3R - 386 2010 AGWMR MAR 2011

2010 ANNUAL GROUNDWATER REPORT

OH Randel #7

3RP-386

Unit D, Section 15, Township 26N, Range 11W San Juan County, New Mexico

PREPARED FOR:

Mr. Steve Austin Navajo Nation Environmental Protection Agency Post Office Box 1999 Shiprock, New Mexico 87420

March 2011

TABLE OF CONTENTS

Site Details		3
Introduction		3
History		3
Methodology		5
Results		6
Conclusions		6
Recommendations		6
Appendices		
Table 1:	Water Level Summary Table	
Table 2:	Groundwater Results Summary Table	
Figure 1:	Topographic Map	
Figure 2:	Potentiometric Surface Diagrams	
Figure 3-13:	Completion Diagrams and Borehole Logs	
Attachment 1:	Blagg Engineering, Inc. Pit Closure Report (2002)	
Attachment 2:	Loadstar Services Remediation Work Plan (2006)	
Attachment 3:	Loadstar Services Report of Excavation and Sampling (2007	7)
Attachment 4:	2010 Laboratory Reports	
Attachment 5:	Field Notes	
Attachment 6:	LT Environmental Work Plan	

OH RANDEL #7 3RP-386

SITE DETAILS

 LEGALS - TWN: 26N
 RNG: 11W

 OCD HAZARD RANKING: 20
 LATITUDE: 36.49194

 SEC: 15
 UNIT: D

 LAND TYPE: NAVAJO
 LONGITUDE: 107.99572

INTRODUCTION

XTO Energy Inc. (XTO) acquired the OH Randel #7 well site from Amoco Production Company (Amoco) in January 1998. This is a gas producing well in the Dakota Sandstone and Gallegos Gallup formations and is currently active. This location is located near an irrigated field owned and operated by Navajo Agricultural Products Inc. (NAPI). A topographic map is included as *Figure 1*.

HISTORY

In March 2002 during equipment upgrades XTO encountered hydrocarbon impacted soil that was assumed to be an abandoned earthen separator pit. The submitted Pit Closure report is included as *Attachment 1*. Soil samples were collected and a groundwater monitoring well MW-1 was installed to determine impact to groundwater. The Completion Diagram and Borehole Log is presented *Figure 3*. Groundwater was encountered at 16 feet below ground surface. After installation of the monitoring well, 3.84 inches of free phase product was discovered at a depth of 16.36 feet below ground surface. Additional monitoring wells (MW-2, MW-3, MW-4, MW-5 & MW-6) were installed near the source area; upgradient, downgradient and crossgradient of the source area. Completion Diagrams and Borehole Logs for the monitoring wells installed in April 2002 are presented in *Figures 4-8*.

Phase separated hydrocarbons (PSH) were observed in monitoring wells MW-1, MW-2 and MW-6 during 2002-2004 sampling events. A total of approximately 22 gallons of product was recovered by hand bailing the PSH as of January 2006.

The 2005 annual groundwater report was submitted to the New Mexico Oil Conservation Division (OCD) in January 2006 proposing excavation of soil impacted by the former separator pit and the installation of additional groundwater monitoring wells to further delineate hydrocarbon impact to groundwater.

XTO submitted a remediation work plan to Mr. Steve Austin with the Navajo Nation EPA (NNEPA) in August of 2006. A copy of this work plan, written by Lodestar Services, Inc. (Lodestar), is included as *Attachment 2*. This work plan was approved in October of 2006. The first phase of the work plan was excavation of the earthen separator pit to beneath the water table and backfilling with clean soil, which was completed in November of 2006. Approximately 9,000 cubic yards of hydrocarbon impacted soil was removed and transported offsite to an approved landfarm. No PSH was observed during the November 2006 excavation work. Monitoring wells MW-1, MW-2 and MW-6 were removed during the excavation. The US EPA Region 9 and NNEPA approved the closure

of the excavation as described in the Lodestar Report of Excavation and Sampling, which is included as **Attachment 3**. Following the excavation work, groundwater from monitoring wells MW-3, MW-4, and MW-5 revealed no detectable concentrations or trace concentrations of dissolved hydrocarbons all beneath New Mexico Water Quality Control Commission (WQCC) standards.

The 2006 annual groundwater report was submitted to the OCD in February 2007 proposing installation of additional groundwater monitoring wells (MW-7 & MW-8) to the north and east of the former source area and quarterly sampling.

Monitoring wells MW-7 and MW-8 were installed to the north and the east of the former pit in May 2007. Completion Diagrams and Borehole Logs are presented in *Figures 9-10*. It appeared that groundwater impact throughout the excavated area had been adequately delineated with the exception of the far northwest edge (MW-7). XTO proposed to evaluate other potential sources of groundwater impact in this area and screen appropriate remediation methods.

The 2007 annual groundwater report was submitted to the OCD in February of 2008 proposing to discontinue sampling of monitoring wells MW-3, MW-4, and MW-5, and to begin sampling of monitoring wells MW-7 and MW-8 on a semi-annual basis.

The 2008 annual groundwater report was submitted to the OCD in April 2009 proposing installation of two (2) additional monitoring wells, (MW-9 & MW-10), the addition of a chemical oxygenate to monitoring well MW-7, and the beginning of quarterly sampling.

Monitoring wells MW-9 and MW-10 were installed in July 2009. The water bearing unit that supplies the existing groundwater monitoring wells was practically dry. The existing monitoring wells are completed in low hydraulically conducting clay. Monitoring wells MW-9 and MW-10 were complete when drilling encountered the same impermeable clay bed. After allowing 24 hours for the new wells to fill in with water MW-9 contained only 1 ½ feet of water and did not recharge after purging dry while MW-10 never filled with water and was ultimately plugged. The completion diagrams and borehole logs are presented at *Figures 11-13*. Monitoring well MW-9 was sampled after development.

The 2009 Annual Groundwater report was submitted to Mr. Glenn Von Gonten in March of 2010. The report recommended the continued use of chemical oxygenate in monitoring well MW-7 to enhance the bioremediation of the hydrocarbon constituents found in the groundwater aquifer. The 2009 Annual Groundwater Report also recommended the continued quarterly sampling of monitoring wells MW-7 and MW-9, as well as to discontinue sampling of monitoring well MW-8 due to four (4) consecutive sampling events returning results below the WQCC standards.

Summary of water level data and laboratory results from historical and current groundwater monitoring is included as **Table 1** and **Table 2**. Copies of the laboratory data sheets and associated quality assurance/quality control data for 2010 are included as **Attachment 4**.

METHODOLOGY

Monitoring wells MW-7 and MW-9 were sampled quarterly during 2010 for benzene, toluene, ethyl benzene and total xylene (BTEX). Due to the switch from semi-annual monitoring in 2009 to the quarterly monitoring proposed for 2010, first quarter groundwater monitoring was not conducted. Quarterly monitoring of monitoring wells MW-7 and MW-9 began in the second quarter of 2010.

Water Level Measurements

Static groundwater level monitoring includes recording depth to groundwater measurements with a Keck oil/water interface probe. The interface probe is decontaminated with Alconox[™] soap and rinsed with de-ionized water prior to each measurement. A summary of water level data is included in *Table 1*.

Groundwater Sampling

Prior to sampling groundwater, depth to groundwater and total depth of wells is measured with a Keck oil/water interface probe. Presence of any free-phase crude oil is also investigated using the interface probe. The interface probe is decontaminated with AlconoxTM soap and rinsed with de-ionized water prior to each measurement. The volume of water in the wells is calculated, and a minimum of three casing volumes of water is purged from each well using a disposable bailer or a permanent decontaminated PVC bailer. As water is extracted, pH, electric conductivity and temperature are monitored. Wells are purged until these properties stabilize, indicating that the purge water is representative of aquifer conditions. Stabilization is defined as three consecutive stable readings for each water property (±0.4 units for pH, ±10 percent for electric conductivity and ±2° C for temperature). All purge water is disposed of into tanks on site.

Once each monitoring well is properly purged, groundwater samples are collected by filling at least two 40-millititer (ml) glass vials. The pre-cleaned and pre-preserved (with hydrochloric acid or mercuric chloride) vials are filled and capped with no air inside to prevent degradation of the sample. Samples are labeled with the date and time of collection, well designation, project name, collector's name and parameters to be analyzed. They are immediately sealed and packed on ice. The samples are shipped to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico in a sealed cooler via bus before designated holding times expire. In August of 2010, XTO switched from HEAL to Environmental Science Corporation (ESC) based in Mt. Juliet, Tennessee. Samples were packaged with ice in a cooler and shipped to ESC via Fed-ex overnight to ensure samples were cold and did not exceed their holding time. Proper chain-of-custody (COC) procedures are followed with logs documenting the date and time sampled, sample number, type of sample, sampler's name, preservative used, analyses required and sampler's signature. Field Notes are included as *Attachment 5*.

Groundwater Contour Maps

Top of casing well elevations are surveyed using a surveyor's level; and groundwater elevations obtained from monitoring wells during site visits are used to draft groundwater contour maps. Contours are inferred based on groundwater elevations obtained and observation of physical characteristics at the site (topography, proximity to irrigation ditches, etc.).

RESULTS

Laboratory results from groundwater monitoring in monitoring well MW-7 showed a decrease in benzene levels from 2009 through 2010. Benzene levels decreased from 9,800 ppb (parts per billion) in November of 2009 to 5,200 ppb in November of 2010. Xylene levels in monitoring well MW-7 decreased from 13,000 ppb in November of 2009 to 3,400 ppb in November of 2010. Hydrocarbon levels in monitoring well MW-7 showed an extremely significant drop in August of 2010 to 82 ppb benzene and 200 ppb total xylene. These levels rebounded to the levels mentioned above during the next sampling event in November of 2010. This sharp decrease and the significant rebound in the following guarter can be explained by the ORC socks that were added to monitoring well MW-7 after the May 2010 sampling event. After the sampling event in May of 2010, ORC socks were installed in monitoring well MW-7 to enhance bioremediation in this well. The socks were removed in August prior to the quarterly groundwater sampling. The sample collected in August was influenced by the enhanced bioremediation taking place in the aquifer around monitoring well MW-7. Upon reinstallation of the ORC socks after the August monitoring event, personnel did not get the ORC socks all the way to the bottom of the well, resulting in the ORC socks not being in contact with the water column in this well. The sampling event that then took place in November was indicative of the aquifer without the enhanced bioremediation that the ORC socks provided between the second and third quarter sampling event. Laboratory results from monitoring well MW-9 were below the WQCC standards for all constituents analyzed during 2010. Laboratory reports are included in Attachment 4.

Field data collected during site monitoring activities indicate the groundwater surface is relatively flat trending primarily toward the southwest at approximately 0.0156 feet/foot. Groundwater at this site may be influenced by irrigation of a field adjacent to the location. Additionally, it is possible the groundwater at this site is a shallow water table created by irrigation water from this field. Slight increases in the groundwater gradient exhibit a more easterly flow which is attributed to the seasonal irrigation of the adjacent field. The tendency of the monitoring wells to bail dry indicate that the aquifer is tight, and most likely could not be used for beneficial use. *Figure 2* illustrates the estimated groundwater gradients for 2010.

CONCLUSIONS

Laboratory results from groundwater monitoring in 2010 indicate that the benzene and xylene levels in monitoring well MW-7 remain over the WQCC limits, while monitoring well MW-9 was below the WQCC standards for all BTEX constituents during all 2010 monitoring events. Analytical results from monitoring well MW-9 have been below the WQCC standards for four (4) consecutive monitoring events dating back to November of 2009. Based on the historical groundwater results for this area, and the shallow groundwater gradient, it seems that the benzene and xylene impact is confined to a small area surrounding monitoring well MW-7, and is not traveling off site.

RECOMMENDATIONS

XTO proposes the continued quarterly monitoring of monitoring well MW-7, as well as to discontinue monitoring of monitoring well MW-9 due to four (4) consecutive sampling events returning results below the WQCC standards for all BTEX constituents.

XTO also proposes the addition of hydrogen peroxide into the groundwater aquifer at this site, using monitoring well MW-7 as a conduit. This will enhance the oxygen levels in the

groundwater, enhancing the natural bio-remediation already taking place at this site. This should promote a downward trend in the benzene and xylene levels at this site. The hydrogen peroxide will be added, pending approval from the NNEPA, pursuant to the work plan created by LT Environmental, and included as *Attachment 6*.

Following NNEPA approval for closure, all monitoring well locations will be abandoned in accordance with the monitoring well abandonment plan.

TABLE 3

WATER LEVEL SUMMARY TABLE OH RANDEL #7 XTO ENERGY, INC.

Well ID	Date	Depth to Product (feet BTOC)	Depth to Water (feet BTOC)	Groundwater Elevation (feet AMSL
MW-1	4/22/2002	16.30	16.63	No Survey Data
MW-1	4/24/2002	NM	NM	No Survey Data
MW-1	8/27/2002	16.19	16.49	No Survey Data
MW-1	10/08/2002	15.79	16.16	No Survey Data
MW-1	5/23/2003	15.73	16.04	No Survey Data
MW-1	5/28/2003	15.81	15.99	No Survey Data
MW-1	6/6/2003	15.93	16.04	No Survey Data
MW-1	6/18/2003	15.97	16.04	No Survey Data
MW-1	6/26/2003	17.85	17.93	No Survey Data
MW-1	7/31/2003	16.18	16.19	No Survey Data
MW-1	8/29/2003	NM	16.29	No Survey Data
MW-1	6/21/2004	16.28	17.09	No Survey Data
MW-1	9/20/2006	0.00	22.28	No Survey Data
MW-1	12/5/2006 *	NM	NM	No Survey Data
MW-2	4/22/2002	NM	18.32	No Survey Data
MW-2	4/24/2002	18.35	18.38	No Survey Data
MW-2	8/27/2002	18.92	19.86	No Survey Data
MW-2	10/08/2002	17.50	18.02	No Survey Data
MW-2	5/23/2003	17.30	17.83	No Survey Data
MW-2	5/28/2003	17.62	17.78	No Survey Data
MW-2	6/6/2003	17.71	17.83	No Survey Data
MW-2	6/18/2003	17.79	17.88	No Survey Data
MW-2	6/26/2003	16.05	16.09	No Survey Data
MW-2	7/31/2003	NM	15.86	No Survey Data
MW-2	8/29/2003	NM	15.99	No Survey Data
MW-2	6/21/2004	16.10	16.83	No Survey Data
MW-2	9/20/2006	0.00	17.15	No Survey Data
MW-2	12/5/2006 *	NM	NM	No Survey Data
MW-3	4/22/2002	0.00	16.26	6312.95
MW-3	4/24/2002	0.00	16.25	6312.96
MW-3	8/27/2002	0.00	15.28	6313.93

Well ID	D Date Depth to Pr (feet BTC		Depth to Water (feet BTOC)	Groundwater Elevation (feet AMSL
MW-3	10/8/02	0.00	14.74	6314.47
MW-3	3/3/03	0.00	15.17	6314.04
MW-3	6/18/2003	0.00	15.16	6314.05
MW-3	8/29/03	0.00	15.39	6313.82
MW-3	9/20/2006	NM	NM	NM
MW-3	12/5/2006	0.00	13.85	6315.36
MW-3	3/8/2007	0.00	13.40	6315.81
MW-3	5/17/2007	0.00	12.87	6316.34
MW-3	8/9/2007	0.00	12.37	6316.84
MW-3	5/12/2008	0.00	14.83	6314.38
MW-3	11/7/2008	0.00	13.92	6315.29
MW-3	7/8/2009	0.00	14.14	6315.07
MW-3	11/5/2009	0.00	14.53	6314.68
MW-3	5/25/2010	0.00	14.21	6315.00
MW-3	8/12/2010	0.00	NM	NM
MW-3	11/17/2010	0.00	15.30	6313.91
MW-4	4/22/2002	0.00	16.63	6311.45
MW-4	4/24/2002	0.00	16.66	6311.42
MW-4	8/27/2002	0.00	16.47	6311.61
MW-4	10/8/02	0.00	16.03	6312.05
MW-4	3/3/03	0.00	15.94	6312.14
MW-4	6/18/2003	0.00	16.03	6312.05
MW-4	8/29/03	0.00	16.29	6311.79
MW-4	9/20/2006	NM	NM	NM
MW-4	12/5/2006	0.00	13.75	6314.33
MW-4	3/8/2007	0.00	12.55	6315.53
MW-4	5/17/2007	0.00	13.03	6315.05
MW-4	8/9/2007	0.00	12.59	6315.49
MW-4	5/12/2008	0.00	12.57	6315.51
MW-4	11/7/2008	0.00	13.68	6314.40
MW-4	7/8/09	0.00	13.72	6314.36
MW-4	11/5/09	0.00	14.12	6313.96
MW-4	5/25/10	0.00	13.86	6314.22
MW-4	8/12/10	0.00	14.39	6313.69
MW-4	11/17/10	0.00	14.60	6313.48
MW-5	4/22/2002	0.00	19.11	6314.12
MW-5	4/24/2002	0.00	19.14	6314.09

Well ID	Date	Depth to Product (feet BTOC)	Depth to Water (feet BTOC)	Groundwater Elevation (feet AMSL	
MW-5	8/10/2002	0.00	19.10	6314.13	
MW-5	6/18/2003	0.00	18.86	6314.37	
MW-5	6/21/2004	0.00	19.64	6313.59	
MW-5	6/28/2005	0.00	17.30	6315.93	
MW-5	9/20/2006	NM	NM	NM	
MW-5	12/5/2006	0.00	18.65	6314.58	
MW-5	3/8/2007	0.00	18.15	6315.08	
MW-5	5/17/2007	0.00	17.78	6315.45	
MW-5	8/9/2007	0.00	UTM	UTM	
MW-5	5/12/2008	0.00	18.82	6314.41	
MW-5	11/7/2008	0.00	18.90	6314.33	
MW-5	7/8/2009	0.00	20.08	6313.15	
MW-5	11/5/2009	0.00	20.44	6312.79	
MW-5	5/25/2010	0.00	20.33	6312.90	
MW-5	8/12/2010	0.00	20.51	6312.72	
MW-5	11/17/2010	0.00	20.93	6312.30	
MW-6	4/22/2002	0.00	18.31	No Survey Data	
MW-6	4/24/2002	0.00	18.32	No Survey Data	
MW-6	8/27/2002	NM	NM	No Survey Data	
MW-6	10/8/02	16.84	18.13	No Survey Data	
MW-6	5/23/2003	16.62	17.95	No Survey Data	
MW-6	5/28/2003	16.68	17.90	No Survey Data	
MW-6	6/6/2003	16.80	18.00	No Survey Data	
MW-6	6/18/2003	16.78	18.02	No Survey Data	
MW-6	6/26/2003	16.88	18.10	No Survey Data	
MW-6	7/31/2003	17.77	19.13	No Survey Data	
MW-6	8/29/2003	16.88	18.34	No Survey Data	
MW-6	6/21/2004	17.78	18.95	No Survey Data	
MW-6	9/20/2006	15.79	16.87	No Survey Data	
MW-6	12/5/2006 *	L		No Survey Data	
MW-7	5/17/07	0.00	15.46	6315.90	
MW-7	8/9/07	0.00	14.72	6316.64	
MW-7	11/27/07	0.00	14.91	6316.45	
MW-7	5/12/08	0.00	15.12	6316.24	
MW-7	11/7/08	0.00	15.82	6315.54	
MW-7	7/8/09	0.00	16.44	6314.92	
MW-7	11/5/09	0.00	16.76	6314.60	

Well ID	Date	Depth to Product (feet BTOC)	Depth to Water (feet BTOC)	Groundwater Elevation (feet AMSL)
MW-7	5/25/10	0.00	16.63	6314.73
MW-7	8/12/10	0.00	16.82	6314.54
MW-7	11/17/10	0.00	17.65	6313.71
MW-8	5/17/07	0.00	19.64	6314.86
MW-8	8/9/07	0.00	18.94	6315.56
MW-8	11/27/07	0.00	19.20	6315.30
MW-8	5/12/08	0.00	19.97	6314.53
MW-8	11/7/08	0.00	19.55	6314.95
MW-8	7/8/09	0.00	20.01	6314.49
MW-8	11/5/09	0.00	20.41	6314.09
MW-8	5/25/10	0.00	20.31	6314.19
MW-8	8/12/10	0.00	20.41	6314.09
MW-8	11/17/10	0.00	20.63	6313.87
MW-9	7/8/09	0.00	35.26	6295.10
MW-9	11/5/09	0.00	33.08	6297.28
MW-9	5/25/10	0.00	29.28	6301.08
MW-9	8/12/10	0.00	31.12	6299.24
MW-9	5/25/10	0.00	20.31	6310.05
MW-9	8/12/10	0.00	20.41	6309.95
MW-9	11/17/10	0.00	30.49	6299.87

Notes:

BTOC - Below Top of Casing NM - Not Measured AMSL - Above Mean Sea Level UTM - Unable to Measure * - Well was destroyed

TABLE 4

GROUNDWATER RESULTS SUMMARY TABLE OH RANDEL #7 XTO ENERGY, INC.

Well ID	Date	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	
NMWQCC Groundwater Standard		10 ug/L	750 ug/L	750 ug/L	620 ug/L	
MW-1	4/22/2002	NS	NS	NS	NS	
MW-1	4/24/2002	NS	NS	NS	NS	
MW-1	8/27/2002	NS	NS	NS	NS	
MW-1	10/08/2002	NS	NS	NS	NS	
MW-1	5/23/2003	NS	NS	NS	NS	
MW-1	5/28/2003	NS	NS	NS	NS	
MW-1	6/6/2003	NS	NS	NS	NS	
MW-1	6/18/2003	NS	NS	NS	NS	
MW-1	6/26/2003	NS	NS	NS	NS	
MW-1	7/31/2003	NS	NS	NS	NS	
MW-1	8/29/2003	NS	NS	NS	NS	
MW-1	6/21/2004	NS	NS	NS	NS	
MW-1	9/20/2006	NS	NS	NS	NS	
MW-1	12/5/2006 *	NS	NS	NS	NS	
NUL 2	4/22/2002	1	210	210	NG	
MW-2	4/22/2002	NS	NS	NS	NS	
MW-2	4/24/2002	NS	NS	NS	NS	
MW-2	8/27/2002	NS	NS	NS	NS	
MW-2	10/08/2002	NS	NS	NS	NS	
MW-2	5/23/2003	NS	NS	NS	NS	
MW-2	5/28/2003	NS	NS	NS	NS	
MW-2	6/6/2003	NS	NS	NS	NS	
MW-2	6/18/2003	NS	NS	NS	NS	
MW-2	6/26/2003	NS	NS	NS	NS	
MW-2	7/31/2003	NS	NS	NS	NS	
MW-2	8/29/2003	NS	NS	NS	NS	
MW-2	6/21/2004	NS	NS	NS	NS	
MW-2	9/20/2006	NS	NS	NS	NS	
MW-2	12/5/2006 *	NS	NS	NS	NS	
MW-3	4/22/2002	NS	NS	NS	NS	
MW-3	4/24/2002			and the second second		
111 11 -3	8/27/2002	24	2.4	0.58	200	

Well ID	Date	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	
MWQCC Grou	undwater Standard	10 ug/L	750 ug/L	750 ug/L	620 ug/L	
MW-3	10/8/02	NA	NA	NA	NA	
MW-3	3/3/03	5.5	ND	ND	43	
MW-3	6/18/2003	6.1	0.97	ND	43	
MW-3	8/29/03	3.2	0.53	ND	24	
MW-3	9/20/2006	NS	NS	NS	NS	
MW-3	12/5/2006	<1	<1	<1	<3	
MW-3	3/8/2007	NS	NS	NS	NS	
MW-3	5/17/2007	<1	<1	<1	<2	
MW-3	8/9/2007	<1	<1	<1	<2	
MW-3	5/12/2008	NS	NS	NS	NS	
MW-3	11/7/2008	NS	NS	NS	NS	
MW-3	7/8/2009	NS	NS	NS	NS	
MW-3	11/5/2009	NS	NS	NS	NS	
MW-3	5/25/2010	NS	NS	NS	NS	
MW-3	8/12/2010	NS	NS	NS	NS	
MW-3	11/17/2010	NS	NS	NS	NS	
MW-4	4/22/2002	NS	NS	NS	NS	
MW-4	4/24/2002	ND	0.59	ND	2.1	
MW-4	8/27/2002	1.3	ND	ND	3.5	
MW-4	10/8/02	NS	NS	NS	NS	
MW-4	3/3/03	4.2	ND	ND	5	
MW-4	6/18/2003	6.2	ND	ND	4.5	
MW-4	8/29/03	8.3	ND	ND	4.3	
MW-4	9/20/2006	NS	NS	NS	NS	
MW-4	12/5/2006	<1	<1	<1	<3	
MW-4	3/8/2007	NS	NS	NS	NS	
MW-4	5/17/2007	<1	<1	<1	<2	
MW-4	8/9/2007	<1	<1	<1	<2	
MW-4	5/12/2008	NS	NS	NS	NS	
MW-4	11/7/2008	NS	NS	NS	NS	
MW-4	7/8/09	NS	NS	NS	NS	
MW-4	11/5/09	NS	NS	NS	NS	
MW-4	5/25/10	NS	NS	NS	NS	
MW-4	8/12/10	NS	NS	NS	NS	
MW-4	11/17/10	NS	NS	NS	NS	

Well ID	Date	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)
MWQCC Grou	undwater Standard	10 ug/L	750 ug/L	750 ug/L	620 ug/L
MW-5	4/22/2002	NS	NS	NS	NS
MW-5	4/24/2002	510	0.64	8.9	240.0
MW-5	8/10/2002	NA	NA	NA	NA
MW-5	6/18/2003	1,100	20	ND	660.0
MW-5	6/21/2004	2,000	ND	ND	260.0
MW-5	6/28/2005	1,100	15	ND	160.0
MW-5	9/20/2006	NS	NS	NS	NS
MW-5	12/5/2006	37	<1	<1	4.1
MW-5	3/8/2007	NS	NS	NS	NS
MW-5	5/17/2007	<1	<1	<1	<2
MW-5	8/9/2007	NS	NS	NS	NS
MW-5	5/12/2008	NS	NS	NS	NS
MW-5	11/7/2008	NS	NS	NS	NS
MW-5	7/8/2009	NS	NS	NS	NS
MW-5	11/5/2009	NS	NS	NS	NS
MW-5	5/25/2010	NS	NS	NS	NS
MW-5	8/12/2010	NS	NS	NS	NS
MW-5	11/17/2010	NS	NS	NS	NS
MW-6	4/22/2002	NS	NS	NS	NS
MW-6	4/24/2002	6,100	4,800	920	6,600
MW-6	8/27/2002	NS	NS	NS	NS
MW-6	10/8/02	NS	NS	NS	NS
MW-6	5/23/2003	NS	NS	NS	NS
MW-6	5/28/2003	NS	NS	NS	NS
MW-6	6/6/2003	NS	NS	NS	NS
MW-6	6/18/2003	NS	NS	NS	NS
MW-6	6/26/2003	NS	NS	NS	NS
MW-6	7/31/2003	NS	NS	NS	NS
MW-6	8/29/2003	NS	NS	NS	NS
MW-6	6/21/2004	NS	NS	NS	NS
MW-6	9/20/2006	NS	NS	NS	NS
MW-6	12/5/2006 *	NS	NS	NS	NS
MW-7	5/17/07	8,500	17,000	980	16,000
MW-7	8/9/07	9,800	11,000	770	12,000
MW-7	11/27/07	12,000	9,000	940	13,000

Well ID	Date	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	
NMWQCC Grou	ndwater Standard	10 ug/L	750 ug/L	750 ug/L	620 ug/L	
MW-7	5/12/08	7,900	11,000	830	12,000	
MW-7	11/7/08	12,000	16,000	1,100	17,000	
MW-7	7/8/09	9,800	8,200	<100	12,000	
MW-7	11/5/09	9,800	7,900	570	13,000	
MW-7	5/25/10	7,200	3,800	440	11,000	
MW-7	8/12/10	82	58	9.2	200	
MW-7	11/17/10	5,200	5,500	76.0	3,400	
MW-8	5/17/07	<1.0	1.9	<1.0	3.7	
MW-8	8/9/07	<1.0	<1.0	<1.0	<2.0	
MW-8	11/27/07	21.0	<1.0	<1.0	<2.0	
MW-8				<1.0	<1.0	<2.0
MW-8	11/7/08	1.2	<1.0	<1.0	<2.0	
MW-8	7/8/09	<1.0	<1.0	<1.0	<2.0	
MW-8	11/5/09	1.1	<1.0	<1.0	<2.0	
MW-8	5/25/10	NS	NS	NS	NS	
MW-8	8/12/10	NS	NS	NS	NS	
MW-8	11/17/10	NS	NS	NS	NS	
MW-9	7/8/09	91	160	6.9	100	
MW-9	11/30/09	<1	<1	<1	<2	
MW-9	5/25/10	<1.0	<1.0	<1.0	<2.0	
		1				

<5.0

<5.0

<0.5

<0.5

<1.5

<1.5

Notes:

ug/l - micrograms per liter

< - indicates result is less than the stated laboratory method detection limit

NMWQCC - New Mexico Water Quality Control Commission

8/12/10

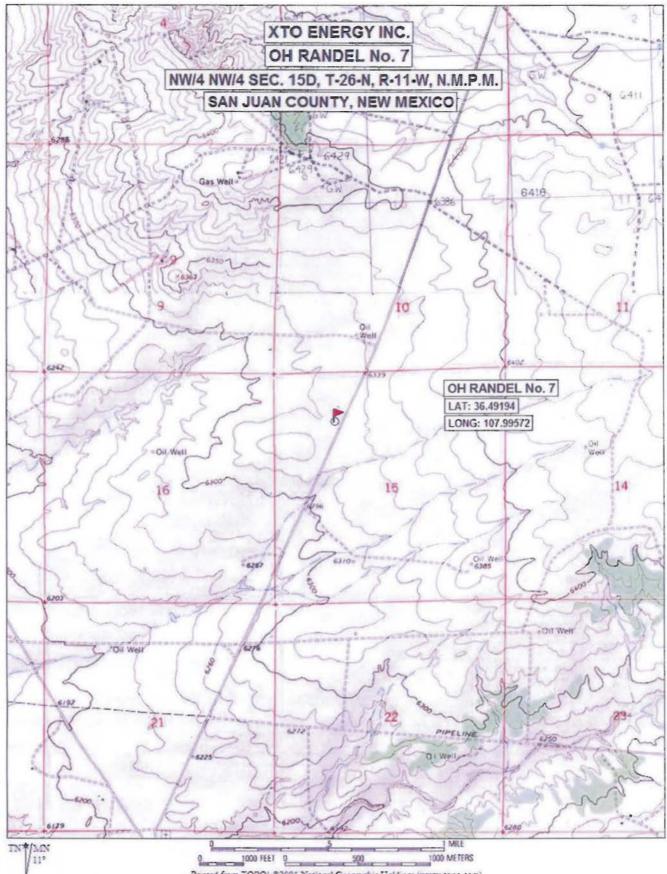
11/17/10

Benzene, Toluene, Ethylbenzene, and Total Xylenes analyzed by EPA Method 8021B.

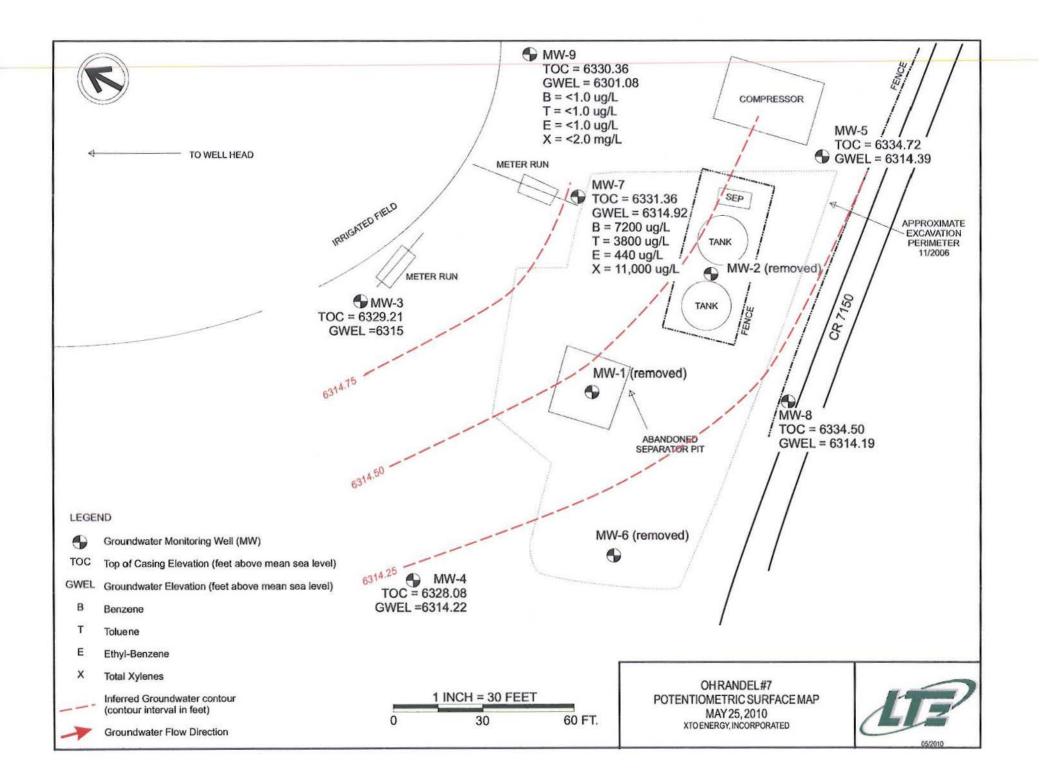
<0.5

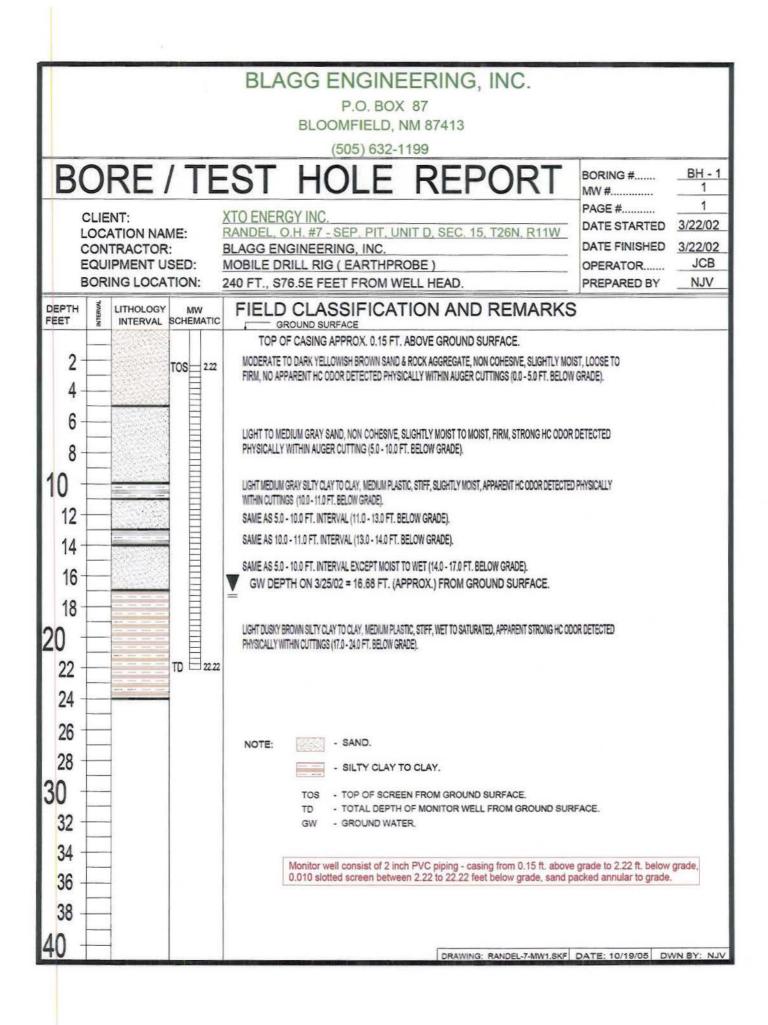
2.4

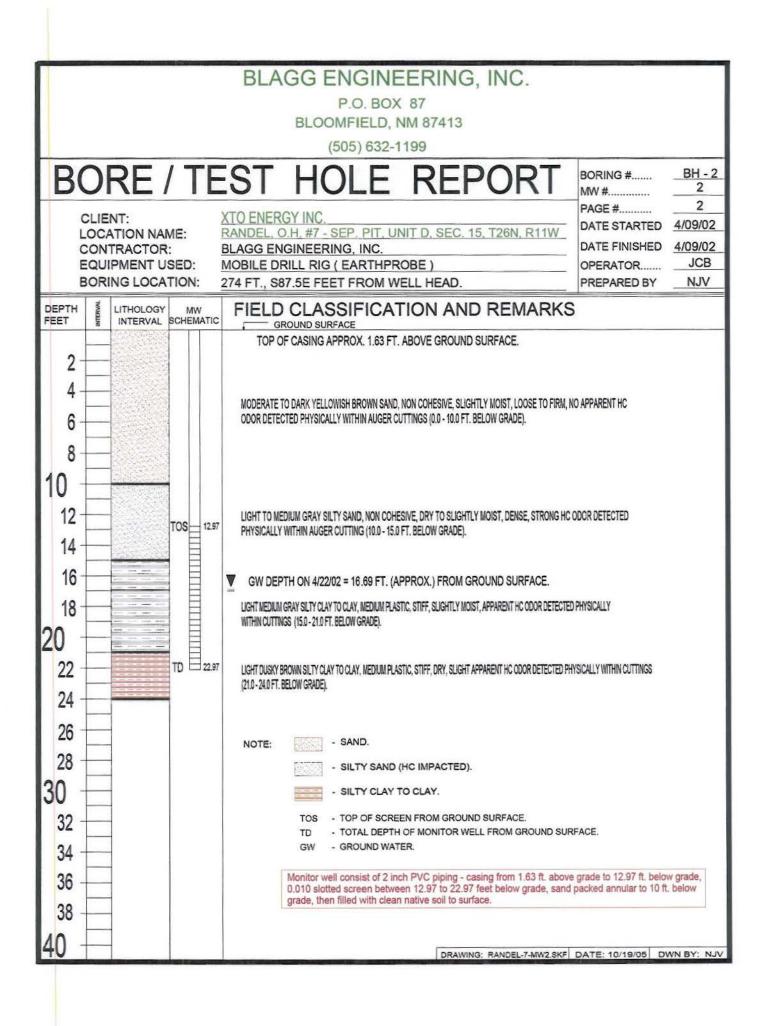
NS - Not Sampled

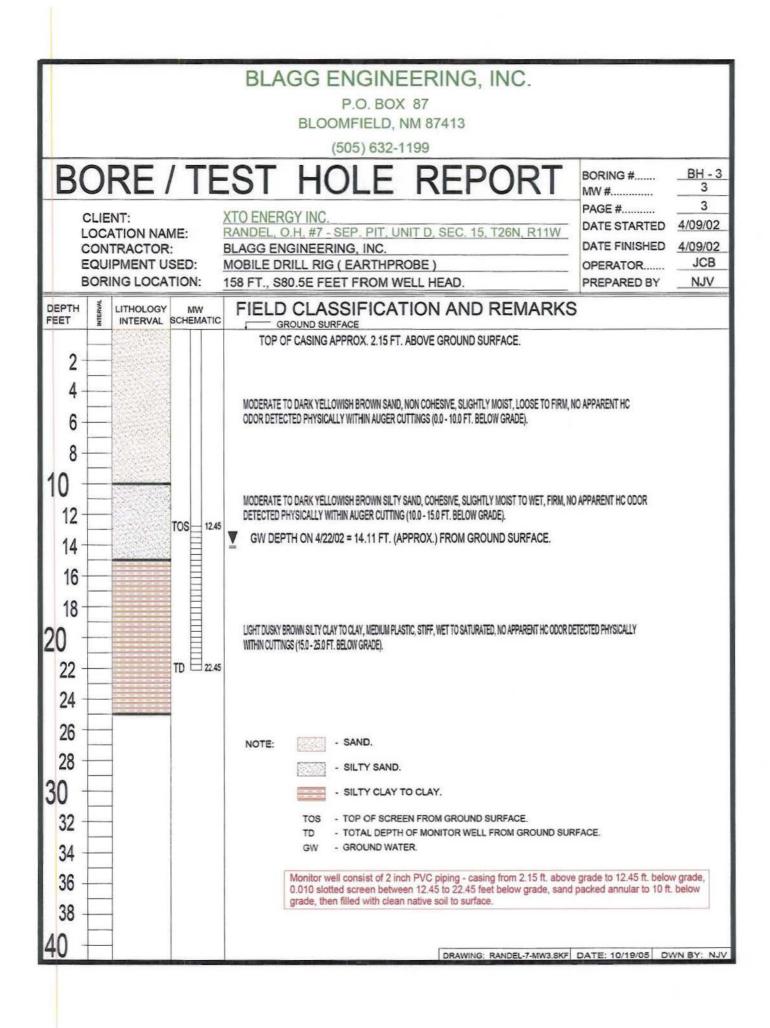

MW-9

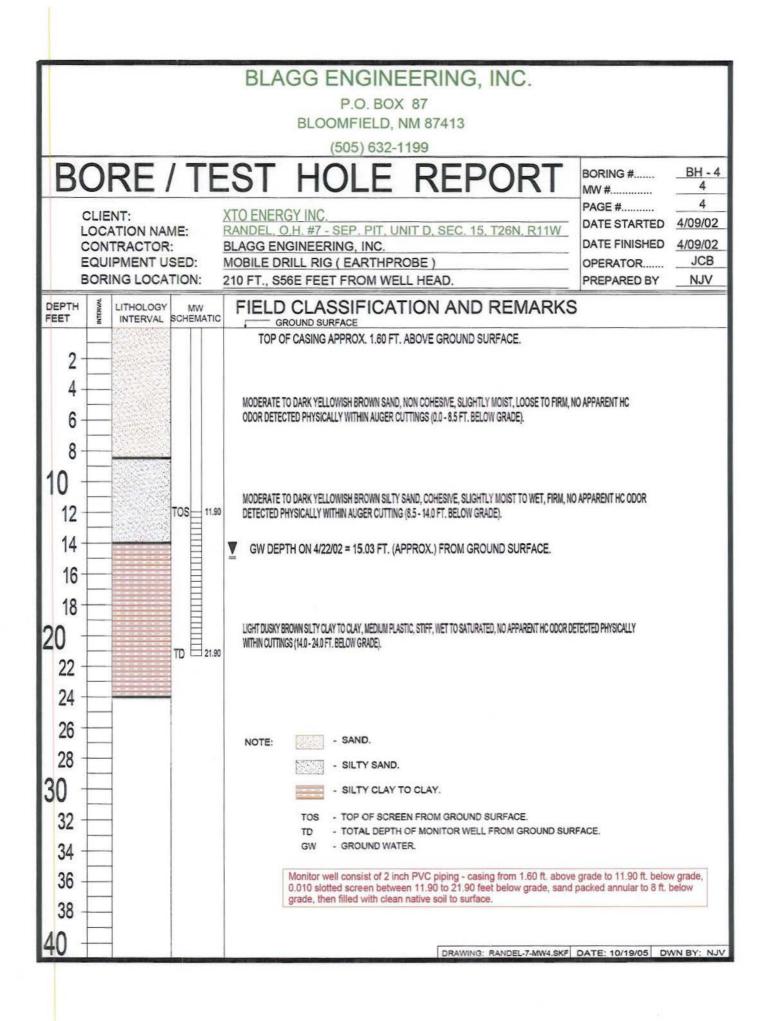
MW-9

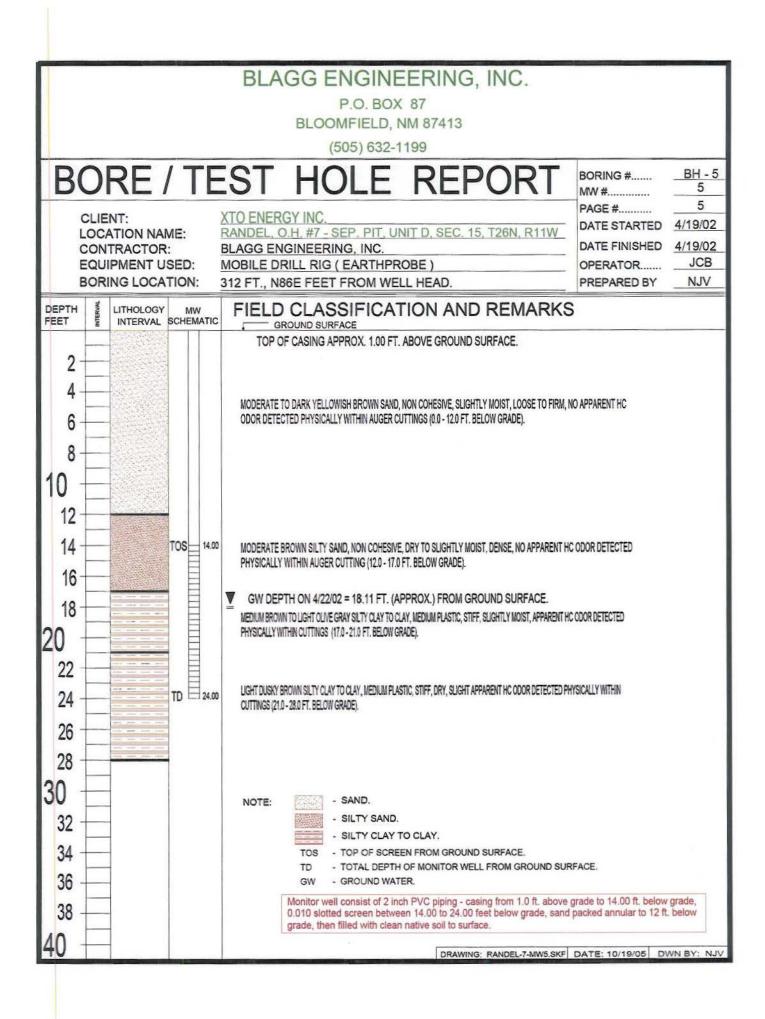

BOLD Indicates the result exceeds the NMWQCC Standard

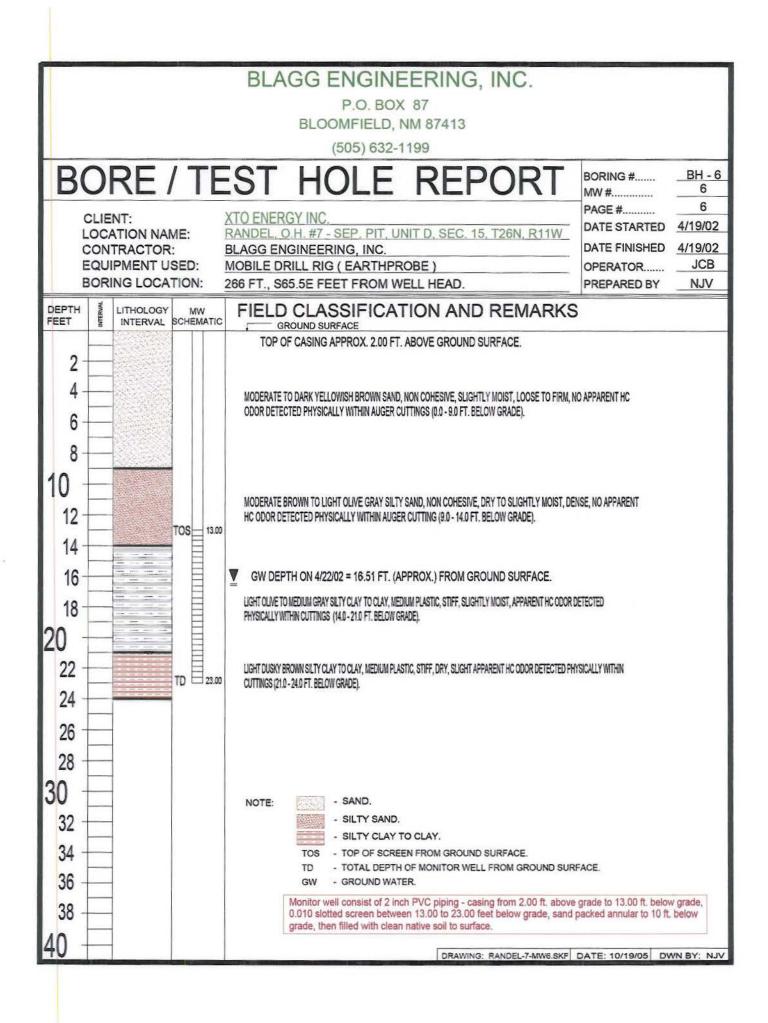

* - Well Destroyed






Printed from TOPO! @2001 National Geographic Holdings (www.topo.com)





LodeStar Services P.O. Box 4465 Durango, CO 81302 303-917-6288

Borehole #:	1	
Well #:	MW-7	-111-11
Page:	1 of 2	
haw		

Project Number: Project Name: XTO Ground Water Project Location: OH Randel #7

 Borehole Location:
 36° 29.508' N, 107° 59.720' W

 GWL Depth:
 19'

 Drilled By:
 Enviro-Drill

 Well Logged By:
 Ashley Ager

 Date Started:
 05/01/07

 Date Completed:
 05/01/07

Drilling Method:	Hollow Stem Auger
Air Monitoring Method:	PID

Depth (feet)	Sample Number	Sample Interval	Sample Type & Recovery (inches)	Sample Description	Air Monitoring	Drilling Conditions
• •	1	0-5'	cuttings	brown, unconsolidated, poorly sorted sand and gravel, damp	0	Easy
5	2	5-7'	split spoon	brown, unconsolidated, poorly sorted sand and gravel, damp	o	Easy
10	3	10-12	split spoon	10-10.5: brown, unconsolidated, poorly sorted sand and gravel, damp 10.5-12: whitish-brown medium sand, well sorted, unconsolidated, dry	0 0	Easy
15	4	15-17	split spoon	15-15.5: reddish brown coarse sand, poorly sorted, damp 15.5-16.5: brown clay with white chalkish material on top 16.5-17: reddish brown silty sand, coarse, poorly sorted, damp	7.2 0 0	Easy

Comments:

Geologist Signature: Achieve L. Ager

LodeStar Services P.O. Box 4465 Durango, CO 81302 303-917-6288

Bo	orehole #:	1	
	Well #:	MW-7	
	Page:	2 of 2	
Project Number:			

Project Name: XTO Ground Water

Project Location: OH Randel #7

 Borehole Location:
 36° 29.522' N, 107° 59.736' W

 GWL Depth:
 16.5

 Drilled By:
 Enviro-Drill

 Well Logged By:
 Ashley Ager

 Date Started:
 05/01/07

 Date Completed:
 05/01/07

Drilling Method: Hollow Stem Auger Air Monitoring Method: PID

Depth (feet)	Sample Number	Sample Interval	Sample Type & Recovery (inches)	Sample Description	Air Monitoring	Drilling Conditions
20	5	20-22	split spoon	20-20.4: reddish brown, coarse sand, poorly sorted, damp 20.4-20.8: gray coarse sand, moist, poorly sorted 20.8-21: saturated gray coarse sand, poorly	1.3 1.0 0.5	Easy
25				sorted 21-22: reddish gray clay	o	
 	6	25-16	split spoon	Variegated reddish brown clay, dry	0	Easy
30 30 30 35	7	30-32	split spoon	Variegated reddish brown clay, dry	O	Easy
40						

Comments:

Very thin saturated layer at approximately 20'. Stiff clay is present below that. Wet layer probably represents a small perched aquifer atop the clay.

Geologist Signature: Achileg L. Ager

LodeStar Services P.O. Box 4465 Durango, CO 81302 303-917-6288

Bo	prehole #:	1	
	Well #:	MW-8	
	Page:	1 of 2	
Project Number:			

Project Name: XTO Ground Water Project Location: OH Randel #7

 Borehole Location:
 36° 29.522' N, 107° 59.736' W

 GWL Depth:
 16.5

 Drilled By:
 Enviro-Drill

 Well Logged By:
 Ashley Ager

 Date Started:
 05/01/07

 Date Completed:
 05/01/07

Drilling Method:	Hollow Stem Auger
Air Monitoring Method:	PID

Depth (feet)	Sample Number	Sample Interval	Sample Type & Recovery (inches)	Sample Description	Air Monitoring	Drilling Conditions
	1	0-5'	cuttings	brown, unconsolidated, poorly sorted sand and gravel, damp	0	Easy
5	2	5-7'	split spoon	brown, unconsolidated, poorly sorted sand and gravel, damp	0	Easy
10	3	10-11.8	split spoon	brown, unconsolidated, poorly sorted sand and gravel, damp	O	Easy
15	4	15-16.9	split spoon	15-15.8: brown, unconsolidated, poorly sorted sand and gravel 15.8-16.4: moist, grayish brown sandy silt 16.4-16.9: coarse, poorly sorted, grayish brown sand, wet, some HC odor	0 52.8 319	Easy Easy Easy

Comments:

Geologist Signature: Ackley L. Ager

LodeStar Services P.O. Box 4465 Durango, CO 81302 303-917-6288

Bo	orehole #:	1	
	Well #:	MW-8	
	Page:	2 of 2	-
Project Number:	- A CONTRACTOR OF THE		

Project Name: XTO Ground Water Project Location: OH Randel #7

 Borehole Location:
 36° 29.522' N, 107° 59.736' W

 GWL Depth:
 16.5

 Drilled By:
 Enviro-Drill

 Well Logged By:
 Ashley Ager

 Date Started:
 05/01/07

 Date Completed:
 05/01/07

Drilling Method: Hollow Stem Auger Air Monitoring Method: PID

Depth (feet)	Sample Number	Sample Interval	Sample Type & Recovery (inches)	Sample Description	Air Monitoring	Drilling Conditions
20	5	20-21.8	split spoon	20-20.4: reddish brown sand, coarse, poorly sorted, some gravel content, moist 20.4-21.8: variegated reddish gray stiff clay, moist	78.9 0.2	Easy Easy
25 	6	25-27	split spoon	Variegated reddish brown clay wet at top, dry at bottom	o	Easy
30	7	30-32	split spoon	30-30.7: variegated reddish brown clay 30.7-31.8: greenish gray silty sand, coarse, poorly sorted, consolidated, dry	0 0	Steady
40						

Comments:

Very thin saturated layer at approximately 16.5'. Stiff clay is present below that. Wet layer probably represents a small perched aquifer atop the clay.

Geologist Signature: Ackley L. Agor

LodeStar Services P.O. Box 4465 Durango, CO 81302 303-917-6288

Bo	rehole #:	B-1	
	Well #:	MW-9	
	Page:	1 of 2	
Project Number:			
Project Name: X	O Ground Wa	ater	
Project Location: Ol	H Randel #7		

Borehole Location: 36º 29.531' N, 107º 59.731' W GWL Depth: 16' Drilled By: Kelly Padilla Well Logged By: Ashley Ager Date Started: 07/07/09 Date Completed: 07/07/09

Drilling Method: Hollow Stem Auger Air Monitoring Method: PID

Depth (feet)	Sample Number	Sample Interval	Sample Type & Recovery (inches)	Sample Description	Air Monitoring	Drilling Conditions
• •		0-5	cuttings	brown, poorly sorted coarse sand and gravel, road base		easy
5	1	5-7'	split spoon, 17"	0-13.5": 7.5 YR 5/6 strong brown sp, poorly sorted coarse sand, sub angular, dry, unconsolidated 13.5 - 17": 10YR 6/1 gray, sandy shale, crumbly	O	34 Blows
10	2	10-12	split spoon, 22"	10 YR 5/3 brown sp, poorly sorted, coarse sand, sub angular, dry	0	30 Blows
15	3	15-17	split spoon, 18"	0-2": same as above 2 - 16": 10 YR 5/3 brown sm, poorly sorted, medium sand w/ higher silt content, damp	0	25 Blows

Comments:

Geologist Signature: Ackley L Aper

LodeStar Services P.O. Box 4465 Durango, CO 81302 303-917-6288

	Borehole #:	B-1	
	Well #:	MW-9	_
	Page:	2 of 2	
Project Number:			
Project Name:	XTO Ground Wa	ater	
Project Location:	OH Randel #7		_

 Borehole Location:
 36° 29.531' N, 107° 59.731' W

 GWL Depth:
 16'

 Drilled By:
 Kelly Padilla

 Well Logged By:
 Ashley Ager

 Date Started:
 07/07/09

 Date Completed:
 07/07/09

Drilling Method:	Hollow Stem Auger
Air Monitoring Method:	PID

Depth (feet)	Sample Number	Sample Interval	Sample Type & Recovery (inches)	Sample Description	Air Monitoring	Drilling Conditions
20	4	20-22	split spoon, 20"	10 YR 3/2 v. dark grayish brown CL, clay some coarse sand at top, damp	0.1	68 Blows Wet rod
25	5	25-27	split spoon, 18"	10 YR 7/2 light gray CL, clay interbedded with 10 yr 4/2 dark grayish brown clays, iron discoloration, dry	0	58 Blows
30	6	30-32	split spoon, 18"	same as above, dry	0	76 Blows
35	7	35-37'	split spoon, 15"	same as above, dry	0	41 Blows

Comments:

Based on data from existing wells, damp sand layer at ~16' is water bearing unit. Contains only small amount of water, and hole is dry after drilling to 37'. Will let sit and see if wet layer fills in. 3" of water in hole after 30 mins. Set hole.

Geologist Signature: Askley L. Aper

MONITORING WELL INSTALLATION RECORD

Lodestar Services, Inc PO Box 3861 Farmington, New Mexico 87499 (505) 334-2791

Borehole #	B-1
Well #	MW-9
Page 1	of 1

Project Name	XTO Ground Water
Project Number	Cost Code
Project Location	OH Randel #7
On-Site Geologist	Ashley Ager
Personnel On-Site	Kelly, Kimo, Ritchie
Contractors On-Site	
Client Personnel On-Site	

Elevation	6330	1	
Well Location	36° 29.531' N, 107° 59.731' W		
GWL Depth	35.6	2'	
Installed By	Kyvek		
	Kelly	y Padilla	
Date/Time Starte	ed	06/07/09, 1129	
Date/Time Com	oleted	06/08/09, 1015	

Item	Material	Depth		=	Top of Protective Casing	2.5
Top of Protective Casing	Steel	(feet) 2.5	1 [1	Top of Riser	2.2
		1			Ground Surface	0
Bottom of Protective Casing Top of Permanent Borehole Casing		-2.5 NA				
Bottom of Permanent Borehole Casing		NA				
Top of Concrete	Concrete	1"				
Bottom of Concrete		-1.5"				
Top of Grout	Quickcrete	-2.0				
Bottom of Grout		-16.0				
Top of Well Riser	Sch. 40 PVC	2.2				
Bottom of Well Riser		-21.0				
Top of Well Screen	Sch. 40 PVC	-21.0	000	000	Top of Seal	-16.0
Bottom of Well Screen		-36.0	000	000		
Top of Peltonite Seal	3/8" Bentonite hole plug	-16.0		200		
Bottom of Peltonite Seal		-18.0		m	Top of Gravel Pack	-18.0
Top of Gravel Pack	10-20 grade silica sand	-18.0			Top of Screen	<u>-21.0</u>
Bottom of Gravel Pack		-36.2				
Top of Natural Cave-In	Silty sand	-36.2				
Bottom of Natural Cave-In		-36.8				
Top of Groundwater		-35.62			Bottom of Screen	<u>-36.0</u>
Total Depth of Borehole		-36.8			Bottom of Borehole	-36.8

Comments: <u>13 bags of sand used;1 hole plug, 3 gallons of water; 3 bags of concrete for pad, 1 metal casing, 2 bags of quikcrete used</u>

Geologist Signature Achley L. Aper

LodeStar Services P.O. Box 4465 Durango, CO 81302 303-917-6288

E	lorehole #:	B-2	
	Well #:		
	Page:	1 of 2	
Project Number:			
Project Name: >	(TO Ground Wa	ater	
Project Location:	OH Randel #7		

 Borehole Location:
 36° 29' 30.46" N, 107° 59' 44.2" W

 GWL Depth:
 Dry Hole

 Drilled By:
 Kelly Padilla

 Well Logged By:
 Ashley Ager

 Date Started:
 07/07/09

 Date Completed:
 07/08/09

Drilling Method:	Hollow Stem Auger
Air Monitoring Method:	PID

Depth (feet)	Sample Number	Sample Interval	Sample Type & Recovery (inches)	Sample Description	Air Monitoring	Drilling Conditions
		0-5'	cuttings	brown poorly sorted coarse sand and gravel - road base		easy
5 	1	5-7'	split spoon, 11"	2.5 Y 6/1 Gray coarse sand sp, subrounded, backfill	0	Easy, 26 Blows
10	2	10-12	split spoon, 16"	2.5 Y 4/2 dark grayish brown, fine sand, poorly sorted, lots of fines	0	25 Blows
15 	3	15-17	split spoon, 10"	2.5 Y 4/1 Dark Gray, fine silty sand, about 5% c. content, damp, backfill	0	12 Blows Wet rod

Comments:

Geologist Signature: Achley L Aper

LodeStar Services P.O. Box 4465 Durango, CO 81302 303-917-6288

	Borehole #:	B-2	
	Well #:		
	Page:	2 of 2	
Project Number:			
Project Name:	XTO Ground W	ater	
Project Location:	OH Randel #7		

 Borehole Location:
 36° 29' 30.46" N, 107° 59' 44.2" W

 GWL Depth:
 dry hole

 Drilled By:
 Kelly Padilla

 Well Logged By:
 Ashley Ager

 Date Started:
 07/07/09

 Date Completed:
 07/08/09

Drilling Method: Hollow Stem Auger Air Monitoring Method: PID

Depth (feet)	Sample Number	Sample Interval	Sample Type & Recovery (inches)	Sample Description	Air Monitoring	Drilling Conditions
20	4	20-22	split spoon, 19"	5 YR 3/2 Dark reddish brown CL, Clay, damp	0.1	59 Blows
25	5	25-27	split spoon, 16.5"	0 - 2": same as above 2-16.5": 10YR 6/2 light brownish gray, silty clay, dry	O	66 Blows
30	6	30-32	split spoon, 14"	same as above, damp	o	48 Blows
35	7	35-37'	split spoon, 9"	same as above, dry Stop to see if it fills	11.2	45 Blows

Comments:

Based on data from existing wells, damp sand layer at ~16' is water bearing unit. Contains only a small amount of water and hole is dry after drilling to 37'. Let sit for 2 hours, and did not fill in. Let sit overnight. At 11:15 am on 07/08/09, hole is still dry. Plug.

Geologist Signature: Ackley L Ager

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505	State of New Energy Minerals and N Oil Conservatio 1220 South St. Santa Fe, NM	Jatural Resources on Division Francis Dr. 1 87505	For drilling and production appropriate NMOCD Distri For downstream facilities, office	ct Office.
Is pit or bel	elow-Grade Tank 1 w-grade tank covered by ration of a pit or below-grade ta	a "general plan"? Yes	s 🖾 No 🗖	
Operator: <u>XTO ENERGY INC.</u> Address: <u>2700 FARMINGTON AVE B</u> Facility or well name: <u>O. H. RANDEL #7</u> County: <u>SAN JUAN</u> Latitude <u>36.49193</u>	API #: 30-0-	ARMINGTON, N 15- 24749 لا	M 87401 /L or Qtr/Qtr_D_Sec_15	_T_26N_R_11W] Private [] Indian []
Pit Type: Drilling Production Disposal SEPARA Workover Emergency	Construction r	bbl-Type of fluid:	If rat, explain why not.	
Depth to ground water (vertical distance from bottom of pithigh water elevation of ground water.)	to seasonal Less than 50 f 50 feet or more 100 feet or more	e, but less than 100 feet	(20 points) (10 points) (0 points)	20
Wellhead protection area: (Less than 200 feet from a priva water source, or less than 1000 feet from all other water source	No		(20 points) (0 points)	0
Distance to surface water: (horizontal distance to all wetlan irrigation canals, ditches, and perennial and ephemeral wate	200 feet or mo	re, but less than 1000 feet	(20 points) (10 points) (0 points)	0
	Ranking Scor	e (Total Points)		20
If this is a pit closure: (1) attach a diagram of the facility sh your are burying in place) onsite	the of facility	. (3) Attach a ow depth below ground sur T. <u>S75E FRO</u> DEPTH <u>N/A ft.</u>	a general description of remedial a rfaceft, and attach	

I hereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that the above-described pit or below-grade tank has been/will be constructed or closed according to NMOCD guidelines 🖾, a general permit 🗋, or an alternative OCD-approved plan 🖾.

	11/18/05	ŝ
Date:	11/10/02	1
Date.		

Jeff Blagg - P.E. # 11607 PrintedName/Title

Your certification and NMOCD approval of this application/closure does not relieve the operator of liability should the contents of the pit or tank contaminate ground water or otherwise endanger public health or the environment. Nor does it relieve the operator of its responsibility for compliance with any other federal, state, or local laws and/or regulations.

Approval:

Printed Name/Title_

Signature

Signature

_ Date: _

1-40 c ser

			300452	4747	36	5.4919	13/107	.99632
CLIENT XT			GG ENG 87, BLC	INEERING	G. INC. . NM 87-	413	CATION (ND <u>7796</u>
FIELD R	EPORT	: PIT CI	JOSURI	E VERIF	TICATIO		GE Not _	/_ of _/
LOCATION: NAM		100 <u>で</u> TWP: 260					E STARTED: E FINISHED:	3/12/02
		sub- rawhan				ENV SPE	RONMENTAL CIALIST	NU
EXCAVATION APP								
DISPOSAL FAC	ILITY:	010-SITE		REMED	IATION MI	ETHOD .		
LAND USE:	ANCE - B	unt	LEASE:		March March 199	FORMA	TION	DR
FIELD NOTES DEPTH TO GROUNDW NMOCD RANKING SC	ATER >10	NEAREST W	ATER SOURCE	>1000	NEAREST S	URFACE VA	vice <u>?</u>	1000'
SOIL AND EX	CAVATION							n h RF = 0.51
DESCRIPTION					71ME	18 (T) p		1/12/02
SOIL TYPE: (SAND)/ SILTY S	AND / SILT /	SILTY CLAY	/ CLAY / G				
DENSITY (COHESIV ROISTURE) DRY / DISCOLORATION/ST HC DOOR DETECTE SAMPLE TYPE: (C ADDITIONAL COMME	SLIGHTLY AINING DBS DI YES / N	MDIST MOIST ERVED YES / D EXPLANAT	D/ WET / S NO EXPL ION - MEG PTS -	ATURATED / ANATION - <u>3</u> . CRAY SAM	SUPER SATUR AT: 4-6 8 10 Company	RATEB Island Groep	2	
			FI	ELD 4181 C	ALCULATION	S		
SCALE	SAMP. TIM	SAMPLE I.D.		The Construction of the second second			READING	CALC. ppm
0 FT								
								-
PIT_1	ERIME	TER No	0 RES	VM ULTS		<u>211 P</u>	ROFILI	E
56	: P	-	SAMPLE	FIELD HEADSPACE PID (ppm)				
			3 @ 3 @					
			4 8		_			
	G	22'	5 @					
re Jeus Jano	7							
1000								
P.U.		L						
-3.6 ·		1	DEG TPI	AMPLES alysis The ((Sol58) //30 X(Soc18) //				
PD = PIT DEPRES T.H. = TEST HOLE;								
TRAVEL NOTES:	CALLOUT:	1 1	naRci ·	ONSITE:	3/2/02	- mai		
				-				
evised: 02/27/0)2							bei1005C.

ENVIROTECH LABS

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	Blagg / XTO Energy	Project #:	94034-010
Sample ID:	1@6'	Date Reported:	03-14-02
Laboratory Number:	22253	Date Sampled:	03-12-02
Chain of Custody No:	9796	Date Received:	03-12-02
Sample Matrix:	Soil	Date Extracted:	03-14-02
Preservative:	Cool	Date Analyzed:	03-14-02
Condition:	Cool and Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	1,750	0.2
Diesel Range (C10 - C28)	15.5	0.1
Total Petroleum Hydrocarbons	1,770	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments: O.H. Randel #7 Abandoned Separator Pit Grab Sample.

L. aperen Analyst

Christing Wasters

5796 U.S. Highway 64 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

ENVIROTECH LABS

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Blagg / XTO Energy	Project #:	94034-010
Sample ID:	1@6'	Date Reported:	03-14-02
Laboratory Number:	22253	Date Sampled:	03-12-02
Chain of Custody:	9796	Date Received:	03-12-02
Sample Matrix:	Soil	Date Analyzed:	03-14-02
Preservative:	Cool	 Date Extracted: 	03-14-02
Condition:	Cool & Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
Benzene	3,000	1.8
Toluene	1,180	1.7
Ethylbenzene	835	1.5
p,m-Xylene	1,550	2.2
o-Xylene	1,220	1.0
Total BTEX	7,790	

ND - Parameter not detected at the stated detection limit.

Surrogate Re	coveries:	Parameter	Percent Recovery
		Fluorobenzene	95 %
		1,4-difluorobenzene	95 %
		Bromochlorobenzene	95 %
	December 1	B, Purge-and-Trap, Test Methods for Evaluat 996.	ing Solid Waste, SW-846, USEPA

Comments: O.H. Randel #7 Abandoned Separator Pit Grab Sample.

unt. aferren Analyst

Anista Maltas

5796 U.S. Highway 64 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

CHAIN OF CUSTODY RECORD 09796

Dient / Project Name	PR XTO	Energy	Project Location		P.	TOR				AN/	ALYSIS / PAR	AMETERS				
Sampler:	20		Client No. 940	34-010			No. of Containers	1.	BTEX			PRES	Rem		Coc	,L
Sample No./ Identification	Sample Date	Sample Time	Lab Number		Sample Matrix		Cont	80158	(8021B)			GRA	B	SAM	PL	E
Oc6'	3/12/02	1130	ରବ୍ଦ୍ୟ ସ	5	SOIL		1	1	1							
						_										
Relinquished by: (Signa	Un			Date 3/12/02	1230	A	Lu	(Signati	<u>e. (</u>	h			Di 3/12	ate /02	Tir 123	
Relinquished by: (Signa Relinquished by: (Signa								(Signati								
				ENV	IROT	E(CH	IN	C.			Sam	ple Re	eceipt	N	N/A
				Entra Sector	5796 U.S.	. Hig	hway	64				Received Int	act	-		
				Farm	ington, No (505) (8740	Л			Cool - Ice/Blu	e Ice	~		

ENVIROTECH LABS

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

Client:	QA/QC		Project #:		N/A
Sample ID:	03-14-TPH QA	VQC	Date Reported:		03-14-02
Laboratory Number:	22234		Date Sampled:		N/A
Sample Matrix:	Methylene Chlor	ride	Date Received:		N/A
Preservative:	N/A		Date Analyzed:		03-14-02
Condition:	N/A		Analysis Request	ted:	TPH
	I-Cal Date	I-Cal RF:	C-Cal RF	% Difference	Accept Range
Gasoline Range C5 - C10	01-07-02	2.5028E-002	2.5003E-002	0.10%	0 - 15%
Diesel Range C10 - C28	01-07-02	1.2696E-002	1.2671E-002	0.20%	0 - 15%
Blank Conc. (mg/L - mg/Kg)		Concentration		Detection Limit	
Gasoline Range C5 - C10		ND		0.2	
Diesel Range C10 - C28		ND		0.1	
Total Petroleum Hydrocarbons		ND		0.2	
Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept Range	1
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%	
Diesel Range C10 - C28	ND	ND	0.0%	0 - 30%	
Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept: Range
Gasoline Range C5 - C10	ND	250	250	100.0%	75 - 125%
Diesel Range C10 - C28	ND	250	250	100.0%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments:

QA/QC for samples 22234 -22239, 22253 and 22272.

~ C. africa Analyst

(Review Malters

5796 U.S. Highway 64 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

ENVIROTECH LABS

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client: Sample ID: Laboratory Number: Sample Matrix: Preservative: Condition:	N/A 03-14-BTEX QA/QC 22234 Soil N/A N/A	•	Project #: Date Reported: Date Sampled: Date Received: Date Analyzed: Analysis:		V/A 03-14-02 N/A 03-14-02 BTEX
Calibration and	I-Cal RF	C-Cal RF:	Diff.	Blank	Detect.
Detection Limits (ug/L)		Accept. Ran	nge 0 - 15%	Conc	Linit
Benzene	6.9839E-002	7.0049E-002	0.3%	ND	0.2
Toluene	5.0724E-002	5.0825E-002	0.2%	ND	0.2
Ethylbenzene	8.2086E-002	8.2333E-002	0.3%	ND	0.2
p,m-Xylene	7.1064E-002	7.1278E-002	0.3%	ND	0.2
o-Xylene	6.2661E-002	6.2787E-002	0.2%	ND	0.1
Duplicate Conc. (ug/Kg)	Sample	Duplicate	%Diff.	Accept Range	Detect, Limit
Benzene	ND	ND	0.0%	0 - 30%	1.8
Toluene	ND	ND	0.0%	0 - 30%	1.7
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.5
p,m-Xylene	ND	ND	0.0%	0 - 30%	2.2
o-Xylene	ND	ND	0.0%	0 - 30%	1.0
Spike Conc. (ug/Kg)	Sample	Amount Spiked	Spiked Sample	% Recovery	Accept Range
Benzene	ND	50.0	49.8	99.6%	39 - 150

Benzene	ND	50.0	49.8	99.6%	39 - 150
Toluene	ND	50.0	49.8	99.6%	46 - 148
Ethylbenzene	ND	50.0	49.8	99.6%	32 - 160
p,m-Xylene	ND	100	99.5	99.5%	46 - 148
o-Xylene	ND	50.0	49.8	99.6%	46 - 148

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996. Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments: QA/QC for sample 22234 - 22239, 22253 and 22272.

Analyst

of Walter Mistin Review

5796 U.S. Highway 64 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

BLAGG ENGINEERING. INC.

P O Box 87, Bloomfield, New Mexico 87413 Phone: (505)632-1199 Fax: (505)632-3903

April 17, 2002

Mr. Roger Anderson Chief of Environmental Bureau State of New Mexico Oil Conservation Division (NMOCD) 1220 St. Francis Drive Santa Fe, New Mexico 87505

RE: **Groundwater Impact XTO Energy**, Inc.

O.H. Randel #7 Well site Legal Description: Unit D, Sec. 15, T26N, R11W San Juan County, New Mexico

Dear Mr. Anderson:

Physical observation of groundwater after monitor well construction was completed on March 22, 2002 at the above referenced well site indicates approximately 0.32 ft. or 3.84 inches of free phase product. The monitor well is located within an abandoned separator pit area. XTO Energy will adhere to its NMOCD approved groundwater management plan during further assessment of the apparent hydrocarbon contamination encountered. Depth to free phase product in the monitor well was approximately 16.36 ft. below the ground surface.

If you have any questions concerning this information, please do not hesitate to contact Nelson Velez or myself at (505) 632-1199. Thank you for your cooperation.

Respectfully submitted, Blagg Engineering, Inc.

Jeffrey C. Blagg, P.E.

President

cc:

Denny Foust, Environmental Geologist, NMOCD, Aztec, NM Terry Matthews, Production Superintendent, XTO Energy, Inc., Farmington, NM Nina Hutton, Environmental & Safety Manager, XTO Energy, Inc., Ft. Worth, TX

NJV/njv

RANDEL-7.LTR

Lodestar Services, Inc. P.O. Box 3861, Farmington, NM 87499-3861, 505-334-2791

August 15, 2006

Mr. Steve Austin Navajo Nation EPA PO Box 1999 Shiprock, NM 87420

CERTIFIED MAIL: 7004 1160 0007 4952 1517

RE: OH Randel #7

Dear Mr. Austin,

XTO Energy Inc. (XTO) has contracted Lodestar Services, Incorporated (Lodestar) to oversee groundwater monitoring and remedial activities at the OH Randel #7 natural gas production well. It has come to our attention that the well is located on land regulated by the Navajo Nation Environmental Protection Agency (NNEPA). Previous regulatory correspondence has been with the New Mexico Oil Conservation Division (NMOCD). An annual comprehensive report was submitted to the NMOCD in January 2006 and is included for your review.

The OH Randel #7 is located in Unit D of Section 16 of Township 26N, Range 11W, and includes a former oil-water-separator pit that may have affected shallow groundwater. Six groundwater monitoring wells were previously installed on the site to investigate groundwater quality. One of the wells, MW-6, contains free-phase hydrocarbons. Previously MW-1 and MW-2 contained free-phase hydrocarbons. MW-1 is located in the center of the former pit. MW-2 is directly adjacent to the pit, and MW-6 is located down gradient of the pit. The annual report included herein has several groundwater contour maps provided by Blagg Engineering that indicate varying groundwater flow directions. Navajo Agricultural Products Incorporated (NAPI) conducts irrigation adjacent to the site and may influence groundwater flow direction.

The following steps are proposed remove impacted soil and free-phase hydrocarbons:

- Excavate affected soil associated with historical operations from the former pit. Impacted soil will be disposed at a local land farm permitted by the NMOCD. Soil headspace gas will be monitored with a photo-ionization detector (PID) to determine extent of impacted soil during excavation according to the NMOCD Guidelines for headspace analysis. Soil above 10 milligrams per kilogram (mg/kg) benzene, 50 mg/kg total benzene, toluene, ethylbenzene, and xylenes (BTEX), and 100 mg/kg total petroleum hydrocarbons will be removed. Laboratory analyses of composite samples collected from the sidewalls of the excavation will be used to document that impacted soil has been removed.
- Erect temporary fencing around the excavated site and remove impacted water and free-phase hydrocarbons from the pit.

Mr. Steve Austin August 15, 2006 Page 2 of 2

- Once the free-phase hydrocarbons have been removed, backfill the excavation site with clean soil.
- 4. Replace groundwater-monitoring wells as necessary.
- 5. Install additional down gradient monitoring wells as necessary to characterize impacted groundwater.
- Remove free phase hydrocarbons from groundwater, then sample groundwatermonitoring wells for benzene, toluene, ethylbenzene and total xylenes (BTEX) on a quarterly basis to monitor progress at the site.

Following completion of the above tasks, XTO will provide a letter report describing onsite activities and analytical results. XTO wishes to complete this work as soon as practical and will contact you to schedule activities. Should you have any questions or require additional information, please do not hesitate to contact Lisa Winn of XTO at (505) 324-1090 or you can call me at (505) 334 2791.

Sincerely. LODESTAR SERVICES, INC

Martin Nee

Cc: Lisa Winn, XTO, w/o enclosures Kim Champlin, XTO, w/o enclosures Ashley Ager, LSI, w/o enclosures Glenn Von Gonten, NMOCD File

Attachments: Annual Report

CC

Lodestar Services, Inc. P.O. Box 3861, Farmington, NM 87499-3861, 505-334-2791

mr Jim Welkis USEPA

Codestar Services, Incorporated PO Box 3861 Farmington, NM 87499-3861 Office (505) 334-2791

January 29, 2007

Mr. William Freeman Navajo Nation Environmental Protection Agency PO Box 1999 Shiprock, NM 87420

RE: Report of Excavation and Sampling at OH Randel #7

Dear Mr. Freeman:

XTO Energy Inc. (XTO) operates the OH Randel #7 natural gas production well located in Unit D of Section 16 of Township 26N, Range 11W, San Juan County, New Mexico. A former oilwater-separator pit may have impacted soil and shallow groundwater at the site. On August 15, 2006, XTO submitted a work plan to the Navajo Nation Environmental Protection Agency (NNEPA) describing planned remedial activities to investigate and remove impacted soil. XTO contracted Lodestar Services, Incorporated (Lodestar) to direct excavation activities according to the August 15 work plan. Core Oilfield Services completed the excavation, backfilling, and transportation of impacted soil to Envirotech Inc.'s land farm. Clean backfill was purchased from Moss Excavation's gravel pit located on highway 550 in Bloomfield, NM.

On November 13-27, 2006, a geologist from Lodestar was present during excavation of impacted soil at the OH Randel #7. During excavation, field screening according to the New Mexico Oil Conservation Division's (NMOCD) guidelines for headspace analysis was conducted to determine extent of impacted soil by collecting samples from the sidewalls and floor of the excavated pit. Following headspace screening and excavation, composite samples from the sidewalls and floor of the excavation were collected for laboratory analysis. Samples were collected where field screening indicated the highest concentrations of hydrocarbons. Compositing included placing four aliquots of soil from a given wall or floor into a one-gallon plastic bag. The soil within the bag was thoroughly mixed before filling a four-ounce glass jar. The sample was immediately placed on ice, and maintained under strict chain-of-custody until delivered to Envirotech Laboratories in Farmington, NM. Envirotech Laboratories analyzed the samples for benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) by United States Environmental Protection Agency (USEPA) methods 8021 and 8015, respectively. The results of sample analyses are as follows:

	GRO (ppm)	DRO (ppm)	TPH (ppm)	Benzene (ppb)	Toluene (ppb)	Ethyl benzene (ppb)	P&M Xylenes (ppb)	O Xylenes (ppb)	Totai BTEX (ppb)
NMOCD Standard			100	10,000					50,000
North Excavation North Wall	2.6	3.6	6.2	2.2	20.3	39.1	374	64.8	500
North Excavation Eas Wall	t 1080	266	1350	518	3230	3290	9590	3610	20240

Mr. William Freeman January 29, 2007 Page 2 of 2

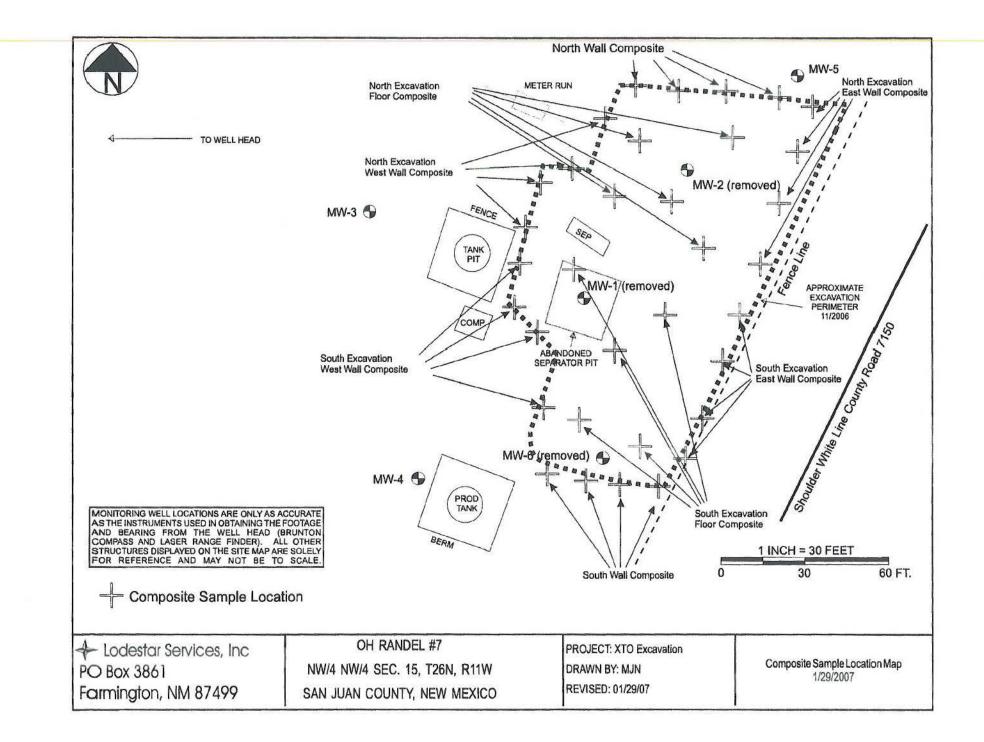
	GRO (ppm)	DRO (ppm)	TPH (ppm)	Benzene (ppb)	Toluene (ppb)	Ethyl benzene (ppb)	P&M Xylenes (ppb)	O Xylenes (ppb)	Total BTEX (ppb)
NMOCD Standard			100	10,000					50,000
North Excavation West Wall	8.0	ND	8.0	2.0	746	889	2170	979	4790
North Excavation Floor	3.6	ND	3.6	10.5	65.9	119	619	202	1020
South Excavation East Wall	5.2	15.0	20.2	7.4	50.7	16.7	78.6	37.0	190
South Excavation West Wall	0.5	0.4	0.9	3.3	9.1	19.6	84.7	28.4	145
South Excavation Floor	ND	ND	ND	ND	4.4	7.7	24.5	5.3	41.9
South Excavation South Wall	ND	ND	ND	ND	1.9	7.9	24.8	8.7	43.3

GRO: Gasoline Range Organics; DRO: Diesel Range Organics;

ND: Not Detected in sample; ppm: parts per million; ppb: parts per billion

Approximately six thousand eight hundred and eighty two cubic yards of soil were removed for treatment to the land farm. Lodestar and XTO met with the USEPA and the NNEPA on November 27, 2006 at the job site and received permission to backfill the excavation based on the above results.

Six groundwater monitoring wells were previously installed on the site to investigate groundwater quality. Three of the wells, MW-1, MW-2, and MW-6 were removed during excavation activities.


Laboratory reports and Bill-of-Lading copies are attached. Please contact Lisa Winn of XTO at (505) 324-1090 with any questions that may arise.

Sincerely, Lodestar Services, Inc.

Martin Nee

Cc: Jim Walker, USEPA Lisa Winn, XTO Energy Kim Champlin, XTO Energy Ashley Ager, Lodestar Services

Lodestar Services, Incorporated PO Box 3861 Farmington, NM 87499 (505) 334-2791

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0914289

Est. 1970

James McDaniel XTO Energy - San Juan Division 382 Road 3100 Aztec, NM 87410

Report Summary

Monday November 22, 2010

Report Number: L489776 Samples Received: 11/18/10 Client Project: XTO1002

Description: Randel

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Daphne Richards , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002,NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Page 1 of 7

ESCI-E-N-C-E-S						12065 Lebanon Rd. Mt. Juliet, TN 37 (615) 758-5858 1-800-767-5859 Fax (615) 758-585 Tax I.D. 62-08142 Est. 1970	122 9
James McDaniel XTO Energy - San Juan 382 Road 3100 Aztec, NM 87410	Division	REPORT	T OF ANALYSIS		November 22,	2010	
Description : Ra Sample ID : OH	vember 18, 2010 ndel RANDEL MW-9 lie Linn				ESC Sample # Site ID : Project # :	: L489776-01 XT01002	
	/17/10 11:48	Result	Det. Limit	Units	Method	Date	Dil
Benzene Toluene Ethylbenzene Total Xylene		0.0024 BDL BDL BDL	0.00050 0.0050 0.00050 0.0015	mg/l mg/l mg/l mg/l	8021B 8021B 8021B 8021B	11/19/10 11/19/10 11/19/10 11/19/10	1 1 1 1
Surrogate Recovery(%) a,a,a-Trifluorotolue	ne(PID)	104.		% Rec.	8021B	11/19/10	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/21/10 19:31 Revised: 11/22/10 10:54

Page 2 of 7

							12065 Lebanon Rd. Mt. Juliet, TN 37 (615) 758-5858 1-800-767-5859 Fax (615) 758-585 Tax I.D. 62-08142 Est. 1970	122 9
James McDaniel XTO Energy - Sar 382 Road 3100 Aztec, NM 87410	Juan D	ivision	REPO	RT OF ANAI	LYSIS	November 22,	2010	
Date Received Description Sample ID	: Ran	ember 18, 20 del RANDEL MW-7	10			ESC Sample # Site ID : Project # :	t: L489776-02 XT01002	
Collected By Collection Date		ie Linn 17/10 12:42						
Parameter Benzene Toluene Ethylbenzene Total Xylene			Result 5.2 5.5 0.076 3.4	Det. L 0.02 0.22 0.02 0.02	5 mg/l 5 mg/l 5 mg/l	Method 8021B 8021B 8021B 8021B 8021B	Date 11/20/10 11/20/10 11/20/10 11/20/10	Di1 50 50 50 50
Surrogate Recove a,a,a-Trifluor		e(PID)	106.		% Rec.	8021B	11/20/10	50

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/21/10 19:31 Revised: 11/22/10 10:54

Page 3 of 7

	1 57011							12065 Lebanon Rd. Mt. Juliet, TN 37 (615) 758-5858 1-800-767-5859 Fax (615) 758-585 Tax I.D. 62-08142 Est. 1970	9
James McDaniel			REPO	RT OF A	NALYSIS		Nevrember 22	2010	
XTO Energy - Sar 382 Road 3100 Aztec, NM 87410	ı Jı	uan Division					November 22	, 2010	
Date Received	:	November 18, 2010	D				ESC Sample	ŧ : L489776-03	
Description	:	Randel					Site ID :		
Sample ID	:	TRIP BLANK						umoraaa	
Collected By Collection Date	:	Julie Linn 11/17/10 15:00					Project # :	XT01002	
Parameter			Result	Det.	Limit	Units	Method	Date	Dil.
Benzene			BDL	0.0	00050	mg/1	8021B	11/18/10	1
Toluene			BDL		0050	mg/l	8021B	11/18/10	1
Ethylbenzene			BDL.		0050	mg/l	8021B	11/18/10	1
Total Xylene			BDL	0.	0015	mg/l	8021B	11/18/10	1
Surrogate Recove		10.1							

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/21/10 19:31 Revised: 11/22/10 10:54

Page 4 of 7

Summary of Remarks For Samples Printed 11/22/10 at 10:54:56

TSR Signing Reports: 200 R5 - Desired TAT

report J's if above limits-B 0.01, T 0.75, E 0.75, X 0.62 mg/l

Sample: L489776-01 Account: XTORNM Received: 11/18/10 09:00 Due Date: 11/26/10 00:00 RPT Date: 11/21/10 19:31 Sample: L489776-02 Account: XTORNM Received: 11/18/10 09:00 Due Date: 11/26/10 00:00 RPT Date: 11/21/10 19:31 Sample: L489776-03 Account: XTORNM Received: 11/18/10 09:00 Due Date: 11/26/10 00:00 RPT Date: 11/21/10 19:31

ESC.

YOUR LAB OF CHOICE

XTO Energy - San Juan Division James McDaniel 382 Road 3100

Aztec, NM 87410

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L489776

November 22, 2010

			aboratory Bl						
Analyte	Result	£	Units	% Rec		Limit		Batch	Date Analyze
Benzene	< .000	5	mar/1					WG509320	11/18/10 22:0
Ethylbenzene	< .000		$m_{cl}/1$						11/18/10 22:0
Toluene	< .005								11/18/10 22:0
			mg/l						
Total Xylene	< .001		mg/l						11/18/10 22:0
a, a, a-Trifluorotoluene (PID)			% Rec.	104.0		55-122		WG509320	11/18/10 22:0
Benzene	< .000		mg/1						11/19/10 21:0
Ethylbenzene	< .000		mg/l						11/19/10 21:0
Toluene	< .005		mg/l						11/19/10 21:0
Total Xylene	< .001		mg/l						11/19/10 21:0
a, a, a-Trifluorotoluene (PID)			% Rec.	105.2	_	55-122		WG509456	11/19/10 21:0
		Labor	atory Contro	1 Sample					
Analyte	Units		n Val	Resul		% Rec		Limit	Batch
Benzene	mcr/1	.05		0.0500		100.		79-114	WG50932
Ethylbenzene	mg/1	.05		0.0538		108.		80-116	WG50932
Toluene	mg/1	.05		0.0519		104.		79-112	WG50932
				0.163		109.		84-118	WG50932
Total Xylene	mg/l	.15		0.163					
a,a,a-Trifluorotoluene(PID)						104.5		55-122	WG50932
Benzene	mg/l	.05		0.0536		107.		79-114	WG50945
Ethylbenzene	mg/l	.05		0.0542		108.		80-116	WG50945
Toluene	mg/l	.05		0.0537		107.		79-112	WG50945
Total Xylene	mg/l	.15		0.159		106.		84-118	WG50945
a, a, a-Trifluorotoluene (PID)						104.2		55-122	WG50945
		Laboratory	Control Sam	nle Dunl	icate				
Analyte	Units	Result	Ref	*Rec		Limit	RPD	Lin	nit Batch
Benzene	mg/1	0.0494	0.0500	99.0		79-114	1.18	20	WG50932
Ethylbenzene	mg/l	0.0523	0.0538	105.		80-116	2.80	20	WG50932
Toluene	mg/1	0.0508	0.0519	102.		79-112	2.16	20	WG50932
Total Xylene	mg/l	0.159	0.163	106.		84-118	2.44	20	WG50932
a, a, a-Trifluorotoluene (PID)	mg/ 1	0.133	0.103	102.7		55-122			WG50932
Benzene	mg/1	0.0544	0.0536	109.		79-114	1.51	20	WG50945
Ethylbenzene	mg/1	0.0542	0.0542	109.		80-116	0.060		WG50945
		0.0538	0.0537	108.		79-112	0.150		WG50945
Toluene	mg/1							20	
Total Xylene a,a,a-Trifluorotoluene(PID)	mg/1	0.163	0.159	109.		84-118 55-122	2.44	20	WG50945 WG50945
			A REPORT OF A R						
Analyte	Units	MS Res	Matrix Spik		% Rec	Limit		Ref Samp	Batch
	Units	MS Res	Ref Res	TV	% Rec	Limit		Ref Samp	Batch
Benzene	mg/l	0.0495	Ref Res	TV .05	99.1	35-14		L489755-0	01 WG50932
Benzene Ethylbenzene	mg/l mg/l	0.0495	Ref Res 0 0	TV .05 .05	99.1 106.	35-14 39-14	1	L489755-0	01 WG50932 01 WG50932
Analyte Benzene Ethylbenzene Toluene	mg/l mg/l mg/l	0.0495 0.0530 0.0514	Ref Res 0 0 0	.05 .05 .05	99.1 106. 103.	35-14 39-14 35-14	1 8	L489755-0 L489755-0 L489755-0	01 WG50932 01 WG50932 01 WG50932
Benzene Ethylbenzene Toluene Total Xylene	mg/l mg/l	0.0495	Ref Res 0 0	TV .05 .05	99.1 106. 103. 106.	35-14 39-14 35-14 33-15	1 8 1	L489755-0	01 WG50932 01 WG50932 01 WG50932 01 WG50932 01 WG50932
Benzene Ethylbenzene Toluene Total Xylene	mg/l mg/l mg/l	0.0495 0.0530 0.0514	Ref Res 0 0 0	.05 .05 .05	99.1 106. 103.	35-14 39-14 35-14	1 8 1	L489755-0 L489755-0 L489755-0	01 WG50932 01 WG50932 01 WG50932 01 WG50932
Benzene Ethylbenzene Toluene Total Xylene a,a,a-Trifluorotoluene(PID)	mg/l mg/l mg/l	0.0495 0.0530 0.0514	Ref Res 0 0 0	.05 .05 .05	99.1 106. 103. 106.	35-14 39-14 35-14 33-15	1 8 1 2	L489755-0 L489755-0 L489755-0	01 WG50932 01 WG50932 01 WG50932 01 WG50932 WG50932 WG50932
Benzene Ethylbenzene Toluene	mg/1 mg/1 mg/1 mg/1	0.0495 0.0530 0.0514 0.160	Ref Res 0 0 0 0.000490	TV .05 .05 .05 .15	99.1 106. 103. 106. 104.1	35-14 39-14 35-14 33-15 55-12	1 8 1 2 7	L489755- L489755- L489755- L489755- L489755-	01 WG50932 01 WG50932 01 WG50932 01 WG50932 01 WG50932 01 WG50945
Benzene Ethylbenzene Toluene Total Xylene a,a,a-Trifluorotoluene(PID) Benzene	mg/l mg/l mg/l mg/l	0.0495 0.0530 0.0514 0.160 0.0560	Ref Res 0 0 0 0.000490 0.00140	TV .05 .05 .15 .05	99.1 106. 103. 106. 104.1 109.	35-14 39-14 35-14 33-15 55-12 35-14	1 8 1 2 7 1	L489755-(L489755-(L489755-(L489755-(L489807-(01 WG50932 01 WG50932 01 WG50932 01 WG50932 01 WG50932 01 WG50945 01 WG50945

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 5 of 7

YOUR LAB OF CHOICE

XTO Energy - San Juan Division James McDaniel 382 Road 3100

Aztec, NM 87410

L489776

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

November 22, 2010

Quality Assurance Report Level II

Analyte	Units	Ma MSD	trix Spike Ref	Duplicate %Rec	Limit	RPD	Limit	Ref Samp	Batch
a,a,a-Trifluorotoluene(PID)					104.5	55-12:	2		
		Ма	trix Spike	Duplicate					
Analyte	Units	MSD	Ref	%Rec	Limit	RPD	Limit	Ref Samp	Batch
Benzene	mg/l	0.0505	0.0495	101.	35-147	1.94	20	L489755-01	WG50932
Ethylbenzene	mg/1	0.0535	0.0530	107.	39-141	0.830	20	L489755-01	WG50932
Toluene	mg/1	0.0521	0.0514	104.	35-148	1.31	20	L489755-01	WG50932
Total Xylene	mg/l	0.161	0.160	107.	33-151	0.550	20	L489755-01	WG50932
a,a,a-Trifluorotoluene(PID)				103.7	55-122				WG50932
Benzene	mg/l	0.0552	0.0560	108.	35-147	1.47	20	L489807-01	WG50945
Ethylbenzene	mg/1	0.0547	0.0567	109.	39-141	3.55	20	L489807-01	WG50945
Toluene	mg/1	0.0548	0.0557	110.	35-148	1.61	20	L489807-01	WG50945
Total Xylene	mg/1	0.164	0.171	109.	33-151	4.07	20	L489807-01	WG50945
a, a, a-Trifluorotoluene (PID)				105.0	55-122				WG50945

Batch number /Run number / Sample number cross reference

WG509320: R1481229: L489776-01 03 WG509456: R1482149: L489776-02

* Calculations are performed prior to rounding of reported values .
 * Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 6 of 7

YOUR LAB OF CHOICE

XTO Energy - San Juan Division James McDaniel 382 Road 3100

Aztec, NM 87410

Quality Assurance Report Level II

L489776

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

November 22, 2010

Page 7 of 7

Company Name/Address			Alternate Billing Analysis/Container/Preservative			ervative	1	Chain of Custody				
XTO Energy, Inc.											D062	Pageof
382 County Road 3100							REL	- Hor			Prepared by:	
Aztec, NM 87410			Report to:	ulie L							ENVIRON Science corp 12065 Leban	
Project Description: R	andel				env: con		-	5707)-	andang a	(19)(数)	Mt. Juliet TN	37122
			<u> </u>	Fain	itale Collected:	IM		interview in the	and the	and the second s	Phone (615)	
PHONE: 505-333-3701	Client Project	No. XTO1002	1	Lab Project #	9		R				Phone (800) . FAX (615	
Julie Linn, RG	Site/Facility ID	#		P.O.#			l So	() ()	3		CoCode	(lab use only)
fullie (ab MUST b Next Day Two Day Three Day	100%	Date Result Email?N FAX?N	o_X_Yes	No of	TEX (XTORNM Template/Prelogin Shipped Via: Fed Ex	(MARA
Sample ID	Comp/Grab	1	Depth	Date	Time	Cntrs	à	and the second	1997 - 1978 - 1976 - 1978	El Cartes	Remarks/contaminant	Sample # (lab only)
OH Randel MW9	Grab	GW	N/A	11.17.10	1	2	V	101			248977601	Complete (lab only)
OH Randel MW.7		GN	NIA		1242	2	X				50	
Trip Black			, , ,	11-17	1500	2	X			1.5	\$3	
1								and the	dia 1	19-12		
							NO.					
								他基	A Street	Call Sol		
							and the		Colora			
								16613.23 WHEET	199-565	1500 g H H		
1998-1997												
Matrix: SS-Soil/Solid GW-Groundwa Remarks:	ater WW-Wa	istewater I	DW-Drinking N	Water OT- O	ther					pH	Temp Other	
Relinquisher by Signature	Date: 11-17-10 Date:	Time: 1500	Received by:(-5 6	5mz		434 Temp:	returned via: F	edex_X_UP		Participation of the state of t	lab use only)
					2-12		3.1	C	- 4	2+ATR	, 1997 (1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	K
Reinquisher by:(Signature	Date:	Time:	110	lab by: (Signatur	State Stat	1949) 1949)	Date;	8/10	Time:	00	pH Checked:	NCF:

Project Name Client Project Manager	:: XTO		- San	김 영화 김 가지 않는 것을 했다.	OH Rande 11/17/201 J. Linn		Well No Time	: MW-7 : 11:58
Measuring Point Well Diameter		•	h to Water otal Depth umn Height	: 32.06	ft	Construction and	to Product Thickness	contraction of the local division of the loc
Sampling Method Criteria	Bottom Va	ilve Bailer		k Valve Bailer	staltic Pump ation of Indic	Other		r
				Water Volume	and the second second			
Feet of water :	States in succession of the local division o	Company Company of the	s in well	3 casing v	and the second se			e to be removed
14.41 x 0.	16	2.3	056	6.91	68		6	.9168 ga
		Manager						
Time	pH	EC	Temp	ORP	D.O.	Turbidity	Vol Evac.	Comments/Flow Rate
(military)	(su)	(us)	(°C)	(millivolts)	(mg/L)	(NTU)	gal	
12:06	8.35	1409	14.6		ale sure y		0.25	Clear, slight odor
12:15	8.10	1386	15.4				0.5	no change
12:19	8.29	1392	13.9				0.75	incr. odor, incr. turbidity
12:21	7.92	1408	15.0				1	no change
12:23	7.66	1404	15.0		and the second		2	no change
12:26	7.99	1413	14.7				3	no change
12:28	8.21	1419	14.5		بديونية المترتين		4	increasing grey color
12:30	8.20	1434	14.2				5	no change
12:33	8.57	1423	13.9				6	no change
12:34	8.6	1428	14				6.25	no change
12:35	8.66	1432	14				6.5	no change
12:36	8.73	1439	13.9				6.75	drying up
12:37	8.85	1453 1453	13.8				7	drying up
	0.00	1455	13.8			L	/	Jan and the second s
MMENTS: Instrumentation				's. ORC socks		11/10/10 a		d in well when done samplir r
Water Disposal								
Sample ID alysis Requested	: OH Randel		-		nple Time:		Nitrate 🔲	Nitrite Metals
	Other							
Trip Blank		es					ite Sample	non entre

Project Name Client Project Manager	t: XTO		- San	Location: Date: opler's Name:	11/17/203	Contraction of the local division of the loc		9: MW-9 2: 11:07
Measuring Point Well Diameter	r: 2"	T	h to Water Total Depth umn Height	: 37.28	ft		to Product Thickness	termination in the second s
Sampling Methoc Criteria	i: Submersibi Bottom Val I: J 3 to 5 Casi	ve Bailer	Water Remo	k Valve Bailer val 🖸 Stabiliza		Cther		r
	1			Water Volum	PROPERTY AND ADDRESS OF A			
Feet of water	the state of the s	and the second se	s in well	3 casing v	deline -			e to be removed
6.79 x 0.3	16	1.0	864	3.25	92		3	.2592 ga
			-	1		[
Time	pH	EC	Temp	ORP	D.O.	Turbidity	Vol Evac.	Comments/Flow Rate
(military)	(su)	(ms)	(°C)	(millivolts)	(mg/L)	(NTU)	gal	
11:13	7.40	2.65	14.1				0.25	clear, no odor
11:31	7.60	2.65	13.5				0.5	slightly turbid
11:32	7.64	2.66	13.4				0.75	no change
11:33	7.64	2.65	13.4				1	no change
11:35	7.65	2.75	13.4				1.5	no change
11:37	7.64	2.76	13.4				2	no change
11:39	7.65	2.83	13.4				2.5	increasing turbidity
11:40	7.66	2.86	13.4				2.75	increasing turbidity
<u>11:41</u> 11:42	7.66	2.89	13.3 13.3				3	no change no change
11.42	7.05	2.03	13.5				5.25	no change
al:	7.65	2.89	13.3				3.25	
MMENTS:	Sampled in	2 non-pres	served VOA	's.			A A(1)(24)	
Instrumentation Water Disposa			tor ⊡Co	nductivity Meter	☑ Tem	perature Meter	Othe	er
Sample ID	: OH Randel	MW-9	-	Sar	nple Time:	11:48	•	
alysis Requested	i: ☑BTEX □Other .		Alkalinity		Cations	Anions []Nitrate	Nitrite Metals
Trip Blank	« <u> </u>	es	÷			Duplica	te Sample	e: No

LT Environmental, Inc.

2243 Main Avenue, Suite 3 Durango, Colorado 81301 T 970.385.1096 / F 970 385 1873

January 28, 2011

Mr. James McDaniel XTO Energy, Inc. 382 Road 3100 Aztec, New Mexico 87410

RE: Hydrogen Peroxide Injection Work Plan XTO Energy, Inc. OH Randel #7 San Juan County, New Mexico

Dear Mr. McDaniel:

LT Environmental, Inc. (LTE) has prepared the following scope of work for XTO Energy, Inc. (XTO) to conduct hydrogen peroxide injection as a remedial alternative at the OH Randel #7 (Site) to address petroleum hydrocarbon impacts to groundwater at the Site.

Site Description

The Site is located on the west side of County Road 7150 approximately 4 miles from the intersection with U.S. Highway 550 south at latitude 36.49163 degrees (°) north by -107.995739° west, World Geodetic System 1984 (WGS 84) in San Juan County, New Mexico (Figure 1).

Groundwater at the Site contains concentrations of benzene, toluene, ethylbenzene and total xylenes (BTEX) in excess of the New Mexico Water Quality Control Commission (NMWQCC) standards. During installation of new production equipment in 2002, XTO identified impacted soils presumed to be remnants of an abandoned earthen separator pit. In response, XTO installed six groundwater monitoring wells to characterize hydrocarbon impacts at the Site (Figure 2). Phase-separated hydrocarbons were identified in monitoring wells MW-1, MW-2 and MW-6 and actively recovered from 2002 through 2004. Additional remediation included excavation of approximately 9,000 cubic yards of impacted soils in 2006. MW-1, MW-2, and MW-6 were removed during excavation activities. Two additional monitoring wells (MW-7 and MW-8) were installed in 2007 north and east of the former excavation to identify any remaining impacts. Subsequent groundwater sampling indicated that groundwater in MW-3, MW-4, and MW-5 contained little to no concentrations of BTEX and sampling from these wells was discontinued. Concentrations of BTEX in MW-7 remained above NMWOCC standards, and XTO installed MW-9 in 2009. Groundwater sampled from MW-9 initially contained elevated concentrations of BTEX, but concentrations dropped to beneath NMWQCC standards. During 2010, XTO added chemical oxygenate to MW-7 to enhance

biodegradation of hydrocarbons in the groundwater, but BTEX concentrations remain high.

Table 1 provides sample results for the groundwater monitoring wells. Benzene concentrations in groundwater sampled from MW-7 have been highly variable, ranging from as high as 12,000 micrograms per liter (μ g/l) on November 7, 2008 to 82 μ g/l on August 12, 2010. Concentrations of total xylenes ranged from 17,000 μ g/l on November 7, 2008 to 200 μ g/l on August 12, 2010. Toluene concentrations are also variable, and have been as high as 16,000 μ g/l on November 7, 2008. Ethylbenzene concentrations have been below NMWQCC standards since July of 2009. The anomalously low BTEX concentrations observed during the August 2010 may be evidence that the addition of chemical oxygenate had some impact on BTEX concentrations in this well.

Groundwater is encountered at depths from approximately 13 feet to 20 feet below ground surface (bgs) in all wells except MW-9, in which depth to groundwater occurs at approximately 20 feet to 35 feet bgs. This is likely due to the fact that MW-9 is not screened as deep as the other wells at the Site and is completed in tighter soils. Water level data from MW-9 is often not used to interpret groundwater flow across the Site. An irrigated field is located less than 50 feet west of the Site. Irrigation water is supplied from Navajo Reservoir, not groundwater, and may have some effect on groundwater flow direction, which varies from the southeast to northeast. The most recent potentiometric surface map is shown on Figure 2 and shows a northeasterly flow direction.

Lithology at the Site consists of poorly sorted sand with minor to no fines from ground surface to approximately 12 feet to 15 feet bgs. Silt content increases in soils from 15 feet 20 feet bgs. From 20 feet to 37 feet bgs, a tight clay layer exists. The primary water bearing unit is a thin aquifer perched on top of the clay layer at approximately 20 feet bgs.

Scope of Work

Currently, the only remedial action at this Site is the use of chemical oxygenate in MW-7. LTE understands that XTO desires to pursue a more aggressive remedial option, consisting of slugs of concentrated liquid hydrogen peroxide injected via gravity feed into MW-7. Injection of hydrogen peroxide will directly oxidize organics (BTEX) and enhance the in situ aerobic degradation by increasing oxidation-reduction reactions in the subsurface, thereby creating strong oxidizing groundwater conditions. This allows for a greater mass transfer of available dissolved oxygen for ongoing bio-activity. Furthermore, the hydrogen peroxide can act as a surfactant at the groundwater interface where absorbed-phase contaminants are present.

The proposed injection will take place over a period of 30 days and will be closely monitored for effectiveness. The large volumes of hydrogen peroxide required to optimally treat the high concentrations of BTEX present in groundwater at MW-7 may

McDaniel, J. Page 3

not be feasible due to the low permeability of surrounding clays near the screened interval. Application volumes will need to be adjusted following initial injection of hydrogen peroxide. The following sequence is proposed as a test to determine if higher volumes of a more concentrated solution can be practically applied:

- 1. Purge the groundwater from MW-7 until dry.
- 2. Inject a diluted hydrogen peroxide solution into MW-7. The total well casing volume of MW-7 is 5.2 gallons. This volume will be used as a starting point for hydrogen peroxide volume application. Additional volumes will be added as feasible, with the goal being addition of as much solution as possible, but no more than 40 gallons at a time. Should the solution not infiltrate the surrounding soils immediately, LTE will add solution to the wells until the solution is within 6 inches of the top of the well casing and cease.
- 3. For safety reasons, the concentration of the hydrogen peroxide will not exceed 8%, the level at which hydrogen peroxide is classified as a Class 1 Oxidizer by the U.S. Department of Transportation. An 8% solution will also minimize the temperature rise anticipated by the introduction of hydrogen peroxide as it reacts with contaminants in the groundwater.
- 4. Schedule a 7-day interval to allow for treatment to occur.
- 5. Measure depth to groundwater in MW-7.
- 6. Purge three well casing volumes from MW-7. If three well casing volumes cannot be purged, then purge the wells until dry. Monitor field parameters including pH, electrical conductivity, and temperature during purging. Collect a groundwater sample for analysis of BTEX by EPA Method 8021B to determine effectiveness of the treatment and alter hydrogen peroxide concentrations and volumes as necessary.
- 7. Repeat steps 1 through 6 weekly for a total of 4 weekly events.
- After 4 weekly treatments, collect a weekly groundwater sample for analysis of BTEX by EPA Method 8021B for an additional 4 weeks to determine if rebound of BTEX concentrations occurs.
- 9. Analyze results and make recommendations for additional treatment or monitoring.

All samples will be shipped via overnight courier to ESC Lab Sciences in Mt. Juliet, Tennessee for analysis with a standard turn-around time. LTE will prepare a site-specific health and safety plan (HASP) for the hydrogen peroxide injection and groundwater sampling activities. A cost estimate for this work plan will be transmitted to XTO under separate cover.

McDaniel, J. Page 4

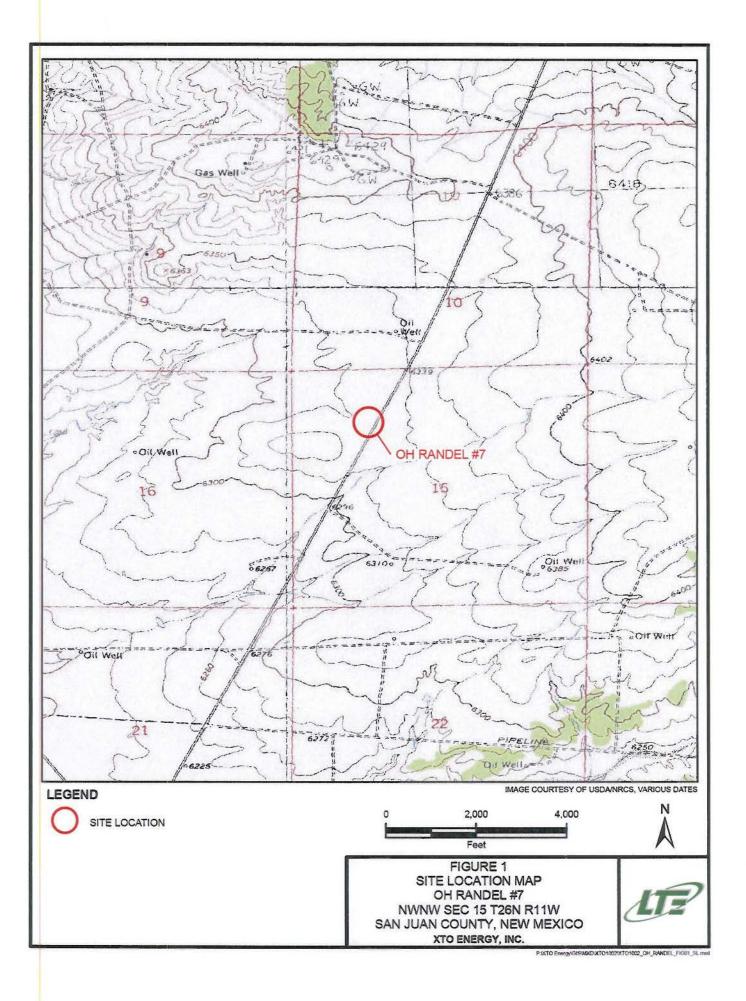
Schedule

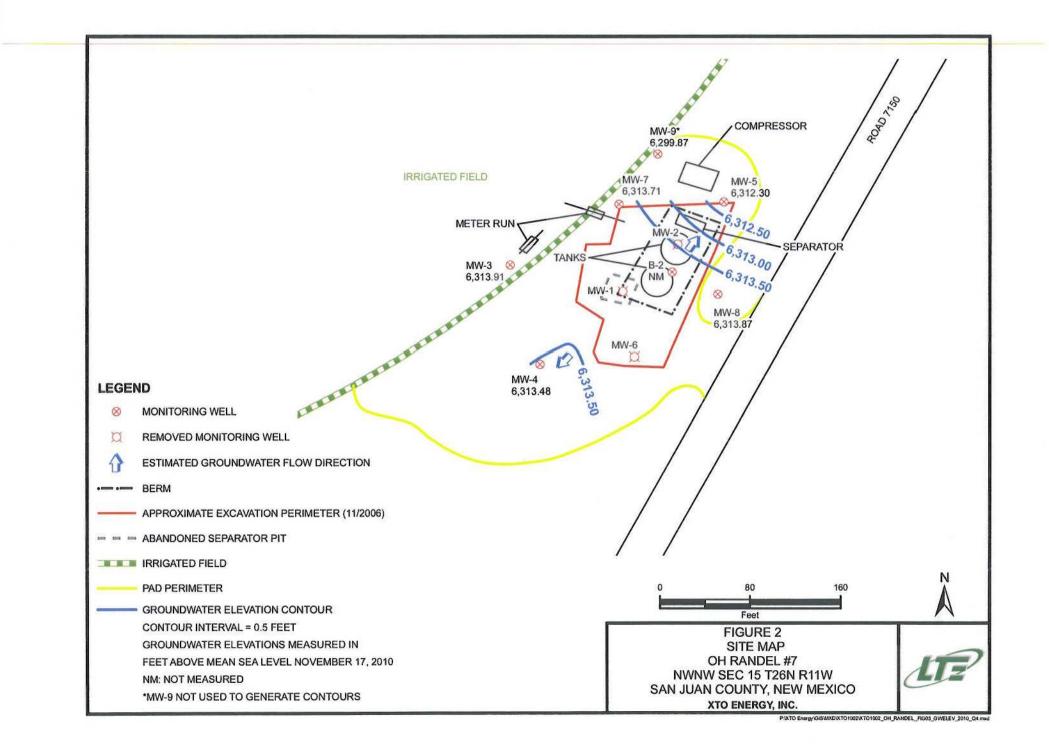
LTE proposed implementation of this plan in March and April of 2011. Upon completion of the 8 weeks of activities, LTE will evaluate the data and submit a report to XTO. The report will include recommendations for any additional activities at the Site that may be necessary.

LTE appreciates the opportunity to provide this work plan to XTO. Should you have any questions, please do not hesitate to call LTE at 970-385-1096.

Sincerely,

LT ENVIRONMENTAL, INC.


Julie C


Julie Linn, P.G. Senior Geologist

CC: Ashley Ager, LTE

Attachments (3)

Figure 1 – Site Location Map Figure 2 – Site Map Table 1 – Groundwater Quality Summary Table FIGURES

GROUNDWATER RESULTS SUMMARY TABLE OH RANDEL #7 XTO ENERGY, INC.

Well ID	Date	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	
MWQCC Grou	ndwater Standard	10 ug/L	750 ug/L	750 ug/L	620 ug/L	
MW-1	4/22/2002	NS	NS	NS	NS	
MW-1	4/24/2002	NS	NS	NS	NS	
MW-1	8/27/2002	NS	NS	NS	NS	
MW-I	10/08/2002	NS	NS	NS	NS	
MW-1	5/23/2003	NS	NS	NS	NS	
MW-1	5/28/2003	NS	NS	NS	NS	
MW-1	6/6/2003	NS	NS	NS	NS	
MW-1	6/18/2003	NS	NS	NS	NS	
MW-1	6/26/2003	NS	NS	NS	NS	
MW-1	7/31/2003	NS	NS	NS	NS	
MW-1	8/29/2003	NS	NS	NS	NS	
MW-1	6/21/2004	NS	NS	NS	NS	
MW-1	9/20/2006	NS	NS	NS	NS	
MW-1	12/5/2006	NS	NS	NS	NS	
MW-2	4/22/2002	NS	NS	NS	NS	
MW-2	4/24/2002	NS	NS	NS	NS	
MW-2	8/27/2002	NS	NS	NS	NS	
MW-2	10/08/2002	NS	NS	NS	NS	
MW-2	5/23/2003	NS	NS	NS	NS	
MW-2	5/28/2003	NS	NS	NS	NS	
MW-2	6/6/2003	NS	NS	NS	NS	
MW-2 MW-2	6/18/2003	NS	NS	NS	NS	
MW-2 MW-2	6/26/2003	NS	NS	NS	NS	
	and the second se		time to any here in an other statement	and the second	NS	
MW-2	7/31/2003	NS	NS	NS		
MW-2	8/29/2003	NS	NS	NS	NS	
MW-2	6/21/2004	NS	NS	NS	NS	
MW-2	9/20/2006	NS	NS	NS	NS	
MW-2	12/5/2006	NS	NS	NS	NS	
MW-3	4/22/2002	NS	NS	NS	NS	
MW-3	4/24/2002	24	2.4	0.58	200	
MW-3	8/27/2002	9.4	ND	ND	150	
MW-3	10/8/02	NA	NA	NA	NA	
MW-3	3/3/03	5.5	ND	ND	43	
MW-3	6/18/2003	6.1	0.97	ND	43	
MW-3	8/29/03	3.2	0.53	ND	24	
MW-3	9/20/2006	NS S.2	NS	NS	NS NS	

GROUNDWATER RESULTS SUMMARY TABLE OH RANDEL #7 XTO ENERGY, INC.

Well ID	Date	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	
MWQCC Grou	MWQCC Groundwater Standard		750 ug/L	750 ug/L	620 ug/L	
MW-3	12/5/2006	<1	<1	<1	<3	
MW-3	3/8/2007	NS	NS	NS	NS	
MW-3	5/17/2007	<1	<1	<1	<2	
MW-3	8/9/2007	<1	<1	<1	<2	
MW-3	5/12/2008	NS	NS	NS	NS	
MW-3	11/7/2008	NS	NS	NS	NS	
MW-3	7/8/2009	NS	NS	NS	NS	
MW-3	11/5/2009	NS	NS	NS	NS	
MW-3	5/25/2010	NS	NS	NS	NS	
MW-3	8/12/2010	NS	NS	NS	NS	
MW-3	11/17/2010	NS	NS	NS	NS	
MW-4	4/22/2002	NS	NS	NS	NS	
MW-4	4/24/2002	ND	0.59	ND	2.1	
MW-4	8/27/2002	1.3	ND	ND	3.5	
MW-4	10/8/02	NS	NS	NS	NS	
MW-4	3/3/03	4.2	ND	ND	5	
MW-4	6/18/2003	6.2	ND	ND	4.5	
MW-4	8/29/03	8.3	ND	ND	4.3	
MW-4	9/20/2006	NS	NS	NS	NS	
MW-4	12/5/2006	<1	<1	<1	<3	
MW-4	3/8/2007	NS	NS	NS	NS	
MW-4	5/17/2007	<1	<1	<1	<2	
MW-4	8/9/2007	<1	<1	<1	<2	
MW-4	5/12/2008	NS	NS	NS	NS	
MW-4	11/7/2008	NS	NS	NS	NS	
MW-4	7/8/09	NS	NS	NS	NS	
MW-4	11/5/09	NS	NS	NS	NS	
MW-4	5/25/10	NS	NS	NS	NS	
MW-4	8/12/10	NS	NS	NS	NS	
MW-4	11/17/10	NS	NS	NS	NS	
MW-5	4/22/2002	NS	NS	NS	NS	
MW-5	4/24/2002	510	0.64	8.9	240.0	
MW-5	8/10/2002	NA	NA	NA	NA	
MW-5	6/18/2002	1,100	20	ND	660.0	
MW-5	6/21/2004	2,000	ND	ND	260.0	

GROUNDWATER RESULTS SUMMARY TABLE OH RANDEL #7 XTO ENERGY, INC.

Well ID	Date	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	
MWQCC Grou	IWQCC Groundwater Standard		750 ug/L	750 ug/L	620 ug/L	
MW-5	6/28/2005	1,100	15	ND	160.0	
MW-5	9/20/2006	NS	NS	NS	NS	
MW-5	12/5/2006	37	<1	<1	4.1	
MW-5	3/8/2007	NS	NS	NS	NS	
MW-5	5/17/2007	<1	<1	<1	<2	
MW-5	8/9/2007	NS	NS	NS	NS	
MW-5	5/12/2008	NS	NS	NS	NS	
MW-5	11/7/2008	NS	NS	NS	NS	
MW-5	7/8/2009	NS	NS	NS	NS	
MW-5	11/5/2009	NS	NS	NS	NS	
MW-5	5/25/2010	NS	NS	NS	NS	
MW-5	8/12/2010	NS	NS	NS	NS	
MW-5	11/17/2010	NS	NS	NS	NS	
MW-6	4/22/2002	NS	NS	NS	NS	
MW-6	4/24/2002	6,100	4,800	920	6,600	
MW-6	8/27/2002	NS	NS	NS	NS	
MW-6	10/8/02	NS	NS	NS	NS	
MW-6	5/23/2003	NS	NS	NS	NS	
MW-6	5/28/2003	NS	NS	NS	NS	
MW-6	6/6/2003	NS	NS	NS	NS	
MW-6	6/18/2003	NS	NS	NS	NS	
MW-6	6/26/2003	NS	NS	NS	NS	
MW-6	7/31/2003	NS	NS	NS	NS	
MW-6	8/29/2003	NS	NS	NS	NS	
MW-6	6/21/2004	NS	NS	NS	NS	
MW-6	9/20/2006	NS	NS	NS	NS	
MW-6	12/5/2006	NS	NS	NS	NS	
MW-7	5/17/07	8,500	17,000	980	16,000	
MW-7	8/9/07	9,800	11,000	770	12,000	
MW-7	11/27/07	12,000	9,000	940	13,000	
MW-7	5/12/08	7,900	11,000	830	12,000	
MW-7	11/7/08	12,000	16,000	1,100	17,000	
MW-7	7/8/09	9,800	8,200	<100	12,000	
MW-7	11/5/09	9,800	7,900	570	13,000	
MW-7	5/25/10	7,200	3,800	440	11,000	

GROUNDWATER RESULTS SUMMARY TABLE OH RANDEL #7 XTO ENERGY, INC.

Well ID	Date	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	
MWQCC Grou	idwater Standard	10 ug/L	750 ug/L	750 ug/L	620 ug/L	
MW-7	8/12/10	82	58	9.2	200	
MW-7	11/17/10	5,200	5,500	76.0	3,400	
MW-8	5/17/07	<1.0	1.9	<1.0	3.7	
MW-8	8/9/07	<1.0	<1.0	<1.0	<2.0	
MW-8	11/27/07	21.0	<1.0	<1.0	<2.0	
MW-8	5/12/08	1.4	<1.0	<1.0	<2.0	
MW-8	11/7/08	1.2	<1.0	<1.0	<2.0	
MW-8	7/8/09	<1.0	<1.0	<1.0	<2.0	
MW-8	11/5/09	1.1	<1.0	<1.0	<2.0	
MW-8	5/25/10	NS	NS	NS	NS	
MW-8	8/12/10	NS	NS	NS	NS	
MW-8	11/17/10	NS	NS	NS	NS	
MW-9	7/8/09	91	160	6.9	100	
MW-9	11/30/09	<1	<1	<1	<2	
MW-9	5/25/10	<1.0	<1.0	<1.0	<2.0	

<0.5

2.4

<5.0

<5.0

< 0.5

< 0.5

<1.5

<1.5

Notes:

ug/I - micrograms per liter

MW-9

MW-9

< - indicates result is less than the stated laboratory method detection limit

8/12/10

11/17/10

NMWQCC - New Mexico Water Quality Control Commission

Benzene, Toluene. Ethylbenzene, and Total Xylenes analyzed by EPA Method 8021B.

NS - Not Sampled

BOLD Indicates the result exceeds the NMWQCC Standard

MW-1, MW-2, and MW-6 were destroyed during excavation activities in 2006.

