3R - 258

2012 AGWMR

04/12/2013

RECEIVED OCD

2013 APR 15 A 11: 41

April 12, 2013

Glen Von Gonten
Environmental Engineer
New Mexico Energy, Minerals & Natural Resources Dept.
Environmental Bureau
1220 South St. Francis Drive
Santa Fe, NM 87505

RE: 2012 Annual Report - Bloomfield Crude Station.

Federal Express Tracking #: 7995 1040 3753

Dear Mr. Von Gonten;

Please find enclosed the 2012 Annual Report for the former Bloomfield Crude Station located in the NW ¼ of the NW ¼ of Section 22, Township 29 N, Range 11 W in Bloomfield, New Mexico.

If you should have any questions or require additional information, please do not hesitate to contact me at 505-632-4171 or at Randy.Schmaltz@wnr.com.

Sincerely,

James R. Schmaltz

Health, Safety, Environmental & Regulatory Director

Western Refining Southwest, Inc.

cc: Brandon Powell, NM OCD Aztec District Office

Allen Haines, Western Refining, El Paso

WNR File

2012 ANNUAL REPORT

BLOOMFIELD CRUDE STATION BLOOMFIELD, NEW MEXICO

MARCH 2013

WESTERN REFINING SOUTHWEST, INC. 111 County Road 4990 Bloomfield, New Mexico 87413

2012 ANNUAL REPORT

BLOOMFIELD CRUDE STATION BLOOMFIELD, NEW MEXICO

MARCH 2013

Prepared for:

WESTERN REFINING SOUTHWEST, INC. 111 COUNTY ROAD 4990 BLOOMFIELD, NEW MEXICO 87413

Prepared by:

LT ENVIRONMENTAL, INC. 2243 Main Avenue, Suite 3 Durango, Colorado 81301 (970) 385-1096

TABLE OF CONTENTS

<u>PAG</u>	E
EXECUTIVE SUMMARY	
1.0 INTRODUCTION1-	l
1.1 SITE DESCRIPTION 1- 1.2 SITE HISTORY 1- 1.3 SCOPE OF WORK 1-	1
2.0 METHODOLOGY	l
2.1 BIOVENTING	1 1
3.0 ANALYTICAL RESULTS	l
3.1 BIOVENTING	
4.0 CONCLUSIONS4-	l
5.0 RECOMMENDATIONS	l

TABLE OF CONTENTS (CONTINUED)

LIST OF FIGURES

SITE LOCATION MAP
SITE MAP
BIOVENT SYSTEM LAYOUT
GROUNDWATER ELEVATION MAP
GROUNDWATER ANALYTICAL RESULTS
LIST OF TABLES
AIR MONITORING RESULTS
GROUNDWATER ELEVATION DATA
GROUNDWATER ANALYTICAL RESULTS-BTEX
GROUNDWATER ANALYTICAL RESULTS-GENERAL CHEMISTRY
GROUNDWATER ANALTYICAL RESULTS - METALS
LIST OF APPENDICES
QUARTERLY GAS MONITORING DATA
GROUNDWATER SAMPLING LABORATORY REPORTS
HISTORICAL GROUNDWATER ANALYTICAL RESULTS

EXECUTIVE SUMMARY

LT Environmental, Inc. (LTE), on behalf of Western Refining Southwest, Inc. (Western), has prepared this report detailing work completed between April 2012 through March 2013 at the former Bloomfield Crude Station (Site) in Bloomfield, New Mexico.

The Site is located on the southwest corner of Blanco Boulevard and Fifth Street in the city of Bloomfield, New Mexico. The legal description of the Site is the northwest quarter of the northwest quarter of Section 22, Township 29 North, Range 11 West in San Juan County, New Mexico.

The scope of work includes mitigation of subsurface hydrocarbon impacts identified following removal of a 55,000 barrel crude oil storage tank in late 1995. Historical releases from this tank impacted soil and groundwater. During the time period covered by this report, Western utilized a bioventing system to reduce concentrations of hydrocarbons in the subsurface soil. LTE conducted regular operations and maintenance on the system hardware, and monitored subsurface airflow by measuring concentrations of oxygen and carbon dioxide gas.

Bioventing has effectively reduced the concentrations of hydrocarbons in the subsurface soil. Concentrations of benzene, toluene, ethylbenzene, and total xylenes (BTEX) in the groundwater have diminished except in monitoring well MW-7. Monitoring well MW-7 is located crossgradient of the source areas and the BTEX concentrations detected are not likely related to Western's activities. BTEX concentrations in groundwater from other monitoring wells have been below NMWQCC standards since January of 2007.

Based on these results and following over 10 years of remediation efforts, Western is in the process of drafting an argument for Site closure, which is anticipated to be submitted in 2013. Western will continue annual sampling of groundwater wells for laboratory analysis until closure is granted.

1.0 INTRODUCTION

LT Environmental, Inc. (LTE), on behalf of Western Refining Southwest, Inc. (Western), has prepared this report detailing work completed from April 2012 through March 2013 to mitigate hydrocarbon-impacted groundwater at the former Bloomfield Crude Station (Site) in Bloomfield, New Mexico.

1.1 SITE DESCRIPTION

The Site is located on the southwest corner of West Blanco Boulevard and North Fifth Street in Bloomfield, New Mexico. It occupies approximately 5.5 acres within the northwest quarter of the northwest quarter of Section 22, Township 29 North, Range 11 West in San Juan County (Figure 1).

A 55,000 barrel crude oil storage tank (Tank 967-D) constructed in 1956 was previously located within an earthen berm at the Site (Figure 2). Tank 967-D and the earthen berm were removed between late 1995 and early 1996. Currently, the former tank location is unoccupied.

West of the Site is a City of Bloomfield electrical substation and two natural gas well sites owned and operated by Mañana Gas. West of the electrical substation and the Mañana well sites, on the corner of North Frontier Street and West Blanco Boulevard, is a vacant lot. There appears to be a well monument located on the lot and may indicate a previous well site that has been plugged and abandoned. Historical research of this area indicates that several oil wells, and possibly gas wells with associated unlined pits, were operational on this lot, such as the Bishop #1, Bishop #3, Hare #1 and Kittell #1 (Figure 2).

Site lithology consists of coarse to very coarse, well sorted and dry sand extending from the ground surface to depths between 4 feet to 11 feet below ground surface (bgs). The sand grades into clayey sands and sandy clays. These fine-grained layers consist of low plasticity clay that is medium dense or stiff and moist. Within the fine-grained clay layers are occasional coarse to very coarse well-graded saturated sand layers ranging from 2 inches to 8 inches thick. These sand layers are discontinuous, but appear to transport shallow groundwater beneath the Site. A sandy clay layer, which retards downward movement of perched water, occurs from 8 feet to 19 feet bgs. Depth to groundwater in the shallow saturated zone is approximately 15 feet bgs. The direction of groundwater flow varies from southwest to south-southeast. Recharge to this perched zone is most likely from direct infiltration of rainfall or from seasonal up-gradient irrigation. Natural groundwater quality, as measured in up-gradient and source area wells over time, consistently exhibits elevated total dissolved solids (TDS) and sulfate contents. Specific details on Site geography, hydrogeology, and geology are described in the report Site Assessment for the Bloomfield Crude Station, May 1995, previously submitted to the New Mexico Oil Conservation Division (NMOCD).

1.2 SITE HISTORY

When Tank 967-D and the earthern berm were removed in 1995 and 1996, approximately 12,924 cubic yards of hydrocarbon-impacted soil were excavated and disposed of at Western's Bisti landfarm. The excavation began on the east side of the tank pad and proceeded to the west.

LIZ

Bloomfield Crude Station 1-1

Midway across the tank pad, phase-separated hydrocarbons (PSH) were observed on the groundwater along the southern edge of the excavation. This portion of the excavation was left open until 2001 to allow for recovery of PSH. Numerous subsurface investigations were conducted to define the limits of hydrocarbon migration and to design appropriate remedial systems. Historical accounts of soil boring and groundwater well installation activities are detailed in reports previously submitted to the NMOCD, including Comprehensive Report for the Bloomfield Crude Station, January 2000, and Monitoring Well Installation, Groundwater Sampling and Bioventing Pilot Test, July 2001.

Between 1994 and 2001, seven groundwater monitoring wells were installed, six of which are currently still in use (Figure 2). Monitoring well MW-1 was completed above the groundwater table and never produced sufficient volumes of water for sampling and was abandoned during excavation of the tank pad. Results from early sampling indicated that MW-2 was located in a PSH plume and monitoring wells MW-3, MW-4, MW-5, and MW-6 were outside of the plume. In addition, presence of dissolved phase hydrocarbons was confirmed in MW-2 and MW-7. It has been argued that MW-7, located cross-gradient of the Site, exhibits a different groundwater quality signature than other monitoring well data and may be related to a separate source area. Monitoring well MW-7 is not considered part of the contaminant plume at the Site.

Historic soil borings indicated that significant amounts of clean overburden would have to be removed to excavate additional hydrocarbon-impacted soil. Alternate remedial activities resulting from subsurface investigations have included manual removal of PSH from the water table, bioventing, air sparging, and groundwater monitoring. Details of these activities can be found in previous annual reports submitted by Western to the NMOCD.

1.2.1 Bioventing

Following a successful pilot test on June 20, 2001, bioventing was initiated at the Site on February 17, 2003. System installation included boring 3-inch diameter holes with a hand auger, collecting soil samples every 3 feet and screening the samples using NMOCD headspace techniques. Eight soil samples with the highest headspace readings were submitted for laboratory analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX), as well as total petroleum hydrocarbons (TPH).

One foot of 1-inch diameter polyvinyl chloride (PVC) 0.01-inch slotted well screen was set in each hole at approximately 12 feet bgs at 39 locations. The air was injected where field screening and laboratory analyses indicated elevated concentrations of hydrocarbons existed in the subsurface. Injection points have varied over time, in an effort to target problem areas. Twenty one points are currently used for monitoring subsurface gases, and eighteen points are used to inject air. Monitoring and injection point locations are depicted on Figure 3.

Injection air is supplied by a GastTM oil-less rotary vane compressor that supplies approximately 90 standard cubic feet per minute air. The compressor is housed in a former office building at the Site and travels through 1 ½-inch PVC pipe to each injection point. The compressor operates from 0600 hours to 1800 hours Monday through Friday.

Bloomfield Crude Station 1-2

1.2.2 Groundwater Remediation

From 1999 through 2004, Giant Industries, Arizona (former owner of the Site) regularly monitored PSH concentrations and manually purged groundwater and PSH from MW-2, as necessary, using a disposable bailer. PSH was also removed from the portion of the excavation left open from 1996 through 2001. After 2004, PSH was no longer observed in MW-2, but elevated concentrations of BTEX were detected in groundwater samples from MW-2. To address the elevated BTEX concentrations, an air sparge system was installed adjacent to MW-2 on October 9, 2006. BTEX concentrations from groundwater samples in MW-2 dropped below New Mexico Water Quality Control Commission (NMWQCC) standards by January 2007. Quarterly sampling of MW-2 was initiated in 2007 to more closely monitor BTEX concentrations. The air sparge system was turned off in March 2008 after 5 consecutive clean quarters to ascertain whether BTEX concentrations in the groundwater would remain below NMWQCC standards or rebound. By February 2010, eight consecutive quarters of groundwater samples from MW-2 were below NMWQCC standards for BTEX and MW-2 was placed on the same annual sampling schedule as other monitoring wells at the Site.

1.3 SCOPE OF WORK

The scope of work for this project included biweekly operations and maintenance of the bioventing system. Oxygen and carbon dioxide gases were monitored in the subsurface airflow system to evaluate the effectiveness of the system in April 2012 and March 2013. Annual groundwater sampling was conducted to monitor groundwater quality at the Site. Western discontinued quarterly soil sampling in 2012 since concentrations of TPH have been reduced to below or near NMOCD standards. A summary of field activities, subsurface airflow data, analytical results groundwater sampling, and conclusions are presented in the subsequent sections of this report.

2.0 METHODOLOGY

During the period covered in this report, bioventing continued as described in the *Bioventing Plan*, dated July 2002. Oxygen and carbon dioxide were measured in subsurface air flow. All groundwater monitoring wells were sampled to monitor overall groundwater quality.

2.1 BIOVENTING

Operations and maintenance activities were conducted bi-monthly on the bioventing system to ensure that the system was functioning properly. A technician conducts a site visit and inspects the compressor and timer. The technician then walks the Site visually inspecting PVC piping and valves for damages or problems, and addressing general housekeeping needs as required.

Oxygen and carbon dioxide concentrations in subsurface air flow were measured in April 2012 and March 2013. Gases were measured through valves at each monitoring and injection point with a GEM 500 Gas Monitor. Each monitoring and injection point was evacuated until the gas reading stabilized, at which time gas concentrations were recorded.

2.2 GROUNDWATER SAMPLING

LTE personnel sampled groundwater from MW-2 through MW-7 on March 20, 2013. MW-7 was sampled at the request of NMOCD; although, as discussed in previous reports, Western does not believe groundwater impact at this location is related to their operations.

Prior to sampling, depth to groundwater and total depth of each monitoring well were measured with a Keck oil-water interface probe. The interface probe was decontaminated with Alconox TM soap and rinsed with de-ionized water prior to each measurement. The volume of water in the monitoring wells was calculated, and a minimum of three casing volumes of water was purged from each monitoring well using a disposable bailer. As groundwater was extracted, pH, electric conductivity, and temperature were monitored. The monitoring wells were purged until these properties stabilized, indicating that the purge water was representative of aquifer conditions.

Once each monitoring well was purged, groundwater samples were collected by filling three 40-milliliter glass vials to be analyzed for BTEX by USEPA Method 8021B. The pre-cleaned and pre-preserved vials were filled and capped with no air inside to prevent degradation of the sample. Additional groundwater was collected in plastic bottles with appropriate preservative for analysis of general chemistry, including major cations, anions, TDS, pH, specific conductance, recoverable metals, hardness, and alkalinity. All groundwater samples were labeled with the time and date of collection, as well as the origin of the sample. They were immediately sealed and packed on ice and shipped to Hall Environmental Analytical Laboratory under proper chain-of-custody procedures.

3.0 ANALYTICAL RESULTS

3.1 BIOVENTING

Table 1 presents the average yearly carbon dioxide and oxygen concentrations measured in subsurface air from the bioventing system. Monitoring was conducted at all injection and monitoring points since the bioventing system configuration has changed over time to target areas of highest hydrocarbon concentrations. The actual semi-annual measurements are provided in Appendix A. Oxygen and carbon dioxide measurements have been consistent since 2007; however, minor changes were observed during this monitoring period. The amount of oxygen detected in IP5 and IP10 increased and the amount of carbon dioxide detected decreased as compared to previous years' data. Oxygen decreased and carbon dioxide increased in IP8 and IP9. Except for IP9, the average oxygen measured in each of these locations remained greater than 10 percent (%). The average oxygen measured in IP9 was 8.8 %.

3.2 GROUNDWATER ANALYTICAL RESULTS

LTE measured depth to groundwater in MW-2, MW-3, MW-4, MW-5, MW-6, and MW-7 on March 20, 2013. The depth to groundwater data were used to calculate groundwater elevations and prepare a potentiometric surface map for the Site (Figure 4). Depth to groundwater and calculated groundwater elevations are presented in Table 2. Groundwater elevations ranged from 5,466.01 feet above mean sea level (amsl) in MW-5 to 5,473.01 feet amsl in MW-3. Groundwater flow direction is to the south-southwest in the northern portion of the Site and to the south in the southern portion of the Site.

BTEX concentrations in groundwater samples collected on March 20, 2013 were below NMWQCC standards at all monitoring wells except MW-7. The groundwater sample from MW-7 contained a concentration of 44 micrograms per liter (µg/l) of benzene and 920 µg/l of total xylenes. Laboratory analytical results for BTEX concentrations in groundwater samples collected on March 20, 2013 are presented in Table 3 and on Figure 5. Complete laboratory reports are provided in Appendix B. Historical groundwater sampling results (1994-March 2013) are summarized in Appendix C.

Results of the general chemistry and metals analyses of groundwater samples are detailed in Table 4 and Table 5. Consistent with historic results, groundwater samples collected from MW-2, MW-3, MW-4, MW-5, and MW-6 exhibit TDS values, sulfate concentrations, and manganese concentrations exceeding NMWQCC standards. The TDS and manganese concentrations in MW-7 also exceeded the NMWQCC standards in 2013. The groundwater sample collected from MW-5 contained a concentration of 680 mg/l of chloride, which exceeds the NMWQCC standard for chloride. Laboratory analytical results indicate metals concentrations are below NMWQCC standards in monitoring wells MW-2, MW-3, MW-4, MW-6 and MW-7, except for iron. All monitoring wells contain iron concentrations exceeding NMWQCC standards for domestic water supplies (Table 5). The groundwater sample collected from MW-6 contained concentrations that exceeded the NMWQCC standard for barium, cadmium, chromium, iron, and lead.

4.0 CONCLUSIONS

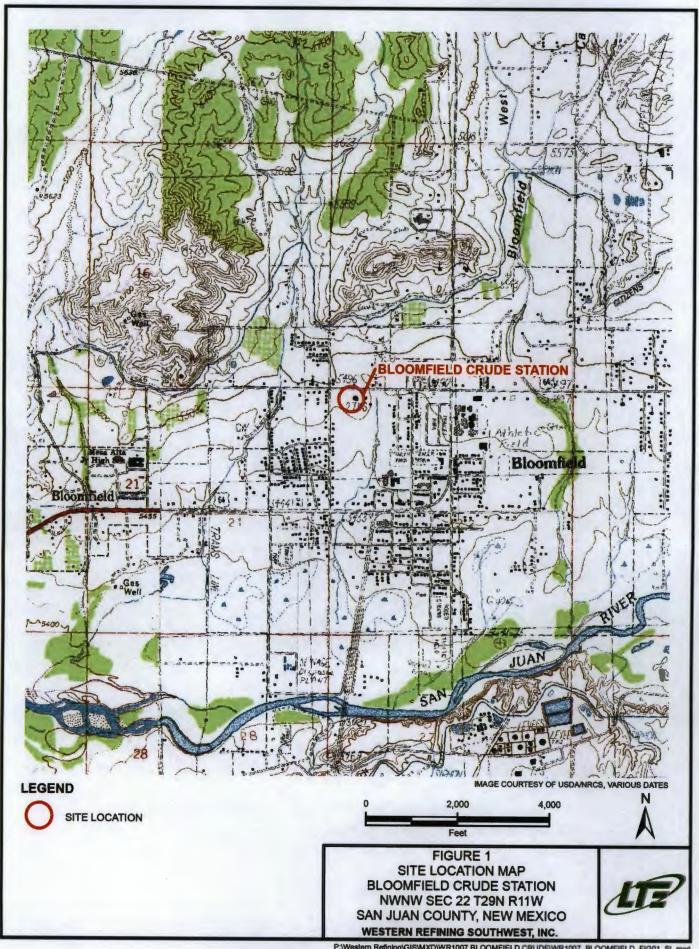
During the past nine years of operations, TPH and BTEX concentrations in soil have decreased, indicating the bioventing is effectively reducing concentrations of hydrocarbons in the subsurface soil. Western discontinued soil sampling in 2012 since concentrations of petroleum hydrocarbons sourced from the Site have been reduced to below or near NMOCD standards. Additional evaluation of petroleum hydrocarbon impact to soil at the Site will be provided in the pending closure request.

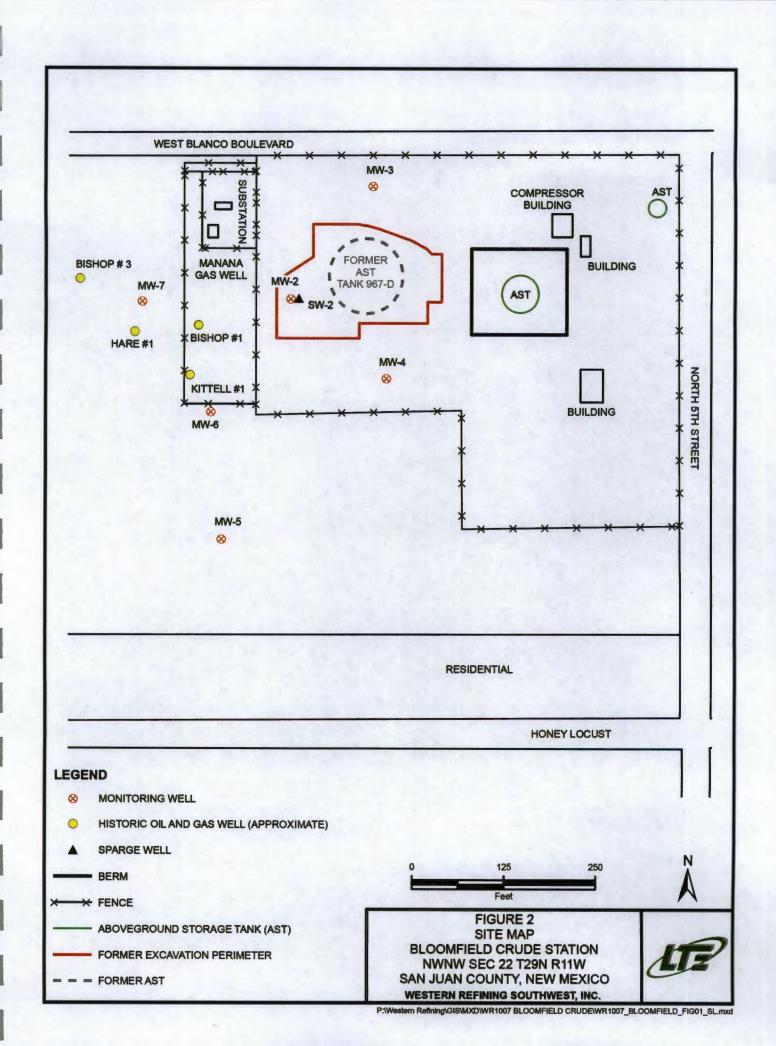
Concentrations of oxygen and carbon dioxide recorded through March 2013 indicate active biologic activity at the Site since bioventing began. Soil at the Site has been remediated to the most practical extent possible via excavation and bioventing. Remaining TPH concentrations in the soil have decreased by 91% to 99% and are not migrating either from the Site or to groundwater. Further bioventing is not likely to yield any significant TPH mass reduction in the soil.

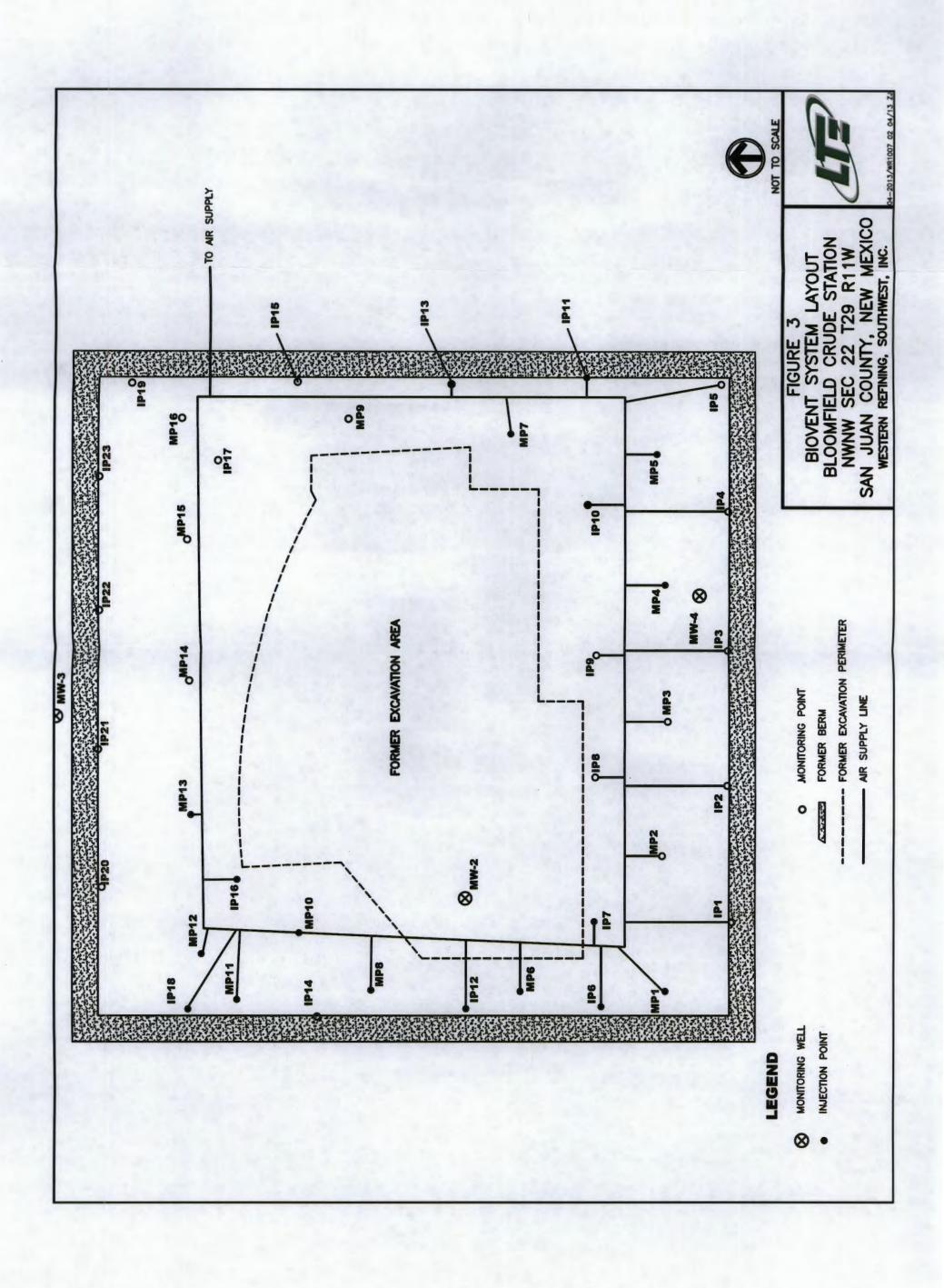
Western has successfully remediated groundwater impacted by former Tank 967-D. Evaluation of total BTEX concentrations in groundwater coincidentally with groundwater flow direction between 1994 and 2012 indicates the presence of a groundwater plume with two, separate source areas: Tank 967-D at the Site and a separate source to the west of the Site. Groundwater from MW-7 contains concentrations of benzene and total xylenes exceeding NMWQCC standards. These impacts are not likely related to Western's activities at the Site due to MW-7's proximity to former off-site oil and gas wells and its location west of and cross-gradient to the Site.

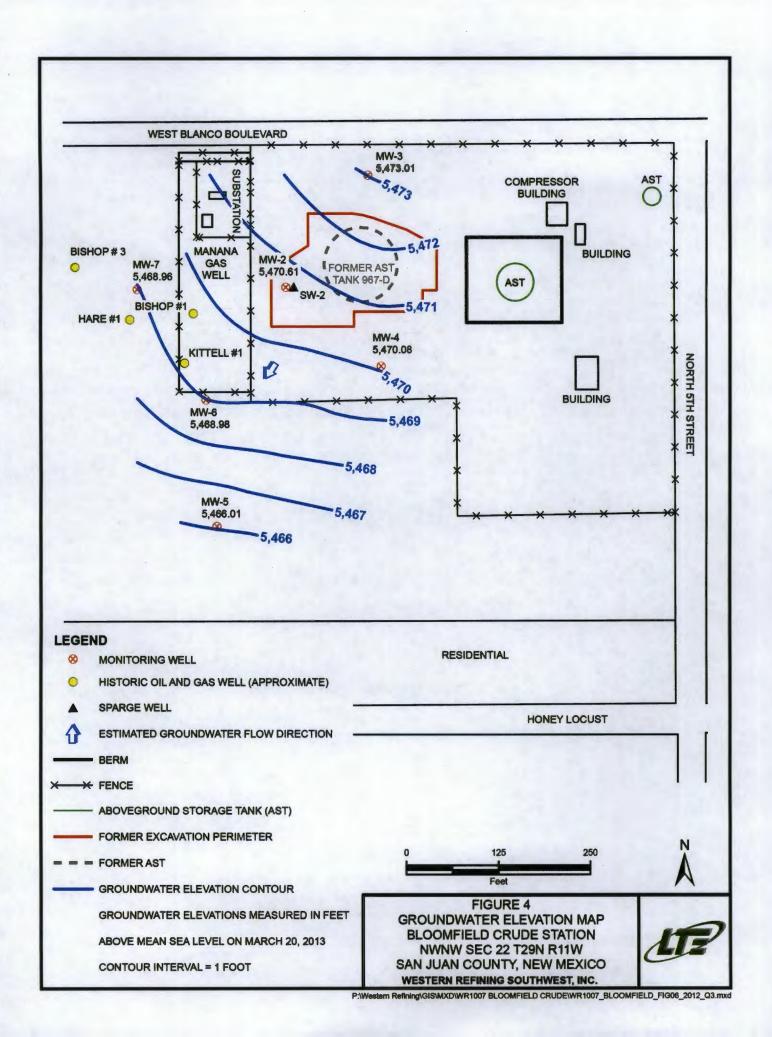
Groundwater general chemistry and metals results, including those reported from an upgradient monitoring well (MW-3), indicate that the groundwater is not suitable for domestic use due to concentrations of TDS, sulfate, manganese, and iron that exceed the NMWQCC standards. Historical analytical sampling records indicate these parameters have always been elevated and appear to be naturally occurring in the aquifer.

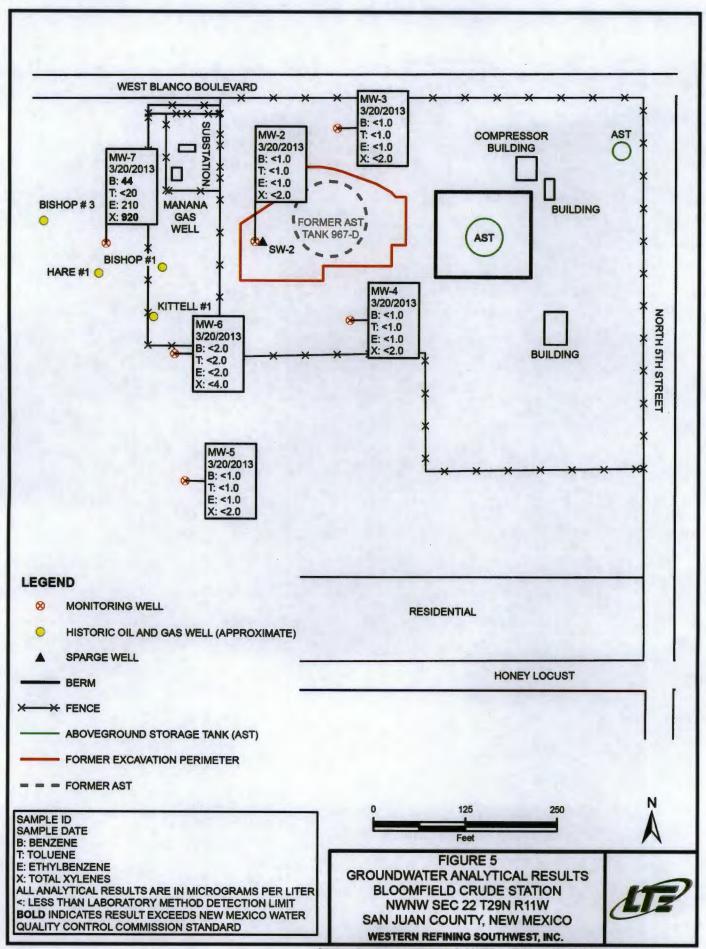
The lower concentrations of TDS and sulfate present in MW-7 compared to MW-2, MW-3, MW-4, MW-5, and MW-6 indicate a different general chemistry signature is present in the groundwater in MW-7; further evidence that the source for elevated BTEX concentrations in MW-7 are not from the Tank 967-D release at the Site. MW-6 continues to have detectable concentrations of cadmium, chromium, and lead. Elevated concentrations of chloride in MW-5 can be attributed to dissolution of naturally occurring chloride found in the 11-foot thick clay layer that is intercepted by the 15-foot screened interval. Elevated barium concentrations in MW-6 and MW-7 might be attributable to historical drilling operations unrelated to crude oil storage at the Site.


5.0 RECOMMENDATIONS


Western will pursue site closure during 2013. Western will continue bioventing and monitor groundwater annually until site closure is approved by the NMOCD.




FIGURES



TABLES

AIR MONITORING RESULTS

TABLE 1

BLOOMFIELD CRUDE STATION WESTERN REFINING SOUTHWEST, INC.

Manitaria					Oxyge	n Perc	entage	<u>,</u>			
Monitoring Point	Pre-	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Tome	test	avg	avg	avg	avg	avg	avg	avg	avg	avg	avg
IP1						17.1	19.1	18.9	19.5	17.5	17.6
IP2						20.5	12.4	20.7	20.7	19.7	20.5
IP3						20.2	20.2	18.0	20.5	16.0	17.5
IP4						20.5	20.3	20.5	20.2	18.0	20.5
IP5						19.2	20.3	19.9	19.3	14.3	18.8
IP6						15.1	19.6	15.3	12.4	20.2	21.3
IP7						18.0	20.0	20.6	20.9	20.2	21.3
IP8	20.2	3.3	4.8	0.0	0.0	20.5	10.8	20.7	20.9	20.2	15.9
IP9						18.1	20.2	20.0	17.0	13.5	8.8
IP10	17.2	3.2	12.4	4.8	7.2	14.5	14.6	13.8	5.1	3.7	19.1
IP11	20.9	9.5	8.6	13.5	19.6	20.4	20.4	18.2	21.0	20.0	21.2
IP12						18.4	18.8	20.8	20.8	19.9	21.5
IP13	20.9	8.6	19.0	18.3	17.9	19.5	18.9	18.5	14.1	16.8	19.8
IP14	19.9	5.8	4.5	3.4	15.6	18.5	14.4	14.3	13.4	16.5	18.4
IP15	20.9	0.1	19.9	20.3	20.0	20.3	20.2	20.4	20.3	19.4	20.7
IP16						20.5	14.3	21.2	21.0	20.3	21.5
IP17	20.9	0.4	19.2	19.0	19.4	17.6	20.4	20.0	19.8	18.5	20.1
IP18						17.6	19.2	21.2	21.0	20.2	21.4
IP19	20.9	9.3	16.2	18.1	19.4	19.1	19.7	20.2	19.0	17.2	18.6
IP20	20.5	5.9	7.2	13.5	17.8	19.0	19.7	19.4	19.9	19.3	19.9
IP21	20.9	8.3	18.1	19.7	18.7	20.0	20.2	20.1	19.9	19.0	20.5
IP22	20.9	0.1	17.5	18.3	19.2	20.0	20.3	19.7	19.2	18.1	20.0
IP23	20.9	0.7	19.3	18.7	19.4	20.2	20.7	19.9	19.8	18.4	20.4
MP1						17.9	19.5	20.7	20.9	20.2	21.1
MP2						20.4	20.2	15.9	17.8	15.6	14.7
MP3						17.0	18.2	18.1	19.0	17.4	16.2
MP4	19.0	1.9	6.2	2.0	0.0	20.5	13.4	17.9	11.1	19.8	21.2
MP5						20.5	18.7	20.4	21.0	19.8	21.1
MP6						15.7	19.9	20.8	20.9	20.2	21.4
MP7	18.6	6.6	7.9	14.2	18.5	20.5	14.1	20.7	21.1	20.0	21.0
MP8						18.1	20.1	20.7	20.7	20.1	21.5
MP9	20.5	13.1	18.9	19.3	18.9	19.6	20.1	19.6	18.5	19.6	20.1
MP10						16.8	20.5	21.4	20.7	20.0	20.8
MP11						17.2	16.0	21.4	20.8	20.0	21.3
MP12						19.7	15.7	21.4	20.9	20.2	21.5
MP13						17.3	19.0	17.6	19.8	20.0	21.5
MP14	19.2	14.2	8.3	14.1	15.9	19.1	18.8	19.8	17.4	15.7	17.9
MP15	20.9	18.4	14.9	14.2	18.4	19.2	20.5	20.0	16.4	14.8	17.6
MP16	20.9	20.1	19.0	19.5	19.3	19.3	19.7	20.2	18.3	17.2	18.6
Average	20.2	13.9	13.4	13.9	15.8	19.1	18.4	19.5	18.7	18.1	19.5

TABLE 1

AIR MONITORING RESULTS BLOOMFIELD CRUDE STATION WESTERN REFINING SOUTHWEST, INC.

				Car	bon Di	oxide l	Percen	tage			
Monitoring Point	Pre-	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
roint	test	avg	avg	avg	avg	avg	avg	avg	avg	avg	avg
IP1						2.8		1.8	1.1	2.0	2.5
IP2						0.0	1.9	0.0	0.2	0.4	0.1
IP3						0.0	0.4	1.5	0.7	3.9	3.5
IP4						0.0	0.1	0.0	0.2	1.2	0.4
IP5						1.1	0.1	0.9	1.7	2.9	1.7
IP6						5.4	0.2	3.2	6.3	0.1	0.0
IP7						2.5	0.1	0.0	0.1	0.1	0.0
IP8	0.8	13.4	10.6	3.5	14.4	0.0	1.5	0.0	0.1	0.1	3.2
IP9						0.2	0.1	0.7	4.7	4.5	8.6
IP10	1.8	6.5	11.0	4.9	14.1	6.5	5.7	3.8	14.5	16.4	6.3
IP11	0.0	1.0	11.9	4.5	1.3	0.0	0.2	0.1	0.1	0.1	0.0
IP12						1.4	0.2	0.0	0.1	0.1	0.0
IP13	0.2	1.7	1.4	2.1	2.2	0.5	1.4	1.1	2.8	2.7	0.8
IP14	1.0	6.8	10.1	13.7	4.8	2.0	4.0	5.4	5.5	2.7	2.8
IP15	0.8	1.2	0.3	0.5	0.6	0.1	0.1	0.5	0.6	0.6	0.5
IP16						0.0	0.4	0.0	0.1	0.1	0.0
IP17	1.0	1.1	1.3	2.1	1.0	0.2	0.3	0.8	1.2	1.7	1.2
IP18						2.9	0.2	0.0	0.1	0.1	0.0
IP19	0.4	1.2	3.5	2.4	0.9	1.4	1.0	1.5	1.9	1.9	2.6
IP20	0.6	6.4	8.4	5.8	1.8	1.0	0.9	1.4	1.3	0.8	1.0
IP21	1.4	1.2	2.2	4.1	0.9	0.2	0.4	0.8	1.4	1.5	0.7
IP22	0.4	0.9	1.9	2.3	1.1	0.4	0.2	1.0	1.5	2.2	1.6
IP23	0.6	0.7	0.8	2.0	0.9	0.2	0.2	0.3	1.1	1.9	0.4
MP1						2.1	0.3	0.0	0.1	0.1	0.1
MP2						0.2	0.1	0.0	0.5	2.0	3.6
MP3						0.5	1.6	2.2	1.6	1.9	3.4
MP4	1.2	12.1	14.5	6.3	14.9	0.0	1.7	3.0	8.2	0.1	0.0
MP5						0.0	0.2	0.0	0.1	0.1	0.1
MP6						4.6	0.2	0.0	0.1	0.1	0.0
MP7	1.4	5.6	8.3	4.2	0.7	0.0	0.3	0.0	0.1	0.1	0.0
MP8						2.2	0.2	0.0	0.1	0.1	0.0
MP9	1.0	1.9	1.0	1.5	1.3	0.3	0.3	1.1	1.8	1.4	1.6
MP10						3.2	0.0	0.0	0.1	0.1	0.1
MP11						3.3	0.5	0.0	0.1	0.1	0.0
MP12						0.3	0.6	0.0	0.1	0.1	0.0
MP13						2.1	0.2	0.5	1.0	0.1	0.0
MP14	1.0	3.3	8.0	5.3	3.5	1.1	1.2	1.8	3.0	3.7	3.0
MP15	0.6	1.8	3.7	3.4	1.5	1.5	0.2	0.5	3.3	4.2	3.5
MP16	0.1	1.0	1.4	1.4	1.2	1.2	1.0	0.4	2.4	2.9	2.7
Average	0.8	3.8	5.6	3.5	3.7	1.3	0.7	0.9	1.8	1.7	1.4

Notes:

2003 includes data from 2/03, 3/03, 10/03 and 1/04

2004 includes quarterly data from 4/04, 7/04, 10/04 and 1/05

2005 includes data from 4/05, 7/05, 10/05. The pump that injects air into the subsurface was being reparied during the 4th quarter monitoring event

2006 includes data from 4/06, 7/06, 10/06 and 1/07

2007 includes data from 4/07, 7/07, 10/07, and 1/08

2008 includes data from 4/08, 7/08, 10/08 and 1/09

2009 includes data from 4/09, 7/09, 10/09 and 1/10

2010 includes data from 4/10, 7/10, 10/10 and 1/11

2011 includes data from 4/11, 7/11, 10/11 and 1/12

2012 includes data from 4/5/2012 and 3/20/2013

TABLE 2

GROUNDWATER ELEVATION DATA BLOOMFIELD CRUDE STATION WESTERN REFINING SOUTHWEST, INC.

Well Number	Date	Casing Elevation (ft)	Depth to Water (ft BTOC)	Groundwater Elevation (ft)
MW-2	3/20/2013	5485.33	14.72	5470.61
MW-3	3/20/2013	5488.61	15.60	5473.01
MW-4	3/20/2013	5486.18	16.10	5470.08
MW-5	3/20/2013	5481.61	15.60	5466.01
MW-6	3/20/2013	5486.18	17.20	5468.98
MW-7	3/20/2013	5491.86	22.90	5468,96

Notes:

BTOC - Below Top of Casing

ft - feet

Water level elevation is given in feet above mean sea level

TABLE 3

GROUNDWATER ANALYTICAL RESULTS - BTEX BLOOMFIELD CRUDE STATION WESTERN REFINING SOUTHWEST, INC.

Well Number	Date Sampled	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	Total BTEX (μg/L)
MW-2	3/20/2013	<1.0	<1.0	<1.0	<2.0	0 - < 5.0
MW-3	3/20/2013	<1.0	<1.0	<1.0	<2.0	0 - < 5.0
MW-4	3/20/2013	<1.0	<1.0	<1.0	<2.0	0 - < 5.0
MW-5	3/20/2013	<1.0	<1.0	<1.0	<2.0	0 - < 5.0
MW-6	3/20/2013	<2.0	<2.0	<2.0	<4.0	0 - <10.0
MW-7	3/20/2013	44	<20	210	920	1,174 - < 1,194
NMWQCC STAI	NDARD	10	750	750	620	NE

Notes:

Bold values indicate value exceeds NMWQCC standard

BTEX - Benzene, Toluene, Ethylbenzene, Total Xylenes

BTEX analyzed by EPA Method 8021b

NE - Not Established

NMWQCC - New Mexico Water Quality Control Commission

 $\mu g/L$ - micrograms per liter

< indicates result is less than the stated laboratory method detection limit

TABLE 4

GROUNDWATER ANALYTICAL RESULTS - GENERAL CHEMISTY BLOOMFIELD CRUDE STATION WESTERN REFINING SOUTHWEST, INC.

m Potassium				8.9			
Barium (mg/L)	0.083	0.11	0.35	0.12	1.8	4.9	1.0
Manganese (mg/L)	3.8	0.72	7.0	9.5	8.9	1.5	0.2
Magnesium (mg/L)	30	36	28	20	72	22	NE
Nitrate (mg/L)	<0.1	8.9	0.16	<0.1	<0.10	<0.1	10
Nitrite (mg/L)	<0.1	<0.1	<0.1	<2.0	<0.1	<0.1	NE
Calcium (mg/L)	270	330	480	540	290	200	NE
Sodium (mg/L)	740	099	160	830	280	160	NE
Sulfate (mg/L)	1,000	1,900	2,500	1,900	920	210	009
Chloride (mg/L)	45	38	41	089	120	22	250
Carbonate (CO3) (mg/L)	<5.0	<2.0	<2.0	<2.0	<2.0	<2.0	NE
Bicarbonate (HCO3) (mg/L)	1,300	540	510	820	1,100	029	NE
Hardness (CaCO3) (mg/L)	790	096	1,400	1,600	1,000	580	NE
Alkalinity (CaCO3) (mg/L)	1,300	540	510	820	1,100	029	NE
TDS (mg/L)	3,190	3,090	4,180	4,480	2,630	1,100	1,000
Conductivity (µmhos/cm)	4,100	4,000	5,000	6,100	3,600	1,600	NE
Lab pH (su)	7.56	99'.	7.40	7.10	7.46	7.58	6-9
Date	3/20/2013	3/20/2013	3/20/2013	3/20/2013	3/20/2013	3/20/2013	lard
Well Number	MW-2	MW-3	MW-4	MW-5	9-MM	MW-7	NMWOCC Stand

Notes:
Bold values indicate value exceeds NMWQCC standard
mg/L - milligrams per liter
NE - not established
NMWQCC - New Mexico Water Quality Control Commission
su - standard units
TDS - Total Dissolved Solids
µmhos/ cm - micromhos per centimeter
< indicates result is less than the stated laboratory method detection limit

GROUNDWATER ANALYTICAL RESULTS - METALS BLOOMFIELD CRUDE STATION WESTERN REFINING SOUTHWEST, INC.

TABLE 5

Well	Doto	Arsenic	Cadmium	Chromium	Iron	Lead	Mercury	Selenium	Silver
Number	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-2	3/20/2013	<0.020	<0.0020	<0.0060	8.5	0.0071	<0.00020	<0.050	<0.0050
MW-3	3/20/2013	<0.020	<0.0020	0.0076	16	0.0052	<0.00020	<0.050	<0.0050
MW-4	3/20/2013	<0.020	<0.0020	0.038	89	0.014	<0.00020	<0.050	<0.0050
MW-5	3/20/2013	<0.020	<0.0020	<0.0060	12	0.0057	<0.00020	<0.050	<0.0050
9-MM	3/20/2013	<0.20	0.054	0.073	470	0.11	<0.00020	<0.50	<0.050
MW-7	3/20/2013	<0.020	<0.0020	<0.0060	62	0.0000	<0.00020	<0.050	<0.0050
NMWQCC	MWQCC Standard	0.1	0.01	0.05	1.0	0.05	0.002	0.05	0.05

Jotos

Bold values indicate value exceeds NMWQCC

mg/L - milligrams per liter

NMWQCC - New Mexico Water Quality Control Commission

< indicates result is less than the stated laboratory method detection limit

APPENDIX A GAS MONITORING DATA

GAS MONITORING DATA BLOOMFIELD CRUDE STATION WESTERN REFINING SOUTHWEST, INC.

Monitoring	Oxygen l	Percentage	Carbon Dioxi	de Percentage		
Point	4/5/2012	3/20/2013	4/5/2012	3/20/2013		
IP1	17.3	17.8	1.9	3.0		
IP2	20.9	20.1	0.0	0.1		
IP3	18.2	16.7	2.1	4.8		
IP4	20.8	20.1	0.0	0.7		
IP5	19.6	18.0	0.7	2.7		
IP6	20.9	21.6	0.0	0.0		
IP7	20.9	21.7	0.0	0.0		
IP8	21.1	10.6	0.0	6.4		
IP9	15.3	2.3	5.1	12.0		
IP10	16.9	21.2	12.6	0.0		
IP11	21.1	21.2	0.0	0.0		
IP12	21.1	21.8	0.0	0.0		
IP13	18.4	21.1	1.6	0.0		
IP14	18.5	18.3	1.6	4.0		
IP15	20.6	20.8	0.2	0.7		
IP16	21.1	21.9	0.0	0.0		
IP17	20.2	19.9	0.2	2.1		
IP18	20.9	21.8	0.0	0.0		
IP19	18.9	18.3	1.9	3.3		
IP20	20.6	19.2	0.3	1.6		
IP21	20.4	20.5	0.5	0.8		
IP22	19.8	20.1	1.3	1.9		
IP23	20.4	20.3	0.1	0.7		
MP1	20.7	21.5	0.0	0.1		
MP2	16.9	12.5	2.0	5.1		
MP3	17.9	14.5	2.0	4.7		
MP4	21.1	21.3	0.0	0.0		
MP5	21.1	21.1	0.2	0.0		
MP6	20.9	21.8	0.0	0.0		
MP7	20.9	21.1	0.0	0.0		
MP8	21.1	21.8	0.0	0.0		
MP9	20.4	19.8	0.4	2.7		
MP10	20.8	20.8	0.0	0.2		
MPI1	20.9	21.7	0.0	0.0		
MP12	21.1	21.8	0.0	0.0		
MP13	21.1	21.8	0.0	0.0		
MP14	18.0	17.7	2.6	3.4		
MP15	17.6	17.6	3.0	3.9		
MP16	19.0	18.1	1.9	3.4		
Average	19.8	19.2	1.1	1.8		

APPENDIX B GROUNDWATER SAMPLING LABORATORY REPORTS

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 03, 2013

Ashley Ager Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (970) 946-1093 FAX (505) 632-3911

RE: Bloomfield Crude Station

OrderNo.: 1303833

Dear Ashley Ager:

Hall Environmental Analysis Laboratory received 6 sample(s) on 3/21/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1303833

Date Reported: 4/3/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-3

Project: **Bloomfield Crude Station** Collection Date: 3/20/2013 11:27:00 AM

Received Date: 3/21/2013 10:00:00 AM Lab ID: 1303833-001 Matrix: AQUEOUS

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	ND	1.0		μg/L	1	3/26/2013 1:03:02 PM
Toluene	ND	1.0		μ g/ L	1	3/26/2013 1:03:02 PM
Ethylbenzene	ND	1.0		µg/L	1	3/26/2013 1:03:02 PM
Xylenes, Total	ND	2.0	ı	µg/L	1	3/26/2013 1:03:02 PM
Surr. 4-Bromofluorobenzene	85.2	69.4-129	1	%REC	1	3/26/2013 1:03:02 PM
EPA METHOD 300.0: ANIONS						Analyst: JRR
Chlori d e	38	10		mg/L	20	3/21/2013 11:50:20 PM
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	3/21/2013 11:37:55 PM
Nitrogen, Nitrate (As N)	8.9	0.10		mg/L	1	3/21/2013 11:37:55 PM
Sulfate	1900	25		mg/L	50	3/23/2013 12:43:55 AM
SM2340B: HARDNESS						Analyst: JLF
Hardness (As CaCO3)	960	6.6	i	mg/L	1	3/29/2013 10:32:00 AM
EPA METHOD 7470: MERCURY						Analyst: TMG
Mercury	ND	0.00020		mg/L	1	3/25/2013 3:07:02 PM
EPA 6010B: TOTAL RECOVERABL	E METALS					Analyst: JLF
Arsenic	ND	0.020	i	mg/L	1	3/29/2013 1:04:27 PM
Barium	0.11	0.020	ı	mg/L	1	3/29/2013 1:04:27 PM
Cadmium	ND	0.0020	ı	mg/L	1	3/29/2013 1:04:27 PM
Calcium	330	5.0	ı	mg/L	5	3/29/2013 1:07:11 PM
Chromium	0.0076	0.0060	ı	mg/L	1	3/29/2013 1:04:27 PM
Iron	16	1.0	l	mg/L	20	3/29/2013 1:56:00 PM
Lead	0.0052	0.0050	1	mg/L	1	3/29/2013 1:04:27 PM
Magnesium	36	1.0	1	mg/L	1	3/29/2013 1:04:27 PM
Manganese	0.72	0.0020	ı	mg/L	1	3/29/2013 1:04:27 PM
Potassium	4.6	1.0		mg/L	1	3/29/2013 1:04:27 PM
Selenium	ND	0.050		mg/L	1	3/29/2013 1:04:27 PM
Silver	ND	0.0050		mg/L	1	3/29/2013 1:04:27 PM
Sodium	660	20	1	mg/L	20	3/29/2013 1:56:00 PM
SM2510B: SPECIFIC CONDUCTAN	_					Analyst: JML
Conductivity	4000	0.010	1	µmhos/cm	1	3/21/2013 6:02:18 PM
SM4500-H+B: PH						Analyst: JML
pH	7.66	1.68	Н	pH units	1	3/21/2013 6:02:18 PM
SM2320B: ALKALINITY						Analyst: JML
Bicarbonate (As CaCO3)	540	20)	mg/L CaCO3	1	3/21/2013 6:02:18 PM
Carbonate (As CaCO3)	ND	2.0	1	mg/L CaCO3	1	3/21/2013 6:02:18 PM
Total Alkalinity (as CaCO3)	540	20	1	mg/L CaCO3	1	3/21/2013 6:02:18 PM
SM2540C MOD: TOTAL DISSOLVE	D SOLIDS					Analyst: KS
Total Dissolved Solids	3090	200	•	mg/L	1	3/25/2013 3:45:00 PM

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH greater than 2
- RL Reporting Detection Limit

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/3/2013

Client Sample ID: MW-2 CLIENT: Western Refining Southwest, Inc.

Collection Date: 3/20/2013 12:18:00 PM **Bloomfield Crude Station** Project: Matrix: AQUEOUS Received Date: 3/21/2013 10:00:00 AM Lab ID: 1303833-002

Analyses	Result	RL (Qual U	Inits	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	ND	1.0		μg/L	1	3/26/2013 2:33:10 PM
Toluene	ND	1.0	Ì	μg/L	1	3/26/2013 2:33:10 PM
Ethylbenzene	ND	1.0		μg/L	1	3/26/2013 2:33:10 PM
Xylenes, Total	ND	2.0		μg/L	1	3/26/2013 2:33:10 PM
Surr. 4-Bromofluorobenzene	103	69.4-129	•	%REC	1	3/26/2013 2:33:10 PM
EPA METHOD 300.0: ANIONS						Analyst: JRR
Chloride	45	10		mg/L	20	3/22/2013 12:15:09 AM
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	3/22/2013 12:02:44 AM
Nitrogen, Nitrate (As N)	ND	0.10	1	mg/L	1	3/22/2013 12:02:44 AM
Sulfate	1000	25	•	mg/L	50	3/23/2013 12:56:19 AM
SM2340B: HARDNESS						Analyst: JLF
Hardness (As CaCO3)	790	6.6	1	mg/L	1	3/29/2013 10:32:00 AM
EPA METHOD 7470: MERCURY						Analyst: TMG
Mercury	ND	0.00020	1	mg/L	1	3/25/2013 3:12:38 PM
EPA 6010B: TOTAL RECOVERABLE	METALS					Analyst: JLF
Arsenic	ND	0.020		mg/L	1	3/29/2013 1:09:49 PM
Barium	0.083	0.020		mg/L	1	3/29/2013 1:09:49 PM
Cadmium	ND	0.0020		mg/L	1	3/29/2013 1:09:49 PM
Calcium	270	5.0		mg/L	5	3/29/2013 1:12:37 PM
Chromium	ND	0.0060		mg/L	1	3/29/2013 1:09:49 PM
Iron	8.5	0.50	1	mg/L	10	3/29/2013 1:58:51 PM
Lead	0.0071	0.0050	1	mg/L	1	3/29/2013 1:09:49 PM
Magnesium	30	1.0		mg/L	1	3/29/2013 1:09:49 PM
Manganese	3.8	0.010		mg/L	5	3/29/2013 1:12:37 PM
Potassium	2.9	1.0		mg/L	1	3/29/2013 1:09:49 PM
Selenium	ND	0.050		mg/L	1	3/29/2013 1:09:49 PM
Silver	ND	0.0050		mg/L	1	3/29/2013 1:09:49 PM
Sodium	740	10		mg/L	10	3/29/2013 1:58:51 PM
SM2510B: SPECIFIC CONDUCTANC	E					Analyst: JML
Conductivity	4100	0.010		µmhos/cm	1	3/21/2013 6:22:12 PM
SM4500-H+B: PH						Analyst: JML
рН	7.56	1.68	Н	pH units	1	3/21/2013 6:22:12 PM
SM2320B: ALKALINITY						Analyst: JML
Bicarbonate (As CaCO3)	1300	50		mg/L CaCO3	2.5	3/22/2013 5:57:56 PM
Carbonate (As CaCO3)	ND	5.0		mg/L CaCO3	2.5	3/22/2013 5:57:56 PM
Total Alkalinity (as CaCO3)	1300	50		mg/L CaCO3	2.5	3/22/2013 5:57:56 PM
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst: KS
Total Dissolved Solids	3190	200	*	mg/L	1	3/25/2013 3:45:00 PM

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH greater than 2
- Reporting Detection Limit

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits

Lab Order 1303833

Date Reported: 4/3/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-4

Project: Bloomfield Crude Station

Collection Date: 3/20/2013 1:07:00 PM

Lab ID: 1303833-003

Matrix: AQUEOUS

Received Date: 3/21/2013 10:00:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES	1111					Analyst: NSB
Benzene	ND	1.0		μg/L	1	3/26/2013 3:03:16 PM
Toluene	ND	1.0		μg/L	1	3/26/2013 3:03:16 PM
Ethylbenzene	ND	1.0		µg/L	1	3/26/2013 3:03:16 PM
Xylenes, Total	ND	2.0		μg/L	1	3/26/2013 3:03:16 PM
Surr: 4-Bromofluorobenzene	92.6	69.4-129		%REC	1	3/26/2013 3:03:16 PM
EPA METHOD 300.0: ANIONS						Analyst: JRR
Chloride	41	10		mg/L	20	3/22/2013 12:39:59 AM
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	3/22/2013 12:27:34 AM
Nitrogen, Nitrate (As N)	0.16	0.10		mg/L	1	3/22/2013 12:27:34 AM
Sulfate	2500	50	•	mg/L	100	3/23/2013 1:08:43 AM
SM2340B: HARDNESS						Analyst: JLF
Hardness (As CaCO3)	1400	6.6		mg/L	1	3/29/2013 10:32:00 AM
EPA METHOD 7470: MERCURY						Analyst: TMG
Mercury	ND	0.00020		mg/L	1	3/25/2013 3:14:28 PM
EPA 6010B: TOTAL RECOVERABLE	METALS					Analyst: JLF
Arsenic	ND	0.020		mg/L	1	3/29/2013 1:15:29 PM
Barium	0.35	0.020		mg/L	1	3/29/2013 1:15:29 PM
Cadmium	ND	0.0020		mg/L	1	3/29/2013 1:15:29 PM
Calcium	480	5.0		mg/L	5	3/29/2013 1:18:14 PM
Chromium	0.038	0.0060		mg/L	1	3/29/2013 1:15:29 PM
Iron	68	5.0		mg/L	100	3/29/2013 2:16:10 PM
Lead	0.014	0.0050		mg/L	1	3/29/2013 1:15:29 PM
Magnesium	58	1.0		mg/L	1	3/29/2013 1:15:29 PM
Manganese	7.0	0.020		mg/L	10	3/29/2013 2:13:30 PM
Potassium	12	1.0		mg/L	1	3/29/2013 1:15:29 PM
Selenium	ND	0.050		mg/L	1	3/29/2013 1:15:29 PM
Silver	ND	0.0050		mg/L	1	3/29/2013 1:15:29 PM
Sodium	760	10		mg/L	10	3/29/2013 2:13:30 PM
SM2510B: SPECIFIC CONDUCTANCE	Ē					Analyst: JML
Conductivity	5000	0.010		µmhos/cm	1	3/21/2013 6:54:40 PM
SM4500-H+B: PH						Analyst: JML
pH	7.40	1.68	Н	pH units	1	3/21/2013 6:54:40 PM
SM2320B: ALKALINITY						Analyst: JML
Bicarbonate (As CaCO3)	510	20		mg/L CaCO3	1	3/21/2013 6:54:40 PM
Carbonate (As CaCO3)	ND	2.0		mg/L CaCO3	1	3/21/2013 6:54:40 PM
Total Alkalinity (as CaCO3)	510	20		mg/L CaCO3	1	3/21/2013 6:54:40 PM
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst: KS
Total Dissolved Solids	4180	200	•	mg/L	1	3/25/2013 3:45:00 PM

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Lab Order 1303833

Date Reported: 4/3/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Bloomfield Crude Station

Lab ID: 1303833-004

Project:

Collection Date: 3/20/2013 2:00:00 PM

Client Sample ID: MW-7

Received Date: 3/21/2013 10:00:00 AM

Analyses	Result	RL (Qual (Inits	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES	******					Analyst: NSB
Benzene	44	20	1	µg/L	20	3/26/2013 3:33:21 PM
Toluene	ND	20	i	μg/L	20	3/26/2013 3:33:21 PM
Ethylbenzene	210	20	1	µg/L	20	3/26/2013 3:33:21 PM
Xylenes, Total	920	40	I	µg/L	20	3/26/2013 3:33:21 PM
Surr: 4-Bromofluorobenzene	98.8	69.4-129	,	%REC	20	3/26/2013 3:33:21 PM
EPA METHOD 300.0: ANIONS						Analyst: JRR
Chloride	22	10	1	mg/L	20	3/22/2013 1:04:49 AM
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	3/22/2013 12:52:24 AM
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	3/22/2013 12:52:24 AM
Sulfate	210	10	1	mg/L	20	3/22/2013 1:04:49 AM
SM2340B: HARDNESS						Analyst: JLF
Hardness (As CaCO3)	580	6.6		mg/L	1	3/29/2013 10:32:00 AM
EPA METHOD 7470: MERCURY						Analyst: TMG
Mercury	ND	0.00020		mg/L	1	3/25/2013 3:16:23 PM
EPA 6010B: TOTAL RECOVERABLE N	METALS					Analyst: JLF
Arsenic	ND	0.020		mg/L	1	3/29/2013 1:20:54 PM
Barium	4.9	0.10		mg/L	5	3/29/2013 1:23:37 PM
Cadmium	ND	0.0020		mg/L	1	3/29/2013 1:20:54 PM
Calcium	200	5.0		mg/L	5	3/29/2013 1:23:37 PM
Chromium	ND	0.0060		mg/L	1	3/29/2013 1:20:54 PM
Iron	62	5.0		mg/L	100	3/29/2013 2:27:27 PM
Lead	0.0090	0.0050		mg/L	1	3/29/2013 1:20:54 PM
Magnesium	22	1.0		mg/L	1	3/29/2013 1:20:54 PM
Manganese	1.5	0.010		mg/L	5	3/29/2013 1:23:37 PM
Potassium	3.1	1.0		mg/L	1	3/29/2013 1:20:54 PM
Selenium	ND	0.050		mg/L	1	3/29/2013 1:20:54 PM
Silver	ND	0.0050		mg/L	1	3/29/2013 1:20:54 PM
Sodium	160	5.0		mg/L	5	3/29/2013 1:23:37 PM
SM2510B: SPECIFIC CONDUCTANCE						Analyst: JML
Conductivity	1600	0.010		µmhos/cm	1	3/21/2013 7:15:36 PM
SM4500-H+B: PH						Analyst: JML
pН	7.58	1.68	Н	pH units	1	3/21/2013 7:15:36 PM
SM2320B: ALKALINITY						Analyst: JML
Bicarbonate (As CaCO3)	670	20		mg/L CaCO3	1	3/21/2013 7:15:36 PM
Carbonate (As CaCO3)	ND	2.0		mg/L CaCO3	1	3/21/2013 7:15:36 PM
Total Alkalinity (as CaCO3)	670	20		mg/L CaCO3	1	3/21/2013 7:15:36 PM
SM2540C MOD: TOTAL DISSOLVED S	OLIDS					Analyst: KS
Total Dissolved Solids	1100	200	•	mg/L	1	3/25/2013 3:45:00 PM

Matrix: AQUEOUS

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits 4 of 13

Lab Order 1303833

Date Reported: 4/3/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Bloomfield Crude Station

Lab ID: 1303833-005 **Client Sample ID: MW-5**

Collection Date: 3/20/2013 2:34:00 PM Received Date: 3/21/2013 10:00:00 AM

Analyses	Result	RL (Qual U	J nits	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES	3					Analyst: NSB
Benzene	ND	1.0		μg/L	1	3/26/2013 4:03:23 PM
Toluene	ND	1.0		µg/L	1	3/26/2013 4:03:23 PM
Ethylbenzene	ND	1.0		μg/L	1	3/26/2013 4:03:23 PM
Xylenes, Total	ND	2.0		µg/L	1	3/26/2013 4:03:23 PM
Surr: 4-Bromofluorobenzene	91.4	69.4-129		%REC	1	3/26/2013 4:03:23 PM
EPA METHOD 300.0: ANIONS						Analyst: JRR
Chloride	680	25	*	mg/L	50	3/23/2013 1:21:08 AM
Nitrogen, Nitrite (As N)	ND	2.0		mg/L	20	3/22/2013 1:54:28 AM
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	3/22/2013 1:42:03 AM
Sulfate	1900	25	*	mg/L	50	3/23/2013 1:21:08 AM
SM2340B: HARDNESS						Analyst: JLF
Hardness (As CaCO3)	1600	6.6		mg/L	1	3/29/2013 10:32:00 AM
EPA METHOD 7470: MERCURY						Analyst: TMG
Mercury	ND	0.00020		mg/L	1	3/25/2013 3:18:13 PM
EPA 6010B: TOTAL RECOVERAB	LE METALS					Analyst: JLF
Arsenic	ND	0.020		mg/L	1	3/29/2013 1:34:27 PM
Barium	0.12	0.020		mg/L	1	3/29/2013 1:34:27 PM
Cadmium	ND	0.0020		mg/L	1	3/29/2013 1:34:27 PM
Calcium	540	10		mg/L	10	3/29/2013 2:21:50 PM
Chromium	ND	0.0060		mg/L	1	3/29/2013 1:34:27 PM
Iron	12	1.0		mg/L	20	3/29/2013 2:24:42 PM
Lead	0.0057	0.0050		mg/L	1	3/29/2013 1:34:27 PM
Magnesium	50	1.0		mg/L	1	3/29/2013 1:34:27 PM
Manganese	9.5	0.020		mg/L	10	3/29/2013 2:21:50 PM
Potassium	6.8	1.0		mg/L	1	3/29/2013 1:34:27 PM
Selenium	ND	0.050		mg/L	1	3/29/2013 1:34:27 PM
Silver	ND	0.0050		mg/L	1	3/29/2013 1:34:27 PM
Sodium	830	10		mg/L	10	3/29/2013 2:21:50 PM
SM2510B: SPECIFIC CONDUCTAL		0.010		umboo/om	1	Analyst: JML 3/21/2013 7:40:00 PM
Conductivity	6100	0.010		µmhos/cm	1	
SM4500-H+B: PH	7.10	1.68	ы	مدادها	1	Analyst: JML 3/21/2013 7:40:00 PM
pH	7.10	1.00	Н	pH units	'	
SM2320B: ALKALINITY					_	Analyst: JML
Bicarbonate (As CaCO3)	820	20		mg/L CaCO3	1	3/21/2013 7:40:00 PM
Carbonate (As CaCO3)	ND	2.0		mg/L CaCO3	1	3/21/2013 7:40:00 PM
Total Alkalinity (as CaCO3)	820	20		mg/L CaCO3	1	3/21/2013 7:40:00 PM
SM2540C MOD: TOTAL DISSOLV	ED SOLIDS					Analyst: KS
Total Dissolved Solids	4480	200	*	mg/L	1	3/25/2013 3:45:00 PM

Matrix: AQUEOUS

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH greater than 2
- Reporting Detection Limit

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits Page 5 of 13

Analytical Report

Lab Order 1303833

Hall Environmental Analysis Laboratory, Inc. Date Reported: 4/3/2013

Client Sample ID: MW-6 **CLIENT:** Western Refining Southwest, Inc.

Project: Bloomfield Crude Station Collection Date: 3/20/2013 3:05:00 PM

Lab ID: 1303833-006 Matrix: AQUEOUS Received Date: 3/21/2013 10:00:00 AM

Analyses	Result	RL (Qual U	Jnits	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	ND	2.0		μg/L	2	3/27/2013 4:22:24 PM
Toluene	ND	2.0		μg/L	2	3/27/2013 4:22:24 PM
Ethylbenzene	ND	2.0		μg/L	2	3/27/2013 4:22:24 PM
Xylenes, Total	ND	4.0		μg/L	2	3/27/2013 4:22:24 PM
Surr. 4-Bromofluorobenzene	83.2	69.4-129	,	%REC	2	3/27/2013 4:22:24 PM
EPA METHOD 300.0: ANIONS						Analyst: JRR
Chloride	120	10		mg/L	20	3/22/2013 2:19:17 AM
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	3/22/2013 2:06:53 AM
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	3/22/2013 2:06:53 AM
Sulfate	920	10	*	mg/L	20	3/22/2013 2:19:17 AM
SM2340B: HARDNESS						Analyst: JLF
Hardness (As CaCO3)	1000	6.6		mg/L	1	3/29/2013 10:32:00 AM
EPA METHOD 7470: MERCURY						Analyst: TMG
Mercury	ND	0.00020		mg/L	1	3/25/2013 3:20:04 PM
EPA 6010B: TOTAL RECOVERABLE	METALS					Analyst: JLF
Arsenic	ND	0.20		mg/L	10	3/29/2013 1:45:13 PM
Barium	1.8	0.20		mg/L	10	3/29/2013 1:45:13 PM
Cadmium	0.054	0.020		mg/L	10	3/29/2013 1:45:13 PM
Calcium	290	20		mg/L	20	3/29/2013 2:30:15 PM
Chromium	0.073	0.060		mg/L	10	3/29/2013 1:45:13 PM
Iron	470	100		mg/L	2000	3/29/2013 3:34:23 PM
Lead	0.11	0.050		mg/L	10	3/29/2013 1:45:13 PM
Magnesium	72	20		mg/L	20	3/29/2013 2:30:15 PM
Manganese	6.8	0.020		mg/L	10	3/29/2013 1:45:13 PM
Potassium	25	20		mg/L	20	3/29/2013 2:30:15 PM
Selenium	ND	0.50		mg/L	10	3/29/2013 1:45:13 PM
Silver	ND	0.050		mg/L	10	3/29/2013 1:45:13 PM
Sodium	580	20		mg/L	20	3/29/2013 2:30:15 PM
SM2510B: SPECIFIC CONDUCTANCE						Analyst: JML
Conductivity	3600	0.010		µmhos/cm	1	3/21/2013 8:09:36 PM
SM4500-H+B: PH						Analyst: JML
pH	7.46	1.68	Н	pH units	1	3/21/2013 8:09:36 PM
SM2320B: ALKALINITY						Analyst: JML
Bicarbonate (As CaCO3)	1100	20		mg/L CaCO3	1	3/21/2013 8:09:36 PM
Carbonate (As CaCO3)	ND	2.0		mg/L CaCO3	1	3/21/2013 8:09:36 PM
Total Alkalinity (as CaCO3)	1100	20		mg/L CaCO3	1	3/21/2013 8:09:36 PM
SM2540C MOD: TOTAL DISSOLVED S	OLIDS					Analyst: KS
Total Dissolved Solids	2630	200	*	mg/L	1	3/25/2013 3:45:00 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH greater than 2
- Reporting Detection Limit

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303833 03-Apr-13

Client:	Western Refining S	outhwes	st, Inc.							
Project:	Bloomfield Crude S	Station								
Sample ID MB		ype: MB					300.0: Anions	•		
Client ID: PBW	Batch	1 ID: R9	348		unNo: 9					
Prep Date:	Analysis D	ate: 3/2	21/2013	S	eqNo: 2	66558	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50								
Nitrogen, Nitrite (As N)	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Sulfate	ND	0.50								
Sample ID LCS	SampT	ype: LC	S	Tes	Code: El	PA Method	300.0: Anion:	3		
Client ID: LCSW	Batch	n ID: R9	348	F	tunNo: 9	348				
Prep Date:	Analysis D)ate: 3/	21/2013	s	eqNo: 2	66559	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.8	0.50	5.000	0	96.0	90	110			
Nitrogen, Nitrite (As N)	0.93	0.10	1.000	0	93.2	90	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	100	90	110			
Sulfate	9.7	0.50	10.00	0	96.5	90	110			
Sample ID MB	Sampl	уре: МЕ	BLK	Tes	tCode: El	PA Method	300.0: Anion:	5		
Client ID: PBW	Batc	h ID: R9	348	F	RunNo: 9	348				
Prep Date:	Analysis D	Date: 3/	22/2013	8	SeqNo: 2	66612	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50								
Nitrogen, Nitrite (As N)	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Sulfate	ND	0.50								
Sample ID LCS	Samp	Гуре: LC	s	Tes	tCode: E	PA Method	300.0: Anion	8		
Client ID: LCSW	Batc	h ID: R9	348	F	RunNo: 9	348				
Prep Date:	Analysis [Date: 3/	22/2013	5	SeqNo: 2	66613	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.8	0.50	5.000	0	96.7	90	110			
Nitrogen, Nitrite (As N)	0.93	0.10	1.000	0	93.3	90	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	99.9	90	110			
Sulfate	9.6	0.50	10.00	0	96.5	90	110			
Sample ID MB	Samp	Гуре: МЕ	BLK	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID: PBW	Batc	h ID: R9	384	F	RunNo: 9	384				
Bron Doto:	Analysis I	Date: 3/	22/2013	5	SeqNo: 2	267901	Units: mg/L			
Prep Date:	Allalysis I	Jaie. J					•			
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- P Sample pH greater than 2
- Reporting Detection Limit

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits

Page 7 of 13

Spike Recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303833

03-Apr-13

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Crude Station

Sample ID MB

SampType: MBLK

TestCode: EPA Method 300.0: Anions

Client ID: PBW

Batch ID: R9384

RunNo: 9384

Prep Date:

SeqNo: 267901

Units: mg/L

Analysis Date: 3/22/2013

%REC LowLimit

HighLimit

RPDLimit

Qual

Analyte Sulfate

Result **PQL** ND 0.50

TestCode: EPA Method 300.0: Anions

%RPD

Qual

Sample ID LCS LCSW SampType: LCS

RunNo: 9384

Client ID: Prep Date:

Batch ID: R9384

5.0

10

SeqNo: 267902

LowLimit

Units: mg/L

RPDLimit

Analyte Chloride

Analysis Date: 3/22/2013 Result **PQL**

SPK value SPK Ref Val %REC 99.0 0

HighLimit %RPD 110

Sulfate

0.50 5.000 0.50 10.00

SPK value SPK Ref Val

100

90 90

110

Qualifiers:

RL

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Reporting Detection Limit

Analyte detected below quantitation limits J

Sample pH greater than 2

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Page 8 of 13

Hall Environmental Analysis Laboratory, Inc.

1303833 03-Apr-13

WO#:

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Crude Station

Sample ID 5ML RB	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBW	Batch	ID: R9	435	F	RunNo: 9	435				
Prep Date:	Analysis D	ate: 3/	26/2013	s	SeqNo: 2	69509	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	18		20.00		90.1	69.4	129			

Sample ID 100NG BTEX LC	S Samp1	ype: LC	s	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSW	Batcl	n ID: R9	435	F	RunNo: 9	435				
Prep Date:	Analysis E)ate: 3/	26/2013	8	SeqNo: 2	69515	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	104	80	120			
Toluene	21	1.0	20.00	0	104	80	120			
Ethylbenzene	21	1.0	20.00	0	105	80	120			
Xylenes, Total	65	2.0	60.00	0	108	80	120			
Surr. 4-Bromofluorobenzene	20		20.00		102	69.4	129			

Sample ID 1303833-001AM	S Samp1	Гуре: М \$	3	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: MW-3	Batc	h ID: R9	435	F	RunNo: 9	435				
Prep Date:	Analysis [Date: 3/	26/2013	\$	SeqNo: 2	69517	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	17	1.0	20.00	0	87.4	80	120			
Toluene	18	1.0	20.00	0	88.1	80	120			
Ethylbenzene	18	1.0	20.00	0	89.1	80	120			
Xylenes, Total	55	2.0	60.00	0	91.3	80	120			
Surr: 4-Bromofluorobenzene	20		20.00		101	69.4	129			

Sample ID 1303833-001AM	SD SampT	ype: MS	SD	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: MW-3	Batch	1D: R9	435	F	RunNo: 9	435				
Prep Date:	Analysis D	ate: 3/	26/2013	S	SeqNo: 2	69518	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	17	1.0	20.00	0	86.7	80	120	0.735	20	
Toluene	17	1.0	20.00	0	86.6	80	120	1.71	20	
Ethylbenzene	18	1.0	20.00	0	87.5	80	120	1.80	20	
Xylenes, Total	54	2.0	60.00	0	89.2	80	120	2.38	20	
Surr. 4-Bromofluorobenzene	20		20.00		101	69.4	129	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH greater than 2
- Reporting Detection Limit

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits

Page 9 of 13

Hall Environmental Analysis Laboratory, Inc.

03-Apr-13

Qual

1303833

WO#:

RPDLimit

HighLimit

%RPD

Client: Western Refining Southwest, Inc. Project: **Bloomfield Crude Station**

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8021B: Volatiles

Client ID: **PBW** Batch ID: R9474 RunNo: 9474

Prep Date: Analysis Date: 3/27/2013 SeqNo: 270595 Units: µg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit Benzene ND 1.0 Toluene ND 1.0 Ethylbenzene ND 1.0 Xylenes, Total ND 2.0

Surr: 4-Bromofluorobenzene 17 20.00 85.6 69.4 129

Sample ID 100NG BTEX LO	CS Samp	Type: LC	s	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSW	Batc	h ID: R9	474	F	RunNo: 9	474				
Prep Date:	Analysis [Date: 3/	27/2013	S	SeqNo: 2	70596	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	100	80	120			
Toluene	21	1.0	20.00	0	104	80	120			
Ethylbenzene	21	1.0	20.00	0	105	80	120			
Xylenes, Total	63	2.0	60.00	0	105	80	120			
Surr: 4-Bromofluorobenzene	18		20.00		88.7	69.4	129			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH greater than 2
- Reporting Detection Limit

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits

Page 10 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303833

03-Apr-13

Client:

Western Refining Southwest, Inc.

0.0047 0.00020

0.005000

Project:

Mercury

Bloomfield Crude Station

Fraject: Broom	mileta erado station			
Sample ID MB-6636	SampType: MBLK	TestCode: EPA Method	7470: Mercury	
Client ID: PBW	Batch ID: 6636	RunNo: 9407		
Prep Date: 3/25/2013	Analysis Date: 3/25/2013	SeqNo: 268555	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	ND 0.00020			***
Sample ID LCS-6636	SampType: LCS	TestCode: EPA Method	l 7470: Mercury	
Client ID: LCSW	Batch ID: 6636	RunNo: 9407		
Prep Date: 3/25/2013	Analysis Date: 3/25/2013	SeqNo: 268556	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	0.0056 0.00020 0.005000	0 111 80	120	
Sample ID LCSD-6636	SampType: LCSD	TestCode: EPA Method	l 7470: Mercury	
Client ID: LCSS02	Batch ID: 6636	RunNo: 9407		
Prep Date: 3/25/2013	Analysis Date: 3/25/2013	SeqNo: 268557	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual

93.7

80

120

17.2

20

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- RL Reporting Detection Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Page 11 of 13

Hall Environmental Analysis Laboratory, Inc.

WO#: 1303833

03-Apr-13

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Crude Station

Sample ID mb-1

SampType: mblk Batch ID: R9343 TestCode: SM2320B: Alkalinity

PBW Client ID:

RunNo: 9343

SPK value SPK Ref Val %REC LowLimit

Prep Date:

Analyte

Analysis Date: 3/21/2013

SeqNo: 266457

Units: mg/L CaCO3

HighLimit

RPDLimit

Qual

Total Alkalinity (as CaCO3)

ND

Result

SampType: Ics

PQL

TestCode: SM2320B: Alkalinity

Sample ID Ics-1 Client ID: LCSW

Batch ID: R9343

RunNo: 9343

Prep Date:

Analysis Date: 3/21/2013

SeqNo: 266458

Units: mg/L CaCO3

Qual

Analyte

PQL

%REC LowLimit

HighLimit 110 %RPD **RPDLimit**

Total Alkalinity (as CaCO3)

Result 80 20

SPK value SPK Ref Val 100

90

%RPD

SampType: mblk

TestCode: SM2320B: Alkalinity

SeqNo: 267857

Sample ID mb-1 Client ID: PBW

Batch ID: R9383

Analysis Date: 3/22/2013

RunNo: 9383

Units: mg/L CaCO3

Analyte

ND

SampType: Ics

Result

80

SPK value SPK Ref Val Result PQL

%REC LowLimit

HighLimit

%RPD

RPDLimit Qual

Total Alkalinity (as CaCO3)

Sample ID Ics-1

Client ID: LCSW

Prep Date:

20

TestCode: SM2320B: Alkalinity

Prep Date:

Analysis Date: 3/22/2013

Batch ID: R9383

RunNo: 9383 SeqNo: 267858

Units: mg/L CaCO3

Qual

Analyte

SPK value SPK Ref Val %REC LowLimit

80.00

101

RPDLimit %RPD

Total Alkalinity (as CaCO3)

PQL 80.00

0

HighLimit 110

Qualifiers:

- Е Value above quantitation range

Reporting Detection Limit

- Analyte detected below quantitation limits
- Sample pH greater than 2
- Value exceeds Maximum Contaminant Level.
- Not Detected at the Reporting Limit ND

В

S

RPD outside accepted recovery limits

Analyte detected in the associated Method Blank

Spike Recovery outside accepted recovery limits

Holding times for preparation or analysis exceeded

Page 12 of 13

Hall Environmental Analysis Laboratory, Inc.

03-Apr-13

1303833

WO#:

Western Refining Southwest, Inc. **Client:**

Bloomfield Crude Station Project:

SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids Sample ID MB-6619

Client ID: PBW Batch ID: 6619 RunNo: 9396

SeqNo: 268242 Units: mg/L Prep Date: 3/22/2013 Analysis Date: 3/25/2013

%RPD **RPDLimit** Qual SPK value SPK Ref Val %REC LowLimit HighLimit Result **PQL** Analyte

Total Dissolved Solids ND 20.0

Sample ID LCS-6619 TestCode: SM2540C MOD: Total Dissolved Solids SampType: LCS

RunNo: 9396 Client ID: LCSW Batch ID: 6619

SeqNo: 268243 Units: mg/L Prep Date: 3/22/2013 Analysis Date: 3/25/2013

%RPD **RPDLimit** Qual %REC LowLimit HighLimit Result **PQL** SPK value SPK Ref Val Analyte

1020 102 80 120 20.0 1000 **Total Dissolved Solids**

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits J

Sample pH greater than 2

Reporting Detection Limit

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit ND

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits

Page 13 of 13

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-410; Website: www.hallenvironmental.com

Sample Log-In Check List

Work Order Number: 1303833 RcptNo: 1 Client Name: Western Refining Southw Received by/date: Michelle Garcia Logged By: 3/21/2013 10:00:00 AM Completed By: Michelle Garcia 3/21/2013 12:20:35 PM Reviewed By: Chain of Custody Yes 🗌 No 🗆 Not Present 🗹 1. Custody seals intact on sample bottles? Yes 🗸 No 🗌 Not Present 2. Is Chain of Custody complete? 3. How was the sample delivered? Courier Log In Yes 🗹 No 🗌 NA 🗆 4. Was an attempt made to cool the samples? No 🗌 NA 🗌 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 No 🗆 Yes 🗸 6. Sample(s) in proper container(s)? No 🗌 Yes 🔽 7. Sufficient sample volume for indicated test(s)? No 1 8. Are samples (except VOA and ONG) properly preserved? 9. Was preservative added to bottles? -001c, -was preservative added to occurs. ACRES 10.VOA vials have zero headspace? No 🗀 Yes \square No 🗹 11. Were any sample containers received broken? # of preserved bottles checked No 🗆 for pH: Yes V 12. Does paperwork match bottle labels? (niess noted) (Note discrepancies on chain of custody) No 🗌 Adjusted⁴ Yes 🗸 13. Are matrices correctly identified on Chain of Custody? No 🗆 Yes 🗸 14. Is it clear what analyses were requested? No 🗌 Checked by Yes 🗸 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handiing (if applicable) NA 🗹 Yes 🗌 No 🗌 16. Was client notified of all discrepancies with this order? Person Notified: Date: By Whom: eMail Phone Fax In Person Via: Regarding: **Client Instructions:** OOIC, COZE, COLL-HELD IN LOKIN FOR Z4 HES
AFTER PH MOUSTNENT: HOS/2/1 17. Additional remarks: 18. Cooler Information

MESKVN P.Ch Olive Project Name Mesk Mesk Project Name Mesk Mesk Project Name Mesk Mesk Project Name Mesk	g	Ē			I	≱	HALL ENVIRONMENTAL	Ž	80	Z		E	پ
Project Name: Project Name: Project Name: Project Name: Project Name: Project Name					⋖	Z		SI	3	80	8	5	≿
1900 Surplect #: A Section A Secti	celly Robinson	Project Name:	(_	ww.h	allenvi	onme	ntal.c	E			
1 1 1 1 1 1 1 1 1 1	1112	Bloom Find	Crude Station	4901	Hawkir	s NE	- Alb	Idner	que, N	M 87	60		
Analysis Request Project Manager: Project Man	S	Project #:		Tel.	505-34	5-397			5-345	4107			
4 (Full Validation)	505-632-416C						Analy	sis Re	senba				
ASN EL ASC.	Fax#:	Project Manager:		(մյս	·								
14 Full Validation Sampler DeVi	ackage:		26	0 86		(S							
Sempler DeV			0	න)		WIS			147				
Container Preservative Preserv		الاسما	PNCMANN	НЧТ	(r.8				2000	()			(N-
Container Preservative Preserv	1_			+ 3	111								ю Х
	(addi)			8T	ро						_		JS
1-3 Various 14 various -001 See 444 about ed 1-3 -1-4 -004 See A + + a ched 1-4 -1-5 See A + + a ched 1-4 -1-5 See A + + a ched 1-6 -1-6 A + + a ched 1-6 -1-7 See A + + a ched 1-6 -1-8 See A + + a ched 1-6 -1-8 See A + + a ched 1-6 -1-9 See A + + a ched 1-6 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Matrix			M + X3T8	rteM) H9T								elddu8 iA
2.18 AD MW-3 1307 AD MW-4 1424 AD MW-4 1424 AD MW-7 1424 AD MW-7 1425 AD MW-7 1427 AD MW-7 1427 AD MW-7 1428 AD MW-7 1428 AD MW-7 1428 AD MW-7 1428 AD MW-7 1429 AD MW-7 1429 AD MW-7 1429 AD MW-7 1420 AD M-7 142	AQ		-81	~	1	5	70		-			_	
307 AC MW-4	AO		~∞3		_	—	_	7		7		_	
400 AQ MW-7	Aco		C00	6		_	_	λ	۲,	Ψ	9		
1434 AC MW-S AC MW-C ACC A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & A -COC S & C A + + + A C h & C h -COC S & C A + + + A C h & C h -COC S & C A + + + A C h & C h -COC S & C A + + + A C h & C h -COC S & C A + + + A C h & C h -COC S & C A + + + A C h & C h -COC S & C A + + + A C h & C h -COC S & C A + + + A C h & C h -COC S & C A + + + A C h -COC S & C A + + + A C h -COC S & C A + + + A C h -COC S & C A + + + A C h -COC S & C C A + + + A C h -COC S & C A + + + A C h -COC S & C A + + + A C h -COC S & C A + + + A C h -COC S & C A + + + A C h -COC S & C A + + + A C h -COC S & C A + + + A C h -COC S & C A + + + A C h -COC S & C A + + + A C h -COC S & C A + A + + A C h -COC S & C A + A + A + A C h -COC S & C A + A + A C h -COC S & C A + A + A + A C h -COC S & C A + A + A + A C h -COC S & C A + A + A + A C h -COC S & C A + A + A + A C h -COC S & C A + A + A + A C h -COC S & C A + A + A + A C h -COC S & C A + A + A + A C h -COC S & C A + A + A + A	AO		-00d	م							7		
FOS AD MW-(p	40		-005	E			+		7		⋠		
ine: Relinquished by: Received	Aro	→	-006	Ŷ				7	2		70		
ime: Relinquished by: Received by: Received													
Received by: Processed by: Date Time Remarks: Copy results to Received by: Date Time Remarks: Processed by: Date Time Remarks: Processed by: Date Time Date)										
Received by: Chilotin Received by: Date Time Remarks: Please Coon results to him Relinquished by: Date Time Received by: Date Time Aagler Hrnv. Con 120 Mittal Mallace 120 100 Con													
Time: Relinquished by: Received by: Receiv													
ime: Relinquished by: Received by: Date Time Remarks: Child tw. Date Time Remarks: Picase Copy results to Received by: Date Time Relinquished by: Date Time Angle Picase Copy results to Anith Maller Anith Maller Anith Maller Anith Maller Anith Maller Anith Ani		•											
Time: Relinquished by: 10.33 First Received by: Date Time Remarks: Color Tescel Formation Time Relinquished by: Color Tescel Formation Time Received by: Color Time Time Additional Tescel									_				
The Relinquished by: 130 Militar Mules 120 Militar Waller Subcontracted to other accredited by this serves as notice of this possibility. Any subcontracted data will be clearly notated on the analytical report.	ime: Relinquished by:) Date 3	Remarks: P/e	ise	Š	1	A N	71±	1 5	Q		
ecessary, samples submitted to Hall Environmental may be subcontracted to other accredited legionatories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	Ime: Relinquished by:	Received by:	Date Time (3/5/13/0:0	3	ਨ ਨ	ger	10	7	7.	ğ	ر		
	ecessary, samples submitted to Hall Environmental may be subc	contracted to other accredited laboratori	es. This serves as notice of this	possibility. Any	sub-conft	acted da	84 EV	dearly n	otated o	the and	alytical	Hoda	

2012 BCS WATER SAMPLING

MONITORING WELLS:

THE PARTY

MW-2

MW-3

MW-4

MW-5

MW-6

MW-7

PARAMETERS FOR ALL WELLS:

BTEX

method 8021

GENERAL CHEM

→ pH

__ EC

- TDS

alkalinity

hardness

- anions

- chloride

- sulfate

- nitrate/nitrite

cations

calcium

iron

magnesium

manganese

potassium

sodium

RCRA 8 METALS

- arsenic

barium

~ cadmium

- chromium

lead بر

✓ selenium

_ mercury

APPENDIX C HISTORICAL GROUNDWATER SAMPLING DATA

HISTORICAL GROUNDWATER ANALYTICAL RESULTS - BTEX BLOOMFIELD CRUDE STATION WESTERN REFINING SOUTHWEST, INC

Dec-99 May-01	640 220 NSP NSP NSP	600 280 NSP	82 53	690
Apr-95 Sep-99 Dec-99 May-01	220 NSP NSP NSP	280		
Sep-99 Dec-99 May-01	NSP NSP NSP			430
Dec-99 May-01	NSP NSP		NSP	NSP
May-01	NSP	NSP	NSP	NSP
1 1 1		NSP	NSP	NSP
May-02	NSP I	NSP	NSP	NSP
1	1700	ND	650	3200
1	1100	ND	340	1800
Jan-05	430	ND	360	1000
Jan-06	250	ND	410	790
Sep-06	230	50	290	640
Jan-07	8.7	9.7	16	55
Apr-07	7.8	6	61	110
Jul-07	4.2	20	30	68
Oct-07	0.87	18	120	180
Jan-08	4.4	45	24	100
May-08	0.86	12.3	<0.5	16.6
Aug-08	1.1	7.3	14	28
Nov-08	1.7	2	7.3	15
Jan-09	1.6	ND	2.1	6.9
Feb-09	<1.0	<1.0	2.3	7.7
May-09	1.1	2.1	1.0	6.8
Aug-09	1.2	<1.0	<1.0	2.0
Nov-09	<1.0	<1.0	<1.0	<2.0
Jan-10	<1.0	<1.0	<1.0	<2.0
Feb-10	<1.0	<1.0	<1.0	<2.0
Jan-11	<1.0	<1.0	<1.0	2.5
Jan-12	<1.0	<1.0	<1.0	<2.0
Mar-13	<1.0	<1.0	<1.0	<2.0
MW-3 Sep-94	ND	ND	ND	ND
Apr-95	ND	ND	ND	ND
Sep-99	ND	ND	ND	ND
Dec-99	ND	ND	ND	ND
May-01	ND	ND	ND	ND
May-02	ND	ND	ND	ND
Jan-03	ND	ND	ND	ND
Jan-04	ND	ND	ND	ND ND
Jan-05	ND	ND	ND	ND
Jan-06	ND	ND	ND	ND
Jan-07	0.8 ND	ND ND	ND ND	ND ND
Jan-08	ND ND	ND ND	ND ND	ND ND
Jan-09 Jan-10	<1.0	<1.0	<1.0	<2.0
Jan-10 Jan-11	<1.0	<1.0 <1.0	<1.0 <1.0	<2.0
Jan-12	<1.0	<1.0	<1.0	<2.0
Mar-13	<1.0	<1.0	<1.0	<2.0
MW-4 Sep-94	2.1	ND	ND	1.2
Apr-95	ND	ND	ND	ND
Sep-99	ND	ND	ND	ND
Dec-99	ND	ND	ND	ND
May-01	ND	ND	ND	ND
May-02	ND	ND	ND	ND
Jan-03	ND	ND	ND	ND
Jan-04	ND	ND	ND	ND
Jan-05	ND	ND	ND	ND
Jan-06	ND	ND	ND	ND
Jan-07	ND	ND	ND	ND
Jan-08	ND	ND	ND	ND
Jan-09	ND	ND	ND	ND
Jan-10	<1.0	<1.0	<1.0	<2.0
Jan-11	<1.0	<1.0	<1.0	<2.0
Jan-12 Mar-13	<1.0 <1.0	<1.0 <1.0	<1,0 <1,0	<2.0 <2.0

HISTORICAL GROUNDWATER ANALYTICAL RESULTS - BTEX **BLOOMFIELD CRUDE STATION** WESTERN REFINING SOUTHWEST, INC

Well Number	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes
		(ug/l)	(ug/l)	(ug/l)	(ug/l)
MW-5	Sep-94	NS	NS	NS	NS
	Apr-95	ND	ND	ND	ND
	Sep-99	ND	ND	ND	ND
	Dec-99	ND	ND	ND	ND
	May-01	ND	ND	ND	ND
	May-02	ND	ND	ND	ND
	Jan-03	ND	ND	ND	ND
	Jan-04	ND	ND	ND	1.1
	Jan-05	ND	ND	ND	ND
	Jan-06	ND	ND	ND	ND
	Jan-07	ND	ND	ND	ND
	Jan-08	ND	ND	ND	ND
	Jan-09	ND	ND	ND	ND
	Jan-10	<1.0	<1.0	<1.0	<2.0
	Jan-11	<1.0	<1.0	<1.0	<2.0
	Jan-12	<1.0	<1.0	<1.0	<2.0
	Mar-13	<1.0	<1.0	<1.0	<2.0
MW-6	May-01	12	15	13	83
	May-02	ND	ND	0.53	1.4
	Oct-02	ND	ND	ND	3.2
	Jan-03	6	20	87	350
	Jul-03	ND	2.7	3.2	16
	Sep-03	0.8	3.7	4	24
	Jan-04	0.9	0.6	2.9	16
	Jan-05	ND	ND	ND	ND
	Jan-06	ND	ND	14	32
	Jan-07	ND	ND	3.6	9.1
	Jan-08	0.9	11	130	930
	Jan-09	ND	ND	66	510
	Jan-10	<5.0	<5.0	<5.0	<10
	Jan-11	<10.0	<10.0	140	960
	Jan-12	<10.0	<10.0	61	220
MW-7	Mar-13	<2.0	<2.0	<2.0	<4.0
MW-/	May-01 Jun-02	2,400	ND ND	380	2,800
	Oct-02	2,000	ND ND	140 79	1,100
		1,100	ND ND	-	490
	Jan-03 Jan-04	3,200 3,300	ND ND	400 460	3,100 3,300
	Jan-04 Jan-05	1,600	ND ND	220	1,500
	Jan-05 Jan-06	1,400	ND ND	280	1,500
	Jan-07	1,200	ND ND	450	2,500
	Jan-08	750	ND ND	520	3,100
	Jan-09	570	ND ND	450	2,800
	Jan-10	270	<20	460	2,500
	Jan-12	140	<20	470	2,400
	Jan-12	62	<20	640	3,500
	Mar-13	44	<20	210	920
NMWQCC Standard		10	750	750	620

Notes:

ug/L - micrograms per liter

NSP - not sampled due to product in well

NS - not sampled

ND - not detected

< indicates result is less than the stated laboratory method detection limit

NMWQCC - New Mexico Water Quality Control Commission BTEX analyzed by EPA Method 8021.

Bold indicates value exceeds NMWQCC standard

Appendix C Page 2 of 2

HISTORICAL GROUNDWATER ANALYTICAL RESULTS - GENERAL CHEMISTRY BLOOMFIELD CRUDE STATION WESTERN REFINING SOUTHWEST, INC

(ns)		′		II A I U II CSS		Discombone	Contractor	Undamido	Chlorido	Culfato	Caladam	Magnetina	Detection	Codium	Doctory	Lon	Managanoso	Nitrate/
ļ	(umhos/cm)	(L/gm)	(CaCO3) (mg/l)	(CaCO3) (mg/l)	Absorption Ratio	(HCO3) (mg/l)	(CO3) (mg/l)	(mg/l)	(l/gm)	(Våw)	(J/Sw)	(L/gm)	(l/gm)	(mg/l)	(l/gm)	(L/gm)	(mg/l)	Nitrite (mg/l)
	4,920	3,049	957	ZZ	11.78	1,170	0.0	0.0	1,050	24	325	30	1.4	828	Ĭ	TN	IN	IN
	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	¥	NSP	NSP	NSP
	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	NSP	Ľ	NSP	NSP	NSP
	3,230	3,220	1,520	416	Ę	1,850	<1.0	<1.0	51	369	133	20	-	099	Ż	¥	Į,	Z
	3,100	2,000	1,500	420	N	1,500	<1.0	<1.0	82	130	140	18	3	089	¥	=	3.1	<0.10
	3,000	2,000	1,300	430	N	1,300	7.00	<1.0	110	58	140	19	3.8	620	Z	=	3.1	<0.10
	3,400	2,000	1,400	440	¥	1,400	4.3	<1.0	130	150	150	18	2.4	610	ĸ	4	1.3	<0.10
	5,490	4,580	726	1,190	N	724	2.57	<1.0	43.5	2,460	476	59.5	12.5	698	Z	16.3	5.0	¥
	5,100	4,350	543	1,220	K	534	<1.0	<1.0	42.3	2,468	463	49.5	2.93	739	¥	10.7	92.9	2
	4,300	3,900	160	Ę	¥	160	S	NT	42	2,000	380	42	2.3	720	0.038	BDL	0.25	Q
	3,700	3,160	006	870	¥	006	QN	Z	9	1,500	290	34	1.8	069	0.18	1.2	7.4	Ω
	3,700	2,750	1,300	088	ĸ	1,300	<5.0	Z	52	920	290	34	6.9	740	0.21	32	6.1	ጀ
	3,500	2,720	1,300	¥	IN	1,300	<5.0	N	40	890	220	26	2.5	710	0.079	9.7	3.7	0.13
	4.100	3,190	1,300	790	N	1,300	<5.0	IN	45	1,000	270	30	2.9	740	0.083	8.5	3.8	<0.1
-	4,250	3,413	521	ĸ	8.14	635	0.0	0.0	48	1,920	439	37	1.4	199	IN	IN	IN	¥
	4,500	3,960	459	1,220	K	559	<1.0	<1.0	78	2,250	423	40.4	2.5	711	ĸ	ž	Ĭ	¥
	4,440	3,820	358	1,290	N	437	<1.0	<1.0	46	2,520	446	43	9.0	705	ĸ	ž	Ĭ	¥
	4,320	3,660	260	1,230	Ę	683	<1.0	<1.0	26	2,330	428	39.4	1.6	671	¥	N	ĸ	Z
	4,500	4,000	999	1,400	K	999	1.0	<1.0	44	2,300	320	44	3.6	780	¥	3.9	0.79	<0.10
	4,700	2,000	260	1,400	¥	999	1.0	<1.0	37	2,100	450	47	3.9	069	Ę	3.9	0.79	<0.10
_	5,400	3,600	580	1,300	Ę	280	1.5	<1.0	37	2,200	450	47	3.7	089	토 !	4. 4	0.38	0.36
	4,780	3,750	292	1,120	Ę	563	1.92	<1.0	36.2	1,920	449	43	10.36	649	Ż,	1.28	0.41	z ;
	4,330	3,600	627	1,090	Ł	979	1.32	<1.0	34.8	1,690	419	39.8	2.36	594	I.V.	1.91	0.394	<u>2</u> ;
	4,000	3,700	280	Ę	¥	280	QN	N	37	2,000	390	37	2.2	009	0.049	3.2	9.6	3.1
	3,500	3,430	530	1,100	ĸ	530	QN	N	35	1,800	370	36	1.5	009	0.024	2 '	0.15	8.6
	4,100	3,400	260	1,300	N	260	<2.0	N	39	2,000	450	39	4.2	099	0.075	7	1.2	z
	4,000	3,470	999	뉟	LN	999	<2.0	K	37	2,400	410	39	2.3	620	0.033	2.9	0.55	41
-	4,000	3,090	540	096	NT	540	<2.0	NT	38	1,900	330	36	4.6	099	0.11	16	0.72	8.9
	5,420	4,389	576	LZ ,	10.88	703	0.0	0.0	175	2,470	439	53	3.5	904	Z Z	Z Z	Z	Z Þ
	5,090	4,630	490	1,460	Z !	297	^1.0 1.0	0.7	7 7	2,680	200	5.75	7.4.0	873	ž	<u> </u>	Ę	Ę
	5,140	4,420	328	016,1	Z !	43/	0.7	0.7	,	2,730	449	, 9	0.00	667	Ę	<u> </u>	5	Ę
	4,460	3,830	400	0,0,1	Z Z	488	7.0	9.7	7,0	2,5/0	390	40.0	6.7	810	Ę	==	5.2	<0.10
	7,000	000	730	300	: E	730	2.0	2.7	3 6	2 200	450	40	10	740	Z	<u>~</u>	Z	<0.10
_	4,500	4,000	450	000.1	I L	450	0.1	2.7	30	2,500	210	7.4	2 -	790	Ż	8	2.4	<0.10
	2,400	3,700	450	007,1	Į,	450	1.17	0.17	31	1,730	410	13.3	12.1	678	į	980	5.73	Ż
	4,700	3,090	459	070'1	I L	424	1.1	9.7		1,700	204	5.15	3 66	637	Ę	27.6	5.41	Ę
_	4,500	3,710	458	1,040 T	Z ţ	457	e.i.	0.12	2 5	1,770	324	41.4	3.7	200	0.037	£	47	<u> </u>
_	4,400	4,000	450	L S	Z,	450	2 5	LN :	36	2,400	90 5	747	3.7	0/0	0.037	3 5	÷ •	3 5
	4,300	4,060	490	1,200	Z ;	490	Q G	Z :	20	2,400	420	55	3.2	7,40	0.024	Ž:	ç. ç	Ę Ę
	4,600	4,010	460	1,600	Z !	460	<2.0	Z	36	2,600	240	6	9.6	09/	0.020	0.7	7.0	Z ?
	4,500	4,050	470	Ľ.	Z	470	<2.0	Z	30	2,700	480	21	0.0	069	0.11	ci (6 6	0.18

Page 1 of 2

HISTORICAL GROUNDWATER ANALYTICAL RESULTS - GENERAL CHEMISTRY BLOOMFIELD CRUDE STATION WESTERN REFINING SOUTHWEST, INC

Well Number	YEAR	Lab pH (su)	Conductivity (umbos/cm)	TDS (mg/l)	Alkalinity (CaCO3) (mg/l)	Hardness (CaCO3) (mg/l)	Sodium Absorption Ratio	Bicarbonate (HCO3) (mg/l)	Carbonate (CO3) (mg/l)	Hydroxide (mg/l)	Chloride (mg/l)	Sulfate (mg/l)	Calcium (mg/l)	Magnesium (mg/l)	Potassium (mg/l)	Sodium (mg/l)	Barium (mg/l)	Iron (mg/l)	Manganese (mg/l)	Nitrate/ Nitrite (mg/l)
	1994	6.90	6,000	4,410	277	Į,	8.84	945	0.0	0.0	966	1,390	634	51	6.6	861	F	E	<u>F</u> 5	Z Z
	2001	6.70	7,000	5,230	757	2,010	Z!	923	<1.0	0.12	1,320	1,230	8 (63.2	9.0	476	Z	Į į	ž	- E
	2002	6.50	6,880	4,810	567	1,880	Z 5	692	V-1.0	0.17	1,200	1,230	199	55.3	6.4 6.9	823	ΖÞ	ξŞ	ž	Z
	5007	0.00	6,910	090,0	830	7,000	Z 5	010,1	P	0.7	1,020	1 400	010	57	ç <u>-</u>	1 000	Ę	4.3	=======================================	<0.10
	2004	200	6,700	4,000	870	1 900	ξÞ	870	0.1	0:17	1.100	1,200	670	6 9	: 0	910	¥	4.3	11	<0.10
May 6	2006	7.10	8,000	4,300	066	1,800	E	066	<1.0	<1.0	1,000	1,200	630	28	12	920	M	=	28	<0.10
C-WW	2007	7.30	6,630	4,750	915	1,320	K	914	1.11	<1.0	884	1,800	621	57.6	16.6	968	E !	0.5	10.8	Ż Ś
	2008	7.10	6,750	4,780	933	1,510	臣!	932	0.15	<1.0 2.0	109	1,310	585	51.5	5.11	834	N C	1.32	10.7	2 2
	2009	6.80	6,200	5,700	840	1 Z L	Z	840	2 2	8 X 0 F	1,000 880	905,1	5 5	2 2	0. 4 0. 0	850	0.07	0.22	9.7	Q Q
	20102	7.20	5,900 5,800	4,700	780	009	ĘĘ	2,7	22.0 22.0	Z	350	906	570	2 4	5.6	850	0.038	1.7	9.4	Z
	2012	7.12	4,700	3,880	089	Z	ĽZ	089	<2.0	Ż	510	1,900	520	45	5.6	810	980.0	8.2	7.5	0.26
	2013	7.10	6,100	4,480	820	1,600	NT	820	<2.0	NT	680	1,900	540	50	8.9	830	0.12	12	9.5	<0.1
	2001	96.90	5,470	4,508	740	1,550	IN	903	<1.0	<1.0	08	2,780	534	53.3	6.3	1,030	Σ	Z	K !	Z !
	2002	08.9	4,460	3,560	699	932	Ę	816	<1.0	<1.0	55	1,900	319	33	2.5	830	Į.	Z	Z !	Z !
	2003	7.00	3,070	2,180	1,140	602	도 !	1,390	<1.0	0.1>	79	540	203	23.1	2.1	514	Z	Z ;	Z V	Z
	2004	7.20	4,100	3,000	1,000	1,190	I	000,1	۲۱.0 د د د	0.1>	8 8	1,400	330	500	67 5	0/0	Z	3 5	* *	01.0
	2005	7.20	4,100	3,000	1,100	670	z z	1,100 800	3.6	0: V	5 6 6	2.600	077	0 89	9./ 24	1,200	ξŻ		• =	<0.10
9-MM	2002	7.10	7.460	6,070	678	1.320	Z	676	2.23	√1.0 ∨1.0	57.5	3,140	529	65.1	17.3	1,500	¥	17.7	13.8	¥
	2008	7.50	2,840	1,920	1,140	533	Ž	1,140	1.25	1.25	⊽	312	195	25.6	2.83	442	ž	24.5	2.62	Ω
	5000	7.14	2,800	1,900	1,100	ž	Ę	1,100	QX	Z	180	260	180	23	2.2	430	1.2	9.1	1.9	2 !
	2010	7.53	2,900	2,130	1,000	630	뉟	1,000	R	L	170	200	210	26	1.6	510	2.3	8.9	3.1	2 5
	2011	7.50	3,100	1,890	1,100	086	Z	1,100	<2.0	Z,	150	490	320	46	7,	570	y. 4	\$ \$	3.1	Z
	2012	7.62	3,400	2,560	1,100	1 000 I	ZZ	1,100	62:0 62:0	Z Z	130	970	780 780 780	37	6.4 25	280	8	470	6.8	<0.1
	2001	6.70	2,160	1,710	009	843	ZV	732	<1.0	<1.0	52	642	296	25.6	1.6	234	IN	IN	IN	TN
	2002	08.9	1,870	1,570	432	758	TN	527	<1.0	<1.0	20	700	258	27.8	2.2	151	Z :	Z :	K!	Ę,
	2003	6.70	1,310	810	969	531	E !	849	0.17	0.12	35	57	152	36.8	- 1	126	Z	Z ;	Z «	N 0
	2004	0.80	1,400	920	720	520	Z 5	077	0.17	0.0	. Y	021	0/1	5 62	33	2 5	<u> </u>	, [6.0	01.0
	2002	7.00	1,500	1 200	750	940	ξŻ	750	3.2	9. Q	91	310	220	23	. e.	170	EE	. 6	2.9	<0.10
MW-7	2002	7.10	1,800	858	638	402	Ę	636	1.8	<1.0	22.4	127	191	20.2	8.84	124	K	32.7	2.34	LN
	2008	7.30	1,320	810	748	369	K	747	<1.0	<1.0	18.1	50.9	139	15.4	1.2	120	M	14.4	1.6	QN
	5000	7.03	1,200	750	089	Ľ	N	089	QN	L	22	8.9	150	17	6.0	140	4.	= ;	1.5	2
	2010	7.63	1,200	762	650	390	E!	650	Q S	Ľ.	24	6.5	130	51	<u>8</u> :	130	2.4	4. (1.2	Q E
	2011	7.50	1,300	734	670	460	Z ;	670	<2.0 2.0	Į,	26	8.7	06 :	5 :	1.3	130	/-,	÷ ;	L.2	200
	2012	7.75	1,300	800 1.100	720 670	280 280	ZZ	720 670	<2.0 <2.0	ΖŻ	25 22	4.4 210	200	22	3.1	160	4.9	77	1.5	<0.1
NWWOCC Standard	1	6-9	NE	1.000	ZE	NE	NE.	NE	NE	NE	250	009	NE	NE	NE	NE	1.0	1.0	0.2	NE

mg/1 - milligrams per liter

ND - not detected

NMWQCC - New Mexico Water Quality Control Commission

NT - not tested

NSP - not sampled due to product in the well

SU - standard units

TDS - Total Dissolved Solids

umbos/cm - microlums per centimeter

Bold indicates value exceed NMWQCC standard

Appendix C

Page 2 of 2

HISTORICAL GROUNDWATER ANALYTICAL RESULTS - METALS BLOOMFIELD CRUDE STATION WESTERN REFINING SOUTHWEST, INC.

\ L	Zinc (mg/l)	0.032	NT	NT	NT	0.023	NT	NT	NT	0.026	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	
Thallium z.	(mg/l) 21	<0.005	IN	NT	L	<0.005	LN	NT	L	<0.005	L	INT	TN	IN	L	NT	L	L	NT	NT	NT	NT	NT	NT	
Selenium T	(mg/l)	<0.005	<0.050	<0.050	<0.050	<0.005	<0.050	<0.050	<0.050	<0.005	<0.050	<0.050	<0.050	TN	<0.050	<0.050	<0.050	L	<0.050	<0.050	<0.50	TN	<0.050	<0.050	
Antimony	(mg/l)	<0.05	NT	NT	NT	<0.05	NT	NT	NT	<0.05	TN	NT	NT	NT	NT	NT	NT	TN	TN	NT	NT	TN	IN	TN	
Lead	(mg/l)	<0.002	0.017	<0.0050	0.0071	<0.002	<0.0050	<0.0050	0.0052	<0.002	<0.0050	<0.0050	0.014	L	<0.0050	<0.0050	0.0057	L	0.023	6900.0	0.11	TN	0.0072	<0.0050	
Nickel	(mg/l)	<0.02	NT	NT	NT	<0.02	NT	NT	NT	<0.02	NT	IN	NT	NT	NT	NT	NT	LN	NT	NT	NT	NT	NT	NT	
Mercury	(mg/l)	<0.0002	<0.0002	<0.00020	<0.00020	<0.0002	<0.0002	<0.00020	<0.00020	<0.0002	<0.0002	<0.00020	<0.00020	L	<0.0002	<0.0020	<0.00020	TN	<0.0002	<0.00020	<0.00020	IN	<0.0002	<0.00020	
Copper	(mg/l)	0.012	NT	TN	LN	<0.01	NT	LN	NT	<0.01	TN	NT	NT	TN	L	NT	TN	TN	NT	NT	TN	NT	NT	NT	
Chromium	(mg/l)	0.01	0.011	<0.0060	<0.0060	<0.01	<0.0060	<0.0060	0.0076	<0.01	0900.0>	0.011	0.038	NT	<0.0060	0.0062	<0.0060	NT	0.042	0.011	0.073	TN	<0.0060	<0.0060	
Cadmium	(mg/l)	<0.0005	<0.0020	<0.0020	<0.0020	<0.0005	<0.0020	<0.0020	<0.0020	<0.0005	<0.0020	<0.0020	<0.0020	IN	<0.0020	<0.0020	<0.0020	NT	<0.0020	0.0023	0.054	TN	<0.0020	<0.0020	
Beryllium	(mg/l)	<0.004	NT	NT	NT	<0.004	NT	L	L	<0.004	NT	IN	TN	TN	L	TN	IN	IN	IN	NT	NT	TN	IN	NT	
Arsenic	(mg/l)	<0.005	<0.020	<0.020	<0.020	<0.005	<0.020	<0.020	<0.020	<0.005	<0.020	<0.020	<0.020	NT	<0.020	<0.020	<0.020	NT	0.039	0.074	<0.20	NT	<0.020	<0.020	
Silver	(mg/l)	<0.01	<0.0050	<0.0050	<0.0050	<0.01	<0.0050	<0.0050	<0.0050	<0.01	<0.0050	<0.0050	<0.0050	LN	<0.0050	<0.0050	<0.0050	IN	<0.0050	<0.0050	<0.050	NT	<0.0050	<0.0050	
47.	rear	1994	2011	2012	2013	1994	2011	2012	2013	1994	2011	2012	2013	1994	2011	2012	2013	1994	2011	2012	2013	1994	2011	2012	
11 11 11	Well Number	MW-2				MW-3				MW-4				MW-5				9-MW				7-WM			

mg/l - milligrams per liter NE - not established NMWQCC - New Mexico Water Quality Control Commission

NT- not tested

< - indicates value is less than laboratory detection limit.

Bold indicates value exceeds NMWQCC standard.

