1R - 272

AGWMR

11/01/2011

2010 ANNUAL GROUNDWATER MONITORING REPORT

LOVINGTON PADDOCK SITE LATITUDE: N 32° 51′ 33.93″ LONGITUDE: W 103° 18′ 30.32″ LOVINGTON, LEA COUNTY, NEW MEXICO

Matthew P. Hudson Remediation Project Manager Upstream Business Unit Chevron Environmental Management Company 1400 Smith St Room 07076 Houston, TX 77002 Tel 713 372 9207 mhudson@chevron.com

November 1, 2011

Mr. Glenn von Gonten
Oil Conservation Division
New Mexico Energy, Minerals and Natural Resources Department
1200 South Francis Drive
Santa Fe, New Mexico 87505

RE: 2010 Annual Reports

Dear Glenn:

Please find enclosed one hardcopy and one CD of the following annual reports:

2010 Annual Groundwater Monitoring Report Lovington Paddock Site, Lea County, NM

IR 272

2010 Annual Groundwater Monitoring Report Mark Owen #9 Reserve Pit, Lea County, NM AP-57

2010 Annual Groundwater Monitoring Report
Cooper-Jal Unit South Injection Station, Lea County, NM 1R289

2010 Annual Groundwater Monitoring Report J.R. Philips Tank Battery No. 2, Lea County, NM 1R255

2010 Annual Groundwater Monitoring Report
G.L. Erwin "A&B" Federal NCT-2 Tank Battery, Lea County, NM 1R254

2010 Annual Groundwater Monitoring Report Eunice South Gas Plant, Lea County, NM GW-003

Should you have any questions or concerns, please do not hesitate to contact me at (713) 372-9207.

Sincerely,

Matthew P. Hudson

forthe 1918

LOVINGTON PADDOCK SITE – 2010 ANNUAL GROUNDWATER MONITORING REPORT

LOVINGTON PADDOCK SITE LATITUDE: N 32° 51′ 33.93″ LONGITUDE: W 103° 18′ 30.32″ LOVINGTON, LEA COUNTY, NEW MEXICO

Prepared For:

Mr. Matt Hudson CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY UPSTREAM BUSINESS UNIT 1400 Smith Street, Room 07062 Houston, Texas 770025

> Prepared by: Conestoga-Rovers & Associates

2135 South Loop 250 West Midland, Texas 79703 Office: (432) 686-0086 Fax: (432) 686-0186

web:

http:\\www.CRAworld.com

SEPTEMBER 19, 2011 REF. NO. 073020 (1)

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	HISTORY OF ACTIVITIES AT THE SITE	2
3.0	REGULATORY FRAMEWORK	4
4.0	GROUNDWATER MONITORING	
	4.1 FIELD METHODOLOGY	5 5
5.0	GROUNDWATER REMEDIATION AND PERFORMANCE	7
6.0	PLANNED ACTIVITIES	8
7.0	SUMMARY OF FINDINGS.	9

LIST OF FIGURES

FIGURE 1	VICINITY MAP
FIGURE 2	SITE DETAILS MAP
FIGURE 3	MAP OF THE POTENTIOMETRIC SURFACE - JANUARY 25, 2010
FIGURE 4	MAP OF THE POTENTIOMETRIC SURFACE - JULY 6, 2010
FIGURE 5	MAP OF CONCENTRATIONS OF DISSOLVED HYDROCARBONS— JANUARY 25-27, 2010
FIGURE 6	MAP OF CONCENTRATIONS OF DISSOLVED HYDROCARBONS— JULY 6-13, 2010

LIST OF TABLES

TABLE I CUMULATIVE SUMMARY OF FLUID LEVELS

TABLE II CUMULATIVE SUMMARY OF DISSOLVED-PHASE CONTAMINANTS

IN GROUNDWATER

1.0 INTRODUCTION

This report is a review of groundwater monitoring activities and operation of the bio-sparge system at the Lovington Paddock Groundwater Remediation Site (hereafter referred to as the ("Site") in Lea County, New Mexico. Conestoga-Rovers & Associates (CRA) has prepared this report on behalf of Chevron Environmental Management Company (CEMC). Data presented in this report were collected by Stantec during two semiannual monitoring events conducted on January 25-27, 2010 and July 9 and 17, 2010. The report also includes data recorded by Stantec during periodic site visits to operate and maintain the bio-sparge system on the site. CRA did not collect the groundwater gauging and sampling data; therefore, CRA cannot be responsible for the quality of this information.

UL"0"-"7"

The Site is located in the S/2-SE/4-Section 1-T17S-R36E about 6.2 miles southeast of Lovington in Lea County, New Mexico. The Site lies at latitude N 32° 51′ 33″ and longitude W 103° 18′ 30″ (FIGURE 1). There are two active pipelines on the Site. The Site is owned by the City of Lovington, New Mexico.

2.0 HISTORY OF ACTIVITIES AT THE SITE

In June 1998, the initial assessment of an abandoned pit by Highlander Environmental Corporation (Highlander) included the installation of five soil borings (BH-1 through BH-5). Borings BH-1 through BH-4 were installed to 31 feet below ground surface (bgs) around the edge of an abandoned pit, and BH-5 was installed to 71' bgs in the bottom of the pit. Hydrocarbons were detected in samples of soil from BH-1 and BH-5. In July 1998 and August 1998, sludge material and soils were excavated approximately two feet deep, where a hard caliche layer was encountered. During October and November 1998, monitoring wells MW-1 through MW-6 were installed to approximately 75 feet bgs. Monitoring wells MW-7, MW-8, and MW-9 were installed to about 75 feet bgs in March 1999. Based on groundwater sampling results, two separate plumes were identified. One plume appeared to have been associated with the abandoned pit, and one plume was up-gradient of the pit. Soil borings BH-6 through BH-11 were installed to 63' bgs to investigate the plume up-gradient of the abandoned pit. Of this group of six borings, only in BH-11 were hydrocarbons detected. Soil boring BH-11 was drilled out to 76'bgs and completed as monitoring well MW-10. Dissolved-hydrocarbons were detected in groundwater from monitor wells MW-3, MW-5, MW-6, and MW-9. Light non-aqueous phase liquids (LNAPL) was found in monitor wells MW-4 and MW-10.

In March 2001, Environmental Plus, Inc. (EPI), on behalf of EOTT Energy, LLC, uncovered 300 feet of EOTT pipeline to look for previously-repaired or replaced line. Based on EPI's observations, no previously-repaired or replaced lines were found. EPI also stated that the area that showed staining during drilling activities was moist with water and had no petroleum hydrocarbon odor. As indicated in EPI's report, a representative from Chevron's field office (formerly Pure Resources, LP) was on-site during the excavation of the pipeline.

In 2001, the 40-acre tract on which the Site is located was purchased by AST West from the City of Lovington. AST West installed a well near their business and south of the site. Goff Dairies installed four water wells to the east and south of the site. The wells were designed to pump roughly 600 to 800 gallons per minute. Pumping from these wells appears to have lowered the water table and changed its direction. Monitoring wells MW-1 through MW-10 went dry apparently due to the dewatering of the aquifer.

Arcadis installed 13 monitoring wells, MW-A through MW-J and MW-L through MW-N, in June 2003 to replace monitoring wells MW-1 through MW-10. LNAPL has not been found in monitoring wells MW-A through MW-N. The replacement wells ranged in depth from 104 feet to 204 feet.

To remediate the petroleum hydrocarbon concentrations in groundwater and soil, a pilot low flow biosparge well (BW-1) was installed in November 2003 by Arcadis. Additionally, four monitoring wells (MW-O, MW-P, MW-Q, and MW-D2) were installed by Arcadis to determine the extent of the petroleum hydrocarbon plume.

A 90-day pilot test was conducted to measure the effectiveness of the biosparge well. The biosparge well was used to inject air into the saturated and vadose zones at a rate of approximately 5 cubic feet per minute (cfm). The purpose of the air injection was to

stimulate aerobic biodegradation of petroleum hydrocarbons by indigenous microorganisms in the saturated and vadose zones. The biosparging process showed significant success during the 90-day pilot test.

Arcadis installed two additional biosparge wells (BW-2 and BW-3) at the Site in May 2005. A 180-day study was conducted subsequently to monitor the effectiveness of the three biosparge wells. During the study, groundwater and soil vapor sampling was conducted, a radius of influence of approximately 85 feet was observed, and further down-gradient movement of the petroleum hydrocarbon plume was prevented. Results were summarized in the report "180 Day Expanded Biosparge Study" date March 3, 2006.

The biosparge study was continued by SECOR International Incorporated (SECOR) for a total of 700 days after acquiring the Site from Arcadis. Activities conducted from July 2006 through May 2007 were summarized in the "Biosparging Assessment Report" dated June 22, 2007. Discussions regarding system effectiveness triggered a detailed review of the data. SECOR concluded that assumptions made by Arcadis regarding the quantification of oxygen consumption in biomass production were incorrect, and could not verify that the system was having the desired effect on the aquifer.

SECOR installed two additional groundwater monitoring wells (MW-S and MW-T) in July 2006. In April 2007, MW-T was converted to a biosparge well due to failure of well BW-2. Three additional groundwater monitoring wells (MW-U, MW-V, and MW-W) were installed to better evaluate the biosparge system.

SECOR continued groundwater assessment activities and operation and maintenance of the bio-sparge system through 2007. Stantec continued groundwater assessment activities and operation and maintenance of the bio-sparge system throughout 2008, 2009, and 2010. Activities conducted by Stantec during 2010 are the subject of this report.

3.0 REGULATORY FRAMEWORK

The New Mexico Oil Conservation Division of the New Mexico Energy, Minerals, and Natural Resources Department (NMOCD) has regulatory jurisdiction over corrective actions being conducted at the Lovington Paddock Site. Corrective actions follow guidance given by the NMOCD in *Guidelines for Remediation of Leaks, Spills, and Releases (August 13, 1993)*. These guidelines require remediation of groundwater to the human health standards of the New Mexico Water Quality Control Commission set forth in New Mexico Administrative Code (NMAC) 20.6.2.2103A that are shown in the following table.

Analyte	NMWQCC Standard for Groundwater (mg/L)
Benzene ¹	0.01
Toluene ¹	0.75
Ethylbenzene ¹	0.75
Total xylenes ¹	0.62

Notes:

^{1) &}lt;sup>1</sup>New Mexico Water Quality Control Commission (NMWQCC) Human Health Standards per NMAC 20.6.2.3103A.

4.0 GROUNDWATER MONITORING

The Lovington Paddock Site includes 23 monitor wells and 3 biosparge wells. They are shown on the Site Details Map in FIGURE 2. The Site was monitored during two semi-annual events in 2010. The first event took place from January 25 through January 27. Only two monitor wells, MW-A and MW-T were not gauged and sampled during that event. Biosparge wells BW-2 and BW-3 were not gauged or sampled during the first event.

The second event was conducted from July 6 through July 13. All three biosparge wells, and all monitor wells except MW-A were gauged. Only BW-3 and MW-A were not sampled during the second event.

4.1 FIELD METHODOLOGY

Water levels were measured to the nearest one-hundredth of a foot on the first day of each monitoring event with an electronic oil-water interface probe. Water levels were measured from on the top of the casing in each well at permanent reference points on the casing or at the north edge of the casing if no permanent reference point had been marked. No free-phase petroleum was detected in any well.

Each well was purged of at least one well-volume. Turbidity, temperature, oxidation-reduction potential (ORP), pH, conductivity, and dissolved oxygen (DO) were monitored during purging. Purging continued until at least three of these parameters were within 10% of each other for 3 consecutive measurements. A sample was then collected, labeled, recorded on a laboratory chain-of-custody form, and on ice in a cooler to maintain a temperature of approximately 40° (4°C). Field equipment was decontaminated with an AlconoxTM wash and distilled water rinse before beginning field activities and between wells. Samples of groundwater were shipped to Lancaster Laboratories in Lancaster, Pennsylvania for analyses. Proper chain-of-custody documentation was maintained throughout sampling and analytical processes.

Samples collected during 2010 were analyzed for dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) according to analytical method SW846-8021B. Samples were analyzed for total petroleum in the gasoline range (TPH-GRO) and TPH in the diesel range (TPH-DRO) according to analytical method SW846-8015B.

4.2 GROUNDWATER GAUGING AND ANALYTICAL RESULTS

Fluid level measurements collected during 2010 are shown in TABLE I. Surveyed tops of casings of wells are shown in feet above mean sea level (famsl). Elevations of the top of the saturated zone are also shown in feet above mean sea level (famsl). The range of elevations on the potentiometric surface during the first semi-annual monitoring event on January 25 was from 3717.01 famsl to 3725.41 famsl. The average elevation on the potentiometric surface during that event was 3721.27 famsl. The map of elevations of the potentiometric surface during the first semi-annual monitoring event is shown in

FIGURE 3. It indicates that the direction of flow of groundwater at that time was toward the East. The magnitude of the gradient was 0.0095 ft./ft.

The range of elevations on the potentiometric surface during the second monitoring event on July 6 was from 3706.94 to 3722.60 famsl. The average elevation on the potentiometric surface was 3715.60 famsl. The map of elevations of the potentiometric surface on July 6, the second semi-annual monitoring event, is shown in FIGURE 4. This map indicates that the direction of flow of groundwater was east-southeast. Its magnitude was approximately 0.0152 ft./ft.

Directions of the gradient on the potentiometric surface have changed dramatically over time at the Lovington Paddock Site due to pumping from the AST well and wells used by the Goff Dairy, WW-1 through WW-4. Directions of the gradients shown on FIGURES 3 and 4 suggest that recent pumping occurred at WW-2, WW-3 and WW-4. Directions of the gradients changed slightly from east to east-southeast between January and July. Magnitude of the gradients changed as well—from 0.0095 ft./ft. to 0.0152 ft./ft. from January to July, respectively. Comparison of gauging data from the two monitoring events in 2010 indicates that the potentiometric surface decreased in elevation in all 21 wells that were measured during both semi-annual monitoring events. The range of decline was 2.64 ft. to 10.07 ft. The average decline among those wells was 5.84 feet.

A cumulative table of results of all analyses of groundwater samples collected at the Lovington Paddock Site since 2005 is shown in Table II. Chemicals of Concern (COCs) are shown in columns across the top of the table. Appropriate standards are shown below the names of analytes. Analytical results for the first monitoring event, January 25-27, 2010, are shown in FIGURE 5. Samples of groundwater were collected from all wells during the first semi-annual event except BW-2, BW-3, MW-A, and MW-T. Analytical results of the second monitoring event, July 6-13, 2010, are shown in FIGURE Concentrations that exceeded the appropriate standards have been shaded in yellow on FIGURES 5 and 6. Copies of signed analytical reports and chains-of-custody are attached in APPENDIX A. Trends of concentrations of chemicals of concern over time are shown in APPENDIX B. Dissolved benzene was present in wells BW-2, MW-B, MW-H, MW-I, and MW-T at concentrations exceeding the New Mexico Water Quality Control Commission (NMWQCC) standard of 0.01 mg/L and showed increasing trends. The remaining wells have concentrations of dissolved benzene below the NMWQCC standard and at stable or decreasing trends. The other BTEX components, toluene, ethylbenzene, and xylenes, were not present in concentrations exceeding NMWQCC standards during 2010.

5.0 GROUNDWATER REMEDIATION AND PERFORMANCE

To remediate the petroleum hydrocarbon concentrations in groundwater and soil, a pilot low-flow biosparge well (BW-1) was installed in November 2003 by Arcadis. A 90-day pilot test was conducted to measure the effectiveness of the biosparge well. The biosparge well was used to inject air into the saturated and vadose zones at a rate of approximately 5 cubic feet per minute (cfm). The purpose of the air injection was to stimulate aerobic biodegradation of petroleum hydrocarbons by indigenous microorganisms in the saturated and vadose zones. The biosparging process showed significant success during the 90-day pilot test. Arcadis installed two additional biosparge wells (BW-2 and BW-3) at the Site in May 2005. A 180-day study was conducted subsequently to monitor the effectiveness of the three biosparge wells. During the study, groundwater and soil vapor sampling was conducted, a radius of influence of approximately 85 feet was observed, and further down-gradient movement of the petroleum hydrocarbon plume was prevented. SECOR installed two additional groundwater monitoring wells (MW-S and MW-T) in July 2006. In April 2007, MW-T was converted to a biosparge well due to failure of well BW-2. Three additional groundwater monitoring wells (MW-U, MW-V, and MW-W) were installed to better evaluate the biosparge system. SECOR continued groundwater assessment activities and operation and maintenance of the bio-sparge system through 2007. Stantec continued groundwater assessment activities and operation and maintenance of the biosparge system throughout 2008, 2009, and 2010.

The biosparge system was operated by Stantec from January into October of 2010. One visit to the site was made each month to monitor the operation of the compressors, perform periodic maintenance upon them and associated conveyance lines, and to record various physical parameters of the system useful in monitoring and evaluating its performance. Notes taken during each of the monthly site visits are shown in APPENDIX C. The compressor at BW-1 did not operate during 2010. The compressor at BW-2 (servicing MW-T since 2007) operated approximately 135 days during the year. The compressor at BW-3 was operated approximately 60 days during 2010.

6.0 PLANNED ACTIVITIES

Semi-annual gauging and sampling events for 2011 were completed in January and July. Groundwater levels were measured in all monitor wells and biosparge wells were groundwater was present. Samples were also collected from all wells for analyses of BTEX, TPH-GRO and TPH-DRO where sufficient groundwater was present.

The biosparge system has been repaired as needed, operated, and monitored during 2011. Weekly site visits are being conducted to monitor the operation, maintenance, and performance of the biosparge system.

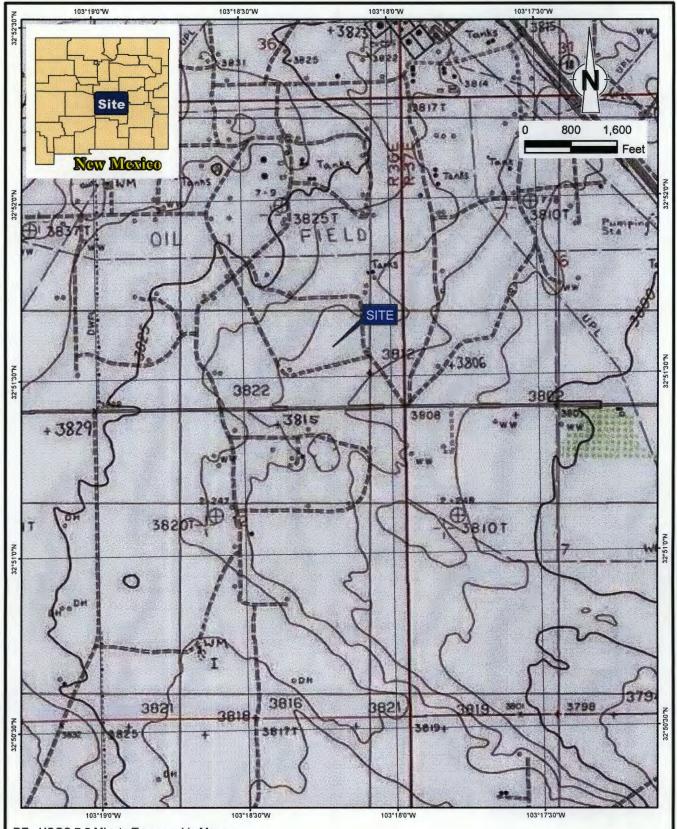
7.0 SUMMARY OF FINDINGS

Based on groundwater monitoring and sampling activities performed at the Site, CRA presents the following summary of findings:

- Groundwater monitoring was conducted by Stantec on a semi-annual basis during 2010. The first monitoring event of occurred on January 25-27. Only two monitor wells, MW-A and MW-T were not gauged and sampled during that event. Biosparge wells BW-2 and BW-3 were not gauged or sampled during the first event. Figure 3 indicates that the direction of flow of groundwater at that time was toward the East with a magnitude of the gradient of 0.0095 ft./ft.
- The second semi-annual event was conducted from July 6 through July 13. All
 three biosparge wells and all monitor wells except MW-A were gauged. Only
 BW-3 and MW-A were not sampled during this event. FIGURE 4 indicates that
 the direction of flow of groundwater was east-southeast. The magnitude of the
 gradient was approximately 0.0152 ft./ft.
- The elevation of the potentiometric surface declined by an average of 5.84 feet between groundwater monitoring events in 2010.
- Trends of concentrations of dissolved-phase benzene were above the NMWQCC standard of 0.01 mg/L and increasing during 2010 in BW-2, MW-B, MW-H, MW-I, and MW-T. Detectable levels of dissolved-phase hydrocarbons were also found in MW-C, MW-F, MW-G, MW-M, and MW-S; however, these were below the NMWQCC standard and showed stable or declining trends.
- Toluene, ethylbenzene, and xylenes were not present in concentrations exceeding NMWQCC standards during 2010.
- The biosparge compressor at BW-2 (servicing MW-T since 2007) operated approximately 135 days during 2010. The compressor at BW-3 was operated approximately 60 days during 2010.
- Semi-annual gauging and sampling events were completed in January and July of 2011.
- The biosparge system has repaired as needed, operated, and monitored during 2011. Weekly site visits are being conducted to monitor the operation, maintenance, and performance of the biosparge system.

All of which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES, INC.

John P. Schnable, P.G.


John P. Schmable

Project Manager

Thomas C. Larson, P.G. Senior Project Manager

Thomas Clayon

FIGURES

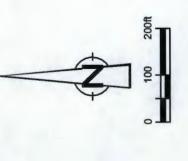
RE: USGS 7.5 Minute Topographic Maps.

figure 1 VICINITY MAP

LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE LEA COUNTY, NEW MEXICO

Chevron Environmental Management Company

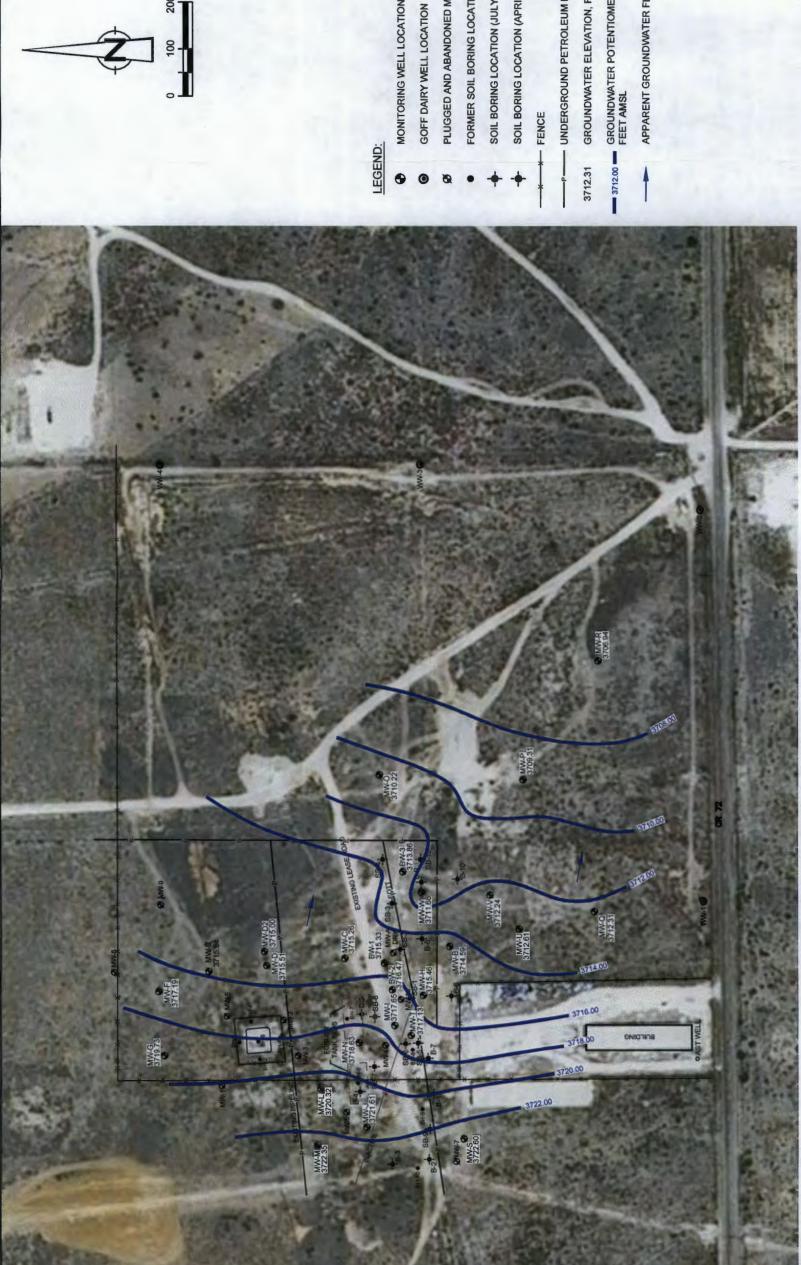
- MONITORING WELL LOCATION
 - GOFF DAIRY WELL LOCATION
- PLUGGED AND ABANDONED MONITOR WELL
- FORMER SOIL BORING LOCATION
- SOIL BORING LOCATION (JULY 25, 2006)(B-)
 - SOIL BORING LOCATION (APRIL 10-11, 2008)(SB-)


FENCE

UNDERGROUND PETROLEUM PIPELINE

figure 2

SITE DETAILS MAP
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO
Chevron Environmental Management Company


- MONITORING WELL LOCATION
- GOFF DAIRY WELL LOCATION
- PLUGGED AND ABANDONED MONITOR WELL FORMER SOIL BORING LOCATION
- SOIL BORING LOCATION (JULY 25, 2006)(B-)
- SOIL BORING LOCATION (APRIL 10-11, 2008)(SB-)
- FENCE
- UNDERGROUND PETROLEUM PIPELINE
- GROUNDWATER ELEVATION, FEET AMSL
- GROUNDWATER POTENTIOMETRIC CONTOUR, FEET AMSL

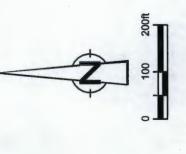
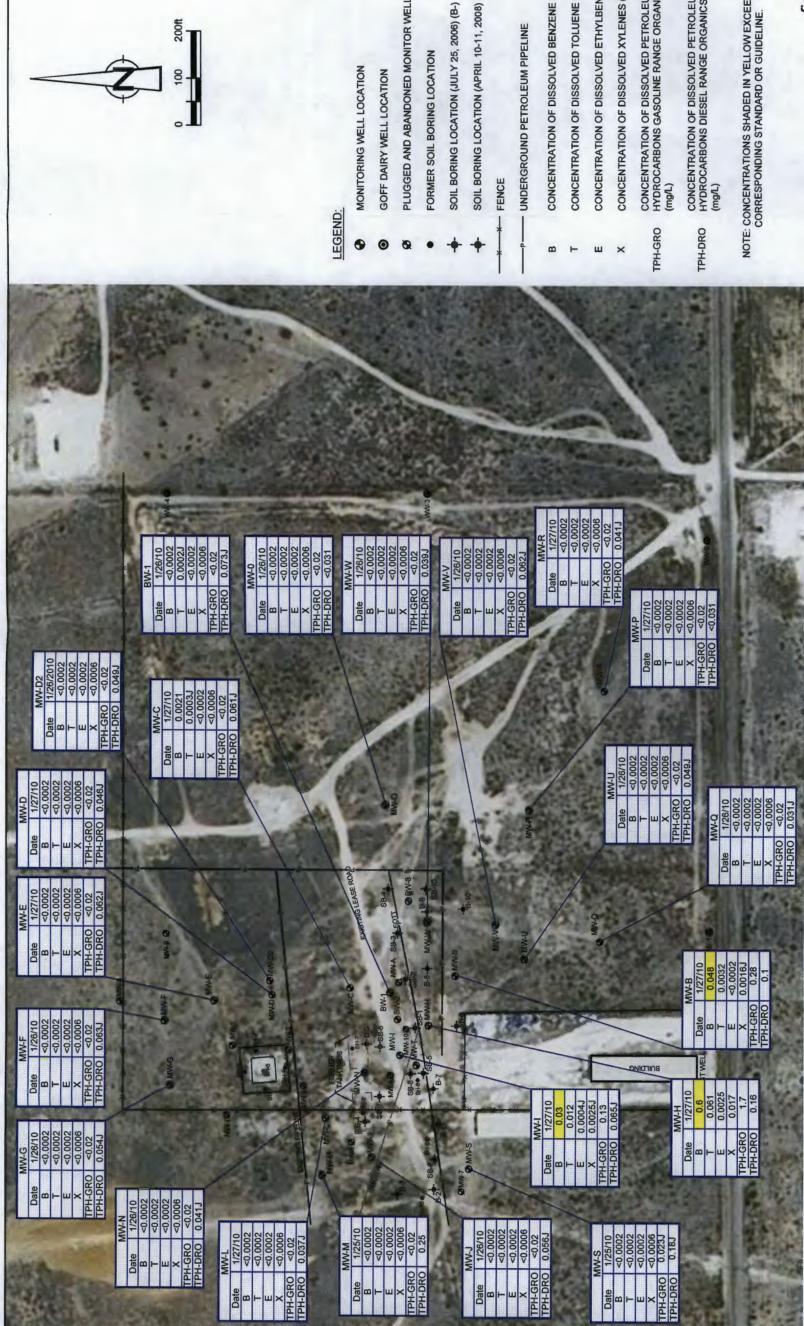

APPARENT GROUNDWATER FLOW DIRECTION

figure 3

MAP OF THE POTENTIOMETRIC SURFACE - JANUARY 25, 2010 LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE LEA COUNTY, NEW MEXICO Chevron Environmental Management Company

073020-03(001)GN-BR003 AUG 25/2011



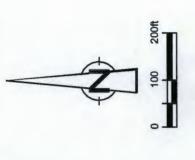
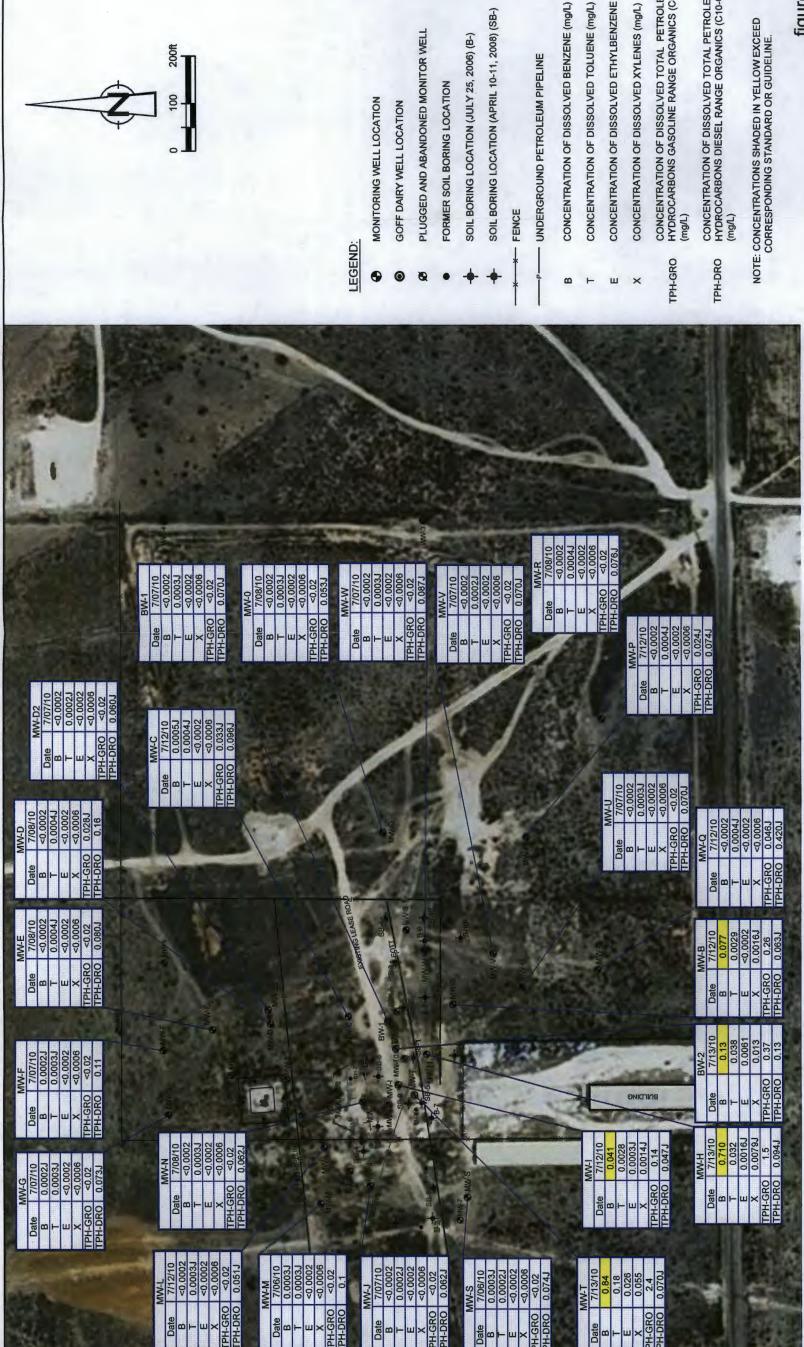

- MONITORING WELL LOCATION
- PLUGGED AND ABANDONED MONITOR WELL
- FORMER SOIL BORING LOCATION
- SOIL BORING LOCATION (APRIL 10-11, 2008) (SB-) SOIL BORING LOCATION (JULY 25, 2006) (B-)
- FENCE
- UNDERGROUND PETROLEUM PIPELINE
- GROUNDWATER ELEVATION, FEET AMSL
- GROUNDWATER POTENTIOMETRIC CONTOUR, FEET AMSL
- APPARENT GROUNDWATER FLOW DIRECTION

figure 4

MAP OF THE POTENTIOMETRIC SURFACE - JULY 6, 2010
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO
Chevron Environmental Management Company

- MONITORING WELL LOCATION
- GOFF DAIRY WELL LOCATION
- PLUGGED AND ABANDONED MONITOR WELL
- FORMER SOIL BORING LOCATION
- SOIL BORING LOCATION (APRIL 10-11, 2008) (SB-)

UNDERGROUND PETROLEUM PIPELINE


- CONCENTRATION OF DISSOLVED BENZENE (mg/L)
- CONCENTRATION OF DISSOLVED TOLUENE (mg/L)
- CONCENTRATION OF DISSOLVED ETHYLBENZENE (mg/L)
 - CONCENTRATION OF DISSOLVED XYLENES (mg/L)
- CONCENTRATION OF DISSOLVED PETROLEUM TOTAL HYDROCARBONS GASOLINE RANGE ORGANICS (C6-C10) (mg/L)
 - CONCENTRATION OF DISSOLVED PETROLEUM TOTAL HYDROCARBONS DIESEL RANGE ORGANICS (C10-C28) (mg/L)

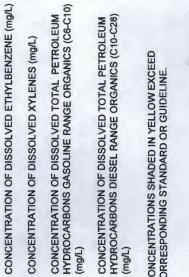

NOTE: CONCENTRATIONS SHADED IN YELLOW EXCEED CORRESPONDING STANDARD OR GUIDELINE.

figure 5

MAP OF CONCENTRATIONS OF DISSOLVED HYDROCARBONS - JANUARY 25-27, 2010
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO
Chevron Environmental Management Company

NOTE: CONCENTRATIONS SHADED IN YELLOW EXCEED CORRESPONDING STANDARD OR GUIDELINE.

figure 6

MAP OF CONCENTRATIONS OF DISSOLVED HYDROCARBONS - JULY 6-13, 2010
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

Chevron Environmental Management Company

Well ID Date Measured BW-1 06/16/05		TOC Elevation (famsl)	Depth to Water (fbtoc)	Total Depth (fbtoc)	Elevation of Potentiometric Surface (famsl)
		3816.14	86.75	128.04	3729.39
BW-1	07/27/05	3816.14	92.32	128.04	3723.82
BW-1	09/21/05	3816.14	90.41	128.04	3725.73
BW-1	12/09/05	3816.14	88.38	128.04	3727.76
BW-1	05/09/07	3816.14	N/A ¹	128.04	
BW-1	06/13/08	3816.14	94.25	128.04	3721.89
BW-1	09/17/08	3816.14	97.51	128.04	3718.63
BW-1	01/26/09	3816.14	91.08	128.04	3725.06
BW-1	07/09/09	3816.14	98.83	128.04	3717.31
BW-1	01/25/10	3816.14	95.08	118.80	3721.06
BW-1	07/06/10	3816.14	100.81	118.80	3715.33
BW-2	06/16/05	3816.57	86.38	123.04	3730.19
BW-2	07/27/05	3816.57	90.70	123.04	3725.87
BW-2	09/21/05	3816.57	89.99	123.04	3726.58
BW-2	12/09/05	3816.57	88.21	123.04	3728.36
BW-2	05/09/07	3816.57	N/A^1	123.04	
BW-2	06/13/08	3816.57	95.16	123.04	3721.41
BW-2	09/17/08	3816.57	96.92	123.04	3719.65
BW-2	01/26/09	3816.57	91.13	123.04	3725.44
BW-2	07/09/09	3816.57	98.47	123.04	3718.10
BW-2	07/06/10	3816.57	100.10	122.16	3716.47
BW-3	06/16/05	3815.82	87.39	123.09	3728.43
BW-3	07/27/05	3815.82	92.72	123.09	3723.10
BW-3	09/22/05	3815.82	91.07	123.09	3724.75
BW-3	12/09/05	3815.82	88.46	123.09	3727.36
BW-3	05/09/07	3815.82	N/A ¹	123.09	-
BW-3	09/17/08	3815.82	98.57	123.09	3717.25
BW-3	01/26/09	3815.82	92.44	123.09	3723.38
BW-3	07/09/09	3815.82	100.44	123.09	3715.38
BW-3	07/06/10	3815.82	101.96	120.30	3713.86
MW-A	06/16/05	3816.04	86.75	100.51	3729.29
MW-A	07/25/05	3816.04	DRY	100.51	DRY
MW-A	09/19/05	3816.04	90.41	100.51	3725.63
MW-A	12/05/05	3816.04	88.38	100.51	3727.66
MW-A	05/09/07	3816.04	DRY	100.51	DRY
MW-A	07/01/08		Collap	sed	
MW-A	07/06/10	3816.04	DRY	99.03	DRY
MW-B	06/16/05	3816.09	87.15	108.11	3728.94
MW-B	07/25/05	3816.09	92.55	108.11	3723.54

Well ID	Date Measured	TOC Elevation (famsl)	Depth to Water (fbtoc)	Total Depth (fbtoc)	Elevation of Potentiometric Surface (fams)
MW-B	09/19/05	3816.09	90.82	108.11	3725.27
MW-B	12/05/05	3816.09	88.73	108.11	3727.36
MW-B	05/09/07	3816.09	91.78	108.11	3724.31
MW-B	10/02/07	3816.09	92.94	108.11	3723.15
MW-B	06/13/08	3816.09	95.05	108.11	3721.04
MW-B	09/15/08	3816.09	98.39	108.11	3717.70
MW-B	01/26/09	3816.09	91.36	108.11	3724.73
MW-B	07/09/09	3816.09	99.76	108.11	3716.33
MW-B	01/25/10	3816.09	95.21	107.65	3720.88
MW-B	07/06/10	3816.09	101.50	107.65	3714.59
MW-C	06/15/05	3817.04	87.83	108.05	3729.21
MW-C	07/25/05	3817.04	92.53	108.05	3724.51
MW-C	09/19/05	3817.04	91.54	108.05	3725.50
MW-C	12/05/05	3817.04	89.50	108.05	3727.54
MW-C	05/09/07	3817.04	92.56	108.05	3724.48
MW-C	10/02/07	3817.04	93.66	108.05	3723.38
MW-C	06/13/08	3817.04	95.21	108.05	3721.83
MW-C	09/15/08	3817.04	98.75	108.05	3718.29
MW-C	01/26/09	3817.04	92.10	108.05	3724.94
MW-C	07/09/09	3817.04	99.78	108.05	3717.26
MW-C	01/25/10	3817.04	96.09	106.35	3720.95
MW-C	07/06/10	3817.04	101.78	106.35	3715.26
MW-D	03/02/05	3816.08	82.68	107.92	3733.40
MW-D	09/19/05	3816.08	90.48	107.92	3725.60
MW-D	12/05/05	3816.08	88.44	107.92	3727.64
MW-D	05/09/07	3816.08	91.49	107.92	3724.59
MW-D	09/27/07	3816.08	92.62	107.92	3723.46
MW-D	06/13/08	3816.08	94.43	107.92	3721.65
MW-D	09/15/08	3816.08	97.49	107.92	3718.59
MW-D	01/26/09	3816.08	91.08	107.92	3725.00
MW-D	07/09/09	3816.08	98.82	107.92	3717.26
MW-D	01/25/10	3816.08	95.14	106.90	3720.94
MW-D	07/06/10	3816.08	100.57	106.90	3715.51
MW-E	09/19/05	3816.31	90.39	107.99	3725.92
MW-E	12/05/05	3816.31	88.40	107.99	3727.91
MW-E	05/09/07	3816.31	91.47	107.99	3724.84
MW-E	09/27/07	3816.31	92.60	107.99	3723.71
MW-E	07/01/08	3816.31	95.54	107.99	3720.77
MW-E	09/15/08	3816.31	97.21	107.99	3719.10
MW-E	01/26/09	3816.31	91.11	107.99	3725.20

Well ID	Date Measured	TOC Elevation (famsl)	Depth to Water (fbtoc)	Total Depth (fbtoc)	Elevation of Potentiometric Surface (fams)
MW-E 07/09/09		3816.31	98.81	107.99	3717.50
MW-E	01/25/10	3816.31	95.20	107.01	3721.11
MW-E	07/06/10	3816.31	100.37	107.01	3715.94
MW-F	09/19/05	3816.69	89.86	108.09	3726.83
MW-F	12/05/05	3816.69	88.09	108.09	3728.60
MW-F	05/09/07	3816.69	91.21	108.09	3725.48
MW-F	09/27/07	3816.69	92.26	108.09	3724.43
MW-F	07/01/08	3816.69	93.93	108.09	3722.76
MW-F	09/15/08	3816.69	96.49	108.09	3720.20
MW-F	01/26/09	3816.69	91.10	108.09	3725.59
MW-F	07/09/09	3816.69	98.00	108.09	3718.69
MW-F	01/25/10	3816.69	94.89	106.70	3721.80
MW-F	07/06/10	3816.69	99.50	106.70	3717.19
MW-G	09/19/05	3818.23	89.46	108.05	3728.77
MW-G	12/05/05	3818.23	88.18	108.05	3730.05
MW-G	05/09/07	3818.23	91.19	108.05	3727.04
MW-G	10/01/07	3818.23	92.08	108.05	3726.15
MW-G	07/01/08	3818.23	95.54	108.05	3722.69
MW-G	09/15/08	3818.23	95.70	108.05	3722.53
MW-G	01/26/09	3818.23	91.48	108.05	3726.75
MW-G	07/09/09	3818.23	96.72	108.05	3721.51
MW-G	01/25/10	3818.23	95.01	106.55	3723.22
MW-G	07/06/10	3818.23	98.50	106.55	3719.73
MW-H	06/15/05	3816.74	86.46	108.10	3730.28
MW-H	07/25/05	3816.74	91.05	108.10	3725.69
MW-H	09/19/05	3816.74	90.15	108.10	3726.59
MW-H	12/05/05	3816.74	88.30	108.10	3728.44
MW-H	05/09/07	3816.74	91.30	108.10	3725.44
MW-H	10/02/07	3816.74	92.37	108.10	3724.37
MW-H	06/13/08	3816.74	93.94	108.10	3722.80
MW-H	09/15/08	3816.74	97.28	108.10	3719.46
MW-H	01/26/09	3816.74	91.14	108.10	3725.60
MW-H	07/09/09	3816.74	98.30	108.10	3718.44
MW-H	01/25/10	3816.74	94.91	105.53	3721.83
MW-H	07/06/10	3816.74	101.28	105.53	3715.46
MW-I	06/15/05	3816.94	85.90	108.07	3731.04
MW-I	07/25/05	3816.94	89.94	108.07	3727.00
MW-I	09/19/05	3816.94	89.50	108.07	3727.44
MW-I	12/05/05	3816.94	87.88	108.07	3729.06

Well ID	Date Measured	TOC Elevation (famsl)	Depth to Water (fbtoc)	Total Depth (fbtoc)	Elevation of Potentiometric Surface (fams)
MW-I	05/09/07	3816.94	90.83	108.07	3726.11
MW-I	10/01/07	3816.94	91.82	108.07	3725.12
MW-I	06/13/08	3816.94	93.03	108.07	3723.91
MW-I	09/15/08	3816.94	96.38	108.07	3720.56
MW-I	01/26/09	3816.94	90.78	108.07	3726.16
MW-I	07/09/09	3816.94	97.19	108.07	3719.75
MW-I	01/25/10	3816.94	94.52	103.79	3722.42
MW-I	07/06/10	3816.94	99.29	103.79	3717.65
MW-J	09/19/05	3817.66	87.24	108.05	3730.42
MW-J	12/05/05	3817.66	86.23	108.05	3731.43
MW-J	05/09/07	3817.66	89.07	108.05	3728.59
MW-J	10/01/07	3817.66	89.86	108.05	3727.80
MW-J	06/13/08	3817.66	90.51	108.05	3727.15
MW-J	09/15/08	3817.66	93.44	108.05	3724.22
MW-J	01/26/09	3817.66	89.58	108.05	3728.08
MW-J	07/09/09	3817.66	93.95	108.05	3723.71
MW-J	01/25/10	3817.66	93.03	105.97	3724.63
MW-J	07/06/10	3817.66	96.05	105.97	3721.61
MW-L	09/19/05	3818.35	86.95	108.07	3731.40
MW-L	12/05/05	3818.35	87.80	108.07	3730.55
MW-L	05/09/07	3818.35	90.70	108.07	3727.65
MW-L	10/01/07	3818.35	91.54	108.07	3726.81
MW-L	06/13/08	3818.35	92.29	108.07	3726.06
MW-L	09/15/08	3818.35	95.36	108.07	3722.99
MW-L	01/26/09	3818.35	91.03	108.07	3727.32
MW-L	07/09/09	3818.35	95.76	108.07	3722.59
MW-L	01/25/10	3818.35	94.57	107.20	3723.78
MW-L	07/06/10	3818.35	98.03	107.20	3720.32
MW-M	09/19/05	3817.88	86.95	108.04	3730.93
MW-M	12/05/05	3817.88	86.06	108.04	3731.82
MW-M	05/09/07	3817.88	88.89	108.04	3728.99
MW-M	10/01/07	3817.88	89.63	108.04	3728.25
MW-M	06/13/08	3817.88	90.18	108.04	3727.70
MW-M	09/15/08	3817.88	92.97	108.04	3724.91
MW-M	01/26/09	3817.88	89.49	108.04	3728.39
MW-M	07/09/09	3817.88	93.50	108.04	3724.38
MW-M	01/25/10	3817.88	92.89	108.13	3724.99
MW-M	07/06/10	3817.88	95.53	108.13	3722.35
MW-N	06/16/05	3817.70	86.25	108.08	3731.45

Well ID Date Measured		TOC Elevation (famsl)	Depth to Water (fbtoc)	Total Depth (fbtoc)	Elevation of Potentiometric Surface (fams)
MW-N	07/25/05	3817.70	89.85	108.08	3727.85
MW-N	09/19/05	3817.70	89.73	108.08	3727.97
MW-N	12/05/05	3817.70	88.19	108.08	3729.51
MW-N	05/09/07	3817.70	91.17	108.08	3726.53
MW-N	10/02/07	3817.70	92.12	108.08	3725.58
MW-N	06/13/08	3817.70	93.14	108.08	3724.56
MW-N	09/15/08	3817.70	96.44	108.08	3721.26
MW-N	01/26/09	3817.70	91.24	108.08	3726.46
MW-N	07/09/09	3817.70	97.16	108.08	3720.54
MW-N	01/25/10	3817.70	94.94	108.67	3722.76
MW-N	07/06/10	3817.70	99.07	108.67	3718.63
MW-O	07/25/05	3814.74	96.58	113.05	3718.16
MW-O	09/19/05	3814.74	93.71	113.05	3721.03
MW-O	12/05/05	3814.74	90.80	113.05	3723.94
MW-O	05/09/07	3814.74	93.97	113.05	3720.77
MW-O	10/02/07	3814.74	95.44	113.05	3719.30
MW-O	06/13/08	3814.74	92.82	113.05	3721.92
MW-O	09/15/08	3814.74	102.30	113.05	3712.44
MW-O	01/26/09	3814.74	92.41	113.05	3722.33
MW-O	07/09/09	3814.74	103.69	113.05	3711.05
MW-O	01/25/10	3814.74	97.04	112.47	3717.70
MW-O	07/06/10	3814.74	104.52	112.47	3710.22
MW-P	06/15/05	3814.24	88.88	113.05	3725.36
MW-P	07/25/05	3814.24	96.83	113.05	3717.41
MW-P	09/19/05	3814.24	92.73	113.05	3721.51
MW-P	12/05/05	3814.24	89.84	113.05	3724.40
MW-P	05/09/07	3814.24	93.07	113.05	3721.17
MW-P	09/27/07	3814.24	94.58	113.05	3719.66
MW-P	06/13/08	3814.24	98.30	113.05	3715.94
MW-P	09/15/08	3814.24	101.73	113.05	3712.51
MW-P	01/26/09	3814.24	91.62	113.05	3722.62
MW-P	07/09/09	3814.24	103.99	113.05	3710.25
MW-P	01/25/10	3814.24	96.05	112.90	3718.19
MW-P	07/06/10	3814.24	104.93	112.90	3709.31
MW-Q	07/25/05	3814.23	96.81	108.07	3717.42
MW-Q	09/19/05	3814.23	90.00	108.07	3724.23
MW-Q	12/05/05	3814.23	87.53	108.07	3726.70
MW-Q	05/09/07	3814.23	90.43	108.07	3723.80
MW-Q	09/27/07	3814.23	92.23	108.07	3722.00
MW-Q	06/13/08	3814.23	98.61	108.07	3715.62

Well ID	Date Measured	TOC Elevation (famsl)	Depth to Water (fbtoc)	Total Depth (fbtoc)	Elevation of Potentiometric Surface (famsl)
MW-Q 09/15/08		3814.23	98.08	108.07	3716.15
MW-Q	01/26/09	3814.23	90.52	108.07	3723.71
MW-Q	07/09/09	3814.23	103.51	108.07	3710.72
MW-Q	01/25/10	3814.23	94.13	108.41	3720.10
MW-Q	07/06/10	3814.23	101.92	108.41	3712.31
MW-R	09/19/05	3810.89	91.19	152.93	3719.70
MW-R	12/05/05	3810.89	87.71	152.93	3723.18
MW-R	05/09/07	3810.89	90.83	152.93	3720.06
MW-R	09/27/07	3810.89	92.83	152.93	3718.06
MW-R	06/13/08	3810.89	98.18	152.93	3712.71
MW-R	09/15/08	3810.89	100.76	152.93	3710.13
MW-R	01/26/09	3810.89	88.57	152.93	3722.32
MW-R	07/09/09	3810.89	105.25	152.93	3705.64
MW-R	01/25/10	3810.89	93.88	152.29	3717.01
MW-R	07/06/10	3810.89	103.95	152.29	3706.94
MW-S	05/09/07	3816.52	87.07	122.73	3729.45
MW-S	10/01/07	3816.52	87.85	122.73	3728.67
MW-S	06/13/08	3816.52	88.58	122.73	3727.94
MW-S	09/15/08	3816.52	91.27	122.73	3725.25
MW-S	01/26/09	3816.52	87.74	122.73	3728.78
MW-S	07/09/09	3816.52	91.86	122.73	3724.66
MW-S	01/25/10	3816.52	91.11	122.77	3725.41
MW-S	07/06/10	3816.52	93.92	122.77	3722.60
MW-T	05/09/07	3816.71	N/A ²		N/A ²
MW-T	07/07/08	3816.71	94.43	-	3722.28
MW-T	09/15/08	3816.71	96.81	***	3719.90
MW-T	01/26/09	3816.71	92.39	122.17	3724.32
MW-T	07/09/09	3816.71	97.92	122.17	3718.79
MW-T	07/06/10	3816.71	99.58	122.17	3717.13
MW-U	05/09/07	3814.94	91.76	123.10	3723.18
MW-U	09/27/07	3814.94	93.09	123.10	3721.85
MW-U	06/13/08	3814.94	96.34	123.10	3718.60
MW-U	09/15/08	3814.94	99.07	123.10	3715.87
MW-U	01/26/09	3814.94	91.19	123.10	3723.75
MW-U	07/09/09	3814.94	101.27	123.10	3713.67
MW-U	01/25/10	3814.94	95.12	123.09	3719.82
MW-U	07/06/10	3814.94	102.33	123.09	3712.61
MW-V	05/09/07	3815.04	92.17	122.79	3722.87

Well ID	ell ID Date Measured TOC Elevation (famsl)		Depth to Water (fbtoc)	Total Depth (fbtoc)	Elevation of Potentiometric Surface (famsl)	
MW-V	09/27/07	3815.04	93.48	122.79	3721.56	
MW-V	06/13/08	3815.04	96.14	122.79	3718.90	
MW-V	09/15/08	3815.04	99.61	122.79	3715.43	
MW-V	01/26/09	3815.04	91.31	122.79	3723.73	
MW-V	07/09/09	3815.04	101.25	122.79	3713.79	
MW-V	01/25/10	3815.04	95.45	122.84	3719.59	
MW-V	07/06/10	3815.04	102.80	122.84	3712.24	
MW-W	05/09/07	3815.09	92.76	122.05	3722.33	
MW-W	09/27/07	3815.09	94.06	122.05	3721.03	
MW-W	06/13/08	3815.09	96.37	122.05	3718.72	
MW-W	09/15/08	3815.09	100.23	122.05	3714.86	
MW-W	01/26/09	3815.09	91.72	122.05	3723.37	
MW-W	07/09/09	3815.09	101.58	122.05	3713.51	
MW-W	01/25/10	3815.09	95.98	133.15	3719.11	
MW-W	07/06/10	3815.09	103.41	133.15	3711.68	
MW-D2	05/09/07	3815.93	91.63	204.00	N/A ³	
MW-D2	09/26/07	3815.93	92.79			
MW-D2	06/13/08	3815.93	94.93	y 1	-	
MW-D2	09/15/08	3815.93	97.77	204.00	N/A ³	
MW-D2	01/26/09	3815.93	91.12	204.00	3724.81	
MW-D2	07/09/09	3815.93	99.30	204.00	3716.63	
MW-D2	01/25/10	3815.93	95.27	204.00	3720.66	
MW-D2	07/06/10	3815.93	100.93	204.00	3715.00	

Notes and Abbreviations:

- 1. Wells with treatment equipment present were not gauged.
- 2. Well was converted to a biosparge well.
- 3. Wells had not been surbeyed as of gauging date.
- 4. famsl = feet above mean sea level.
- 5. Total depths of wells reported through 07-08-09, except for wells MW-S, MW-T, MW-U, MW-W, and MW-D2 were calculated rather than measured.

TABLE II

Sample Location	Date	Benzene (mg/L)	Toluene (mg/L)	Ethylebenzene (mg/L)	Total Xylenes (mg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)
NMWQCC I	HHSGR ¹	0.011	0.751	0.751	0.621			
BW-1	06/16/05	< 0.005	<0.005	<0.005	< 0.005			
BW-1	07/27/05	<0.001	<0.001	<0.001	<0.001			
BW-1	09/21/05	<0.001	<0.001	<0.001	<0.001			
BW-1	12/09/05	0.184	0.24	0.0458	0.172		******	
BW-1	07/02/08	0.0052	0.0018	0.0007	0.0018	0.027	0.077	
BW-1	09/18/08	0.0022	0.0014	0.0007J	0.0015J	< 0.02	0.076J	
BW-1	02/11/09	0.0004	0.0002J	0.0002J	< 0.0006	< 0.02	0.031	
BW-1	07/14/09	<0.0002	<0.0002	0.0003J	< 0.0006	0.035J	0.13	
BW-1	01/26/10	<0.0002	0.0002J	<0.0002	< 0.0006	<0.02	0.073J	
BW-1	07/07/10	<0.0002	0.0003J	<0.0002	<0.0006	<0.02	0.070J	
DVI O	06/14/105	0.0000	0.0007	10.004	0.004			
BW-2	06/16/05	0.0039	0.0026	<0.001	0.001			
BW-2	07/27/05	<0.001	<0.001	<0.001	<0.001			
BW-2	09/21/05	<0.001	<0.001	<0.001	<0.001	-		
BW-2	12/09/05	0.076	0.117	0.0272	0.0981	0.040	0.11	
BW-2	07/02/08	0.0099	0.0025	0.0009	0.0022	0.043	0.11	
BW-2	09/18/08	0.0016	0.0011	0.0003J	0.0009J	<0.02	<0.033	
BW-2	02/11/09	0.0002J	<0.0002	<0.0002	< 0.0006	<0.02	<0.031	
BW-2	07/16/09	0.018	0.0002J	0.0019	0.0009J	0.087	0.64	
BW-2	07/13/10	0.13	0.038	0.0061	0.013	0.37	0.13	No.
BW-3	06/16/05	4.25	0.11	<0.1	<0.1			
BW-3	07/27/05	< 0.001	< 0.001	<0.001	< 0.001			
BW-3	09/22/05	<0.001	<0.001	<0.001	<0.001			
BW-3	12/09/05	0.0508	0.0769	0.0182	0.0724			-
BW-3	07/02/08	0.0073	0.0024	0.001	0.0023	0.035	0.095	
BW-3	09/18/08	0.0029	0.0017	0.0004J	0.0012J	<0.02	< 0.033	
BW-3	02/11/09	0.0003J	0.0002J	<0.0002	<0.0006	< 0.02	<0.031	
BW-3	07/16/09	0.012	<0.0002	0.0016	0.0007J	0.063	0.13	
D STAT. A	06/116/05	0.0040	0.0004	40.004	10 001			
MW-A	06/16/05	0.0348	0.0034	<0.001	<0.001		*** ***	YAY 11 70
MW-A	07/26/05	Well Dry	Well Dry	Well Dry	Well Dry	Well Dry	Well Dry	Well Dry
MW-A	09/20/05	Well Dry	Well Dry	Well Dry	Well Dry	Well Dry	Well Dry	Well Dry
MW-A	12/08/05	0.0206	0.0887	0.0159	0.0858	C 11 1	C 11 1	C 11 1
MW-A	07/01/08	Collapsed	Collapsed	Collapsed	Collapsed	Collapsed	Collapsed	Collapsed
MW-B	06/16/05	0.713	0.0266	<0.02	<0.02			
MW-B	07/26/05	0.546	0.917	0.0902	0.485			
MW-B	09/20/05	0.312	0.454	0.0344	0.236		-	
MW-B	12/08/05	0.103	0.172	<0.02	0.115	-		
MW-B	05/17/07	0.086	0.0076	0.0005	0.003	0.3	0.088	
MW-B	10/02/07	0.068	0.003	0.0003	0.0009			1.3
MW-B	06/30/08	0.670	0.025	0.0028	0.02	1.7	0.087**	
MW-B	09/17/08	0.11	0.0041J	0.0019J	0.0081J	0.34	<0.032	
MW-B	02/03/09	0.041	0.0019	0.0004J	0.0014J	0.095	<0.056	
MW-B	07/15/09	0.034	<0.0002	0.0013	<0.0006	0.14	0.09J	
MW-B	01/27/10	0.048	0.0032	<0.0002	0.0016J	0.28	0.1	
MW-B	07/12/10	0.077	0.0029	<0.0002	0.0016J	0.26	0.063J	
MW-C	06/15/05	<0.005	<0.005	<0.005	<0.005			
MW-C	07/26/05	0.414	0.543	0.0885	0.266			****
MW-C	09/21/05	0.239	0.317	0.0599	0.17			
MW-C	12/08/05	0.0472	0.0741	0.0162	0.0592			****
MW-C	05/17/07	0.012	0.0049	0.0006	0.0019	0.062	0.095	
MW-C	10/02/07	0.029	0.011	0.0011	0.003			< 0.095
MW-C	06/30/08	0.019	0.0053	0.0011	0.0016	0.075	0.260	
MW-C	09/17/08	0.0029	0.0014	0.00061	0.0015J	0.025J	0.068]	
MW-C	02/05/09	0.0086	0.0036	0.0007]	0.0019]	0.0391	<0.032	
MW-C	07/14/09	0.0071	0.0002J	0.0014	0.0006J	0.093	0.09J	
MW-C	01/27/10	0.0021	0.0003J	<0.0002	<0.0006	<0.02	0.061J	*****
INI WW-L	01/2/10	0.0021	0.0003J	<0.0002	<0.0006	0.033J	0.096J	

Sample Location	Date	Benzene (mg/L)	Toluene (mg/L)	Ethylebenzene (mg/L)	Total Xylenes (mg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)
NMWQCC	HHSGR ¹	0.011	0.751	0.751	0.621			
							.0.000	
MW-D	05/15/07	<0.002	<0.002	<0.002	<0.006	<0.02	<0.028	40.004
MW-D	09/27/07	<0.002	<0.002	<0.002	<0.006	0.005	0.130	<0.094
MW-D	06/30/08	0.039	0.0073	0.0013	0.0013	0.095		
MW-D	09/16/08	0.0013	0.001J	0.0005J	0.0012J	<0.02	0.088J	****
MW-D	02/04/09	0.0081	0.0023	0.0007J	0.0019J	0.034J	<0.031	
MW-D	07/13/09	<0.0002	<0.0002	<0.0002	<0.0006	0.044J	0.13	
MW-D	01/27/10	<0.0002	<0.0002	<0.0002	<0.0006	<0.02	0.046J	
MW-D	07/08/10	<0.0002	0.0004J	<0.0002	<0.0006	0.028J	0.160	
MW-E	06/15/05	<0.005	<0.005	<0.005	<0.005	-		
MW-E	05/16/07	< 0.002	< 0.002	< 0.002	< 0.006	< 0.02	< 0.028	
MW-E	09/27/07	< 0.002	< 0.002	< 0.002	< 0.006			< 0.094
MW-E	07/01/08	0.017	0.005	0.0010	0.0011	0.049	0.041	
MW-E	09/17/08	0.01	0.0059	0.0006J	0.0034	0.055	<0.03	
MW-E	02/11/09	0.00081	0.0004]	0.0003J	0.0007J	< 0.02	< 0.031	
MW-E	07/15/09	< 0.0002	< 0.0002	0.0002J	< 0.0006	0.044]	0.33	
MW-E	01/27/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	< 0.02	0.062J	-
MW-E	07/08/10	<0.0002	0.0004J	<0.0002	<0.0006	<0.02	0.080J	
) GW E	04 14 = 10 =	+0.00=	10.005	10.005	10.005			
MW-F	06/15/05	<0.005	<0.005	<0.005 <0.002	<0.005 <0.006	<0.02	<0.028	
MW-F	05/16/07	<0.002	<0.002	<0.002	<0.006	<0.02	<0.026	<0.096
MW-F	09/27/07	<0.002 0.013	<0.002 0.0036	0.002	0.0008	0.039	0.044	\0.0 3 0
MW-F	07/02/08	0.013	0.0030	0.0005	0.0025J	0.039	<0.031	
MW-F	09/17/08	I STATE OF THE PARTY OF THE PAR	0.0042	<0.0003	< 0.0025	<0.039	<0.031	
MW-F	02/11/09	0.0004J <0.0002	< 0.0002	<0.0002	<0.0006	<0.02	0.079]	
MW-F	07/14/09		<0.0002	<0.0002	<0.0006	<0.02	0.079]	
MW-F	01/26/10 07/07/10	<0.0002 0.0002J	0.0002 0.0003J	<0.0002	<0.0006	<0.02	0.110	
MW-G	06/15/05	< 0.005	<0.005	<0.005	< 0.005			
MW-G	05/16/07	<0.002	<0.002	<0.002	<0.006	<0.02	<0.028	
MW-G	10/01/07	<0.002	<0.002	<0.002	< 0.006			< 0.096
MW-G	07/02/08	0.0081	0.0025	0.0006	0.0006	0.026	<0.029	
MW-G	09/17/08	0.024	0.013	0.001	0.0057	0.11	<0.031	
MW-G	02/11/09	0.0012	0.0005J	0.0003J	0.0009J	<0.02	<0.031	
MW-G	07/15/09	<0.0002	<0.0002	<0.0002	< 0.0006	<0.02	0.11	
MW-G	01/26/10	<0.0002	<0.0002	<0.0002	< 0.0006	<0.02	0.054J	
MW-G	07/07/10	0.0002J	0.0003J	<0.0002	<0.0006	<0.02	0.073J	
MW-H	06/15/05	0.492	0.0219	<0.02	<0.02			
MW-H	07/26/05	1.93	2.01	0.144	0.677			
MW-H	09/20/05	2.35	2.54	0.188	0.932			
MW-H	12/06/05	3.89	2.72	0.202	0.815			
MW-H	05/17/07	0.73	0.082	0.0089	0.031	2.4	0.2	
MW-H	10/02/07	0.2	0.037	0.0027	0.01			< 0.094
MW-H	07/02/08	0.14	0.022	0.0018	0.006	0.36	0.036	
MW-H	09/17/08	0.26	0.077	0.0032	0.022	0.86	0.036J	
MW-H	02/03/09	0.49	0.056	0.0075	0.022	1.2	0.078J	
MW-H	07/15/09	0.25	0.0018	0.027	0.012	0.64	0.068J	
MW-H	01/27/10	0.6	0.061	0.0025	0.017	1.7	0.16	
MW-H	07/13/10	0.710	0.032	0.0016J	0.0079J	1.5	0.094J	
MW-I	06/15/05	0.378	0.0124	<0.01	<0.01			
MW-I	07/26/05	1.1	1.4	0.067	0.491			
MW-I	09/20/05	0.555	0.801	0.0253	0.375		-	
MW-I	12/06/05	0.555	0.611	0.0287	0.238			
MW-I		0.496	0.032	0.0009	0.007	0.26	0.053	
MW-I	05/17/07 10/01/07	0.067	0.032	<0.002	0.002	0.20	3.000	<0.097
		0.086	0.034	0.0017	0.0059	0.3	0.063	
MW-I	07/01/08 09/17/08	0.0042	0.0022	0.0017	0.0019J	0.029j	0.003	

NMWQCC HHSCR!	Sample Location	Date	Benzene (mg/L)	Toluene (mg/L)	Ethylebenzene (mg/L)	Total Xylenes (mg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPI (mg/L)
MW-I	NMWOCC	HHSGR ¹	0.011	0.751	0.751	0.621			
MW-I 07/14/99 0.011 0.00022 0.004 0.001] 0.091 0.13 0.065] MW-I 07/12/10 0.041 0.0028 0.0003] 0.0014] 0.14 0.047] MW-I 07/12/10 0.041 0.0028 0.0003] 0.0014] 0.14 0.047] MW-I 05/15/07 0.0015 0.0002 0.0002 0.0002 0.0006 0.022 0.0028 0.0008 0.0013 0.0014 0.0014 0.093 0.280 0.0013 0.0014 0.0014 0.093 0.280 0.0015 0.0							0.058	< 0.031	
MW-I				0.00021					
MW-I									
MW-J									
MIN-J 05/15/07 0.00015 0.0002 0.0002 0.0005 0.002 0.0002 0.0005 0.0003 0.0004 0.0014 0.0093 0.280 0.0093 0.280 0.0093 0.0005 0.00014 0.0014 0.0093 0.280 0.0093 0.	14144-1	0, 12, 10	0.011	0.0020	0.0000	0.0011)	0.11	0.017	
MIV-J 10/01/07 0.0005 0.002 0.0002 0.0006 0.0013 0.0280 0.0073 0.0014 0.0093 0.280 0.0073 0.0014 0.0093 0.280 0.0073 0.0011 0.002 0.0093 0.0011 0.002 0.0093 0.0011 0.002 0.0093 0.0011 0.002 0.0093 0.0011 0.002 0.0093 0.0011 0.002 0.0093 0.0011 0.002 0.0093 0.0011 0.002 0.0093 0.0011 0.002 0.0006 0.0035 0.011 0.0012 0.0006 0.003 0.0007 0.0002 0.0003									
MW-J 06/15/05 0.008 0.0073 0.0014 0.0014 0.0093 0.280 MW-J 09/15/08 0.0012 0.0003 0.00011 0.002 0.0032 0.00011 0.0032 0.0031 MW-J 07/13/09 0.0002 0.00002 0.00002 0.00006 0.032 0.0051 MW-J 07/07/10 0.00002 0.00002 0.00002 0.00006 0.002 0.0661 MW-J 07/07/10 0.00002 0.00002 0.00002 0.00006 0.002 0.0661 MW-J 07/07/10 0.00002 0.00002 0.00002 0.00006 0.002 0.0661 MW-J 05/15/07 0.0002 0.0005	MW-J						<0.02		
MW-J 09/15/08 0.0012 0.0005 0.00015 0.0011 0.002 0.003 0.0011 0.002 0.003 0.0011 0.002 0.003 0.0002 0.00002 0.00006 0.035 0.11 0.001 0.002 0.00002 0.00002 0.00006 0.002 0.0056 0.001 0.002 0.0006 0.002 0.0066 0.001 0.0025 0.063 0.0089 0.0041 0.0011 0.0025 0.063 0.089 0.0041 0.0011 0.0025 0.006 0.0015 0.002 0.0066 0.0015 0.002 0.0066 0.0015 0.002 0.0066 0.0015 0.002 0.0006 0.0015 0.002 0.0006 0.0015 0.002 0.0006 0.0015 0.002 0.0006 0.0015 0.002 0.0006 0.0015 0.002 0.0006 0.0033 0.0099 0.0024 0.0411 0.0421 0.0411 0.0421 0.0411 0.0421 0.0411 0.0421 0.0411 0.0421 0.0411 0.0421 0.0411 0.0022 0.0006 0.0033 0.0099 0.0024 0.0041 0.0022 0.0006 0.0033 0.0099 0.00024 0.0041 0.0022 0.0006 0.0033 0.0099 0.00024 0.0041 0.0022 0.0006 0.0033 0.0013 0.00002 0.00006 0.0033 0.0013 0.00002 0.00006 0.002 0.0051 0.0005	MW-J	10/01/07							< 0.096
MW-J 07/13/99 0.0078 0.0022 0.00002 0.00016 0.032] 0.031 MW-J 07/13/99 0.0002 0.0002 0.0002 0.00006 0.035] 0.11 MW-J 07/07/10 0.0002 0.0002 0.0002 0.0006 0.005 0.006 MW-J 07/07/10 0.0002 0.0002 0.0002 0.0006 0.005 0.006 0.002 0.066] MW-L 05/15/07 0.002 0.0005 0.0005 0.0006 0.0006 0.002 0.062] MW-L 10/01/07 0.0002 0.0002 0.0002 0.0006 0.005 0.	MW-J	06/30/08	0.038			0.0014			
MW-J	MW-J	09/16/08	0.0012	0.0008J	0.0005J	0.0011J	< 0.02	0.093J	
MW-J	MW-J	02/04/09	0.0078	0.0022	0.0007J	0.0019J	0.032J	< 0.031	
MW-J		07/13/09	< 0.0002	< 0.0002	< 0.0002	< 0.0006	0.035]	0.11	
MW-J 07/07/10 <0.0002 0.0002J <0.0002 <0.0006 <0.02 0.062J MW-L 06/15/05 <0.005		01/26/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	< 0.02	0.0561	
MW-L 05/15/07 <0.002 <0.002 <0.002 <0.002 <0.006 — — MW-L 10/01/07 <0.002									
MW-L 05/15/07 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.006 —									
MW-L						<0.005	<0.02	0.039	
MW-L 07/01/08 0.018 0.0031 0.0015 0.0023 0.089 MW-L 09/16/08 0.0019 0.0012 <0.0006							\0.02	0.038	40.000
MW-L 09/16/08 0.0019 0.0012 <0.0006 <0.0015 <0.02 0.13 MW-L 07/14/09 0.00031 0.0002 0.00021 <0.0006							0.000	0.000	< 0.093
MW-L 02/04/09 0.001 0.0002 0.0002 0.0006 0.033 0.079 0.079 0.003 0.079 0.0002 0.00006 0.033 0.079 0.079 0.071 0.001 0.0002 0.00002 0.00006 0.033 0.079 0.079 0.001									
MW-L 07/14/99 0.0003 <0.0002 0.0002 <0.0002 <0.0006 <0.033j <0.079j MW-L 07/12/10 <0.0002									-
MW-L 01/27/10 <0.0002 <0.0002 <0.0002 <0.0006 <0.02 0.037j MW-L 07/12/10 <0.0002		, ,							-
MW-L 07/12/10 <0.0002 0.0003j <0.0002 <0.0006 <0.02 0.051j MW-M 06/15/05 <0.005	MW-L								
MW-M 06/15/05 <0.005 <0.005 <0.005 <0.005 <0.005 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.006 <0.02 <0.002 <0.002 <0.006 <0.002 <0.002 <0.0006 <0.002 <0.003 0.011 0.0032 0.11 0.034*** MW-M 09/16/08 0.0023 0.0013 0.0031 0.0001 0.0014 0.022 0.13 MW-M 02/04/09 0.013 0.0031 0.0001 0.0002 <0.0002	MW-L	01/27/10		< 0.0002	<0.0002	< 0.0006		0.037]	
MW-M 05/15/07 <0.002	MW-L	07/12/10	<0.0002	0.0003J	<0.0002	< 0.0006	<0.02	0.051J	
MW-M 05/15/07 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.003 <0.011 0.0332 0.11 0.034*** MW-M 09/16/08 0.0023 0.0013 0.0006j 0.0014j 0.022 0.13 MW-M 02/04/09 0.013 0.0031j 0.001j 0.0025j 0.033 0.036j MW-M 07/15/09 <0.0002	MWM	06/15/05	<0.005	<0.005	<0.005	<0.005			
MW-M 10/01/07 <0.002 <0.002 <0.002 <0.002 <0.003 .0.032 0.11 0.034*** MW-M 09/16/08 0.0023 0.0013 0.0006j 0.0014j 0.022 0.13 MW-M 02/04/09 0.013 0.0031j 0.0001j 0.0025j 0.053 0.036j MW-M 07/15/09 <0.0002							<0.02	<0.028	-
MW-M 06/30/08 0.042 0.004 0.0011 0.0032 0.11 0.034*** MW-M 09/16/08 0.0023 0.0013 0.00061 0.00141 0.022 0.13 MW-M 02/04/09 0.013 0.00311 0.00021 0.0006 0.022 0.071 MW-M 07/15/09 0.0002 <0.0002							~0.02	~0.026	<0.000
MW-M 09/16/08 0.0023 0.0013 0.0006J 0.0014J 0.022 0.13 MW-M 02/04/09 0.013 0.0031J 0.0001 0.0025J 0.053 0.036J MW-M 07/15/09 <0.0002							0.11	0.024**	<0.096
MW-M 02/04/09 0.013 0.0031J 0.001J 0.0025J 0.053 0.036J MW-M 07/15/09 <0.0002									
MW-M 07/15/09 <0.0002									
MW-M 01/25/10 <0.0002 <0.0002 <0.0002 <0.0006 <0.02 0.25 MW-M 07/06/10 0.0003j 0.0003j <0.0002									
MW-M 07/06/10 0.0003J 0.0003J <0.0002 <0.0006 <0.02 0.1 MW-N 06/15/05 <0.001									
MW-N 06/15/05 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0005 <0.0005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001		, ,							
MW-N 07/26/05 0.0059 <0.005 <0.005 <0.005 <0.005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.006 <0.002 <0.006 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.006 <0.005 <0.005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001<	MW-M	07/06/10	0.0003J	0.0003J	<0.0002	<0.0006	<0.02	0.1	
MW-N 07/26/05 0.0059 <0.005 <0.005 <0.005 <0.005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.006 <0.002 <0.006 <0.002 <0.005 <0.001 <0.002 <0.003 <0.001 <0.001 <0.001 <0.001 <0.002 <0.003 <0.001 <0.002 <0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001<	MW-N	06/15/05	<0.001	<0.001	<0.001	<0.001			
MW-N 09/21/05 0.0076 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.006 <0.032 0.067 <0.067 <0.002 <0.0006 <0.002 <0.006 <0.002 <0.006 <0.002 <0.006 <0.002 <0.006 <0.002 <0.006 <0.002 <0.006 <0.002 <0.006 <0.002 <0.006 <0.002 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007 <0.007<									
MW-N 12/06/05 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.006 0.032 0.067 MW-N 10/02/07 <0.002		and the same of the same							
MW-N 05/17/07 0.0013 0.0007 0.0002 <0.006 0.032 0.067 MW-N 10/02/07 <0.002									
MW-N 10/02/07 <0.002 <0.002 <0.002 <0.006 — <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.032</td><td></td><td></td></t<>							0.032		
MW-N 06/30/08 0.011 0.0031 0.0008 0.0009 0.056 0.05 MW-N 09/17/08 0.0014 0.0011 0.0007J 0.0016J <0.02		, ,							< 0.095
MW-N 09/17/08 0.0014 0.0011 0.0007J 0.0016J <0.02 0.073 MW-N 02/05/09 0.0051 0.0025 0.0006J 0.0014J 0.031J 0.034J MW-N 07/13/09 <0.0002							0.056	0.05	10.055
MW-N 02/05/09 0.0051 0.0025 0.0006j 0.0014j 0.031j 0.034j MW-N 07/13/09 <0.0002									
MW-N 07/13/09 <0.0002 <0.0002 <0.0002 <0.0006 0.079 0.32 MW-N 01/26/10 <0.0002									
MW-N 01/26/10 <0.0002 <0.0002 <0.0002 <0.0002 <0.0006 <0.02 0.041J MW-N 07/08/10 <0.0002									
MW-N 07/08/10 <0.0002 0.0003J <0.0002 <0.0006 <0.02 0.062J MW-O 07/25/05 0.0035 <0.001									
MW-O 07/25/05 0.0035 <0.001 <0.001									
MW-O 09/21/05 0.0102 <0.001 <0.001 <0.001	MW-N	07/08/10	<0.0002	0.0003j	<0.0002	<0.0006	<0.02	0.0623	
MW-O 09/21/05 0.0102 <0.001 <0.001 <0.001	MW-O	07/25/05	0.0035	<0.001	<0.001	<0.001			
MW-O 12/08/05 0.0045 <0.001 <0.001 <0.001 <0.001 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>							-		
MW-O 05/14/07 0.0072 <0.002 <0.002 <0.006 0.043 0.130 MW-O 10/02/07 0.0012 0.001 <0.002			Contract of the Contract of th						
MW-O 10/02/07 0.0012 0.001 <0.002 <0.006 — — — MW-O 06/30/08 0.04 0.01 0.0065 0.011 0.15 0.280*** MW-O 09/16/08 <0.0002		, ,					0.043	0.130	
MW-O 06/30/08 0.04 0.01 0.0065 0.011 0.15 0.280*** MW-O 09/16/08 <0.0002		, ,							< 0.093
MW-O 09/16/08 <0.0002 <0.0002 <0.0002 <0.0006 <0.02 <0.031 MW-O 02/02/09 <0.0002							0.15	0.280**	
MW-O 02/02/09 <0.0002 0.0012 0.0005J 0.0011J <0.02 0.063J MW-O 07/13/09 <0.0002									
MW-O 07/13/09 <0.0002 <0.0002 0.0003J <0.0006 0.1 0.36 MW-O 01/26/10 <0.0002 <0.0002 <0.0002 <0.0002 <0.0006 <0.02 <0.031									
MW-O 01/26/10 <0.0002 <0.0002 <0.0002 <0.0006 <0.02 <0.031									
NOTICE 07/09/10 <0.0000 0.0000T <0.0000 <0.0000 <0.000									
MW-0 07/08/10 <0.0002 0.0003j <0.0002 <0.0006 <0.02 0.053j	MW-O	07/08/10	<0.0002	0.0003J	<0.0002	<0.0006	<0.02	0.053J	
MW-P 06/15/05 1.92 <0.05 <0.05 <0.05	MW-P	06/15/05	1.02	<0.0E	CO.05	<0.0E		-	

MW-P MW-P MW-P MW-P MW-P MW-P MW-P MW-P	07/25/05 09/19/05 12/08/05 05/14/07 09/27/07 06/17/08 09/16/08 02/02/09 07/13/09 01/27/10 07/12/10	0.01 ¹ 0.179 <0.001 <0.001 <0.002 <0.002 <0.002 <0.0002 <0.0002 0.0001	0.75 ¹ <0.001 <0.001 <0.001 <0.002 <0.002 <0.003 <0.0002 0.0033	0.75 ¹ <0.001 <0.001 <0.001 <0.002 <0.002 <0.002	0.62 ¹ <0.001 <0.001 <0.001 <0.006			
MW-P MW-P MW-P MW-P MW-P MW-P MW-P MW-P	07/25/05 09/19/05 12/08/05 05/14/07 09/27/07 06/17/08 09/16/08 02/02/09 07/13/09 01/27/10	0.179 <0.001 <0.001 <0.002 <0.002 <0.002 <0.0002 <0.0002	<0.001 <0.001 <0.001 <0.002 <0.002 0.003 <0.0002	<0.001 <0.001 <0.001 <0.002 <0.002 <0.002	<0.001 <0.001 <0.001 <0.006			
MW-P MW-P MW-P MW-P MW-P MW-P MW-P MW-P	09/19/05 12/08/05 05/14/07 09/27/07 06/17/08 09/16/08 02/02/09 07/13/09 01/27/10	<0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.0002	<0.001 <0.001 <0.002 <0.002 0.003 <0.0002	<0.001 <0.001 <0.002 <0.002 <0.002	<0.001 <0.001 <0.006			
MW-P MW-P MW-P MW-P MW-P MW-P MW-P MW-P	12/08/05 05/14/07 09/27/07 06/17/08 09/16/08 02/02/09 07/13/09 01/27/10	<0.001 <0.002 <0.002 <0.002 <0.0002 <0.0002	<0.001 <0.002 <0.002 0.003 <0.0002	<0.001 <0.002 <0.002 <0.002	<0.001 <0.006			
MW-P MW-P MW-P MW-P MW-P MW-P MW-P MW-P	05/14/07 09/27/07 06/17/08 09/16/08 02/02/09 07/13/09 01/27/10	<0.002 <0.002 <0.002 <0.0002 <0.0002	<0.002 <0.002 0.003 <0.0002	<0.002 <0.002 <0.002	< 0.006			
MW-P MW-P MW-P MW-P MW-P MW-P MW-P	09/27/07 06/17/08 09/16/08 02/02/09 07/13/09 01/27/10	<0.002 <0.002 <0.0002 <0.0002	<0.002 0.003 <0.0002	<0.002 <0.002		< 0.02	0.028	
MW-P MW-P MW-P MW-P MW-P MW-P	06/17/08 09/16/08 02/02/09 07/13/09 01/27/10	<0.002 <0.0002 <0.0002	0.003 <0.0002	<0.002	20 00G	-0.02	0.020	< 0.094
MW-P MW-P MW-P MW-P MW-P	09/16/08 02/02/09 07/13/09 01/27/10	<0.0002 <0.0002	<0.0002		<0.006 <0.006	<0.037	<0.062	~0.094
MW-P MW-P MW-P MW-P	02/02/09 07/13/09 01/27/10	< 0.0002		<0.0000				
MW-P MW-P MW-P	07/13/09 01/27/10		[] [] [] [44	<0.0002	<0.0006	<0.02	<0.031	
MW-P MW-P	01/27/10	0.0011		0.0005J	0.0011J	<0.02	0.049J	
MW-P			<0.0002	0.0003J	<0.0006	0.31	4.7	
MW-Q	07/12/10	< 0.0002	< 0.0002	<0.0002	<0.0006	<0.02	<0.031	
		<0.0002	0.0004J	<0.0002	<0.0006	0.024J	0.074J	
NATAL O	07/25/05	<0.001	<0.001	<0.001	<0.001			
MW-Q	09/21/05	< 0.001	< 0.001	< 0.001	< 0.001			approx.
MW-Q	12/06/05	< 0.001	< 0.001	<0.001	< 0.001			
MW-Q	05/14/07	< 0.002	< 0.002	< 0.002	< 0.006	< 0.02	<0.028	
MW-Q	09/27/07	< 0.002	< 0.002	< 0.002	< 0.006			< 0.094
MW-Q	06/17/08	0.005	0.006	0.003	0.006	< 0.043	< 0.062	
MW-Q	09/16/08	< 0.0002	<0.0002	< 0.0002	< 0.0006	<0.02	<0.031	
MW-Q	02/02/09	<0.0002	0.0021	0.0003]	0.0007J	<0.02	0.048J	
MW-Q	07/14/09	<0.0002	< 0.0002	0.0003J	< 0.0006	0.16	0.68	
MW-Q	01/26/10	< 0.0002	<0.0002	<0.0002	< 0.0006	<0.02	0.031J	
MW-Q	07/12/10	<0.0002	0.0004J	<0.0002	<0.0006	0.046J	0.420J	
MW-R	00/10/05	*0.001	<0.001	c0 001	<0.001			
	08/12/05	<0.001	<0.001	<0.001	<0.001			
MW-R	09/19/05	<0.001	<0.001	<0.001	<0.001			
MW-R	12/08/05	<0.001 <0.002	<0.001 <0.002	<0.001 <0.002	<0.001 <0.006	<0.02	0.028	
MW-R	05/14/07					V.02	0.020	
MW-R	09/27/07	<0.002	<0.002	<0.002	<0.006	<0.001	<0.110	<0.095
MW-R	06/17/08	<0.002	0.002 0.000**	<0.002	<0.006	<0.061		
MW-R	09/15/08	<0.0002		<0.0002	<0.0006	<0.02	<0.039	
MW-R	02/02/09	0.0002J	0.0005J	0.0008J	0.0016J	0.028J	0.074J	
MW-R	07/14/09	<0.0002	<0.0002	0.0002J	<0.0006	0.049J	0.13	,
MW-R	01/27/10	< 0.0002	<0.0002	<0.0002	< 0.0006	<0.02	0.041J	
MW-R	07/08/10	<0.0002	0.0004J	<0.0002	<0.0006	<0.02	0.076J	
MW-S	07/27/06	<0.0005	< 0.0007	<0.0008	<0.0008	0.028	0.053	
MW-S	05/14/07	< 0.002	< 0.002	< 0.002	< 0.006	< 0.02	0.390	
MW-S	10/01/07	< 0.002	< 0.002	<0.002	< 0.006			< 0.095
MW-S	06/30/08	0.039	0.0032	0.0005	0.0021	0.11	< 0.043	
MW-S	09/16/08	0.004	0.0018	0.0008J	0.0019J	0.029J	0.35	
MW-S	02/04/09	0.022	0.0048	0.0011	0.0031	0.072	0.044J	
MW-S	07/15/09	< 0.0002	< 0.0002	< 0.0002	< 0.0006	<0.02	0.050J	
MW-S	01/25/10	< 0.0002	< 0.0002	<0.0002	< 0.0006	0.023J	0.18J	
MW-S	07/06/10	0.0003J	0.0002J	<0.0002	<0.0006	<0.02	0.074J	
MW-T	07/27/06	0.36	0.12	0.037	0.15	1.3	0.86	
MW-T	09/18/08	0.0049	0.0028	0.0008J	0.002J	0.027J	0.11	
MW-T	02/11/09	0.0004J	0.0003J	<0.0002	< 0.0006	<0.02	0.033J	
MW-T	07/16/09	0.0071	< 0.0002	0.0013	0.0008J	0.044J	0.13	
MW-T	07/13/10	0.84	0.18	0.026	0.055	2.4	0.070J	
MW-U	04/24/07	<0.005	0.009	<0.008	<0.008	0.027	0.180*	
MW-U	05/16/07	< 0.0002	< 0.0002	<0.0002	< 0.0006	0.027	0.18	
MW-U	09/27/07	<0.002	< 0.002	<0.002	<0.006			< 0.093
MW-U	06/30/08	0.002	0.0018	0.0009	0.0019	0.028	0.057**	-0.070
MW-U	09/17/08	< 0.0002	0.0003J	0.0002J	< 0.0006	0.025J	<0.032	
	02/03/09	<0.0002	0.0003	0.0006J	0.0013J	<0.02	0.060J	
MW-U			< 0.0021	<0.0002	< 0.0006	0.02 0.034J	0.000	
MW-U	07/14/09	<0.0002						
MW-U MW-U	01/26/10 07/07/10	<0.0002 <0.0002	<0.0002 0.0003J	<0.0002 <0.0002	<0.0006 <0.0006	<0.02 <0.02	0.049J 0.070J	

CUMULATIVE SUMMARY OF DISSOLVED-PHASE CONTAMINANTS IN GROUNDWATER LOVINGTON PADDOCK LEA COUNTY, NEW MEXICO

Sample Location	Date	Benzene (mg/L)	Toluene (mg/L)	Ethylebenzene (mg/L)	Total Xylenes (mg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Total TPH (mg/L)
NMWQCC HHSGR ¹		0.011	0.751	0.751	0.621			
200777	04/04/05		<0.007	<0.008	<0.008	0.028*	0.310*	
MW-V	04/24/07	<0.005	<0.007	<0.0002	<0.006	0.028	0.310	
MW-V	05/16/08	<0.001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0.028	0.510	
MW-V	09/27/07	<0.002	<0.002	<0.002	<0.006	0.044	0.093**	< 0.094
MW-V	06/30/08	0.011	0.0027	0.0012	0.0025	-10-7-		
MW-V	09/16/08	0.0045	<0.0002	<0.0002	<0.0006	0.023J	0.064J	
MW-V	02/02/09	<0.0002	0.0078	0.0003J	0.0007J	0.023J	0.066]	
MW-V	07/13/09	<0.0002	<0.0002	<0.0002	<0.0006	0.027J	0.14	
MW-V	01/26/10	<0.0002	<0.0002	<0.0002	<0.0006	<0.02	0.062J	
MW-V	07/07/10	<0.0002	0.0002J	<0.0002	<0.0006	<0.02	0.070J	*****
MW-W	04/24/07	<0.005	<0.007	<0.008	<0.008	0.037*	0.450*	
MW-W	05/16/07	< 0.001	< 0.0002	<0.0002	< 0.0006	0.037	0.450	
MW-W	09/27/07	< 0.002	< 0.002	<0.002	< 0.006			< 0.094
MW-W	06/30/08	0.031	0.0035	0.0015	0.0032	0.092	0.130**	
MW-W	09/16/08	0.0025	< 0.0002	< 0.0002	< 0.0002	0.021]	0.068]	
MW-W	02/02/09	< 0.0002	0.0029	0.00041	0.00091	< 0.02	0.078]	
MW-W	07/13/09	< 0.0002	< 0.0002	0.0003J	< 0.0006	0.093	0.33	
MW-W	01/26/10	< 0.0002	< 0.0002	<0.0002	< 0.0006	< 0.02	0.0391	
MW-W	07/07/10	<0.0002	0.0003J	<0.0002	<0.0006	<0.02	0.087J	
MW-D2	05/15/07	<0.002	<0.002	<0.002	<0.006	<0.02	<0.028	
MW-D2	09/27/07	<0.002	< 0.002	<0.002	< 0.006	-		< 0.096
MW-D2	06/30/08	0.026	0.0046	0.0009	0.0009	0.061	0.036	
MW-D2	09/17/08	0.0011	0.00081	0.00071	0.0015]	< 0.02	0.0521	-
MW-D2	02/04/09	0.0067	0.0031	0.00061	0.0016]	0.0301	<0.031	
MW-D2	07/13/09	< 0.0002	< 0.0002	<0.0002	<0.0006	0.0231	0.0861	
MW-D2	01/26/10	<0.0002	< 0.0002	<0.0002	<0.0006	<0.02	0.0491	
MW-D2	07/07/10	< 0.0002	0.00021	<0.0002	< 0.0006	<0.02	0.0601	-

Notes and Abbreviations:

mg/L = milligrams per liter

TPH = total petroleum hydrocarbons

GRO = gasoline range organic

DRO = diesel range organic

NMWQCC HHSGR = New Mexico Water Quality Control Commission Human Health Standard for Groundwater (NMAC 20.6.2.3103A)

Bold = concentration exceeding noted standard or guideline

J = estimated value. The result is greater than or equal to the method detection limit and les than the limit of quantitation (LOQ) or reporting limit (RL)

^{*} Resampled on 5/16/07

^{**} Resampled on 7/1/08

Analysis Report

2425 New Holland Piles, PO Box 12425, Lancaster, PA 17805-2425 *717-688-2300 Fex: 717-686-2861 * www.lancasterlaibs.com

ANALYTICAL RESULTS

Prepared for:

STANTEC International, Inc. 2321 Club Meridian Drive Suite E Okemos MI 48864

517-349-9499

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

February 08, 2010

Project: Lovington Paddock

Samples arrived at the laboratory on Thursday, January 28, 2010. The PO# for this group is 89CH.49521.08 and the release number is LOVINGTON. The group number for this submittal is 1180477.

Client Sample Description	Lancaster Labs (LLI) #				
MW-F Grab Water Sample	5894530				
MW-G Grab Water Sample	5894531				
MW-D2 Grab Water Sample	5894532				
MW-V Grab Water Sample	5894533				
MW-U Grab Water Sample	5894534				
MW-J Grab Water Sample	5894535				
BW-1 Grab Water Sample	5894536				
MW-D Grab Water Sample	5894537				
MW-E Grab Water Sample	5894538				
MW-R Grab Water Sample	5894539				
MW-B Grab Water Sample	5894540				
MW-H Grab Water Sample	5894541				
DUP-1 Grab Water Sample	5894542				
MW-S Grab Water Sample	5894543				
MW-M Grab Water Sample	5894544				
MW-N Grab Water Sample	5894545				
MW-W Grab Water Sample	5894546				
MW-O Grab Water Sample	5894547				
MW-Q Grab Water Sample	5894548				
MW-L Grab Water Sample	5894549				
MW-P Grab Water Sample	5894550				
MW-C Grab Water Sample	5894551				

2425 New Holland Pike. PO Box 12425. Lancaster. PA 17605-2425 * 717-656-2300 Fax: 717-656-2661 * www.lancasterlabs.com

MW-I Grab Water Sample Trip Blank Water Sample DUP #2 Grab Water Sample 5894552 5894553 5894554

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

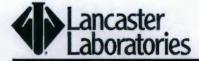
ELECTRONIC

STANTEC International, Inc.

Attn: Seth Maher

COPY TO ELECTRONIC

STANTEC International, Inc.


Attn: Steve Bell

COPY TO

Questions? Contact your Client Services Representative Wendy A Kozma at (717) 656-2300

Respectfully Submitted,

Valerie L. Tomayko Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-F Grab Water Sample Lovington Paddock, NM LLI Sample # WW 5894530 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/26/2010 11:57 by JL

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01

Discard: 03/11/2010

Account Number: 11842

STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

LOV-F

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Volatiles SW-846	8015B	ug/l	ug/l	
01636 TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Volatiles SW-846	8021B	ug/l	ug/l	
08213 Benzene	71-43-2	N.D.	0.2	1
08213 Ethylbenzene	100-41-4	N.D.	0.2	1
08213 Toluene	108-88-3	N.D.	0.2	1
08213 Total Xylenes	1330-20-7	N.D.	0.6	1
GC Extractable TPH SW-846	8015B	ug/l	ug/l	
08269 TPH-DRO water C10-C28	n.a.	63 J	30	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010 14:02	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010 13:44	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010 14:02	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100290002A	02/02/2010 06:08	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100290002A	01/29/2010 14:30		1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-G Grab Water Sample Lovington Paddock, NM LLI Sample # WW 5894531 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/26/2010 12:33 by 3

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01

Discard: 03/11/2010

LOV-G

Account Number: 11842

STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Analysis Name	Name	c	AS Number	As Rec Result	eived	As Receiv Method Detection	Dilution Factor
Volatiles	s	W-846 8015E	3	ug/l		ug/l	
36 TPH-GRO water	water C6-C10	n	.a.	N.D.		20	1
Volatiles	s	W-846 8021E	3	ug/l		ug/l	
213 Benzene		7:	1-43-2	N.D.		0.2	1
213 Ethylbenzene	ene	1	00-41-4	N.D.		0.2	1
13 Toluene		10	08-88-3	N.D.		0.2	1
213 Total Xylenes	enes	1:	330-20-7	N.D.		0.6	1
Extractable TP	e TPH S	W-846 8015E	3	ug/l		ug/l	
69 TPH-DRO water	water C10-C28	n	.a.	54	J	31	1
69 TPH-DRO water	water C10-C28	n	.a.	54	J	31	

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010 14	:26 Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010 14	:08 Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010 14	:26 Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100290002A	02/02/2010 06	:30 Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100290002A	01/29/2010 14	:30 Timothy J Attenberger	1

2425 New Holland Pilus, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabe.com

Page 1 of 1

Sample Description: MW-D2 Grab Water Sample Lovington Paddock, NM

LLI Sample # WW 5894532 LLI Group # 1180477

ATM.

Project Name: Lovington Paddock

Collected: 01/26/2010 13:10 by JI

Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01 STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Discard: 03/11/2010

LOVD2

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01636	TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Vo	latiles SW-846	8021B	ug/l	ug/l	
08213	Benzene	71-43-2	N.D.	0.2	1
08213	Ethylbenzene	100-41-4	N.D.	0.2	1
08213	Toluene	108-88-3	N.D.	0.2	1
08213	Total Xylenes	1330-20-7	N.D.	0.6	1
GC Ex	tractable TPH SW-846	8015B	ug/l	ug/l	
08269	TPH-DRO water C10-C28	n.a.	49 J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010	14:51	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010	14:33	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010	14:51	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100290002A	02/02/2010	06:51	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100290002A	01/29/2010		Timothy J Attenberger	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-V Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894533 LLI Group # 1180477

NM

Project Name: Lovington Paddock

Collected: 01/26/2010 13:44

y JL

Account Number: 11842

Submitted: 01/28/2010 09:00

STANTEC International, Inc. 2321 Club Meridian Drive

Reported: 02/08/2010 at 14:01

Suite E

Okemos MI 48864

Discard: 03/11/2010

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01636	TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Vo	latiles SW-846	8021B	ug/l	ug/l	
08213	Benzene	71-43-2	N.D.	0.2	1
08213	Ethylbenzene	100-41-4	N.D.	0.2	1
08213	Toluene	108-88-3	N.D.	0.2	1
08213	Total Xylenes	1330-20-7	N.D.	0.6	1
GC Ex	tractable TPH SW-846	8015B	ug/l	ug/l	
08269	TPH-DRO water C10-C28	n.a.	62 J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	9	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010 1	15:15	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010 1	14:57	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010 1	15:15	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100290002A	02/02/2010 0	07:13	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100290002A	01/29/2010 1	14:30	Timothy J Attenberger	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-U Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894534 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/26/2010 14:12

Account Number: 11842

Submitted: 01/28/2010 09:00

STANTEC International, Inc. 2321 Club Meridian Drive

Reported: 02/08/2010 at 14:01

Suite E

Okemos MI 48864

Discard: 03/11/2010

LOV-U

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01636	TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Vo	latiles SW-846	8021B	ug/l	ug/l	
08213	Benzene	71-43-2	N.D.	0.2	1
08213	Ethylbenzene	100-41-4	N.D.	0.2	1
08213	Toluene	108-88-3	N.D.	0.2	1
08213	Total Xylenes	1330-20-7	N.D.	0.6	1
GC Ex	tractable TPH SW-846	8015B	ug/l	ug/l	
08269	TPH-DRO water C10-C28	n.a.	49 J	30	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010 15:3	9 Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010 15:2	1 Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010 15:3	9 Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100290002A	02/02/2010 07:3	5 Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100290002A	01/29/2010 14:3		1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-J Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894535 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/26/2010 15:11

by JL

Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01 STANTEC International, Inc. 2321 Club Meridian Drive

Discard: 03/11/2010

Suite E

Okemos MI 48864

LOV-J

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01636	TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Vo	latiles SW-846	8021B	ug/l	ug/l	
08213	Benzene	71-43-2	N.D.	0.2	1
08213	Ethylbenzene	100-41-4	N.D.	0.2	1
08213	Toluene	108-88-3	N.D.	0.2	1
08213	Total Xylenes	1330-20-7	N.D.	0.6	1
GC Ex	tractable TPH SW-846	8015B	ug/l	ug/l	
08269	TPH-DRO water C10-C28	n.a.	56 J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010 16:0	4 Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010 15:4	6 Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010 16:0	4 Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100290002A	02/02/2010 08:	4 Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100290002A	01/29/2010 14:3	0 Timothy J	1
						Attenberger	

3415 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: BW-1 Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894536 LLI Group # 1180477

MIM

Project Name: Lovington Paddock

Collected: 01/27/2010 10:50

by JL

Account Number: 11842

Submitted: 01/28/2010 09:00

Reported: 02/08/2010 at 14:01

Discard: 03/11/2010

STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

LOVB1

CAT No. Analysis Name		CAS Number	As Receiv	ved	As Received Method Detection Limit		Dilution Factor
GC Volatiles	SW-846	8015B	ug/l		ug/l		
01636 TPH-GRO water C6	-C10	n.a.	N.D.		20		1
GC Volatiles	SW-846	8021B	ug/l		ug/l		
08213 Benzene		71-43-2	N.D.		0.2		1
08213 Ethylbenzene		100-41-4	N.D.		0.2		1
08213 Toluene		108-88-3	0.2 J		0.2	4	1
08213 Total Xylenes		1330-20-7	N.D.		0.6		1
GC Extractable TPH	SW-846	8015B	ug/l		ug/l		
08269 TPH-DRO water C1	0-C28	n.a.	73	J	31		1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8)15B	1	10029A53A	02/01/2010 16:28	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8)21B	1	10029A53A	02/01/2010 16:10	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5)30B	1	10029A53A	02/01/2010 16:28	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8)15B	1	100320015A	02/03/2010 16:15	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100320015A	02/02/2010 05:20	Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-D Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894537 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/27/2010 11:21

Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01 STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Discard: 03/11/2010

LOV-D

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01636	TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Vo	latiles SW-846	8021B	ug/l	ug/l	
08213	Benzene	71-43-2	N.D.	0.2	1
08213	Ethylbenzene	100-41-4	N.D.	0.2	1
08213	Toluene	108-88-3	N.D.	0.2	1
08213	Total Xylenes	1330-20-7	N.D.	0.6	1
GC Ex	tractable TPH SW-846	8015B	ug/l	ug/l	
08269	TPH-DRO water C10-C28	n.a.	46 J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010 16	:52 Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010 16	:34 Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010 16	:52 Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100320015A	02/03/2010 16	:37 Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100320015A	02/02/2010 05	:20 Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, 👫 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-E Grab Water Sample Lovington Paddock, NM

LLI Sample # WW 5894538 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/27/2010 11:53 by JL

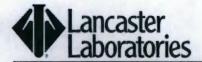
Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01 STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Discard: 03/11/2010


LOV-E

CAT No.	Analysis Name	CAS Number	As Recei	ved	As Received Method Detection Limit	Dilution Factor
GC Vol	latiles SW-846	8015B	ug/l		ug/l	
01636	TPH-GRO water C6-C10	n.a.	N.D.		20	1
GC Vol	latiles SW-846	8021B	ug/l		ug/l	
08213	Benzene	71-43-2	N.D.		0.2	1
08213	Ethylbenzene	100-41-4	N.D.		0.2	1
08213	Toluene	108-88-3	N.D.		0.2	1
08213	Total Xylenes	1330-20-7	N.D.		0.6	1
GC Ext	tractable TPH SW-846	8015B	ug/l		ug/l	
08269	TPH-DRO water C10-C28	n.a.	62	J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010 17:16	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010 16:58	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010 17:16	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100320015A	02/03/2010 16:59	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100320015A	02/02/2010 05:20	Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-R Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894539 LLI Group # 1180477

NM

Project Name: Lovington Paddock

Collected: 01/27/2010 12:36 by

Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01 STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Discard: 03/11/2010

LOV-R

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01636	TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Vo	latiles SW-846	8021B	ug/l	ug/l	
08213	Benzene	71-43-2	N.D.	0.2	1
08213	Ethylbenzene	100-41-4	N.D.	0.2	1
08213	Toluene	108-88-3	N.D.	0.2	1
08213	Total Xylenes	1330-20-7	N.D.	0.6	1
GC Ex	tractable TPH SW-846	8015B	ug/l	ug/l	
08269	TPH-DRO water C10-C28	n.a.	41 J	30	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010 17:40	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010 17:22	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010 17:40	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100320015A	02/03/2010 18:27	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100320015A	02/02/2010 05:20	Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-B Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894540 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/27/2010 13:28

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01

Discard: 03/11/2010

Account Number: 11842

STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

LOV-B

CAT No. Analysis Name		CAS Number	As Rece Result	ived	As Received Method Detection Limit	Dilution Factor
GC Volatiles	SW-846	8015B	ug/l		ug/l	
01636 TPH-GRO water C6	-C10	n.a.	280		20	1
GC Volatiles	SW-846	8021B	ug/l		ug/l	
08213 Benzene		71-43-2	48		0.2	1
08213 Ethylbenzene		100-41-4	N.D.		0.2	1
08213 Toluene		108-88-3	3.2		0.2	1
08213 Total Xylenes		1330-20-7	1.6	J	0.6	1
GC Extractable TPH	SW-846	8015B	ug/l		ug/l	
08269 TPH-DRO water C1	0-C28	n.a.	100		31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010	19:18	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010	19:00	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010	19:18	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100320015A	02/03/2010	18:49	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100320015A	02/02/2010	05:20	Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-H Grab Water Sample Lovington Paddock, NM LLI Sample # WW 5894541 LLI Group # 1180477

NM

Project Name: Lovington Paddock

Collected: 01/27/2010 14:11

JL

Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01 STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Discard: 03/11/2010

LOV-H

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Volatiles SW-846	8015B	ug/l	ug/l	
01636 TPH-GRO water C6-C10	n.a.	1,700	20	1
GC Volatiles SW-846	8021B	ug/l	ug/l	
08213 Benzene	71-43-2	600	1.0	5
08213 Ethylbenzene	100-41-4	2.5	0.2	1
08213 Toluene	108-88-3	61	0.2	1
08213 Total Xylenes	1330-20-7	17	0.6	1
GC Extractable TPH SW-846	8015B	ug/l	ug/l	
08269 TPH-DRO water C10-C28	n.a.	160	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/02/2010	10:01	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010	22:39	Elizabeth J Marin	5
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/02/2010	09:43	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010	22:39	Elizabeth J Marin	5
01146	GC VOA Water Prep	SW-846 5030B	2	10029A53A	02/02/2010	09:43	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100320015A	02/03/2010	19:10	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100320015A	02/02/2010	05:20	Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: DUP-1 Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894542 LLI Group # 1180477

TM

Project Name: Lovington Paddock

Collected: 01/27/2010

by JL

Account Number: 11842

Submitted: 01/28/2010 09:00

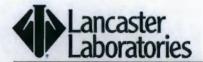
Reported: 02/08/2010 at 14:01

STANTEC International, Inc. 2321 Club Meridian Drive

Okemos MI 48864

Suite E

Discard: 03/11/2010


LOVFD

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01636	TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Vo	latiles SW-846	8021B	ug/l	ug/l	
08213	Benzene	71-43-2	N.D.	0.2	1
08213	Ethylbenzene	100-41-4	N.D.	0.2	1
08213	Toluene	108-88-3	N.D.	0.2	1
08213	Total Xylenes	1330-20-7	N.D.	0.6	1
GC Ex	tractable TPH SW-846	8015B	ug/l	ug/l	
08269	TPH-DRO water C10-C28	n.a.	47 J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010 19:42	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010 19:24	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010 19:42	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100320015A	02/03/2010 19:32	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100320015A	02/02/2010 05:20	Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-S Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894543 LLI Group # 1180477

MV

Project Name: Lovington Paddock

Collected: 01/25/2010 14:10 by SB

2010 14:10 by SB Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01

2321 Club Meridian Drive Suite E

Okemos MI 48864

STANTEC International, Inc.

Discard: 03/11/2010

LOV-S

No.	Analysis Name	CAS Number	As Rec Result		As Received Method Detection Limit	Dilution Factor
GC Vol	atiles SW	-846 8015B	ug/l		ug/l	
01636	TPH-GRO water C6-C10	n.a.	23	J	20	1
GC Vol	atiles SW	-846 8021B	ug/l		ug/l	
08213	Benzene	71-43-2	N.D.		0.2	1
08213	Ethylbenzene	100-41-4	N.D.		0.2	1
08213	Toluene	108-88-3	N.D.		0.2	1
08213	Total Xylenes	1330-20-7	N.D.		0.6	1
GC Ext	ractable TPH SW	-846 8015B	ug/l		ug/l	
08269	TPH-DRO water C10-C28	n.a.	180	J	61	2

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010 20:06	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010 19:48	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010 20:06	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100290002A	02/03/2010 09:36	Melissa McDermott	2
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100290002A	01/29/2010 14:30	Timothy J Attenberger	1

2425 New Holland Pike, PO Box 12425, Lawcaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2661 • www.lancasterlahe.com

Page 1 of 1

Sample Description: MW-M Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894544 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/25/2010 14:53

by SB

Account Number: 11842

Submitted: 01/28/2010 09:00

STANTEC International, Inc. 2321 Club Meridian Drive

Reported: 02/08/2010 at 14:01

Suite E

Discard: 03/11/2010

Okemos MI 48864

LOV-M

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Volatiles SW-846	8015B	ug/l	ug/1	
01636 TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Volatiles SW-846	8021B	ug/l	ug/l	
08213 Benzene	71-43-2	N.D.	0.2	1
08213 Ethylbenzene	100-41-4	N.D.	0.2	1
08213 Toluene	108-88-3	N.D.	0.2	1
08213 Total Xylenes	1330-20-7	N.D.	0.6	1
GC Extractable TPH SW-846	8015B	ug/l	ug/1	
08269 TPH-DRO water C10-C28	n.a.	250	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010 20	:30 Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010 20	:12 Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010 20	30 Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8915B	1	100290002A	02/02/2010 09	20 Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100290002A	01/29/2010 14	:30 Timothy J Attenberger	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-N Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894545 LLI Group # 1180477

TM

Project Name: Lovington Paddock

Collected: 01/26/2010 11:35 by

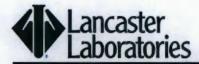
Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01 STANTEC International, Inc. 2321 Club Meridian Drive

Discard: 03/11/2010

Suite E

Okemos MI 48864


LOV-N

CAT No.	Analysis Name	CAS Number	As Received	Me	Received thod tection Limit	Dilution Factor
GC Vol	latiles SW-846	8015B	ug/l	ug	/1	
01636	TPH-GRO water C6-C10	n.a.	N.D.	20		1 .
GC Vol	Latiles SW-846	8021B	ug/l	ug	/1	
08213	Benzene	71-43-2	N.D.	0.:	2	1
08213	Ethylbenzene	100-41-4	N.D.	0.:	2	1
08213	Toluene	108-88-3	N.D.	0.:	2	1
08213	Total Xylenes	1330-20-7	N.D.	0.	6	1
GC Ext	tractable TPH SW-846	8015B	ug/l	ug	/1	
08269	TPH-DRO water C10-C28	n.a.	41 J	30		1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	ne	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010	20:55	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010	20:37	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010	20:55	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100290002A	02/02/2010	09:42	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100290002A	01/29/2010	14:30	Timothy J Attenberger	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-W Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894546 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/26/2010 12:31 by SB

Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01 STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Discard: 03/11/2010

LOV-W

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01636	TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Vo	latiles SW-846	8021B	ug/l	ug/l	
08213	Benzene	71-43-2	N.D.	0.2	1
08213	Ethylbenzene	100-41-4	N.D.	0.2	1
08213	Toluene	108-88-3	N.D.	0.2	1
08213	Total Xylenes	1330-20-7	N.D.	0.6	1
GC Ex	tractable TPH SW-846	8015B	ug/l	ug/l	
08269	TPH-DRO water C10-C28	n.a.	39 J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010 2	21:19	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010 2	21:01	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010 2	21:19	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100290002A	02/02/2010 1	10:48	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100290002A	01/29/2010 1	14:30	Timothy J Attenberger	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 * 717-656-2300 Fex: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-O Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894547 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/26/2010 13:17 by SB

Account Number: 11842

Submitted: 01/28/2010 09:00

Reported: 02/08/2010 at 14:01

2321 Club Meridian Drive Suite E

STANTEC International, Inc.

Okemos MI 48864

Discard: 03/11/2010

LOV-O

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01636	TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Vo	latiles SW-846	8021B	ug/l	ug/l	
08213	Benzene	71-43-2	N.D.	0.2	1
08213	Ethylbenzene	100-41-4	N.D.	0.2	1
08213	Toluene	108-88-3	N.D.	0.2	1
08213	Total Xylenes	1330-20-7	N.D.	0.6	1
GC Ex	tractable TPH SW-846	8015B	ug/l	ug/l	
08269	TPH-DRO water C10-C28	n.a.	N.D.	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010	21:43	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010	21:25	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010	21:43	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	- 1	100290002A	02/02/2010	11:09	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100290002A	01/29/2010	14:30	Timothy J Attenberger	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-Q Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894548 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/26/2010 13:56 by SB Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01 STANTEC International, Inc. 2321 Club Meridian Drive

Discard: 03/11/2010

Suite E

Okemos MI 48864


LOV-Q

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01636	TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Vo	latiles SW-846	8021B	ug/l	ug/l	
08213	Benzene	71-43-2	N.D.	0.2	1
08213	Ethylbenzene	100-41-4	N.D.	0.2	1
08213	Toluene	108-88-3	N.D.	0.2	1
08213	Total Xylenes	1330-20-7	N.D.	0.6	1
GC Ex	tractable TPH SW-846	8015B	ug/l	ug/l	
08269	TPH-DRO water C10-C28	n.a.	31 J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010	22:08	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010	21:50	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010	22:08	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100290002A	02/02/2010	11:31	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100290002A	01/29/2010	14:30	Timothy J Attenberger	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-L Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894549 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/27/2010 11:00 by SB

Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01

STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Discard: 03/11/2010

LOV-L

CAT Analysis Name CAS Number	As Received Method Detection Limit	Dilution Factor
GC Volatiles SW-846 8015B ug/1	ug/l	
01636 TPH-GRO water C6-C10 n.a. N.D.	20	1
GC Volatiles SW-846 8021B ug/l	ug/l	
08213 Benzene 71-43-2 N.D.	0.2	1
08213 Ethylbenzene 100-41-4 N.D.	0.2	1
	0.2	1
08213 Total Xylenes 1330-20-7 N.D.	0.6	1
GC Extractable TPH SW-846 8015B ug/1	ug/l	
08269 TPH-DRO water C10-C28 n.a. 37 J	32	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	ne	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10029A53A	02/01/2010	22:33	Elizabeth J Marin	1
08213	BTEX (8021)	SW-846 8021B	1	10029A53A	02/01/2010	22:15	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10029A53A	02/01/2010	22:15	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100320015A	02/03/2010	19:54	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100320015A	02/02/2010	05:20	Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fex: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-P Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894550 LLI Group # 1180477

MM

Project Name: Lovington Paddock

Collected: 01/27/2010 11:54 by Si

Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01 STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Discard: 03/11/2010

LOV-P

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/1	ug/1	
01636	TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Vo	latiles SW-846	8021B	ug/1	ug/1	
08213	Benzene	71-43-2	N.D.	0.2	1
08213	Ethylbenzene	100-41-4	N.D.	0.2	1
08213	Toluene	108-88-3	N.D.	0.2	1
08213	Total Xylenes	1330-20-7	N.D.	0.6	1
GC Ex	tractable TPH SW-846	8015B	ug/1	ug/l	
08269	TPH-DRO water C10-C28	n.a.	N.D.	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	_1	10032A53A	02/02/2010 14:2	Marie D John	1
08213	BTEX (8021)	SW-846 8021B	1	10032A53A	02/02/2010 14:0	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10032A53A	02/02/2010 14:2	Marie D John	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100320015A	02/03/2010 20:1	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100320015A	02/02/2010 05:2	Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-C Grab Water Sample Lovington Paddock, NM

LLI Sample # WW 5894551 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/27/2010 12:52 by SB Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01 STANTEC International, Inc. 2321 Club Meridian Drive

Discard: 03/11/2010

Suite E

Okemos MI 48864

LOV-C

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Volatiles SW-846	8015B	ug/l	ug/l	
01636 TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Volatiles SW-846	8021B	ug/l	ug/l	
08213 Benzene	71-43-2	2.1	0.2	1
08213 Ethylbenzene	100-41-4	N.D.	0.2	1
08213 Toluene	108-88-3	0.3 J	0.2	1
08213 Total Xylenes	1330-20-7	N.D.	0.6	1
GC Extractable TPH SW-846	8015B	ug/l	ug/l	
08269 TPH-DRO water C10-C28	n.a.	61 J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10032A53A	02/02/2010 14	:45 Marie D John	1
08213	BTEX (8021)	SW-846 8021B	1	10032A53A	02/02/2010 14	:27 Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10032A53A	02/02/2010 14	:27 Marie D John	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100320015A	02/03/2010 20	:38 Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100320015A	02/02/2010 05	:20 Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-I Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894552 LLI Group # 1180477

MIM

Project Name: Lovington Paddock

Collected: 01/27/2010 13:45

by SB

Account Number: 11842

Submitted: 01/28/2010 09:00

Reported: 02/08/2010 at 14:01

STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Discard: 03/11/2010

LOV-I

CAT No.	Analysis Name		CAS Number	As Resul	ceived t	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles S	W-846	8015B	ug/l		ug/l	
01636	TPH-GRO water C6-C10		n.a.	130		20	1
GC Vo	latiles S	W-846	8021B	ug/l		ug/l	
08213	Benzene		71-43-2	30		0.2	1
08213	Ethylbenzene		100-41-4	0.4	J	0.2	1
08213	Toluene		108-88-3	12		0.2	1
08213	Total Xylenes		1330-20-7	2.5	J	0.6	1
GC Ex	tractable TPH S	W-846	8015B	ug/l		ug/l	
08269	TPH-DRO water C10-C28		n.a.	65	J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10032A53A	02/02/2010	15:10	Marie D John	1
08213	BTEX (8021)	SW-846 8021B	1	10032A53A	02/02/2010	14:52	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10032A53A	02/02/2010	15:10	Marie D John	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100320015A	02/03/2010	21:00	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100320015A	02/02/2010	05:20	Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fex: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: Trip Blank Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894553 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/25/2010

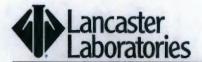
Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01 STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Discard: 03/11/2010

Okemos MI 48864


LOVTB

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles	SW-846 8021B	ug/l	ug/l	
08213	Benzene	71-43-2	N.D.	0.2	1
08213	Ethylbenzene	100-41-4	N.D.	0.2	1
08213	Toluene	108-88-3	N.D.	0.2	1
08213	Total Xylenes	1330-20-7	N.D.	0.6	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
08213	BTEX (8021)	SW-846 8021B	1	10032A53A	02/02/2010 13:14	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10032A53A	02/02/2010 13:14	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2600 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: DUP #2 Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 5894554 LLI Group # 1180477

Project Name: Lovington Paddock

Collected: 01/27/2010

Account Number: 11842

Submitted: 01/28/2010 09:00 Reported: 02/08/2010 at 14:01

STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Discard: 03/11/2010

LOVF2

CAT No.	Analysis Name		CAS Number	As Re Resul	ceived t	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles	SW-846	8015B	ug/l		ug/l	
01636	TPH-GRO water Co	6-C10	n.a.	N.D.		20	1
GC Vo	latiles	SW-846	8021B	ug/l		ug/l	
08213	Benzene		71-43-2	1.6		0.2	1
08213	Ethylbenzene		100-41-4	N.D.		0.2	1
08213	Toluene		108-88-3	0.3	J	0.2	1
08213	Total Xylenes		1330-20-7	N.D.		0.6	1
GC Ex	tractable TPH	SW-846	8015B	ug/l		ug/l	
08269	TPH-DRO water C1	10-C28	n.a.	67	J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10032A53A	02/02/2010 15:3	Marie D John	1
08213	BTEX (8021)	SW-846 8021B	1	10032A53A	02/02/2010 15:1	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	2	10032A53A	02/02/2010 15:1	Marie D John	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	100320015A	02/03/2010 21:2	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	100320015A	02/02/2010 05:2	Roman Kuropatkin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: STANTEC International, Inc.

Reported: 02/08/10 at 02:01 PM

Group Number: 1180477

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 10029A53A	Sample nu	mber(s): 58	94530-5894	549				
Benzene	N.D.	0.2	ug/l	105	100	80-120	5	30
Ethylbenzene	N.D.	0.2	ug/l	110	105	80-120	5	30
Toluene	N.D.	0.2	ug/l	105	105	80-120	0	30
TPH-GRO water C6-C10	N.D.	20.	ug/l	109	109	75-135	0	30
Total Xylenes	N.D.	0.6	ug/l	110	108	80-120	2	30
Batch number: 10032A53A	Sample nu	mber(s): 58	94550-5894	554				
Benzene	N.D.	0.2	ug/l	100	100	80-120	0	30
Ethylbenzene	N.D.	0.2	ug/l	105	105	80-120	0	30
Toluene	N.D.	0.2	ug/l	100	100	80-120	0	30
TPH-GRO water C6-C10	N.D.	20.	ug/l	109	109	75-135	0	30
Total Xylenes	N.D.	0.6	ug/l	105	105	80-120	0	30
Batch number: 100290002A	Sample nu	mber(s): 58	94530-5894	535,5894	543-589454	8		
TPH-DRO water C10-C28	N.D.	32.	ug/l	80	74	56-122	8	20
Batch number: 100320015A	Sample nu	mber(s): 58	94536-5894	542,5894	549-589455	2,5894554		
TPH-DRO water C10-C28	N.D.	32.	ug/l	70	66	56-122	6	20

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name		ISD MS/MSD REC Limits	RPD	RPD MAX	BKG Conc	DUP Conc	DUP RPD	Dup RPD Max
Batch number: 10029A53A		mber(s): 589453	0-589454	9 UNSP	K: 5894530	, 5894531		
Benzene	100	80-152						
Ethylbenzene	105	80-133						
Toluene	105	80-133						
TPH-GRO water C6-C10	109	63-154						
Total Xylenes	108	80-148						
Batch number: 10032A53A	Sample nu	mber(s): 589455	0-589455	4 UNSP	K: 5894550	, 5894551		
Benzene	110	80-152						
Ethylbenzene	115	80-133						
Toluene	110	80-133						
TPH-GRO water C6-C10	127	63-154						
Total Xylenes	117	80-148						

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Trifluorotoluene-P

Client Name: STANTEC International, Inc.

Reported: 02/08/10 at 02:01 PM

Group Number: 1180477

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: TPH-GRO water C6-C10 Batch number: 10029A53A Trifluorotoluene-F

	1111110101010101	111111111111111111111111111111111111111
5894530	81	80
5894531	79	81
5894532	83	82
5894533	80	82
5894534	80	83
5894535	80	83
5894536	80	83
5894537	80	83
5894538	81	83
5894539	81	83
5894540	79	84
5894541	96	85
5894542	81	82
5894543	80	83
5894544	83	83
5894545	82	83
5894546	81	83
5894547	80	83
5894548	81	84
5894549	82	83
Blank	81	81
LCS	88	83
LCSD	94	84
MS	87	84
Limits:	63-135	58-146

Trifluorotoluene-P

58-146

Analysis Name: TPH-GRO water C6-C10

Batch number: 10032A53A

5894550	83	82	
5894551	80	83	
5894552	82	84	
5894553		81	
5894554	80	83	
Blank	80	81	
LCS	91	84	
LCSD	89	83	
MS	93	83	

Trifluorotoluene-F

63-135

Analysis Name: TPH-DRO water C10-C28 Batch number: 100290002A Orthoterphenyl

5894530 5894531 76

Limits:

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Group Number: 1180477 Client Name: STANTEC International, Inc. Reported: 02/08/10 at 02:01 PM Surrogate Quality Control 79 77 79 78 78 Blank LCS LCSD Limits: 54-127 Analysis Name: TPH-DRO water C10-C28 Batch number: 100320015A Orthoterphenyl 76 Blank LCS LCSD Limits: 54-127

*- Outside of specification

(2) The unspiked result was more than four times the spike added.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

Chevron Generic Analysis Request/Chain of Custody

Group#1180477

SCR#:

Acct #: 11842 Sample #5894530-54

Analyses Requested Preservation Codes

Preservative Codes

013382

15	-			D -iA		-	-		L
Acct	Matrix	DES			Water	×	×	×	,
	-				lio2				
		111		etic	Compo				
		3		<u></u>	Grab	×	×	.×	_
		. M. ha			Time	1157	1232	1310	
		Lead Consultant: S. Moto or	Fax#:	40	Date Collected	destio	1/25/10	1/26/10	
Lancaster Laboratories Where quality is a science.	Facility#: Dod Sock	Chevron PM: M// Joo Lead Consult Consultant/Office: Stee Jee // Jourstant	12 1	J. housewet	Service Order #:	サーアル	mw.6	mas-22	

adılıy #.	25.000			1				-				-		1		0	F	T - Thinasiffeda	-
ite Address: Louistes N.M.	Lylow N.M.								L			-		+	Z	N = HNO3		B = NaOH	ַטַ
hevron PM: M.	M. H.J.o. Lead	Lead Consultant: S. Moha	. Mohou.			H	8	tiriqe				-		_	S	= H ₂ SO ₄		Other	
i i	Storater 1	400			olde		neri	N 🗆		urio.		noit				J value n	☐ J value reporting needed	papas	
onsultant Pri. Mgr.:	S. Make				100	Jan (etno:	8260		ed Rng] Meth	eotitre				Must me possible	 Must meet lowest detection limits possible for 8260 compounds 	letection I ompound	s imits
onsultant Phone #:	8	Fax#:				3	O to	□ lZ		bnetx3		sup[-	8	21 MTBE	8021 MTBE Confirmation	tion	
ampler.	. housewell				Tar				esten (-01-1	CID [ر			Confirm	Confirm MTBE + Naphthalene	aphthaler hv 8260	9
service Order #:	N D	□ Non SAR:		,,oo	ieor		_			Hq1			راز	-	JU	Confirm	Confirm all hits by 8260	8260	
ample Identification		Date	Time	Grab	Comp	Wate Oil	LetoT	BTEX +			T bead T	VPH/EF	181			- Run	oxy's on highes	oxy's on highest hit oxy's on all hits	
MW-F		1/25/10	1157	×		×	1					—	iv	2 2		ommen	Comments / Remarks	shr	Г
mw.6		1/25/10	1231	×		×	7					-	w	2 7			٠		
m63-02		1/26/10	1310	×		×	7						3	2 2					_
Med-V		1/26/10	1344	.×		×	7						2	2 2					
mw-u		1/18/10	21/11	×		×	7						2	2 2			•		
MW-5		disthe	1151	·×		×	7						3	2 2					
2-07		1/2/10	1050	×		×	7							2 2					
CI-CIU		Merlio	11.21	X		X	7						3	7 7					
MW-F		1/21/10	1153	X		×	7	-					3	2					
D-3-00		1/27/10	1236	X		×	7						'n	2 2					
S- mm		1/27/10	1228	1		\ \	7						3	2 2					
me-H		ortedi	1411	Z		×	7						3	2 2					
1-000		Misho	1	X,		. *	7						4	2 7					
Limacound Time Re	umangund Time Requessed (TAT) (please circle)	cle)	Relinquis	ed by	The	N	1		oh	Date 27/6	Time 772	h	Received by				ă	Date	Time
STD. TAT	72 hour 48 hour 4 day 5 day	_	Relinquished by	Sifed b					0	Date	Time	Rece	Received by:				ă	Date	Time
Data Package Option	Data Package Options (please circle if required)		Relinqui	uished by			/		۵	Date	Time	Rec	Received by:	/			Ö	Date	Time
CC Summary Type VI (Raw Data)	Type I - Full Disk / EDD Standard Format		Relinquis	shed b	by Comm FedEx	uished by Commercial Carrier.	arrier.					30	Received by.	12		-	18/Pate	-	Time
WIP (RWUCE) Disk	Other.		Temperature Upon Receipt	ature U	oon Rec	sipt		ပိ	C. O. 8 uc	1	276	-	Custody Seals Intact?	als Inte	ot?	(Ses)	2		

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

.*

3566 Rev. 1/31/02

Chevron Generic Analysis Request/Chain of Custody

JOSH 1180477 Contract Con ☐ Must meet lowest detection limits possible for 8260 compounds Time Time Time 010675 T = Thiosulfate ☐ Confirm MTBE + Naphthalene oxy's on highest hit Confirm highest hit by 8260 Preservative Codes B = NaOH oxy's on all hits 0 = Other ☐ J value reporting needed Confirm all hits by 8260 Comments / Remarks 8021 MTBE Confirmation Date Date Date 운 N = HNO₃ S = H₂SO₄ SCR# - Run H=HCI - Run X-68 Sample #: 589 4530 - 54 Custody Seals Intact? Beceived by: Received by: Received by: Received by Analyses Requested Preservation Codes □ quantification **UNTPH H HCID** /bH/EbH 725 10 TIME Time Time Diss. 0 Silica Gel Cleanup O HAL C() 8,00 Date Date TPH G Oxygenates S260 full scan Acct. #- 11842 🗖 8260 🗖 Naphth Total Number of Containers Relinquished by Commercial Carrier. □ iiA □ liO Matrix □ Potable Temperature Upon Receipt 7 7 Water lios FedEx Composite Relinquished by: ished by: Relinquished by Lead Consultant: Lexh Mahar -7967 Grab 212201131 Collected 1410 1353 1356 1345 UPS ナショ Time 202 器 57.4% Vale / Move co Bussin Maher -26-10 ったかし 1-7-7-10 -25-10 -3500 -36-10 -27-10 1-2710 -26-10 1-36-i Collected -37-10 Date □ Non SAR: Turnaround Time Requested (TAT) (please circle) Roddoele 48 hour din stan Data Package Options (please circle if required) 5 day Consultant Phone #:5(7-349:9499 Other. Lancaster Laboratories
Where quality is a science. Standard Format TVIP BIANT Type I - Full Disk / EDD 72 hour Facility #: 10V125400 4 day NNV-C m-mm MW-P Jup #2 MW. C **かか**-と MW-0 コーグル NW-N アアン Consultant Prj. Mgr.: Sample Identification Consultant/Office: Type VI (Raw Data) Service Order #: Chevron PM: WIP (RWQCB) Site Address: QC Summary Sampler: STD. TAT

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (*42)-656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
C	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meg	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

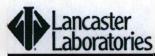
Inorganic Qualifiers

- ppb parts per billion
- Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

X.Y.Z

Organic Qualifiers


Defined in case narrative

A B TIC is a possible aldol-condensation product Value is <CRDL, but ≥IDL B E Analyte was also detected in the blank Estimated due to interference C Pesticide result confirmed by GC/MS M Duplicate injection precision not met D Compound quatitated on a diluted sample N Spike amount not within control limits E Concentration exceeds the calibration range of S Method of standard additions (MSA) used the instrument for calculation Estimated value Compound was not detected Presumptive evidence of a compound (TICs only) W N Post digestion spike out of control limits P Concentration difference between primary and Duplicate analysis not within control limits confirmation columns >25% Correlation coefficient for MSA < 0.995 U Compound was not detected

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

465 Nov Holland Plas, PO Bar 19425, Lahouder, PA 17605-2425 • 717-856-2600 Fex: 717-856-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

STANTEC International, Inc. 2321 Club Meridian Drive Suite E Okemos MI 48864

July 23, 2010

Project: Lovington Paddock

Submittal Date: 07/14/2010 Group Number: 1202888 PO Number: 212201131 Release Number: LOVINGTON State of Sample Origin: NM

Client Sample Description	Lancaster Labs (LLI) #
MW-Q Grab Water Sample	6031210
MW-L Grab Water Sample	6031211
MW-P Grab Water Sample	6031212
MW-C Grab Water Sample	6031213
MW-I Grab Water Sample	6031214
MW-B Grab Water Sample	6031215
MW-H Grab Water Sample	6031216
MW-T Grab Water Sample	6031217
BW-2 Grab Water Sample	6031218
DUP-101 Grab Water Sample	6031219
Trip Blank Water Sample	6031220

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO

STANTEC International, Inc.

Attn: Seth Maher

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fex: 717-656-2661• www.lancasterlabe.com

Questions? Contact your Client Services Representative Wendy A Kozma at (717) 656-2300 Ext. 1522

Respectfully Submitted,

Tracy a. Cole Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-Q Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 6031210 LLI Group # 1202888

Account

11842

Project Name: Lovington Paddock

Collected: 07/12/2010 13:10

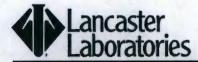
STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Submitted: 07/14/2010 09:20 Reported: 07/23/2010 09:31

Discard: 08/23/2010


LOVMQ

CAT No.			CAS Number	As Rec Resul	ceived t		As Received Method Detection Limit	Dilution Factor
GC Vo	latiles S	W-846	8015B	ug/l			ug/1	
01636	TPH-GRO water C6-C10		n.a.	46	J		20	1
GC Vo	latiles S	W-846	8021B	ug/l			ug/l	
08213	Benzene		71-43-2	N.D.			0.2	1
08213	Ethylbenzene		100-41-4	N.D.			0.2	1
08213	Toluene		108-88-3	0.4	J		0.2	1
08213	Total Xylenes		1330-20-7	N.D.			0.6	1
GC Ex	tractable TPH S	W-846	8015B	ug/l			ug/l	
08269	TPH-DRO water C10-C28		n.a.	420	J		150	5
	Due to the nature of the analysis. The rep					used for		

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	An	alyst	Dilution
No.					Date and Time			Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10196A53A	07/16/2010 17	:27 El	izabeth J Marin	1
08213	BTEX (8021) Water	SW-846 8021B	1	10196A53A	07/16/2010 17	:27 El	izabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10196A53A	07/16/2010 17	:27 E1	izabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	101950028A	07/19/2010 17	:43 Me	lissa McDermott	5
07003	Extraction - DRO (Waters)	SW-846 3510C	1	101950028A	07/15/2010 09	:10 Ka	ren R Rettew	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fex: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-L Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 6031211 LLI Group # 1202888 Account # 11842

Project Name: Lovington Paddock

Collected: 07/12/2010 13:43 by J.

STANTEC International, Inc.

2321 Club Meridian Drive Suite E

Submitted: 07/14/2010 09:20 Reported: 07/23/2010 09:31

08/23/2010

Okemos MI 48864

LOVML

Discard:

CAT No.	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Volatiles SW-846	8015B	ug/l	ug/l	
01636 TPH-GRO water C6-C10	n.a.	N.D.	20	1
GC Volatiles SW-846	8021B	ug/l	ug/1	
08213 Benzene	71-43-2	N.D.	0.2	1
08213 Ethylbenzene	100-41-4	N.D.	0.2	1
08213 Toluene	108-88-3	0.3 J	0.2	1
08213 Total Xylenes	1330-20-7	N.D.	0.6	1
GC Extractable TPH SW-846	8015B	ug/l	ug/l	
08269 TPH-DRO water C10-C28	n.a.	51 J	32	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10196A53A	07/16/2010 17:51	Elizabeth J Marin	1
08213	BTEX (8021) Water	SW-846 8021B	1	10196A53A	07/16/2010 17:51	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10196A53A	07/16/2010 17:51	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	101950028A	07/17/2010 17:54	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	101950028A	07/15/2010 09:10	Karen R Rettew	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-P Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 6031212

LLI Group # 1202888 Account # 11842

Project Name: Lovington Paddock

Collected: 07/12/2010 14:12 by JL

STANTEC International, Inc.

2321 Club Meridian Drive

Submitted: 07/14/2010 09:20 Reported: 07/23/2010 09:31 Suite E

Okemos MI 48864

Discard: 08/23/2010

LOVMP

CAT No.	CAS Num	As Receiv	red Me	cnod	ilution actor
GC Volatiles ST	W-846 8015B	ug/l	ug	/1	
01636 TPH-GRO water C6-C10	n.a.	24	20	1	
GC Volatiles S	W-846 8021B	ug/l	ug	/1	
08213 Benzene	71-43-2	N.D.	0.	2 1	
08213 Ethylbenzene	100-41-	4 N.D.	0.	2 1	
08213 Toluene	108-88-	3 0.4 J	0.	2 1	
08213 Total Xylenes	1330-20	-7 N.D.	0.	6 1	
GC Extractable TPH ST	W-846 8015B	ug/l	ug	/1	
08269 TPH-DRO water C10-C28	n.a.	74	32	1	

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10196A53A	07/16/2010 18	3:15 Elizabeth J Marin	1
08213	BTEX (8021) Water	SW-846 8021B	1	10196A53A	07/16/2010 18	3:15 Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10196A53A	07/16/2010 18	3:15 Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	101950028A	07/17/2010 18	3:16 Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	101950028A	07/15/2010 09	9:10 Karen R Rettew	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-C Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 6031213 LLI Group # 1202888

Account # 11

Project Name: Lovington Paddock

Collected: 07/12/2010 14:59 by JL

Submitted: 07/14/2010 09:20 Reported: 07/23/2010 09:31

Discard: 08/23/2010

STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

LOVMC

CAT No.		CAS Number	As Rec Resul	ceived t	As Received Method Detection Limit	Dilution Factor
GC Volatiles	SW-846	8015B	ug/l		ug/l	
01636 TPH-GRO water C6-	C10	n.a.	33	J	20	1
GC Volatiles	SW-846	8021B	ug/l		ug/l	
08213 Benzene		71-43-2	0.5	J	0.2	1
08213 Ethylbenzene		100-41-4	N.D.		0.2	1
08213 Toluene		108-88-3	0.4	J	0.2	1
08213 Total Xylenes		1330-20-7	N.D.		0.6	1
GC Extractable TPH	SW-846	8015B	ug/l		ug/l	
08269 TPH-DRO water C10	-C28	n.a.	96	J	33	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10196A53A	07/16/2010 1	18:40	Elizabeth J Marin	1
08213	BTEX (8021) Water	SW-846 8021B	1	10196A53A	07/16/2010 1	18:40	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10196A53A	07/16/2010 1	18:40	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	101950028A	07/17/2010 1	18:37	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	101950028A	07/15/2010 0	09:10	Karen R Rettew	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-I Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 6031214 LLI Group # 1202888

Account # 11842

Project Name: Lovington Paddock

Collected: 07/12/2010 16:21 by JL

Submitted: 07/14/2010 09:20 Reported: 07/23/2010 09:31

Discard: 08/23/2010

STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

LOVMI

CAT No.			CAS Number	As Re Resul	ceived t	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles S	W-846	8015B	ug/1		ug/l	
01636	TPH-GRO water C6-C10		n.a.	140		20	1
GC Vo	latiles S	W-846	8021B	ug/l		ug/l	
08213	Benzene		71-43-2	41		0.2	1
08213	Ethylbenzene		100-41-4	0.3	J	0.2	1
08213	Toluene		108-88-3	2.8		0.2	1
08213	Total Xylenes		1330-20-7	1.4	J	0.6	1
GC Ex	tractable TPH S	W-846	8015B	ug/l		ug/l	
08269	TPH-DRO water C10-C28		n.a.	47	J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	me	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10196A53A	07/16/2010	19:04	Elizabeth J Marin	1
08213	BTEX (8021) Water	SW-846 8021B	1	10196A53A	07/16/2010	19:04	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10196A53A	07/16/2010	19:04	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	101950028A	07/17/2010	18:59	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	101950028A	07/15/2010	09:10	Karen R Rettew	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-B Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 6031215 LLI Group # 1202888

Account # 11842

Project Name: Lovington Paddock

Collected: 07/12/2010 17:09 by JL STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

Submitted: 07/14/2010 09:20 Reported: 07/23/2010 09:31

Discard: 08/23/2010

LOVMB

CAT No.			CAS Number	As Re Resul	ceived t	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles	SW-846	8015B	ug/l		ug/l	
01636	TPH-GRO water (C6-C10	n.a.	260		20	1
GC Vo	latiles	SW-846	8021B	ug/l		ug/l	
08213	Benzene		71-43-2	77		0.2	1
08213	Ethylbenzene		100-41-4	N.D.		0.2	1
08213	Toluene		108-88-3	2.9		0.2	1
08213	Total Xylenes		1330-20-7	1.6	J	0.6	1
GC Ex	tractable TPH	SW-846	8015B	ug/l		ug/l	
08269	TPH-DRO water	C10-C28	n.a.	63	J	31	1
				-	J	-	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 80	015B 1	10196A53A	07/16/2010	19:29	Elizabeth J Marin	1
08213	BTEX (8021) Water	SW-846 80	021B 1	10196A53A	07/16/2010	19:29	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 50	030B 1	10196A53A	07/16/2010	19:29	Elizabeth J Marin	1
08269	TPH-DRO water C10-C28	SW-846 80	015B 1	101950028A	07/17/2010	20:05	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 35	510C 1	101950028A	07/15/2010	09:10	Karen R Rettew	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-H Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 6031216 LLI Group # 1202888

Account

11842

Project Name: Lovington Paddock

Collected: 07/13/2010 09:06 by JL

STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Submitted: 07/14/2010 09:20 Su

Okemos MI 48864

Reported: 07/23/2010 09:31 Discard: 08/23/2010

LOVMH

CAT No.	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Volatiles SW-84	6 8015B	ug/l	ug/l	
01636 TPH-GRO water C6-C10	n.a.	1,500	100	5
GC Volatiles SW-84	6 8021B	ug/l	ug/l	
08213 Benzene	71-43-2	710	1.0	5
08213 Ethylbenzene	100-41-4	1.6 J	1.0	5
08213 Toluene	108-88-3	32	1.0	5
08213 Total Xylenes	1330-20-7	7.9 J	3.0	5
GC Extractable TPH SW-84	6 8015B	ug/l	ug/l	
08269 TPH-DRO water C10-C28	n.a.	94 J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10196A53A	07/16/2010	23:06	Elizabeth J Marin	5
08213	BTEX (8021) Water	SW-846 8021B	1	10196A53A	07/16/2010	23:06	Elizabeth J Marin	5
01146	GC VOA Water Prep	SW-846 5030B	1	10196A53A	07/16/2010	23:06	Elizabeth J Marin	5
08269	TPH-DRO water C10-C28	SW-846 8015B	1	101950028A	07/17/2010	20:26	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	101950028A	07/15/2010	09:10	Karen R Rettew	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fex: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-T Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 6031217 LLI Group # 1202888 Account # 11842

Project Name: Lovington Paddock

Collected: 07/13/2010 09:56 by JL

STANTEC International, Inc. 2321 Club Meridian Drive

Submitted: 07/14/2010 09:20

Suite E

Reported: 07/23/2010 09:31

Okemos MI 48864

Discard: 08/23/2010

LOVMT

CAT No.		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Volatiles	SW-846	8015B	ug/l	ug/l	
01636 TPH-GRO water C6	-C10	n.a.	2,400	20	1
GC Volatiles	SW-846	8021B	ug/1	ug/l	
08213 Benzene		71-43-2	840	1.0	5
08213 Ethylbenzene		100-41-4	26	0.2	1
08213 Toluene		108-88-3	180	0.2	1
08213 Total Xylenes		1330-20-7	55	0.6	1
GC Extractable TPH	SW-846	8015B	ug/l	ug/l	
08269 TPH-DRO water C1	0-C28	n.a.	70 J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10196A53A	07/16/2010 19:5	Elizabeth J Marin	1
08213	BTEX (8021) Water	SW-846 8021B	1	10196A53A	07/16/2010 19:5	Elizabeth J Marin	1
08213	BTEX (8021) Water	SW-846 8021B	1	10196A53B	07/18/2010 21:0	Carrie E Miller	5
01146	GC VOA Water Prep	SW-846 5030B	1	10196A53A	07/16/2010 19:5	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	2	10196A53B	07/18/2010 21:0	Carrie E Miller	5
08269	TPH-DRO water C10-C28	SW-846 8015B	1	101950028A	07/17/2010 20:4	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	101950028A	07/15/2010 09:1	Karen R Rettew	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-658-2300 Fax: 717-658-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: BW-2 Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 6031218 LLI Group # 1202888

Account

11842

Project Name: Lovington Paddock

Collected: 07/13/2010 10:43

STANTEC International, Inc.

2321 Club Meridian Drive Suite E

Submitted: 07/14/2010 09:20 Reported: 07/23/2010 09:31

Discard: 08/23/2010 Okemos MI 48864

LOVB2

CAT No.		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-84	6 8015B	ug/1	ug/l	
01636	TPH-GRO water C6-C10	n.a.	370	20	1
GC Vo	latiles SW-84	6 8021B	ug/l	ug/l	
08213	Benzene	71-43-2	130	0.2	1
08213	Ethylbenzene	100-41-4	6.1	0.2	1
08213	Toluene	108-88-3	38	0.2	1
08213	Total Xylenes	1330-20-7	13	0.6	1
GC Ex	tractable TPH SW-84	6 8015B	ug/l	ug/l	
08269	TPH-DRO water C10-C28	n.a.	130	32	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time		Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10196A53B	07/18/2010	20:13	Carrie E Miller	1
08213	BTEX (8021) Water	SW-846 8021B	- 1	10196A53B	07/18/2010	20:13	Carrie E Miller	1
01146	GC VOA Water Prep	SW-846 5030B	1	10196A53B	07/18/2010	20:13	Carrie E Miller	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	101950028A	07/17/2010	21:10	Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	101950028A	07/15/2010	09:10	Karen R Rettew	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fex: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: DUP-101 Grab Water Sample

Lovington Paddock, NM

LLI Sample # WW 6031219 LLI Group # 1202888

Account # 11842

Project Name: Lovington Paddock

Collected: 07/13/2010

STANTEC International, Inc.

2321 Club Meridian Drive

Submitted: 07/14/2010 09:20

Reported: 07/23/2010 09:31

Suite E

Okemos MI 48864

Discard: 08/23/2010

FDLOV

CAT No.		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Volatil	les SW-846	8015B	ug/l	ug/1	
01636 TPH-	GRO water C6-C10	n.a.	2,400	20	1
GC Volatil	es SW-846	8021B	ug/l	ug/l	
08213 Benze	ene	71-43-2	860	1.0	5
08213 Ethy:	lbenzene	100-41-4	26	0.2	1
08213 Tolue	ene	108-88-3	180	0.2	1
08213 Total	l Xylenes	1330-20-7	55	0.6	1
GC Extract	able TPH SW-846	8015B	ug/l	ug/l	
08269 TPH-	DRO water C10-C28	n.a.	72 J	31	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01636	TPH-GRO water C6-C10	SW-846 8015B	1	10196A53A	07/16/2010 21	:29 Elizabeth J Marin	1
08213	BTEX (8021) Water	SW-846 8021B	1	10196A53A	07/16/2010 21	:29 Elizabeth J Marin	1
08213	BTEX (8021) Water	SW-846 8021B	- 1	10196A53B	07/18/2010 21	:26 Carrie E Miller	5
01146	GC VOA Water Prep	SW-846 5030B	1	10196A53A	07/16/2010 21	:29 Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	2	10196A53B	07/18/2010 21	:26 Carrie E Miller	5
08269	TPH-DRO water C10-C28	SW-846 8015B	1	101950028A	07/17/2010 21	:32 Melissa McDermott	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	101950028A	07/15/2010 09	:10 Karen R Rettew	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: Trip Blank Water Sample

Lovington Paddock, NM

LLI Sample # WW 6031220 LLI Group # 1202888 Account # 11842

Project Name: Lovington Paddock

Collected: 07/12/2010

Submitted: 07/14/2010 09:20 Reported: 07/23/2010 09:31

Discard:

08/23/2010

STANTEC International, Inc. 2321 Club Meridian Drive

Suite E

Okemos MI 48864

TBLOV

CAS Number	As Received Result	Method Detection Limit	Dilution Factor
SW-846 8021B	ug/l	ug/l	
71-43-2	N.D.	0.2	1
100-41-4	N.D.	0.2	1
108-88-3	N.D.	0.2	1
1330-20-7	N.D.	0.6	1
	SW-846 8021B 71-43-2 100-41-4 108-88-3	CAS Number Result SW-846 8021B ug/1 71-43-2 N.D. 100-41-4 N.D. 108-88-3 N.D.	CAS Number

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
08213	BTEX (8021) Water	SW-846 8021B	1	10196A53A	07/16/2010 16:39	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B	1	10196A53A	07/16/2010 16:39	Elizabeth J Marin	. 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: STANTEC International, Inc. Reported: 07/23/10 at 09:31 AM

Group Number: 1202888

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report Units	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 10196A53A	Sample nu	mber(s): 60	31210-6031	1217,6031	219-603122	20		
Benzene	N.D.	0.2	uq/l	105	105	80-120	0	30
Ethylbenzene	N.D.	0.2	ug/l	105	105	80-120	0	30
Toluene	N.D.	0.2	ug/l	105	105	80-120	0	30
TPH-GRO water C6-C10	N.D.	20.	ug/1	109	118	75-135	8	30
Total Xylenes	N.D.	0.6	ug/l	107	108	80-120	2	30
Batch number: 10196A53B	Sample nu	mber(s): 60	31217-6031	1219				
Benzene	N.D.	0.2	ug/l	105	105	80-120	0	30
Ethylbenzene	N.D.	0.2	ug/l	105	105	80-120	0	30
Toluene	N.D.	0.2	ug/l	105	105	80-120	0	30
TPH-GRO water C6-C10	N.D.	20.	ug/l	109	118	75-135	8	30
Total Xylenes	N.D.	0.6	ug/l	107	108	80-120	2	30
Batch number: 101950028A	Sample nu	mber(s): 60	31210-6031	1219				
TPH-DRO water C10-C28	N.D.	32.	ug/l	88	85	56-122	3	20

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	777	MSD MS/MSD %REC Limits	RPD MAX	BKG Conc	DUP Conc	DUP RPD	Dup RPD Max
Batch number: 10196A53A	Sample nu	mber(s): 603121	0-6031217,60	31219-603122	UNSPK: 6	031211, 60	31212
Benzene	115	80-152					
Ethylbenzene	120	80-133					
Toluene	118	80-133					
TPH-GRO water C6-C10 .	125	63-154					
Total Xylenes	122	80-148					
Batch number: 10196A53B	Sample nu	mber(s): 603121	7-6031219 UN	SPK: 6031211	6031212		
Benzene	115	80-152					
Ethylbenzene	120	80-133					
Toluene	118	80-133					
TPH-GRO water C6-C10	125	63-154					
Total Xylenes	122	80-148					

Surrogate Quality Control

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: STANTEC International, Inc.

Reported: 07/23/10 at 09:31 AM

Group Number: 1202888

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: TPH-GRO water C6-C10

Batch number: 10	0196A53A
------------------	----------

	Trifluorotoluene-F	Trifluorotoluene-P
6031210	80	87
6031211	79	88
6031212	81	89
6031213	79	90
6031214	80	90
6031215	80	90
6031216	81	92
6031217	97	95
6031219	92	95
6031220		87
Blank	78	86
LCS	82	89
LCSD	82	89
MS	87	89
Limits:	63-135	58-146

Batch number: 10196A53B

Datoii iidiii	Trifluorotoluene-F	Trifluorotoluene-P
6031218	81	90
Blank	81	88
LCS	82	89
LCS LCSD	82	89
MS	87	89
Limites	62-125	50-146

Analysis Name: TPH-DRO water C10-C28 Batch number: 101950028A Orthoterphenyl

Limits:	54-127	 					 _
LCSD	88						
LCS	90						
Blank	80						
6031219	78						
6031218	87						
6031217	82						
6031216	82						
6031215	81						
6031214	79						
6031213	84						
6031212	79						
6031211	73						
6031210	82						

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: STANTEC International, Inc. Reported: 07/23/10 at 09:31 AM

Group Number: 1202888

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

Laboratories

Acct. # 11842 Group# 1 202888 Sample # 4031210-20 COC # 237683

Use Only

Ple Ple	Please print. Instructions on reverse side correspond with circled numbers.	respond with circled numbers.	
		(5) Analyses Requested	FSC:
Client: Stanker Act.#:	Matrix 4	Preservation Codes	SCR#:
(2/270N S/. 300)		И	Preserva
Project Manager: S. M. Acor		(a)	N=HNO3
Sampler. Cikans oct! Quote #:	tables DESS	5 100	On H=N

T=Thiosulfate ition Codes

Project Name/#: 7623 oc 6 /2/270/13/.	# DISMd	#.				1	t	+	T	+	Adrio	canor	(
Project Manager & Makey				Chec		((I	(1			N=HNO, B	B=NaOH	<u></u>
Sampler: Cikeus oct!	Quote #:	#		table		5/120	5101	1510			-	O=Other	selqi (bətsə
Name of state where samples were collected:	con		(S)	od []		38)	3) 8	87 (_				mas to equipen ti) so
2) Sample Identification	Date Collected	Time	Grab (Soll	Other	# lsto1	HUL	ZHAL		-	Remarks		Temperatur upon receip
2000	Flitte	1310	×	X		2 8	2	2					
mu-t	/	1343	×	×		8	7	1					
ma-8		1412	×	×		200	3	2					
mw-c	_	1459	×	×		2	3	2					
mw.t		1291	×	×		2	~	2					
MW-13	Thelis	1705	*	×		M	63	2					
M.C.H	713/10	2050	×	×		P0	ń	2					
Mw-T	0	095C	×	×		20	м	2					
865-2	^	1001	×	8		M	3 2						
1000-101	2/17/16	1	×	×		8 3	3 2						
Turnaround Time Requested (TAT) (please circle)—Norman (Rush TAT is subject to Lancaster Laboratories approval and surcharge.)	circle) - Norn provat and surch	र्जिये Rush large.)	- Re	Relinquished by:	l by:	X	Kin) Date	Time (2/0)	Received by	La	Date	Time (9
Rush results requested by (please circle): Phone #:	Phone Fax	E-mail	4	Andread or	EN	W		Date	Time	Received by:	e.	Date /	Time
E-mail address:			Re	Relinquished by:	d by:			Date	-	Time Received by:	, i	Date	Time
8 Data Package Options (please circle if required)		SDG Complete?	_						1		/		
			l										

Issued M Dept. 6042 Management 2102.05 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. (717) 656-2300 Fax: (717) 656-6766 Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601

~ 17446 OFZIO

Date

Received by:

Time

Date

Relinquished by:

S

Site-specific QC (MS/MSD/Dup)? Yes

CT RCP

TX TRRP-13

Type I (validation/NJ Reg)

(five faces of serps and sometimes where) Internal COC Required? Yes / No

Type VI (Raw Data Only)

Type III (Reduced NJ) Type IV (CLP SOW)

Type II (Tier II)

Time

Date

Time Received by:

Relinquished by:

S

Yes

Analysis Request/ Environmental Services Chain of Custody

Laboratori

34709

Lancaster	Acet # 11842 Group# 120	BSSS Sample #	Group# 1303888 Sample # 6031210-20 COC #	00	# 0	2
Laboratories	Please print. Instructions on reverse side correspond with circled numbers.	everse side correspor	nd with circled numbers.			
			<u> </u>	Dis Special Control of the Control o	For Lab Use Only FSC:	ou l
Client: Span fee	Acct. #:	4	Preservation Codes		SCR#:	
100001	300,250 3/ PWSID#:		I.		/atio	S
Project Manager: Set Makeur	P.O.#:	(E	(B)		H=HCI T	1=T
Sampler. J. Lows oul	Quote #:	rza,	108		S=H ₂ SO ₄ 0	0
Name of state where samples were collected:	TE WAY		9 9			
	1 9	X=/_	HO			
			77		Remarks	

iosulfate F Remarks

Q

Tip Blowky

Date Time Date Time Date Time										
None Fax E-mail Relinquished by: Relinquished by: Date Time Received by: Date Time Received by: SDG Complete? Yes No Relinquished by: Date Time Received b	Turnaround Time Requeste	d (TAT) (please circle): In Laboratories approval and	lormal Rush urcharge.)	Relinguished	Date	Time	Received by:		Date	Time (9
SDG Complete? Yes No Relinquished by: Date Time Received by: Relinquished by: Date Time Received by: Date Ti	Date results are needed: Rush results requested by (pl Phone #:	ease circle): Phone F		Relinquished by:	Date	Time	Received by:		Oate	Time
SDG Complete? Yes No Relinquished by: ASMSD/Dup)? Yes No Relinquished by: Date Time Received by: Date Time Received by:	E-mail address:			Relinquished by:	Date	Time	Received by:	1	Date	Time
ASMSD/Dup)? Yes No Relinquished by: ASMSD/Dup)? Yes No Relinquished by: Date Time Received by: Date Time Received by:	Data Package Options (pleas	e circle if required)	SDG Complete?		1			\		
Site-specific QC (MS/MSD/Dup)? Yes No Relinquished by: Oate Time Received by:	Type I (validation/NJ Reg) Type II (Tier II)	TX TRRP-13 MA MCP CT RCP	Yes No	Relinquished by:	Date	Time	Received by:		Date	Time
(if year, inclosus on countrie supplies with subsection of the sub	Type III (Reduced NJ)	Site-specific QC (MS/MSD/I					1			
֡	Type IV (CLP SOW) Type VI (Raw Data Only)	(If yes, indicate GC sample, and submit triplicate volume Internal COC Required? Ye	s/No	Relinquished by:	Date	Time	Received by:	12. L.	Date 74/4/D	Time 092

Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601 (717) 656-2300 Fax: (717) 656-6766 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601

Explanation of Symbols and Abbreviations

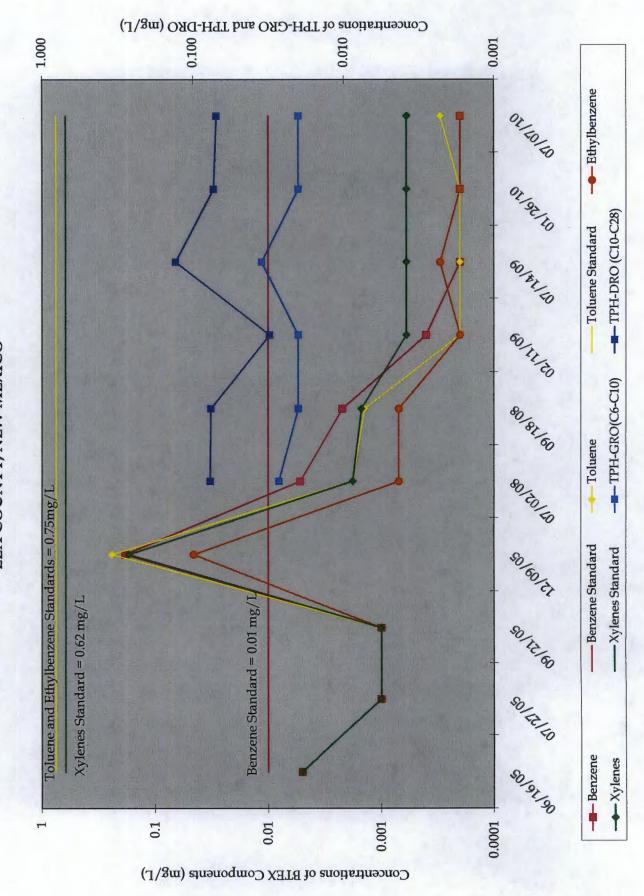
The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	1	liter(s)
m3	cubic meter(s)	ul	microliter(s)

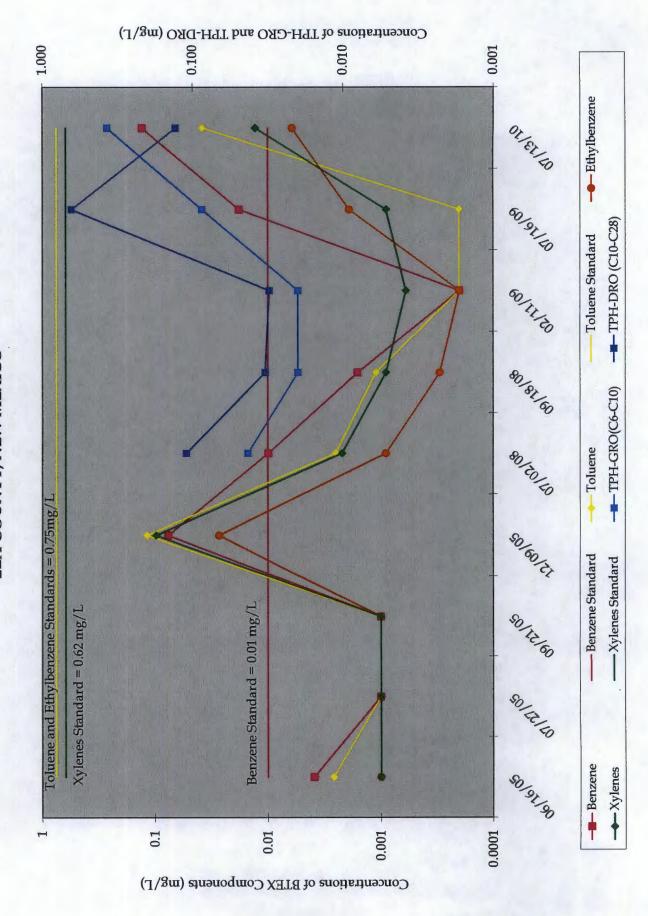
- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight
 basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

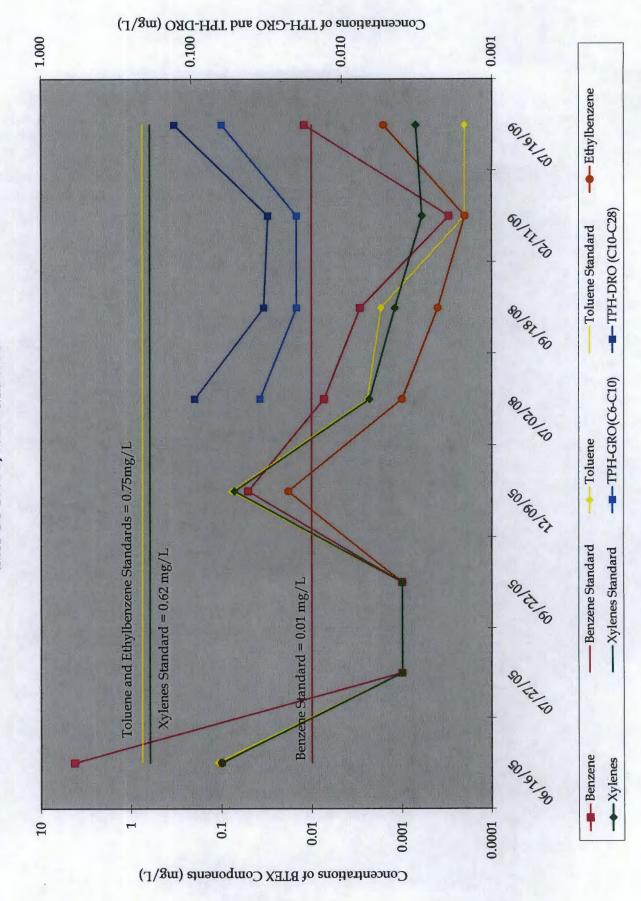
	Organic Qualifiers		inorganic Qualifiers
A	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" td="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
C	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
P	Concentration difference between primary and confirmation columns >25%	W *	Post digestion spike out of control limits Duplicate analysis not within control limits
U /,Z	Compound was not detected Defined in case narrative	+	Correlation coefficient for MSA <0.995


Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

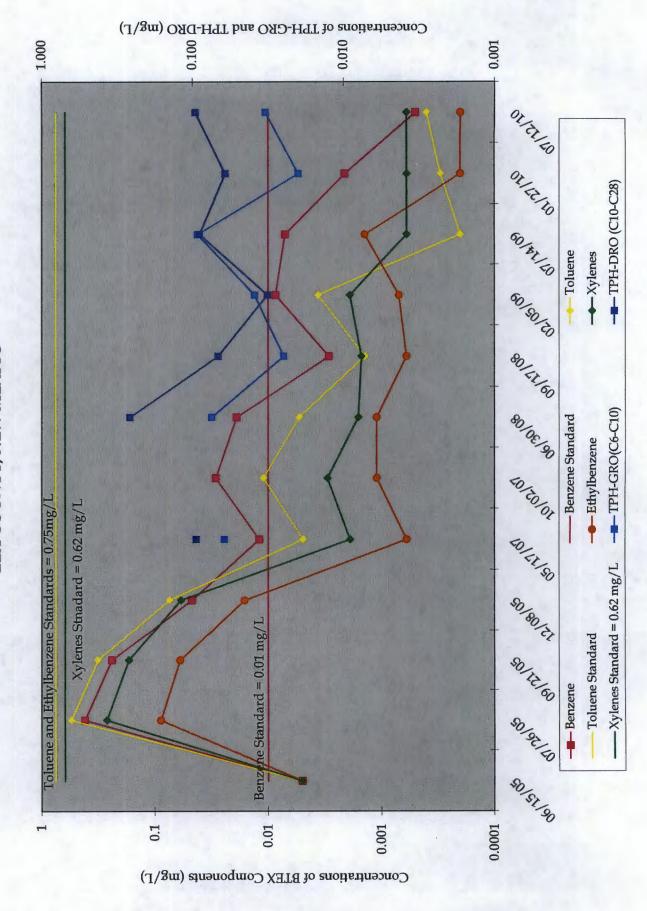
Measurement uncertainty values, as applicable, are available upon request.

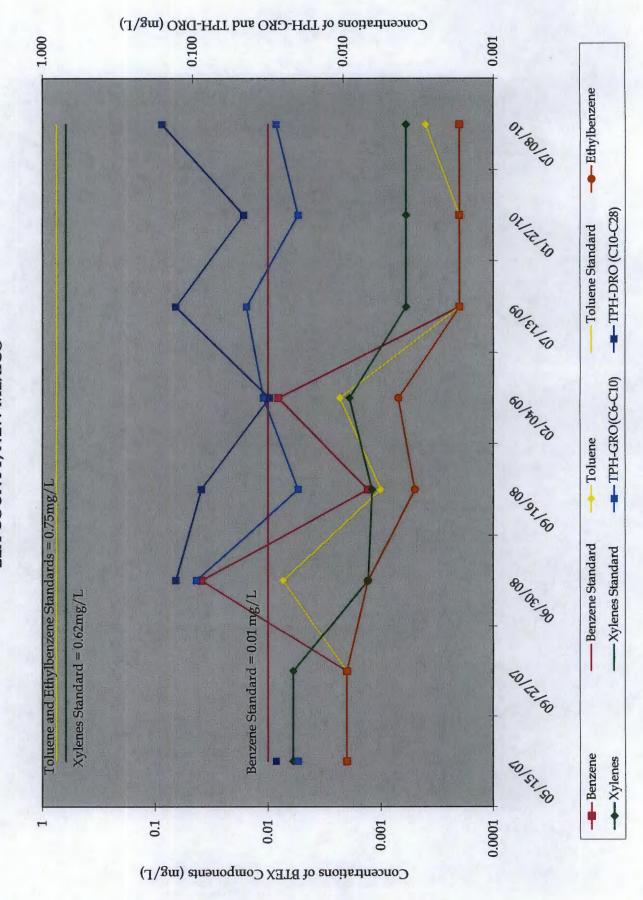

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

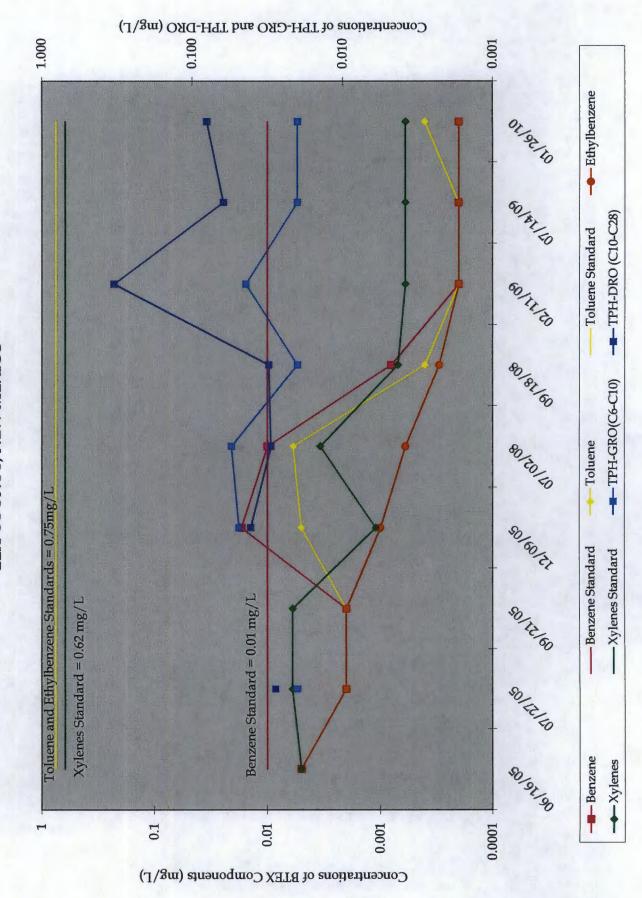
WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

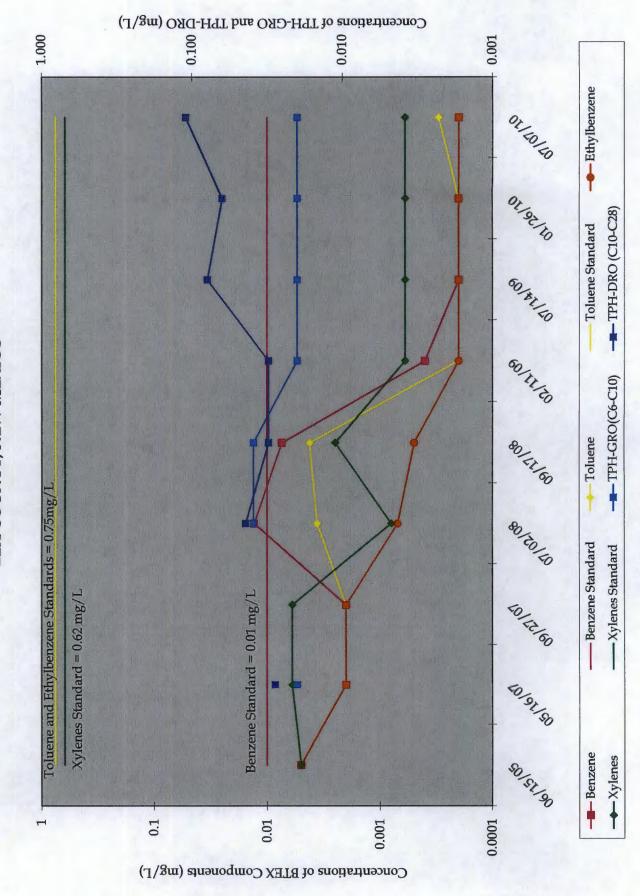

LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE LEA COUNTY, NEW MEXICO

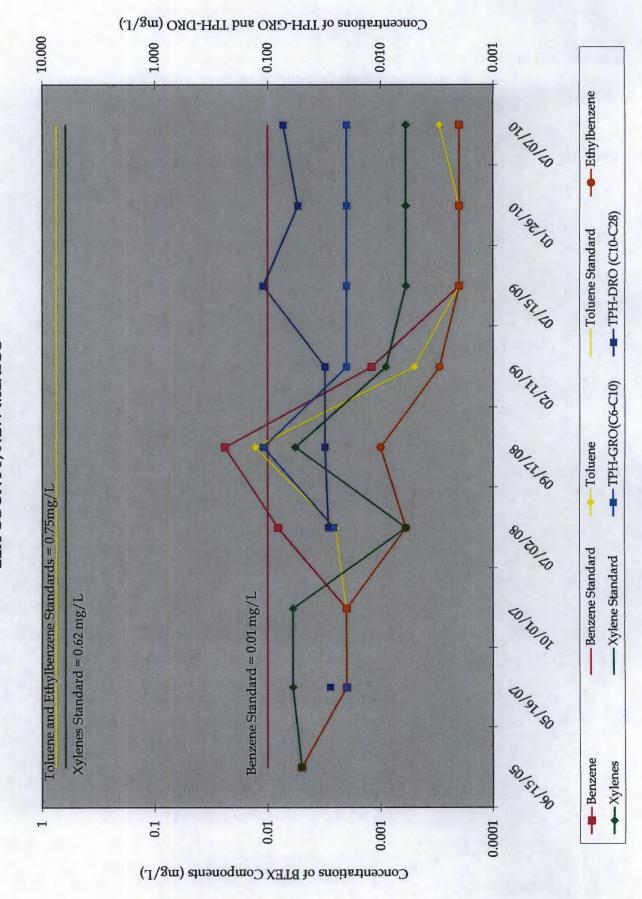

DISSOLVED BTEX AND TPH.-BW-2
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO


DISSOLVED BTEX AND TPH--BW-3
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

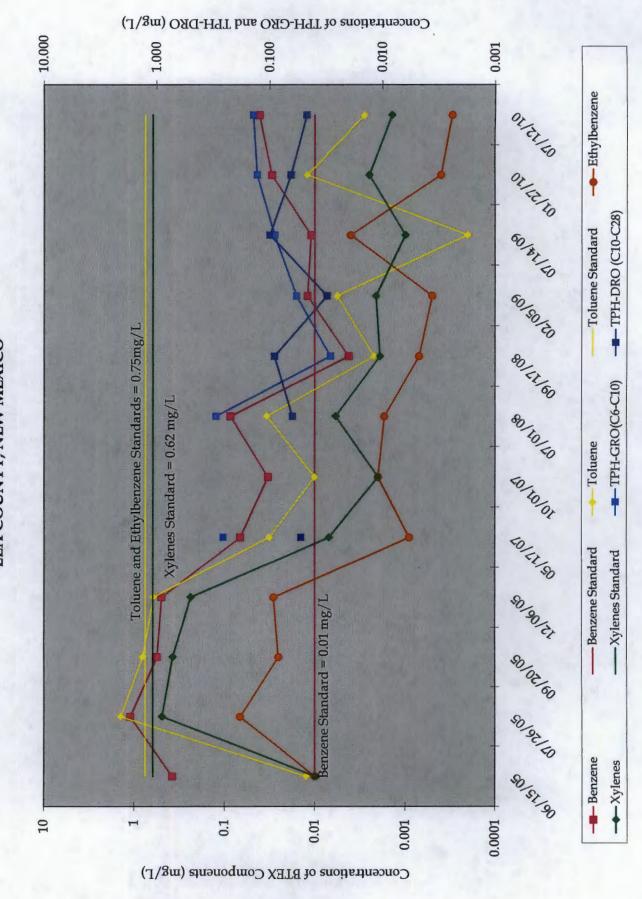

DISSOLVED BTEX AND TPH-MW-B
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

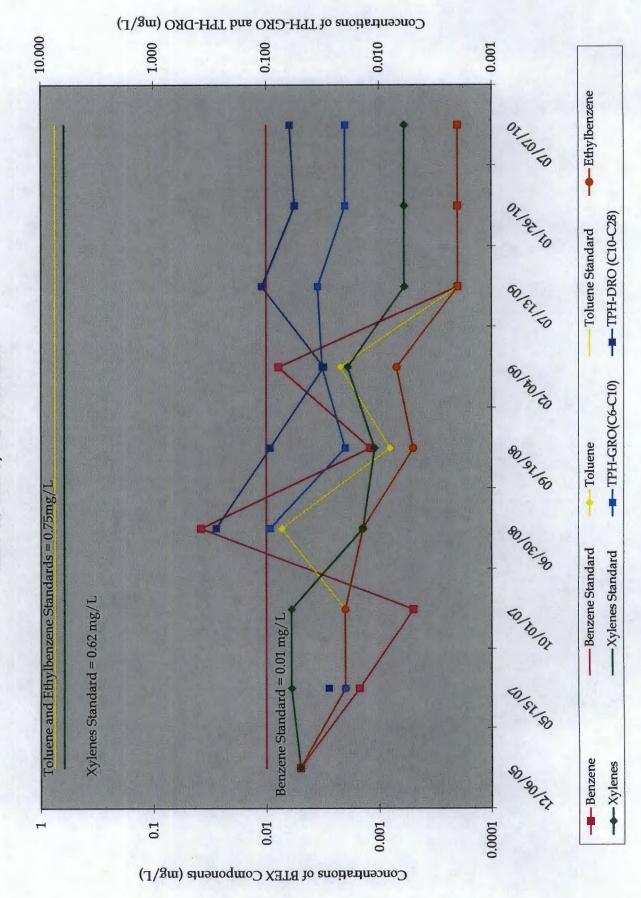

DISSOLVED BTEX AND TPH--MW-C
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

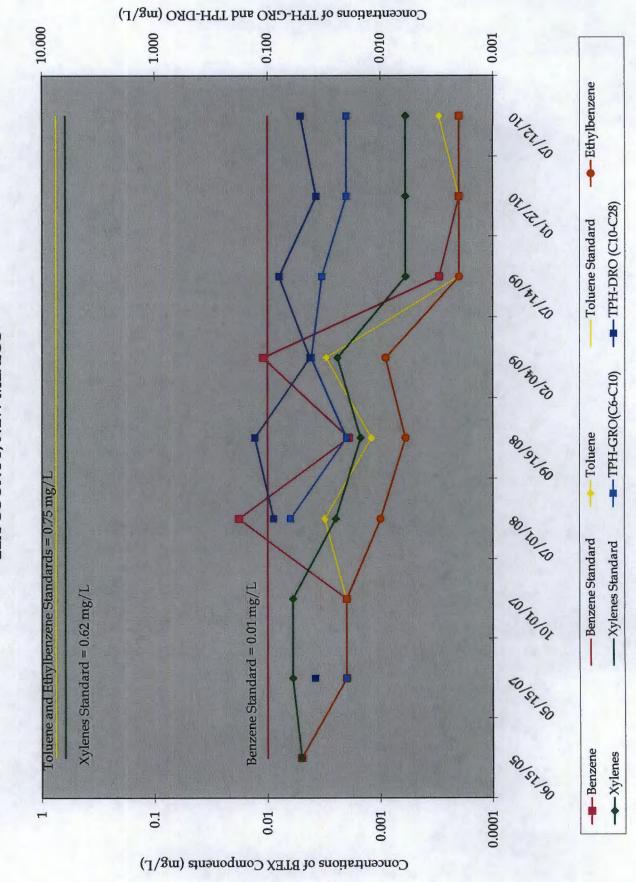

DISSOLVED BTEX AND TPH--MW-D
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

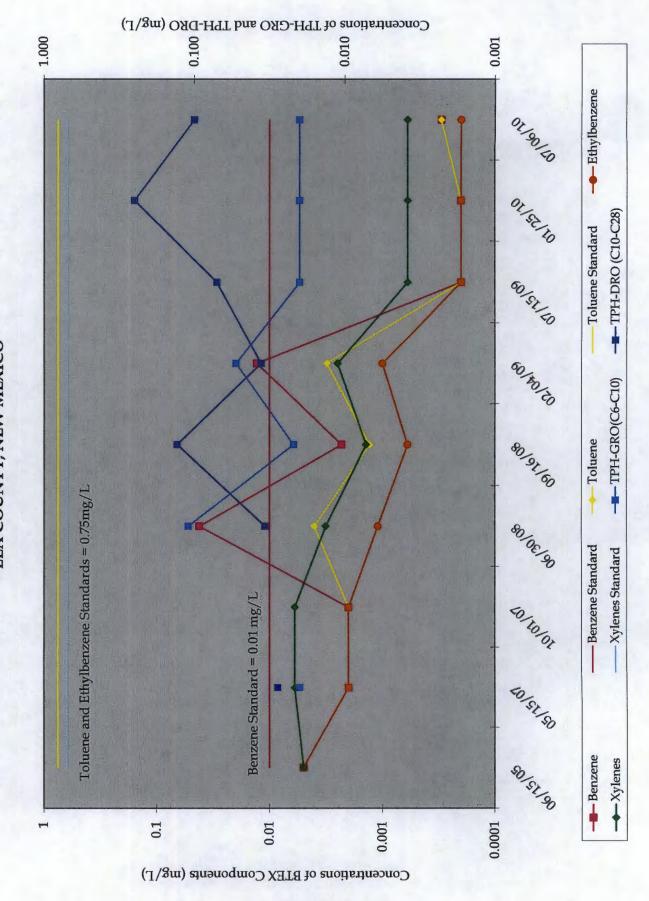

LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE LEA COUNTY, NEW MEXICO

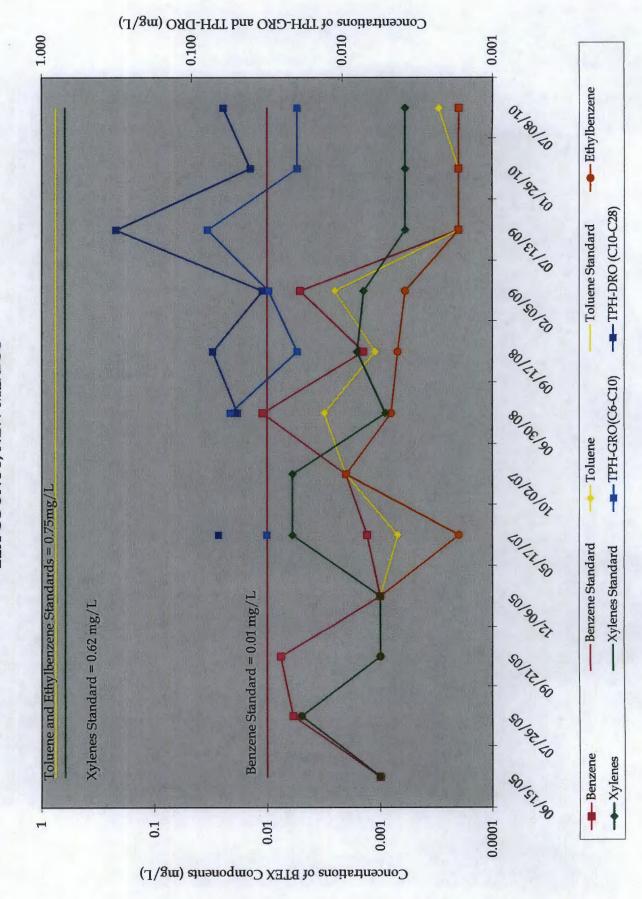

DISSOLVED BTEX AND TPH-MW-F
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

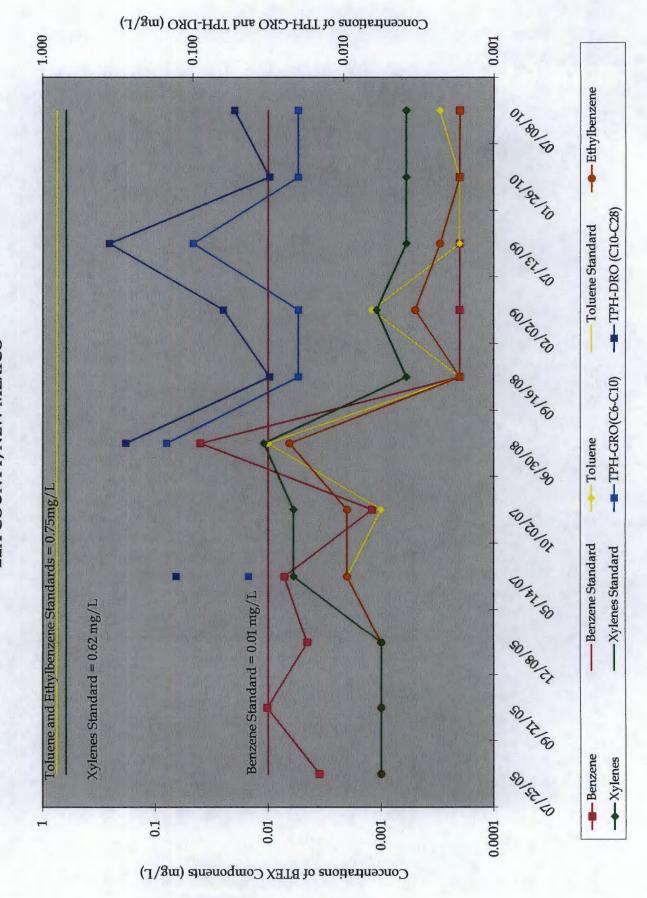

DISSOLVED BTEX AND TPH-MW-G
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

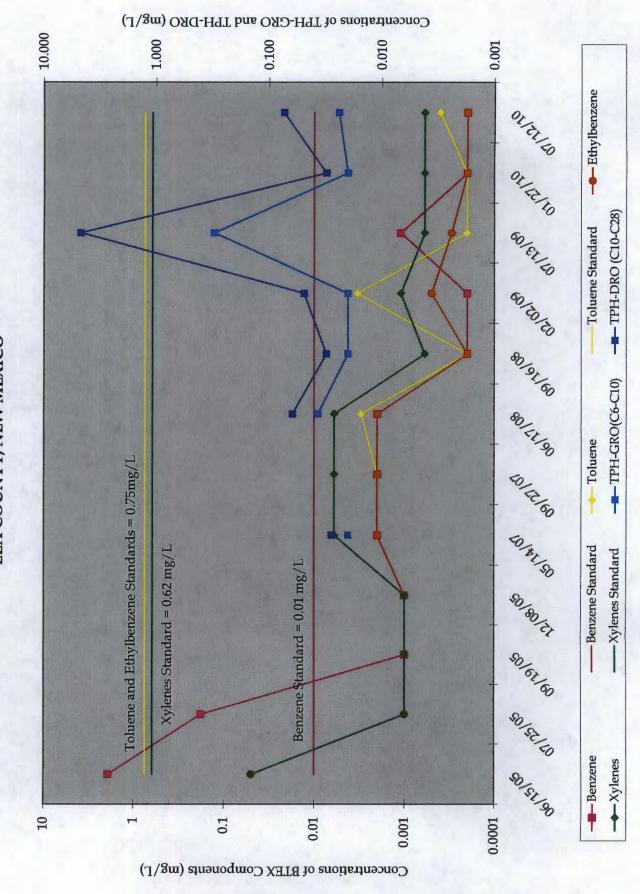

LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE DISSOLVED BTEX AND TPH-MW-H LEA COUNTY, NEW MEXICO

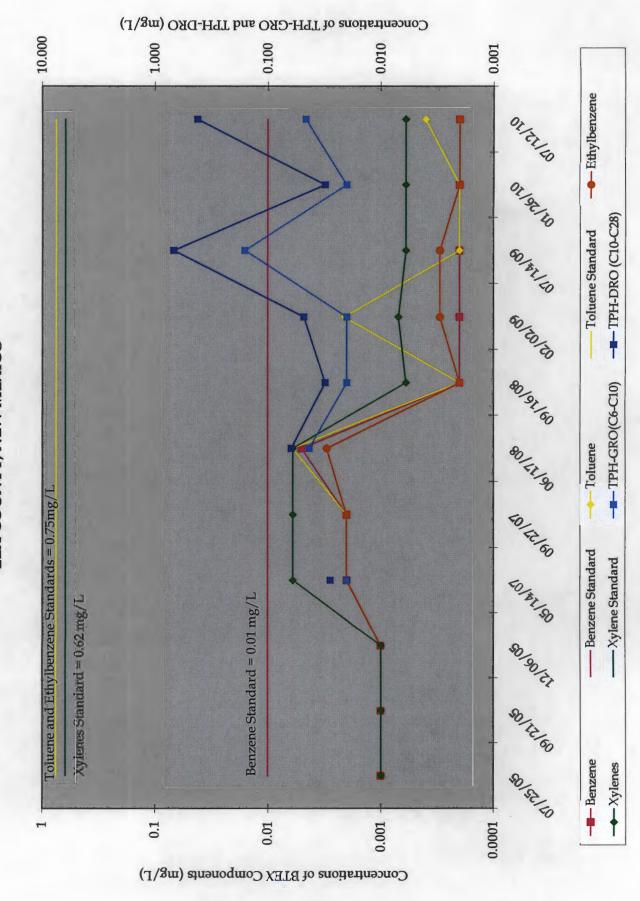

DISSOLVED BTEX AND TPH-MW-I
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

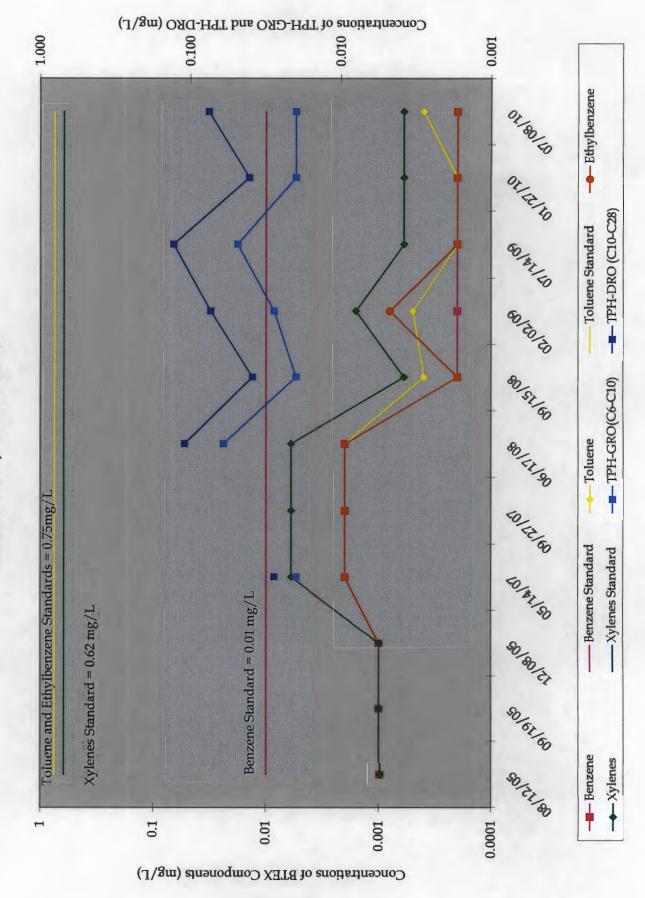

LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

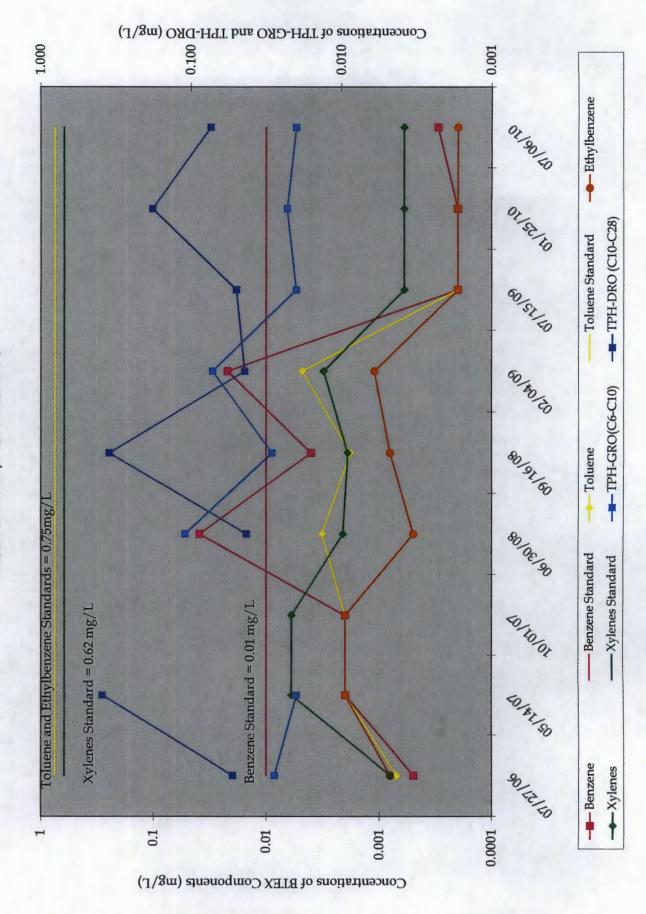

DISSOLVED BTEX AND TPH-MW-L
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

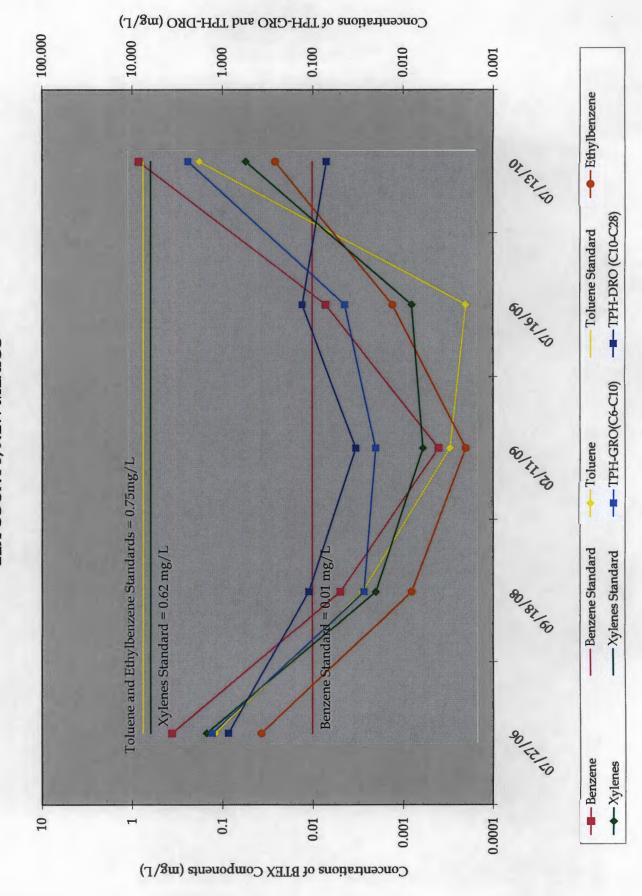

DISSOLVED BTEX AND TPH-MW-M
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

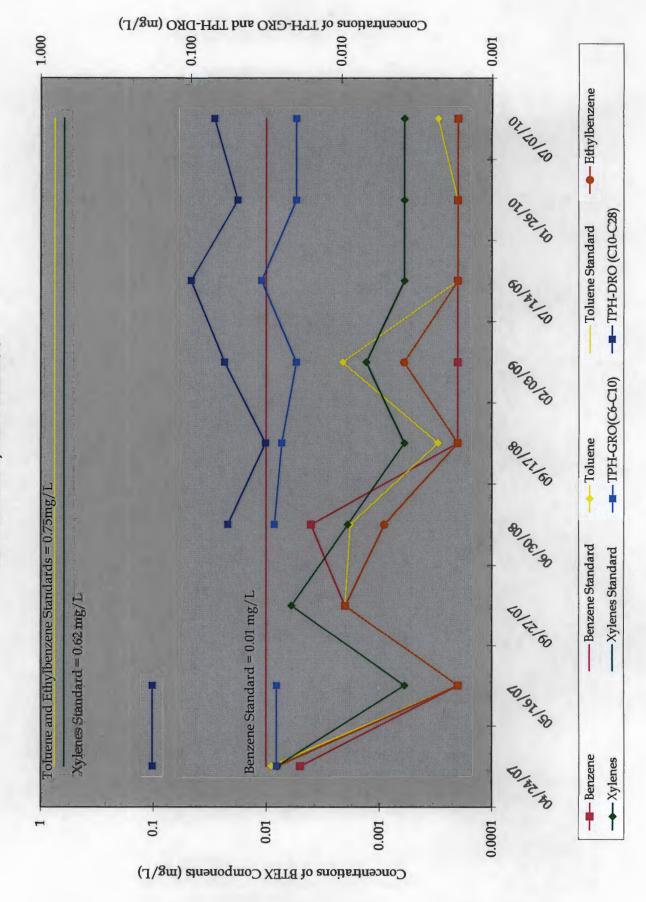

DISSOLVED BTEX AND TPH-MW-N
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

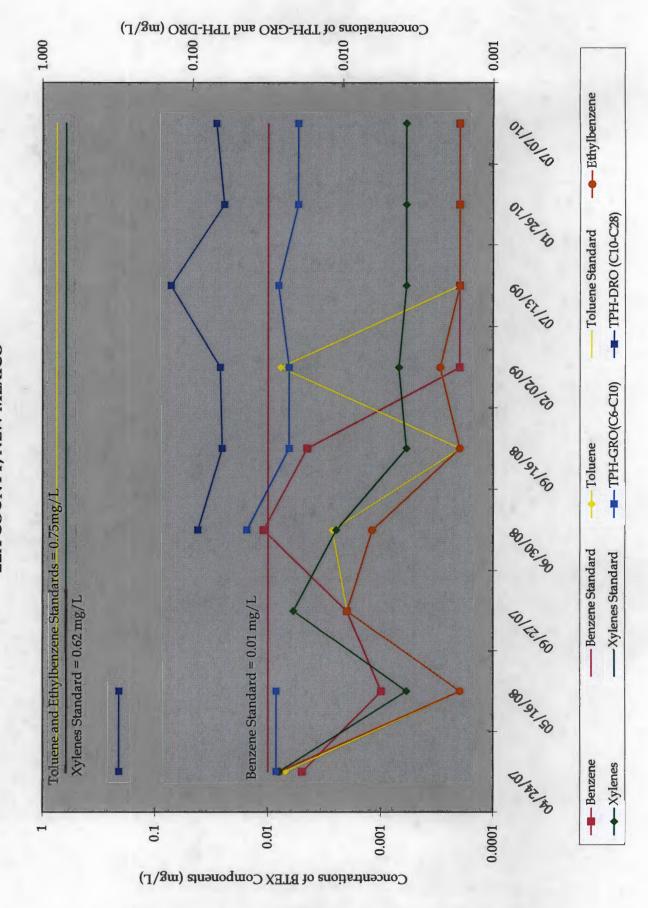

DISSOLVED BTEX AND TPH--MW-O
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

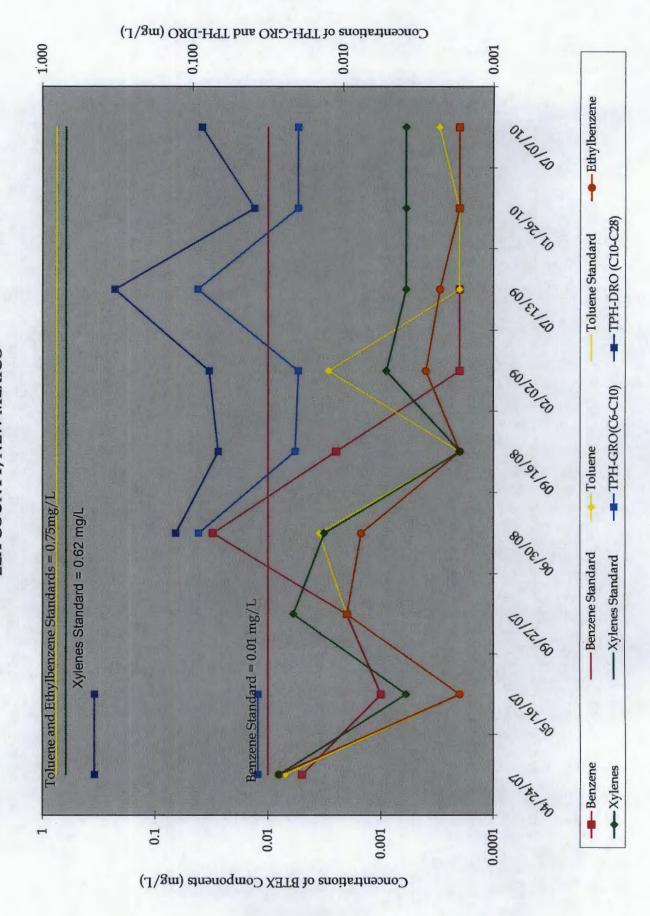

DISSOLVED BTEX AND TPH-MW-P
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

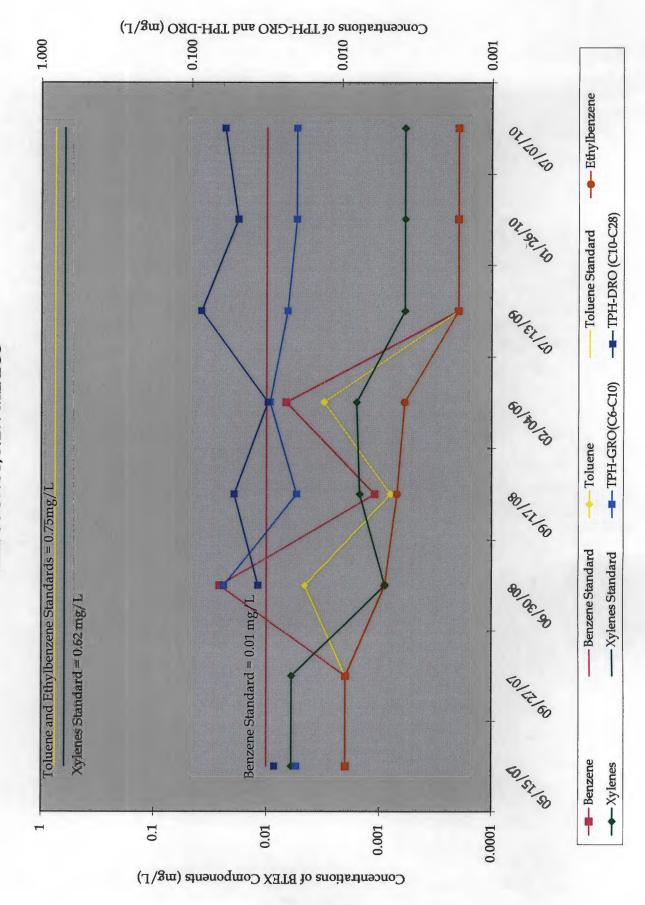

DISSOLVED BTEX AND TPH-MW-Q
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO


DISSOLVED BTEX AND TPH-MW-R
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO


DISSOLVED BTEX AND TPH--MW-S
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO


DISSOLVED BTEX AND TPH--MW-T
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO


DISSOLVED BTEX AND TPH-MW-U
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO


DISSOLVED BTEX AND TPH-MW-V
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

DISSOLVED BTEX AND TPH--MW-W
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

DISSOLVED BTEX AND TPH-MW-D2
LOVINGTON PADDOCK GROUNDWATER REMEDIATION SITE
LEA COUNTY, NEW MEXICO

					LOVINGTON PADDOCK O&M Lovington Paddock Field, NM	ADDOCK OS lock Field, N	W.								
WELL ID #	Date	Compressor Tank Pressure (PSI)	Temperature	Preseure Gauge A	Present Gauge 5 (PGI)	(BCFM)	Pressure Gauge C (PBI)	Preseuro Gauge D (PSJ)	11000	A SUL	Oll Chocked (Y/N)	Oil Change (Semi- nerually)	Condition	At Files Checked	Persencel on site:
P-M8	1-13-1	0	Dan	Z.											
BW-2	1-13-6	5H1	loto	क्री	34	1	87	9.0	>	7	>	3	o k	36	
BW3	1-13-10	160	69	hai	286	8	7	٥	7	7	1	Z	0 K	8	18/8
Air Filtent Compressor Oil change every two months					4										
Additional Comments:	7 0 01		1017	1/ 10 Make of contract of the Discover of 50 Miles De	7 / 1/4	of 001 200	nadar s	- Pare	0000		1046	8 00	1		8000
Wastery after 20-installed draw bett and W- Started	41.0n	110541	Ing du		14 Ca	0	-840	40	Compage 880c	2000	200	414	1001		Sen
KLF-3 AVD MAPLE SIMI CARUM	Ar Filler	Ar Filter Change Due	1 Str	ok open	- Pag	& B	Open - Ang as Blaum lace - Traily board	1 - 20	Ju bear	IT	72845	s ok	V		
Air Filter change every 2 months Compressor Oil change quarterly	months	888	January-09 February-08		May-09	APP.	July-09 September-09 BW-1 Due ASAP Others due 2/10	Others due 2	9.5						٠.
Bert changed out annually	annuany	1	andner-na	1	1		BW-1 Due ASA- Others due 6/10	Omers due o	1		-	1	1		

from gw-1 and installed on Ew-2- working proper

				3	WINGTON PA	LOVINGTON PADDOCK O&M Lovington Paddock Field, NM	**								
WELL ID #	Date	Compressor Tank Pressure (PSI)	Temperature	Pressure Gauge A	Coupe B PS()	Pleat Bloom (SIGTR)	Pressure Gauge C (PB1)	Presente Gauge D (PSB)		112	Oll Checked (YJM)	Oil Change (Bent)	Condition	Ar Piller Charlesd	Personnel on site:
I-MB	Turleo	100		ppece	Closs										44
B84-2	alulio	0	39.5	0	0	9	9	0	25	23	38	2	Bishen Good	(%)	36
BMC	Zintro	125	39.6	297	32 0	00	00	00	2, 2,		233	Jn 600 12 500	000	(50)	JiB
Air Filleri Compressor Oil change ever two meeths													Ш		
Additional Comments:	760-9	1/405 0	Hes o broken	6014		no ker	A) C	Ouma in		2.0	7000	13		100	Depleo
1 Note	80-3	ans of de son Aller	the ne	Ace	1 1	deal co	200	13.3	0	3/2	1 1 2	3	bosoc	450	Les aroles
La ayale multiple offices (may be	mol.	1 ple	Stres (poybe	power		1	7							
Air Filter change every 2 months Compressor Oil change quarterly	2 months quarterly	November-09 November-09	norths Novembar-09 January-09 Larderly Novembar-09 February-09	March-09 May-09	May-09 August-09	July	July-09 September-09 BW-1 Due ASAP Others due 2/10	Others due 2/	10						
Belt changed out annually	lly	August-09	8			BW	BW-1 Due ASAP Others due 8/10	Others due 8/	40						

, xiro

				23	Lovington Paddock Fleid, NM	dock Field, N	W							I	
WELL ID #	Dete	Compressor Tank Pressure (PSI)	Temperature	Present Gauge A	1	Per Bair (SOW)	Pressure Gauge C (PSS)	Passage D (Pet)	HILE	No. of the last	Oli Chesteed (Y/N)	Oli Change Please	Best Condition	At Files	Personnel on elle
179067	atelio	1	20# (Com	, in	Down	11	(67	bak.		4					
	3/20/10	150	7.8	135	12	5	2	1	2	3	3	DONE	एक हैं जी का	Coop	B
BW-2														1	
BW4	stelro	200	Jose y	1.4.5	400	See	Gramer	*	2	2	2	SOME	000	COOD REPHANTO CO	DOSE.
Air Filter/Compressor Oil change every two meeths	9							1							
dditional Comments:					2										
4 Date 810-3 15 not auming	800-3	to at	BW-2 of	4 6	Chacked	842-2	7 4	15:14 co tooked	7	anada /	6 2) ew	1.7		200	comes
the its single	Air Filter Ch	doscol / Neckt	of clockile motor	Socilarors of the man	1 65	110	chese	1 22	4 3/2	Serie a	de il	it beli	MB	200	Bi wan
Air Filter change every 2 months Compressor Oil change quarterly	2 5	November-09 November-09	9 January-09 9 February-09	March-09 1Any-09	May-09 August-09	July	July-09 September-09 Overdue BW-1 Due ASAP Others due 2/10	Others due 2	M0						
Belt changed out annually	W.	August 00				DAA	BIAL 1 Date ASAB Others dies	Others due 8	RHO						

y Note BW-2 post gouse weeds 4 Note 18W-2 was court.

				33	LOVINGTON PADDOCK ORM Lovington Paddock Field, NM	ADDOCK OF	M							M	
WELL ID #	Date	Compressor Tank Pressure (PSI)	Temperature	Presence Gauge A.	12	300	Pressure Geogn C (PSI)	Presson Gauge D (P21)	1118	115	Oll Cheshod (V/N)	Ol Change Please granually)	Condition	Air Filter Checkood	Personnel on sile:
BW-1 (Down)										柑					
SW-2. Replace poi gauge	4-15.10	091	99	153	15	7	07	7	2	×	2	1	ok	οK	SReil
BW-3 (Down)	44510	175	62	178	32	3	8	0	7	>	7	1	OK	8	X
	Ш														
Additional Comments:					A COMPANY	3 2									
FW. 2-10:40 - Resoure Lase Iran Swatch year - R-84 BW. 3 - Fornd Blaun Fise in Switch glast applaced	Blann	1900 A	1000 S.	Fish in Switch gear, applaced and	apple apple	Story of 12	cond at	19	500	11.45 COS 420 14(1)	68	ndo	ndraw lly	Campies Son Extracting	Carleny ,
						1.									Hormon
Air Filter change every 2 months	2 months	January-10	0 March-10	0 May-10	314-10	Sep-10		Nov-10 BW-1 when online, Check BW2-change if needed	online, Ch	eck BW2-ch	ange if ne	pape			
Compressor Oil change quarterly	quarterly	March-10				Dec-10 BW-1 when online	online								
Belt changed out annually	lly	August-09				BW-1 due v	BW-1 due when online, BW2 due 3/11, BW-3 due 8/10	W2 due 3/11,	BW-3 due 8	110					

wind by You Shirt 11.9110

					LOVINGTON PADDOCK O&M Lovington Paddock Field, NM	ADDOCK O	Z.W.								
WELL ID #	Date	Compressor Tank Pressure (PSI)	Temperature	Pressure Gauge A (PSI)	Pressure Gauge B (P81)	(SCFIII)	Pressure Gauge C (PBI)	Presses Gauge D (P61)	THE STATE OF	Account of 180	(V/N)	Oil Change (Bessi- annually)	Pat Condition	Ar Filler Checked	Personnel on sile:
W4-1 (Deem)		1													
BW-2	N64/8	8.5	85	/5/	/3	9	01	1	2	yes	No	70	A		N4. SO
	S/19/11	193	4	165	\$3	6	Hed who lan	-	K	Yes-	97	1/2	ok ok		le 50
							17922				-				
Additional Comments															
9	a bloom has Releised In less	See Reple	id In h	pro	checky is	wha. c	checked whom all theck of	200							
Next Scheduled Visit-6/13/10 Air Filter change every 2 months	2 months	Jenuary-10	March-10	0 May-10	0 34-10	Sep-10		Nov-10 BW-1 when online, Check BW2-change if needed	online, Che	ck BW2-c	hange if ne	pepe			
Compressor Oil change quarterly	quarterly	March-10	June-10	0 Sep-10		Dec-10 BW-1 when online	BW-1 when online	AP due 2/11	BW.3 due B	30					
Beit changed out annually	iliy	August-va				DW-1 due	When online, o	WZ due of 11,	BVr-3 Cibe	2					

Temperature Pressure Gauge A Gauge B prog (Secring) Care Maries Pressure Gauge D prog (Vris) Secring Care Maries Cross Care Care Care Care Care Care Care Care						Lovington Paddock Field, NM	lock Fleid, N	-								
Con Hotor. Plan acotto. September 10 Styll Oberland State 10 Styll Oberlands it meded American September 10 Styll Oberland Styll Oberlands it meded American September 10 Styll Oberlands 10 Styll Oberlands it meded American September 10 Styll Oberlands 10 Styll Oberlands 11 S	WELL ID #	Date	Compressor Tank Pressure (PSI)	Temperature	Proseure G	Pressure George B (P-36)	Pleve Mater . (BCFM)	100	Pressure George D (Pick)	11 15	0 1	1-		-	Air Filter Checked	Personnel on site:
20 Molfor? Pleas across of the CAP Dies of P	EW-1 (Dove)				a.											
See Hotels. See 10 Bes 10 BW-1 when online, Chack BW2-change if needed Assumption June 10 Sep 10 BW-1 when online, Chack BW2-change if needed Assumption June 10 Sep 10 BW-1 when online, Chack BW2-change if needed Assumption June 10 Sep 10 BW-1 when online, Chack BW2-change if needed	BW-2	01/5/19														70
Co. Mylor. Pleas and for Sepecatar. Lie O. O. D. D. D. D. D. D. P. P. March 10 March 10 Stratogordus Jul 10 Sep-10 Nov-10 BW-1 when online, Check BW2-change if needed March 10 June 10 Sep-10 Dec-10 BW-1 when online, Check BW2-change if needed March 10 June 10 Sep-10 Dec-10 BW-1 when online, Check BW2-change if needed	Koap													T		
Cast Mutols See 10 Dec 10 BW-1 when online, Check BW2-change if needed Autorito June-10 Sep-10 Dec-10 BW-1 when online, Check BW2-change if needed Autorito June-10 Sep-10 Dec-10 BW-1 when online, Check BW2-change if needed Autorito June-10 Sep-10 Dec-10 BW-1 when online, Check BW2-change if needed Autorito June-10 Sep-10 Dec-10 BW-1 when online, Check BW2-change if needed		0115110														45
Less Hutors. Dens a Detaction of the CAP Dies of from the chart and the	Jess L															
Less Mulsols. Dens and Less Cap Dens of P. January-10 March-10 StrindOverdue Jus-10 Sep-10 Nov-10 BW-1 when online, Check BW2-change if needed March-10 June-10 Sep-10 Dec-10 BW-1 when online March-10 June-10 Sep-10 Dec-10 BW-1 when online March-10 June-10 Sep-10 Dec-10 BW-1 when online												П		П		
Less Multipols. Dear a Jacker Septential for Cap Devision of the Cap Devision of the Cap Devision of the Cap Devision of Jacker of Tarker of Tark		April 1900 A Village	A September of the second			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Marie Control	San Later Speed	Spirit Spirit Spirit	adding and	100			
Activation March-10 StringOverdue Jul-10 Sep-10 March-10 June-10 Sep-10 Dec-10 BW-1 When online Activation and the column of the	Additional Comments:															
January-10 March-10 SH/10/Overdue Jul-10 Sep-10 March-10 June-10 Sep-10 Dec-10 BW-1 When online Asserted to the sep-10 BW-1 Web and the sep-10 BW-1 We	8-5- Acc	1 1	See Able	Jaker S	111			440 m								
March-10 June-10 Sep-10 Dec-10 BW-1 When online	Next Scheduled Visit-06/10.	110														
August.00	Air Filter change even	7 2 months	January-1		0 5/1/10/Overdue	Щ	Sep-10		0 BW-1 whe	n online, Ct	eck BWZ-cl	hange If ne	pepe			
- Contract -	Belt changed out annu	ally	August-09			1	BW-1 due	when online. B	W2 due 3/11	BW-3 due	8/10					

Ling filter changed whosper Compresser of Change 6/15/10

				23	LOVINGTON PADDOCK ORM Lovington Paddock Field, NM	ADDOCK OF lock Fleid, N	3 3							\prod	
WELL TO #	Date.	Compressor Tank Pressure (PSI)	Temperature	Pressure Gauge A (PS1)	Presson Course	Place Maker	Pressure Gauge C (PSI)	Pressure Gauge D (PGI)	11]18	Automatic Mondown Marchael (7)	Oli Charined	Of Chase	Belt	Alt Plan Checked	Personnel on site:
BW-1 (Down)	2112/10					*									
Part (Down)	4/16/10	80	\$6.	150	12	9	5		25.	23	200	00	راء	25	N N
BM43 (Denies)	2/10/2														
	Raplead .	7	1.00 See Le	1 1 0		14	0/25/0			300	moved from	West 1	1/2 /3	3/3	como de
1297-64	Lope:	1	H	18	0	2 mete	5,0 20	1 9 1	*	3			1.9		1 9
Next Scheduled Visit-07/15/10 Air Filter change every 2 months Compressor Oil change quarterly	2 months quarterly	January-10 March-10	0 March-10	0 Sep-10	0 Aug-10	Oct-10 BW-1 when on	2	Dec-10 BW-1 when online	ouline						
Belt changed out annually	Illy	August-09			П		BW-1 due when online, BW2 due 3/11, BW-3 due 8/10	W2 due 3/11,	BW-3 due	8/10					

Corporate of processing frequency and processi						LOVING	LOVINGTON PADDOCK ORM Lovington Paddock Field, NM	CK ORM Teld, NM								П	
Americal Americal Sept 10 Decrip BW41 when online and any of the sept 10	WELL ID #	Date	Compressor Tank Pressure (PSI)	Replace Perfodically per vendor recommend ations	Temperature		Campo B (Prop.	Flay Mater (BOTH)	 C (PER)			70 P			1	Alt Filler Checked	Paperent on other
MACSUES Q'EC (DON) Sept-10 Americal Januar-10 Americal Suppropries Sept-10 Sept		1	,										1				ACT COURT
	BW-1 (Down)	R	8										П		1		
April Merch-10 Aug-10 Sep-10 Sep-10 Cool												T					
	OW. P. Present	1											_		-		
HYTHEST ARE CONT. SITTING March-10 June-10 Aug-10 arterly March-10 June-10 Sep-10 Dec-10	francis Press	9	MAN														
		1															
											1	1	1		1		
MARCENES ARE COON March-10 June-10 Aug-10 antesty March-10 June-10 Sep-10 Dec-10	BW-3 (Down)	1				-			1		T	T	T	T		1	
APICESSES Q'EC COLONÍ ONTHE L'animay-10 Amerit-10 Amerit-10 Sep-10 Sep-10 Sep-10		1	the						1			1			1		
MydCSVB											1						
HPTCSSE QTC																	
	1 8																
		0		-							1						
6/7//0 onths 6 January-10 March-10 June-10 Aug-10 arterty March-10 June-10 Sep-10 Dec-10		DIM DE	1 1	14	NCO												
Onths / January-10 March-10 June-10 Aug-10 arterly March-10 June-10 Sep-10 Dec-10							-					-		1	1		
onths / Jenuary-10 March-10 June-10 Aug-10 Aug-10 Interty March-10 Sep-10 Dec-10	Next Scheduled Visit 8/19/291		01/1/6														
arterly March-10 June-10 Sep-10 Dec-10	Air Filter change every 2	months		0	March-10		Ц			BW-1 when	online						
Accessed An	Compressor Oil change	quarterly	March-10	0	June-10			BW-1 when	online								
-	Belt changed out annually	lly (II)	August-09					W-1 due w	han online, BV	V2 due 3/11, E	BW-3 due B	70					

					LOVING	LOVINGTON PADDOCK OAM Lovington Paddock Field, Nil	CK OAM Fleid, NW									
WELLID#	480	Compressor Tank Pressure (PSI)	Replace Periodically per vender recommend affors	Temperature	President A		Flore Blaker (SCPR)	Presence Gauge C (PRE)	Prosesse Gauge D (PSt)	HIE	1100	Oll Checked (Y/N)	Oll Change (Scorif- armually)	. 1	Observed and a second	Personnel en sile:
											,					
BW-1 (Dewn)		-							1						1	
	Melio	170	\$65	96	150	2	110	80	0	Xe5	Yes	ap	30%	20	465	44
RIM-2 (Down)													1			
						•									Safe.	
					-						,				N. Y	
														4.		
Dates (Dome)																
Additional Comments:																
															1	
				-	1											-
Next Scheduled Visit 9/2/2010	010														-	
Air Filter change every 2 months	2 months	January-10	0	March-10		June-10 08/10 Overdan	04-10		Dec-10 BW-1 when online	online						
Compressor Oil change quarterly	e quarterly	March-1	0	June-10	. Sep-10	Dec-10	BW-1 when	online								
Belt changed out annually	. All	August-0	August-09 OVERDUE				BW-1 due v	BW-1 due when enline, BW2 due 3/11, BW-3 overdue 8/10	N2 due 3/11,	BW-3 overc	hue 8/10					

						LOVING	LOVINGTON PADDOCK O&M Lovington Paddock Field, NM	CK O&M Teld, NM							Ш	
#-Table 1246 (450 860 (455 172 11 00 11 1/655 1/655 (604) 100 11 1/655 1/655 (604) 100 11 1/655 1/655 (604) 100 11 1/655 1/655 (604) 100 110 1/655 1/655 (604) 100 110 110 110 110 110 110 110 110 11	WELLDS	Date	Compressor Tank Pressure (PSI)	5.233.	Temperature	France Camps A	Parent (PA)	Par Bar	1		11 11	415	-	1 man	Alt Piller Checked	Percentel on sile:
3-2h	BW(Town)															
SULT SN BULL , CLEANED AND DRAIN UNE. INSTRUCTO AND FILTER ON BIN-1. Superior surrenty Merch-10 June-10 Sup-10 Dec-10 BW-1 when outline June-10 Sup-10 Dec-10 BW-1 when outline June-00 OVERDUE Sup-10 Dec-10 BW-1 when outline June-01 Sup-10 Dec-10 BW-1 when outline June-02 OVERDUE Sup-10 Dec-10 BW-1 due when outline June-10 Sup-10 Dec-10 BW-1 when outline June-01 BW-1 West-01 BW-1 When outline June-01 BW-1 When Outline June	BW2 (Demn)	6-4-2010		989	2	[45	2	-	0	-					4	Av.
SULT SN BWILL CLEARNED AND DRAW UNE INSTRUCTO AND GREAT ON SHIP SHIP Decide BW-1 when online authority Merch-10 June-10 Sep-10 BW-1 when online BW-1 when online BW-1 due when on	BW-2 (Cown)															
SELT 6N BULLL, CLEARNED AND DRAWN UNE. INSTRUCTO AND FILER ON on the land of t	Additional Comments:															
oonths January-10 March-10 June-10 earle Dec-10 autherly March-10 June-10 Dec-10 Dec-10 August-09 OVERDUE	INSTRUCTO NAW	Her	6N BW				7	INSTAU	תבו אני	July 1		BIN	2			
Lantany-10 March-10 June-10 asin Dec-10 autrents March-10 Sep-10 Dec-10 August-09 OVERDUE	Next Scheduled Visit 10/2/2	010														
August-09 OVERDUE	Air Filter change every 2	months	3	0	2		Serie Overdue	Oct-10		BW-1 when	online					
	Compressor Oil change Belt changed out annual	quarteny	+	OVERDUE				BW-1 due w	online hen online, 8V	V2 due 3/11,	BW-3 overd	tue 8/10				