside contractor performs the work. Approximately 250,000 pounds of waste is generated.

3. K-052-Lead Tank Bottoms

Sludges that accumulate in the bottom of leaded gasoline storage tanks are considered a hazardous waste when they are removed from the tank. A tank is cleaned approximately every five years. Approximately 8,000 pounds of waste is generated with each tank cleaning.

4. F-002, D-001 - 1,1,1 Trichloroethane & Methanol in Naphtha

Spent 1,1,1 Trichloroethane and methanol in naphtha from the reformer is a hazardous waste when the filled 55-gallon waste drum is removed from the process area to storage. Approximately one drum is generated per quarter year.

5. D-002-Spent Caustic

THE REPORT OF THE REPORT OF THE REPORT OF THE STATE OF T

Spent caustic is a hazardous waste if the material is discarded. The material is currently sold as a supplement to a commercial product and is, therefore, exempt from the RCRA regulations at this time. Approximately 613,000 pounds or 70,000 gallons is generated per year.

H D MA

111111111111

THE IS

MANIFEST SYSTEM

RCRA Part 262 Subpart B - The Manifest

A generator of hazardous waste must prepare a manifest for the offsite shipment of hazardous waste. The Environmental Engineer has the responsibility to ensure that the manifest use meets the requirements of the regulation. A copy of a blank manifest and a properly completed manifest are included here.

The generator must:

- 1. Sign the manifest certification by hand.
- 2. Obtain the handwritten signature of the initial transporter and date of acceptance on the manifest.
- 3. Retain one copy and give the transporter the remaining copies and original. The receiving facility will return the original after completion of disposal.

di Huntansi

	UNIFORM HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID NMDの日9.4.		Manifest Document No. 44.0.7.	2. Page of	I Information not requir	ed by Fe	shaded areas is deral law.	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
Ge	nerator's Name and Mailing Address BLOOMETELD REF			· · · · · · · · · · · · · · · · · · ·	A. State	Manifest Docum	ent Num	Der Trans	
	PU SUX 159 NM	87413			8 State	Generator's ID			
	inerator's Phone (505) 632	. 2013	US EPA 1D Num		C Stot	e Transporter's ID			
	USPCI	U.T.	0.980.63		·	sporter's Phone			
Ira	ansporter 2 Company Name	8.	US EPA ID Num	per		e Transporter's ID			
Des	signated Facility Name and Site Addres		US EPA ID Num	ber	ł	e Facility's ID	<u> </u>		
	GRASSY MOUNTAIN FA								
	CLIVE, WIAH		099130	1748		lity's Phone 268-3169	~ 2/2	6-3702	
U	IS DOT Description (Including Proper Shi			12. Cont		13. Totai	14. Unit	Ι.	
<u> </u> 	<u>vi</u>		·	No.	Туре	Quantity	W1/Vol	Waste No.	
	UAD AD DOLK WACTER	WALK DAVE J	AC. DO	10	5564	32700	1 Cz	VOTT	
<u>^</u>	HAZAR DOUK WASTE SO	LIDNUS ORM-E NI	17/37	47	11	3 F 100	-02	K-051	
X	HAZARDONS WASTE SI	CID NOS ONM-E 1	417139	. 4	DR	3300	4BS	K-052	
:		Isr an	= 114 GID	9 -	554	1		11	
X	HAZARQUS WHATE	SULD NOS, UNA	ENA 113	1.7	DR	.4.680	635	K-050	
									Sec.
5. 5	K - DSO HEAT EXC Special Handling Instructions and Addition TN CASE DF SPILL	onal Information	······································		l	Ś.			
5. G	GENERATOR'S CERTIFICATION: I hereby norked, and labeled, and are in all respects in	declare that the contents of this con a proper condition for transport by h	signment are fully and a ighway according to op	ccurately describe plicable internatio	d above b mal and n	y proper shipping no ational governments	ame and a al regulation	re classified, packed, ons.	
U 17	Unless I am a small quantity generator who has hat I have a program in place to reduce the v reatment, storage, or disposal currently avi	been exempted by statute or regula rolume and toxicity of waste genera	tian from the duty to mail ted to the degree I have	e a waste minimiz determined to b	ation certi e economi	fication under Sectio cally practicable an	n 3002(b)	of RCRA, Lalso certily	
P	Printed/Typed Nome	······································	Signature	in in				Ionth Day Year	
7. T	CHIDIS /IAU Transporter 1 Acknowledgement of Rece		1 min	HMUL	-f		p	20786	
	Printed/Typed Nome C.B. LUP		Signojure					Aonth Day Year	
8 1	L. B. L. LA, F. Transporter 2 Acknowledgement of Rece	I ON	1000	<u>Xing</u>	54	7.4	Ĕ	12 27 36	
	Printed/Typed Name		Signature				,	Nonih Day Year 	
9. (Discrepancy Indication Space								
0. 1	Facility Owner or Operator: Certification	of receipt of hazardous mater	ials covered by this m	anifest except a	as noted i	n Item 19.			
	Printed/Typed Name		Signature					Month Day Year	
		a				STOP GETTERM	1		

_	UNIFORM HAZARDOUS	ienerator's US EPA ID No.	Docur	nifest nent No.	2. Page 1 of	Informati not requi	on in the red by Fe	shaded area deral law.	is i		
3. N	Generator's Name and Mailing Address				A. Stote M	anifest Docum	ient Numb	or			
	Generator's Phone ()				B. State G	nerator's ID	₹				
_	Transporter 1 Company Name	ó. US EP.	A ID Number		·	ansporter's ID					
_	Transporter 2 Company Name	8. US EP.	A ID Number		·	rter's Phone ansporter's ID					
/.	Transporter 2 Company Nume	1				rter's Phone		· · · · · · · · · · · · · · · · · · ·			
9.	Designated Facility Name and Site Address	10. US EP.	A ID Number		G. State F	acility's ID					
	:				H. Facility	s Phone					
11	. US DOT Description (Including Proper Shipping Nam	Hazard Class and ID Number	· · · · · · · · · · · · · · · · · · ·	12, Cont	tainers	13.	14.				
				No.	Туре	Total Quantity	Unit Wt/Vol	I. Waste No			
a.									2.2		
						• • •	<u> </u>				
þ.											
					<u> </u>	• • •					
٤.											
	 		······	<u> · ·</u>		· · ·					
d.											
1	Additional Descriptions for Materials Listed Above	····		<u> </u>		 ng Codes for	Wastes lie	ted Above			
1.	5. Special Handling Instructions and Additional Inform	nation				- 					
	6. GENERATOR'S CERTIFICATION: 1 hereby declare that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed,										
1	6. GENERATOR'S CERTIFICATION: Thereby declare the	t the contents of this consignment are	fully and accura	telu describe	d above by pr	oper shipping a	nme ond o	e classified, na	ked		
1	6. GENERATOR'S CERTIFICATION: I hereby declare the marked, and labeled, and are in all respects in proper co Unless I am a small quantity generator who has been exem that I have a program in place to reduce the volume and treatment, storage, or disposal currently available to r	rdition for transport by highway acco ated by statute or regulation from the toxicity of waste generated to the de	rding to applicat duty to make a w sgree I hove dete	ole internatio raste minimiz ermined to b	anal and natio atian certifica e economically	nal gavernmen ion under Secti practicable ar	al regulatio an 3002(b) c	ins. of RCRA, Laiso c	ertify		
1	morked, and labeled, and are in all respects in proper con Unless I am a small quantity generator who has been exem that I have a program in place to reduce the volume and	rdition for transport by highway acco ated by statute or regulation from the toxicity of waste generated to the de	rding to applicat duty to make a w agree I have dete d future threat	ole internatio raste minimiz ermined to b	anal and natio atian certifica e economically	nal gavernmen ion under Secti practicable ar	ial regulatio an 3002(b) a id l have se	ins. of RCRA, Laiso c	ertify		
	morked, and lobeled, and are in all respects in proper co Unless I am a small quantity generator who has been exem that I have a program in place to reduce the volume and treatment, storage, or disposal currently available to r	ndition for transport by highway acco ated by statute or regulation from the taxicity of waste generated to the de ne which minimizes the present and Signature	rding to applicat duty to make a w agree I have dete d future threat	ole internatio raste minimiz ermined to b	anal and natio atian certifica e economically	nal gavernmen ion under Secti practicable ar	ial regulatio an 3002(b) a id l have se	ins. of RCRA, I also c lected the meth	entify od of		
	morked, and labeled, and are in all respects in proper con Unless I am a small quantity generator who has been exem that I have a program in place to reduce the volume and treatment, storage, or disposal currently available to r Printed/Typed Name	ndition for transport by highway acco ated by statute or regulation from the taxicity of waste generated to the de ne which minimizes the present and Signature	rding to applicat duty to make a w egree I have dete d future threat e	ole internatio raste minimiz ermined to b	anal and natio atian certifica e economically	nal gavernmen ion under Secti practicable ar	al regulatic an 3002(b) a id I have sei M	ins. of RCRA, I also c lected the meth	entify od of		
	morked, and labeled, and are in all respects in proper con Unless I am a small quantity generator who has been exemp that I have a program in place to reduce the volume and treatment, storage, or disposal currently available to n Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Mat	ndition for transport by highway accounted by statute or regulation from the texicity of waste generated to the dene which minimizes the present and Signature ericls Signature	rding to applicat duty to make a w egree I have dete d future threat e	ole internatio raste minimiz ermined to b	anal and natio atian certifica e economically	nal gavernmen ion under Secti practicable ar	al regulatic an 3002(b) a id I have sei M	of RCRA, Laiso c iected the meth onth Day	ertify od of Year		
	morked, and labeled, and are in all respects in proper co Unless I am a small quantity generator who has been exem that I have a program in place to reduce the volume and treatment, storage, or disposal currently available to r Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Mat Printed/Typed Name	ndition for transport by highway accounted by statute or regulation from the texicity of waste generated to the dene which minimizes the present and Signature ericls Signature	rding to applicat duty to make a w ogree I have dete d future threat e	ole internatio raste minimiz ermined to b	anal and natio atian certifica e economically	nal gavernmen ion under Secti practicable ar	al regulatic on 3002(b) o d I have sei 	of RCRA, Laiso c iected the meth onth Day	ertify od of Year		
	morked, and labeled, and are in all respects in proper con Unless I am a small quantity generator who has been exempthat I have a program in place to reduce the volume and treatment, storage, or disposal currently available to r Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Math Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Math	adition for transport by highway accounted by statute or regulation from the toxicity of waste generated to the dene which minimizes the present and Signature erials Signature erials	rding to applicat duty to make a w ogree I have dete d future threat e	ole internatio raste minimiz ermined to b	anal and natio atian certifica e economically	nal gavernmen ion under Secti practicable ar	al regulatic on 3002(b) o d I have sei 	ins. St RCRA, I also c iected the meth anth Day 	Year Year Year		
	morked, and labeled, and are in all respects in proper cost Unless I am a small quantity generator who has been exemi- that I have a program in place to reduce the volume and treatment, storage, or disposal currently available to r Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Mat Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Mat Printed/Typed Name 9. Discrepancy Indication Space	adition for transport by highway accounted by statute or regulation from the texicity of waste generated to the dene which minimizes the present and Signature erials Signature	rding to applicat duty to make a we agree I have dete d future threat e	ole internatio	onol and natio ation certifica e economically ealth and the	nal gavernmen ion under Secti practicable ar environment.	al regulatic on 3002(b) o d I have sei 	ins. St RCRA, I also c iected the meth anth Day 	Year Year Year		
	morked, and labeled, and are in all respects in proper con Unless I am a small quantity generator who has been exempthat I have a program in place to reduce the volume and treatment, storage, or disposal currently available to r Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Math Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Math Printed/Typed Name	adition for transport by highway accounted by statute or regulation from the texicity of waste generated to the dene which minimizes the present and Signature erials Signature	rding to applicat duty to make a we agree I have dete d future threat e	ole internatio	onol and natio ation certifica e economically ealth and the	nal gavernmen ion under Secti practicable ar environment.	al regulatic on 3002(b) o d I have sei 	ins. St RCRA, I also c iected the meth anth Day 	Year Year Year		
	morked, and labeled, and are in all respects in proper cost Unless I am a small quantity generator who has been exemi- that I have a program in place to reduce the volume and treatment, storage, or disposal currently available to r Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Mat Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Mat Printed/Typed Name 9. Discrepancy Indication Space	adition for transport by highway accounted by statute or regulation from the texicity of waste generated to the dene which minimizes the present and Signature erials Signature	rding to applicat duty to make a w sgree I have dete d future threat e e e e	ole internatio	onol and natio ation certifica e economically ealth and the	nal gavernmen ion under Secti practicable ar environment.	ol regulatic on 3002(b) (id I have sei ////////////////////////////////////	ins. St RCRA, I also c iected the meth anth Day 	Year Year Year		
	marked, and labeled, and are in all respects in proper con Unless I am a small quantity generator who has been exem that I have a program in place to reduce the volume and treatment, storage, or disposal currently available to r Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Mat Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Mat Printed/Typed Name 9. Discrepancy Indication Space	ndition for transport by highway accounted by statute or regulation from the toxicity of waste generated to the dene which minimizes the present and Signature erials Signature for hazardous materials covered	rding to applicat duty to make a w sgree I have dete d future threat e e e e	ole internatio	onol and natio ation certifica e economically ealth and the	nal gavernmen ion under Secti practicable ar environment.	ol regulatic on 3002(b) (id I have sei ////////////////////////////////////	ins. St RCRA, I also c lected the meth anth Day 	Year Year Year		

CLOSURE REQUIREMENTS

Bloomfield Refining Company, as a generator <u>only</u> of hazardous waste, complies with the requirements of RCRA Part 262.34 and is, therefore, not required to comply with RCRA Part 265 Subpart G - Closure and Post-Closure. However, in the event that the refinery is closed, certain closure activities will be required to remain in compliance with RCRA Part 262.34.

RCRA Part 262.34 Requires:

- A generator may accumulate hazardous waste on-site for 90 days or less without a permit.
- 2. The waste is placed in proper containers.
- 3. The date upon which each period of accumulation begins is clearly marked and visible for inspection on each container.
- 4. While being accumulated on-site, each container and tank is labeled or marked clearly with the words, "Hazardous Waste".

The hazardous wastes and closure activites specific to Bloomfield Refining Company are as follows:

K-050 Heat Exchanger Bundle Cleaning Sludge

Approximately 100 exchangers will be taken out of service in the event of a refinery shutdown. They will require hydroblast cleaning and will generate about 10,000 pounds of sludge. Approximately 100 manhours will be required to pull and replace each exchanger bundle.

Cost Estimate

Pull and Replace Each Bundle	
100 ea. x 1 00 MH/ea . x \$20/MH	\$200,000
Hydroblasting Waste Disposal	30,000
15 drums x \$600/drum	9,000
K-050 TOTAL	\$239,000

K-051 API Separator Sludge

The separator will require cleaning and will generate approximately 250,000 pounds of waste.

\$ 38,000

24,000

62,000

\$

Cost Estimate

Cleaning/Processing Waste Disposal

K-051 TOTAL

TRACE INTO A LAR AND THAT DO AN ADD ADD A SUM OF

and the second
K-052 Leaded Tank Bottoms

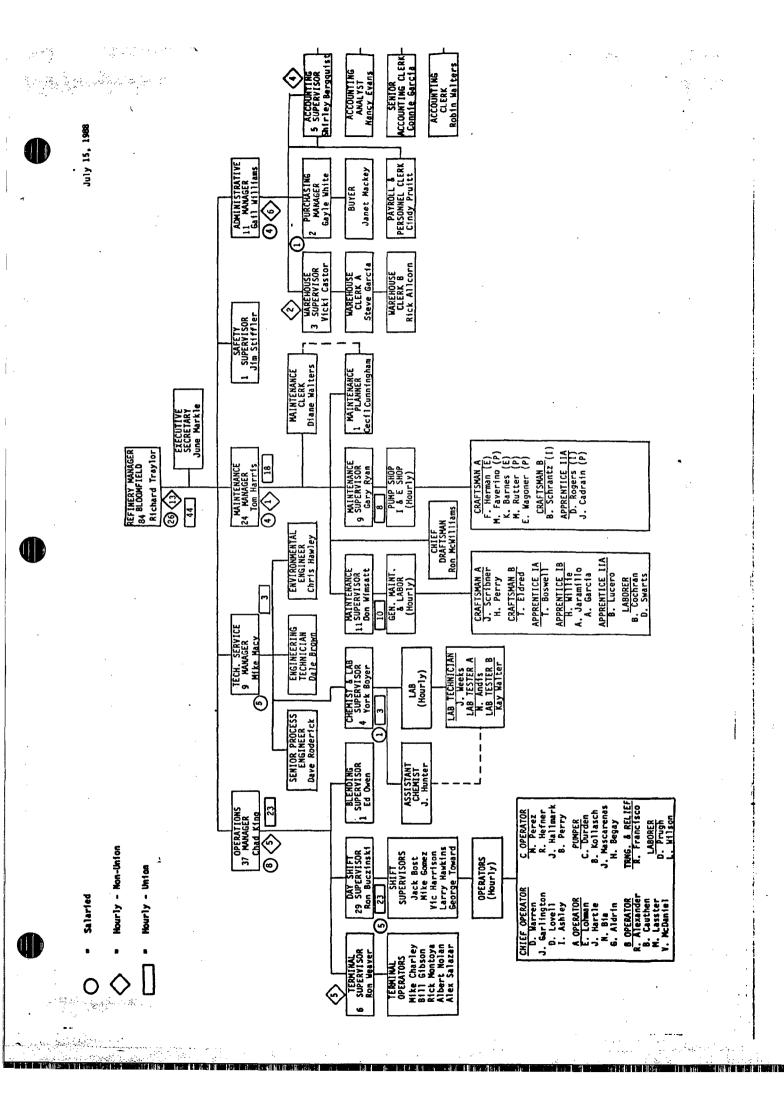
Three tanks, numbers 18, 29, and 30, will require the removal of hazardous tank bottoms in the event of a shutdown. Approximately 24,000 pounds (30 drums) of hazardous waste will be generated.

Cost Estimate

Cleaning Waste Disposal	\$ 50,000
30 ea. x \$600/ea.	18,000
K-052 TOTAL	\$ 68,000

TOTAL Cost of Closure Activities for Hazardous Waste Associated with a Shutdown

Calify and a


HE HEREDE

\$369,000


PERSONNEL RECORDS

Richard Traylor - Refinery Manager Chris Hawley - Environmental Engineer Chad King - Operations Manager Don Wimsatt - General Maintenance Supervisor

The people named above are responsible for the management of the hazardous waste generated at the refinery. Chris Hawley has attended several seminars and has extensive on-the-job training in the management of hazardous waste. He has relayed the pertinent information and training to the others. Since the actual handling of hazardous waste is done on an infrequent basis, the employees and contractors that are directly involved are briefed by the responsible person on how to perform their duties to ensure the facility's compliance with the requirements of training.

Attachment 7

ACRESS

SCHLEGEL LINING TECHNOLOGY, INC.

MINIMUM SPECIFICATIONS FOR SCHLEGEL® SHEET - POLYETHYLENE

PROPERTY	TEST METHOD	VALUE
Density	ASTM D792	0.930 gm/cc
Tensile strength @ yield	ASTM D638	1500 psi
Tensile strength @ break	ASTM D638	1500 psi
Elongation @ yield	ASTM D638	10 %
Elongation @ break	ASTM D638	500 %
Stress crack	ASTM D1693	500 hours
Low temperature	ASTM D746	– 40 °C
120 day soil burial .	ASTM D3083	±10 % of original tensile
Bonded seam strength	ASTM D3083	90 % of material breaking factor
Dimensional stability	ASTM D1204	±3 %

Chemical Resistance Table.

Shown here are the results of tests reported by the supplier of high density polyethylene granulate used to manufacture Schlegel* sheet. The high density polyethylene is resistant to the chemicals listed. The degree of chemical attack on any material is influenced by a number of variable factors and their interaction, including temperature, pressure, size of area under attack, exposure duration, and the like. Where sheet will be exposed to a mixture of chemicals it is recommended that tests be carried out for sheet resistance to that chemical mixture. Therefore, these ratings are offered as a guide only.

Abbreviations

S = Satisfactory

L = Limited application possible

U = Unsatisfactory — = Not tested

Concentration

sat, sol. = Saturated aqueous solution, prepared at 20° C (68° F) sol = aqueous solution with concentration above 10% but below saturation level

dil. sol. = diluted aqueous solution with concentration below 10% cust. conc. = customary service concentration

1 - dia m	Concontration	Resistance at					ance at
Aedium	Concentration	20°C (68°F)	60° C (140 °F)	Medium	Concentration	20° C (68°F)	60°C (140°
4				Carbon tetrachloride	100%	L	U
Acetic acid	100%	S	Ľ	Chlorine, aqueous solution	sat, sol.	Ĺ	Ŭ
Acetic acid	10%	ŝ	ŝ	Chlorine gaseous dry	100%		-
Acetic acid anhydride	100%	Š	ĩ			L	U
Acetone	100%	L	L L	Chloroform	100%	U	U
				Chromic acid	20%	S	L
Adipic acid	sat. sol.	S	S	Chromic acid	50°°	S	L
Allyl alcohol	96%	S	s.	Citric acid	sat sol.	S	S
Aluminum chloride	sat. sol	S	S	Copper chloride	sat sol	S	S
Aluminum fluoride	sat. sol.	S	S	Copper nitrate	sat sol.	S	S
Aluminum sulfate	sat. sol.	S S	S	Copper sulphate	sat. soi	S	Š
Alums	sol.	S	S	Cresylic acid	sat so!	Ē	_
Ammonia, aqueous	dil. sol.	S	S	Cyclohexanol	100°°	ŝ	S
Ammonia, gaseous dry	100%	S	ŝ	Cyclohexanone	100%	S	L
Ammonia, liquid	100%	Š	š		100-6	3	L.
Ammonium chloride	sat. sol.	s	s	D			
Ammonium fluoride	sal. SOI.	S	5	Decahydronarhthaiene	100%	S	L
		ు ర	Š S	Dextrine	SOL	š	S
Ammonium nitrate	sat. sol.	S	۵.	Diethyl ether	100%	L	-
Ammonium sulfate	sat sol	S	S	Dioctylphthalate	100%	S	
Ammonium sulfide	SOI.	S	S				L
Amyl acetate	100%	S S	Ĺ	Dioxane	100°c	S	5
Amyl alcohol	100%c	S	L	E			
Aniline	100%	S	L	Ethane diol	100%	S	5
Antimony trichloride	90%	S	S	Ethanol	40° •	Š	ĩ
Arsenic acid	sat, set	S	ŝ	Ethyl acetate	100°o	s	ť
Aqua regia	HCI-HNO ₃ 3/1	ŭ	Ŭ			-	L L
		Ū	0	Ethylene trichloriae	100°0	U	L
3				F			
Barium carbonate	sat. sol.	S	S	Ferric chloride	sat sol	S	5
Barium chloride	sat sol.	S' ·	S	Ferric nitrate	SOI.	S	
Barium hydroxide	sat, sol.	S	S	Ferric sulfate	sat sol.	S	5
Barium sulfate	sat. sol.	S	S	Ferrous chloride	sat sol	S	S
Barium sulfide	sol	S	ŝ	Ferrous suitate	sat sol	ŝ	ç
Benzaldehyde	100%	š	Ľ	Fluorine, gaseous	100°a	ŭ	ί
Benzene	-	ĩ	Ĺ	Fluosificic acid	40%	Š	
		L C		f			
Benzoic acid	sat sol.	S	S	Formaldehyde	40%	S	5
Beer		S	S	Formic acid	50°c	S	5
Borax	sat sol	\$	S	 Formic acid 	98-100%	S	5
Boric acid	sat. sol	S	S	Furfuryl alcohol	100°0	S	1
Bromine, gaseous dry	100%	υ	U	G			
Bromine, liquid	100%	υ	υ	1		~	
Butane gaseous	100%	S	S	Gasolene	_	S	1
Butanol	100%	š	Š	Glacial acetic acid	96%	S	l
	100%	s	L	Glucose	sat. sol.	S	9
Butyric acid	100%	3	L	Glycerine	100%	S	9
C				Glycol	sol	S	5
Calcium carbonate	sat. sol.	S	S	H			
Calcium chlorate	sat. sol.	S	Ś		1000	c	
Calcium chloride	sat. sol.	ŝ	ŝ	Heptane	100%	S	1
Calcium hydroxide	sat soi.	Š	š	Hydrochloric acid	10%	S	-
Calcium hypochlorite	sol.	Š	š	Hydrobromic acid	50°°	S S	:
Calcium hypochiome		S.	S S	Hydrobromic acid	100°e	S	
	sat sol	2	2	Hydrochloric acid	10%	S	:
Calcium sulfate	sat sol	S	S	Hydrochloric acid	concentrated	S S	:
Calcium sulfide	dil. sol.	L	L	Hydrocyanic acid	10% 0	Š	
Carbon dioxide, gaseous dry	100%	S	S	Hydrofiuoric acid	60°ø	S	
Carbon disulfide	100%	L	U			5	:
Carbon monoxide	100%	ŝ	ŝ	Hydrofluoric acid	40,	S	
Chioracetic acid	sol	š	S S	Hydrogen	100%	S	5

Medium	Concentration	Resist 20° C (68 ° F)	ance at 60° C (140°F)	Medium	Concentration	Resist 20° C (68°F)	ance at 60° C (140 °F
Hydrogen peroxide	30%	s	S	S			
Hydrogen peroxide	90%	Š	Ū	Salicylic acid	sat. sol.	S	S
Hydrogen sulfide, gaseous	100%	S	S	Silver acetate	sat. sol.	S	S
Hydrogen samae, gaseous			• •	Silver cyanide	sat. sol.	ŝ	Š
L				Silver nitrate	sat. sol.	š	Š
Lactic acid	100%	S	S	Sodium benzoate	sat. sol.	Š	S S
Lead acetate	sat. sol.	S		Sodium bicarbonate	sat. sol.	š	š
M				Sodium biphosphate	sat, sol.	š	š
		c	6	Sodium bisulfite	sol.	Š	Š
Magnesium carbonate	sat sol.	S	S	Sodium bromide	sat. sol.	s	š
Magnesium chloride	sat. sol.	S	S S	Sodium carbonate	sat. sol.	š	Š
Magnesium hydroxide	sat, sol.	S	5 S	Sodium chlorate	sat. sol.	Š	š
Magnesium nitrate	sat, sol	S		Sodium chloride	sat. sol.	Š	š
Maleic acid	sat. sol.	2	S S	Sodium cyanide	sal, sol.	Š	S
Mercury	100%	S S S S		Sodium ferricyanide	sat. sol.	S	Š
Mercuric chloride	sat, sol.	5	S		sat. sol.	Š	
Mercuric cyanide	sat. sol.	S	S	Sodium ferrocyanide Sodium fluoride	sat. sol.	S	S S
Mercuric nitrate	sol.	S	S	Sodium fluoride	sat. sol.	S	Š
Methanol	100%	S	S		40°a	S	Š
Methylene chloride	100%	L	_	Sodium hydroxide Sodium hydroxide	sat. sol.	S	
Milk		S	S		15% active chlorine		5
Molasses	cust. conc.	S	S	Sodium hypochloride		s S	S S S
N				Sodium nitrate	sat, sol. sat, sol.	S	S
Nickel chloride	sat. sol.	s	S	Sodium nitrite		S	
Nickel nitrate	sat, sol.	S	s	Sodium orthophosphate	sat. sol.	S	S S
	sat, sol.	с С	·s	Sodium sulfate	sat. sol.	S	S
Nickel sulfate	dil. sol.	S S S	-	Sodium sulfide	sat. sol.	S	S
Nicotinic acid	25%	6	S	Sulfur dioxide, dry	100°o	ъ U	ม เ
Nitric acid	50%	S	ນັ	Sulfur trioxide	100° o 10° o	S	. S
Nitric acid	75%	Ŭ	Ŭ	Sulfuric acid	50°°	S	S S
Nitric acid	100%	Ŭ	ŭ	Sulfuric acid	98°°	S	U
Nitric acid		Ŭ	U	Sulfuric acid	fuming	3 U	υ
0				Sulfuric acid Sulfurous acid	30%	s	s
Oils and Grease		S	L		55.0	5	0
Oleic acid	100%	S	L	T			
Orthophosphoric acid	50%	S	S	Tannic acid	sol	S	S
Orthophosphoric acid	95%	ŝ	Ē	Tartaric acid	501	š	Š
Oxalic acid	sat. sol.	S	S	Thionyl chloride	10000	Ū	Ũ
Oxygen	100%	S	L	Toiuene	100%	Ē	Ū
Ozone	100%	L	U	Triethylamine	sol.	ŝ	Ē
p							
•		S	. L	U			
Petroleum Phenol	sol	ŝ	Š	Urea	SOL	S	S
Phosphorus trichloride	100%		L	Urine		S	S
Photographic developer	cust. conc.	S S	ŝ	W			
. .	sat. sol	S	_			~	
Picric acid	sat. sol	Š	S	Water		s s	S S
Potassium bicarbonate		Š	e e	Wine vinegar	-	S	S
Potassium bisulfate Potassium bisulfide	sat. sol. sol.	S	š	Wines and liquors	-	3	3
	sat. sol.	2	š	X			
Potassium broinate Potassium bromide	sat. sol.	5	š	Xylene	100%	L	L
Potassium bromide Potassium carbonate	sat. sol.	S S S	š			-	-
Potassium chlorate	sat. sol	Š	Š	Y			
Potassium chloride	sat. sol.	S S	<i>ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼</i> ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼	Yeast	sol	S	5
Potassium chromate	sat. sol.	S	S	z			
Potassium cyanide	sol	Š	Š			~	
Potassium dichromate	sat. sol.	Š	Š	Zinc carbonate	sat sol.	S	
Potassium ferricyandide	sat. sol.	S	Š	Zinc chloride	sat sol.	S	
Potassium ferrocyanide	sat. sol.	S	S	Zinc (II) chloride	sat. sol.	S	
Potassium fluoride	sat. sol.	Š	S	Zinc (IV) chloride	sat sol.	S	
Potassium hydroxide	10%	Š	Š	Zinc oxide	sat sol.	S	
Potassium hydroxide	sol	S	S	Zinc sulfate	sat. sol.	S	
Potassium hypochloride	sol	š	Ĺ	1			
Potassium nitrate	sat. sol.	S	S				
Potassium orthophosphate	sat. sol.	Š	S	1			
Potassium perchlorate	sat sol.	S	S	l I			
Potassium permanganate	20%	ŝ	S				
Potassium persulfate	sat. sol.	. Š	Š	1			
Potassium sulfate	sat. sol.	Š		l l			
Potassium sulfite	sol	S	S	Specific immersion t	esting should he	unde	rtake
Propionic acid	50%	° Š	٠s	to ascertain the suit			
Propionic acid	100%	Š					
Pyridine	100%	ŝ		above with reference	e to special requi	remer	Its.
•		-		1			
Q		S	• •				
Quinol (Hydroquinone)	sat. sol.	S	` S	1			

Lan Part

ana di serit

Attachment 8

(III)

a

Final Closure Plan for RCRA

FINAL CLOSURE PLAN FOR THE API WASTEWATER PONDS, LANDFILL, AND LANDFILL POND AT THE BLOOMFIELD REFINERY

(III)

PREAPARED FOR

BLOOMFIELD REFINING COMPANY Bloomfield, New Maxico

PREPARED BY

ES

ENGINEERING-SCIENCE AUSTIN, TEXAS 78722 - 512/477-9901

August 20, 1986

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Ms. Denise Fort, Director Environmental Improvement Division New Mexico Health and Environment Department P. O. Box 968 Santa Fe, NM 87504-0968

RE: Bloomfield Refining Company

Dear Ms. Fort:

Enclosed is the final closure plan for certain waste management units at our petroleum refinery in Bloomfield, New Mexico. This plan provides information that was unavailable in our November 22, 1985, closure plan submittal. Also enclosed is a recent letter from our accounting firm which establishes that the company's working capital is far in excess of the anticipated closure cost, thus proving our financial responsibility for closure.

This plan is being submitted in accordance with the November 26, 1985, USEPA Consent Agreement and Final Order, Docket No. RCRA VI-501-H and nothing herein should be construed as an admission of liability in connection with that action or any other proceeding.

We are prepared to begin the specified activities within thirty (30) days of final NMEID approval. We look forward to receipt of this approval in the near future.

Sincerely David

Vice President Finance and Administration

口 新闻 机构的相比 前日

enclosure

cc: William Rhea

新存在通知任何目的主体的新闻的基本指示的任何。

11.11

U.S. Environmental Protection Agency Hazardous Waste Management Division Interfirst II Building, 28th Floor 1201 Elm Street Dallas, TX 75270

DJY:dam

bcc: Joe Warr Richard Traylor Chris Hawley Joe Guida Harry Mason

115 Inverness Drive East • Englewood, Colorado 80112-5116 • 303/799-3800 • TWX 910-935-0791

FINAL CLOSURE PLAN FOR THE API WASTEWATER PONDS, LANDFILL, AND LANDFILL POND AT THE BLOOMFIELD REFINERY

ŝ

Prepared for

BLOOMFIELD REFINERY Bloomfield, New Mexico

by

Engineering-Science, Inc. 2901 North Interregional Austin, Texas 78722

July 1986

TE TRACE

TABLE OF CONTENTS

P

.

Lieffa h

Introduction	1
General Facility Information	1
Closure Activities	4
Storage of Hazardous Waste	4
Discharge of Hazardous Waste	4
API Separator Operation	4
Slop Oil Tank Operation	5
Spent Caustic Tank	5
North and South Evaporation Ponds	5
API Wastewater Ponds	6
Landfill	9
Landfill Pond	11
Chain of Custody Procedures	11
Closure Cost Estimates	13
Closure Schedule	13
Documentation and Recordkeeping	13

ii

Î.

and a state of the second here and the second se

FINAL CLOSURE PLAN FOR THE API WASTEWATER PONDS, LANDFILL, AND LANDFILL POND AT THE BLOOMFIELD REFINERY

INTRODUCTION

This final closure plan has been prepared to ensure that the API wastewater ponds, landfill, and landfill pond are closed in a manner consistent with the interest of human health and the environment. This plan provides information that was promised but that was unavailable in the November 22, 1985 closure plan submittal. Consequently, this closure plan supercedes the closure plan submitted to EPA and NMEID on November 22, 1985.

The subjects addressed in the plan include:

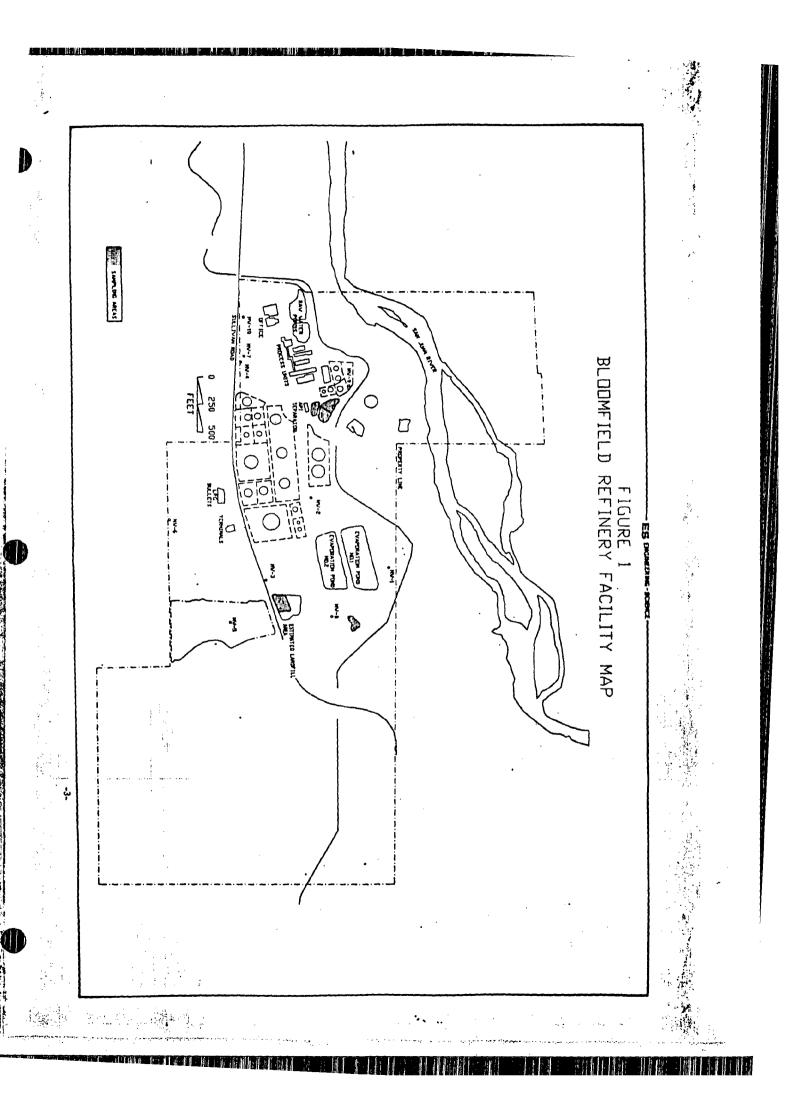
- (a) general facility information;
- (b) sampling and analytical techniques preceding closure activities;
- (c) documentation and recordkeeping of sampling and closure activities; and
- (d) an estimate of the quantity of waste material to be removed and the closure costs.

GENERAL FACILITY INFORMATION

DTGQ.29

The Bloomfield refinery, currently owned and operated by Bloomfield Refining Company (BRC), is located in the northwest corner of the State of New Mexico. The Bloomfield refinery was reportedly constructed in the late 1950s and operated approximately 5 years before being sold to Suburban Propane Corporation in the early 1960s. Plateau, Inc., a subsidiary of Suburban Propane, operated the refinery prior to its sale to the current owner in the fall of 1984. The refinery processes a combination of low sulfur crudes and petroleum which are transported to the refinery by pipeline and truck. Major refinery products include gasoline and diesel fuel, although fuel gas, heavy burner fuel, propane, butane, and other petroleum products are produced in smaller quantities. The refinery is situated on a bluff adjacent to the San Juan River, south and slightly east of the town of Bloomfield. Although the refinery owns land on both sides of the San Juan River, all process units and storage areas are located south of the river. Approximate refinery property boundaries are shown on the plot plan presented as Figure 1. The plot plan indicates the locations of the process and tank storage areas, surface waters, and elements of the wastewater treatment system. The areas addressed by the closure plan (API wastewater ponds (designated the NOWP and SOWP by EPA), landfill, and landfill pond) are also indicated. These areas are discussed in the following paragraphs.

Refinery process wastewater is treated for primary oil removal in an API separator located east of the major refinery process units. Following the API separator, wastewater flows to two API wastewater ponds located north of the API separator and south of the Hammond Ditch. The north API wastewater pond is divided by a concrete wall into two sections. In 1983, these ponds were lined with a 100-mil high-density polyethylene liner by Permanent Lining Systems of Odessa, Texas. A french drain collection system consisting of 4-inch PVC perforated pipe also was installed at this time to detect any leakage through the pond liner at a common observation well.


Prior to the installation of the pond liners, residual solids from the API wastewater ponds were removed and tested for the EP-toxicity characteristic based on leachable lead and chromium concentrations. The samples also were tested for total lead and chromium concentrations. The solids were found to be nonhazardous and were disposed of on-site in a depression (designated the "landfill by EPA) located southeast of the solar evaporation ponds and north of the spray irrigation area and Sullivan Road.

The area designated by EPA as the "landfill pond" is a natural depression resulting from blockage of an existing arroyo during construction of the Hammond Ditch. The landfill pond is located approximately 200 feet due east of the solar evaporation ponds and northeast of the landfill. Water in the landfill pond is believed to originate primarily in the Hammond Ditch, which is located just north and east of the area. The solar evaporation pond may also contribute to the water in the pond.

DTGQ.29

1.33-632 -

-2-

CLOSURE ACTIVITIES

In accordance with the consent agreement with EPA and NMEID Bloomfield Refining Company will close the API wastewater ponds, landfill, and landfill pond. This closure plan outlines the steps which will be undertaken to adequately close these facilities. Following approval of this plan by the New Mexico Environmental Improvement Division (NMEID), Bloomfield Refining Company will initiate closure activites within 30 days and complete closure within a 6-month time frame. Upon completion of closure, Bloomfield Refining Company will submit to the NMEID Director certification that the facilities have been closed out in accordance with this plan.

Pursuant to the Consent Agreement and Final Order dated November 26, 1985, the following provisions are incorporated into this closure plan:

Storage of Hazardous Waste

BRC shall not store any hazardous waste on site, including its transportation terminal, except to the extent that such storage is authorized for up to ninety (90) days pursuant to 40 CFR Part 262 and corresponding New Mexico regulations at HWMR-2. BRC shall not treat or dispose of any hazardous waste on site, including its transportation terminal.

Discharge of Hazardous Waste

BRC shall not introduce any 1,1,1-trichloroethane, or any other hazardous waste listed at 40 CFR Part 261, Subpart D, into its Bloomfield Refinery sewer system.

API Separator Operation

BRC shall insure that API Separator Sludge (Waste Code K051) is not "re-suspended and carried over" from the Bloomfield Refinery API Separator, as described in the Memorandum of the Director, Office of Solid Waste, U.S. EPA, dated December 7, 1984. In order to effect this requirement, BRC shall clean out the facility's API Separator not less frequently than every two years, or whenever the API Separator Sludge level reaches a height of 2.5 feet above the base of the API Separator, whichever occurs first. Any sludge removed from the API Separator will be properly manifested and handled as a hazardous waste. This procedure will be documented in the facility's operating record.

-4-

Slop Oil Tank Operation

BRC shall discharge only wastewater from the Slop Oil tank to the API Separator without oily emulsion solids, and shall document its efforts as performed, to insure the same in the facility operating record. Any slop oils in the tank shall be returned to the refinery process and commingled with normal process streams; and any slop oil emulsion solids removed from the tank will be properly handled as hazardous waste, including manifesting if taken off-site.

Spent Caustic Tank

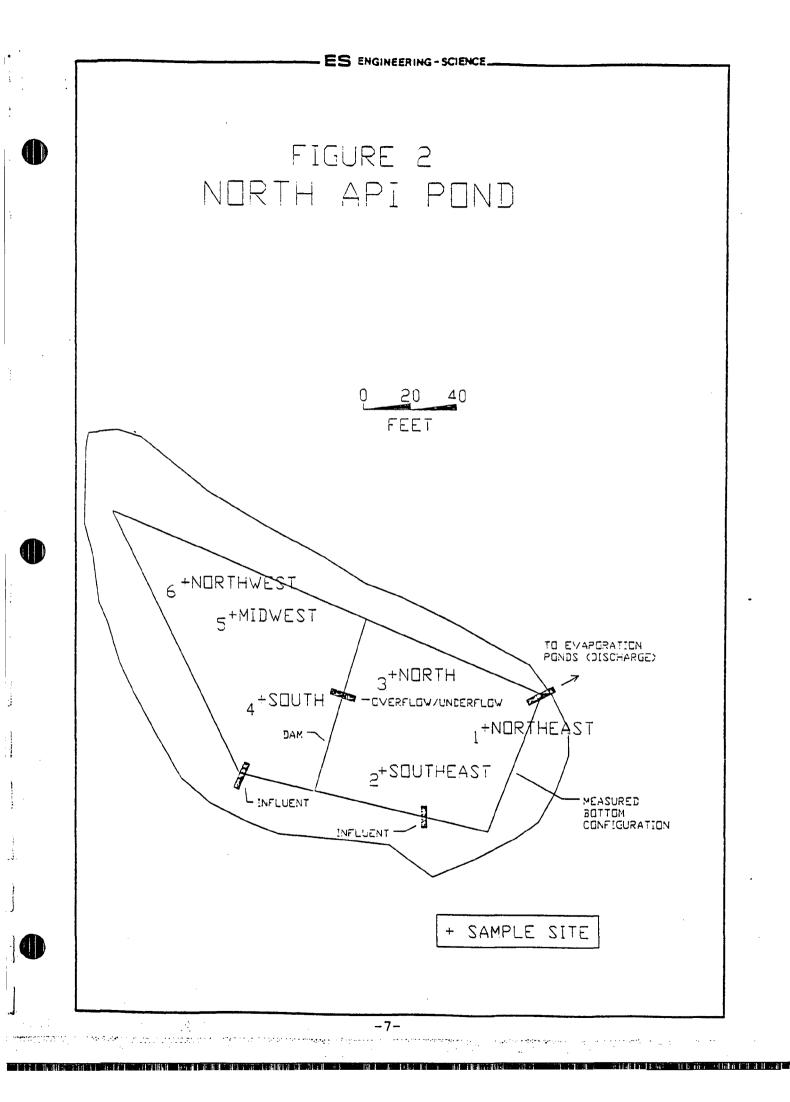
BRC shall promptly repair any leaks that should occur in the caustic tank or caustic tank piping and shall install a containment dike around the base of the caustic tank. When removed from the spent caustic tank, material shall be properly handled as a hazardous waste. This may include transportation off-site for legitimate recycling, provided that the material is properly manifested as a hazardous waste, if required, and all other applicable regulatory requirements are met, including documentation in the facility operating record.

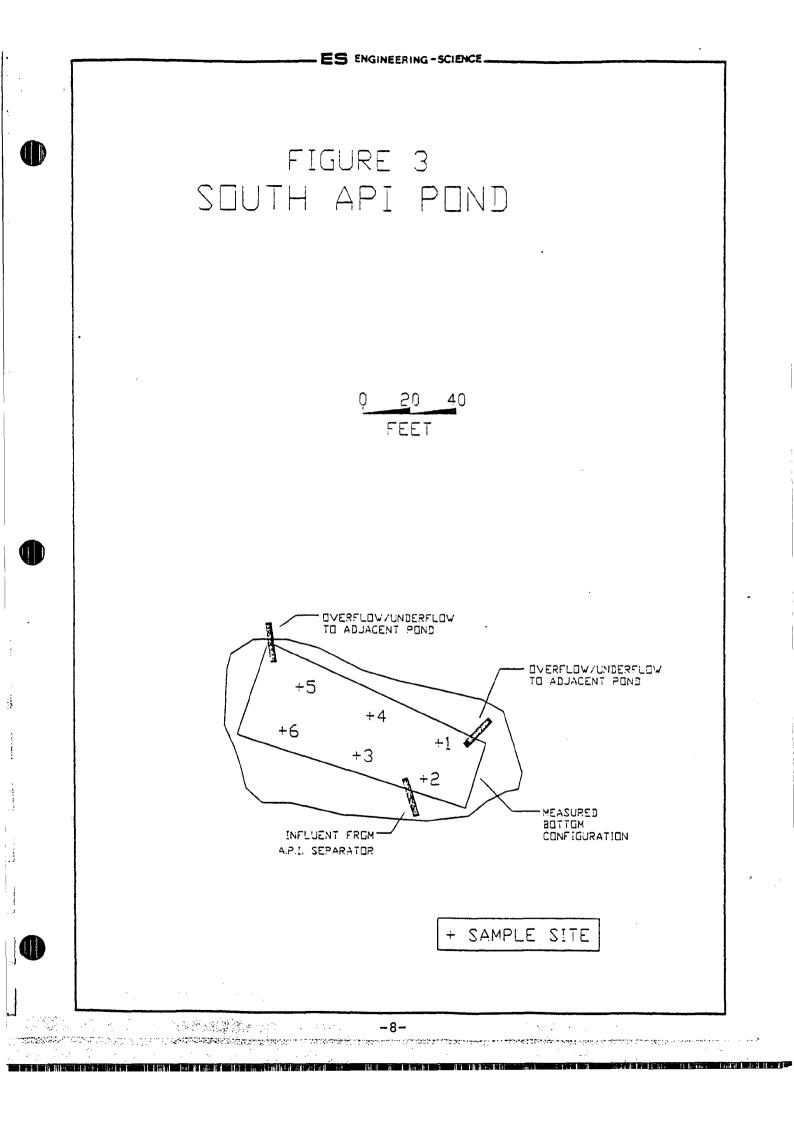
North and South Evaporation Ponds

In the event that materials are removed from the north evaporation pond (NEP), or the south evaporation pond (SEP), at any time, BRC shall analyze such material prior to any removal to determine whether said material is a hazardous waste in accordance with Subpart C of 40 CFR Part 261 and its New Mexico equivalent regulations at HWMR-2, including specifically, with respect to the characteristic of "reactivity", whether such removal, or subsequent handling, may result in the generation of toxic gases in sufficient quantities, to present a danger to human health or the envi-Said reactivity analysis shall be conducted in accordance with ronment. the method set forth in the July 12, 1985, memorandum addressed from Eileen Claussen, Director of the Characterization and Assessment Division, U.S. EPA, to Solid Waste Branch Chiefs, Regions I to X, U.S. EPA, entitled: "Interim Thresholds for Toxic Gas Generation Reactivity (261.23(1)(5))". In the event such material would be characterized as hazardous waste following the guidelines of said memo after such analysis, or meet the definition of any other hazardous waste characteristic, BRC shall properly

-5-

handle such material as hazardous waste. BRC shall also comply with 40 CFR 262.11 and the equivalent New Mexico regulations at HWMR-2, and other requirements when and where applicable.


API Wastewater Ponds


Although all visible contaminated soil was removed from the API wastewater ponds when the pond liners were installed, EPA and NMEID expressed concern that some residual contamination remained. Therefore, the subsurface soils beneath the pond liners were tested for residual contamination during the week of October 14, 1985, after the removal of all hazardous waste from the ponds. Appendix A includes a closure certification by the sampler, a registered professional engineer. These materials were handled as hazardous wastes.

A total of 12 samples were collected by penetrating the liner at six approximately equally spaced locations in each pond and collecting two samples in each location with a clean split-spoon sampler. Sampling site locations are shown on Figures 2 and 3. The pond liner was penetrated for sampling purposes by cutting a clean hole of sufficient size to admit the split-spoon sampler. Following the collection of samples, the liner was repaired with a high-density polyethylene patch, joined to the existing liner with a hot (approximately 460°F) polyethylene resin weld. The sampling and liner repair was not conducted under wet conditions or inclement weather which could affect the integrity of the analytical results or weld. Each split-spoon sampler was cleaned prior to sampling with a detergent wash, followed by a distilled water rinse, acetone wash, and final distilled water rinse. The two samples in each location were collected at depths of 0-6 inches and 6-12 inches, respectively. Three samples were composited at each depth from pairs of the closest adjacent grab samples. The six total composite samples in each pond (three at each depth) were analyzed for the indicator parameters benzene, toluene, xylene, phenols, total lead, and total chromium. The analytical results for these parameters are included in Appendix B. Although small concentrations of xylenes were detected in a single composite sample in the south API pond, none of these data indicate significant residual BTX or phenolic contamination beneath the pond liners.

-6-

DTGQ.29

In the south API wastewater pond, a single grab sample collected in the top 6 inches near the influent end of the pond was analyzed for the "Skinner List" of compounds expected to be present in petroleum refinery wastes. This list and the analytical methods being used are presented in Table 1. None of the "Skinner List" constituents were present at detectable concentrations in this sample.

The analytical data presented in Appendix B indicates no appreciable residual contamination in the top 12 inches immediately beneath the ponds. Based on this finding, and the removal of material from the ponds as documented in Appendix A, closure of the API wastewater ponds should be deemed complete.

Landfill

The landfill area alleged to have been utilized for disposal of residual solids from the API wastewater ponds was divided into four quadrants for subsequent soil testing. Small excavations were made at two locations in a backhoe trench in each quadrant, that penetrated all visible waste material. Grab samples were collected during the week of October 14 with clean split-spoon samplers at depths of 0-6 and 6-12 inches below this zone and were composited into two composite samples in each quadrant (one at each depth). Prior to sampling, each spilt-spoon sampler was cleaned with a detergent wash, followed by a distilled water rinse, acetone wash, and final distilled water rinse. All eight composite samples were analyzed for the following indicator parameters: phenols, benzene, toluene, xylene, total lead, and total chromium. Data on soil benzene, toluene, xylene, and phenolic concentrations included in Attachment B indicate none of these parameters were detectable in any of the soil samples collected immediately below visible waste material. Therefore, closure activities for this area will consist of removal and disposal of all visible contaminated material.

Sampling and laboratory analyses will be required to determine classification of the material to be disposed. Appropriate guidelines for health and safety precaution will be developed pending receipt of laboratory results. If the material is determined to be hazardous, a sitespecific health and safety plan will be produced to address requisite worker attire and necessary decontamination procedures for both workers and equipment. Disposal of the material will be at an approved landfill

LINE COLUMN STREET

DTGQ.29

TABLE 1

PROPOSED CONSTITUENTS AND ANALYTICAL METHODS FOR SELECTED SOIL SAMPLES

Skinner List Volatile Organics Method 8240

Acrolein Acrylonitrile Benzene Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloromethane 1,2 Dibromoethane Chloroform Dichloromethane 1.1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene Dichloropropane Methyl ethyl ketone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroeth vlene Toluene 1.2-trans-Dichloroethylene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene

Skinner List Acid Organics Method 8270

2-Chlorophenol o-Cresol m/p-Cresol 2,4-Dimethylphenol 4,6-Dinitro-o-phenol 2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol p-Chloro-m-cresol Pentachlorophenol Phenol 2,4,6-Trichlorophenol

; ;

Indicator Parameters

Benzene - Method 8240 Toluene - Method 8240 Xylene - Method 8240 Phenolics - Method 9065 Lead - Method 3050 followed by ICP Chromium - Method 3050 followed by ICP

Skinner List Base/Neutral Organics Method 8270

Anthracene Benzidine Benz(c)acridine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate Butyl Benzyl phthalate 2-Chloronaphthalene Chrysene Dibenz(a,h,)acridine Dibenz(a,j)acridine 7,12-DimethylBenz(a)anthracene Dibenz(a, h)anthracene 7H Dibenzo(c,g)carbazole 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1.4-Dichlorobenzene Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate 1,2-Diphenylhydrazine Fluoranthene Indene Indeno(1,2,3-cd)pyrene Methyl Benz(c)phenanthrene 3-Methylcholanthrene Methyl Chrysene Naphthalene Nitrobenzene n-Nitrosodiethylamine 5-Nitrosodiethylamine Quinoline Phenanthrene Pyrene 1,2,4-Trichlorobenzene Trimethyl Benz(a)anthracene

(1) มากระสะบน กระสะสะสะส์สะส์สะสะร์ไประการณะ

-10-

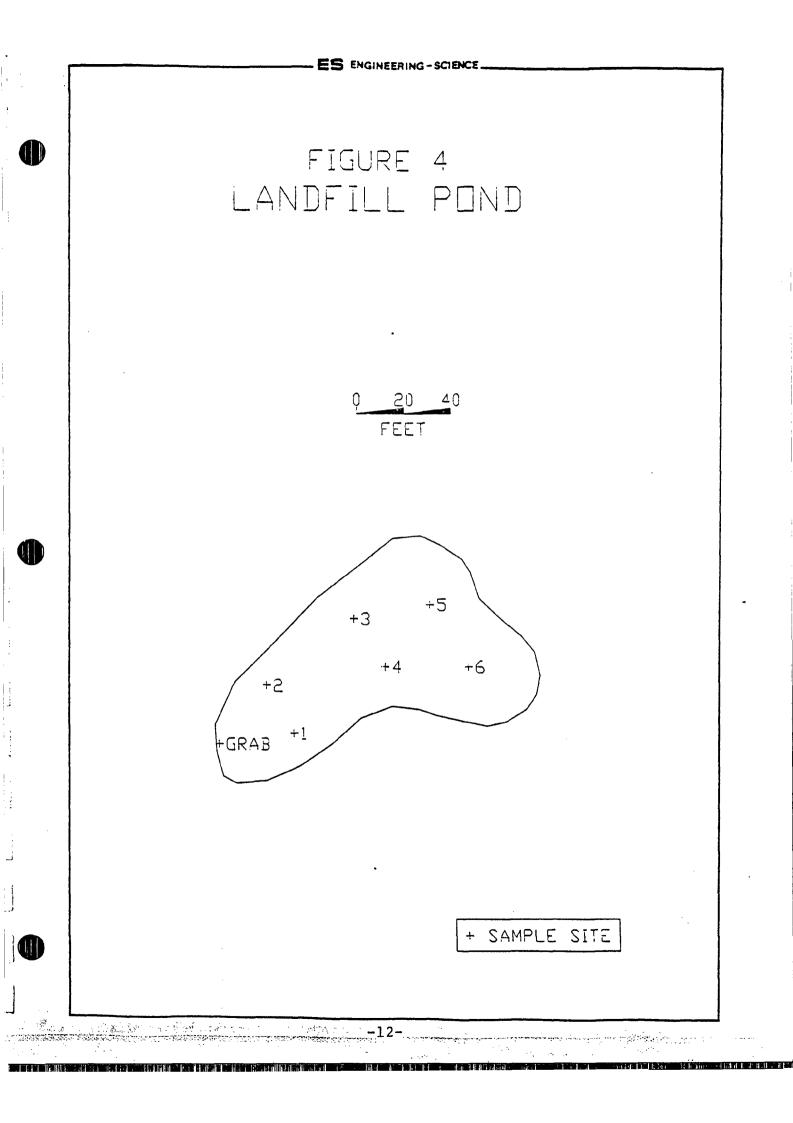
via standard chain-of-custody manifesting procedures. Likewise, if the material is found to be nonhazardous, no health and safety work plan will be generated and manifesting of the disposal of contaminated material will not be required.

Landfill Pond

The landfill pond was sampled using a flat-bottom boat. Sample locations are summarized on Figure 4. Sediment samples of the landfill pond were collected at two sediment depths (0-6 and 6-12 inches) with clean split-spoon samplers at six approximately equally spaced locations in the pond. Each spilt-spoon sampler was cleaned prior to sampling with a detergent wash, followed by a distilled water rinse, acetone wash, and final distilled water rinse. Soil samples at each depth were composited into three composite samples of the closest pairs, resulting in six total composite samples. These samples were analyzed for the indicator parameters benzene, toluene, xylene, phenols, total lead, and total chromium. In addition, a single grab sample was collected along the bank at a depth of 0-6 inches in the area of the pond nearest the south evaporation pond and the landfill. This sample was analyzed for the list of compounds shown in Table 1, and no compounds were found at detectable levels. As shown in Appendix B, data on benzene, toluene, xylene, and phenolics in the pond sediments do not indicate significant organic contamination. In only one sample, a composite of the top 6 inches at stations 3 and 4, was an indicator compound found at a detectable concentration. In this sample, benzene was detected at a 1.3 ug/kg concentration, barely above the detection limit. BTX compounds and phenolics were not found in any other landfill pond sediment samples.

Based on the analytical results of sediment samples collected in the landfill pond, there is no significant residual contamination in the top 12 inches of sediments. Therefore, closure of the landfill pond should be deemed complete.

Chain of Custody Procedures


All samples were preserved on ice and delivered to the laboratory in an insulated cooler. The chain of custody record was maintained to document that no unauthorized handling of the samples occurred enroute to

-11-

m tran d

DTGQ.29

:

the laboratory. It also contains a record of parameters requested for analysis. The form was signed and dated by the individual who actually collected the sample.

CLOSURE COST ESTIMATES

Based on the size of the areas addressed, assumed depth of contamination, and the mobility of the compounds believed to be present, a total closure cost of \$290,950, including contingencies, was estimated. A detailed breakdown of these estimated costs is presented in Table 2. The major costs are associated with the disposal of waste material from the landfill. Removal and disposal of an estimated 2,500 cubic yards of material from the landfill area was assumed. Actual amounts could be higher or lower, depending on the areal extent of the visually contaminated material.

CLOSURE SCHEDULE

Implementation of this closure plan will be initiated within 30 days of final approval by NMEID. Specific closure activities have been identified below with respect to estimated time for completion:

	Item	1	ime
(1)	Contractor bidding/contract negotiation, excavation	4	weeks
(2)	Landfill sampling and laboratory analyses	2	weeks
(3)	Contractor mobilization	1	week
(4)	Material disposal	2	weeks
(5)	Contractor demobilization	1	week
(6)	Contingencies	_2	weeks
	Total time	12	weeks

The 12-week period should be sufficient to complete all closure activities. However, this timeframe is exclusive of any time that may be required for regulatory input.

DOCUMENTATION AND RECORDKEEPING

The Facility Coordinator will maintain records of all closure activities, including the dates and nature of all work conducted during the

DTGQ.29

TABLE 2

ITEMIZED ESTIMATED CLOSURE COSTS

Activity Es	timated Cost
API Wastewater Pond Closure	
Soil sampling and analysis	\$ 3, 500 [′]
Landfill Closure	
Soil sampling and analysis	2,000
Contaminated soil removal and disposal (as necessary)	250,000
Backfilling and grading (as necessary)	5,000
Landfill Pond Closure	
Soil sampling and analysis	2,000
Miscellaneous Costs	
Closure Certification	2,000
Contingencies (10 percent)	26,450
Total Estimated Closure Costs	\$290,950

1

1

closure process. All manifests or other documentation of off-site shipment of waste material or contaminated soil will be maintained.

Following the successful completion of on-site closure activities, both Bloomfield Refining Company and an independent registered professional engineer will certify that the facilities have been closed in accordance with the approved closure plan. This documentation will be maintained by the Facility Coordinator, and a copy of the closure certification will be provided to NMEID.

-15-

ES 2901 NORTH INTERREGIONAL			LETTER OF TRANSMITTAL		
AUST	TIN, TEXAS 78722 • \$12/477-9901		DATE 9/31/86	00 NO. 46 424,00	
Mad	M			<i>A</i>	
MY. NG	irry Mayon		Bloomfield 1	gung O.	
Mr. Je	e Quida	·			
Mr. C.	pe Guida hr:'s Hawley			•	
GENTLEMEN	/		·		
V	VE ARE SENDING YOU	Attached Under separate	e cover via	the following items	
[Prints 🗌 Plai			
l		Change order	1 17 1. 0. 1	final closme u	
	Dated		for Bloomf/clark		
COPIES	DATE NO.	DE	SCRIPTION		
			<u></u>	<u></u>	
			·····	-	
		· · · · · · · · · · · · · · · · · · ·			
	RANSMITTED as checked below:				
		For checking	Resubmit	copies for approval	
	For your use	Approved as submitte			
	As requested	Approved as noted			
	For review and comment	Returned for correcti		·	
	For Your Action				
		At Dodawin	in little	A in the	
REMARKS	Evidently, I	no appendiy	was weller	Mr alle	
	Evidently a	the final see	oct. Therefore	the attached	
	Evidently a building aga copus from	the final see re freen enels	red to suppl	the attached	
	Evidently I hindride and copul from original repr	the final lee re freen enels	red to suppl	the attached	
	Evidently, A huiling aga copue from original repr	the final see re frien enels	red to buppe	the attached	
	Evidently, I heritig aja cosus then original repr	the final see	swas allelle oct. Angene red to suppl	the attached	
	Evidently, i hinding aga cosus than original repr	the final see	swors allelle oct. Anyone red to suppl	the attached	
	Evidently, i hinding aga copus then original rep	the final cer the final cer ort.	swors uselled oct. Anegre red to suppl	the attached	
	Evidently, i hinding and cosus from original rep	the final see	swors alleled oct. Anegre red to buppe	the attached	
REMARKS	Evidently, is heritige and copies then original repr	the final ele	And A	the attached	
	Evidently, A huiling aga copues from original rep	the final cere re freen enels	ed to suppl	the attached	
REMARKS	Evidently, I hinding aga cosus from original rep	Henchoures are not as moted, plan	IGNED: MWLIM	the attached	
REMARKS	Evidently, is huiding aga cosus than original up			the attached	
REMARKS	Evidently is huiling aga copue then original reps			the attached	

!