AP - 113

GENERAL CORRESPONDENCE

2013

14998 West 6th Avenue, Suite 800, Golden, Colorado 80401 Telephone: (303) 974-0942 Fax: (303) 974-0936 www.CRAworld.com

RECEIVED OCD

2013 0CT 15 A II: 05

HEALT LE VOU

October 11, 2013

Glenn Von Gonten
Senior Hydrologist
Environmental Bureau
Oil Conservation Division
Energy, Minerals and Natural Resources Department
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

Re: Holly Energy Partners - Status Report for Hobbs Tank 5201, NW 1/4 of the NW 1/4 of Section 22, T19S; R38E, Lea County, New Mexico

Dear Mr. Von Gonten:

Attached please find two copies of the Status Report for the Holly Energy Partners Hobbs Tank 5201 site located in Section 22, Township 19 South, Range 38 East, Lea County, New Mexico for your review. In addition, each copy contains a digital file of the report.

Please call William Green (HEP - 575.748.8968) (bill.green@hollyenergy.com) or myself (720.974.0942) (bstephenson@craworld.com), if you have any questions or comments.

Brad Stephenson, P.G.

Project Manager

Sincerely

cc: William Green

Attachments

Chavez, Carl J, EMNRD

From: Chavez, Carl J, EMNRD

Sent: Thursday, March 13, 2014 10:59 AM **To:** 'Stephenson, Brad'; Stockweather, Allison

Cc: VonGonten, Glenn, EMNRD

Subject: RE: Conference confirmation : Holly Tank 5201 (AP-113) Communication Meeting

Brad and Allison:

The New Mexico Oil Conservation Division (OCD) perceives based on the meeting and work completed to date that the operator has the remedial system in place and is monitoring. OCD is currently updating its administrative record for "AP-113" to include the public notice; August 2013 Status Report; and OCD's technical approval (3/12/14) of the Abatement Plan Stage I and II.

The OCD meeting summary is as follows:

- 1) The operator will submit a status report to OCD on or before April 14, 2014 to bring work on the project up to date. It will includes the updated well survey.
- 2) The operator will submit its Annual Reports to OCD in August of each year.
- 3) In the status report, the operator will suggest an approach to establishing background (i.e., MW-5 and downgradient MW) in order to satisfy the OCD Part 30 reference to ground water clean-up to the greater of background and/or the 20.6.2.3103 NMAC water quality criteria.

Some site observations during call were:

- 1) More monitor wells were installed, since the August 2013 Status Report.
- 2) Hydraulic gradient ~ 0.006.
- 3) About 1 ft. of phase separated hydrocarbons (free-product) has been realized from the Geotech system that removes only product and no ground water.
- 4) A table monitoring the removal volume of product will be included in the Annual Report.
- 5) Monitoring will continue to focus on TPH, DRO, GRO, BTEX and product thickness with the exception of wells proposed for background monitoring. Currently, RW-1 is removing ~ 2 gal/week of product. Chloride monitoring has been conducted regularly in the past.
- 6) The operator feels the downgradient dissolved phase ground water monitoring is adequate at this time.

Please feel free to chime in on this communiqué if necessary. Please contact me if you have questions. Thank you for the telephone conference call this morning to communicate about the project.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive, Santa Fe, New Mexico 87505

O: (505) 476-3490

E-mail: <u>CarlJ.Chavez@State.NM.US</u>
Web: <u>http://www.emnrd.state.nm.us/ocd/</u>

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Stephenson, Brad [mailto:bstephenson@craworld.com]

Sent: Wednesday, March 12, 2014 9:53 AM **To:** Stockweather, Allison; Chavez, Carl J, EMNRD

Subject: FW: Conference confirmation: Holly Tank 5201

The conference call information for 10AM tomorrow is as follows:

Call 1-866-721-5495

Pin No. 25368976#

Brad Stephenson, PG Sr Hydrogeologist Conestoga-Rovers & Associates 14998 West 6th Avenue Frontage Road #800 Golden, Colorado 80401

303-941-6156 (cell) 720-974-0942 (direct office) 720-974-0936 (fax)

bstephenson@craworld.com

Chavez, Carl J, EMNRD

From: Chavez, Carl J, EMNRD

Sent: Wednesday, March 12, 2014 9:31 AM

To: 'Stephenson, Brad'

Subject: RE: (AP-113) Holly Public Notice & New Mexico OCD Confirmation of Abatement Plan

Stage I and II Technical Approval

Mr. Stephenson:

Re: Lead Reviewer: Within 60 days shall send an approval of the Stage I AP (Rule 30.16.A NMAC) or within 90 days of receipt of the Stage 2 AP Proposal (Rule 30.16.B NMAC) to Responsible Party. Any Person: Comment on a Stage I or Stage 2 or request a hearing for a Stage 2 to the OCD in accordance with Rule 30.15.C NMAC within 30 days of receipt of the "public notice".

The New Mexico Oil Conservation Division (OCD) by receipt of verbal approval from Mr. Glenn von Gonten and currently by the Lead Reviewer Carl J. Chavez has approved and hereby approves the State I and II Abatement Plans for the above subject permit.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive, Santa Fe, New Mexico 87505

O: (505) 476-3490

E-mail: <u>CarlJ.Chavez@State.NM.US</u>
Web: <u>http://www.emnrd.state.nm.us/ocd/</u>

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of

the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Stephenson, Brad [mailto:bstephenson@craworld.com]

Sent: Wednesday, March 12, 2014 9:16 AM

To: Chavez, Carl J, EMNRD

Subject: RE: (AP-113) Holly Public Notice

Only verbally after repeated requests.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Wednesday, March 12, 2014 9:05 AM

To: Stephenson, Brad

Subject: RE: (AP-113) Holly Public Notice

Thank you. I'm working on getting a cell phone to participate in the conference call tomorrow at 10 a.m.

I will give you my cell phone number and/or you can provide me with a call in number and code for a conference call.

So, did OCD ever issue a technical approval of the AP Stage I and II?

Thanks.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

O: (505) 476-3490

E-mail: <u>CarlJ.Chavez@State.NM.US</u>
Web: http://www.emnrd.state.nm.us/ocd/

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of

the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Stephenson, Brad [mailto:bstephenson@craworld.com]

Sent: Wednesday, March 12, 2014 8:57 AM

To: Chavez, Carl J, EMNRD

Subject: RE: (AP-113) Holly Public Notice

Here's the report that I sent to Glenn last August.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Tuesday, March 11, 2014 4:11 PM

To: Stephenson, Brad **Cc:** Stockweather, Allison

Subject: RE: (AP-113) Holly Public Notice

Brad:

Good afternoon. Please send me any missing documents from AP-13.

Could you please send me the "Status Report" as an Acrobat Reader file that was submitted to OCD in August of 2013?

It appears that OCD has yet to approve the Stage I and II Abatement Plan. Is this correct? The OCD's Admin. Complete required proof of public notice in order to review the AP and issue approval so that the operator may proceed. Did OCD issue approval of the AP Stage I and II Report?

Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

O: (505) 476-3490

E-mail: <u>CarlJ.Chavez@State.NM.US</u>
Web: <u>http://www.emnrd.state.nm.us/ocd/</u>

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of

the Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Stephenson, Brad [mailto:bstephenson@craworld.com]

Sent: Monday, March 10, 2014 12:44 PM

To: Chavez, Carl J, EMNRD Cc: Stockweather, Allison Subject: Holly Public Notice

Carl,

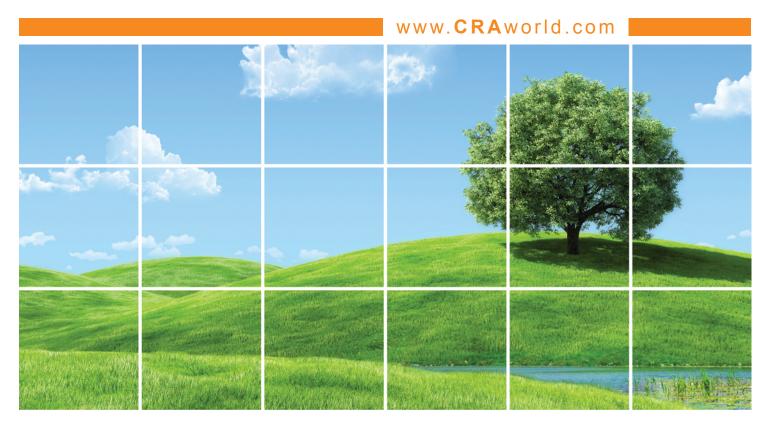
Here is the copy of the Public Notice for the Holly Tank 5201 site.

Public notification was completed to all concerned parties that were listed by June 2013. Glenn Von Gotten was copied on all. Also you should have a status report that was submitted to NMOCD in August 2013.

I will call you Tomorrow AM to discuss and set up a conference call for Thursday with Holly.

I will be glad to help you out anything you need to get up to speed on this project.

Brad Stephenson, PG
Sr Hydrogeologist
Conestoga-Rovers & Associates
14998 West 6th Avenue Frontage Road #800
Golden, Colorado 80401


303-941-6156 (cell) 720-974-0942 (direct office) 720-974-0936 (fax)

bstephenson@craworld.com

REPORT

SITE STATUS REPORT

HOLLY ENERGY PARTNERS HOBBS TANK 5201 NW 1/4 of the NW 1/4 of SECTION 22 TOWNSHIP 19 SOUTH, RANGE 38 EAST LEA COUNTY, NEW MEXICO

Prepared for: William Green

Conestoga-Rovers & Associates 14998 West 6th Avenue, Suite 800 Golden, Colorado 80401

U&{ à^\Á2013 • #078863 Report Number:2

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTRO	DDUCTION	1
	1.1	SITE BACKGROUND	. 1
	1.2	SITE SETTING	.1
	1.3	SUMMARY OF PREVIOUS INVESTIGATIONS	.1
	1.4	SITE CONCEPTUAL MODEL	2
2.0	SITE A	ACTIVITIES	4
	2.1	WELL EVALUATIONS	. 4
	2.2	GROUNDWATER MONITORING PROCEDURES AND RESULTS	. 4
	2.3	REMEDIATION WELL INSTALLATION	. 6
	2.4	SUBSURFACE SOIL SAMPLING PROCEDURES AND RESULTS	. 8
	2.5	QA/QC RESULTS	. 9
	2.6	INVESTIGATIVE DERIVED WASTE	.9
3.0	CONC	LUSION AND RECOMMENDATIONS	10

LIST OF FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	SITE MAP - AUGUST 2012
FIGURE 3	PRODUCT THICKNESS - AUGUST 2012
FIGURE 4	PRODUCT THICKNESS - DECEMBER 2012
FIGURE 5	GROUNDWATER POTENTIOMETRIC SURFACE AND GROUNDWATER ANALYTICAL RESULTS MAP – DECEMBER 2012
FIGURE 6	PRODUCT THICKNESS - JUNE 2013
FIGURE 7	GROUNDWATER POTENTIOMETRIC SURFACE AND GROUNDWATER ANALYTICAL RESULTS MAP – JUNE 2013
FIGURE 8	SUBSURFACE SOIL ANALYTICAL RESULTS
FIGURE 9	WELL CONSTRUCTION DETAILS

LIST OF TABLES

TABLE 1	QA/QC RESULTS FOR GROUNDWATER
TABLE 2	QA/QC RESULTS FOR SOIL
TABLE 3	INVESTIGATIVE DERIVED WASTE RESULTS

LIST OF APPENDICES

APPENDIX A	JULY 2012 WELL EVALUATIONS AND FLUID LEVELS
APPENDIX B	SUMMARY OF FLUID LEVELS (AUGUST 2012 – JUNE 2013)
APPENDIX C	GROUNDWATER SAMPLING FIELD FORMS/NOTES
APPENDIX D	SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
APPENDIX E	GROUNDWATER LABORATORY REPORTS
APPENDIX F	WELL CONSTRUCTION SUMMARY AND BORING LOGS
APPENDIX G	SUMMARY OF SUBSURFACE SOIL ANALYTICAL RESULTS
APPENDIX H	SUBSURFACE SOIL LABORATORY REPORTS

1.0 INTRODUCTION

This status report is submitted on behalf of Holly Energy Partners (HEP) for the Hobbs Tank 5201 Release (Site) located in Lea County, New Mexico (Figure 1). The notification of the pipeline release was submitted to New Mexico Oil Conservation Division (NMOCD) on July 22, 2004. This report covers activities at the Site for the period July 2012 to June 2013. This report contains information on the status of the crude oil found on groundwater in the area of the release, groundwater monitoring activities and the installation of the crude oil recovery wells, as described in the Stage 1 Abatement Plan that was submitted to the NMOCD in November 2012.

1.1 SITE BACKGROUND

On July 22, 2004, a leak was discovered in a 6-inch pipeline line from the crude oil truck unloading rack to the 5201 storage tank. The line was exposed and clamped and the section was eventually replaced. Petroleum stained soil in an area of approximately 4 feet by 20 feet by 18 feet deep was immediately excavated. Additional staining observed close to the tank was not excavated due to the proximity of the tank and fear of compromising the 1930-vintage tank's structural integrity. No fluid was observed in the excavation. The Site is located on land owned by Enterprise, Inc.

1.2 <u>SITE SETTING</u>

The Site is located approximately 3.5 miles south of Hobbs, New Mexico. The Site is located in the NW ¼ of the NW ¼ of Section 22, Township 19 South, Range 38 East in Lea County, New Mexico (32°39.079′N, 103°8.530′W). The topography at the Site is relatively flat and the average elevation across the Site is 3,595 feet mean sea level (Figure 2). The Site is located on the HEP Tank Farm on County Road 61. The surrounding land contains crude oil storage tanks and open range land.

1.3 SUMMARY OF PREVIOUS INVESTIGATIONS

All of the available data collected prior to 2012 is contained in Appendix D. Six groundwater monitoring wells, seven boreholes and one recovery well have been used to characterize the release and initially recover the released crude oil in the area of the tank. Five boreholes and two monitor wells were installed inside the berm area in 2004 as illustrated in Figure 3. The first borehole was completed as a 2-inch monitor well (MW-1) adjacent to the leak location when crude oil was observed in the borehole. An existing well installed by Teppco in 2004 was used to establish groundwater flow direction (Figure 3). Two monitor wells, MW-2 and MW-3, were installed outside the bermed area in 2004. A 4-inch recovery well (RW-1) was also installed in the area near

the tank and MW-1 in 2004. In 2010, two additional monitoring wells were installed, MW-4 outside the bermed area and MW-5 inside the bermed area (Figure 3). The Teppco well was abandoned in 2010.

In 2004 crude oil was measured in MW-1 to be approximately 6 feet thick. Outside the tank berm area and approximately 200 feet southeast from the release point, dissolved phase hydrocarbon concentrations were detected in MW-2 above the New Mexico Water Quality Control Commission (NMWQCC) standard for benzene.

1.4 <u>SITE CONCEPTUAL MODEL</u>

Groundwater at the Site is found at approximately 44.60 to 49.64 feet-below ground surface (ft-bgs) and the groundwater flow direction is towards the east. In December 2002 the wells located within close proximity to the release contained crude oil with a maximum measured thickness of 2.82 feet (MW-1). The crude oil from the release has been measured on the east side of Tank 5201 with a maximum thickness that has decreased from 3.62 feet in August 2012 to 2.82 feet in June 2013.

The dissolved phase hydrocarbon concentrations in groundwater have been below the NMWQCC standards for benzene, toluene, ethylbenzene and total xylenes (BTEX) since 2004 in the down-gradient direction from the release. Dissolved phase hydrocarbons were detected in low concentrations (below NMWQCC standards) in four of the five monitor wells located outside the leak area from 2004 to 2012. The impacts to groundwater appear to be limited to the immediate area of the leak.

The Site is located on land leased from Enterprise. The primary chemicals of concern are hydrocarbon constituents that originated from the crude oil. The Site is located in an area of multiple crude oil gathering lines and is about 2 miles west of highway 18, just south of Hobbs, New Mexico. The closest residences are approximately 0.5 miles northeast from the Site. A water well search was conducted to identify wells within a one mile radius of the Site. A well is located approximately 500 feet to the southeast of the Site. This well was sampled for hydrocarbons following the discovery of the release and was found to be un-impacted (Stage 1 Abatement Plan-November 2012, Conestoga-Rovers & Associates).

There appears to be no immediate threat to the environment or to drinking water wells located in the area, caused by the release and any remaining impacts. The crude oil has a very low mobility and does not readily desorb nor dissolve and therefore, the crude oil impacts have remained in the immediate area of the release. The crude oil first measured at the Site in 2004 has not migrated from the area, suggesting that soil impacts

have been mitigated and supporting the conclusion that the released crude oil has a low mobility rate and is not readily dissolved in groundwater.

The NMOCD recommended remediation action levels for soil are dependent upon site specific ranking criteria outlined in the Guidelines for Remediation of Leaks, Spill, and Releases (August 1993). These criteria are:

- depth to groundwater;
- proximity of the wellhead to water sources or private domestic wells; and
- distance to surface water bodies to include but not limited to perennial rivers, streams, creeks, irrigation canals and ditches, lakes, ponds and playas.

The depth to groundwater at the Site is approximately 45 ft-bgs. The closest water well 500 feet southeast of the Site. There is a drainage ditch approximately 300 feet to the west of the Site. This only conducts water after a hard rainfall, due to climate and drought, this ditch rarely holds any water. Due to the current drought in the area, it is unlikely that there are any perennial rivers near the impacted area.

At the Site, groundwater is less than 50 feet, the closest domestic well is less than 1,000 feet from the release and the distance to a surface-water body is less than 1,000 feet from the Site. Based on these ranking criteria and the Guidelines for Remediation of Leaks, Spills and Releases (August 1993), the ranking score for groundwater is 20, for the domestic well it is 20 and for the surface-water body it is 10, for a total ranking score of 50. With the total ranking score of over 19, the NMOCD recommended remediation action levels for hydrocarbons in soil for the Site are:

- 10 milligrams per kilogram (mg/kg) for benzene;
- 50 mg/kg for total BTEX;
- 100 mg/kg for TPH; and

The NMWQCC standards for hydrocarbons in groundwater are as follows:

- 0.01 milligrams per liter (mg/L) for benzene;
- 0.75 mg/L for toluene;
- 0.75 mg/L for ethylbenzene; and
- 0.62 mg/L for total xylenes.

2.0 SITE ACTIVITIES

On-site well evaluations were conducted in August 2012. Groundwater monitoring was conducted at the Site in December 2012 and June 2013. The groundwater monitoring included obtaining groundwater samples for laboratory analysis for BTEX and measuring fluid levels in all monitor wells, and the recovery wells. In February 2013, 4 - four inch recovery wells were installed for use in the recovery of the crude oil and monitor ground water.

2.1 <u>WELL EVALUATIONS</u>

An evaluation of all of the monitor wells and the recovery well located at the Site was conducted in August 2012. The evaluation included the validation of all well locations as shown in the Figure 2, measurement of the fluid levels and the total well depths and a search of the available records for well and borehole logs. Appendix A contains the August 2012 well evaluation information.

The December 2012 Site map (Figure 2) shows five former boring locations, five monitor wells and one recovery well. The August 2012 field evaluation found five monitor wells and one recovery well. The review found well logs for monitor well MW-4 and boreholes BH-1 and BH-4. The field evaluation showed total well depths ranging from 51.51 feet below measuring point (ft-bmp) to 62.58 ft-bmp. The saturated thickness in the wells varied from 3.63 feet (MW-1) to 15.14 feet (MW-4). Crude oil was measured in one monitor well (MW-1) and one recovery well (RW-1), with a maximum product thickness of 3.62 feet (MW-1) (Figure 3). No crude oil was measured in any of the monitor wells.

2.2 GROUNDWATER MONITORING PROCEDURES AND RESULTS

Groundwater monitoring was conducted at the Site in December 2012 and June 2013. The monitoring included fluid level measurements of all monitor wells and recovery wells. Groundwater samples were collected from four monitor wells during both sampling events and from two newly installed recovery wells during the June 2013 event.

Crude oil was measured in monitor well MW-1 and recovery well RW-1 during the December 2012. Product thickness varied from 3.01 (RW-1) feet to 3.23 (MW-1) feet. The crude oil is found in the central portion of the Site and the immediate area east of Tank 5201. The crude oil thicknesses for December 2012 are shown in Figure 4 and detailed in Appendix B.

Water levels measured in December 2012 were similar to the water levels that were measured in August 2012. For the December monitoring period, the depth to groundwater across the Site varied from 45.35 ft-bgs (MW-3) to 46.11 ft-bgs (MW-5). The groundwater flow in December was towards the east and the groundwater gradient is relatively flat with a gradient of 0.0026 feet/foot (Figure 5).

During the June 2013 monitoring period, crude oil was again measured in monitor well MW-1 (2.82 feet thick) and recovery well RW-1 (2.76 feet thick). In addition, crude oil was measured at 0.01 feet thick in recovery wells HTRW-1 and HTRW-3. The crude oil thicknesses for June 2013 are shown in Figure 6 and detailed in Appendix B.

For the June 2013 monitoring period, the depth to groundwater across the Site varied from 45.76 ft-bgs (MW-3) to 46.49 ft-bgs (MW-5). The groundwater flow in June 2013 was towards the east and the groundwater gradient was 0.0014 feet/foot (Figure 7).

Prior to purging of the wells and obtaining groundwater samples, fluid levels were measured in all monitor wells using an oil/water interface probe. During both sampling events, the monitor wells were purged at a rate of 160 ml/min or less, and groundwater samples were collected using the low flow purging technique following stabilization of the field parameters (Appendix D). The meters used for the field parameters were calibrated prior to use. Field parameters obtained during purging included temperature, specific conductance, pH, dissolved oxygen and oxidation reduction potential (ORP) and the final readings for both sampling events are summarized in Appendix E.

Four monitor wells (MW-2, MW-3, MW-4 and MW-5) were sampled in December 2012 for BTEX analysis by Method 8260. In June 2013, the four monitor wells and recovery wells HTRW-2 and HTRW-4 were sampled for BTEX analysis by Method 8260. Groundwater samples were immediately placed into the appropriate laboratory provided containers following field parameter measurements and placed in an ice-chilled cooler for transport to the DHL laboratory under chain-of-custody procedures. The laboratory reports for both sampling events are contained in Appendix E.

The December 2012 hydrocarbon concentrations for each monitor well are shown in Figure 5 and summarized in Appendix D. The concentrations of dissolved BTEX in groundwater during December 2012 at the Site were generally similar to concentrations detected in 2011 (Appendix E). There were no detections of any of the BTEX constituents above the NMWQCC standards found at the Site. The analytical results are summarized as follows:

- Of the four wells monitored in December, none of the BTEX constituents were detected above the lower laboratory reporting limits in three monitor wells; MW-3, MW-4 and MW-5; and
- Only benzene (0.83 ug/L) was detected above the lower laboratory reporting limit at MW-2.

The hydrocarbon concentrations for each monitor well sampled in June 2013 are shown in Figure 7 and summarized in Appendix D. The concentrations of dissolved BTEX in groundwater during June 2013 at the Site were generally similar to concentrations detected in December 2012 (Appendix D). There were two detections of the BTEX constituents above the NMWQCC standards (HTRW-1 & HTRW-2 for benzene), and six detections above the lower laboratory reporting limit (MW-2 & MW-4 for benzene and HTRW--2 & HTRW-4 for toluene, ethylbenzene and total xylenes) at the Site during the June 2013 sampling event.

- Of the six wells sampled in June 2013, none of the BTEX constituents were detected above the lower laboratory reporting limits in two monitor wells; MW-3 and MW-5; and
- Only benzene was detected above the lower laboratory reporting limit, but below the NMWQCC standard at MW-2 (0.88 ug/L) and MW-4 (0.29 ug/L).
- Benzene was detected above the NMWQCC standard of 10 ug/L at wells HTRW-2 (62.3 ug/L) and HTRW-4 (87.4 ug/L);
- Toluene was detected above the lower laboratory reporting limit, but below the NMWQCC standard at wells HTRW-2 (21.4 ug/L) and HTRW-4 (49.4 ug/L);
- Ethylbenzene was detected above the lower laboratory reporting limit, but below the NMWQCC standard at wells HTRW-2 (4.4 ug/L) and HTRW-4 (32.5 ug/L); and
- Total xylenes were detected above the lower laboratory reporting limit, but below the NMWQCC standard at wells HTRW-2 (12.9 ug/L) and HTRW-4 (52.8 ug/L);

2.3 <u>REMEDIATION WELL INSTALLATION</u>

The final recovery well locations were based on historical crude oil thickness data, utility clearances and were finalized by the site geologist. Prior to initiation of abatement activities, a public notice was published in both the Hobbs Daily News-Sun and the Santa Fe New Mexican as per requirement by the NMOCD. Following the public notice period, more than 30 days were allowed for comment or questions regarding the notice.

No comments or questions were received and abatement activities were initiated in June 2013. Both private and public utilities were cleared. The NMOCD was notified approximately one week prior to drilling activities, as required by 19.15.30.14.B NMAC. Well permits were obtained from the New Mexico State Engineer and site access and permission to install the recovery wells was obtained from Enterprise Energy.

The wells were installed according to New Mexico Office of the State Engineer rules (19.27.4 NMAC) using an air rotary drill rig. The boring diameter was 7^{7/8} inches and the total depths of the wells were approximately 10 feet below the top of the fluid, as observed during the drilling by the site geologist. The well borings were logged by the on-site geologist based on the cuttings and spilt spoon samples. Each boring was logged for the unified soil classification, moisture content, Munsell color, staining, and vapor content.

Four wells were installed for use in the removal of the crude oil impacts on groundwater at the Site (Figure 9). In the unsaturated zone at the Site, backfill material was encountered consisting of silt and sand overlying caliche with sand and silty sand to the top of groundwater. In the saturated zone at the Site, caliche, sand and gravel were encountered in the boreholes. Odor was present from 24 ft-bgs to the top of groundwater in wells HTRW-1, HTRW-2 and HTRW-4 and from 36 ft-bgs to top of groundwater in HTRW-3. Staining was observed from 26 ft-bgs to 40 ft-bgs in well HTRW-2 and 14 ft-bgs to 40 ft-bgs in well HTRW-3. No staining was present in wells HTRW-1 or HTRW-4. Well construction details and well bore logs for the new recovery wells are contained in Appendix F.

The recovery wells were constructed with 4-inch diameter schedule 40 PVC casing and 20 feet of 20-slot (0.020 inch) PVC screen with approximately 10 feet of the screen above the observed fluid level and 10 feet below the observed fluid level as shown in Figure 9. A 10/20 sand filter pack was placed in the borings from the bottom of the boring to approximately 2 feet above the well screen. A hydrated bentonite seal was placed from the top of the sand pack to approximately 5 feet above the sand pack. A grout seal was placed from the top of the bentonite seal to approximately 3 ft-bgs. A 3-foot manhole cover was placed on each well and cemented in place. The selected screen interval was used to allow for soil vapor extraction if needed, the fluctuation in fluid levels and for the collection of fluids from any future surfactant injection, if needed. In addition, a 1-inch piezometer was installed alongside the 4-inch well and constructed in the same manner as the 4-inch well from, the bottom of the well screen to the surface (Figure 9). These 1-inch piezometers will be used to measure fluid levels so that the oil recovery pumps will not have to be removed for fluid level measurements.

Product thickness was not measured in any of these new wells immediately following installation; therefore, each well was surged with a surge block assembly to develop the well. These wells were again checked during the June 2013 monitoring event and product was measured in two of the four wells (HTRW-1 and HTRW-3) with crude oil thicknesses of 0.01 feet.

All drilling and well development equipment was cleaned prior to initiation of drilling activities and in between all borings using a high pressure washer.

2.4 <u>SUBSURFACE SOIL SAMPLING PROCEDURES AND RESULTS</u>

Subsurface soil samples were collected from boreholes for the new recovery wells. During drilling for the well installations, soil samples were collected continuously from ground surface to the top of groundwater or to approximately 52 ft-bgs, using a two-foot split-spoon sampler, or a core sampler when the split-spoon hit refusal. If the core sampler hit refusal, the boring was logged using cuttings. Headspace samples were collected in re-sealable plastic bags every two feet and measured approximately 30 minutes after collection for volatiles using a photo-ionization detector (PID). An analytical sample was collected from each boring and analyzed for BTEX compounds by Method 8260, and TPH-GRO and TPH-DRO by Method 8015, based on the highest detected headspace reading in each boring.

The data shows soil impacts based on analytical soil data and head space data above NMOCD recommended remediation action levels in the area east of Tank 5201 at the Site. The soil data is summarized in Appendix G and shown on Figure 8. On the Site (Wells HTRW-1, HTRW-2, HTW-3 and HTRW-4), there appears to be impacts based on head space readings ranging from 4 feet thick (Well HTRW-4) to 50 feet thick (Well HTRW-3). The subsurface soil TPH results indicated that the subsurface soil impacts are below 16 ft-bgs at Well HTRW-3 and from 30 to 48 ft-bgs in the remaining remediation wells. Laboratory reports for the soil data for the June 2013 recovery well installation are contained in Appendix H.

The subsurface soil results are summarized as follows:

- Total BTEX was not detected above the NMOCD recommended action level of 50 mg/Kg in any of the newly installed recovery well borings;
- TPH was detected above the recommended remediation action level of 100 mg/kg below 16 ft-bgs at well location HTRW-3, and below 32 ft-bgs in the remaining recovery wells; and
- Head space readings above the recommended remediation action level of 100 ppm were found below 2 ft-bgs at well location HTRW-3, below 16 ft-bgs at

well location HTRW-1, below 32 ft-bgs at well location HTRW-2 and below 38 ft bgs at HTRW-4.

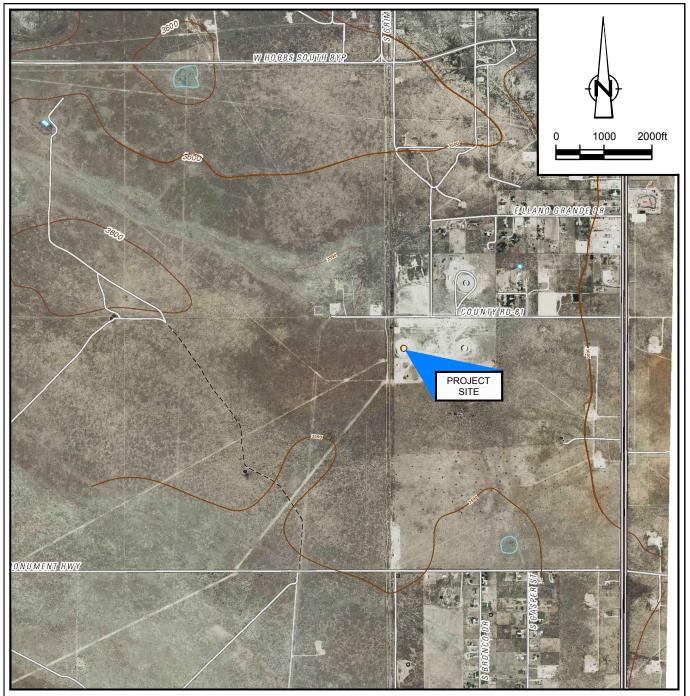
2.5 QA/QC RESULTS

Quality Assurance/Quality Control (QA/QC) measures were followed according to the abatement plan. The field PID was calibrated daily using 100 ppm isobutylene. QA/QC samples for groundwater sampling and soil sampling included trip blanks, and duplicate groundwater and soil samples. The results of the QA/QC samples for groundwater are summarized in Table 1 and the results for the QA/QC sample for soil is summarized in Table 2. Each cooler that was shipped to the laboratory contained a temperature blank, laboratory prepared groundwater trip blank or laboratory prepared soil trip blank. The groundwater duplicate samples and all soil and groundwater blanks were analyzed for BTEX by Method 8260. The duplicate groundwater and soil samples showed no variation in the results. There were no detections above the lower laboratory reporting limits for BTEX in any of the trip blanks.

2.6 INVESTIGATIVE DERIVED WASTE

The soil cuttings from the installation of the new remediation wells were separated on-site into impacted and non-impacted soil, based on visual observation and head space analysis. Non-impacted soil was distributed in low lying areas of the Site. The impacted cuttings were collected and containerized in a plastic lined roll-off container. The impacted cuttings were sampled for BTEX, total petroleum hydrocarbons (TPH) and RCRA metals analyses at the conclusion of drilling activities. The results indicated the waste is above state standards for TPH; the waste was handled and disposed of properly at the Sundance disposal facility. The results of the investigative derived waste are summarized in Table 3.

3.0 CONCLUSION AND RECOMMENDATIONS

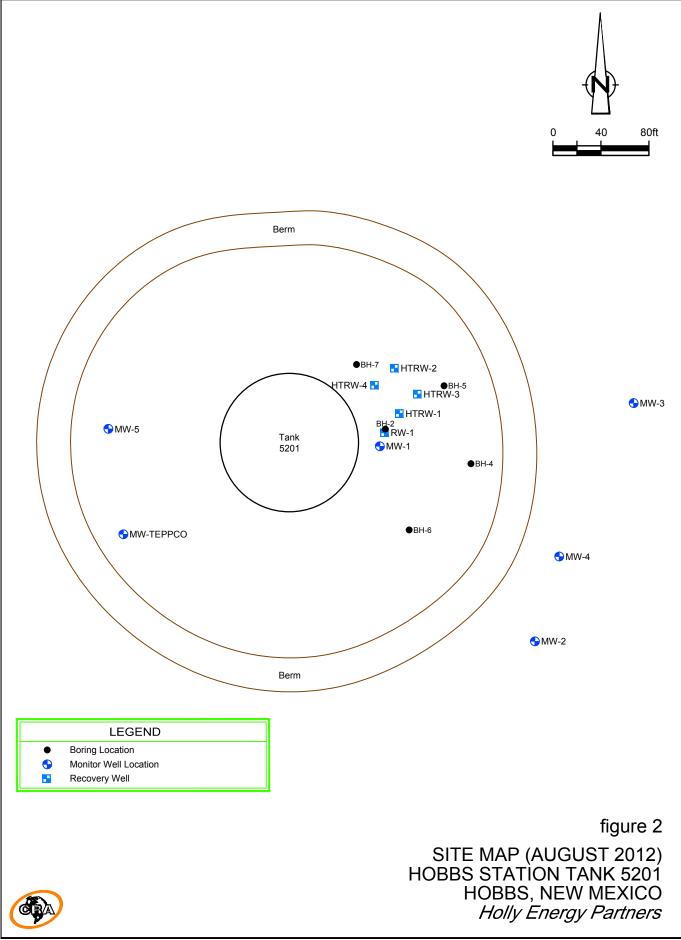

Groundwater hydrocarbon concentrations have remained stable since 2010. The measured thicknesses of the crude oil have fluctuated as much as 0.8 feet since the suspension of the crude oil recovery activities in 2011.

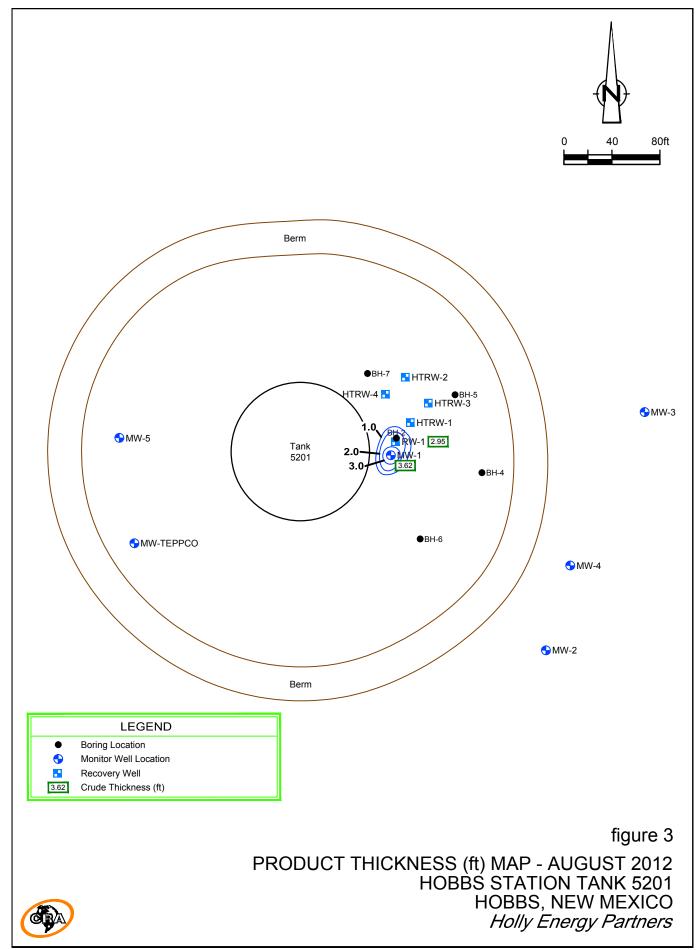
CRA will continue to monitor groundwater at the Site on a semi-annual basis. The next groundwater sampling event is scheduled to occur in December 2013. Groundwater samples will be collected from all site monitor wells and recovery wells that do not exhibit crude oil and analyzed for BTEX.

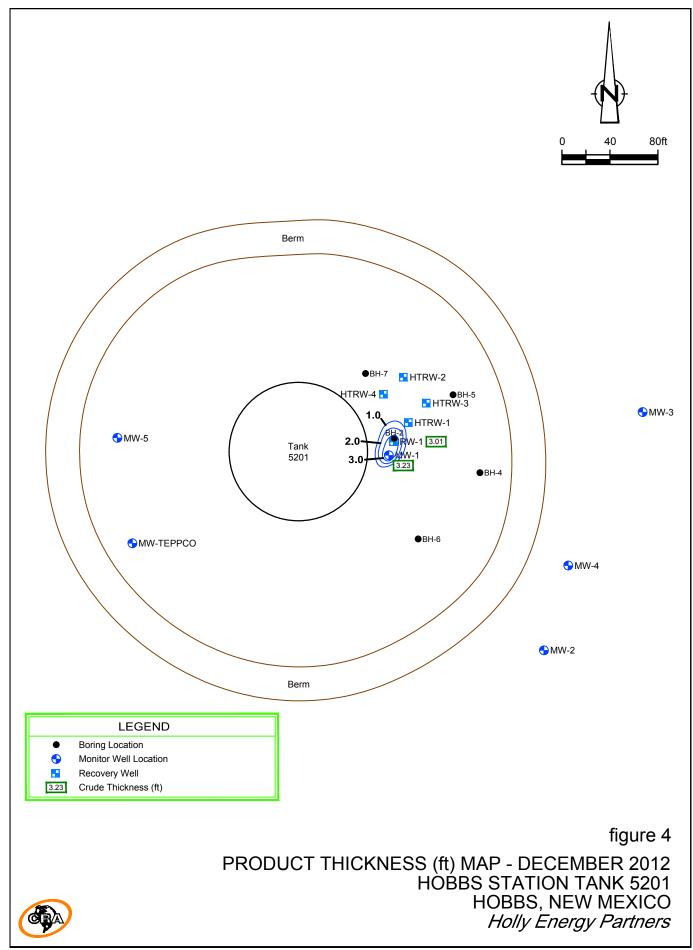
The remedial strategy for site closure is based on the current NMOCD requirements. To close the Site with no further action, the crude oil would first have to be removed separately from groundwater (19.15.17.13 NMAC). The proposed remedial technology for the Site uses a crude oil only skimming system that does not depress the groundwater table to remove the crude oil. This system is designed to shut down automatically when water is encountered in the pump and can be restarted remotely without visiting the Site. This system is scheduled to be installed and in operation by September 2013.

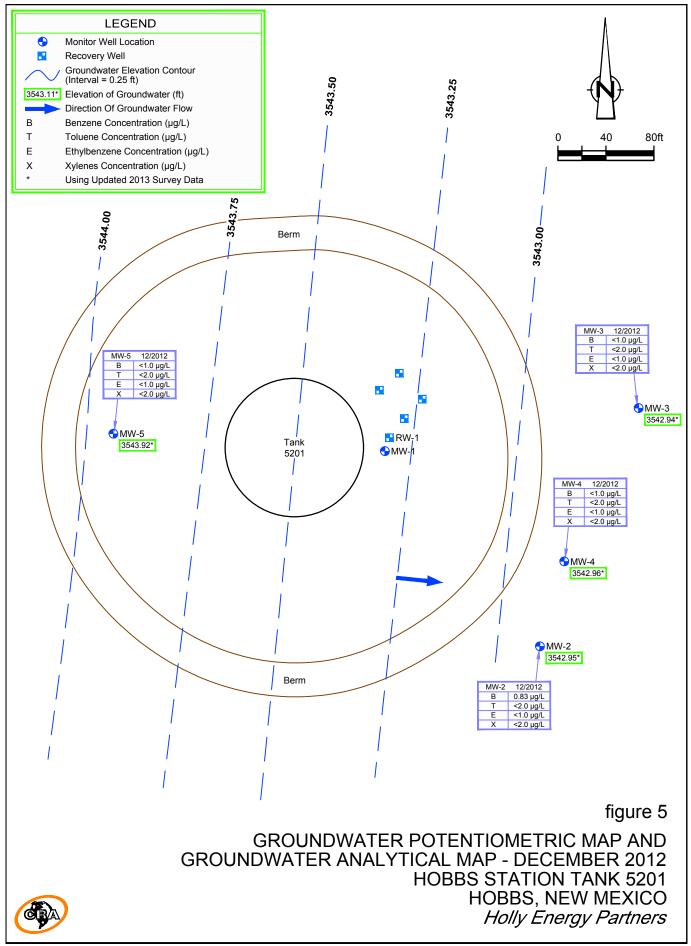
Once the phase-separated hydrocarbons (crude oil) have been removed to a *de minimis* thickness, remedial actions would then focus on the low-level dissolved phase concentrations. Based on existing conditions, the Site closure strategy to meet State standards would be based on natural attenuation of contaminant parameters and monitoring of the dissolved phase hydrocarbons.

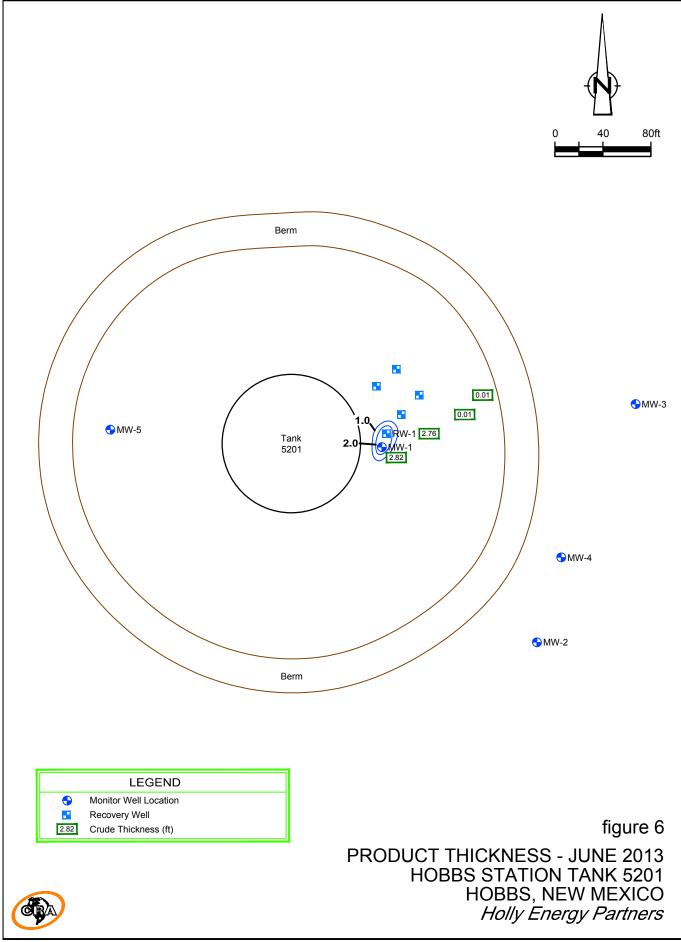
FIGURES

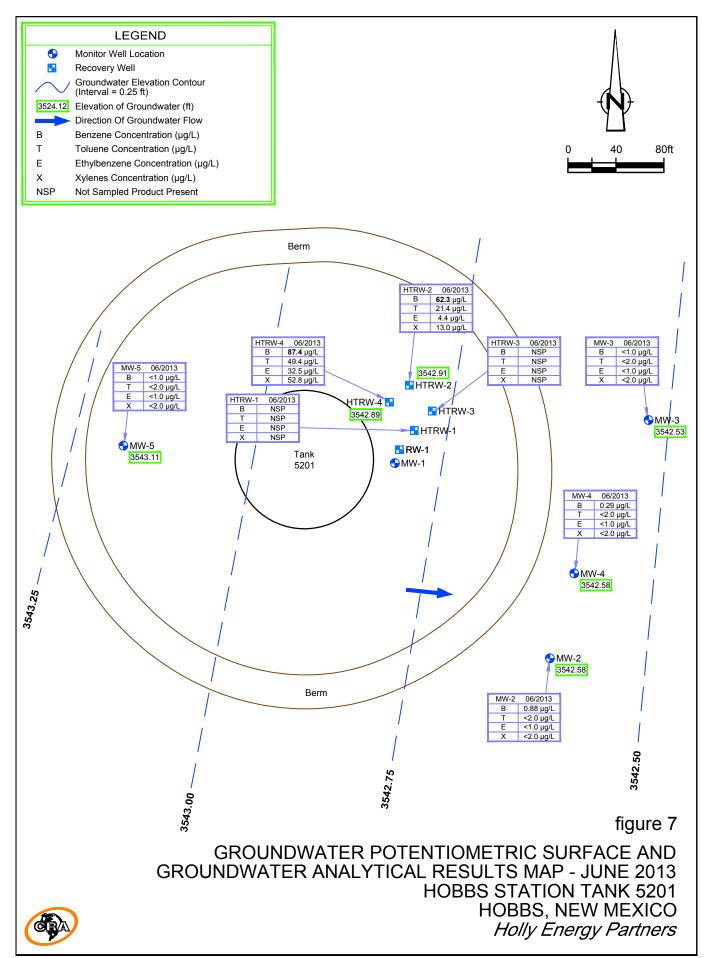

SOURCE: USGS 7.5 MINUTE QUAD "HOBBS WEST AND HOBBS EAST, NEW MEXICO" DATED 2010

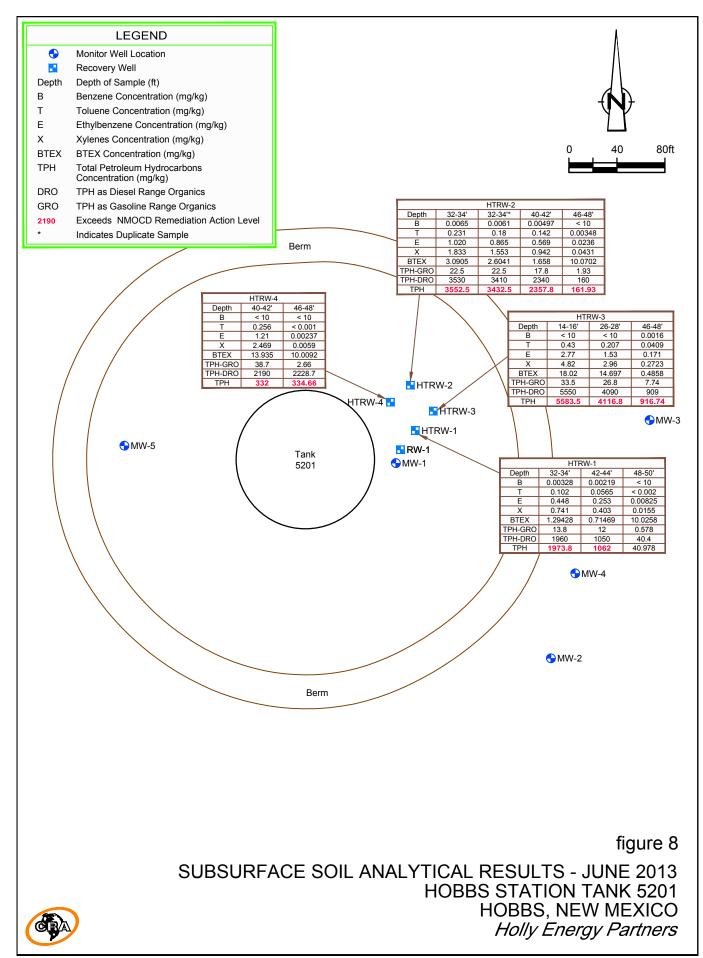

LAT/LONG: 32.6549° NORTH, 103.1382° WEST COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO EAST

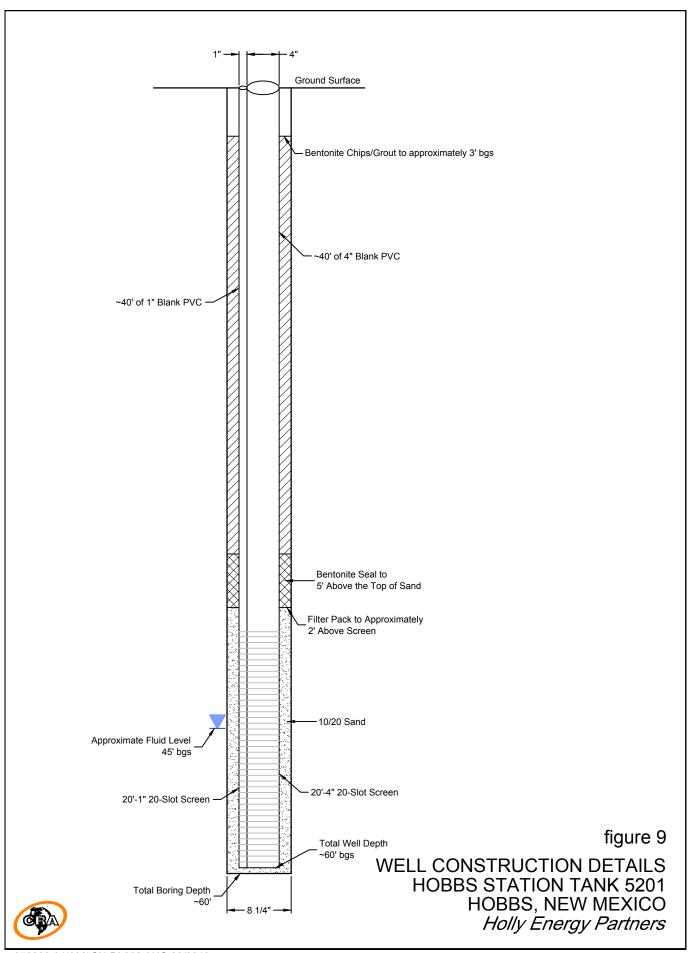

figure 1


SITE LOCATION MAP HOBBS STATION TANK 5201 HOBBS, NEW MEXICO Holly Energy Partners









TABLES

TABLES

Table 1 Summary of Groundwater QA/QC Results for December 2012 and June 2013 Holly Energy - Hobbs Tank 5201 - Lea County, New Mexico

		Laboratory Analytical Results				
				Ethyl-	Total	
		Benzene	Toluene	benzene	Xylenes	
Well No.	Date Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
NMWQC Groundwa	ater Standard	10	750	750	620	
Trip Blank	12/20/2012	<0.001	<0.002	<0.001	<0.002	
MW-3	12/20/2012	<0.001	<0.002	<0.001	<0.002	
MW-3 duplicate	12/20/2012	<0.001	<0.002	<0.001	<0.002	
Trip Blank	6/25/2013	<0.001	<0.002	<0.001	<0.002	
MW-3	6/25/2013	<0.001	<0.002	<0.001	<0.002	
MW-3 duplicate	6/25/2013	<0.001	<0.002	<0.001	<0.002	

BOLD = Exceeds New Mexico Water Quality Commission (NMWQC) Standard mg/L = milligrams per liter

< = Not detected above indicated level

BTEX = Benzene, Toluene, Ethylbenzene and Xylenes

BTEX analyzed by Method EPA 8260

Table 2 Summary of Soil QA/QC Results Holly Energy - Hobbs Tank 5201 - Lea County, New Mexico

		Laboratory Analytical Results						
Sample ID	Date Sampled	Benzene	Toluene	Ethyl-	Total	BTEX		
Sample 1D		benzene	Toluelle	benzene	Xylenes			
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
NMOCD Remed	10	750	750	620	50			
TRIP BLANK	6/18/13	< 0.0002	< 0.0006	< 0.0003	0.0009	0.0026		

		Sample	Laboratory Analytical Results								
Sample ID	Date Sampled	Depth	Benzene	Toluene	Total Xylenes	BTEX	TPH-GRO	TPH-DRO	TPH		
		(ft-bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
NMOCD Remediation Action Levels			10			50			100		
HTRW-2-34	6/18/13	32-34	0.0065	0.231	1.8330	2.0705	22.5	3530	3552.5		
HTRW-2-DUP	6/18/13	DUP	0.0061	0.18	1.5530	1.7391	22.5	3410	3432.5		

NOTES:

NMOCD= New Mexico Oil & Conservation Division BTEX = Benzen, Toluene, Ethylbenzen & Total Xylenes mg/L = milligrams per Liter mg/kg = milligrams per kilograms

< = analyte not detected above method reporting limit

BTEX analyzed by EPA Method 8260B

Table 3 Summary of Investigative Derived Waste from Monitoring Well Installations Holly Energy - Hobbs Tank - Lea County, New Mexico

SOIL

BTEX

	Date Sampled		% Moisture							
Sample ID		Donzono	Taluana	Ethyl-	Total	Total BTEX	TDU CDO	TPH-DRO	TOL	
Sample 1D		Benzene	Toluene	benzene	Xylenes		TPH-GRO	ואח-טאט	ІРП	TPH (mg/kg) WT%
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	WT%
NMOCD Remediation Action Levels		10				50.00			100	
WASCHAR-1	6/25/2013	< 10	< 0.001	0.183	0.519	10.703	79.7	1390	1469.7	8.08

RCRA Metals

		Laboratory Analytical Results								
Sample ID	Date Sampled	Arsenic	Barium	Cadmium	Chromium	Lead	Selenium	Silver	Mercury	
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
NMOCD Remediation	Action Levels	0.39	5,400	37	210	400	390	390	23	
WASCHAR-1	6/25/2013	1.21	129	<0.103	6.64	1.364	0.283	0.118	<0.0153	

NOTES:

NMOCD= New Mexico Oil & Conservation Division

mg/kg = milligrams per kilogram

BTEX = Benzen, Toluene, Ethylbenzen & Total Xylenes

TPH-GRO = Total Petroleum Hydrocarbons- Gasoline Range Organics

TPH-DRO = Total Petroleum Hydrocarbons - Diesel Range Organics

BOLD (RED) - concentration greater than NMOCD Remediation Action Levels

< = analyte not detected above method reporting limit

BTEX analyzed by EPA Method 8260B

TPH-GRO analyzed by EPA Method 8260B

TPH-DRO analyzed by EPA Method 8015M

APPENDIX A

AUGUST 2012 WELL EVALUATION AND FLUID LEVELS

Appendix A - Hobbs Tank Well Evaluations August 2012 Holly Energy - Hobbs Tank - Lea County, New Mexico

Well ID	Date	PID	Casing Dia	DTP	DTW	Thickness	TD	Saturated	Stick up	DTW	Well Marked	Surface Condition
		(ppm)	(in)	(ft-bmp)	(ft-bmp)	(ft)	(ft-bmp)	(ft)	(ft) Y/N	(ft-bgs)	Y/N	
MW-1	8/7/2012	7	2	47.88	51.50	3.62	51.51	3.63	3.09	48.41	Υ	Pad
MW-2	8/7/2012	2.9	2		47.44		52.42	4.98	2.47	44.97	Υ	Pad
MW-3	8/7/2012	0	2		47.43		53.20	5.77	2.52	44.91	Υ	Pad
MW-4	8/7/2012	0	2		47.44		62.58	15.14	2.45	44.99	Υ	Pad
MW-5	8/7/2012	0	2		48.83		58.82	9.99	3.15	45.68	Υ	Pad
RW-1	8/7/2012	19	4	48.06	51.01	2.95	58.19	10.13	3.08	47.93	Υ	Pad

Notes: ppm -- parts per million in -- inches

ft-bmp -- feet-below measuring point

ft -- feet

ft-bgs -- feet-below ground surface

APPENDIX B

SUMMARY OF FLUID LEVELS (AUGUST 2012 – JUNE 2013)

Appendix B Summary of Fluid Levels (August 2012 - June 2013) Holly Energy - Hobbs Tank 5201 - Lea County, New Mexico

Well ID	Date	DTP	DTW	Prod. Thick	TD
well ib	Date				
		(ft-bmp)	(ft-bmp)	(ft)	(ft-bmp)
RW-1	08/07/12	48.06	51.01	2.95	58.19
	12/20/12	48.47	51.48	3.01	
	06/20/13	48.89	51.65	2.76	
MW-1	00/07/10	47.88	51.50	3.62	E4 E4
IVI VV - I	08/07/12				51.51
	12/20/12	48.32	51.55	3.23	
	06/20/13	48.68	51.50	2.82	
MW-2	08/07/12		47.44		52.42
	12/20/12		47.90		
	06/25/13		48.27		
MW-3	08/07/12		47.43		53.20
10177-3	12/20/12		47.87		33.20
	06/25/13		48.28		
2024	00/07/40		47.44		00.50
MW-4	08/07/12		47.44		62.58
	12/20/12 06/25/13		47.89 48.27		
	00/23/13		40.27		
MW-5	08/07/12		48.83		58.82
	12/20/12		49.26		
	06/25/13		49.64		
HTRW-1	06/25/13	45.27	45.28	0.01	60.10
HTRW-2	06/25/13		44.60		60.14
HTRW-3	06/25/13	45.87	45.88	0.01	60.14
HTRW-4	06/25/13		45.68		60.16

Notes:

DTP - depth to product DTW - depth to water

TD - total depth

ft - feet

ft-bmp - feet-below measuring point

APPENDIX C

GROUNDWATER SAMPLING FIELD FORMS/NOTES

			MO	NITORING W	MONITORING WELL RECORD FOR LOW-FLOW PURGING	OR LOW-FLO	W PURG	ING			
Project Data:	ta: Project Name: Holby Tark Ref. No.: 378863	Holly 678863	Tark		Date: Personnel:	12-25-12	-12				
Monitoring	Monitoring Well Data: Well No.:	MW-3	, American	(DSNN/SNI/OM			1 1	0830			
Va Mea	Vapour PID (ppm): Measurement Point:	1 1 1	111		Saturated Screen Length (m/ft): Depth to Pump Intake (m/ft) ⁽¹⁾ :	Length (m/ft): take (m/ft) ⁽¹⁾ :	18.87			•	-
Constructed Wo	Constructed Well Depth (m/ft): Measured Well Depth (m/ft):				Well Diameter, D (cm/in): Well Screen Volume, $V_s\left(L\right)^{(2)}$:	Well Diameter, D (cm/in): Il Screen Volume, $V_s(L)^{(2)}$:	1 1				
Depth of 5	Depth of Sediment (m/ft):				Initial Depth to Water (m/ft):		47.8	7			
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level w	Temperature , C	Conductivity (mS/rm)	Turbidity NTI	l	Hd	ORP	Volume Purged, Vp	No. of Well Screen Volumes
	-		Precision Required (5):	#3%	±0.005 or 0.01 (6)	±10 %	±10 %	±0.1 Units	(mV) ±10 mV	(E)	Purged
0824	3	47,94	50,	02.20	1,107		787	6.87	27.2		
- See	7	66°Lh	Ċ	42.59	1.107		1.3	0.50	-271		
08 80	3	78.07	57	63.30	2011		1.28	12:0	-269		
											-
Notes:											
(1) The pump intak (2) The well screen For Imperial unit	The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom. (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_3 = \pi^*(t^2)^3 t$ in mL, where π ($\pi = D/2$) and L are in cm. For impossial units $V_3 = \pi^*(t^2)^3 t + \pi = \pi^*(t^2)$.	well screen mid on a 1.52 metres	-point or at a minim (5-foot) screen leng	num of 0.6 m (2 ft) th (L). For metric	above any sediment a units, V₅=π*(r²)*L in n	ocumulated at the nL, where r (r≈D/	well bottom. 2) and L are i	ı cm.			
· co verify the me.	((*** (*) 1 (*) *(*) (mr	, where r and L	are in inches								

For Imperial units, $V_s \! = \! \pi^*(r^2)^*L^*\left(2.54\right)^3$, where r and L are in inches

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
(4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be

stabilizing), No. of Well Screen Volumes Purged = V_p/V_s . For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
 (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^4 L$ in mL, where r (r = D/2) and L are in cm.
 - For Imperial units, $V_s = \pi^\star(r^2)^\star L^\star \left(2.54\right)^3$, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
 (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
 - For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

			Volume No. of Well Purged, Vp Screen Volumes (L) Purged."	
			ORP (mV)	#10 mV -2 38 -2 38
S C	9h60		Hd	6.84 (6.85 (
OW PURGIN	3	50,89	DO (mg/L)	2003 0002 0001
OR LOW-FL		ength (m/tt) take $(m/tt)^{(1)}$ rr, D (cm/in) ume, V_s $(L)^{(2)}$.	Turbidity NTU	±10 %
MONITORING WELL RECORD FOR LOW-FLOW PURGING	Date: Personnel:	Saturated Screen Length (m/ft) : Depth to Pump Intake $(m/ft)^{(1)}$: $SQ_1 \otimes SQ_2$ Well Diameter, D (cm/in) : Well Screen Volume, V_s $(L)^{(2)}$: Initial Depth to Water (m/ft) :	Conductivity (mS/cm)	1.150 1.149 1.149
NITORING WI		S. D	Temperature ° C	64.73 64.73 64.73
MON	Tank 53 4	1 1 1 1 1 1	Drawdown from Initial Water Level (" (m/ft)	SO. OC
	H366570 C78863 MM-4		Depth to Water (m/ft)	10 (20) (10 (10 (10 (10 (10 (10 (10 (10 (10 (10
	a: Project Name: H2 bb5 Tan Ref. No.: C77863 Well Data: Well No.: WIM-4	Vapour PID (ppm): Measurement Point: nstructed Well Depth (m/ft): Measured Well Depth (m/ft): Depth of Sediment (m/ft):	Pumping Rate (ml/min)	091
	Project Data: Project Ne Ref. Monitoring Well Data:	Vap Meas nstructed Wel Aeasured Wel Depth of Se	Тіте	0929 0945 0845

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 tt) above any sediment accumulated at the well bottom.

 (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^s L$ in mL, where r (r = D/2) and L are in cm.

 - For Imperial units, $V_s = \pi^*(\tau^2)^* L^*$ (2.54)³, where τ and L are in inches

 (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

 (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be
 - stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
 For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm. 3

Project Data:	a:			IITORING WE	MONITORING WELL RECORD FOR LOW-FLOW PURGING	OR LOW-FLC	OW PURGIN	S N			77.4
	Project Name: Ref. No.:	H2605 TANK 078863	7a1K 3		Date: Personnel:	12-21 CE	21-1				
Monitoring	Monitoring Well Data: Well No.:	MUS	10			James C.	101			······································	- 1
Val	Vapour PID (ppm):			Sa	Saturated Screen Length (m/ft):	ength (m/ft):					
Mea	Measurement Point:	122		Q	Depth to Pump Intake $(m/ft)^{(1)}$:	ake (m/ft) ⁽¹⁾ :	52.20				
Constructed We	Constructed Well Depth (m/ft):				Well Diameter, D (cm/in):	r, D (cm/in):	2				
Measured We	Measured Well Depth (m/ tt):				Well Screen Volume, V _s (L) ⁽⁻⁾ :	ume, V _s (L) ⁽⁻⁷ :	0		~		
Depth of 5	Depth of Sediment (m/ft):_				Initial Depth to Water (m/ft): 494.2	Vater (m/ft):	77.20	^			
	Pumping	Depth to	Drawdown from Initial							Volume	No. of Well
Time	Rate (mL/min)	Water (m/ft)	Water Level " (m/ft)	Temperature Č C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	Hd	ORP (mV)	Purged, Vp (L)	Screen Volumes Purged '''
			Precision Required (5):	≠3 %	±0.005 or 0.01 ⁽⁶⁾	±10 %	±10 %	±0.1 Units	±10 mV		9.
1004	091	16,87	***************************************	63.36	7590		ung	7,06	581-		
1007	3	1991	ā	62,76	6.632		4.73	7.05	781-		
QIQ	(60	49,3%	71:	63.ug	669.0		01-JO	4016	181-		
										-	
							Ź		-		
Notes: (1) The pump inta	Notes: (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.	e well screen mi	d-point or at a mini	mum of 0.6 m (2 ft)	above any sediment	accumulated at	the well botton	ė			
(2) The well screen	(2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where $r (r=D/2)$ and L are in cm.	i on a 1.52 metre	es (5-foot) screen len	gth (L). For metric	units, $V_s = \pi^*(r^2)^*L$ in	mL, where r (r=	:D/2) and L are	e in cm.			

(3) The drawdown from the initial water level should not exceed 0.1 m (0.5 ft). The punipuly take shows the continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be

For Imperial units, $V_s = \pi^* (T^2)^* L^* (2.54)^3$, where r and L are in inches The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

stabilizing), No. of Well Screen Volumes Purged= Vp/Vs. For conductivity, the average value of three readings <1 mS/cm ± 0.005 mS/cm or where conductivity >1 mS/cm ± 0.01 mS/cm.

(2)

		7245 0345 0885 0885 0885	2938 1050 1050 1105	
625.13 HEP J. Covey	orly orly or from the	meter sister of the second of	48.27 00 44.60 100 44.60 100 44.60 100 100 100 100 100 100 100 100 100 1	
150000 [HOVE 078803	4 Crive orbit 20 451 W/ In 605 14 Pa	1014/2014 1016/2	77.75.27	
Lampling Land	O715 Arm	24 CO 22 CO	は長春春	
11 62 13 14 EP 13 12 MM	MRN .	25.38 70. 45.05 60.28		
Hobbs Tank	onsite S. Stynna	DTP (bmp) 48.89 48.68 70.37		
S Ho	0910 Arrive de Fersonalis	MERICAL DE LA	3	

1000 Waste Chorastantation Sanite was Her-6.25.13 327,3 3.04 6.87 Au Hobbs Tank 1.Cored

Hobs Tark Project Com 078865 1010 Acoust onsite w/ surveyors.

1145 Sonstand soovedings

APPENDIX D

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Appendix D Summary of Monitor Well Water Quality
Holly Energy - Hobbs Tank 5201 - Lea County, New Mexico

Monitor Well ID	Sample Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (total, μg/L)	Total BTEX (μg/L)	Depth to Water (ft-bmp)	Groundwater Elevation (ft- msl)	Temperature (deg-C)	Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)
NMWQCC													
Groundwater													
Standard		10	750	750	620								
MW-2	08/23/04	26	4	5	14	49	43.45	3528.57					
	01/11/05	72	<2	<2	15	87	43.02	3529.00					
	03/08/06	<2	<2	<2	<6	<2	43.44	3528.58					
	07/11/06	7	<2	<2	16	23	43.69	3528.33					
	09/07/06	4.2	1.9	<0.5	3.2	9.3	43.64	3528.38					
	12/19/06	2.1	1.0	0.9	4.3	8.3	43.83	3528.19					
	03/13/07	<0.5	0.6	1.2	2.3	4.1	44.04	3527.98					
	06/21/07	8.0	0.7	<0.5	3.8	5.3	44.11	3527.91					
	09/21/07	1.4	1.1	<0.5	3.2	5.7	43.87	3528.15					
	12/07/07	1.4	1.0	0.9	3.5	6.8	44.17	3527.85					
	03/04/08	1.4	0.8	1.8	3.3	7.3	44.27	3527.75					
	06/03/08	1.7	0.9	1.5	2.1	6.2	44.42	3527.60					
	09/23/08	1.2	<0.5	0.6	3.8	5.6	44.69	3527.33					
	12/18/08	1.0	0.8	<0.5	1.2	3.0	45.82	3526.20					
	03/16/09	0.9	0.7	<0.5	2.9	4.5	44.98	3527.04					
	06/23/09	1.2	<1.0	<1.0	<2.0	1.2	45.12	3526.90					
	09/08/09	<1.0	<1.0	<1.0	<2.0	<1.0	45.29	3526.73					
	12/17/09	<1.0	<1.0	<1.0	<2.0	<1.0	45.50	3526.52					
	03/09/10	<1.0	<1.0	<1.0	<1.5	<1.0	45.70	3526.32					
	06/16/10	<1.0	<1.0	<1.0	2.5	2.5	45.85	3526.17					
	09/01/10	1.0	<1.0	<1.0	<2.0	1.0	45.82	3526.20					
	12/06/10	1.6	<1.0	<1.0	<2.0	1.6	46.05	3525.97					
	03/18/11	1.3	<1.0	14	2.9	18.2	46.18	3525.84					
	06/23/11	1.1	<1.0	26	3.2	30.3	46.40	3525.62					
	10/07/11	1.2	<1.0	14	<2.0	15.2	46.75	3525.27					
	12/08/11	1.4	<1.0	5.7	3.6	10.7	46.91	3525.11					
new survey data	08/07/12	0.88	< 5.0	< 5.0	< 15	< 15	47.44	3543.41	30.34	1.615	0.05	6.48	-125.9
	12/20/12	0.83	<2.0	<1.0	<2.0	<1.0	47.90	3542.95	17.51	1.094	0.74	6.85	-254.0
	06/25/13	0.88	<2.0	<1.0	<2.0	<1.0	48.27	3542.58	22.10	1249	0.30	6.76	-60.6
	30,20,10	0.00	12.0	11.0	12.0	11.0	10.27	00 12.00	22.10	12.10	0.00	0.70	00.0
MW-3													
10114-5	08/23/04	<2	<2	<2	<6	<2	43.50	3528.55					
	01/11/05	<2	<2	<2	<6	<2	42.93	3529.12					
	03/08/06	<2	<2	<2	<6	<2	43.35	3529.12					
	03/08/06	<2	<2	<2	<6	<2	43.63	3528.42					
	09/07/06		<0.5	<0.5		<0.5		3528.42					
		<0.5		<0.5 <0.5	<1	<0.5 <0.5	43.61						
	12/19/06	<0.5	<0.5		<1		43.76	3528.29					
	03/13/07	<0.5	<0.5	<0.5	<1.0	<0.5	43.97	3528.08					
	06/21/07	<0.5	<0.5	<0.5	<1.0	<0.5	44.03	3528.02					
	09/21/07	< 0.5	< 0.5	< 0.5	<1.0	< 0.5	43.83	3528.22		l		l	1

App_D_078863 1 of 3

Appendix D Summary of Monitor Well Water Quality
Holly Energy - Hobbs Tank 5201 - Lea County, New Mexico

Monitor Well ID	Sample Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (total, μg/L)	Total BTEX (μg/L)	Depth to Water (ft-bmp)	Groundwater Elevation (ft- msl)	Temperature (deg-C)	Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)
NMWQCC Groundwater Standard		10	750	750	620								
MW-3	12/07/07	<0.5	<0.5	<0.5	<1.0	<0.5	44.11	3527.94					ĺ
	03/04/08	<0.5	<0.5	<0.5	<1.0	<0.5	44.32	3527.73					
	06/03/08	<0.5	<0.5	<0.5	<1.0	<0.5	44.35	3527.70					
	09/23/08	<0.5	<0.5	<0.5	<1.0	<0.5	44.65	3527.40					
	12/18/08	<0.5	<0.5	<0.5	<1.0	<0.5	44.77	3527.28					
	03/16/09	<0.5	<0.5	<0.5	<1.0	<0.5	44.92	3527.13					
	06/23/09	<1.0	<1.0	<1.0	<2.0	<1.0	45.08	3526.97					
	09/08/09	<1.0	<1.0	<1.0	<2.0	<1.0	45.24	3526.81					
	12/17/09	<1.0	<1.0	<1.0	<2.0	<1.0	45.44	3526.61					
	03/09/10	<1.0	<1.0	<1.0	<1.5	<1.0	45.66	3526.39					
	06/16/10	<1.0	<1.0	<1.0	<2.0	<1.0	45.80	3526.25					
	09/01/10	<1.0	<1.0	<1.0	<2.0	<1.0	45.80	3526.25					
	12/06/10	<1.0	<1.0	<1.0	<2.0	<1.0	46.00	3526.05					
	03/18/11	<1.0	<1.0	<1.0	<2.0	<1.0	46.14	3525.91					
	06/23/11	<1.0	<1.0	<1.0	<2.0	<1.0	46.38	3525.67					
	10/07/11	<1.0	<1.0	<1.0	<2.0	<1.0	46.72	3525.33					
	12/08/11	<1.0	<1.0	<1.0	<2.0	<1.0	46.87	3525.18					
new survey data	08/07/12	< 5.0	< 5.0	< 5.0	< 15	< 15	47.43	3543.38	30.29	1.875	0.72	5.80	109.3
duplicate	12/20/12	<1.0	<2.0	<1.0	<2.0	<2.0	47.87	3542.94	17.39	1.108	1.28	6.87	-269.0
	12/20/12	<1.0	<2.0	<1.0	<2.0	<2.0	47.87	3542.94	17.39	1.108	1.28	6.87	-269.0
	06/25/13	<1.0	<2.0	<1.0	<2.0	<2.0	48.28	3542.53	20.80	1453	1.98	6.60	204.9
MW-4													
	06/16/10	<1.0	<1.0	<1.0	<2.0	<1.0	45.82						
	09/01/10	3.3	<1.0	<1.0	<2.0	3.3	45.81						
	12/06/10	<1.0	<1.0	<1.0	<2.0	<1.0	46.01						
	03/18/11	<1.0	<1.0	<1.0	<2.0	<1.0	46.16						
	06/23/11	<1.0	<1.0	<1.0	<2.0	<1.0	46.40						
	10/07/11	<1.0	<1.0	<1.0	<2.0	<1.0	46.74						
	12/08/11	<1.0	<1.0	<1.0	<2.0	<1.0	46.88						
new survey data	08/07/12	< 5.0	< 5.0	< 5.0	< 15	< 15	47.44	3543.41	28.73	1.457	0.12	6.45	1.3
	12/20/12	<1.0	<2.0	<1.0	<2.0	<2.0	47.89	3542.96	18.18	1.149	0.61	6.83	-238.0
	06/25/13	0.29	<2.0	<1.0	<2.0	<1.0	48.27	3542.58	21.30	1306	0.14	6.70	129.8
MW-5													
	03/18/11	<1.0	<1.0	<1.0	<2.0	<1.0	47.61						
	06/23/11	<1.0	<1.0	<1.0	<2.0	<1.0	47.83						ļ
	10/07/11	<1.0	<1.0	<1.0	<2.0	<1.0	48.17						ļ
	12/08/11	<1.0	<1.0	<1.0	<2.0	<1.0	48.31						l
	08/07/12	< 5.0	< 5.0	< 5.0	< 15	< 15	48.83		27.30	0.775	4.84	6.01	115.9
	12/20/12	<1.0	<2.0	<1.0	<2.0	<2.0	49.26		17.49	0.633	4.70	7.04	-187.0
	06/25/13	<1.0	<2.0	<1.0	<2.0	<2.0	49.64		22.20	848	4.60	6.63	181.1

App_D_078863 2 of 3

Appendix D Summary of Monitor Well Water Quality
Holly Energy - Hobbs Tank 5201 - Lea County, New Mexico

Monitor Well ID	Sample Date	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (total, μg/L)	Total BTEX (μg/L)	Depth to Water (ft-bmp)	Groundwater Elevation (ft- msl)	Temperature (deg-C)	Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)
NMWQCC Groundwater Standard		10	750	750	620								
HTRW-1													
	06/25/13	NSP	NSP	NSP	NSP	NSP	45.28	3542.86					
HTRW-2													
	06/25/13	62.3	21.4	4.4	13.0	101.1	44.60	3542.91	21.70	1233	2.80	6.81	180.2
HTRW-3													
	06/25/13	NSP	NSP	NSP	NSP	NSP	45.88	3542.87					
HTRW-4													
	06/25/13	87.4	49.4	32.5	52.8	222.1	45.68	3542.89	22.30	960	2.04	6.87	190.9
Notes:													
BOLD = Exceeds		ater Quality C	ommission (NM	WQC) Standar	d								
μg/L = microgram													
< = Not detected			(11000										
BTEX = Benzene BTEX analyzed b			Kyleries										
ft-bmp - feet-belo													
ft-msl - feet-mear	<u> </u>	,,,,,,											
deg-C - degrees													
mS/cm - milliSier		eter											
mV - millivolts													
NSP = Not Samp	led Product pre	sent											

App_D_078863 3 of 3

APPENDIX E

GROUNDWATER LABORATORY REPORTS

August 06, 2013

Bill Green Holly Energy Partners 1602 W. Main

Artesisa, NM 88210

TEL: (575) 748-8968

FAX (575) 748-4052 Order No.: 1307300

RE: Hobbs Tanks 5201

Dear Bill Green:

DHL Analytical, Inc. received 1 sample(s) on 7/30/2013 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-13-11

Table of Contents

Miscellaneous Documents	3
CaseNarrative 1307300	5
Analytical Report 1307300	6
AnalyticalQCSummaryReport 1307300	7

2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 ■ FAX (512) 388-8229

Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com

№ 60090 CHAIN-OF-CUSTODY

CLIENT: CRA	7		:			٠			DAT	E:(002	<u>5.1</u>	2			,				_	_ P	AGE _	OF	120204
CLIENT: CKT	1 1 1 with file	#B00 (c	Nobles	\overline{CO}	80	<u> </u>	$\overline{\Gamma}$		PO #	H .	1				٠.	DH	L WO	RK C	RDE	ጓ #: _	"	الدينة يستع	<u> </u>	4307200
CLIENT:	4.0935 FA	X/E-MAIL: b	stephens	ONA	(SR)	احتال	da	COU		" · ——	100	ATIOI	N OR	NA	ΛF·	Hoh	har	TAL	57	8) [16/1	y Z	reign f	21307300 (urtners)
O ATA DEDODTED TO	100 5 00 1 5 mg 10 mg 10 11 16	~/ \					۸.		PRO	/JEC 1	اعال:	AT 101	V OII	(O)	v. 2	<u> </u>	F. C. P.	<u>., .</u>	OLLE	CTO		_ /	nuey	
ADDITIONAL REPORT	COPIES TO: 12.11	Green 4	t coveu	@r	rau	10010	1.00	al	CLE	NT P	ROJE	_ #:	07	<u> </u>	<u>((</u>			_ <u>`</u>	OLLL	7 7	· · · –	7 7	77.7	7 7 7
				ĒΤ			-:	T					7,			Z.,	[.]	Y.S.	\/ ?/	//	/		/>/ /	///
Authorize 5% surcharge for		AINT] F	PRESI	ERVA	ΓΙÒΝ		· .		,		\?\?	X37		Ź,	ZŠ		///		%	V /5	\$///	//
TRRP Report?	W=WATER SL=S A=AIR O=O	THER		!				7	-: .			\gg		%	7 ₃ >		<i></i>		¥/	/X	X,	/3/		
		SOLID			-				•			?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		3) C	Z&)		\$ //		//\$	//		\$\frac{\partial \text{2}}{2} \rightarrow \text{2}		
☐ Yes 💆 No				Sers		NaOH 🗆	윤			/il	XX		XŽ	<i>5</i> 73		X\$\		XX)	[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	?\\$\	13		//	
		- i		tair			ICE UNPRESERVED	any	54	<u> </u>	`\^\		¥\$		<i></i>					<i>%</i>	*//	//,		
		l i	C	S	٠ ۲	10	J. P. F.	13	ŹŚ	ション			X	ZŽ			ZZ.		*/**/	(3/	//	//		
Field Sample I.D.	DHL Lab# Date	Time Matrix	Container Type	# of	뒤	H,SO,	빌 함	100	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			19/35	/50/			%3/	(8) z	\\$\)		\mathbb{Z}		FIELD NO	TES
		l I		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$				<u>// ``</u>	<u> </u>	<u> </u>	<u>/ </u>	97 %	77	X	Y X T	<u>7 ∽</u>	<u> </u>	<u> </u>	-	$\frac{1}{1}$	$\overline{}$	12.T4	X onl	
MW-3	01 6.25.13		4DML VOA	3)	<u> </u>		<u> </u>	\bot		<u> </u>	- 			-	1-			+	-	++		<u>ے،رہ</u> 1	-12 - 12 PM	
MW-4	0.1	0930 1			1							1			\bot		-	\vdash	-+-	+-1	_+	- \ \ \ \	<u> </u>	
MW-5	27	1035																\perp	_ -	1 4	_			
MW-Z	 	0950		\Box		17																		·
N(W-L			 	+++		+ +		+		1					T^-									
HTRW-Z	o<	1200	1	11.	1	+	Ş		$\vdash \vdash$	1	┝┼╴	+-		十	+-		+	+ 1	寸		一			
HTRW-4	JG 🔻	130C V	<u> </u>		√	+	1 5	/		-	-	1			7	\vdash	+-	+	┿	+	٦.	1077V	DIVLY for	8760
WASCHAR-1	01 625.13	1600 5_	402 Jac	3			12	<u> </u>		<u> </u>	$\vdash \vdash$	-		X	<u>- </u> }_	\vdash	_	↓ →	_	-	-+			
TRIP BLANK	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W	40all VOF	12	XI.	1				1						Щ						<u>31 CL</u>	<u>以 010</u>	(
DUP-3	6.25.13		1		Ţ		4		\Box	\neg					1				<u> </u>			V	,	
1)MP = 5	61 0123,13	DO IL Y	 ••		* -	† †	\top	1.		<u> </u>				1								B) Ad	dren I	, Covar
***************************************		 		+	-	╁╌╏	+	-		+	 	+			1 -	Ħ	\neg	\top		7		מ אעו א	A Ha	(, Covey 14.1dfm (b)
*	<u> </u>	 		1-1		+	-				 	+	╁	+		+		+	_+	1		02/0	126	b)
	ļ <u> </u>				_ _	1		1	-	_ _	 			_	+	╀┥	- -	+-	-+	+	\vdash	0 4/3	912 E	/
															\downarrow	1_1		_		-	\vdash		<u> </u>	
					Ţ		T					.		.										
		 	 	╅╌╢	-	+-1	_		1. 1		1 1												•	
		<u> </u>		+-	-	-	_	+	┝╌┼	-	++	+	+ +		╅	+		+-		\top				
TOTAL , /		·	DECENT		Ciarant	.,,,				1_					-		RATO	PV II	SE O	ULY:				
RELINQUISHED BY: (Signature	10.75	DATE/TIME 15/1400 DATE/TIME	RECEIVI RECEIVI	1),	X X	ure)		4.7			TURN RUSH				타	KDU ECEI	VING.	reme	. 7 <u>.</u>	9	T	HERM	#:	<u>l_</u>
REKINQUISHED'BY: (Signature				ED BY: (Signat	ure)		7.	à i		RUSH 1 DAY				"	LICT	10V C	E A I C		BD\r	- '	that INI	 ТАСТ П	NOT USED
FOR-PX	(1/2/0/1	ろ 083/ DATE/TIME	RECEIV	- D RV:	700 1000 1000 1000 1000	iira)	SK_K	<u>(), </u>		T I	2 DAY		, 1		"	.USI(1/CAF	RRIER	EAL>	. <u>.</u> #: \	0/1	, 5 ⁻	1 / W	.,,с.	
RELINQUISHED BY: (Signature)	DATE/TIME	RECEIV	ะค.ผ.(:)	ıynat،د	uie)		٠.			NORM).		1 7	APC	DELI	VERY	• <u></u>				- 	
·	□ DHL DISPO	CAL @ \$5.00 ac	7ch 🗆	Retur	n	}			1 1		OTHE						ND DE							
	□ DHL DISPO	37.00 EC	1011	rictur.	<u> </u>		<u> : </u>		3															

Sample Receipt Checklist

Client Name Holly Energy Partners		Date Received: 7/30/2013
Work Order Number 1307300		Received by JB
Checklist completed by Signature 7/30/20. Carrier name	13 FedEx 1day	Reviewed by 7/30/2013 Initials Date
Shipping container/cooler in good condition?	Yes 🗹	No ☐ Not Present ☐
Custody seals intact on shippping container/cooler?	Yes 🗹	No Not Present
Custody seals intact on sample bottles?	Yes 🗌	No ☐ Not Present ☑
Chain of custody present?	Yes 🔽	No 🗆
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗔
Chain of custody agrees with sample labels?	Yes 🗹	No 🗀
Samples in proper container/bottle?	Yes 🗹	No 🗆
Sample containers intact?	Yes 🗹	No 🗆
Sufficient sample volume for indicated test?	Yes 🗹	No 🗀
All samples received within holding time?	Yes 🗌	No 🗹
Container/Temp Blank temperature in compliance?	Yes 🗹	No
Water - VOA vials have zero headspace?	Yes 🗌	No ☐ No VOA vials submitted ☑
Water - pH<2 acceptable upon receipt?	Yes 🗌	No □ NA 🗹 LOT#
	Adjusted?	Checked by
Water - ph>9 (S) or ph>12 (CN) acceptable upon receipt?	Yes 🗌	No ☐ NA ☑ LOT#
	Adjusted?	Checked by
Any No response must be detailed in the comments section below.	<u> </u>	
Client contacted Date contacted:		Person contacted
Contacted by: Regarding		
Comments: Clark to guara	of	hold time for Hg.
Corrective Action		

CLIENT: Holly Energy Partners

Project: Hobbs Tanks 5201

Lab Order: 1307300

CASE NARRATIVE

Date: 06-Aug-13

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

For Mercury Analysis, the analysis was added outside of the method specified holding time. The client was notified and the laboratory proceeded with analysis. The results have been flagged "C" to denote this.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives, except where noted in the following. For Metals Analysis, the RPD's of Arsenic and Selenium for the Serial Dilution (1307298-01 SD) were above the method control limits. These are flagged accordingly in the QC Summary Report. These analytes are within method control limits in the associated Post Digestion Spike. No further corrective action was taken.

For Metals Analysis, Selenium was detected below the reporting limit for Method Blank-58714. The associated sample may be biased high for this analyte. No further corrective action was taken.

CLIENT: Holly Energy Partners Client Sample ID: WASCHAR-1 **Project:**

Hobbs Tanks 5201 **Lab ID:** 1307300-01

Project No: 078863 **Collection Date:** 06/25/13 04:00 PM

Lab Order: 1307300 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TOTAL MERCURY: SOIL/SOLID		SW74	71B				Analyst: LM
Mercury	ND	0.0153	0.0383	С	mg/Kg-dry	1	08/02/13 01:26 PM
TRACE METALS: ICP-MS - SOLID		SW60	20A				Analyst: SW
Arsenic	1.21	0.515	1.03		mg/Kg-dry	5	08/02/13 06:43 PM
Barium	129	0.515	2.06		mg/Kg-dry	5	08/02/13 06:43 PM
Cadmium	ND	0.103	0.309		mg/Kg-dry	5	08/02/13 06:43 PM
Chromium	6.64	0.515	2.06		mg/Kg-dry	5	08/02/13 06:43 PM
Lead	1.64	0.103	0.309		mg/Kg-dry	5	08/02/13 06:43 PM
Selenium	0.283	0.155	0.515	J	mg/Kg-dry	5	08/02/13 06:43 PM
Silver	0.118	0.103	0.206	J	mg/Kg-dry	5	08/02/13 06:43 PM

Qualifiers:

- Value exceeds TCLP Maximum Concentration Level
- \mathbf{C} Sample Result or QC discussed in the Case Narrative
- Е TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- Reporting Limit
- Parameter not NELAC certified

В Analyte detected in the associated Method Blank

Date: 06-Aug-13

- Dilution Factor DF
- J Analyte detected between MDL and RL
- Not Detected at the Method Detection Limit ND
- Spike Recovery outside control limits

Date: 06-Aug-13

CLIENT: Holly Energy Partners

Work Order: 1307300

RunID: CETAC HG 130802A Project: Hobbs Tanks 5201

ANALYTICAL QC SUMMARY REPORT

Project:	Hobbs Tan	iks 5201					Kunii): (LETAC_H	G_{130}	802A
The QC data	a in batch 58713 appl	lies to the fo	ollowing sa	amples: 13073	00-01A						
Sample ID:	MB-58713	Batch ID:	58713		TestNo:	sw	7471B		Units:	mg/Kg	
SampType:	MBLK	Run ID:	CETAC	_HG_130802 <i>A</i>	A Analysis	Date: 8/2/	/2013 11:21:	41 AM	Prep Date:	8/1/20	13
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Mercury			ND	0.0400							
Sample ID:	LCS-58713	Batch ID:	58713		TestNo:	sw	7471B		Units:	mg/Kg	
SampType:	LCS	Run ID:	CETAC	_HG_130802A	A Analysis	Date: 8/2/	/2013 11:27:	48 AM	Prep Date:	8/1/20	13
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Mercury			0.213	0.0400	0.2000	0	106	85	115		
Sample ID:	LCSD-58713	Batch ID:	58713		TestNo:	sw	7471B		Units:	mg/Kg	
SampType:	LCSD	Run ID:	CETAC	_HG_130802 <i>A</i>	A Analysis	Date: 8/2/	/2013 11:29:	50 AM	Prep Date:	8/1/20	13
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
Mercury			0.213	0.0400	0.2000	0	106	85	115	0	25
Sample ID:	1307274-11B SD	Batch ID:	58713		TestNo:	sw	7471B		Units:	mg/Kg	
SampType:	SD	Run ID:	CETAC	_HG_130802A	A Analysis	Date: 8/2/	2013 12:45:	20 PM	Prep Date:	8/1/20	13
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Mercury			0	0.177	0	0				0	10
Sample ID:	1307274-11B PDS	Batch ID:	58713		TestNo:	sw	7471B		Units:	mg/Kg	
SampType:	PDS	Run ID:	CETAC	_HG_130802A	A Analysis	Date: 8/2/	2013 12:47:	26 PM	Prep Date:	8/1/20	13
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Mercury			0.225	0.0353	0.2207	0	102	85	115		
Sample ID:	1307274-11B MS	Batch ID:	58713		TestNo:	sw	7471B		Units:	mg/Kg	
SampType:	MS	Run ID:	CETAC	_HG_130802 <i>A</i>	Analysis	s Date: 8/2/	2013 12:49:	31 PM	Prep Date:	8/1/20	13
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Mercury			0.196	0.0352	0.1759	0	112	80	120		
Sample ID:	1307274-11B MSD	Batch ID:	58713		TestNo:	SW	7471B		Units:	mg/Kg	
SampType:	MSD	Run ID:	CETAC	_HG_130802 <i>A</i>	A Analysis	s Date: 8/2/	2013 12:51:	35 PM	Prep Date:	8/1/20	13
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 1 of 3

Spike Recovery outside control limits

Parameter not NELAC certified

CLIENT: Holly Energy Partners

RL Reporting Limit

Analyte detected between SDL and RL

Work Order: 1307300

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs Tanks 5201 RunID: ICP-MS2_130802A

rroject: Hobbs 12	IIKS J201					Kullii	<i>,</i> 1	C1 -W152_	12000		
The QC data in batch 58714 ap	plies to the fo	ollowing sa	mples: 1307	300-01A							
Sample ID: MB-58714	Batch ID:	58714		TestN	o: SW 6	6020A		Units:	mg/k	Σg	
SampType: MBLK	Run ID:	ICP-MS	2_130802A	Analy	sis Date: 8/2/2	2013 6:07:0	0 PM	Prep Date:	8/1/2	013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit 9	%RPD	RPDLimit	L Qu
Arsenic		ND	1.00								
Barium		ND	2.00								
Cadmium		ND	0.300								
Chromium		ND	2.00								
Lead		ND	0.300								
Selenium		0.189	0.500								
Silver		ND	0.200								
Sample ID: LCS-58714	Batch ID:	58714		TestN	o: SW6	6020A		Units:	mg/k	Σg	
SampType: LCS	Run ID:	ICP-MS	2_130802A	Analy	sis Date: 8/2/2	2013 6:13:0	0 PM	Prep Date:	8/1/2	013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD	RPDLimit	t Qu
Arsenic		55.4	1.00	50.00	0	111	80	120			
Barium		51.9	2.00	50.00	0	104	80	120			
Cadmium		52.1	0.300	50.00	0	104	80	120			
Chromium		54.9	2.00	50.00	0	110	80	120			
Lead		51.1	0.300	50.00	0	102	80	120			
Selenium		52.9	0.500	50.00	0	106	80	120			
Silver		54.2	0.200	50.00	0	108	80	120			
Sample ID: LCSD-58714	Batch ID:	58714		TestN	o: SW6	6020A		Units:	mg/k	(g	
SampType: LCSD	Run ID:	ICP-MS	2_130802A	Analy	sis Date: 8/2/2	2013 6:19:0	0 PM	Prep Date:	8/1/2	013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit 9	%RPD	RPDLimit	i Qu
Arsenic		55.8	1.00	50.00	0	112	80	120	0.765	20	
Barium		51.8	2.00	50.00	0	104	80	120	0.145	20	
Cadmium		52.4	0.300	50.00	0	105	80	120	0.670	20	
Chromium		55.5	2.00	50.00	0	111	80	120	1.09	20	
Lead		51.8	0.300	50.00	0	104	80	120	1.31	20	
Selenium		53.8	0.500	50.00	0	108	80	120	1.64	20	
Silver		55.1	0.200	50.00	0	110	80	120	1.60	20	
Sample ID: 1307298-01C SD	Batch ID:	58714		TestN	o: SW6	6020A		Units:	mg/k	(g	
SampType: SD	Run ID:	ICP-MS	2_130802A	Analy	sis Date: 8/2/2	2013 6:37:0	0 PM	Prep Date:	8/1/2	013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD	RPDLimit	i Qu
Arsenic		2.77	4.59	0	3.133				12.2	10	F
Barium		100	9.17	0	101.4				1.37	10	
Cadmium		0	1.38	0	0.2257				0	10	
Chromium		14.7	9.17	0	14.84				1.03	10	
Qualifiers: B Analyte de	tected in the a	ssociated M	lethod Blank	DF	Dilution Facto	or					
J Analyte de	tected between	n MDL and	RL	MDL	Method Detec	tion Limit				Page 2	of 3
ND Not Detect	ed at the Meth	nod Detection	on Limit	R	RPD outside a	accepted cont	rol limits			J	
DT D					G 11 D						

Spike Recovery outside control limits

Parameter not NELAC certified

CLIENT: Holly Energy Partners

Work Order: 1307300

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs Tanks 5201 RunID: ICP-MS2_130802A

Troject.	110008 1 a	IIKS 3201					Kuiii		C1 -W152_	15000	2 11	
Sample ID:	1307298-01C SD	Batch ID:	58714		TestNo:	sw	6020A		Units:	mg/K	.g	
SampType:	SD	Run ID:	ICP-MS	2_130802A	Analysis	s Date: 8/2/	2013 6:37:0	0 PM	Prep Date:	8/1/2	013	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit 9	%RPD I	RPDLimi	it Qual
Lead			7.13	1.38	0	7.135				0.113	10	
Selenium			2.03	2.29	0	1.288				44.7	10	R
Silver			0	0.917	0	0				0	10	
Sample ID:	1307298-01C PDS	Batch ID:	58714		TestNo:	sw	6020A		Units:	mg/K	g	
SampType:	PDS	Run ID:	ICP-MS	2_130802A	Analysis	s Date: 8/2/	2013 7:00:0	0 PM	Prep Date:	8/1/2	013	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit 9	%RPD I	RPDLimi	it Qual
Arsenic			54.0	0.917	45.87	3.133	111	80	120			
Barium			156	1.83	45.87	101.4	119	80	120			
Cadmium			47.4	0.275	45.87	0.2257	103	80	120			
Chromium			65.6	1.83	45.87	14.84	111	80	120			
Lead			54.1	0.275	45.87	7.135	102	80	120			
Selenium			50.7	0.459	45.87	1.288	108	80	120			
Silver			47.3	0.183	45.87	0	103	80	120			
Sample ID:	1307298-01C MS	Batch ID:	58714		TestNo:	sw	6020A		Units:	mg/K	g	
SampType:	MS	Run ID:	ICP-MS	2_130802A	Analysis	s Date: 8/2/	2013 7:06:0	0 PM	Prep Date:	8/1/2	013	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit S	%RPD I	RPDLimi	it Qual
Arsenic			53.5	0.926	46.30	3.133	109	80	120			
Barium			148	1.85	46.30	101.4	102	80	120			
Cadmium			45.9	0.278	46.30	0.2257	98.7	80	120			
Chromium			64.7	1.85	46.30	14.84	108	80	120			
Lead			53.0	0.278	46.30	7.135	99.1	80	120			
Selenium			50.0	0.463	46.30	1.288	105	80	120			
Silver			48.1	0.185	46.30	0	104	80	120			

Sample ID: 1307298-01C MSD	Batch ID:	58714		TestNo	: SW6	6020A		Units:	mg/k	(g
SampType: MSD	Run ID:	ICP-MS2	2_130802A	Analys	is Date: 8/2/2	2013 7:12:0	0 PM	Prep Date	8/1/2	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Arsenic		52.1	0.926	46.30	3.133	106	80	120	2.81	20
Barium		146	1.85	46.30	101.4	95.4	80	120	1.95	20
Cadmium		45.7	0.278	46.30	0.2257	98.3	80	120	0.354	20
Chromium		62.7	1.85	46.30	14.84	103	80	120	3.13	20
Lead		53.0	0.278	46.30	7.135	99.1	80	120	0	20
Selenium		48.6	0.463	46.30	1.288	102	80	120	2.96	20
Silver		47.6	0.185	46.30	0	103	80	120	0.919	20

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 3 of 3

January 03, 2013

Bill Green

Holly Energy Partners

1602 W. Main

Artesisa, NM 88210

TEL: (575) 748-8968

FAX (575) 748-4052 Order No.: 1212247

RE: Hobbs Tank

Dear Bill Green:

DHL Analytical, Inc. received 6 sample(s) on 12/21/2012 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-12-9

Table of Contents

Miscellaneous Documents	3
CaseNarrative 1212247	6
Analytical Report 1212247	7
AnalyticalQCSummaryReport 1212247	

2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 ■ FAX (512) 388-8229

Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com

№ 57977 CHAIN-OF-CUSTODY

CLIENT: CRA ADDRESS: 1498 W. 6th Ave. #800 Goden, CO 80401 PHONE: (303)941-6156 FAX/E-MAIL: BStephenson @craworth.com DATA REPORTED TO: Brad Stephenson ADDITIONAL REPORT COPIES TO: Authorize 5% surcharge for TRRP Report? TRRP Report? W=WATER SL=SLUDGE A=AIR O=OTHER L=LIQUID SO=SOLID Field Sample I.D. DHL Date Time Matrix Type # F F F F F F F F F F F F F F F F F F	7
PHONE: (303)941-6156 FAX/E-MAIL: B5 tephenson @ craword.com DATA REPORTED TO: Brad Stephenson ADDITIONAL REPORT COPIES TO: Authorize 5% surcharge for TRRP Report? TRRP Report? Yes	7
Authorize 5% surcharge for TRRP Report? TRRP Report? Yes No Teld Sample I.D. Authorize 5% S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR O=OTHER L=LIQUID SO=SOLID PRESERVATION Field Sample I.D. DHL Lab # Date Time Matrix Type ## Ty	7
Authorize 5% surcharge for TRRP Report? TRRP Report? Yes No Teld Sample I.D. Authorize 5% S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR O=OTHER L=LIQUID SO=SOLID PRESERVATION Field Sample I.D. DHL Lab # Date Time Matrix Type ## Ty	
Surcharge for TRRP Report? —Yes — No Held Sample I.D. DHL Lab # Date Time Matrix Type # FIELD NOTES	
Field Sample I.D. DHL Lab # Date Time Matrix Type # P P P P P P P P P P P P P P P P P P	
MW-3D 02 12-20-12 0830 W VOA 3 X X X	
MW-2 03 12-20-12 0910 W VOA 3 X X X	
MW-4 O4 12-20-12 0945 W VOA 3 X X X	
mw-5 05 12-20-12 1010 W VOA 3 X X X X	
Trip 04 - W VOA 2X X X	
	
	
TOTAL	
Chiefin 12-20-12/1700 Jedicy RUSH CALL FIRST RECEIVING TEMP: 5-0 THERM #: 57	
ALA (2) ZI IZ (53) / APA CLL 1 DAY U CALL FIRST CUSTODY SEALS: BROKEN INTACT PANO	USED
RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	,
□ DHL DISPOSAL @ \$5.00 each □ Return OTHER □ □ HAND DELIVERED	

FedEx. Express	US Airbill
From Date 17 - 20 - 12	

8606 6136 4196

1	From From
	Date 12 - 20 - 12
	Sender's Chris Evans Phone 432 686-0086
٠.	Company CRA
	Address 2135 5, Loop 250 IV.
	City Midland State TX ZIP 79703
2	Your Internal Billing Reference 678863
3	To Recipient's Name Phone
	Company
	Recipient's Address
	We cannot deliver to P.O. boxes or P.O. ZIP cedas. Dept./Floor/Suits/Room Address
	To request a package ba held at a specific FedEx location, print FedEx address here. City State ZIP
	v ·

66 OZ		Recipient's Copy
4a Express Package	Service	Packages up to 150 lbs.
FedEx Priority Overnigh Next business morning." Friday shipments will be delivered on M unless SATURDAY Delivery is sel	.*1 Next business afternoon.*	Earliest next business morning
FedEx 2Day Second business day." Thursday shipments will be delivered on M unless SATURDAY Delivery is sel	onday Saturday Delivery NOT ovai lable. Minimum cherge: One-pound rate.	
4b Express Freight Se	-9 1	Packages over 150 lbs.
FedEx 1Day Freight* Next business dey.** Inday shipments will be delivered on M unless SATURIDAY Delivery is sel	FedEx 2Day Freight Second business day.** The shipments will be delivered	FedEx 3Day Freight Third business day.** Saturday Delivery NOT available.
* Call for Confirmation:		** To most locations.
5 Packaging		
FedEx Envelope*		edEx FedEx Other ox Tube Declared value limit \$500.
6 Special Handling	Include For	Ex address in Section 3.
SATURDAY Delivery Not available for FedEx Standard Overnight, FedEx First Overnight, FedEx Ex; Saver, or FedEx 30ay Freight.	HOLD Weekday at FedEx Location	HOLD Saturday at FedEx Location Available ONLY for FedEx Priority Overnight and FedEx 2Day to select locations.
	ntain dengerous goods?	
No One box must Yes As per entache Shipper's Deal Dangerous goods (including dry ice) ca	d Yes Shipper's Declaration aration. not required.	Dry Ice Ory ice, 9, UN 1845x
7 Payment Bill to:		Obtain Recip.
Sender Rect No. in Section 1 will	Enter FedEx Acct. No. or Credit Card ecipient Third Party	No. below Acct. No Credit Card Cash/Check
be billed.		在新疆的 在自己的位
Total Packages	Total Weight Total	I Declared Value† Total Charges
1	∴/(// s	.00
***************************************		Credit Card Auth.
·	d to \$100 unless you declare a higher valu	
8 <i>NEW</i> Residentia	i Delivery Signature Opt	IONS if you require a signature, check Direct or Indirect
No Signature		rect Signature
X Required	Anyone at recipient's If no	one is available at

	ΙXΊ	No Signature Required Package may be left with- out obtaining a signature for delivery.	
--	-----	---	--

Sample Receipt Checklist

Client Name Holly Energy Partners		Date Received: 12/21/2012 Received by JB					
Work Order Number 1212247							
Checklist completed by: Signature	12/21/20 Date Carrier name:	12 FedEx 1day	Reviewed b	oy <u>J</u>	12/21/2012 Date		
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present			
Custody seals intact on shippping container/c	ooler?	Yes 🗌	No 🗌	Not Present			
Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present			
Chain of custody present?		Yes 🗹	No 🗌				
Chain of custody signed when relinquished ar	nd received?	Yes 🗹	No 🗌				
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌				
Samples in proper container/bottle?		Yes 🗹	No 🗌				
Sample containers intact?		Yes 🗹	No 🗌				
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌				
All samples received within holding time?		Yes 🗹	No 🗌				
Container/Temp Blank temperature in complia	ance?	Yes 🔽	No 🗌	5.0 °C			
Water - VOA vials have zero headspace?		Yes 🗸	No 🗌	No VOA vials submitte	ed 🗌		
Water - pH acceptable upon receipt?		Yes	No 🗌	Not Applicable 🗹			
	Adjusted?	Cho	ecked by				
Any No response must be detailed in the com					======		
Cheft confacted	Date contacted:		Pe	rson contacted			
Contacted by:	Regarding:						
Comments:							
Corrective Action							

CLIENT: Holly Energy Partners

Project: Hobbs Tank CASE NARRATIVE

Date: 03-Jan-13

Lab Order: 1212247

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives.

CLIENT: Holly Energy Partners

Project: Hobbs Tank Lab ID: 1212247-01

Project No: Collection Date: 12/20/12 08:30 AM

Lab Order: 1212247 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260C				Analyst: KL
Benzene	ND	0.000200	0.00100	ı	mg/L	1	12/26/12 01:14 PM
Ethylbenzene	ND	0.000300	0.00100	ı	mg/L	1	12/26/12 01:14 PM
m,p-Xylene	ND	0.000600	0.00200	ı	mg/L	1	12/26/12 01:14 PM
o-Xylene	ND	0.000300	0.00100	ı	mg/L	1	12/26/12 01:14 PM
Toluene	ND	0.000600	0.00200	ı	mg/L	1	12/26/12 01:14 PM
Surr: 1,2-Dichloroethane-d4	99.9	0	72-119	(%REC	1	12/26/12 01:14 PM
Surr: 4-Bromofluorobenzene	102	0	76-119	(%REC	1	12/26/12 01:14 PM
Surr: Dibromofluoromethane	103	0	85-115	(%REC	1	12/26/12 01:14 PM
Surr: Toluene-d8	102	0	81-120	(%REC	1	12/26/12 01:14 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 03-Jan-13

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: Holly Energy Partners Client Sample ID: MW-3D

Project: Hobbs Tank Lab ID: 1212247-02

Project No: Collection Date: 12/20/12 08:30 AM

Lab Order: 1212247 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260C			Analyst: KL
Benzene	ND	0.000200	0.00100	mg/L	1	12/26/12 01:39 PM
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	12/26/12 01:39 PM
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	12/26/12 01:39 PM
o-Xylene	ND	0.000300	0.00100	mg/L	1	12/26/12 01:39 PM
Toluene	ND	0.000600	0.00200	mg/L	1	12/26/12 01:39 PM
Surr: 1,2-Dichloroethane-d4	99.7	0	72-119	%REC	1	12/26/12 01:39 PM
Surr: 4-Bromofluorobenzene	105	0	76-119	%REC	1	12/26/12 01:39 PM
Surr: Dibromofluoromethane	104	0	85-115	%REC	1	12/26/12 01:39 PM
Surr: Toluene-d8	101	0	81-120	%REC	1	12/26/12 01:39 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 03-Jan-13

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Holly Energy Partners

Project: Hobbs Tank Lab ID: 1212247-03

Project No: Collection Date: 12/20/12 09:10 AM

Lab Order: 1212247 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	:60C				Analyst: KL
Benzene	0.000830	0.000200	0.00100	J	mg/L	1	12/26/12 02:03 PM
Ethylbenzene	ND	0.000300	0.00100		mg/L	1	12/26/12 02:03 PM
m,p-Xylene	ND	0.000600	0.00200		mg/L	1	12/26/12 02:03 PM
o-Xylene	ND	0.000300	0.00100		mg/L	1	12/26/12 02:03 PM
Toluene	ND	0.000600	0.00200		mg/L	1	12/26/12 02:03 PM
Surr: 1,2-Dichloroethane-d4	101	0	72-119		%REC	1	12/26/12 02:03 PM
Surr: 4-Bromofluorobenzene	101	0	76-119		%REC	1	12/26/12 02:03 PM
Surr: Dibromofluoromethane	107	0	85-115		%REC	1	12/26/12 02:03 PM
Surr: Toluene-d8	101	0	81-120		%REC	1	12/26/12 02:03 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 03-Jan-13

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Holly Energy Partners

Project: Hobbs Tank Lab ID: 1212247-04

Project No: Collection Date: 12/20/12 09:45 AM

Lab Order: 1212247 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260C			Analyst: KL
Benzene	ND	0.000200	0.00100	mg/L	1	12/26/12 02:30 PM
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	12/26/12 02:30 PM
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	12/26/12 02:30 PM
o-Xylene	ND	0.000300	0.00100	mg/L	1	12/26/12 02:30 PM
Toluene	ND	0.000600	0.00200	mg/L	1	12/26/12 02:30 PM
Surr: 1,2-Dichloroethane-d4	98.5	0	72-119	%REC	1	12/26/12 02:30 PM
Surr: 4-Bromofluorobenzene	102	0	76-119	%REC	1	12/26/12 02:30 PM
Surr: Dibromofluoromethane	104	0	85-115	%REC	1	12/26/12 02:30 PM
Surr: Toluene-d8	99.6	0	81-120	%REC	1	12/26/12 02:30 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 03-Jan-13

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Holly Energy Partners

Project: Hobbs Tank Lab ID: 1212247-05

Project No: Collection Date: 12/20/12 10:10 AM

Lab Order: 1212247 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260C			Analyst: KL
Benzene	ND	0.000200	0.00100	mg/L	1	12/26/12 02:55 PM
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	12/26/12 02:55 PM
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	12/26/12 02:55 PM
o-Xylene	ND	0.000300	0.00100	mg/L	1	12/26/12 02:55 PM
Toluene	ND	0.000600	0.00200	mg/L	1	12/26/12 02:55 PM
Surr: 1,2-Dichloroethane-d4	98.7	0	72-119	%REC	1	12/26/12 02:55 PM
Surr: 4-Bromofluorobenzene	102	0	76-119	%REC	1	12/26/12 02:55 PM
Surr: Dibromofluoromethane	104	0	85-115	%REC	1	12/26/12 02:55 PM
Surr: Toluene-d8	101	0	81-120	%REC	1	12/26/12 02:55 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 03-Jan-13

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: Holly Energy Partners Client Sample ID: Trip

Project: Hobbs Tank Lab ID: 1212247-06

Project No: Collection Date: 12/20/12

Lab Order: 1212247 Matrix: TRIP BLANK

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	:60C			Analyst: KL
Benzene	ND	0.000200	0.00100	mg/L	1	12/26/12 12:23 PM
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	12/26/12 12:23 PM
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	12/26/12 12:23 PM
o-Xylene	ND	0.000300	0.00100	mg/L	1	12/26/12 12:23 PM
Toluene	ND	0.000600	0.00200	mg/L	1	12/26/12 12:23 PM
Surr: 1,2-Dichloroethane-d4	98.2	0	72-119	%REC	1	12/26/12 12:23 PM
Surr: 4-Bromofluorobenzene	102	0	76-119	%REC	1	12/26/12 12:23 PM
Surr: Dibromofluoromethane	104	0	85-115	%REC	1	12/26/12 12:23 PM
Surr: Toluene-d8	100	0	81-120	%REC	1	12/26/12 12:23 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 03-Jan-13

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

Date: 03-Jan-13

CLIENT: Holly Energy Partners

ANALYTICAL QC SUMMARY REPORT Work Order: 1212247 GCMS5_121226A **RunID: Project:** Hobbs Tank

The QC data in batch 55307 app	olies to the f	ollowing s	amples: 1212	247-01A, 1212	2247-02A, 12	12247-03A,	1212247	-04A, 121224	7-05A, 1212247-06A
Sample ID: LCS-55307	Batch ID:	D: 55307 Result RL 0.0256 0.0010 0.0249 0.0010 0.0523 0.0020 0.0242 0.0010 0.0254 0.0020 198 199 206 198 D: 55307 Result RL ND 0.0010 ND 0.0010 ND 0.0020 ND 0.0020 194 202 206 198 D: 55307		TestNo	o: SW	8260C		Units:	mg/L
SampType: LCS	Run ID:	GCMS	5_121226A	Analys	sis Date: 12/2	26/2012 10:4	11:00 A	Prep Date:	12/26/2012
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Benzene		0.0256	0.00100	0.0232	0	110	81	122	
Ethylbenzene		0.0249	0.00100	0.0232	0	107	80	120	
m,p-Xylene		0.0523	0.00200	0.0464	0	113	80	120	
o-Xylene		0.0242	0.00100	0.0232	0	104	80	120	
Toluene		0.0254	0.00200	0.0232	0	110	80	120	
Surr: 1,2-Dichloroethane-d4		198		200.0		99.0	72	119	
Surr: 4-Bromofluorobenzene		199		200.0		99.3	76	119	
Surr: Dibromofluoromethane		206		200.0		103	85	115	
Surr: Toluene-d8		198		200.0		99.2	81	120	
Sample ID: MB-55307	Batch ID:	55307		TestNo	o: SW	8260C		Units:	mg/L
SampType: MBLK	Run ID:	GCMS	5_121226A	Analys	is Date: 12/2	26/2012 11:0	7:00 A	Prep Date:	12/26/2012
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Benzene		ND	0.00100						
Ethylbenzene		ND	0.00100						
m,p-Xylene		ND	0.00200						
o-Xylene		ND	0.00100						
Toluene		ND	0.00200						
Surr: 1,2-Dichloroethane-d4		194		200.0		97.1	72	119	
Surr: 4-Bromofluorobenzene		202		200.0		101	76	119	
Surr: Dibromofluoromethane		206		200.0		103	85	115	
Surr: Toluene-d8		198		200.0		98.9	81	120	
Sample ID: 1212247-01AMS	Batch ID:	55307		TestNo	o: SW	8260C		Units:	mg/L
SampType: MS	Run ID:	GCMS	5_121226A	Analys	sis Date: 12/2	26/2012 4:11	1:00 PM	Prep Date:	12/26/2012
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Benzene		0.0249	0.00100	0.0232	0	107	81	120	
Ethylbenzene		0.0239	0.00100	0.0232	0	103	80	120	
m,p-Xylene		0.0478	0.00200	0.0464	0	103	80	120	
o-Xylene		0.0215	0.00100	0.0232	0	92.8	80	120	
Toluene		0.0245	0.00200	0.0232	0	106	80	120	
Surr: 1,2-Dichloroethane-d4		202		200.0		101	72	119	
Surr: 4-Bromofluorobenzene		195		200.0		97.6	76	119	
Surr: Dibromofluoromethane		213		200.0		106	85	115	
Surr: Toluene-d8		196		200.0		97.9	81	120	

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified Page 1 of 2

CLIENT: Holly Energy Partners

Work Order: 1212247
Project: Hobbs Tank

ANALYTICAL QC SUMMARY REPORT

RunID: GCMS5_121226A

Sample ID: 1212247-01AMSD	Batch ID:	55307		TestNo	: SW	8260C		Units:	mg/l	_
SampType: MSD	Run ID:	GCMS	5_121226A	Analys	is Date: 12/ 2	26/2012 4:37	:00 PM	Prep Date	: 12/2	6/2012
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Benzene		0.0254	0.00100	0.0232	0	110	81	120	2.23	20
Ethylbenzene		0.0245	0.00100	0.0232	0	106	80	120	2.56	20
m,p-Xylene		0.0501	0.00200	0.0464	0	108	80	120	4.76	20
o-Xylene		0.0228	0.00100	0.0232	0	98.4	80	120	5.81	20
Toluene		0.0248	0.00200	0.0232	0	107	80	120	1.05	20
Surr: 1,2-Dichloroethane-d4		200		200.0		100	72	119	0	0
Surr: 4-Bromofluorobenzene		196		200.0		97.9	76	119	0	0
Surr: Dibromofluoromethane		209		200.0		105	85	115	0	0
Surr: Toluene-d8		197		200.0		98.3	81	120	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

 $R \quad \ RPD \ outside \ accepted \ control \ \ limits$

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 2 of 2

APPENDIX F

WELL CONSTRUCTION SUMMARY AND BORING LOGS

LOC	ATION	MAP								
							Т	/\$\$7 - 11	NT1	TEST HOLE / WELL LOG Page 1 of 4
							Date			ber: HTRW-1 Project: Hobbs Tank (Holly Energy) 6 / 18 / 2013 Project Number: 078863
										tin Covey Drilled By: B. Adkins
							_			d: Air Rotary Sampling Method: Split Spoon
Grou	ınd Eleva	ation::			Detector	: PID		Seal/	Int: Be	entonite 41 to 43' Grout Interval: 3 to 43'
	r Pack S			and					1.0	Interval: 43 to 60' Hole Dia: 7-7/8" Depth water Encountered during
	ng Type: en Type:				Slot: 20				1 & 4	8 0
Scre	en Type:	Scn. 4	ı	1		I	Dia			4 in. Interval: 45 to 60' Well Depth: 60' bgs Total depth: 64' bgs
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level	LITHOLOGY/REMARKS E WELL COMPLETION
1 2	SP	dry	< 5	10YR 6/3	0	N		Cut.		SAND – (0-2.5') – medium dense, medium grained, poorly graded, dry, pale brown (Fill) Silty SAND – (2.5-3.5') – medium dense, fine grained
3	SM SP	dry dry	< 5 < 5	6/3	0	N		20"		Silty SAND – (2.5-3.5') – medium dense, fine grained, poorly graded, dry, pale brown, trace caliche Caliche – (3.5-8') – SAND, medium dense, fine grained, poorly graded, dry, white, some concretions
6			5	10YR	0	N		12"		- @ ~5' - trace cemented sand - @ ~6' - becomes dense, light gray, with few silt
8	ML	dry	15	7/2 10YR	0	N		14"		Caliche – (8-8.5') – SILT, very stiff, low platicity, dry,
10	SP	dry	< 5	8/2 10YR 8/2	0	N		7"		very pale brown, weathered Caliche – (8.5-34') – SAND, fine grained, very dense, cemented, dry, very pale brown - @ ~10' - becomes loose
11					0	N		6"		- @ ~12' - becomes very dense
13					0	N		Cut.		The M12 decomes very defise
15 16					0	N		Cut.		
17 18					0	N		Cut.		
19				10YR 8/1	0	N		Cut.		- @ ~18.5' - becomes white

LO	CATION	MAP									
							т	/(37 11	NI 1	TEST HOLE / WELL LOG Page 2	of 4
							Date			ber: HTRW-1 Project: Hobbs Tank (Holly Energy) 6 / 18 / 2013 Project Number: 078863	
										stin Covey Drilled By: B. Adkins	
							_			d: Air Rotary Sampling Method: Split Spoon	
	und Eleva				Detector	: PID		Seal/	Int: Be	entonite 41 to 43' Grout Interval: 3 to 43'	
	er Pack S			and					1.0	Interval: 43 to 60' Hole Dia: 7-7/8" Depth water Encountered of	during
	ing Type: en Type:				Slot: 20			meter: meter:		<u> </u>	
SCIC	Lii Type.	5th. 4	<u> </u>		I		Dia			This interval. 45 to 60 wen bepair to bgs Total depth. 64 bgs	
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level	I THOLOGY/REMARKS I O I	ELL LETION
20	92 (<u> </u>	U 1		l Ni	
21					0	N		Cut.			
23					0	N		Cut.		- @ 24' trace odor	
25 26					0	N		Cut.		24 flace odor	
27 28					1	N		Cut.			
29					2	N		Cut.			
31					25	N		Cut.		- @ 30' some fine to medium gravel, trace chert	
33				10YR 7/2	191	N		Cut.		- @ 32' becomes light gray	
35	SP	dry	< 5	10YR 7/1	248	N		Cut.		Sand - (34 - 63') - very dense, fine grained, poorly graded, dry, light gray, few fine to med gravel, odor	
36				10YR 6/3	68	N		Cut.		- @ 36' becomes pale brown, trace chert	
38				10YR 6/2						- @ 38' becomes light brownish gray	
40					30	N		Cut.			

LOCATION	I MAP																						
										TEST HOL								Pag	ge	3	-	of ·	4
										HTRW-1	_	Project				_	Ene	rgy)					_
						Dat				18 / 2013		Project				53							_
								: Just			_	Drilled	_			~							_
C LEI				Б.,	DID					r Rotary		Sampli						421					
Ground Elev		/20		Detector	: PID		Seal	Int: Be	ntor		3'	4 (01		out Int			3 to		-		1.1		_
Filter Pack S			ana			Dia		1 & 4	•			to 60'						th wate			ea a	uring	
Casing Type Screen Type				Slot: 20				1 & 4				to 45'						al depth					
Sciccii Type	. 5011. 4	T T	ī	I	1	Dia		1 00 4	1111.	micivai. 4		10 00	*** C	пъс)tii. U	o bgs	100	ii depiii	. 0-7	ugs			_
Depth Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		LITE	IOL	.OGY/l	REM	1ARK	S			Fabric	a a a a a a a a a a a a a a a a a a a	COI	WE MPL	LL ETIO	N
40																							/
41				402	N		Cut.													\times			\/XXX
43				656	N		12"													\times		2	<u> </u>
45				639	N		17"			- @ 46' become	. 1									:	= ===	== .	@ ~45' bgs
47 48 SP	-		7.5YR 5/4	315	N		16"			- @ 46 become	S DI	own									= == = == = ==	== •	top of screen @
49				710	N		21"														= == = == = ==	==	
51				416	N		16"			@ 522 haaaana			:									==	
53	-						16"			- @ 52' become	s III	cuiuIII	grail	neu									
54	wet 53'				N		10			- @ 53' become	s w	et								:	= ===	==	
55	 - 				N		Cut.															==	
57			10YR 7/3				Cut.			- @ 56' become	s ve	ery pale	e bro	wn						:	= == = == = ==	==	60' bgs
58		<5					Cut.			- @ 58' become	s w	ell grad	ded v	w/ trac	e silt						= =====================================	== (B)
60	<u>-</u>									- @ 60' no samp	le re	ecovery	/										bottom of screen
64										TD = ~64' bgs										w	ell TE	60'	
	cement grou	ıt	> <	bentonite seal			filter pac	k															

LOC	CATION	MAP															
											TEST HO				Page	1	of 4
							-			ber: HTR				Hobbs Tank (Holly E	nergy)		
							Date				2013			Number: 078863			
										tin Covey				By: B. Adkins			
Crox	ınd Eleva	otionu			Detector	. DID	Dril			l: Air Rota entonite	36 to	38'	Samplii	ng Method: Split Spoon Grout Interval: 3	to 36'		
	r Pack S		20 cc	nd	Detector	: PID		Seal/	mt: Be		nterval:	38	to 60'		epth water Enc	auntara	d during
	ng Type:			iiiu			Dia	meter:	1 & 4		nterval:	0			rilling: 51' bgs	Junicic	d during
	en Type:				Slot: 20				1&4		nterval:	40		Well Depth: 60' bgs T		ogs	
Sere	in Type.	Den.	Ĭ				<u> </u>				101 / 111		10 00	wen bepan oo aga 1	l l	785	
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		Lľ	THO	LOGY/I	REMARKS	Fabric		WELL IPLETION
1	SP	dry	< 5	10YR 6/3	0	N		Cut.		SAND – o poorly gra				nse, medium grained, (Fill)		" fluid level monitor	
3					0	N		Cut.								1" fluid le	
4	SM	dry	< 5	10YR		IN				Silty SAN	ND – (4-	6') – 1	medium	dense, fine grained,			
5 6				8/2	0	N		6"		poorly gra	aded, dry	, very	y pale br	own, trace caliche			
7	ML	dry	5	5YR 6/4	0	N		14"		Sandy SI reddish bi				low plasticity, dry, light			
8						,		12"									
10	SP	dry	< 5	10YR 8/2	0	N		12		poorly gra		, very	y pale br	ine grained, med. dense, rown			
11					0	N		6"		- @ ~	·10 - trac	e che	eri				
13				10YR 8/1				4"		- @ ~	·12' - bec	omes	white a	nd very dense			
14					0	N				- @ ~	14.2' - h	it refu	ısal duri	ng sampling			
15 16					0	N		2"									
17					0	N		Cut.									
18 19								Cut.									
20					0	N		Cut.									

LOC	CATION	MAP															
											TEST H	OLE .			Page	2	of 4
							-			ber: HT				: Hobbs Tank (Holly Er	nergy)		
							Date				/ 2013			Number: 078863			
										tin Cov				By: B. Adkins			
C	1 171				Datastas	DID	Dril			l: Air R		38'	Samplii	ng Method: Split Spoon	o 36'		
	ind Elevander Pack S		20. ~	and	Detector	: PID		Seal	int: Be	entonite	36 to Interval:	38	to 60!		epth water Enc	ountoro	d during
	ng Type:			ana			Dia	meter:	1 & /	1 in	Interval:	0			illing: 51' bgs		u during
	en Type:				Slot: 20			meter:			Interval:	40		Well Depth: 60' bgs T			
Bere	си турс.	Den. 4		1		<u> </u>	Dia			T III.	mici vai.	70	10 00	Wen Depui. 00 bgs 1	otal depth. 05	1	
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		L	ITHO	LOGY/I	REMARKS	Fabric		VELL PLETION
20	S	Z O	0			<i>O</i> ₂	<i>O</i> ₁	0,1								\forall	
21					0	N		Cut.									
23					0	N		Cut.									
25 26					2	N		Cut.			261						
27				10YR 7/1	13	Y		Cut.			ert and odd		gnt gray,	, few fine gravel, trace			
29 30				10YR 5/1	13	Y		Cut.		- @	28' becom	mes gi	ay				
31					98	Y		Cut.									
33	SC	dry	< 5	10YR 5/2	185	Y		Cut.						ine to medium sand, very n brown, trace chert, odor			
35				10YR	640	Y		Cut.		- @	@ 36' beco	omes į	gray				
37	SP	dry	< 5	5/1 10YR	217	Y		Cut.		SAND	- (38-60°)) – fin	e to med	lium sand, very dense,			
39 40				5/3	66	Y		Cut.						fine gravel, odor			
																X	

LOCATION	N MAP																				
										TEST HOL								Page	3	of	4
										HTRW-2	_			obbs Tai		ly Enc	ergy)				
						Date				18 / 2013				ımber: 07							
						_	_	y: Just					_	B. Adk							
Ground Elev	otionu			Detector	. DID	Dril		1ethod Int: Be		r Rotary		Samplii		Method: rout Inter		oon 3 to	26!				
Filter Pack		/20 5		Detector	. FID		Seal/	IIII. De	inoi			to 60'		ole Dia:				ater Enc	ounter	ed dur	ina
Casing Type			anu			Dia	meter:	1 & 4	l in					TW: 45. 0				51' bgs		zu uui	mg
Screen Type				Slot: 20				1 & 4						ell Depth							
												-		·		<u> </u>	T		Ī		
Depth Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		LITH	OI	LOGY/I	REI	MARKS				Fabric		WELI MPLE	
40																			1 1		pgs
41 42	- - - - -			112	N		Cut.												=	:	top of screen @ ~45' bgs
44	moist			220	N		Cut.			- @ 46' become	s m	noist							=	=	= =
45			5.510	201	N		Cut.			- @ 46' become		inle two	aa f	e na amaya	.1				=	=	= = = = = = = = = = = = = = = = = = = =
47	 - 		7.5YR 7/3	90	N		Cut.			- @ 40 become	s p	mk, trac	cc i	inic grave	-1				=	= === = === = ===	= = = = = = = = = = = = = = = = = = = =
SP 49 50	<u>-</u> -			33	N		Cut.												=	=	=
51	wet				N		Cut.	•		- @ 51' become:	s w	ret							=	= ==== = ==== = ====	= =
53	. <u>.</u> - -		7.5YR 5/3		N		Cut.			- @ 52' become:	s b	rown							=	: ==== : ==== = ==== = ====	=
55	 - 						Cut.												=	: ==== : ==== : ====	= =
57							Cut.													=	60' bgs
59	-						Cut.													: ==== : ==== : ====	bottom of screen @
60	- - -									- @ 60' no sampl	e r	ecovery	7						we	=	•
	cement grou	ıt	$>\!\!<$	bentonite seai			tiiter pac	:k		-							-				

LOC	CATION	MAP														
											IOLE	/ WELL		Page	1	of 4
										per: HTRW-3			Hobbs Tank (Holly E	nergy)		
							Date			/ 18 / 2013			Number: 078863			
							_			tin Covey			By: B. Adkins			
C	1 171				D.44	DID	Dril			: Air Rotary	201	Samplii	ng Method: Split Spoon			
	and Eleva		20		Detector	: PID		Seal/	Int: Be	entonite 36 to		4- (01		to 36'		1.4
	r Pack S			ına			Dia	matanı	1 & 4	Interval:				Depth water Enc rilling: 52' bgs		a auring
	en Type:				Slot: 20				1&4				Well Depth: 60' bgs 7			
SCIC	ch Type.	5CII. 4					Dia			intervar.	40	10 00	Wen Depun. 00 bgs [1	otar deptir. 03	Ugs	
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level	I	ITHC	LOGY/F	REMARKS	Fabric		WELL PLETION
1 2 3	SP	dry	< 5		0	N		Cut.		SAND – (0-6') - graded, dry, pale			e, medium grained, poor	ly	1" fluid level monitor	
5					0	N N		Cut.							//////	
7 8 9	ML	dry	5	5YR 5/3	0	N		18" 6"		fine grained sand	d, trace	e mineral	ow platicity, dry, brown, lization se, fine grained, poorly			
10	SP SP	dry dry	< 5 < 5	7/2	0 20	N N		7"			2') – S		ne grained, dense, poorly	7	//////	
13				10YR 5/3	295	N		Cut.		- @ ~12' - b						
15 16				10YR 7/1	488	Y		Cut.		- @ ~14' - b	ecome	s light gr	ay		77777	
17 18 19 20				10YR 6/2	999+ 621	Y N		Cut.		- @ ∼18' - b	ecome	s light br	ownish gray, trace silt			

LOC	CATION	MAP									
							Так	-/XV-11	M., 1	TEST HOLE / WELL LOG Page 2 on ther: HTRW-3 Project: Hobbs Tank (Holly Energy)	of 4
							Date			her: H1RW-3 Project: Hobbs Tank (Holly Energy) 6 / 18 / 2013 Project Number: 078863	
										stin Covey Drilled By: B. Adkins	
										d: Air Rotary Sampling Method: Split Spoon	
	and Eleva				Detector	: PID		Seal/	Int: Be	Sentonite 36 to 38' Grout Interval: 3 to 36'	
	r Pack S			and						Interval: 38 to 60' Hole Dia: 7-7/8" Depth water Encountered du	ring
	ng Type:				Slot: 20			meter: meter:		8	
Scre	en Type:	Scn. 4	U I		1	I	Dia			4 in. Interval: 40 to 60' Well Depth: 60' bgs Total depth: 63' bgs	
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level	LITHOLOGY/REMARKS GE WEL COMPLE	
20	U 1						-	U 1			
21 22 23				10YR 7/2	149	Y Y		Cut.		- @ 20' trace fine to medium gravel - @ 22' becomes light gray	///////
24 25 26 27 28				10YR 6/1	287	Y		Cut.		- @ 26' becomes gray	
30 31 32	SC	dry	< 5	2.5YR 6/2 10YR	556	Y Y		Cut.		- @ 30' becomes light brownish gray Gravelly SAND – (32-36') – fine to coarse sand, very	
33 34 35				6/2	432	Y Y		Cut.		dense, well graded, dry, light brownish gray, trace chert, odor	
36 37 38 39	SP	dry	< 5	10YR 6/3 10YR 6/2	212	Y		Cut.		Sand - (36 - 63') - very dense, fine grained, poorly graded, dry, pale brown, few fine gravel, trace chert, odor - @ 38' becomes light brownish gray	

LOCATION MAP						
					TEST HOLE / WELL LOG Page 3 of	4
		-			ber: HTRW-3 Project: Hobbs Tank (Holly Energy)	
			Date:		6 / 18 / 2013 Project Number: 078863	
		-			stin Covey Drilled By: B. Adkins	
	1				d: Air Rotary Sampling Method: Split Spoon	
Ground Elevation::	Detector	: PID	Seal/	Int: Be	dentonite 36 to 38' Grout Interval: 3 to 36'	
Filter Pack Size: 10/20 s	and				Interval: 38 to 60' Hole Dia: 7-7/8" Depth water Encountered during	g
Casing Type: Sch. 40			Diameter:		ğ	
Screen Type: Sch. 40	Slot: 20		Diameter:	1 & 4	4 in. Interval: 40 to 60' Well Depth: 60' bgs Total depth: 63' bgs	_
Depth Soil/Rock Type Moisture Content % Fines	Color Vapor (ppm)	Staining	Sample # Soil Recovery	Water Level	LITHOLOGY/REMARKS LITHOLOGY/REMARKS WELL COMPLETING	
40 moist 41 42	157	N	Cut.		- @ 40' becomes moist, trace fine gravel = ==== = = = = = = = = = = = = = = =	top of screen @ ~45' bgs
43	212	N	Cut.			top
46	93	N	Cut.			
48	99	N	Cut.			
50	68 5YR	N	Cut.		= === = === - @ 46' becomes pinkish white = ===	
51	8/2	N	Cut.	•	= === = === - @ 53' becomes wet	
53 54		N	Cut.		= === = === = ===	
55		N	Cut.			
57			Cut.			@ 60' bgs
59			Cut.		- @ 58' becomes well graded w/ trace silt = === == = ====	bottom of screen
cement grout	bentonite seal		hiter pac		- @ 60' no sample recovery = ==== = ==	•

LOC	CATION	MAP								
								ATT 11		TEST HOLE / WELL LOG Page 1 of
							Date			mber: HTRW-4 Project: Hobbs Tank (Holly Energy) 6 / 19 / 2013 Project Number: 078863
										ustin Covey Drilled By: B. Adkins
										od: Air Rotary Sampling Method: Split Spoon
	ınd Elev				Detector	: PID		Seal/	Int: Be	Bentonite 36 to 38' Grout Interval: 3 to 36'
	r Pack S			and						Interval: 38 to 60' Hole Dia: 7-7/8'' Depth water Encountered during
	ng Type:				Slot: 20					& 4 in. Interval: 0 to 40' DTW: 44.33' bgs drilling: 50' bgs & 4 in. Interval: 40 to 60' Well Depth: 60' bgs Total depth: 64' bgs
Scre	en Type:	Scn. 4	T .	l			Dia			
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level	LITHOLOGY/REMARKS GE WELL COMPLETION
2	SP	dry	< 5	10YR 6/3	0	N		Cut.		SAND – (0-5.5') – medium dense, medium grained, poorly graded, dry, pale brown (Fill)
5 6	SP	dry	< 5	10YR 8/2	0	N N		Cut.		Caliche – (6-22') – SAND, fine grained, dense, poorly
9				6/2	0	N N		6"		graded, dry, very pale brown - @ ~8' - trace chert
11 12 13				10YR 8/1	0	N		6" 8"		- @ ~12' - becomes white, trace silt, very dense
14					0	N		Cut.		
16 17					0	N		Cut.		
18					0	N		Cut.		
20					0	N				

LOC	CATION	MAP																	
											TEST H	OLE.				Page	2	0	f 4
							Test	/Well	Numl	ber: HT				: Hobbs Tank (Holly	Ener	gy)			
							Date				/ 2013			Number: 078863					
							_	_		tin Cov				By: B. Adkins					
										l: Air R			Sampli	ng Method: Split Spoo					
	ınd Eleva				Detector	: PID		Seal/	Int: Be	entonite	36 to	38'			to				
	r Pack S			and							Interval:	38		Hole Dia: 7-7/8''		th water En		ed du	ring
Casi	ng Type:	Sch. 4	0				Dia	meter:	1 & 4	4 in.	Interval:	0		DTW: 44.33' bgs		ing: 50' bgs			
Scre	en Type:	Sch. 4	0		Slot: 20		Dia		1 & 4	4 in.	Interval:	40	to 60'	Well Depth: 60' bgs	Tota	ıl depth: 64'	bgs		
Depth	Soil/Rock Type	Moisture Content	% Fines	Color	Vapor (ppm)	Staining	Sample #	Soil Recovery	Water Level		L	THO	LOGY/I	REMARKS		Fabric		WEL MPLE	L ETION
20	Ø L	V	0			01	<i>O</i> ₁	<i>O</i> ₁									\forall		$\overline{}$
21 22 23	SC	dry	5	10YR 8/1	0	N		Cut.		Calich grained		') – G	ravelly S	SAND, fine to medium d, dry, white, trace silt			1111111		
24 25 26					10	N N		Cut.		chert							//////		
27				10YR 7/1	15	N		Cut.		- @	26' becor	nes li	ght gray,	, trace odor			//////		
30					30	N		Cut.									/////		
32					42 51	N N		Cut.											
35				10YR 7/2		N		Cut.		- @	34' becor	nes li	ght gray						
36 37 38				10YR 6/3	68	N		Cut.						wn, trace chert					
39	SP	dry	< 5	10YR 7/4	68	N		Cut.						fine grained, poorly ew medium gravel, tra	ce				

LOCATION MAP		
	TEST HOLE / WELL LOG	Page 3 of 4
	Test/Well Number: HTRW-4 Project: Hobbs Tank (Holly Ener	·gy)
	Date: 6 / 19 / 2013 Project Number: 078863	
	Logged by: Justin Covey Drilled By: B. Adkins	
Complete discontinuation of the state of the	Drilling Method: Air Rotary Sampling Method: Split Spoon	201
Ground Elevation:: Detector: PID Filter Pack Size: 10/20 sand	Seal/Int: Bentonite 36 to 38' Grout Interval: 3 to	th water Encountered during
Casing Type: Sch. 40		ing: 50' bgs
Screen Type: Sch. 40 Slot: 20	Diameter: 1 & 4 in. Interval: 40 to 60' Well Depth: 60' bgs Tota	
Depth Soil/Rock Type Moisture Content % Fines Color Vapor (ppm)	Soil Recovery Water Level Water Level	E COMPLETION WELL
40		= === sa
41 211 N 42 moist	Cut. - @ 42' becomes moist, trace gravel	
43 253 N	Cut	
45 113 N	Cut.	
47 84 N	Cut.	= === === =============================
SP moist < 5 7.5YR 8/3 75 N	Cut. Cut.	
51 wet	- @ 50' becomes wet	= === ====
52 7.5YR 53 N	Cut. Gravelly SAND – (52-64') – fine to medium grained, dense, well graded, wet, pink, fine to medium grained gravel	
55	Cut.	
56 N	Cut.	
58 N		
59 N	Cut @ 60' no sample recovery	
cement grout bentonite seal	TD = ~64' bgs	= === & well TD = 60'

APPENDIX G

SUMMARY OF SUBSURFACE SOIL ANALYTICAL RESULTS

Appendix G Summary of Hydrocarbon Results from Monitoring Well Installations Holly Energy - Hobbs Tank - Lea County, New Mexico

							alytical Res	ults			Headspace	Water
Sample ID	Date Sampled	Sample Depth	Benzene	Toluene	Ethyl-	Total	BTEX	TPH-GRO	TPH-DRO	TPH	Reading	Encountered
		(ft-bgs)	(mg/kg)	(mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	ppm	(ft-bgs)
NMOCD Remedia	ation Action Levels		10				50			100	100	
HTRW-1	6/18/13	0-2									0.5	
	., .,	2-4									1.5	
		4-6									1.1	
		6-8									1	
		8-10									2	
		10-12									0.6	
		12-14									1.5	
		14-16									1.7	
		16-18									127	
		18-20									387	
		20-22									601	
		22-24									1124	
		24-26									1154	
		26-28									1096	
		28-30									1120	
		30-32									1150	
HTRW-1-34	6/18/13	32-34	0.00328	0.102	0.448	0.7410	1.29428	13.8	1960	1973.8	1133	
		34-36									1142	
		36-38									960	
		38-40									418	
		40-42									402	
HTRW-1-44	6/18/13	42-44	0.00219	0.0565	0.253	0.4030	0.71469	12	1050	1062	656	
		44-46									639	
	-//	46-48				0.0455	40.0050				315	
HTRW-1-50	6/18/13	48-50	< 10	< 0.002	0.00825	0.0155	10.0258	0.578	40.4	40.978	710	
		50-52									416	53
HTRW-2	6/18/13	0-2									0.4	
		2-4									2.2	
		4-6									0	
		6-8									1.2	
		8-10									0.1	
		10-12									5.7 4.1	
		12-14 14-16									5.6	
		16-18									6.5	
		18-20									4.6	
		20-22									8.5	
		22-24									7.6	
		24-26									7.1	
		26-28									6.7	
		28-30									4.8	
		30-32									2	
HTRW-2-34	6/18/13	32-34	0.0065	0.231	1.0200	1.8330	3.0905	22.5	3530	3552.5	2.2	
HTRW-2-DUP	6/18/13		0.0061	0.18	0.8650	1.5530	2.6041	22.5	3410	3432.5		
]	34-36									21.3	
		36-38									53.1	
		38-40									463	
HTRW-2-42	6/18/13	40-42	0.00497	0.142	0.5690	0.9420	1.6580	17.8	2340	2357.8	93.3	
	'	42-44									425	
		44-46									244	
HTRW-2-48	6/18/13	46-48	< 10	0.00348	0.0236	0.0431	10.0702	1.93	160	161.93	202	
	1	48-50									166	
		50-52									NS	54

Appendix G Summary of Hydrocarbon Results from Monitoring Well Installations Holly Energy - Hobbs Tank - Lea County, New Mexico

					Lal	boratory An	alytical Res	ults			Headspace	Water
Sample ID	Date Sampled	Sample Depth	Benzene	Toluene	Ethyl-	Total	BTEX	TPH-GRO	TPH-DRO	TPH	Reading	Encountered
		(ft-bgs)	(mg/kg)	(mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	ppm	(ft-bgs)
NMOCD Remedia	ation Action Levels		10				50			100	100	
HTRW-3	6/18/13	0-2									47.2	
	3, 23, 23	2-4									516	
		4-6									880	
		6-8									34.8	
		8-10									147	
		10-12									151	
		12-14									479	
HTRW-3-16	6/18/13	14-16	< 10	0.43	2.77	4.8200	18.0200	33.5	5550	5583.5	557	
		16-18									724	
		18-20									154	
		20-22									253	
		22-24									564	
	-11	24-26									409	
HTRW-3-28	6/18/13	26-28	< 10	0.207	1.53	2.9600	14.6970	26.8	4090	4116.8	300	
		28-30									383	
		30-32 32-34									111 312	
		34-36									125	
		36-38									455	
		38-40									647	
		40-42									491	
		42-44									883	
		44-46									440	
HTRW-3-48	6/18/13	46-48	0.0016	0.0409	0.171	0.2723	0.4858	7.74	909	916.74	389	
		48-50									352	
		50-52									245	53
HTRW-4	6/19/13	0-2									0	
		2-4									0.2	
		4-6									0	
		6-8									0.3	
		8-10									0.2	
		10-12									0.1	
		12-14									0.7	
		14-16									0.3	
		16-18 18-20									1	
		20-22									1.1	
		22-24									0.8	
		24-26									0.6	
		26-28									0.5	
		28-30									0.8	
		30-32									1.2	
		32-34		-							0.3	
		34-36									1.6	
		36-38									3.7	
		38-40									354	
HTRW-4-42	6/19/13	40-42	< 10	0.256	1.21	2.4690	13.9350	38.7	2190	2228.7	1434	
	1	42-44			-						NS	
LITDIAL A AC	6/10/12	44-46	.10	40.004	0.00227	0.0050	10.0002	2.00	222	224.00	NS NC	
HTRW-4-48	6/19/13	46-48 48-50	< 10	< 0.001	0.00237	0.0059	10.0092	2.66	332	334.66	NS NS	

NOTES:

NMOCD= New Mexico Oil & Conservation Division

mg/kg = milligrams per kilogram

 ${\tt BTEX = Benzen, Toluene, Ethylbenzen \& Total Xylenes}$

 $\label{thm:total} \textit{TPH-GRO} = \textit{Total Petroleum Hydrocarbons- Gasoline Range Organics}$

TPH-DRO = Total Petroleum Hydrocarbons - Diesel Range Organics

ppm = parts per million

ft-bgs = feet below ground surface

BOLD (RED) - concentration greater than NMOCD Remediation Action Levels

< = analyte not detected above method reporting limit

BTEX analyzed by EPA Method 8260B

TPH-GRO analyzed by EPA Method 8260B

TPH-DRO analyzed by EPA Method 8015M

APPENDIX H

SUBSURFACE SOIL LABORATORY REPORTS

June 27, 2013

Bill Green

Holly Energy Partners

1602 W. Main

Artesisa, NM 88210

TEL: (575) 748-8968

FAX (575) 748-4052 Order No.: 1306175

RE: Hobbs Tank 5201 (Holly Energy Partners)

Dear Bill Green:

DHL Analytical, Inc. received 13 sample(s) on 6/20/2013 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-13-11

Table of Contents

Miscellaneous Documents	3
CaseNarrative 1306175	6
Analytical Report 1306175	7
AnalyticalQCSummaryReport 1306175	20

2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 ■ FAX (512) 388-8229

Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com

№ 60095 CHAIN-OF-CUSTODY

CLIENT: CRA ADDRESS: 14998 PHONE: 770,974 DATA REPORTED TO: ADDITIONAL REPOR	W. 64 1.0956 <u>Broot</u> T COPIE:	h AVE T	FAX/E- PASON	GOLD MAIL: L 2 221 4	un. (b. Stephins Janeye	804 010	ol 3 Cla aslo	end Old	di	SON WW	r (DATI PO # PRO. CLEN	: JECT	LOC	ATIO	 Э ИС	OR N	MAI	E: <u>H</u>	DHI	LWO おフ	RK (ORD くど	ER #	#: <i>[]</i> - TOR	PAGE 13 lolly & PAFE :		OF_ 05_ 94 25)	
Authorize 5% surcharge for TRRP Report? Yes No Field Sample I.D.	S=SOI W=WA A=AIR L=LIQI DHL Lab#	L P=FATER SL= O=1 UID SO=	PAINT =SLUDO OTHER =SOLID	GE) Matrix	Container Type	# of Containers	PRE		VATI	ON			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\											7////	ナンミンション・スト		FIELE	O NOTES	5
HTKW-1-34	01	0/18/13	0905	5	402 /6 VOF	17		\bot	Д				X		_			\perp		\perp			_>	<u> </u>	<u> </u>	BI	<u>exonl</u>	щ	
HTRW-1-44 HTRW-1-50	67	_}	0920			#		-	1		\vdash		11	_	<u> </u>				_ _	1			_ 1	Щ	_	<u> </u>			
	03	-	0925		 	#		\bot			\perp			_	╄-	ļ		_		\perp	$\perp \downarrow$			Щ	\perp	<u> </u>	ــــــ		
HTRW-2-34	04		1330			1		_	11				Ш											Ш	L				
HIKW-6-244	05		1345			\coprod			11				Ш									i		_			1		
HTRW-2-48	صو		1355			Ш																		П					
ITRW-2-DUP	97	1	1335						П				T T						丁					\prod	\top				
1TRW-3-16	000	<u> </u>	1515			Π					П		\top	\top	1	1 1		7	.	Ť	1		-	11	\top		1		
HTRW-3-28	09		1545			Π		\dagger	$\dagger \dagger$				#	_	† -	\Box		1	_	十	1	+	\dashv	+	+	†	 		
HTRW-3-48	10		1555			11		1	++				+	+	+		\dashv	\pm	╁	+-		\dashv	-	+	+	+-	 		
FTRIV-4-42	11 6	0/18/13	1825			††	\vdash	╁	††				++	+	+	\vdash	\dashv	+	\dashv	+	+	\dashv		+	+-	+	+		
+TRW-4-48	12 (e 18/12	10245		V	\forall	\vdash	+	╫		$\vdash \vdash$		$\downarrow \downarrow$	+	╁	\vdash	\dashv	_	+	+	+-1	\dashv	+	+	+	 	1		
TRIP BLANK	17	SICCII,)	0010	W	2 VDA	<u> </u>	\vdash		V		\vdash		∜			-		+	+	+		+	<u> </u>	1 1	4		<u>V_</u>		
TAIL FOR VOICE				VU	JWH	G.	\vdash	╁╌	1		\vdash		4	+	-		_	+	_	-	+	+	+	+-	+	1573	Lovly		
			-					-	-			\dashv		_	<u> </u>	\vdash	_	4	_	_			\downarrow		丄	<u> </u>			
COTAL								<u> </u>															ŀ	┸					
OTAL (Signature)	 ,		DATEST					<u> </u>												i									
EL/NQUISHED BY: (Signature)	-	6.19	DATE/TI 1.65/16 DATE/TI 20/15	<i>600</i>	RECEIVEI RECEIVEI	7	Signati	ire)						JRN A							TORY							1	
ELYNQUISHED BY: (Signature)		/./	DATE/TI	IME	RECEIVE	BY.	Signate	1 3	~2	, 1	~			ISH C				- 1								THERM			
ELINQUISHED BY: (Signature)	7	Ce1	DATE/TI	ME .	RECEIVEI	D BY: 4	Signati	re)		\sim	_			OAY C		LLF	IK2 I		CUST	OD.	Y SEA	LS:	夂	ROK	ΚEN		ACT	D NOT	USED
								-,				:)RMA)		16	9 ⊆A D AP	KKKII	ELIVE EK BIL	.և.#: RY			بعب				
		OHL DISPOS	AL @ \$5	.00 eac	h □ R	etur	7	-					ОТ	HER	<u> </u>						DELI		.D						

SHIP DAT ACTWGT: CAD: /PC DIMS: 25 ORIGIN ID:HOBA (512) 388-8222 NEW Package Express US Airbill 2300 DOUBLE CREEK DR 8017 ROUND ROCK, TX 786643801 UNITED STATES US BILL SEN Express Pa 1 From NOTE: Service or **DHL ANALYTCAL** Date 2300 DOUBLE CREEK DR Sender's Name FedEx Priority **ROUND ROCK TX 78664** (809) 000-0000 1NV: PO: FedEx Standi Next business afte Saturday Delivery 5 Packagin FedEx Envel 2 Your Internal Billing Reference Special H SATURDAY Recipient's Name HOLD Weekday Does this shi TRK# 8017 7767 5345 FIR: Y∑ No 🗔 Payment **BSMA** Total Packages

CUSTODY SEAL

DATE

SIGNATURE

A STATE OF THE STATE OF TH

QEC

A

Quality Environmental Containers 800-255-3950 • 304-255-3960

s Sample Receipt Checklist Date Receipt Checklist

Client Name Holly Energy Partners			Date Rece	ved: 6/20/	2013
Work Order Number 1306175			Received by	y JB	
Checklist completed by:	6/20/201	13	Reviewed b	y 45	6/20/2013
Signature	Date		_	Initials	Date
	Carrier name	FedEx 1day			
		v 🗖	🗀		
Shipping container/cooler in good condition?		Yes 🗹	No □	Not Present 🗌	
Custody seals intact on shippping container/cook	er?	Yes 🗹	No 🗔	Not Present	•
Custody seals intact on sample bottles?		Yes 🔲	No 🗀	Not Present 🗹	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished and r	eceived?	Yes 🔽	No 🗌		
Chain of custody agrees with sample labels?		Yes 🔽	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	· No 🗆		
Sufficient sample volume for indicated test?	•	Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🗹	No 🗌	-	
Container/Temp Blank temperature in complianc	e? *	Yes 🗹	No 🗀	1.3 °C	
Water - VOA vials have zero headspace?		Yes 🗹	No 🗀	No VOA vials subm	nitted
Nater - pH<2 acceptable upon receipt?		Yes	No 🗆	NA ☑ LOT#	
		Adjusted?		Checked by	
	receipt?	Yes 🗌	No 🗌	NA ☑ LOT#	
		Adjusted?		Checked by	
Any No response must be detailed in the comme	ents section below.			·	
Client contacted	Date contacted:		Per	son contacted	
Contacted by:	Regarding				
Comments:					
Corrective Action				,	
	11 * 11 * 2				
				· · · · · · · · · · · · · · · ·	

Page 1 of 1

CLIENT: Holly Energy Partners

Project: Hobbs Tank 5201 (Holly Energy Partners) CASE NARRATIVE

Date: 27-Jun-13

Lab Order: 1306175

Samples were analyzed using the methods outlined in the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition, Standard Method and ASTM D2216.

The samples were collected in Mountain Standard Time.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives, except where noted in the following. For DRO Analysis, the recovery of surrogate Octacosane for ten of the samples was above the method control limits, due to coelution. These are flagged accordingly in the Analytical Data Report. The remaining surrogate for these samples was within method control limits. No further corrective actions were taken.

For GRO Analysis, the recovery of surrogate Tetrachloroethene for eight of the samples was above the method control limits, due to coelution. These are flagged accordingly in the Analytical Data Report. No further corrective actions were taken.

For Volatiles Analysis, the recovery of surrogate 4-Bromofluorobenzene for six of the samples was above the method control limits. These are flagged accordingly in the Analytical Data Report. The remaining surrogates for these samples were within method control limits. No further corrective actions were taken.

For DRO Analysis, the recovery of the Matrix Spike Duplicate (1306175-12 MSD) was below the method control limits. This is flagged accordingly in the QC Summary Report. The associated LCS was within method control limits. No further corrective actions were taken.

CLIENT: Holly Energy Partners Client Sample ID: HTRW-1-34

Project: Hobbs Tank 5201 (Holly Energy Partners) Lab ID: 1306175-01

Project No: Collection Date: 06/18/13 09:05 AM

Lab Order: 1306175 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - SOIL		M801	15D				Analyst: DEW
TPH-DRO C10-C28	1960	33.4	111		mg/Kg-dry	10	06/24/13 10:27 AM
Surr: Isopropylbenzene	79.7	0	47-142		%REC	10	06/24/13 10:27 AM
Surr: Octacosane	347	0	25-162	S	%REC	10	06/24/13 10:27 AM
TPH PURGEABLE BY GC - SOIL		M801	15V				Analyst: DEW
Gasoline Range Organics	13.8	0.103	0.207		mg/Kg-dry	1	06/21/13 10:12 PM
Surr: Tetrachlorethene	128	0	70-134		%REC	1	06/21/13 10:12 PM
VOLATILES(5035) BY GC/MS		SW82	60C				Analyst: KL
Benzene	0.00328	0.00104	0.00520	J	mg/Kg-dry	1	06/25/13 07:22 PM
Ethylbenzene	0.448	0.00104	0.00520		mg/Kg-dry	1	06/25/13 07:22 PM
m,p-Xylene	0.478	0.00104	0.00520		mg/Kg-dry	1	06/25/13 07:22 PM
o-Xylene	0.263	0.00104	0.00520		mg/Kg-dry	1	06/25/13 07:22 PM
Toluene	0.102	0.00208	0.00520		mg/Kg-dry	1	06/25/13 07:22 PM
Surr: 1,2-Dichloroethane-d4	98.6	0	52-149		%REC	1	06/25/13 07:22 PM
Surr: 4-Bromofluorobenzene	166	0	84-118	S	%REC	1	06/25/13 07:22 PM
Surr: Dibromofluoromethane	97.9	0	65-135		%REC	1	06/25/13 07:22 PM
Surr: Toluene-d8	113	0	84-116		%REC	1	06/25/13 07:22 PM
PERCENT MOISTURE		D22	16				Analyst: JCG
Percent Moisture	12.8	0	0		WT%	1	06/24/13 08:50 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
 - J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Holly Energy Partners Client Sample ID: HTRW-1-44

Project: Hobbs Tank 5201 (Holly Energy Partners) Lab ID: 1306175-02

Project No: Collection Date: 06/18/13 09:20 AM

Lab Order: 1306175 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - SOIL		M80 ⁻	15D				Analyst: DEW
TPH-DRO C10-C28	1050	32.0	107		mg/Kg-dry	10	06/24/13 10:44 AM
Surr: Isopropylbenzene	74.4	0	47-142		%REC	10	06/24/13 10:44 AM
Surr: Octacosane	286	0	25-162	S	%REC	10	06/24/13 10:44 AM
TPH PURGEABLE BY GC - SOIL		M80 ⁻	15V				Analyst: DEW
Gasoline Range Organics	12.0	0.0906	0.181		mg/Kg-dry	1	06/21/13 11:04 PM
Surr: Tetrachlorethene	153	0	70-134	S	%REC	1	06/21/13 11:04 PM
VOLATILES(5035) BY GC/MS		SW82	260C				Analyst: KL
Benzene	0.00219	0.000946	0.00473	J	mg/Kg-dry	1	06/25/13 07:53 PM
Ethylbenzene	0.253	0.000946	0.00473		mg/Kg-dry	1	06/25/13 07:53 PM
m,p-Xylene	0.268	0.000946	0.00473		mg/Kg-dry	1	06/25/13 07:53 PM
o-Xylene	0.135	0.000946	0.00473		mg/Kg-dry	1	06/25/13 07:53 PM
Toluene	0.0565	0.00189	0.00473		mg/Kg-dry	1	06/25/13 07:53 PM
Surr: 1,2-Dichloroethane-d4	100	0	52-149		%REC	1	06/25/13 07:53 PM
Surr: 4-Bromofluorobenzene	159	0	84-118	S	%REC	1	06/25/13 07:53 PM
Surr: Dibromofluoromethane	99.2	0	65-135		%REC	1	06/25/13 07:53 PM
Surr: Toluene-d8	106	0	84-116		%REC	1	06/25/13 07:53 PM
PERCENT MOISTURE		D22	:16				Analyst: JCG
Percent Moisture	9.96	0	0		WT%	1	06/24/13 08:50 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
 - J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Holly Energy Partners Client Sample ID: HTRW-1-50

Project: Hobbs Tank 5201 (Holly Energy Partners) Lab ID: 1306175-03

Project No: Collection Date: 06/18/13 09:25 AM

Lab Order: 1306175 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - SOIL		M80 ⁻	15D				Analyst: DEW
TPH-DRO C10-C28	40.4	2.97	9.88		mg/Kg-dry	1	06/24/13 11:01 AM
Surr: Isopropylbenzene	56.8	0	47-142		%REC	1	06/24/13 11:01 AM
Surr: Octacosane	99.7	0	25-162		%REC	1	06/24/13 11:01 AM
TPH PURGEABLE BY GC - SOIL		M80 ⁻	15V				Analyst: DEW
Gasoline Range Organics	0.578	0.0929	0.186		mg/Kg-dry	1	06/21/13 11:55 PM
Surr: Tetrachlorethene	120	0	70-134		%REC	1	06/21/13 11:55 PM
VOLATILES(5035) BY GC/MS		SW82	:60C				Analyst: KL
Benzene	ND	0.000950	0.00475		mg/Kg-dry	1	06/25/13 03:43 PM
Ethylbenzene	0.00825	0.000950	0.00475		mg/Kg-dry	1	06/25/13 03:43 PM
m,p-Xylene	0.00975	0.000950	0.00475		mg/Kg-dry	1	06/25/13 03:43 PM
o-Xylene	0.00575	0.000950	0.00475		mg/Kg-dry	1	06/25/13 03:43 PM
Toluene	ND	0.00190	0.00475		mg/Kg-dry	1	06/25/13 03:43 PM
Surr: 1,2-Dichloroethane-d4	98.4	0	52-149		%REC	1	06/25/13 03:43 PM
Surr: 4-Bromofluorobenzene	100	0	84-118		%REC	1	06/25/13 03:43 PM
Surr: Dibromofluoromethane	97.7	0	65-135		%REC	1	06/25/13 03:43 PM
Surr: Toluene-d8	97.5	0	84-116		%REC	1	06/25/13 03:43 PM
PERCENT MOISTURE		D22	16				Analyst: JCG
Percent Moisture	2.15	0	0		WT%	1	06/24/13 08:50 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Holly Energy Partners Client Sample ID: HTRW-2-34

Project: Hobbs Tank 5201 (Holly Energy Partners) Lab ID: 1306175-04

Project No: Collection Date: 06/18/13 01:30 PM

Lab Order: 1306175 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - SOIL		M80 ²	15D				Analyst: DEW
TPH-DRO C10-C28	3530	61.7	206		mg/Kg-dry	20	06/24/13 11:09 AM
Surr: Isopropylbenzene	79.1	0	47-142		%REC	20	06/24/13 11:09 AM
Surr: Octacosane	648	0	25-162	S	%REC	20	06/24/13 11:09 AM
TPH PURGEABLE BY GC - SOIL		M80 ⁻	15V				Analyst: DEW
Gasoline Range Organics	22.5	0.0910	0.182		mg/Kg-dry	1	06/22/13 12:47 AM
Surr: Tetrachlorethene	173	0	70-134	S	%REC	1	06/22/13 12:47 AM
VOLATILES(5035) BY GC/MS		SW82	60C				Analyst: KL
Benzene	0.00650	0.000940	0.00470		mg/Kg-dry	1	06/25/13 09:26 PM
Ethylbenzene	1.02	0.0539	0.269		mg/Kg-dry	50	06/25/13 11:33 AM
m,p-Xylene	1.23	0.0539	0.269		mg/Kg-dry	50	06/25/13 11:33 AM
o-Xylene	0.603	0.0539	0.269		mg/Kg-dry	50	06/25/13 11:33 AM
Toluene	0.231	0.108	0.269	J	mg/Kg-dry	50	06/25/13 11:33 AM
Surr: 1,2-Dichloroethane-d4	108	0	52-149		%REC	50	06/25/13 11:33 AM
Surr: 1,2-Dichloroethane-d4	95.9	0	52-149		%REC	1	06/25/13 09:26 PM
Surr: 4-Bromofluorobenzene	98.9	0	84-118		%REC	50	06/25/13 11:33 AM
Surr: 4-Bromofluorobenzene	185	0	84-118	S	%REC	1	06/25/13 09:26 PM
Surr: Dibromofluoromethane	97.0	0	65-135		%REC	1	06/25/13 09:26 PM
Surr: Dibromofluoromethane	105	0	65-135		%REC	50	06/25/13 11:33 AM
Surr: Toluene-d8	94.6	0	84-116		%REC	50	06/25/13 11:33 AM
Surr: Toluene-d8	109	0	84-116		%REC	1	06/25/13 09:26 PM
PERCENT MOISTURE		D22	16				Analyst: JCG
Percent Moisture	7.22	0	0		WT%	1	06/24/13 08:50 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: Holly Energy Partners Client Sample ID: HTRW-2-42

Project: Hobbs Tank 5201 (Holly Energy Partners) Lab ID: 1306175-05

Project No: Collection Date: 06/18/13 01:45 PM

Lab Order: 1306175 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed		
TPH EXTRACTABLE BY GC - SOIL	M8015D						Analyst: DEW		
TPH-DRO C10-C28	2340	63.7	212		mg/Kg-dry	20	06/24/13 11:26 AM		
Surr: Isopropylbenzene	84.7	0	47-142		%REC	20	06/24/13 11:26 AM		
Surr: Octacosane	454	0	25-162	S	%REC	20	06/24/13 11:26 AM		
TPH PURGEABLE BY GC - SOIL		M801	15V				Analyst: DEW		
Gasoline Range Organics	17.8	0.0963	0.193		mg/Kg-dry	1	06/22/13 02:03 AM		
Surr: Tetrachlorethene	139	0	70-134	S	%REC	1	06/22/13 02:03 AM		
VOLATILES(5035) BY GC/MS		SW82	60C				Analyst: KL		
Benzene	0.00497	0.000960	0.00480		mg/Kg-dry	1	06/25/13 08:24 PM		
Ethylbenzene	0.569	0.0537	0.269		mg/Kg-dry	50	06/25/13 01:07 PM		
m,p-Xylene	0.645	0.0537	0.269		mg/Kg-dry	50	06/25/13 01:07 PM		
o-Xylene	0.297	0.0537	0.269		mg/Kg-dry	50	06/25/13 01:07 PM		
Toluene	0.142	0.107	0.269	J	mg/Kg-dry	50	06/25/13 01:07 PM		
Surr: 1,2-Dichloroethane-d4	92.7	0	52-149		%REC	50	06/25/13 01:07 PM		
Surr: 1,2-Dichloroethane-d4	99.6	0	52-149		%REC	1	06/25/13 08:24 PM		
Surr: 4-Bromofluorobenzene	101	0	84-118		%REC	50	06/25/13 01:07 PM		
Surr: 4-Bromofluorobenzene	192	0	84-118	S	%REC	1	06/25/13 08:24 PM		
Surr: Dibromofluoromethane	97.9	0	65-135		%REC	50	06/25/13 01:07 PM		
Surr: Dibromofluoromethane	99.0	0	65-135		%REC	1	06/25/13 08:24 PM		
Surr: Toluene-d8	96.6	0	84-116		%REC	50	06/25/13 01:07 PM		
Surr: Toluene-d8	107	0	84-116		%REC	1	06/25/13 08:24 PM		
PERCENT MOISTURE		D22	16				Analyst: JCG		
Percent Moisture	6.97	0	0		WT%	1	06/24/13 08:50 AM		

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: Holly Energy Partners Client Sample ID: HTRW-2-48

Project: Hobbs Tank 5201 (Holly Energy Partners) Lab ID: 1306175-06

Project No: Collection Date: 06/18/13 01:55 PM

Lab Order: 1306175 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - SOIL	M8015D						Analyst: DEW
TPH-DRO C10-C28	160	2.98	9.94		mg/Kg-dry	1	06/24/13 11:43 AM
Surr: Isopropylbenzene	58.1	0	47-142		%REC	1	06/24/13 11:43 AM
Surr: Octacosane	423	0	25-162	S	%REC	1	06/24/13 11:43 AM
TPH PURGEABLE BY GC - SOIL	M8015V						Analyst: DEW
Gasoline Range Organics	1.93	0.0950	0.190		mg/Kg-dry	1	06/22/13 03:20 AM
Surr: Tetrachlorethene	129	0	70-134		%REC	1	06/22/13 03:20 AM
VOLATILES(5035) BY GC/MS	SW8260C						Analyst: KL
Benzene	ND	0.00105	0.00525		mg/Kg-dry	1	06/25/13 04:14 PM
Ethylbenzene	0.0236	0.00105	0.00525		mg/Kg-dry	1	06/25/13 04:14 PM
m,p-Xylene	0.0266	0.00105	0.00525		mg/Kg-dry	1	06/25/13 04:14 PM
o-Xylene	0.0165	0.00105	0.00525		mg/Kg-dry	1	06/25/13 04:14 PM
Toluene	0.00348	0.00210	0.00525	J	mg/Kg-dry	1	06/25/13 04:14 PM
Surr: 1,2-Dichloroethane-d4	98.9	0	52-149		%REC	1	06/25/13 04:14 PM
Surr: 4-Bromofluorobenzene	106	0	84-118		%REC	1	06/25/13 04:14 PM
Surr: Dibromofluoromethane	99.8	0	65-135		%REC	1	06/25/13 04:14 PM
Surr: Toluene-d8	96.5	0	84-116		%REC	1	06/25/13 04:14 PM
PERCENT MOISTURE		D22	:16				Analyst: JCG
Percent Moisture	6.66	0	0		WT%	1	06/24/13 08:50 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Holly Energy Partners Client Sample ID: HTRW-2-DUP

Project: Hobbs Tank 5201 (Holly Energy Partners)

Lab ID: 1306175-07

Project No: Collection Date: 06/18/13 01:35 PM

Lab Order: 1306175 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - SOIL	M8015D						Analyst: DEW
TPH-DRO C10-C28	3410	61.0	203		mg/Kg-dry	20	06/24/13 12:00 PM
Surr: Isopropylbenzene	113	0	47-142		%REC	20	06/24/13 12:00 PM
Surr: Octacosane	622	0	25-162	S	%REC	20	06/24/13 12:00 PM
TPH PURGEABLE BY GC - SOIL		M80 ⁻	15V				Analyst: DEW
Gasoline Range Organics	22.5	0.0980	0.196		mg/Kg-dry	1	06/22/13 04:11 AM
Surr: Tetrachlorethene	175	0	70-134	S	%REC	1	06/22/13 04:11 AM
VOLATILES(5035) BY GC/MS		SW82	:60C				Analyst: KL
Benzene	0.00610	0.00106	0.00531		mg/Kg-dry	1	06/25/13 08:55 PM
Ethylbenzene	0.865	0.0543	0.271		mg/Kg-dry	50	06/25/13 01:38 PM
m,p-Xylene	1.06	0.0543	0.271		mg/Kg-dry	50	06/25/13 01:38 PM
o-Xylene	0.493	0.0543	0.271		mg/Kg-dry	50	06/25/13 01:38 PM
Toluene	0.180	0.109	0.271	J	mg/Kg-dry	50	06/25/13 01:38 PM
Surr: 1,2-Dichloroethane-d4	92.4	0	52-149		%REC	50	06/25/13 01:38 PM
Surr: 1,2-Dichloroethane-d4	96.4	0	52-149		%REC	1	06/25/13 08:55 PM
Surr: 4-Bromofluorobenzene	105	0	84-118		%REC	50	06/25/13 01:38 PM
Surr: 4-Bromofluorobenzene	183	0	84-118	S	%REC	1	06/25/13 08:55 PM
Surr: Dibromofluoromethane	96.6	0	65-135		%REC	1	06/25/13 08:55 PM
Surr: Dibromofluoromethane	95.6	0	65-135		%REC	50	06/25/13 01:38 PM
Surr: Toluene-d8	97.7	0	84-116		%REC	50	06/25/13 01:38 PM
Surr: Toluene-d8	112	0	84-116		%REC	1	06/25/13 08:55 PM
PERCENT MOISTURE		D22	16				Analyst: JCG
Percent Moisture	7.86	0	0		WT%	1	06/24/13 08:50 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
 - J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Holly Energy Partners Client Sample ID: HTRW-3-16

Project: Hobbs Tank 5201 (Holly Energy Partners) Lab ID: 1306175-08

Project No: Collection Date: 06/18/13 03:15 PM

Lab Order: 1306175 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - SOIL	M8015D						Analyst: DEW
TPH-DRO C10-C28	5550	65.3	218		mg/Kg-dry	20	06/24/13 12:17 PM
Surr: Isopropylbenzene	97.7	0	47-142		%REC	20	06/24/13 12:17 PM
Surr: Octacosane	914	0	25-162	S	%REC	20	06/24/13 12:17 PM
TPH PURGEABLE BY GC - SOIL		M801	5V				Analyst: DEW
Gasoline Range Organics	33.5	0.110	0.220		mg/Kg-dry	1	06/22/13 05:28 AM
Surr: Tetrachlorethene	254	0	70-134	S	%REC	1	06/22/13 05:28 AM
VOLATILES(5035) BY GC/MS		SW82	60C				Analyst: KL
Benzene	ND	0.0582	0.291		mg/Kg-dry	50	06/25/13 12:04 PM
Ethylbenzene	2.77	0.0582	0.291		mg/Kg-dry	50	06/25/13 12:04 PM
m,p-Xylene	2.98	0.0582	0.291		mg/Kg-dry	50	06/25/13 12:04 PM
o-Xylene	1.84	0.0582	0.291		mg/Kg-dry	50	06/25/13 12:04 PM
Toluene	0.430	0.116	0.291		mg/Kg-dry	50	06/25/13 12:04 PM
Surr: 1,2-Dichloroethane-d4	94.2	0	52-149		%REC	50	06/25/13 12:04 PM
Surr: 4-Bromofluorobenzene	105	0	84-118		%REC	50	06/25/13 12:04 PM
Surr: Dibromofluoromethane	96.5	0	65-135		%REC	50	06/25/13 12:04 PM
Surr: Toluene-d8	99.3	0	84-116		%REC	50	06/25/13 12:04 PM
PERCENT MOISTURE		D22	16				Analyst: JCG
Percent Moisture	14.1	0	0		WT%	1	06/24/13 08:50 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: Holly Energy Partners Client Sample ID: HTRW-3-28

Project: Hobbs Tank 5201 (Holly Energy Partners) Lab ID: 1306175-09

Project No: Collection Date: 06/18/13 03:45 PM

Lab Order: 1306175 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - SOIL	M8015D						Analyst: DEW
TPH-DRO C10-C28	4090	63.2	211		mg/Kg-dry	20	06/24/13 12:34 PM
Surr: Isopropylbenzene	85.5	0	47-142		%REC	20	06/24/13 12:34 PM
Surr: Octacosane	664	0	25-162	S	%REC	20	06/24/13 12:34 PM
TPH PURGEABLE BY GC - SOIL		M801	5V				Analyst: DEW
Gasoline Range Organics	26.8	0.0962	0.192		mg/Kg-dry	1	06/22/13 06:45 AM
Surr: Tetrachlorethene	221	0	70-134	S	%REC	1	06/22/13 06:45 AM
VOLATILES(5035) BY GC/MS		SW82	60C				Analyst: KL
Benzene	ND	0.0548	0.274		mg/Kg-dry	50	06/25/13 12:36 PM
Ethylbenzene	1.53	0.0548	0.274		mg/Kg-dry	50	06/25/13 12:36 PM
m,p-Xylene	1.79	0.0548	0.274		mg/Kg-dry	50	06/25/13 12:36 PM
o-Xylene	1.17	0.0548	0.274		mg/Kg-dry	50	06/25/13 12:36 PM
Toluene	0.207	0.110	0.274	J	mg/Kg-dry	50	06/25/13 12:36 PM
Surr: 1,2-Dichloroethane-d4	95.7	0	52-149		%REC	50	06/25/13 12:36 PM
Surr: 4-Bromofluorobenzene	105	0	84-118		%REC	50	06/25/13 12:36 PM
Surr: Dibromofluoromethane	97.4	0	65-135		%REC	50	06/25/13 12:36 PM
Surr: Toluene-d8	97.1	0	84-116		%REC	50	06/25/13 12:36 PM
PERCENT MOISTURE		D22	16				Analyst: JCG
Percent Moisture	8.77	0	0		WT%	1	06/24/13 08:50 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: Holly Energy Partners Client Sample ID: HTRW-3-48

Project: Hobbs Tank 5201 (Holly Energy Partners) **Lab ID:** 1306175-10 **Collection Date:** 06/18/13 03:55 PM

Project No:

Lab Order: 1306175 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - SOIL	M8015D						Analyst: DEW
TPH-DRO C10-C28	909	31.0	103		mg/Kg-dry	10	06/24/13 12:51 PM
Surr: Isopropylbenzene	65.9	0	47-142		%REC	10	06/24/13 12:51 PM
Surr: Octacosane	273	0	25-162	S	%REC	10	06/24/13 12:51 PM
TPH PURGEABLE BY GC - SOIL		M80 ⁻	15V				Analyst: DEW
Gasoline Range Organics	7.74	0.102	0.204		mg/Kg-dry	1	06/22/13 08:02 AM
Surr: Tetrachlorethene	159	0	70-134	S	%REC	1	06/22/13 08:02 AM
VOLATILES(5035) BY GC/MS		SW82	60C				Analyst: KL
Benzene	0.00160	0.000973	0.00487	J	mg/Kg-dry	1	06/25/13 05:17 PM
Ethylbenzene	0.171	0.000973	0.00487		mg/Kg-dry	1	06/25/13 05:17 PM
m,p-Xylene	0.177	0.000973	0.00487		mg/Kg-dry	1	06/25/13 05:17 PM
o-Xylene	0.0953	0.000973	0.00487		mg/Kg-dry	1	06/25/13 05:17 PM
Toluene	0.0409	0.00195	0.00487		mg/Kg-dry	1	06/25/13 05:17 PM
Surr: 1,2-Dichloroethane-d4	99.7	0	52-149		%REC	1	06/25/13 05:17 PM
Surr: 4-Bromofluorobenzene	120	0	84-118	S	%REC	1	06/25/13 05:17 PM
Surr: Dibromofluoromethane	97.5	0	65-135		%REC	1	06/25/13 05:17 PM
Surr: Toluene-d8	104	0	84-116		%REC	1	06/25/13 05:17 PM
PERCENT MOISTURE		D22	16				Analyst: JCG
Percent Moisture	6.94	0	0		WT%	1	06/24/13 08:50 AM

Qualifiers:

- Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- Е TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- Reporting Limit
- Parameter not NELAC certified

В Analyte detected in the associated Method Blank

- DF Dilution Factor
 - J Analyte detected between MDL and RL
- Not Detected at the Method Detection Limit ND
 - Spike Recovery outside control limits

DHL Analytical, Inc.

CLIENT: Holly Energy Partners Client Sample ID: HTRW-4-42

Project: Hobbs Tank 5201 (Holly Energy Partners) Lab ID: 1306175-11

Project No: Collection Date: 06/19/13 08:35 AM

Lab Order: 1306175 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TPH EXTRACTABLE BY GC - SOIL		M801	5D				Analyst: DEW
TPH-DRO C10-C28	2190	162	538		mg/Kg-dry	50	06/24/13 01:08 PM
Surr: Isopropylbenzene	95.5	0	47-142		%REC	50	06/24/13 01:08 PM
Surr: Octacosane	464	0	25-162	S	%REC	50	06/24/13 01:08 PM
TPH PURGEABLE BY GC - SOIL	M8015V						Analyst: DEW
Gasoline Range Organics	38.7	0.0944	0.189		mg/Kg-dry	1	06/22/13 09:44 AM
Surr: Tetrachlorethene	323	0	70-134	S	%REC	1	06/22/13 09:44 AM
VOLATILES(5035) BY GC/MS		SW82	60C				Analyst: KL
Benzene	ND	0.0544	0.272		mg/Kg-dry	50	06/25/13 02:09 PM
Ethylbenzene	1.21	0.0544	0.272		mg/Kg-dry	50	06/25/13 02:09 PM
m,p-Xylene	1.68	0.0544	0.272		mg/Kg-dry	50	06/25/13 02:09 PM
o-Xylene	0.789	0.0544	0.272		mg/Kg-dry	50	06/25/13 02:09 PM
Toluene	0.256	0.109	0.272	J	mg/Kg-dry	50	06/25/13 02:09 PM
Surr: 1,2-Dichloroethane-d4	93.8	0	52-149		%REC	50	06/25/13 02:09 PM
Surr: 4-Bromofluorobenzene	105	0	84-118		%REC	50	06/25/13 02:09 PM
Surr: Dibromofluoromethane	96.2	0	65-135		%REC	50	06/25/13 02:09 PM
Surr: Toluene-d8	98.7	0	84-116		%REC	50	06/25/13 02:09 PM
PERCENT MOISTURE		D22	16				Analyst: JCG
Percent Moisture	8.16	0	0		WT%	1	06/24/13 08:50 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 27-Jun-13

- DF Dilution Factor
 - J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

DHL Analytical, Inc.

CLIENT: Holly Energy Partners Client Sample ID: HTRW-4-48

Project: Hobbs Tank 5201 (Holly Energy Partners) Lab ID: 1306175-12

Project No: Collection Date: 06/19/13 08:45 AM

Lab Order: 1306175 Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TPH EXTRACTABLE BY GC - SOIL		M80 ⁻	15D			Analyst: DEW		
TPH-DRO C10-C28	332	3.10	10.3		mg/Kg-dry	1	06/24/13 01:25 PM	
Surr: Isopropylbenzene	67.8	0	47-142		%REC	1	06/24/13 01:25 PM	
Surr: Octacosane	151	0	25-162		%REC	1	06/24/13 01:25 PM	
TPH PURGEABLE BY GC - SOIL		M80 ⁻	15V				Analyst: DEW	
Gasoline Range Organics	2.66	0.0981	0.196		mg/Kg-dry	1	06/22/13 11:01 AM	
Surr: Tetrachlorethene	131	0	70-134		%REC	1	06/22/13 11:01 AM	
VOLATILES(5035) BY GC/MS		SW82	260C				Analyst: KL	
Benzene	ND	0.000943	0.00471		mg/Kg-dry	1	06/25/13 04:46 PM	
Ethylbenzene	0.00237	0.000943	0.00471	J	mg/Kg-dry	1	06/25/13 04:46 PM	
m,p-Xylene	0.00378	0.000943	0.00471	J	mg/Kg-dry	1	06/25/13 04:46 PM	
o-Xylene	0.00208	0.000943	0.00471	J	mg/Kg-dry	1	06/25/13 04:46 PM	
Toluene	ND	0.00189	0.00471		mg/Kg-dry	1	06/25/13 04:46 PM	
Surr: 1,2-Dichloroethane-d4	97.5	0	52-149		%REC	1	06/25/13 04:46 PM	
Surr: 4-Bromofluorobenzene	107	0	84-118		%REC	1	06/25/13 04:46 PM	
Surr: Dibromofluoromethane	97.8	0	65-135		%REC	1	06/25/13 04:46 PM	
Surr: Toluene-d8	97.5	0	84-116		%REC	1	06/25/13 04:46 PM	
PERCENT MOISTURE		D22	:16				Analyst: JCG	
Percent Moisture	4.76	0	0		WT%	1	06/24/13 08:50 AM	

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 27-Jun-13

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

DHL Analytical, Inc.

CLIENT: Holly Energy Partners Client Sample ID: TRIP BLANK

Project: Hobbs Tank 5201 (Holly Energy Partners) Lab ID: 1306175-13

Project No: Collection Date: 06/18/13

Lab Order: 1306175 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
8260 WATER VOLATILES BY GC/MS		SW82	260C			Analyst: KL
Benzene	ND	0.000200	0.00100	mg/L	1	06/21/13 01:36 PM
Ethylbenzene	ND	0.000300	0.00100	mg/L	1	06/21/13 01:36 PM
m,p-Xylene	ND	0.000600	0.00200	mg/L	1	06/21/13 01:36 PM
o-Xylene	ND	0.000300	0.00100	mg/L	1	06/21/13 01:36 PM
Toluene	ND	0.000600	0.00200	mg/L	1	06/21/13 01:36 PM
Surr: 1,2-Dichloroethane-d4	107	0	72-119	%REC	1	06/21/13 01:36 PM
Surr: 4-Bromofluorobenzene	101	0	76-119	%REC	1	06/21/13 01:36 PM
Surr: Dibromofluoromethane	110	0	85-115	%REC	1	06/21/13 01:36 PM
Surr: Toluene-d8	94.8	0	81-120	%REC	1	06/21/13 01:36 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 27-Jun-13

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

Date: 27-Jun-13

CLIENT: Holly Energy Partners

Work Order: 1306175

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs Tank 5201 (Holly Energy Partners) RunID: GC15_130624A

The QC data in batch 58042 applies to the following samples: 1306175-01C, 1306175-02C, 1306175-03C, 1306175-04C, 1306175-05C, 1306175-06C, 1306175-07C, 1306175-08C, 1306175-09C, 1306175-10C, 1306175-11C, 1306175-12C

Sample ID: LCS-58042	Batch ID:	58042		TestNo): M80	15D		Units:	mg/Kg	
SampType: LCS	Run ID:	GC15_1	30624A	Analys	is Date: 6/24	/2013 9:36	:06 AM	Prep Date	6/21/20	13
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RF	PDLimit Qual
TPH-DRO C10-C28		109	10.0	125.0	0	87.4	50	114		
Surr: Isopropylbenzene		4.74		7.500		63.3	47	142		
Surr: Octacosane		6.46		7.500		86.1	25	162		

Sample ID: MB-58042	Batch ID:	58042		TestNo	: М8	3015D		Units:	mg/Kg
SampType: MBLK	Run ID:	GC15_	130624A	Analys	s Date: 6/2	24/2013 9:53:	05 AM	Prep Date	: 6/21/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
TPH-DRO C10-C28		ND	10.0						
Surr: Isopropylbenzene		4.75		7.500		63.4	47	142	
Surr: Octacosane		6.52		7.500		86.9	25	162	

Sample ID: 1306175-12CMS	Batch ID:	58042		TestNo	M	3015D		Units:	mg/Kg-dry
SampType: MS	Run ID:	GC15_	130624A	Analysi	s Date: 6/2	24/2013 1:42:1	3 PM	Prep Date:	6/21/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit '	%RPD RPDLimit Qual
TPH-DRO C10-C28		420	10.2	127.4	331.8	69.4	50	114	
Surr: Isopropylbenzene		4.85		7.646		63.4	47	142	
Surr: Octacosane		10.5		7.646		138	25	162	

Sample ID: 1306175-12CMSD	Batch ID:	58042		TestNo	: N	18015D		Units:	mg/l	Kg-dry	
SampType: MSD	Run ID:	GC15_	130624A	Analys	is Date: 6	/24/2013 1:59:0	7 PM	Prep Date	6/21	/2013	
Analyte		Result	RL	SPK value	Ref Val	l %REC	LowLimit	HighLimit	%RPD	RPDLimit	t Qual
TPH-DRO C10-C28		380	10.2	127.7	331.8	38.1	50	114	9.93	30	S
Surr: Isopropylbenzene		4.84		7.661		63.1	47	142	0	0	
Surr: Octacosane		9.87		7.661		129	25	162	0	0	

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

on Limit Page 1 of 8

R RPD outside accepted control limitsS Spike Recovery outside control limits

N Parameter not NELAC certified

Work Order: 1306175

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs Tank 5201 (Holly Energy Partners)

RunID: GC4_130621C

The QC data in batch 58062 applies to the following samples: 1306175-01B, 1306175-02B, 1306175-03B, 1306175-04B, 1306175-05B, 1306175-05B, 1306175-07B, 1306175-07B, 1306175-09B, 1306175-01B, 1306175-12B

06B, 1306175-07B, 1306175-0						00175-056,	1300173	-04B, 130017.	J-03B, 1	300173-
Sample ID: LCS-58062	Batch ID:	58062		TestNo:	M80	15V		Units:	mg/Kg]
SampType: LCS	Run ID:	GC4_1	30621C	Analysis	Date: 6/21	/2013 8:31:	13 PM	Prep Date:	6/21/2	013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics		4.74	0.200	5.000	0	94.7	68	126		
Surr: Tetrachlorethene		0.221		0.2000		110	70	134		
Sample ID: LCSD-58062	Batch ID:	58062		TestNo:	M80	15V		Units:	mg/Kg)
SampType: LCSD	Run ID:	GC4_1	30621C	Analysis	Date: 6/21	/2013 8:56:	10 PM	Prep Date:	6/21/2	013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics		4.85	0.200	5.000	0	97.0	68	126	2.36	30
Surr: Tetrachlorethene		0.197		0.2000		98.7	70	134	0	0
Sample ID: MB-58062	Batch ID:	58062		TestNo:	M80	15V		Units:	mg/Kg	3
SampType: MBLK	Run ID:	GC4_1	30621C	Analysis	Date: 6/21	/2013 9:47:	29 PM	Prep Date:	6/21/2	013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qual
Gasoline Range Organics		ND	0.200		_		_			
Surr: Tetrachlorethene		0.207		0.2000		103	70	134		

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits
N Parameter not NELAC certified

Page 2 of 8

Work Order: 1306175

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs Tank 5201 (Holly Energy Partners) RunID: GCMS2_130625A

The QC data in batch 58087 applies to the following samples: 1306175-01A, 1306175-02A, 1306175-03A, 1306175-04A, 1306175-05A, 1306175-0

Sample ID: LCS-58087 M	Batch ID:	58087		TestNo): SW 8	3260C		Units:	mg/Kg
SampType: LCS	Run ID:	GCMS	2_130625A	Analys	is Date: 6/25	/2013 10:30	0:00 AM	Prep Date:	6/25/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
Benzene		0.0237	0.00500	0.0232	0	102	73	126	
Ethylbenzene		0.0222	0.00500	0.0232	0	95.5	74	127	
m,p-Xylene		0.0448	0.00500	0.0464	0	96.5	79	126	
o-Xylene		0.0222	0.00500	0.0232	0	95.7	77	125	
Toluene		0.0232	0.00500	0.0232	0	100	71	127	
Surr: 1,2-Dichloroethane-d4		54.0		50.00		108	52	149	
Surr: 4-Bromofluorobenzene		47.3		50.00		94.7	84	118	
Surr: Dibromofluoromethane		53.4		50.00		107	65	135	
Surr: Toluene-d8		47.7		50.00		95.5	84	116	
Sample ID: MB-58087 M	Batch ID:	58087		TestNo	o: SW8	3260C		Units:	mg/Kg
SampType: МВLК	Run ID:	GCMS	2_130625A	Analys	is Date: 6/25	/2013 11:01	1:00 AM	Prep Date:	6/25/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
Benzene		ND	0.00500						
Ethylbenzene		ND	0.00500						
m,p-Xylene		ND	0.00500						
o-Xylene		ND	0.00500						
Toluene		ND	0.00500						
Surr: 1,2-Dichloroethane-d4		51.0		50.00		102	52	149	
Surr: 4-Bromofluorobenzene		47.6		50.00		95.2	84	118	
Surr: Dibromofluoromethane		50.9		50.00		102	65	135	
Surr: Toluene-d8		47.9		50.00		95.9	84	116	
Sample ID: LCS-58087	Batch ID:	58087		TestNo	: SW8	3260C		Units:	mg/Kg
SampType: LCS	Run ID:	GCMS	2_130625A	Analys	is Date: 6/25	/2013 2:41:	00 PM	Prep Date:	6/25/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
Benzene		0.0231	0.00500	0.0232	0	99.4	73	126	
Ethylbenzene		0.0214	0.00500	0.0232	0	92.2	74	127	
m,p-Xylene		0.0433	0.00500	0.0464	0	93.2	79	126	
o-Xylene		0.0213	0.00500	0.0232	0	91.9	77	125	
Toluene		0.0222	0.00500	0.0232	0	95.5	71	127	
Surr: 1,2-Dichloroethane-d4		48.1		50.00		96.3	52	149	
Surr: 4-Bromofluorobenzene		49.2		50.00		98.4	84	118	
Surr: Dibromofluoromethane		49.6		50.00		99.1	65	135	
Surr: Toluene-d8		49.5		50.00		99.1	84	116	

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 3 of 8

Work Order: 1306175

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs Tank 5201 (Holly Energy Partners)

RunID: GCMS2 130625A

Project: Hobbs Ta	nk 5201 (Holly En	ergy Partner	rs)		KunII): (GCMS2_1	130625	A
Sample ID: MB-58087	Batch ID:	58087		TestNo	o: SW	8260C		Units:	mg/K	(g
SampType: MBLK	Run ID:	GCMS	2_130625A	Analys	is Date: 6/25	/2013 3:12:	00 PM	Prep Date	: 6/25/	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD	RPDLimit Qua
Benzene		ND	0.00500							
Ethylbenzene		ND	0.00500							
m,p-Xylene		ND	0.00500							
o-Xylene		ND	0.00500							
Toluene		ND	0.00500							
Surr: 1,2-Dichloroethane-d4		45.2		50.00		90.5	52	149		
Surr: 4-Bromofluorobenzene		49.2		50.00		98.4	84	118		
Surr: Dibromofluoromethane		48.3		50.00		96.5	65	135		
Surr: Toluene-d8		48.1		50.00		96.2	84	116		
Sample ID: 1306175-03AMS	Batch ID:	58087		TestNo	o: SW	8260C		Units:	mg/K	g-dry
SampType: MS	Run ID:	GCMS	2_130625A	Analys	is Date: 6/25	/2013 5:48:	00 PM	Prep Date	: 6/25/	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD	RPDLimit Qua
Benzene		0.0218	0.00498	0.0231	0	94.4	73	126		
Ethylbenzene		0.0257	0.00498	0.0231	0.00825	75.5	74	127		
m,p-Xylene		0.0468	0.00498	0.0462	0.00975	80.2	79	126		
o-Xylene		0.0250	0.00498	0.0231	0.00575	83.1	77	125		
Toluene		0.0221	0.00498	0.0231	0	95.7	71	127		
Surr: 1,2-Dichloroethane-d4		48.5		49.81		97.4	52	149		
Surr: 4-Bromofluorobenzene		51.2		49.81		103	84	118		
Surr: Dibromofluoromethane		49.1		49.81		98.6	65	135		
Surr: Toluene-d8		48.5		49.81		97.4	84	116		
Sample ID: 1306175-03AMSD	Batch ID:	58087		TestNo	o: SW	8260C		Units:	mg/K	g-dry
SampType: MSD	Run ID:	GCMS	2_130625A	Analys	is Date: 6/25	/2013 6:19:	00 PM	Prep Date	: 6/25/	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qua
Benzene		0.0217	0.00494	0.0229	0	94.7	73	126	0.412	30
Ethylbenzene		0.0255	0.00494	0.0229	0.00825	75.0	74	127	0.971	0
m,p-Xylene		0.0466	0.00494	0.0459	0.00975	80.3	79	126	0.458	0
o-Xylene		0.0247	0.00494	0.0229	0.00575	82.4	77	125	1.22	0
Toluene		0.0220	0.00494	0.0229	0	95.7	71	127	0.732	30
Surr: 1,2-Dichloroethane-d4		49.5		49.42		100	52	149	0	0
Surr: 4-Bromofluorobenzene		49.7		49.42		101	84	118	0	0

Qualifiers: B	Analyte detected in	the associated Method Blar	ık
---------------	---------------------	----------------------------	----

J Analyte detected between MDL and RL

49.4

47.6

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Surr: Dibromofluoromethane

Surr: Toluene-d8

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

99.9

96.3

65

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 4 of 8

0

0

0

0

135

116

49.42

49.42

Work Order: 1306175

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs Tank 5201 (Holly Energy Partners) **RunID:** GCMS7_130621C

The QC data in batch 58052 app	olies to the fo	ollowing s	amples: 1306	175-13A					
Sample ID: LCS-58052	Batch ID:	58052		TestNo	o: SW	8260C		Units:	mg/L
SampType: LCS	Run ID:	GCMS	7_130621C	Analys	sis Date: 6/2 1	1/2013 11:10	0:00 AM	Prep Date:	6/21/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Benzene		0.0243	0.00100	0.0232	0	105	81	122	
Ethylbenzene		0.0238	0.00100	0.0232	0	102	80	120	
m,p-Xylene		0.0477	0.00200	0.0464	0	103	80	120	
o-Xylene		0.0236	0.00100	0.0232	0	102	80	120	
Toluene		0.0252	0.00200	0.0232	0	108	80	120	
Surr: 1,2-Dichloroethane-d4		195		200.0		97.4	72	119	
Surr: 4-Bromofluorobenzene		193		200.0		96.5	76	119	
Surr: Dibromofluoromethane		199		200.0		99.7	85	115	
Surr: Toluene-d8		195		200.0		97.7	81	120	
Sample ID: MB-58052	Batch ID:	58052		TestNo	o: SW	8260C		Units:	mg/L
SampType: MBLK	Run ID:	GCMS	7_130621C	Analys	sis Date: 6/2 1	1/2013 11:59	9:00 AM	Prep Date:	6/21/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Benzene		ND	0.00100						
Ethylbenzene		ND	0.00100						
m,p-Xylene		ND	0.00200						
o-Xylene		ND	0.00100						
Toluene		ND	0.00200						
Surr: 1,2-Dichloroethane-d4		211		200.0		106	72	119	
Surr: 4-Bromofluorobenzene		199		200.0		99.3	76	119	
Surr: Dibromofluoromethane		216		200.0		108	85	115	
Surr: Toluene-d8		191		200.0		95.7	81	120	
Sample ID: 1306120-06AMS	Batch ID:	58052		TestNo	o: SW	8260C		Units:	mg/L
SampType: MS	Run ID:	GCMS	7_130621C	Analys	sis Date: 6/2 1	1/2013 4:01:	00 PM	Prep Date:	6/21/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Benzene		0.232	0.0100	0.232	0	99.9	81	122	
Ethylbenzene		0.234	0.0100	0.232	0	101	80	120	
m,p-Xylene		0.502	0.0200	0.464	0	108	80	120	
o-Xylene		0.250	0.0100	0.232	0	108	80	120	
Toluene		0.239	0.0200	0.232	0	103	80	120	
Surr: 1,2-Dichloroethane-d4		2010		2000		100	72	119	
Surr: 4-Bromofluorobenzene		1930		2000		96.7	76	119	
Surr: Dibromofluoromethane		1750		2000		87.3	85	115	
Surr: Toluene-d8		1950		2000		97.5	81	120	

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits R

Page 5 of 8

Spike Recovery outside control limits

Parameter not NELAC certified

Work Order: 1306175

ANALYTICAL QC SUMMARY REPORT

Project: Hobbs Tank 5201 (Holly Energy Partners) RunID: GCMS7_130621C

Sample ID: 1306120-06AMSD	Batch ID:	58052		TestNo	: SW	8260C		Units:	mg/L	-	
SampType: MSD	Run ID:	O: GCMS7_130621C		Analysis Date: 6/21/2013 4:25:0			00 PM	Prep Date: 6/21		21/2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual	
Benzene		0.237	0.0100	0.232	0	102	81	120	2.09	20	
Ethylbenzene		0.231	0.0100	0.232	0	99.6	80	120	1.46	20	
m,p-Xylene		0.486	0.0200	0.464	0	105	80	120	3.22	20	
o-Xylene		0.242	0.0100	0.232	0	104	80	120	3.13	20	
Toluene		0.237	0.0200	0.232	0	102	80	120	1.01	20	
Surr: 1,2-Dichloroethane-d4		2000		2000		100	72	119	0	0	
Surr: 4-Bromofluorobenzene		1940		2000		97.1	76	119	0	0	
Surr: Dibromofluoromethane		1760		2000		87.9	85	115	0	0	
Surr: Toluene-d8		1930		2000		96.5	81	120	0	0	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 6 of 8

ANALYTICAL QC SUMMARY REPORT

Work Order: 1306175

Holly Energy Partners

CLIENT:

Project: Hobbs Tank 5201 (Holly Energy Partners) RunID: PMOIST_130621A

The QC data in batch 58050 applies to the following samples: 1306175-12C									
Sample ID: 1306190-01A-DUP	Batch ID:	58050	TestNo:	D2216	Units:	WT%			
SampType: DUP	Run ID:	PMOIST_130621A	Analysis Date	e: 6/24/2013 8:50:00 AM	Prep Date:	6/21/2013			

Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Percent Moisture 3.78 0 0 3.645 3.52 30

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 7 of 8

S Spike Recovery outside control limits

N Parameter not NELAC certified

ANALYTICAL QC SUMMARY REPORT

Work Order: 1306175

RunID: PMOIST_130621B **Project:** Hobbs Tank 5201 (Holly Energy Partners)

The QC data in batch 58059 applies to the following samples: 1306175-01C, 1306175-02C, 1306175-03C, 1306175-04C, 1306175-05C, 1306175-06C, 1306175-07C, 1306175-08C, 1306175-09C, 1306175-10C, 1306175-11C

Sample ID: 1306194-10A-DUP	Batch ID:	58059		TestNo): D2 :	216	Units:	WT%	WT%	
SampType: DUP	Run ID:	PMOIST	_130621B	Analys	is Date: 6/2	4/2013 8:50:0	00 AM Prep Date	6/21/2	2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit HighLimit	%RPD I	RPDLimit Qual	
Percent Moisture		15.2	0	0	15.23			0.045	30	

Qualifiers:

Analyte detected in the associated Method Blank В

Analyte detected between MDL and RL J

Not Detected at the Method Detection Limit ND

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor DF

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits Parameter not NELAC certified

Page 8 of 8

Chavez, Carl J, EMNRD

From: Stephenson, Brad <bstephenson@craworld.com>

Sent: Monday, March 10, 2014 12:44 PM

To: Chavez, Carl J, EMNRD

Cc: Stockweather, Allison

Subject: Holly Public Notice

Attachments: Verification of Public Notice.pdf

Carl,

Here is the copy of the Public Notice for the Holly Tank 5201 site.

Public notification was completed to all concerned parties that were listed by June 2013. Glenn Von Gotten was copied on all. Also you should have a status report that was submitted to NMOCD in August 2013.

I will call you Tomorrow AM to discuss and set up a conference call for Thursday with Holly.

I will be glad to help you out anything you need to get up to speed on this project.

Brad Stephenson, PG
Sr Hydrogeologist
Conestoga-Rovers & Associates
14998 West 6th Avenue Frontage Road #800
Golden, Colorado 80401

303-941-6156 (cell) 720-974-0942 (direct office) 720-974-0936 (fax)

bstephenson@craworld.com

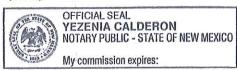
Affidavit of Publication

State of New Mexico, County of Lea.

> I, JUDY HANNA PUBLISHER

of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, do solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period

of 15 issue(s).
Beginning with the issue dated
March 27, 2013
and ending with the issue dated
April 12, 2013


PUBLISHER

Sworn and subscribed to before me this 12th day of

- April, 2013

Notary Public

My commission expires February 28, 2016 (Seal)

This newspaper is duly qualified to publish legal notices or advertisments within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said publication has been made.

Legal Notice
March 27, 28, 29, 30, 31,
April 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 2013

NOTICE OF PUBLICATION
STATE OF NEW MEXICO
ENERGY, MINERALS AND NATURAL
RESOURCES DEPARTMENT
OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to the Oil Conservation Division Regulations, the following Combined Stage 1 and Stage 2 Abatement Plan Proposal has been submitted to the Director of the Oil Conservation Division, 1220 St. Francis Dr., Santa Fe, New Mexico 87505, Telephone (505) 476-3440:

Holly Energy Partners, William Green, PG, Environmental Specialist, (575) 748-8968, 1602 W. Main, Artesia, NM 88210, has submitted a combined Stage 1 and Stage 2 Abatement Plan Proposal for the Holly Energy Hobbs Crude Station Tank 5201 Site located south of Hobbs, New Mexico in the NW_ of the NW _ of Section 22, Township 19S, Range 38E, NMPM, Lea County, New Mexico. The Site is located at Holly Energy Partners Tank Farm on County Road 61. Soil samples collected on Site had levels of total benzene, toluene, ethylbenzene, and xylenes (BTEX), which exceed the Oil Conservation Division recommended remediation action levels. Recent ground water samples showed no detections of any BTEX constituents above the WQCC standards. A monitoring well, , detected a crude oil thickness of 3.62 feet. The Combined Stage 1 and Stage 2 Abatement Plan Proposal present the following activities: site history and chronology of work done to date, site geology and hydrogeology; water well search within a 1 mile radius of the site; installation of monitoring wells; soil samples collected for field screening and laboratory analysis from each boring; ground water samples collected for laboratory analysis from the monitoring well; proposed installation of monitoring wells to establish ground water gradient and direction; proposed ground water monitoring program; proposed methods for remediation of the site including excavation of affected soils, installation of synthetic barrier, and preparation of

Any interested person may obtain further information from the Oil Conservation Division and may submit to the Director of the Oil Conservation Division, at the address given above, written comments or a written request for a public hearing that include reasons why a hearing should be held. The Combined Stage 1 and Stage 2 Abatement Plan Proposal may be viewed at the above address or at the Oil Conservation Division Hobbs District Office, 1625 N. French Dr., Hobbs, New Mexico 88240, Telephone (505) 393-6161 between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on the proposed Stage 1 Abatement Plan Proposal, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which written comments or a written request for a hearing may be submitted. #27991

67110222

00110793

JUSTIN COVEY CONESTOGA-ROVERS & ASSOCIATES 14998 WEST 6TH AVENUE FRONTAGE ROAD; #800 GOLDEN, CO 80401

Founded 1849

CONESTOGA-ROVERS & ASSOCIATES 14998 WEST 6TH AVENUE FRONTAGE ROAD SUITE 800 **GOLDEN, CO 80401**

ACCOUNT: 5186

AD NUMBER:

0000004561

LEGAL NO 94920

P.O. #:

5 TIME(S)

2,047.50

AFFIDAVIT

10.00

TAX

168.46

TOTAL

2,225.96

AFFIDAVIT OF PUBLICATION

STATE OF NEW MEXICO **COUNTY OF SANTA FE**

I. M. Prendergast, being first duly sworn declare and say that I am Legal Advertising Representative of THE SANTA FE NEW MEXICAN, a daily newspaper published in the English language, and having a general circulation in the Counties of Santa Fe and Los Alamos, State of New Mexico and being a newspaper duly qualified to publish legal notices and advertisements under the provisions of Chapter 167 on Session Laws of 1937; that the publication # a copy of which is hereto attached was published in said newspaper 15 day(s) between 03/19/2013 and 04/11/2013 and that the notice was published in the newspaper proper and not in any supplement; the first date of publication being on the 19th day of March, 2013 and that the undersigned has personal knowledge of the matter and things set forth in this affidavit.

ISI

LEGAL ADVERTISEMENT REPRESENTATIVE

Subscried and sworn to before me on this 11th day of April, 2013

Commission Expires: __ 5 316

yother Turner

OFFICIAL SEAL Cynthia Turner NOTARY PUBLIC

STATE OF NEW MEXICO

NOTICE OF
PUBLICATION
STATE OF NEW
MEXICO
ENERGY, MINERALS
AND NATURAL
RESOURCES
DEPARTMENT
OIL CONSERVATION
DIVISION

Notice is hereby given that pursuant to the Oil Conservation Division Regulations, the following Combined Stage 1 and Stage 2 Abatement Plan Proposal has been submitted to the Director of the Oil Conservation Division, 1220 St. Francis Dr., Santa Fe, New Mexico 87505, Telephone (505) 476-3440:

phone (505) 476-3440:

Holly Energy Partners, William Green, PG, Environmental Specialist, (575) 748-8968, 1602 W. Main, Artesia, NM 88210, has submitted a combined Stage 1 and Stage 2 Abatement Plan Proposal for the Holly Energy Hobbs Crude Station Tank 5201 Site located south of Hobbs, New Mexico in the NW¼ of the NW ¼ of Section 22, Township 195, Range 38E, NMPM, Lea County, New Mexico. The Site is located at Holly Energy Partners Tank Farm on County Road 61. Soil samples collected on Site had levels of total benzene, ethylbenzene, and xylenes (BTEX),

which exceed the Oil Conservation Division recommended remediation action levels. Recent ground water samples showed no detections of any BTEX constituents above the WQCC standards. A monitoring well, detected a crude oil thickness of 3.62 feet. The Combined Stage 1 and Stage 2 Abatement Plan Proposal present the following activities: site history and chronology of work done to date, site geology and hydrogeology; water well search within a 1 mile radius of the site; installation of monitoring wells; soil samples collected for field screening and laboratory analysis from each boring; ground water samples collected for laboratory analysis from each boring; ground water samples collected for laboratory analysis from the monitoring well; proposed installation of monitoring well; proposed installation of monitoring well; proposed methods for remediation of the site including excavation of affected soils, installation of synthetic barrier, and preparation of reports.

Any interested person may obtain further information from the Oil Conservation Division and may submit to the Director of the Oil Conservation Division, at the address given above, written comments or a written request for address given above, written comments or a written request for a public hearing that include reasons why a hearing should be held. The Combined Stage 1 and Stage 2 Abatement Plan Proposal may be viewed at the above address or at the Oil Conservation Division Hobbs District Office, 1625 N. French Dr., Hobbs, New Mexico 88240, Telephone (505) 393-6161 between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on the proposed Stage 1 Abatement Plan Proposal, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which written comments or a written request for a hearing may be submitted.

LEGAL# 94920

LEGAL# 94920

PUBLISHED IN THE SANTA FE NEW MEXI-CAN MARCH 22 THROUGH APRIL 11,

State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez

Governor

John Bemis
Cabinet Secretary

Brett F. Woods, Ph.D. Deputy Cabinet Secretary Jami Bailey
Division Director
Oil Conservation Division

March 11, 2013

Mr. William Green Holly Energy Partners P.O. Box 1260 1602 W Main Artesia, New Mexico 88211

RE: AP-113 - COMBINED STAGE 1 + STAGE 2 ABATEMENT PLAN ADMINSTRATIVE COMPLETENESS DETERMINATION HOLLY ENERGY HOBBS CRUDE STATION TANK 5201 NW 1/4 OF THE NW 1/4 OF SECTION 22 TOWNSHIP 19 SOUTH, RANGE 38 EAST, NMPM LEA COUNTY, NEW MEXICO

Dear Mr. Green:

The Oil Conservation Division (OCD) has reviewed the Combine Stage 1 and Stage 2 Abatement Plan (AP-113), submitted by Conestoga-Rovers & Associates on behalf of Holly Energy Partners. Holly submitted this Combined Stage 1 and Stage 2 Abatement Plan proposal to conduct a ground water and soil investigation of crude released from a pipeline at Tank 5201 located at Holly's Hobbs Crude Station site, located in Section 1, Township 12 South, Range 34 East, Lea County, New Mexico.

OCD has determined that Holly's Combine Stage 1 and Stage 2 Abatement Plan Proposal is administratively complete because Holly has met the requirements specified in 19.15.30.13C NMAC. Before OCD can complete a technical review of EMGR's Stage 1 proposal, Holly shall:

- 1. Issue written notice of the Abatement Plan proposal pursuant to 19.15.30.15A NMAC, prior to issuing public notice. A listing of "those persons, as identified by the Director, who have requested notification" is attached.
- 2. Issue its OCD approved public notice in the Santa Fe New Mexican and the Hobbs News-Sun, pursuant to 19.15.30.15B NMAC.
- 3. Provide OCD with proof of publication and proof of written notice.

If you have any questions, please contact me at 505-476-3488.

Field Supervisor
US Fish & Wildlife Service
2105 Osuna Road, Northeast
Albuquerque, NM 87113-1001
(Wishes to be notified via regular mail)

State Historic Preservation Officer 407 Galisteo Santa Fe, NM 87501 (Wishes to be notified via regular mail)

Dr. Harry Bishara P.O. Box 748 Cuba, NM 87013 (Wishes to be notified via regular mail)

Director New Mexico Department of Game & Fish P.O. Box 25112 Santa Fe, NM 87504 Email: james.lane@state.nm.us

Chief of Conservation Services New Mexico Department of Game & Fish P.O. Box 25112 Santa Fe, NM 87504 Email: matthew.wunder@state.nm.us

Arthur Allison Cabinet Secretary Indian Affairs Department 1220 South Saint Francis Drive Santa Fe, NM 87505 Email: arthur.allison@state.nm.us

Julie Maitland
Division Director of Agriculture Programs and Resources Division
New Mexico Department of Agriculture
MSC 3189, Box 30005
Las Cruces, New Mexico 88003-8005
Email: ddapr@nmda.nmsu.edu

Jesse Juen State Director Bureau of Land Management P. O. Box 27115 Santa Fe, NM 87502-0115 Email: jjuen@blm.gov

Paul Sisneros
Director of Communications
Attorney General's Office
P. O. Box 1508
Santa Fe, NM 87504
Email: psisneros@nmag.gov

Randy Hicks
R.T. Hicks Consultants, Ltd
901 Rio Grande NW, Suite F-142
Albuquerque, NM 87104
Email: r@rthicksconsult.com

Chris Shuey Southwest Research & Information Center P. O. Box 4524 Albuquerque, N.M. 87106

Email: sric.chris@earthlink.net (Changed e-mail directly to Chris's)

Director State Parks Division 1220 S. St. Francis Drive P.O. Box 1147 Santa Fe, NM 87504 Email: nmparks@state.nm.us

Scott A. Verhines
State Engineer
Office of the State Engineer:
130 South Capitol Street
Concha Ortiz y Pino Building
P.O. Box 25102
Santa Fe, NM 87504-5102
Email: scott.verhines @state.nm.us

Peggy Johnson
New Mexico Bureau of Geology & Mineral Resources
New Mexico Institute of Mining & Technology
801 Leroy Place
Socorro, NM 8780124796
Email: peggy@nmbg.nmt.edu

Marie Gutierrez New Mexico Oil & Gas Association PO Box 1864 Santa Fe, New Mexico 87504 Email: marieg@nmoga.org

William Fetner
New Mexico Trustee for Natural Resources
c/o American Ground Water Consultants
610 Gold St. SW, Suite 236
Albuquerque, NM 87102
Email: william.fetner@state.nm.us

Jay Lazarus
Glorieta Geoscience
P. O. Box 5727
Santa Fe, NM 87502
Email: lazarus@glorietageo.com

David Martin
Secretary
New Mexico Environment Department
P. O. Box 26110
Santa Fe, NM 87502
Email: Winchester, Jim, NMENV

Corbin Newman
Regional Forester
USFS Regional Office
517 Gold Avenue SW
Albuquerque, NM 87102
Email: cnewman02@fs.fed.us

John E. Kieling
Chief
NMED - Hazardous Waste Bureau
2905 Rodeo Park Drive East, Building 1
Santa Fe, New Mexico 87505-6313
Email: john.kieling@state.nm.us

Bruce S. Garber Attorney at Law P. O. Box 0850 Santa Fe, NM 87504-0850 Email: bsg@garbhall.com

Jerry Schoeppner

Chief

NMED - Groundwater Bureau

P.O. Box 5469

Santa Fe, NM 87503

Email: Jerry.Schoeppner@state.nm.us

Claudette Horn

Environmental Counsel

Public Service Company of New Mexico

414 Silver, SW

Albuquerque, NM 87158

Email: claudette.horn@pnm.com

Ned Kendrick

Attorney at Law

325 Paseo de Peralta

Santa Fe, NM 87501

Email: ekendrick@montand.com

Independent Petroleum Association of New Mexico

P.O. Box 1836

Roswell, NM 88201-7525

Email: staff@ipanm.org

Mr. Jeffrey Harris

Rubin, Winston, Dierecks, Harris & Cooke, L.L.P.

Sixth Floor

1155 Connecticut Avenue, NW

Washington, DC 20036

Email: jharris@rwdhc.com

[notify for Los Lobos LLC Application only] .

Mr. Damon Seawright

Talapia Fish Farm

E-mail: mailto:dseawright@gmail.com

[notify for Los Lobos LLC Application only]

OCD District 1 Acting Manager

Email: Gonzales, Elidio L, EMNRD

OCD District 1 Environmental Inspector

Email: GeoffreyR.Leking@state.nm.us

OCD District 2 Manager

Email: Dade, Randy, EMNRD

OCD District 2 Environmental Inspector

Email: Bratcher, Mike, EMNRD

OCD District 3 Manager

Email: Perrin, Charlie, EMNRD

OCD District 3 Environmental Inspector

Email: Jonathan.Kelly@state.nm.us

OCD District 3 Staff Manager

Email: Powell, Brandon, EMNRD

OCD District 4 Manager

Email: Martin, Ed, EMNRD

Emails:

james.lane@state.nm.us

matthew.wunder@state.nm.us

arthur.allison@state.nm.us

ddapr@nmda.nmsu.edu

jjuen@blm.gov

psisneros@nmag.gov

r@rthicksconsult.com

sric.chris@earthlink.net

nmparks@state.nm.us

scott.verhines @state.nm.us

peggy@nmbg.nmt.edu

marieg@nmoga.org

william.fetner@state.nm.us

lazarus@glorietageo.com

Winchester, Jim, NMENV

cnewman02@fs.fed.us

john.kieling@state.nm.us

bsg@garbhall.com

Jerry.Schoeppner@state.nm.us

claudette.horn@pnm.com

ekendrick@montand.com

staff@ipanm.org

Gonzales, Elidio L, EMNRD

GeoffreyR.Leking@state.nm.us

Dade, Randy, EMNRD

Bratcher, Mike, EMNRD

Perrin, Charlie, EMNRD

Jonathan.Kelly@state.nm.us

Powell, Brandon, EMNRD

Martin, Ed, EMNRD

<u>jharris@rwdhc.com</u> [notify for Los Lobos LLC Application only] <u>dseawright@gmail.com</u> [notify for Los Lobos LLC Application only]