RECR – 15

State VC #1

Investigation Report June 2012

INTERA Incorporated

6000 Uptown Blvd, NE Suite 220 Albuquerque, NM 87110 Telephone: (505) 246-1600 Fax: (505) 246-2600

June 29, 2012

Mr. Jim Griswold, Hydrologist Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

RE: Site Investigation Report, Former State VC # 1 Well; Lea County, New Mexico

Dear Mr. Griswold,

INTERA has prepared the enclosed site investigation report for the above-referenced project. We are enclosing two hardcopies and two electronic copies. Please do not hesitate to contact me at (505) 246-1600 if you have any questions or require further information and thank you for the work.

Sincerely, INTERA Incorporated

Joe A. Galemore Senior Project Manager

CAR

Eileen Marcillo Staff Hydrologist

Enclosure

FILE: NMGSD.M002.VC1

SITE INVESTIGATION REPORT State VC # 1

Lea County, New Mexico

Prepared for:

New Mexico Energy, Minerals, and Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Prepared by:

INTERA Incorporated 6000 Uptown Boulevard, NE Suite 220 Albuquerque, New Mexico 87110

June 29, 2012

TABLE OF CONTENTS

FIGU	URES		ii
ТАВ	LES		ii
APP	ENDIC	CES	ii
ACR	ONYM	IS AND ABBREVIATIONS	iii
1.0	INTI	RODUCTION	1
	1.1 1.2 1.3	Project History Site Setting Scope of Work and Work Plan Deviations	1
2.0	FIEI	LD ACTIVITIES	5
	2.1 2.2 2.3	Soil Boring Advancement, Soil Screening, and Soil Sampling Monitoring Well Installation and Development Monitoring Well Surveying and Sampling	6
3.0	DISC	CUSSION OF FINDINGS	8
	3.1	Site Hydrogeology3.1.1Stratigraphy3.1.2Groundwater Conditions	8
	3.2	Distribution of Contaminants in Soil3.2.1Soil Screening Results3.2.2Laboratory Results	9 9
	3.3	Distribution of Contaminants in Groundwater	9
4.0	CON	NCLUSIONS AND RECOMMENDATIONS	11
5.0	REF	ERENCES	12

FIGURES

- Figure 1 Site Location Map, State VC#1, Lea County, New Mexico
- Figure 2 Site Map, State VC#1, Lea County, New Mexico
- Figure 3 Groundwater Elevations, June 17, 2012
- Figure 4 Distribution of Contaminants in Soil, State VC #1, Lea County, New Mexico
- Figure 5 Distribution of Contaminants in Groundwater, State VC #1, Lea County, New Mexico

TABLES

- Table 1Summary of Analytical Chemistry Results Soil
- Table 2Fluid Level Gauging Results
- Table 3Summary of Analytical Chemistry Results Groundwater

APPENDICES

- Appendix A Land Access Agreements
- Appendix B Field Notes
- Appendix C Photographic Documentation
- Appendix D Log of Borings, Monitoring Well Construction Diagrams, and OSE Well Permits
- Appendix E Laboratory Reports
- Appendix F Survey of Monitoring Well Locations

ACRONYMS AND ABBREVIATIONS

amsl AST	above mean sea level aboveground storage tank
bgs	below ground surface
DRO	diesel range organics
EPA	U.S. Environmental Protection Agency
ft	feet or foot
GRO	gasoline range organics
HEAL HSA	Hall Environmental Analysis Laboratory hollow-stem auger
INTERA	INTERA Incorporated
LNAPL	light non-aqueous phase liquids
μS/cm mg/kg mg/L MRO	microsiemens per centimeter milligrams per kilogram milligrams per liter motor oil range organics
NMWQCC	New Mexico Water Quality Control Commission
OCD	Oil Conservation Division (New Mexico Energy, Minerals and Natural Resources Department)
OSE	Office of the State Engineer
PA PAH PID ppm PVC	price agreement polynuclear aromatic hydrocarbon photoionization detector parts per million polyvinyl chloride
RL	reporting limit
SIM Site	selective ion monitoring State VC #1

TDS TOC TPH	total dissolved solids top of PVC casing total petroleum hydrocarbons
USGS	U.S. Geological Survey
VOC	volatile organic compound

1.0 INTRODUCTION

INTERA Incorporated (INTERA) has completed a site investigation at the State VC #1 Site (Site) for the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division (OCD). The services were conducted under General Services Department Price Agreement number # 10-805-00-07208 (PA). The term of the PA is August 16, 2011, through August 15, 2012.

The Site, which is owned by the New Mexico State Land Office, is a rectangular-shaped parcel of land approximately 500 feet (ft) by 100 ft. It is located approximately 5 miles east of Buckeye, New Mexico, and 18 miles northwest of Hobbs, New Mexico, at latitude 32.789460 and longitude -103.417618 (Figure 1). The surface lease is currently held by Lee Cattle Co. LP under lease GT2754. Visits to the Site by OCD personnel revealed that releases of crude and/or produced water have occurred.

This report summarizes the field investigation activities and presents associated analytical results and recommendations for additional Site investigation. For reference, a brief summary of the operational history of the Site and a description of the Site's physical setting are provided in the following subsections.

1.1 **Project History**

Historically, the former State VC # 1 well, which is located on the western portion of the Site, was an active oil production well. Its API number is 30-025-03035. Visits to the Site by OCD personnel revealed that releases of crude and/or produced water have occurred from former above-ground storage tanks (ASTs) located east of the former State VC #1 well. A pump jack was formerly located over the well. The eastern portion of the Site formerly contained a heater treater and a tank battery consisting of three ASTs. The State VC #1 well was plugged in September 2009, and the pump jack, ASTs, and heater treater have been removed (Figure 2). The Site also contains a plugging monument for State G-36. This well was located approximately 100 feet southeast of the State VC #1 well.

1.2 Site Setting

The Site is located within the High Plains section of the Great Plains physiographic province. The High Plains is predominantly used for rangeland and agriculture. Land in the vicinity of the Site is used for oil and gas production and cattle ranching. The Site is located in or just southeast of the vacuum field.

Soils in the area have a high to medium-high permeability and are well drained. Annual precipitation rates average approximately 15 inches, and mean annual temperature is about 60 degrees Fahrenheit. The majority of the precipitation occurs in the summer monsoon months. Lake evaporation rates range from 60 to 70 inches per year (Leedshill-Herkenhoff, Inc., et al. 2000).

Figure 1 illustrates the location of the Site on the Lovington SW 7.5 minute Quadrangle, U.S. Geological Survey (USGS) Topographic Maps (USGS, 1985). The Site covers approximately 500 square feet and is located in the southwest quarter of Section 36, Township 17 South, Range 35 East, Lea County, New Mexico. The elevation of the Site is approximately 3,890 ft above mean sea level (amsl). The ground surface slopes down to the southeast, and numerous playas are in the vicinity. An aqueduct appears to run into the eastern portion of the Site (Figure 1).

Surface geology of the Site consists of a thin layer of recently deposited wind-blown sands and silts (Leedshill-Herkenhoff, Inc., et al., 2000). Below this layer resides the Ogallala Formation, which consists of sand, silt, clay, gravel, and caliche, and is up to 350 ft thick in some areas. The regional aquifer, the Ogallala Aquifer, occurs in this formation. A general description of the Ogallala Formation is provided below (Leedshill-Herkenhoff, Inc., et al. 2000):

Sand, fine- to coarse-grained quartz, silty in part, cemented locally by calcite and silica, locally crossbedded, various shades of gray and red. Minor silt and clay with caliche nodules, massive, white, gray, olive green, maroon. Gravel, not everywhere present, composed of pebbles and cobbles of quartz, quartzite, minor chert, igneous rock, metamorphic rock, limestone, and abraded Gryphaea in intraformational channel deposits and in basal conglomerate. Caliche, sandy, pisolitic, forms caprock, may include some caliche of Pleistocene age. Where stippled pattern shown, overlain sporadically by 14 to 30 inches of brownish gray to brown to reddish brown, calcareous sand and silt of pre-Illinoian age....

The Site is located within the Lea County Underground Water Basin, which obtains water from the Ogallala Aquifer. Based on subsurface investigations performed under Abatement Plan-39 for the vacuum field located approximately 2 miles to the northwest, depth to the Ogallala Aquifer water table is approximately 60 ft below ground surface (bgs). Groundwater flow direction is to the southeast, and the slope of the water table is 0.004 ft/ft (Maxim Technologies, 2005).

A search of the Office of the State Engineer (OSE) WATERS database (OSE, 2012) and the OSE geographic information system (GIS) well location shapefile (OSE/ISC, 2011) revealed 15 permitted water wells within 1 mile of the Site and 3 within 1,000 ft (Figure 1). A discrepancy between the WATERS database and GIS shapefile were revealed pertaining to the location of

one well. The closest well included in the database is an oil/gas exploration/production water supply well located approximately 210 ft northwest of the Site; upon completion of the well in 1961, it was reported that depth to water was approximately 60 ft bgs. The next closest well listed in the database (not identified in the GIS shapefile) is an irrigation well located about 220 ft southwest of the Site. The WATERS database lists the depth to water at the time of the well completion in 1967 as 55 ft bgs. Other water wells may be located in the area that are either not permitted by the OSE or not sufficiently described in the database to allow for accurate mapping.

1.3 Scope of Work and Work Plan Deviations

A scope of work for the following activities was submitted to OCD on April 16, 2012:

- Generate a Site-specific health and safety plan, stake boring locations for utility locate, contact New Mexico One Call, obtain all pertinent permits, and gain access to Site.
- Drill and sample soil from five borings to an approximate depth of 75 ft bgs using hollow-stem auger (HSA) and/or air rotary methods.
- Screen soil samples for the presence of volatile organic compounds (VOCs) using a photoionization detector (PID).
- Analyze up to nine soil samples per boring for VOCs, total petroleum hydrocarbons (TPH), polynuclear aromatic hydrocarbons (PAHs), and chlorides.
- Convert three borings to groundwater monitoring wells and develop, survey, and sample the three wells.
- Analyze three groundwater samples for VOCs, dissolved chloride, and total dissolved solids (TDS).
- Manage all investigation-derived waste generated during field activities.

Deviations to the work plan included: (1) advancing two of the soil borings to depths less than 75 ft bgs; (2) reducing the number of soil samples submitted for analysis from each boring; (3) submitting all soil samples for the analysis of VOCs and PAHs; (4) not conducting continuous sampling due to auger and core-barrel refusal; (5) collecting groundwater samples prior to water quality stabilization; and (6) not installing bollards around the monitoring wells. Evidence of subsurface contamination was not encountered at the three soil boring/monitoring well locations, therefore SB-03 and SB-04 were advanced until refusal was encountered, which was less than the proposed 75 ft bgs. The number of soil samples submitted for analysis from each soil boring was reduced because field screening did not reveal the presence of contamination. Groundwater samples were collected prior to groundwater quality stabilization at MW-01 and MW-02. This may be a reflection of a malfunctioning of the pH meter . Core-barrel

and auger refusal was encountered in four of the five soil borings; therefore, other drilling methods were necessary to complete these borings, which prohibited continuous samples being collected at these locations. Bollards were not installed surrounding the monitoring wells due to time constraints.

2.0 FIELD ACTIVITIES

Site investigation field activities were performed from May 28 to June 1, from June 7 to June 8, and on June 17, 2012. Field notes and photographs are provided in Appendix B and Appendix C, respectively. Details of the field activities are provided in the following subsections. Information about decontamination and other quality assurance methods used is provided in the work plan (INTERA, 2012).

Prior to the initiation of any ground-breaking activities in the field, a series of planning and readiness activities had to be completed including: procurement of performance bond for the OCD, land access agreement, utility locates, Site health and safety and quality assurance plans, and well permits. Access agreements between the NM SLO and OCD had to be in-place to gain access to all projected drilling and sampling locations. In addition, for all locations where exploration of the subsurface was proposed, a utility locate had to be performed and clearance obtained from Plains All American Pipeline to ensure no live structures/facilities were encountered or damaged during the investigation. A work plan detailing the Site health and safety plan, quality assurance plan, control procedures, the management of all investigation-derived waste, and the 2012 scope of work was completed and made readily available throughout execution of the field activities. As the OSE requires that monitoring wells be permitted prior to drilling, well permits were applied for and obtained prior to any well installation and development. The SLO Application for Water Easement and copy of the performance bond is provided in Appendix A and the completed OSE well permit is provided in Appendix D

2.1 Soil Boring Advancement, Soil Screening, and Soil Sampling

Soil borings were advanced using HSA drilling techniques at the locations illustrated on Figure 2. SB-01, SB-02, and SB-05 were advanced to a depth of 67 ft bgs (i.e., approximately 10 ft below the water table). SB-03 and SB-04 were advanced until refusal was encountered, which corresponded to total depths of 24 and 24.5 ft bgs, respectively. Air rotary drilling techniques were utilized at SB-05 from 25 to 31 ft bgs due to auger refusal. Core-barrel refusal was encountered at SB-01, SB-02, SB-03, and SB-05. The core-barrel sampler was removed from the augers, and the augers were able to advance through the material without collecting soil samples.

Soil samples were collected using a 5-ft-long core-barrel. Once collected, the soil cores were characterized by an INTERA scientist, screened for the presence of VOCs using the heated headspace method and a PID with a 10.6 electron volt lamp, and put in laboratory-provided containers for possible chemical analysis. Soil descriptions and soil screening data are provided on the boring logs, which are included in Appendix D.

Two to three soil samples were collected for laboratory analysis from each soil boring. For each soil boring, one soil sample was collected at the surface and one soil sample was collected above the zone where refusal was encountered. Additionally, for the soil borings that were converted to monitoring wells, one soil sample was taken from the area immediately above the water table. The soil samples collected were containerized, preserved, and submitted under chain of custody to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico. All soil samples were submitted for the analysis of the following:

- VOCs by U.S. Environmental Protection Agency (EPA) Method 8260B (with methanol extraction)
- TPH gasoline range organics (GRO), diesel range organics (DRO), and motor oil range organics (MRO) by EPA Method 8015B (with methanol extraction for TPH-GRO)
- PAHs by EPA Method 8270 selective ion monitoring (SIM)
- Chloride by EPA method 300.0

A copy of the analytical chemistry laboratory reports is provided in Appendix E and a summary of the data is provided in Table 1.

Soil borings SB-03 and SB-04 were not converted to monitoring wells and were plugged with cement/bentonite grout. In accordance with the work plan, drilling and sampling equipment were decontaminated prior to commencement of drilling and the PID was calibrated daily to 100 parts per million (ppm) isobutylene (INTERA, 2012). All PID readings were less than 100 ppm; therefore, all soil cuttings were thin-spread on-site.

2.2 Monitoring Well Installation and Development

Three of the soil borings SB-01, SB-02, and SB-05, were converted to 2-inch polyvinyl chloride (PVC), flush-threaded, schedule 40, groundwater monitoring wells designated MW-01, MW-02, and MW-03, respectively (Figure 2).

Each well was installed with 15 ft of 0.020-inch slot screen with an end cap and blank casing to the surface. The annular space of each well was back filled with 10/20 gradation silica sand (filter pack) to approximately 3 ft above the top of the well screen. A 3- to 4-ft bentonite seal was placed above the filter pack and consisted of either ³/₄-inch hydrated bentonite chips or a mixture of bentonite gel and sand. A cement/bentonite grout was place above the seal to approximately 3 ft below grade. Surface completion for all wells consists of an above-ground, sloped, 3-ft diameter circular concrete pad and a protective metal standpipe with locking cover. Well construction diagrams and OSE permits are included in Appendix D.

Upon completion, each well was swabbed and pumped for up to one hour to remove fines and to clean the sand filter pack. Approximately 15 gallons of water were removed from MW-01 and MW-02, and 16 gallons from MW-03. The turbidity (visual), pH, specific conductance, and temperature of the groundwater were monitored and recorded during development. Monitoring well development field forms are included in the field notes provided in Appendix B. Water produced during development was discharged to a caliche road to evaporate.

2.3 Monitoring Well Surveying and Sampling

The location and elevation of the north side of the top of the PVC casing (TOC) at each well location was surveyed by John West Surveying Company on June 12, 2012. This north side of the TOC was used as a measuring point for fluid levels and total depth of the monitoring well. A copy of the survey is included in Appendix F and a listing of well elevations is provided in Table 2.

Fluid levels were measured in each monitoring well and groundwater samples were collected on June 17, 2012, using an interface probe and dedicated disposable bailers in accordance with INTERA standard operating procedures. A minimum of three casing volumes of groundwater were purged from each well prior to sample collection. Groundwater quality stabilization was not reached at MW-02 and MW-03 due to anomalous pH readings. Temperature, specific conductance, and pH of the groundwater was measured and recorded in the log book during purging activities (see Appendix B). A summary of fluid levels is provided in Table 2.

The groundwater samples were placed in a laboratory-provided container, preserved as appropriate, and submitted under chain of custody to HEAL for the following analysis:

- VOCs (and total naphthalenes) by EPA Method 8260B
- Dissolved chloride by EPA Method 300.0
- TDS by modified method SM 2540C

A copy of the analytical chemistry laboratory reports is provided in Appendix E and a summary of the data is provided in Table 3.

Purge water generated during groundwater sampling activities was poured on a caliche road to evaporate.

3.0 DISCUSSION OF FINDINGS

This section presents the findings from the Site investigation. The section is divided into three subsections: site hydrogeology, distribution of contaminants in soil, and distribution of contaminants in groundwater.

3.1 Site Hydrogeology

The following two subsections discuss the Site hydrogeology. The discussion is based on regional geologic studies; information obtained during drilling and sampling of the soil borings; and the installation, gauging, and sampling of groundwater. Boring logs and monitoring well construction diagrams are provided in Appendix D.

3.1.1 Stratigraphy

Three stratigraphic units were encountered in the approximately 67 ft that were explored during the Site investigation. The upper most unit encountered at the Site consisted of clayey sand and silty sand. Caliche nodules were commonly contained in this unit. The thickness of this unit varied from 4 ft (SB-03) to 12 ft (SB-04).

Below this unit is a caliche with clayey sand. This unit was very hard and caused auger refusal at SB-05 and core-barrel refusal at SB-01, SB-02, and SB-03. The drilling method had to be changed from HSA to air rotary in order to continue drilling at SB-05 from a depth of 25 to 31 ft bgs. The core-barrel sampler was removed from within the augers at SB-01, SB-02, SB-03, and SB-05 when drilling through portions of this unit. The thickness of this unit varied from 12 ft in SB-04 (which terminated in this unit) to 25 ft in SB-02. Borings SB-01 and SB-02 had a 5-ft-thick sandy clay layer interbedded within this unit starting at 19.5 ft and 19 ft bgs, respectively.

The deepest unit encountered consisted of a poorly graded sand with varying degrees of cementation. This unit was observed in all of the borings except SB-03 and SB-04, which terminated in the overlying caliche unit.

3.1.2 Groundwater Conditions

The water table was encountered at approximately 60 ft bgs within the poorly graded sand unit. The elevation of the water table on June 17, 2012, varied from a high of 3839.48 ft amsl in MW-03 to a low of 3838.04 ft amsl in MW-02 (Table 2; Figure 3). The estimated groundwater flow direction on this date was to the east-southeast with a hydraulic gradient calculated as 0.004 ft/ft (approximately 21 ft per mile) (Figure 3).

Water quality parameters (temperature, specific conductance, and pH) were measured and recorded during groundwater sampling activities. At the time of sample collection, groundwater temperatures ranged from 22.5 (MW-03) to 24.4 degrees Celsius (MW-01) with an average groundwater temperature of 23.5 degrees Celsius (74 degrees Fahrenheit). Groundwater pH values ranged from 7.46 (MW-03) to 7.58 (MW-1) with an average pH of 7.52. Groundwater specific conductance ranged from 447 (MW-03) to 2,202 microsiemens/cm (μ S/cm) (MW-02) with an average specific conductance of 1,062 μ S /cm. Copies of the groundwater sampling field notes are provided in Appendix B.

3.2 Distribution of Contaminants in Soil

3.2.1 Soil Screening Results

Soil field screening results did not reveal the presence of VOCs above background levels with the exception of SB-03 from 24.5 to 25 ft bgs, which had a PID reading of 6.2 ppm. Field screening results are presented on the soil boring log provided in Appendix D.

3.2.2 Laboratory Results

As indicated in Table 1 and Figure 4, TPH DRO and MRO were detected in the soil samples collected at SB-02 and SB-04 from a sample depth of 0.5 to 1 ft bgs. TPH GRO was not detected in any soil samples above the laboratory reporting limit (RL). Total TPH (sum of TPH GRO, DRO, and MRO) at SB-02 and SB-04 was detected at a concentration of 530 and 990 milligrams/ kilograms (mg/kg), respectively. The VOC, 4-isopropyltoluene, was detected at SB-02 from the same depth at a concentration of 0.059 mg/kg. No other VOCs or PAHs were detected in soil samples above the RL.

Chloride was detected in soil samples at concentrations ranging from below the laboratory RL (SB-05) to 5,600 mg/kg (SB-02). Of the 13 soil samples analyzed for chloride, 2 samples had chloride concentrations less than 10 mg/kg, 6 samples had chloride concentrations between 10 and 1,000 mg/kg, and 5 samples had chloride concentrations greater than 1,000 mg/kg.

3.3 Distribution of Contaminants in Groundwater

As indicated in Table 3 and illustrated in Figure 5, dissolved chloride was detected in MW-01 at a concentration of 21 milligrams/liter (mg/L) and in MW-03 at a concentration of 27 mg/L, both of which fall below the New Mexico Water Quality Control Commission (NMWQCC) standard of 250 mg/L. Chloride was detected in MW-02 at a concentration of 500 mg/L, which exceeds the NMWQCC standard.

TDS was detected in MW-01 at a concentration of 347 mg/L and in MW-03 at a concentration of 317 mg/L, both of which fall below the NMWQCC standard of 1,000 mg/L. TDS was detected in MW-02 at a concentration of 1,220 mg/L, which exceeds the NMWQCC standard.

No other constituents were detected above the laboratory RLs.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Results of the Site investigation indicate that a surface release, or releases, of hydrocarbons at the Site has impacted shallow soils. Results indicate that deeper soils and groundwater have not been impacted by a release of hydrocarbons. The detection of TPH DRO and MRO in surficial soils suggests that a surface release of crude oil may have occurred at the Site.

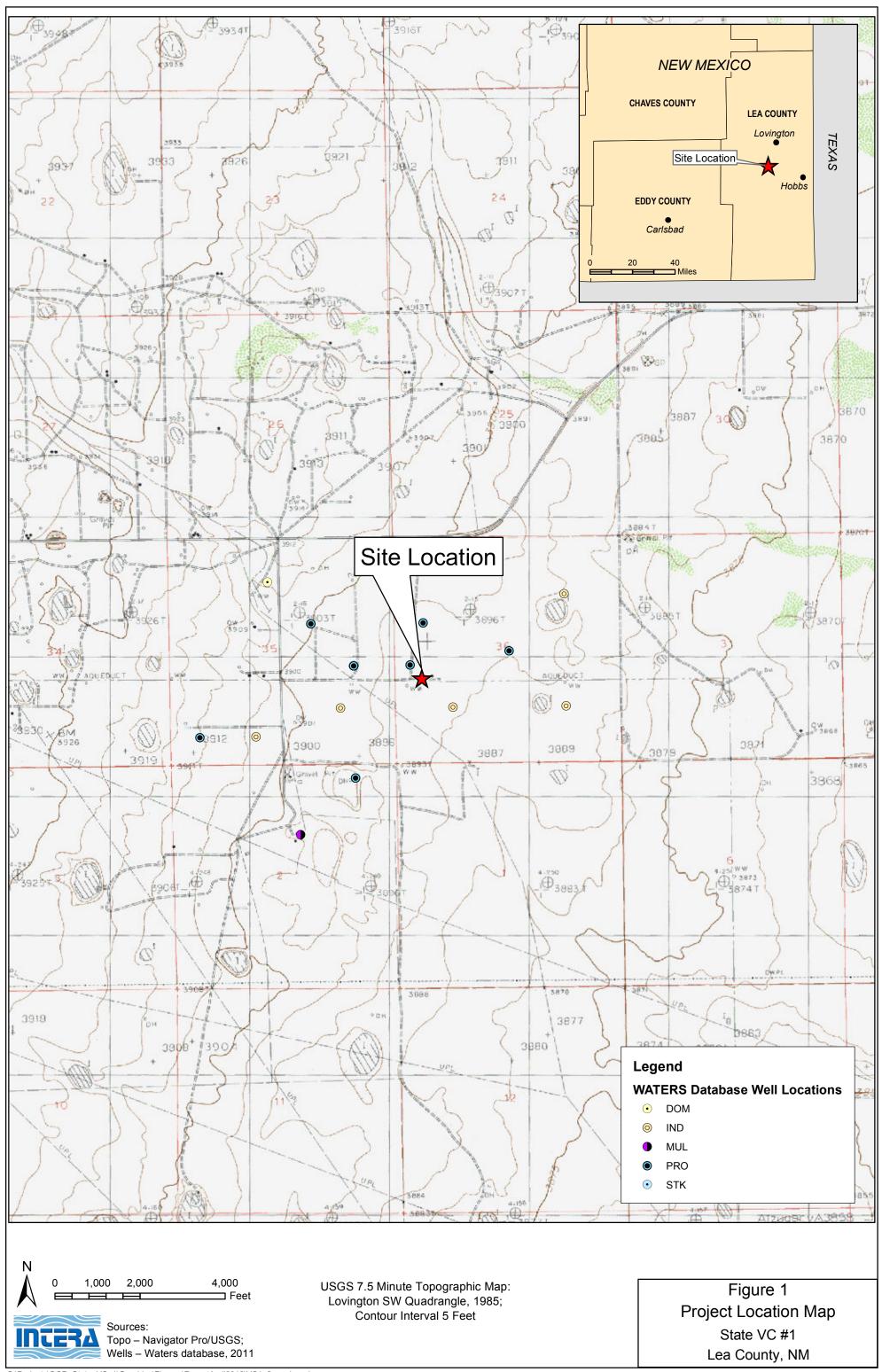
Shallow soils (i.e., surface to 1 ft bgs) at SB-02 and SB-04 contained elevated TPH. Although TPH was detected in these soil samples, no individual VOC or PAH constituents were detected. The vertical and horizontal extent of shallow TPH contamination has not been defined but appears to be less than 9.5 ft bgs based on a slight hydrocarbon odor and very low PID readings observed at these two borings. Once a regulatory standard is promulgated, actionable soil contamination may be evaluated.

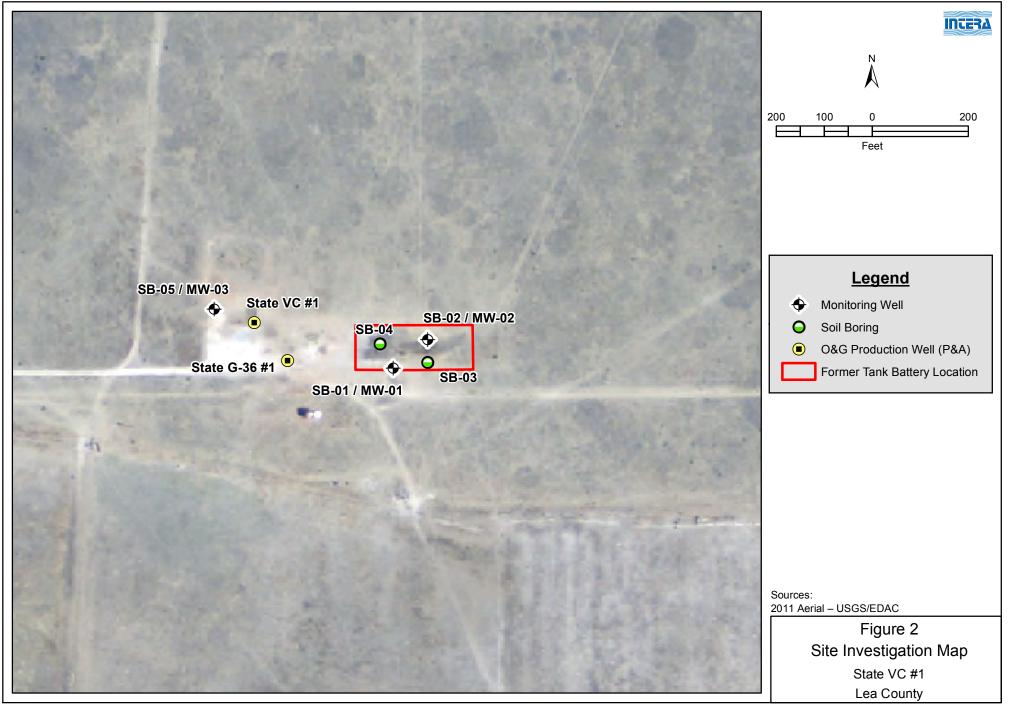
Results of the Site investigation also indicate that soils and groundwater have been impacted by produced water. Elevated chloride concentrations (>1,000 mg/kg) were detected in shallow soils at SB-04 and SB-05 and in deeper soil samples at SB-02, SB-04, and SB-05.

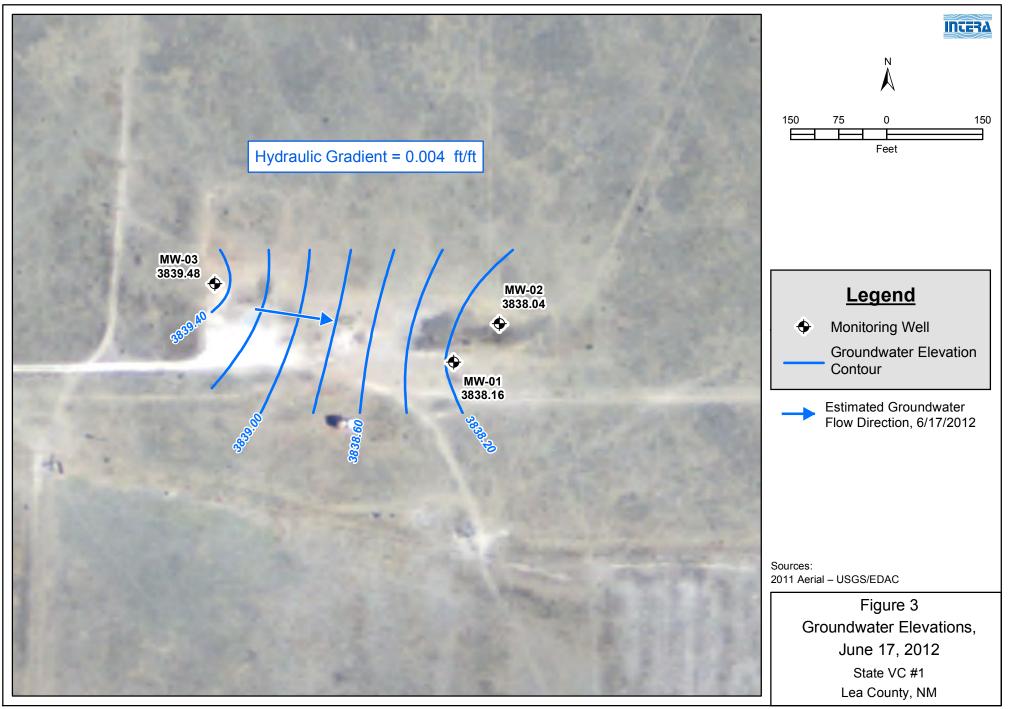
The estimated groundwater flow direction on June 17, 2012, was towards the east-southeast, and the hydraulic gradient is estimated to be 0.004 ft/ft (Figure 3). MW-02 had dissolved chloride and TDS concentrations which exceeded their respective NMWQCC standard.

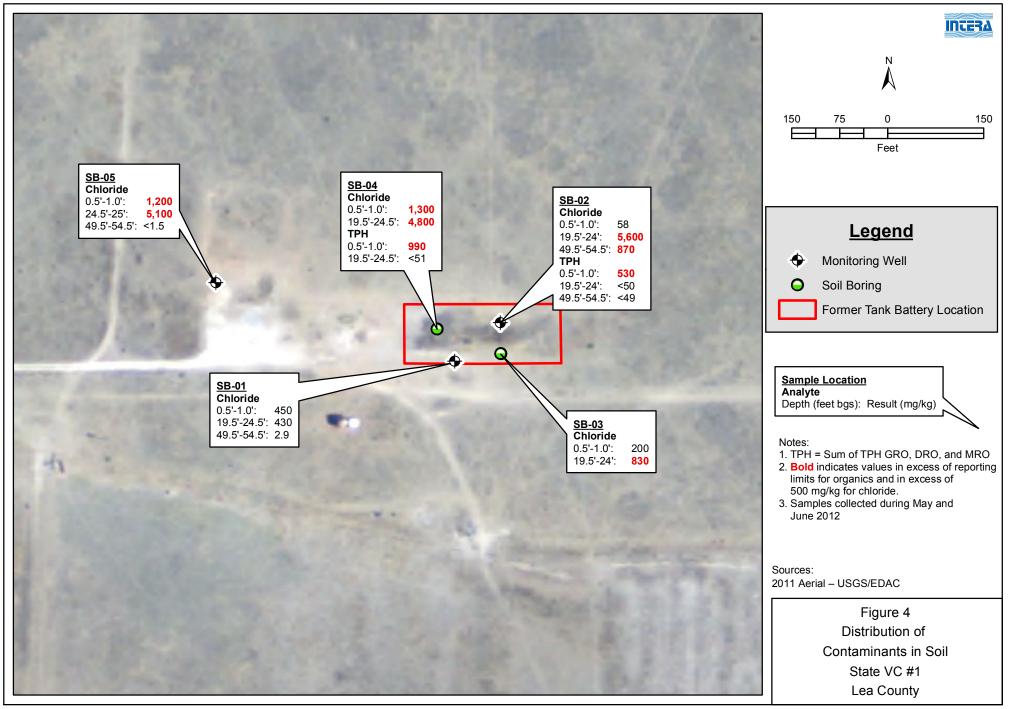
It is noteworthy that background chloride conditions for this area are not known; therefore, high chloride in soil and groundwater could be representative of background conditions. However, consistent chloride concentrations were not found in soil and groundwater at all of the Site sampling locations.

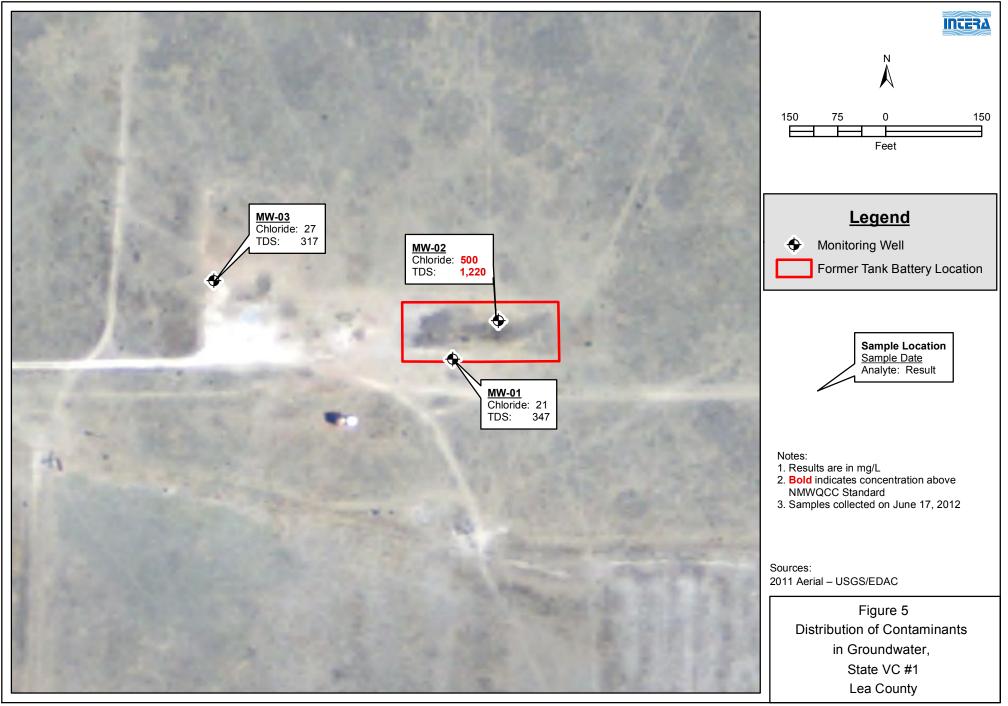
Based on these results, INTERA recommends the following:


- Perform a more detailed search on background chloride conditions.
- Delineate the vertical and horizontal extent of shallow soil TPH contamination.
- Conduct another round of groundwater quality monitoring.


5.0 REFERENCES


- INTERA. 2012. "Work Plan and Cost Estimate for Site Investigation, State VC #1, Lea County, New Mexico." Submitted to State of New Mexico Energy, Minerals & Natural Resources Department, Oil Conservation Division. April 16, 2012.
- Leedshill-Herkenhoff, Inc., John Shomaker & Associates, Inc., and Montgomery & Andrews, P.A., 2000. "Lea County Regional Water Plan." Prepared for the Lea County Water Users Association. December 7.
- Maxim Technologies. 2005. "Stage I and II Abatement Plan, ConocoPhillips East Vacuum Glorietta, East Tank Battery Playa, Lea County, New Mexico." Prepared for ConocoPhillips. June.
- New Mexico Office of the State Engineer (OSE), 2012. WATERS Database, New Mexico Water Rights Reporting System <u>http://nmwrrs.ose.state.nm.us/nmwrrs/index.html</u> (accessed June 27, 2012).
- New Mexico Office of the State Engineer/Interstate Stream Commission (OSE/ISC), 2011. ose_pod, Geospatial_Data_Presentation_Form: vector digital data. July 7. Online_Linkage: <u>\\WRXP0700\C\$\Projects_CN\WATERS_queries\2011_June</u> <u>\GIS_layers\ose_pod_current.mdb</u>.
- U.S. Geological Survey (USGS), 1985. Lovington SW Quadrangle, New Mexico Lea Co. [Map]. 1:24,000. 7.5-Minute Series. Washington, D.C.: USGS, 1985.


FIGURES



S:\Projects\OCD_State_VC_1\Graphics\Figures\ReportApril2012\VC1_figure1.mxd

TABLES

TABLE 1 Summary of Analytical Chemistry Results - Soil Site Investigation Report State VC #1, Lea County, New Mexico

			Concentration (mg/kg)									
Boring ID	Date	Sample Depth (bgs)	TPH GRO ¹	TPH DRO ¹	TPH MRO ¹	Total TPH ²	4-lsopropyltoluene ³	Chloride ⁴				
	6/1/2012	6"-12"	<5.0	<9.6	<48	<48	<0.050	450				
SB-01/MW-01	6/1/2012	19.5'-24.5'	<5.0	<9.7	<49	<49	<0.050	430				
	6/1/2012	49.5'-54.5'	<5.0	<9.7	<49	<49	<0.050	2.9				
	5/31/2012	6"-12"	<5.0	110	420	530	0.059	58				
SB-02/MW-02	5/31/2012	19.5'-24'	<5.0	<10	<50	<50	<0.050	5,600				
	5/31/2012	49.5'-54.5'	<5.0	<9.9	<49	<49	<0.050	870				
SB-03	6/8/2012	6"-12"	<5.0	<10	<50	<50	<0.050	200				
30-03	6/8/2012	19.5'-24'	<5.0	<9.8	<49	<49	<0.050	830				
SB-04	6/7/2012	6"-12"	<5.0	210	780	990	<0.050	1,300				
50-04	6/7/2012	19.5'-24.5'	<5.0	<10	<51	<51	<0.050	4,800				
	5/28/2012	6"-12"	<5.0	<10	<51	<51	<0.050	1,200				
SB-05/MW-03	5/28/2012	24.5'-25'	<5.0	<9.8	<49	<49	<0.050	5,100				
	5/30/2012	49.5'-54.5'	<5.0	<9.8	<49	<49	<0.050	<1.5				

Notes:

Bolding indicates values in excess of reporting limits for organics and in excess of 500 mg/kg for chloride.

1 = Analyzed by EPA Method 8015B

2 = Total TPH includes sum GRO, DRO, and MRO. RL for Total TPH = highest RL for individual compounds;

when summing detections, values listed as "<" RL are assumed to be 0.

3 = Analyzed by EPA Method 8260B

4 = Analyzed by EPA Method 300.0

bgs = below ground surface

DRO = diesel range organics

EPA = U.S. Environmental Protection Agency

GRO = gasoline range organics

MRO = motor oil range organics

RL = Reporting Detection Limit

TPH = total petroleum hydrocarbons

TABLE 2

Fluid Level Gauging Results Site Investigation Report State VC #1, Lea County, New Mexico

Well ID	Gauging Date	Top of Casing Elevation (ft amsl)	Ground Surface Elevation (ft amsl)	Screen Interval (ft bgs)	Depth to LNAPL (ft btoc)	Depth to Water (ft btoc)	LNAPL Thickness (ft)	Potentiometric Surface Elevation (ft amsl) ¹
MW-1	6/17/2012	3897.17	3894.03	51-66	-	59.01	-	3838.16
MW-2	6/17/2012	3896.67	3893.53	51-66	-	58.63	-	3838.04
MW-3	6/17/2012	3898.47	3895.48	51 - 66	-	58.99	-	3839.48

Notes:

- = Data not available or not present

1 = Value calculated from: Potentiometric Surface Elevation = Top of Casing Elevation - Depth to Water

amsl = above mean sea level

bgs = below ground surface

btoc = below top of casing

ft = feet

TABLE 3 Analytical Results - Groundwater Site Investigation Report State VC #1, Lea County, New Mexico

Monitoring		Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX ^a	Total Naphthalenes ^b	Dissolved Chloride	Total Dissolved Solids
Well ID	Sample Date			Concentra	ation (µg/L)			Concentra	tion (mg/L)
NMWQCO	C Standards	10	750	750	620	NE	30	250 ^c	1000 ^c
MW-01	6/17/2012	<2.0	<2.0	<2.0	<3.0	<3.0	<8.0	21	347
MW-02	6/17/2012	<1.0	<1.0	<1.0	<1.5	<1.5	<4.0	500	1,220
MW-03	6/17/2012	<2.0	<2.0	<2.0	<3.0	<3.0	<8.0	27	317

Notes:

Bolding indicates values in excess of the groundwater standards.

a = Total BTEX includes sum of benzene, toluene, ethylbenzene, and total xylenes. RL for BTEX = highest RL for individual compounds; when summing detections, values listed as "<" RL are assumed to be 0.

b = Total naphthalenes includes the sum of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene. RL for Total Naphtalenes = highest RL for individual compounds; when summing detections, values listed as "<" RL are assumed to be 0.

c = NMWQCC standard for domestic water supply

Chloride= by EPA Method 300.0

 $\mu g/L = micrograms per liter$

mg/L = milligrams per liter

NE = None Established

NMWQCC = Groundwater Standards as defined by the State of New Mexico Water Quality Control Commission (NMWQCC, 2002) Total Dissolved Solids = by SM2540C MOD

APPENDIX A Land Access Agreements

Monitoring Well Easement Procedures

Submit application with \$100.00 application fee and \$75.00 appraisement fee. Please include a plat with legal description, quarter/quarter breakdown, coordinates and exact location of each monitoring well.

We will need a cover letter with a contact person and phone number.

We require that a damage bond be on file with The State Land Office.

Monitoring well fees are \$500.00 per well, and per year.

Monitoring well easements are issued up to five years and then will be up for renewal.

Monitoring wells are strictly for testing conditions in the ground water table and are not for producing water.

No water rights are required for monitoring wells.

Once we receive application with applications fees, cover letter and plat. It will be sent out for a site inspection. Please allow the process of a site inspection and issuing an approved easement to take about 4-6 weeks.

State of New Mexico COMMISSIONER OF PUBLIC LANDS 310 Old Santa Fe Trail P.O. Box 1148 Santa Fe, New Mexico 87504-1148

APPLICATION FOR WATER EASEMENT

May 09 , 20_12

I New Mexico Energy, Minerals, and Natural Resources Department Oil Conservation Division

a resident of <u>Santa Fe</u> State of <u>New Mexico</u>, hereby submit an application for Water Easement(s) ______, under the laws of the State of New Mexico rules and regulations of the State Land Office, for a term of five years from the date of expiration of the aforementioned water easement(s). I submit herewith a <u>\$30.00</u> <u>application fee and \$145.00 appraisal fee</u>, together with an estimate of all equipment and facilities placed on the property in conjunction with the water easement(s) activities and the first year's rental offer of not less then <u>\$500.00 minimum for (monitoring wells)</u> and <u>\$1,000.00 minimum for</u> (production wells) for each well authorized by the easement(s), or for each water easement being renewed, whichever sum is greater.

A. The land covered by this application for renewal is contiguous and fully described as follows: Location NE/4,SW/4,S 36,T17S, R35E Well Capacity N/A Expected Volume of Use N/A

B. Attached is a plat showing the location of existing wells, facilities and equipment.

C.1. If the New Mexico State Engineer has designated and assigned file numbers for the water rights upon which the listed appropriations are based, please list the State Engineers water rights file number(s): N/A

C2. If the New Mexico State Engineer has not designated or assigned a file number to these appropriations, please indicate the first date of appropriation for each diversion listed above, and any changes in well-site locations, volumes of water produced, or in the purpose or use of the water. N/A

D. Please explain the purpose of Water Easement.

Install a maximum of three groundwater monitoring wells to characterize potential impacts to groundwater quality from nearby crude and/or produced water releases. A maximum of five soil borings will be drilled with intent to convert three to groundwater monitoring wells.

E. List all equipment and facilities which are anticipated to be located within the boundaries of the above designated lands in association with the continued operation of this water easement during the term of renewal applied for herein:

Two borings will be plugged with a bentonite/cement-bentonite mixture and abandoned. Monitoring wells will be

<u>completed above-grade with a sloped 2'x2' concrete pad, a locking metal standpipe, and protective metal bollards</u>. F. List any additional information relative to the land applied for, or use of same, not covered by the above statements:

Well locations illustrated on plat and supplement are estimates. Locations may change depending on utility locations and investigation findings.

G. If the water easement is granted, I agree to provide adequate bond to reclaim all surface damages, which could result from activities undertaken under this easement.

H. If the water easement is granted, I agree to furnish grantor copies of records and such reports and plats of your operations including, but not limited to well logs, drill cores, and other data relating to geological formations as the grantor may reasonably deem necessary for his administration of the trust lands.

I. If the water easement is granted, I agree to execute a standard Water Rights Agreement.

I,								_, do	sole	mnly	swe	ear (or	affirr	n) 1	hat
statements wledge and		to	questions	in	this	application	are	true	and	corre	ect	to the	best	of	my

Signed: _____

Address: _____

Phone: () _____

	`E OF	_))ss. _)		
20	SUBSCRIBED AND SWORN to 1	before me this	day of	<u> </u>
S E A L	Notary	My commiss	ion expires	

THE AMERICAN INSTITUTE OF ARCHITECTS

Bond # 2157472

Performance Bond

COP

KNOW ALL MEN BY THESE PRESENTS, that

INTERA INCORPORATED 1812 CENTRE CREEK DR., SUITE 300, AUSTIN, TX 78754

as Principal, hereinafter called Contractor, and

NORTH AMERICAN SPECIALTY INSURANCE COMPANY 650 ELM STREET MANCHESTER, NH 03101

as Surety, hereinafter called Surety, are held and firmly bound unto

STATE OF NEW MEXICO 1220 SOUTH ST, FRANCIS DR SANTA FE, NM 87505

as Obligee, hereinafter called Owner, in the amount of

NINETY TWO THOUSAND ONE HUNDRED AND SIX & 61/100 DOLLARS

(\$92,106.61)

for the payment whereof Contractor and Surety bind themselves, their heirs, executors, administrators, successors and assigns, jointly and severally, firmly by these presents.

WHEREAS,

Contractor has by written agreement dated APRIL 23, 2012, entered into a contract with Owner for

EVALUATE SAMPLES FOR CONTAMINATION

in accordance with Drawings and Specifications prepared by

which contract is by reference made a part hereof, and is hereinafter referred to as the Contract.

AIA DOCUMENT A311 - PERFORMANCE BOND AND LABOR AND MATERIAL PAYMENT BOND - AIA • FEBRUARY 1970 ED. - THE AMERICAN INSTITUTE OF ARCHITECTS, 1735 N.Y. AVE., N.W., WASHINGTON, D.C. 20006

PERFORMANCEBOND

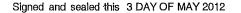
NOW, THEREFORE, THE CONDITION OF THIS OBLIGATION is such that, if Contractor shall promptly and faithfully perform said Contract, then this obligation shall be null and void; otherwise it shall remain in full force and effect.

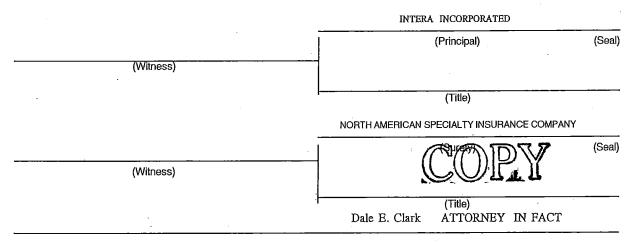
The Surety hereby waives notice of any alteration or extension of time made by the Owner.

Whenever Contractor shall be, and declared by Owner to be in default under the Contract, the Owner having performed Owner's obligations thereunder, the Surety may promptly remedy the default, or shall promptly

1) Complete the Contract in accordance with its terms and conditions, or

2) Obtain a bid or bids for completing the Contract in accordance with its terms and conditions, and upon determination by Surety of the lowest responsible bidder, or, if the Owner elects, upon determination by the Owner and the Surety jointly of the lowest responsible bidder, arrange for a contract between such bidder and Owner, and make available as Work progresses (even though there should be a default or a succession of defaults under the contract or


contracts of completion arranged under this paragraph) sufficient funds to pay the cost of completion less the balance of the contract price; but not exceeding, including other costs and damages for which the Surety may be liable hereunder, the amount set forth in the first paragraph hereof. The term "balance of the contract price," as used in this paragraph, shall mean the total amount payable by Owner to Contractor under the Contract and any amendments thereto, less the amount properly paid by Owner to Contractor.


Any suit under this bond must be instituted before the expiration of two (2) years from the date on which final payment under the Contract falls due.

No right of action shall accrue on this bond to or for the use of any person or corporation other than the Owner named herein or the heirs, executors, administrators or successors of the Owner.

2

BOND PREMIUM BASED ON FINAL CONTRACT PRICE

AIA DOCUMENT A311 - PERFORMANCE BOND AND LABOR AND MATERIAL PAYMENT BOND - AIA • FEBRUARY 1970 ED. - THE AMERICAN INSTITUTE OF ARCHITECTS, 1735 N.Y. AVE., N.W., WASHINGTON, D.C. 20006

Bond # 2157472

Labor and Material Payment Bond

THIS BOND IS ISSUED SIMULTANEOUSLY WITH PERFORMANCEBOND IN FAVOR OF THE OWNER CONDITIONED ON THE FULL AND FAITHFUL PERFORMANCE OF THE CONTRACT

KNOW ALL MEN BY THESE PRESENTS, that

INTERA INCORPORATED 1812 CENTRE CREEK DR., SUITE 300, AUSTIN, TX 78754

as Principal, hereinafter called Principal, and

NORTH AMERICAN SPECIALTY INSURANCE COMPANY 650 ELM STREET MANCHESTER, NH 03101

as Surety, hereinafter called Surety, are held and firmly bound unto

STATE OF NEW MEXICO 1220 SOUTH ST, FRANCIS DR SANTA FE, NM 87505

as Obligee, hereinafter called Owner, for the use and benefit of claimants as hereinbelow defined, in the amount of

NINETY TWO THOUSAND ONE HUNDRED AND SIX & 61/100 DOLLARS

(\$92,106.61)

for the payment whereof Principal and Surety bind themselves, their heirs, executors, administrators, successors and assigns, jointly and severally, firmly by these presents.

WHEREAS,

Principal has by written agreement dated APRIL 23, 2012, entered into a contract with Owner for

EVALUATE SAMPLES FOR CONTAMINATION

in accordance with Drawings and Specifications prepared by

which contract is by reference made a part hereof, and is hereinafter referred to as the Contract.

AIA DOCUMENT A311 - PERFORMANCE BOND AND LABOR AND MATERIAL PAYMENT BOND - AIA • FEBRUARY 1970 ED. - THE AMERICAN INSTITUTE OF ARCHITECTS, 1735 N.Y. AVE., N.W., WASHINGTON, D.C. 20006

LABOR AND MATERIAL PAYMENTBOND

NOW, THEREFORE, THE CONDITION OF THIS OBLIGATION is such that, if Principal shall promptly make payment to all claimants as hereinafter defined, for all labor and material used or reasonably required for use in the performance of the Contract, then this obligation shall be void; otherwise it shall remain in full force and effect, subject, however, to the following conditions:

1. A claimant is defined as one having a direct contract with the Principal or with a Subcontractor of the principal for labor, material, or both used or reasonably required for use in the performance of the Contract, labor and material being construed to include that part of water, gas, power, light, heat, oil, gasoline, telephone service or rental equipment directly applicable to the Contract.

2. The above named Principal and Surety hereby jointly and severally agree with the Owner that every claimant as herein defined, who has not been paid in full before the expiration of a period of ninety (90) days after the date on which the last of such claimants work or labor was done or performed, or materials were furnished by such claimant, may sue on this bond for the use of such claimant, prosecute the suit to final judgment for such sum or sums as may be justly due claimant, and have execution thereon. The owner shall no be liable for the payment of any costs or expenses of any such suit.

3. No suit or action shall be commenced hereunder by any claimant:

a) Unless claimant, other than one having a direct contract with the Principal, shall have given written notice to any two of the following: the Principal, the Owner, or the Surety above named, within ninety (90) days after such claimant did or performed the last of the work or labor, or furnished the last of the materials for which said claim is made, stating with substantial accuracy the amount claimed and the name of the party to whom the materials were furnished, or for whom the work or labor was done or performed. Such notice shall be served by mailing the same by registered mail or certified mail, postage prepaid, in an envelope addressed to the Principal, Owner or Surety, at any place where an office is regularly maintained for the transaction of business, or served in any manner in which legal process may be served in the state in which the aforesaid project is located, save that such service need not be made by a public officer..

b) After the expiration of one (1) year following the date on which principal ceased Work on said Contract, it being understood, however, that if any limitation embodied in this bond is prohibited by any law controlling the construction hereof such limitation shall be deemed to be amended so as to be equal to the minimum period of limitation permitted by such law.

c) Other than in a state court of competent jurisdiction in and for the county or other political subdivision of the state in which the Project, or any part thereof, is situated, or in the United States District Court for the district in which the Project, or any part thereof, is situated, and not elsewhere.

4. The amount of this bond shall be reduced by and to the extent of any payment or payments made in good faith hereunder, inclusive of the payment by Surety of mechanics' liens which may be filed of record against said improvement, whether or not claim for the amount of such lien be presented under and against this bond.

Signed and sealed this 3 DAY OF MAY 2012

		INTERA INCORPORATED
		(Principal) (Seal)
<u> </u>	(Witness)	
н		(Title)
		NORTH AMERICAN SPECIALTY INSURANCE COMPANY
		(Surety) (Surety)
	(Witness)	COPY
		(Title) Dale E. Clark ATTORNEY IN FACT

AIA DOCUMENT A311 - PERFORMANCE BOND AND LABOR AND MATERIAL PAYMENT BOND - AIA • FEBRUARY 1970 ED. - THE AMERICAN INSTITUTE OF ARCHITECTS, 1735 N.Y. AVE., N.W., WASHINGTON, D.C. 20006

NAS SURETY GROUP

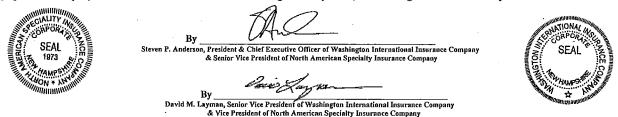
NORTH AMERICAN SPECIALTY INSURANCE COMPANY WASHINGTON INTERNATIONAL INSURANCE COMPANY

KNOW ALL MEN BY THESE PRESENTS, THAT North American Specialty Insurance Company, a corporation duly organized and existing under laws of the State of New Hampshire, and having its principal office in the City of Manchester, New Hampshire, and Washington International Insurance Company, a corporation organized and existing under the laws of the State of New Hampshire and having its principal office in the City of Schaumburg, Illinois, each does hereby make, constitute and appoint:

DALE E. CLARK, DIANE GIBSON,

and ROBERT JA	CORSON	ļ
---------------	--------	---

JOINTLY OR SEVERALLY


Its true and lawful Attorney(s)-in-Fact, to make, execute, seal and deliver, for and on its behalf and as its act and deed, bonds or other writings obligatory in the nature of a bond on behalf of each of said Companies, as surety, on contracts of suretyship as are or may be required or permitted by law, regulation, contract or otherwise, provided that no bond or undertaking or contract or suretyship executed under this authority shall exceed the amount of:

TEN MILLION (\$10,000,000.00) DOLLARS

This Power of Attorney is granted and is signed by facsimile under and by the authority of the following Resolutions adopted by the Boards of Directors of both North American Specialty Insurance Company and Washington International Insurance Company at meetings duly called and held on the 24th of March, 2000:

"RESOLVED, that any two of the Presidents, any Managing Director, any Senior Vice President, any Vice President, any Assistant Vice President, the Secretary or any Assistant Secretary be, and each or any of them hereby is authorized to execute a Power of Attorney qualifying the attorney named in the given Power of Attorney to execute on behalf of the Company bonds, undertakings and all contracts of surety, and that each or any of them hereby is authorized to attest to the execution of any such Power of Attorney and to attach therein the seal of the Company; and it is

FURTHER RESOLVED, that the signature of such officers and the seal of the Company may be affixed to any such Power of Attorney or to any certificate relating thereto by facsimile, and any such Power of Attorney or certificate bearing such facsimile signatures or facsimile seal shall be binding upon the Company when so affixed and in the future with regard to any bond, undertaking or contract of surety to which it is attached."

IN WITNESS WHEREOF, North American Specialty Insurance Company and Washington International Insurance Company have caused their official seals to be hereunto affixed, and these presents to be signed by their authorized officers this ^{20th} day of September , 20¹¹.

North American Specialty Insurance Company Washington International Insurance Company

State of Illinois County of Cook

SS:

On this <u>20th</u> day of <u>September</u> <u>20</u> <u>1</u>, before me, a Notary Public personally appeared <u>Steven P. Anderson</u>, President and CEO of Washington International Insurance Company and Senior Vice President of North American Specialty Insurance Company and <u>David M. Layman</u>, Senior Vice President of Washington International Insurance Company and Vice President of North American Specialty Insurance Company and <u>David M. Layman</u>, senior Vice President of Washington International Insurance Company and Vice President of North American Specialty Insurance Company, personally known to me, who being by me duly sworn, acknowledged that they signed the above Power of Attorney as officers of and acknowledged said instrument to be the voluntary act and deed of their respective companies.

D. Jill Nelson, Notary Pub

I, James A. Carpenter, the duly elected <u>Assistant Secretary</u> of North American Specialty Insurance Company and Washington International Insurance Company, do hereby certify that the above and foregoing is a true and correct copy of a Power of Attorney given by said North American Specialty Insurance Company and Washington International Insurance Company, which is still in full force and effect.

IN WITNESS WHEREOF, I have set my hand and affixed the seals of the Companies this 3rd day of May , 20 1

mea A. Oupente

James A. Carpenter, Vice President & Assistant Secretary of Washington International Insurance Company & North American Specialty Insurance Company APPENDIX B Field Notes

HSA HSA 5/28/12 LD . 5/28/12 Drilling 12 Drilling wow Precision will Plu an 1000: La Datton on-site is precision (Juan + Alex) on- air compressor in the alm + we'll obrill that the caliche site _ w/ a tri- core bit. Objective: Drill C. 5/soil boring _1515! To enersource to finish locations. Install 3/ monitoring Sortace completion C wells based on field screening $m\omega - 14$ realts. Eggipment: CME 85 rig and an and the second the second s Concluct TGSM/review Hospital location./Calibrate PID. -----..... Hocate soil baring locations. 1100: Call Joe Galemore to<u>.</u> review SB locations, sampling, Nomedative, + IDW. 1115: Mobe rig to SB-85 (This location is the upgradient well location). 1145: Begin HSA (75/8" OD) drilling _____ 1230-1300: Lunch. ----1500: refosal Q 25' bas / Call Joe G. (Caliche) &

• • • • •

HSA HSA LD _ 5/29/12 Drilling LD 5/29/12 Drilling The ob of the tri-core is 1245: Les on-site 1300 Precision on-site from larger than the ID of the Articia to plu Air Compressor. Avget. TGSM/Calibrate PID 1635! Degin Air-Rotary (6"/2" 02) Tri-core. 13,15: Switch over to gir-rotary 1710: Drilled that the caliche. (3 3/44 of - Tri-core) will use - is Trip out Air - ratary bit cottings for logging & PID ... + Switch back to HSA. 1750: Degin HSA (75/8" OD) 14051 Degin air - rating drilling. 1425: Have broken thro the _ drilling - No Sampler. _1815: Hove successfully drilled caliche @ -29'bgs - drilled _ thro the caliche wy the to 31 bgs. 13 Switch back to HSA drilling. Augers. 1450: Lynda on - site. 1540: Continue 7/51/2 (75/2" 0D) drilling. C 25' bys. - will over-ream the Air-rotary boning. 1550' HSA refusal @ 25' bgs Is Juan calls John for suggestions. 1600: Will trip out the avers + drill thro the caliche of a 61/2"- of Tri-core bit.

HSA Drilling HSA 5/30/12 Drilling LD 5/30/12 25 \$715: All crew on-site $5B-\phi 5/m\omega-\phi 3$ As-Built " TGSM/ Calibrate PID " Discuss nethodology moving fooward. stick up = 3 2" SCH 40 PUC \$740: Continue HSA w, the Sample barrel @ 31'bgs. \$910: Rig stopped wroing (engine) Seal 1030: Rig running (issue? - electrical) -48 ----is Continue chailling @ 54.5'535. . Toplscreen= 51 1105: worrant ID @ 64.5' bgs. 10/20 $\underline{\nabla} = 56.1' \quad \begin{pmatrix} \phi \cdot \phi_2 \phi^{(i)} \\ \text{Screen} \end{pmatrix}$ is Precision to enersource for backfilling materials. Will let Botton Iscreen = 66' Botton End Cap = 66.4' boring not to see where Static water level is. TD @ 67 1230! Precizion on-site 1246! DTW = 56.1 by SB-\$5 L'a will drill to 67 bas +. materials used set a well. 10/20 = 10 begs 1255: TD SB-05 @ 67' bgs. Seal = 2 bags (3/4" bentomite chips) 1315: Installed SB-d5/mw.d3 La Hychrate w/ 10 gallons of (As-Built ->> clean water. 1330! Begin backfilling w/ 10/20 Sand. Su p. 14 for Sample details.

HSA HSA 5/30/12 Drilling LD _5/31/12 Drilling 2D 1000: La on-site 1403, backfilling the bestonite _ la Precision on-site installing seal (3/4" bentonite chips). - hydraulic oil filter (plu this 1950: Hydraulic filter is clogged ____a/m C rapa). & the rigs hyphraphics are 1030: Filter installed. Not working properly -Precision to town (e 1505) Ly mix groat for SIB-ds/mw-d3 _1110' mobe to SB-\$2. to locate a new fitter. T65m/ Calibrate PID 1125: Degin HSA (75/8" a) Mate: Lynda on-site e 445 xx e s'a-d2. 1415 to plu SB-d5 Samples. 1315: fuel rig She will deliver them to 1330-1400 ! Lorch Hall tomorrow alm. 1600: correct TD C 59.5' bgs 1540! Lynda off-site to ABQ. 1600! Lee off-site. I the SB is clean. Call Joe 6. to see how he wants to proceed. Per Joe 6. install e well e SB-dr. Then drille SB-\$1-will also install a well in SB-\$1 if 5-30/2 c_{ean} , M_{eq} rod drill e $SB-\phi_3 + SD-\phi_4$. $164B^{2} DTW = 55.90' bgs (SB-\phi_2)$ 45 Will 2-ill to 67' bss + install a well (SB-02/mw-02) 7-

HSA HSA Shilz LD Drilling 5/31/12 Drilling 25 1650: TD SB-02 C 67'bgs. SB-02/mw-02 As-Built is prop to install well. 3' stick up 1750: Installel well e S13-0/2/ cement MW- &Z. Degin backfilling MANANAN I 2" SCH. 40 PUC w/ 10/20 Sand froot 1830: Backfilling wi the seal out of bentonite chips - will 45.2 mix bentonite gel & 10/20 Seal sand for the seal 48.2-1900: All crew off-site. Toplscheen= 5091 10 V = 55.9' bis (Screen 20 Botton Iscreen: 65.9' Botton End cap=66.45' TD @ 67' bas 5. J.J. J. material's used 10/20 - 8.5 bags Seal - 1 bag gel /2 bags Sand Su page 14 for sample details.

HSA HSA Drilling D 6/1/12 6/1/12 Doilling 25 \$700: All crev ousite SB-\$1/mw-\$1 As-Boilt TGSM/Calibrate PID cement 2" SCH. 40 PUC \$75: Trip out Augers @ SB-\$2(grout MW-02 \$810: Augers and - Need to replace 3/tacth on the lead auger. 44' \$840" Moke to SB-\$1 location. Seal L'S TIG UP. 48' 1/4 \$905: Begin HSA (7 5/8" OD) drilling. Top/screen = 51' 20 e SB-\$1. <u> </u> = 56 ′ 695 (.620 ″) 1230-1200: Lorch 1315: TD @ 67' b95 2 (B-41) Botton Isoren = 66' TD 0 67' 14:00: Install a well & SB-\$1/mor Matarial's used 14201 Degin backfilling 10/20 Sand 1530; Backfill wy 10/20 sand + 10/20= 10 bags bentonite gel = Seal Seal = 1 bag gel / 2 bags sand 1600; Grout MW-\$2 1620! out of water. See p. 14 for sample dutails. H^{-1}

HSA Drilling LD Glila _6/7/12 Notes clean up site/secure site for days off. @ All drill withings were thin _____ spread on-site (all below 100 ppm on PID) 1730! All crew off-site · All samples where extracted - into real Kits in the Field & kept on ice with delivored to Lab. · Development water was _ power onto the caliche · · · · _ rock + allowed to evaporate. · Soil SAmples for Analysis SB-\$5 : Surface, 24.5'-25', + 49.5-54.5' SB-04 : Surface, 19.5' - 24.5' _SB-\$3: Sorface, 19.5'-24' _SB-\$2: Sorface, 19.5'-24', & 49.5'-54.5 _SB-\$1 "Sorface, 19.5'-24.5', + 49.5'-54.5' for TPH-GRO/DRO/MRO, VOC'S, PAHS by SIMS + Chlorides. L> 2/402 jars + I mech Kit. 13.1

HS A 71SA 6/7/12 S XD 6/8/12 Drilling Drilling \$800! Lu on-site 1340! La on-site La Precision on-site preping forms 12 Precision (Juan & Tino) on-site. Mixing groot for for surface completions. SB-d1/mw-d1. TGSM/ Calibrate PID 1400: Grout installed. (mw-bi) TGSM/Calibrate PID \$830: Begin HSA (75/8" OD) drilling Moke to SD-\$4 location Note: SB-dy was moved - 45 C. SB- 43. 1040: TD @ 24' bas- core barrel SE into a debris area refosal (Sample details 1.14) (large) 1450: Degin HSA (75/8" OD drilling 4 Trip out/rig down 1145-1215: Lorch C SB-04. 1215: Set up @ SD-\$5/mw-\$3. 1640: TD@ 24.5' bgs - core barrel refosal, > trip out / clean site to develop. Precision will Plo water toright 1315: Set of @ SB-02/mw-02 tor groating in the april. to develop. 1710: off-site. 1530: Set up @ SB-\$1/mw-d1 SB-\$4-6PS to dwelop. N: 32° 47' 22.2" 1610% Finished dwelopment/ clean W: 103° 25 64.5" up site. Sample details for SB-04 on 1645: All crew off-site page 14.

6/17/12 Buckeye - Arrive on site at 0940 INTERA Inc. - Tricia Johnson Left Palmer VC+1 Transcribed from Temperary Field Logbook - Safety meeting completed at 0950 and documented - On site to purge and sample MW-1 MW-2 - MW-3 •• I - · · and the second sec - Weather is sunny and warm - Jeff collects LNAPL and water Levels at 0952 at MW-3 ____ Ino depressurization when I plug removed from well) and the second of the second and a second · · · · · · · · · · · · · · · · and a second

6/17/12 _MW-3 - time: 0955 Depth to LNAPL (ft): NA Depth to water (ft): 58.99; * measurements ft BTOC (PUC) at mark on N side TD not measured w/interface probe b/c it is not the right equipment and should not be used for TDs. TD per Lee's development log = 69.4' BTOC 69.4 - 58.99 = 10.41'/2 = 5.205 gals for 3 purge vol (Approx.) YSI- 63 pH, selinity, conductivity, temp SN-09E 100344 TRS# - 1097886 Calibrate to 7.0 and 10.0 ptt

6/17/12 YST Cal-7.0 buffer = 7.0 @ 26.0°C 7.0 a 25.3°C 7.0 @ 25.4° C 10.0 buffer = 9.99 25.7°C 1035 - cond = 1409 1 14 13 2 25° C Calibration of YSI complete Fast-cal card not accurate as to procedure, had to use full book. _1045 - Starting to purge MW-3 Jeff is bailing 1st bailer - clean 2nd - cloudy, brown and - cloudy, brown Brd 3/4 full- cloudy, took needsurenearts 1055 p.H. 7.41 2 22.4° C cond - 464.6 2 22.7° C 45/ Spec Cord - 486.2 2 25°C 27th 3/4 full - cloudy 5th 13 full - appear to be hitting bottom leth 1/3 full - cloudy, 51/ty

6/17/12 leth bailer sample pH- 7.30 22.7°C Spic Cond - 485.045225°C 7th bailer - 1/2 full cloudy 8th bailer- 1/2 full, cloudy gth full, cloudy/silte 10th full bailer - sample PH- 7.43 ≥ 22.3°C Spec Cond- 463.0 2 25°C Hpprox 2 gallons in bucket ull, cloudy/silty hallor-12th barler-3th cloudy/silty 14th - full, cloudy silty - sample DH-7642 22.70C Spic Cond - 464.1452 25°C ~ 3 galfons in bucket 15, 16, 17 - full, cloudy - sample pH - 7.622 22, 1°C Spec Cond. 459.2452 25°C 18,19 - full, cloudy

6/17/12 19th bailer - ~ 4 gallons purged Sample - pH - 7.61 2 23°C SpecCond - ~ 3245 2 25°C Water - Cloudy, silty 20, 21, 22, 23 - Cloudy/Silty- sample pH - 7.16 @ 21, 6°C (suspect reading) Spec Cond- 441. 0.452 250 C (tempissue? 5 gallons purged 24-Il bucket, over 5 gallons 25- cloudy/silty-sample DH- 7.46 2 22,5°C Spec Cond- 446. 7 2 25° C 21eth bailer - over 5.2 gallons, collect Sample 1230 - MN-3 completed, goto MW-1

6/17/12 Junch 1230-1245 1250- Arrive to MW-1 1255- open well, no depressurization DTW (H) = 59.01 BTOC no LNAPL TD on 6/8/12= 69.4' BTOC 69.4 - 59.01 = 10.39' of waler ÷ 2 = 5.195 gallons for 3 purge Volumes 1320 - Starting to bail MW-1 Bailers- Htt Htt Htt Htt Htt II 1330- sample at 4th bailer pH- 7.63 2 30.0°C Spoc (and - 536452 25°C 1332- sample at 8th bailer pH- 750224.6°C Spc. Cond. - 53445225°C temp- 24.3°C (initial)

A - out of sequence '(5) initial '(5) 6/17/12 Bailing Durging MW-1 Time Bailer Htomp Conda 25°C(45) 1340 12 7.43/26.3 528 24.1 × 1330 4 7.63/30 536 × 1332 8 7.50/24.6 534 24.3 1345 16 7.40/25.1 520 22.8 1355 20 7.38 25.3 556 24.0 23 7.54/24.3 1400 527 23.7 27 7.58/24.4 1405 537 24.3 bailed, more than 5.2 gallons going to MW- 2 to purge, will come back to sample. 1415 - Arrive to MW-2 to take a open well-no depressurization DT LNAPL (ft BTOC) = & NA DTW (Ft BTOC) = 58.63 time: 1420 TD= 69.45 ft BTOC on 6/8/12 $\frac{58.63}{10.82/2} = 5.41$ gallons for 3 purge volumes

6/17/12 1435 Bailing fally = Htt Htt Htt Htt Htt Htt (Sharting to) MW2 WQ paramoleg 11 = 32 Time Bailer pH Temp Cond (Space 25°C) initialtemp 2249 24.8 82627.2 445 5 7.74/24.0 2174 23.8 1451 9 23.0 2181 1454 12 7.38 25.0 23.5 2173 1459 16 7.46/24.3 20 7.64/23.7 23.6 1955 1502 2222 24.0 24 7.53/24.6 1506 23.3 28 831/24.3 1875 1513 bailed over 5.5 gallons from well, gettebailed well appears to be recharging better then others, water is still relatively clear at bailer 17. No TPH odor in any wells detected. Nater cloudier at ~ 20 bailers, but still cleaner than other wells 30 7.61/23-2 22.8 2074 \$ 1520 22.2 32 7.50/23.4 2202 1522 7.52 23.6

6/17/12 MW-2 Bailing Having a problem w/good, consistent Stabilization of 151 Bailed over 7 gallons from well and had some anomalies in data (1513 time) Not sure if probe is functioning at its best, but have collected more than 3 well volumes in each well 1532 - Back to MW-1 to sample 1555- Sample collected Well cap put back on and well closed. 1602 - Back to MW-2 to collect Sample. 1620- Sample Callected Well cap put back on and well closed.

Page _ _ of _ _

WELL DEVELOPMENT

PROJECT NAME: VC #1 WELL ID: SB-d1/nw d1 PROJECT NO.:_____ DATE: 6/8/12 PROJECT NO .:______ Dalton

WELL CONSTRUCTION

WELL TOTAL DEPTH – FEET BELOW TOP OF CASING (FT. BTOC): 69.4BOREHOLE DIAMETER (FT): 75/8 WELL INNER DIAMTERT (FT):____2" SCREEN INTERVAL (FT, BTOC): 54-69

WATER VOLUME CALCULATION

DATE/TIME OF MEASUREMENT: 6/8/12 @ WATER LEVEL INSTRUMENT USED: Heron Interface WATER LEVEL (FT, BTOC): <u>59.00 or 56'b</u>ss LINEAR FEET OF WATER (FT): <u>10.4</u>

PURGE VOLUME CONVERSIONS (Use Well Casing diameter to determine Volume/Linear Foot)

1" = 0.04 | 1.5" = 0.09 | 2" = 0.17 | 3" = 0.38 | 4" = 0.66 | 6" = 1.5 8" = 2.6 10" ≂ 4.1 1 well casing volume = Volume/Linear Foot x Water Column Height

DEVELOPMENT CRITERIA

METHOD OF DEVELOPMENT: subnersible pump/swab WATER VOLUME TO BE REMOVED (GAL): 5.25 WATER VOLUME ACTUALLY REMOVED (GAL): 15.6 TIME DEVELOPMENT STARTED: 1534 TIME DEVELOPMENT COMPLETED: 1610

WATER QUALITY INSTRUMENTS

INSTRUMENT	CALIBRATION PERFORMED	TECH	COMMENTS
Hydrac	6/8/12	LD	

Page _____ of _____

c ī	DATE	TIME	VOLUME (gal)	TEMP □°C □°F	SP. COND (μS/CM)	рН	CONDTION
Swab _	6/8/12	1541	\$ 25	77.1	678	7.80	cloudy - brown
	1	1544	3.0	71.3	591	7.81	Lì
swab -		1548	Sof	68.6	562	7-84	ŧγ
2020 -		1553	5.5	69.3	580	7.77	λ
		1555	7.ø	69.1	<u>580</u> 559	7.78	slightly cloudy - It. brown
Swab -		1557	7.¢	68.5	553	7-80	mostly clear
		1606	11.15	70.1	573	7.74	slightly clouchy - H. brown mostly clear slightly clouchy - H. brown mostly clear
		1607	13.0	68.7 68.4	551	7.78	mostly clear
	- 	161D	15-05	68.4	547	7.76	и '
			·-···-				
					-		
					-		
					-		

WATER QUALITY READINGS DURING DEVELOPMENT

Stabilization = Temp. $\pm 1^{\circ}$ C, pH ± 0.2 units, Sp. Cond. $\pm 10\%$

COMMENTS:	Will	swab	for	5 min.	then	pump	d-	swab	
again	ever	45	pals.			•			

Page <u>l</u> of <u>l</u>

WELL DEVELOPMENT

PROJECT NAME: VC #1		<u> </u>	WELL ID: 513-02/MW-02
PROJECT NO.:			DATE: 6/8/12
FORM COMPLETED BY:	Dalton		

WELL CONSTRUCTION

WELL TOTAL DEPTH – FEET BELOW TOP OF CASING (FT, BTOC): 69.45BOREHOLE DIAMETER (FT): 7-78''WELL INNER DIAMTERT (FT): 2" SCREEN INTERVAL (FT, BTOC): 54.9-68.9

WATER VOLUME CALCULATION

DATE/TIME OF MEASUREMENT: <u>6/8/2</u> <u>1320</u> WATER LEVEL INSTRUMENT USED: <u>Heren Interface</u> WATER LEVEL (FT, BTOC): <u>58.60</u> or <u>55.60</u> bgs LINEAR FEET OF WATER (FT): <u>10.85</u>

PURGE VOLUME CONVERSIONS (Use Well Casing diameter to determine Volume/Linear Foot)

 1" = 0.04 1.5" = 0.09 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6 10" = 4.1

 1 well casing volume = Volume/Linear Foot x Water Column Height

DEVELOPMENT CRITERIA

METHOD OF DEVELOPMENT: Submersible	pump/swab
WATER VOLUME TO BE REMOVED (GAL): 5-5	WATER VOLUME ACTUALLY REMOVED (GAL): 15-6
TIME DEVELOPMENT STARTED: 1325	TIME DEVELOPMENT COMPLETED: 1529

WATER QUALITY INSTRUMENTS

INSTRUMENT	CALIBRATION PERFORMED	TECH	COMMENTS
Hydoc	6/8/12	AD	

Page ______ of _____

WATER QUALITY READINGS DURING DEVELOPMENT								
DATE	TIME	VOLUME (gal)	TEMP ⊡°C ⊉°F	SP. COND (µS/CM)	pН	CONDTION		
6/8/12	1336	Ø.25	82.9	41.2.2.2820	11.22	cloudy - H- brown		
	1349	1.\$	77.5	2,410	11.25	- t		
	1405	1.25	73.7	4,290	4-75	۲		
	1446	7.5	78.0	1,803	9.91	slightly - H. brown		
	1452	8.6	72.1	1,823	280	Ly /		
	1457	9.0	70.1	1,877	9.25	ι		
	1503	<u>1</u> 0.\$	68.9	2,070	8.41	<u>n</u>		
	1508	И.Ф	715	1,818	9.25	mostly clear- It brown		
	1512	12.0	71-0	1.99B	8.31	n		
	1517	13.0	70.¢	2,020	7.91	ч		
	1520	13.5	69.5	1,926	8.30	Ι <u>Λ</u>		
	1522	14.¢	69.5	2,130	7.51	٩		
	1525	14.5	69.5	2,040	7.57	t ₁		
	1528	15-6	69.4	1,870	7.52	15		

WATER QUALITY READINGS DURING DEVELOPMENT

Stabilization = Temp. $\pm 1^{\circ}$ C, pH ± 0.2 units, Sp. Cond. $\pm 10\%$

1354: Well Kept pumping day - will benil develop the well. 1407: Hydre stopped working continue to bail 1445: A-plac is working again.

Page _____ of ____

WELL DEVELOPMENT

PROJECT NAME: VC #1		WELL ID: SB-ds/MW-ds
PROJECT NO.:		DATE: 6/8/12
FORM COMPLETED BY:	Datton	

WELL CONSTRUCTION

WELL TOTAL DEPTH – FEET BELOW TOP OF CASING (FT, BTOC): <u>69.4</u> BOREHOLE DIAMETER (FT): <u>7 5/8</u> WELL INNER DIAMTERT (FT): <u>2</u>" SCREEN INTERVAL (FT, BTOC): <u>59-69</u>

WATER VOLUME CALCULATION

DATE/TIME OF MEASUREMENT: <u>6/8/12</u> C 1215 WATER LEVEL INSTRUMENT USED: <u>Horon Inforface</u> WATER LEVEL (FT, BTOC): <u>5855</u> 58.97 OF 55.97 bgs LINEAR FEET OF WATER (FT): <u>~10.4</u>

PURGE VOLUME CONVERSIONS (Use Well Casing diameter to determine Volume/Linear Foot)

 1" = 0.04 1.5" = 0.09 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6 10" = 4.1

 1 well casing volume = Volume/Linear Foot x Water Column Height

DEVELOPMENT CRITERIA

METHOD OF DEVELOPMENT: <u>Sobresible Pomp wy Swabbing</u> WATER VOLUME TO BE REMOVED (GAL): <u>5-25</u> WATER VOLUME ACTUALLY REMOVED (GAL): <u>16.9</u> TIME DEVELOPMENT STARTED: <u>1225</u> TIME DEVELOPMENT COMPLETED: <u>1315</u>

WATER QUALITY INSTRUMENTS

DATE/TIME	INSTRUMENT	SERIAL NO.	CALIBRATION PERFORMED	TECH	COMMENTS
6/8/12/1220	Hydac		6/8/12	トレ	
1					

Page __ (__ of _____

	WATER QUALITY READINGS DURING DEVELOPMENT									
DATE	TIME	VOLUME (gal)	TEMP ⊡°C ¢¢F	SP. COND (µS/CM)	рH	CONDTION	COMMENTS			
6/8/12	1230	\$.25	77.1	837	7.35	cloudy brown	Sweets 5-min Prior -			
	1234	2.5	72.8	612	7.69	leas / brown				
	1238	4.D	69.4	577	7.66	ี 'น่	Swab - Sain			
	1246	6.0	718	608	7.65	tχ				
	1251	9.0	69.2	585	7.62	Ex.	Swab - Swin			
	1259	11-0	69.2	578	7.67	E Y				
	1302	13.0	68.9	571	7.62	slightly light-				
	1305	15.0	67.9	573	7.65	1 11	Severalo - Soin			
	1312	17.0	68.5	573	7.62	5				
	1314	18.0	68.1	570	7.64	11				
			1							

WATER QUALITY READINGS DURING DEVELOPMENT

COMMENTS: Swabbed wy pump for 5 min. prior to pumping then pumped 5 gals. I swabbed for 5 min. I repeat.

Pumping en \$.7/9pm

APPENDIX C

Photographic Documentation

No. 1 – *Setting up over soil boring to begin drilling using HSA drilling methods.*

No. 2 – *View of the tricone bit used during air rotary drilling.*

No. 3 – View of air rotary drilling at SB-05.

No. 4 – View of caliche samples obtained at SB-01.

No. 5 – View of well installation.

No. 6 – *View of filter pack installation at a monitoring location.*

No. 7 – *View of cement/bentonite grout being installed at a monitoring well location.*

APPENDIX D

Log of Borings, Monitoring Well Construction Diagrams, and OSE Well Permits Scott A. Verhines, P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 504360 File Nbr: L 13014

May. 29, 2012

JOE A. GALEMORE INTERA INCORPORATED 6000 UPTOWN BLVD, NE SUITE 220 ALBUQUERQUE, NM 87110

Greetings:

Enclosed is your copy of the above numbered permit that has been approved subject to the conditions set forth on the approval page. In accordance with the conditions of approval, the well can only be tested for 10 cumulative days, and the well is to be plugged on or before 05/31/2013, unless a permit to use the water is acquired from this office.

A Well Record & Log (OSE Form wr-20) shall be filed in this office within twenty (20) days after completion of drilling, but no later than 05/31/2013.

Appropriate forms can be downloaded from the OSE website www.ose.state.nm.us or will be mailed upon request.

Sincerely,

mpo

Margaret Wolf (575)622-6521

Enclosure

explore

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL

- 1B Depth of the well shall not exceed the thickness of the Ogallala formation.
- 4 No water shall be appropriated and beneficially used under this permit.
- B The well shall be drilled by a driller licensed in the State of New Mexico in accordance with Section 72-12-12 New Mexico Statutes Annotated.
- C Driller's well record must be filed with the State Engineer within 20 days after the well is drilled or driven. Well record forms will be provided by the State Engineer upon request.
- LOG The Point of Diversion L 13014 POD1 must be completed and the Well Log filed on or before 05/31/2013.
- LOG The Point of Diversion L 13014 POD2 must be completed and the Well Log filed on or before 05/31/2013.
- LOG The Point of Diversion L 13014 POD3 must be completed and the Well Log filed on or before 05/31/2013.

No water shall be diverted from these wells except for testing purposes which shall not exceed ten (10) cumulative days unless a permit to use water from these wells is acquired from the Office of the State Engineer.

Should the permittee change the purpose of use to other than monitoring purposes, an application shall be acquired from the Office of the State Engineer.

The wells shall be constructed, maintained and operated that each water shall be confined to the aquifer in which it is encountered.

Trn Desc: L 13014 (3 MONITOR WELLS)

File Number: <u>L 13014</u> Trn Number: <u>504360</u>

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

ACTION OF STATE ENGINEER

Notice of Intention Rcvd:Date Rcvd. Corrected:Formal Application Rcvd:05/18/2012Pub. of Notice Ordered:Date Returned - Correction:Affidavit of Pub. Filed:

This application is approved provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare of the state; and further subject to the specific conditions listed previously.

Witness my hand and seal this 29 day of May A.D., 2012

Scott A. Verhines, P.E. , State Engineer

Morley By: Andy

1.

 $D_{1}^{i} \circ \gamma$

Trn Cella

Scout

Trn Desc: L 13014 (3 MONITOR WELLS)

File Number: <u>L 13014</u> Trn Number: <u>504360</u>

10 10		File No.			
a the State Fo	NEW MEXICO OFFICE OF THE STATE ENGINEER				
Interstate Stream Commission	APPLICATION FOR PERMIT TO DRILL A WELL WITH NO CONSUMPTIVE USE OF WATER				
	(check applica	able box):			
	For fees, see State Engineer websit	e: http://www.ose.state.nm.us/	2-31475 \$1	5	
Purpose:	Pollution Control And / Or Recovery	Geo-Thermal			
Exploratory	Construction Site De-Watering	Other (Describe):			
Monitoring	Mineral De-Watering				
A separate permit will be required to apply water to beneficial use.					
Temporary Request - Requested Start Date:		Requested End Date:			
Plugging Plan of Operations Submitted? Yes No					
				8	

1. APPLICANT(S)

Name: New Mexico Energy, Minerals, and Natural Resources; Oil Conservation Division		Name: INTERA Incorporated	
Contact or Agent: Jim Griswold	check here if Agent	Contact or Agent: check here if Agent Joe A. Galemore	
Mailing Address: 1220 South St. Francis Drive		Mailing Address: 6000 Uptown Blvd., NE; Suite 220	
City: Santa Fe		City: Albuquerque	
State: NM	Zip Code: 87505	State: NM	Zip Code: 87110
Phone: Phone (Work): 505-476-34	Home Cell	Phone: Phone (Work): 505-246-1	
E-mail (optional): jim.griswold@state.nm.us		E-mail (optional): jgalemo	ore@intera.com
			NEER OFT
			ST ST

FOR OSE INTERNAL USE	Application for Permit, Form wr-07, Rev 8/25/11		
File Number: L - 13014	Trn Number: 504360		
Trans Description (optional): 3 Mo	NITOR WELLS		
Sub-Basin:			
PCW/LOG Due Date: 05/31/201	3		

2. WELL(S) Describe the well(s) applicable to this application.

Location Required: Coordin (Lat/Long - WGS84)	nate location must b	e reported in NM	/ State Plane (NAD 83), UTM (NAD 83), or Latitude/Longitude
NM State Plane (NAD83) NM West Zone NM East Zone NM Central Zone		UTM (NAD83) (M]Zone 12N]Zone 13N	eters)
Well Number (if known):	X or Easting or Latitude:	Y or Northing or Longitude	
SB-02/MW-01	32°47'22.17"	-103°24'59.38"	NEW MEXICO, NM MERIDIAN T17S,R35E,SEC 36
PODI	_		NE1/4 NW1/4 5W1/4
SB-03/MW-02	32°47'21.74"	-103°24'59.36"	NEW MEXICO, NM MERIDIAN T17S,R35E,SEC 36
PODZ			NE 14 NW 1/4 SW 1/4
SB-05/MW-03	32°47'22.87"	-103°25'4.44"	NEW MEXICO, NM MERIDIAN T17S,R35E,SEC 36
POD 3			NW'/4NW'/4 5W'/4
NOTE: If more well location Additional well descriptions			rm WR-08 (Attachment 1 – POD Descriptions) If yes, how many
Other description relating well			
		,,	
Well is on land owned by: New	v Mexico State Land	Office	
			escribed, provide attachment. Attached?
Approximate depth of well (fee	et): 80.00		Outside diameter of well casing (inches): 2.00
Driller Name: New Mexico Lic	censed Driller		Driller License Number: TBD

3. ADDITIONAL STATEMENTS OR EXPLANATIONS

Installation of a maximum of three monitoring wells is proposed to ascertain potential impacts to groundwater quality from documented surface releases of crude and/or produced water from former above-ground storage tanks in Lea County, New Mexico. The locations stated herein are approximate; final locations will be determined upon receipt of investigation results. Monitoring duration will also be determined upon receipt of investigation results. This work is being performed by INTERA Incorporated under contract to the New Mexico Energy, Minerals, and Natural Resources Department, Oil Conservation 2 S Division, who is regulating the site and providing funding for the investigation. 2012 MAY 181 A TATE 20 đ 5 SA Application for Permit, Form wr-07 FOR OSE INTERNAL USE Trn Number: 504360

13014

File Number:

Page 2 of 3

4. SPECIFIC REQUIREMENTS: The applicant must include the following, as applicable to each well type. Please check the appropriate boxes, to indicate the information has been included and/or attached to this application:

Exploratory:	Pollution Control and/or Recovery:	Construction	Mine De-Watering:
🗌 🗌 Include a	Include a plan for pollution	De-Watering:	Include a plan for pollution
description of	control/recovery, that includes the	☐ Include a description of the	control/recovery, that includes the following:
any proposed	following:	proposed dewatering	A description of the need for mine
pump test, if	A description of the need for the	operation,	dewatering.
applicable.	pollution control or recovery operation.	The estimated duration of	The estimated maximum period of time
	The estimated maximum period of	the operation,	for completion of the operation.
	time for completion of the operation.	The maximum amount of	The source(s) of the water to be diverted.
	The annual diversion amount.	water to be diverted.	The geohydrologic characteristics of the
	The annual consumptive use	A description of the need	aquifer(s).
	amount.	for the dewatering operation,	The maximum amount of water to be
	The maximum amount of water to be	and,	diverted per annum.
	diverted and injected for the duration of	A description of how the	The maximum amount of water to be
	the operation.	diverted water will be disposed	diverted for the duration of the operation.
	The method and place of discharge.	of.	The quality of the water. \Box
Monitoring:	The method of measurement of	Geo-Thermal:	The method of measurement of water
Include the	water produced and discharged.	Include a description of the	diverted.
reason for the	The source of water to be injected.	geothermal heat exchange	The recharge of water to the aquifer.
monitoring	The method of measurement of	project,	Description of the estimated area of
well, and,	water injected.	The amount of water to be	hydrologic effect of the project.
The	The characteristics of the aquifer.	diverted and re-injected for the	The method and place of discharge.
duration	The method of determining the	project,	An estimation of the effects on surface
of the planned	resulting annual consumptive use of		
		The time frame for	water rights and underground water rights
monitoring.	water and depletion from any related	constructing the geothermal	from the mine dewatering project.
	stream system.	heat exchange project, and,	A description of the methods employed to
	Proof of any permit required from the	The duration of the project.	estimate effects on surface water rights and
	New Mexico Environment Department.	Preliminary surveys, design	underground water rights.
	An access agreement if the	data, and additional	□Information on existing wells, rivers,
	applicant is not the owner of the land on	information shall be included to	springs, and wetlands within the area of
	which the pollution plume control or	provide all essential facts	hydrologic effect.
	recovery well is to be located.	relating to the request.	

ACKNOWLEDGEMENT

I, We (name of applicant(s)),

Print Name(s)

NR

affirm that the foregoing statements are true to the best of (my, our) knowledge and belief.

EN

Applicant Signature

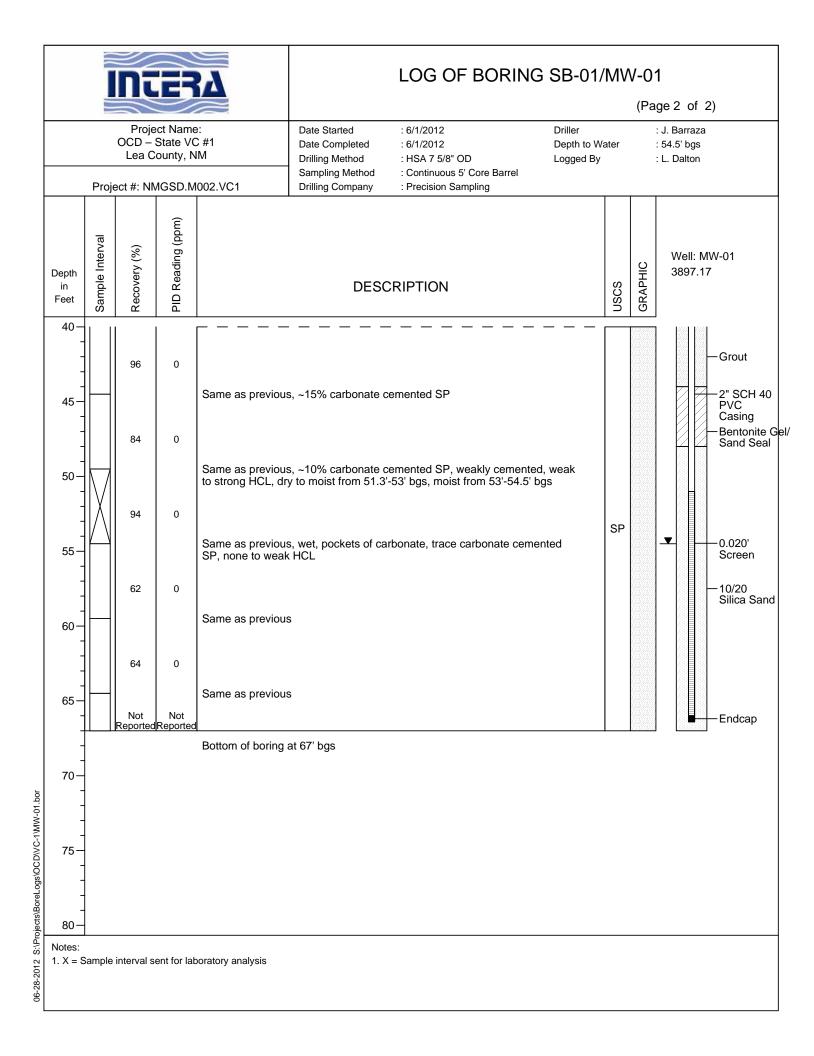
Applicant Signature

OC,

ACTION OF THE STATE ENGINEER

This application is: Xxapproved

partially approved denied


provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare and further subject to the attached conditions of approval.

Witness my hand and seal this day of May	20 12	_ , for the State Engineer,	ROS
Scott A. Verhines, P.E,	State Engineer	MAY	E ENGIN
By: Signature Title: Andy Morley, Acting District II Manager	Print	× 10: 3	NEER OFFIC
Print FOR OSE INTERNA File Number:	AL USE		Permit, Form wr-07

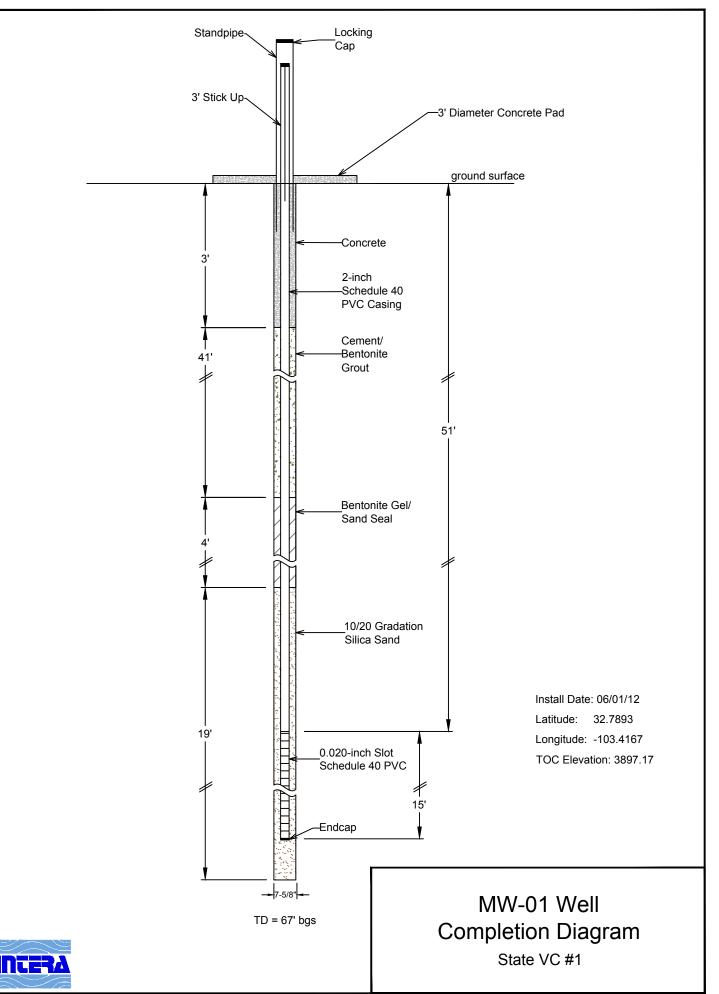
Page 3 of 3

E: N M	yellow copy alid receipts.	\$50.00 \$ \$ \$		
SSION - ROSWELL OFFICE 	al to payor; pink copy to Program Support/ASD; submit to Program Support/ASD along with other va C. Miscellaneous Fees	 1. Application for Well Driller's License 2. Application for Renewal of Well Driller's License 3. Application to Amend Well Driller's License D. Reproduction of Documents D. Reproduction of State D. Continue (S) E. Certification 	E. Other	G. Comments:
M COMMISSIO	nformation. Origir al and all copies and ss	\$ 10.00 \$ 25.00 \$ 10.00 \$ 25.00 \$ 25.00 \$ 100.00 \$ 200.00		\$100.00 \$100.00 \$25.00 \$100.00 \$5.00
OFFICE OF THE STATE ENGINEER/INTERSTATE STREAM COMMISSION - ROSWELL OFFICE RECEIPT NUMBER: 2-31475 DATE: May 18, 2012 FILE NO.: L-Monton 15.00 RECEIVED: FIFTCON AND 02/100 DOLLARS CHECK NO.: CASH. UN DOD/INTON INC. APULO 2010 LATININ BIND. APULIPUO CASH. 110 RECEIVED BY: LOPULOY SULF 220	INSTRUCTIONS: Indicate the number of actions to the left of the appropriate type of filing. Complete the receipt information. Original to payor; pink copy to Program Support/ASD; yellow copy remains in district office, and goldenrod copy to accompany application being filed. If you make an error, void original and all copies and submit to Program Support/ASD along with other valid receipts. A. Ground Water Rights Filing Fees B. Surface Water Rights Filing Fees C. Miscellaneous Fees	 1. Declaration of Water Right 2. Amended Declaration 3. Declaration of Livestock Water Impoundment 4. Application for Livestock Water Impoundment 5. Application to Appropriate 6. Notice of Intent to Appropriate 7. Application to Change Point of Diversion 8. Application to Change Place and/or Purpose of Use 9. Application to Change Point of Diversion and Place and/or Purpose of Use 9. Application to Change Place and/or Purpose of Use 9. Application to Change Point of Diversion and Place and/or 		 12. Supplemental Well to a Surface Right 13. Return Flow Credit 14. Proof of Completion of Works 15. Proof of Application of Water to Beneficial Use 16. Water Development Plan 17. Change of Ownership of Water Right
11475 11475 RECEIVED: F	s to the left of th accompany appli	 \$ 1.00 \$ 125.00 \$ 75.00 \$ 75.00 \$ 25.00 \$ 25.00 	\$ 25.00 \$ 25.00 \$ 50.00	\$ 25.00 \$ 25.00 \$ 50.00 \$ 5.00 \$ 5.00
OFFICIAL RECEIPT NUMBER: 2- 31475 TOTAL: 15.00 RECEIVED PAYOR: 1/1/ 0.00 / 1/1/0/2/ 1/1/0 ZIP: 87110 RECEIVED BY: 1/2	INSTRUCTIONS: Indicate the number of actions remains in district office, and goldenrod copy to A. Ground Water Rights Filing Fees	Declaration of Water Right Application to Appropriate or Supple- ment Domestic 72-12-1 Well Application for Stock Well Application to Repair or Deepen 72-12-1 Well Application for Replacement 72-12-1 Well Application to Change Purpose of Use 72-12-1 Well Application to Change Purpose of Use 72-12-1 Well Application for Supplemental Non 72-12-1 Well Application to Change Location	of Non 72-12-1 Well Application to Change Place or Purpose of Use Non 72-12-1 Well Application to Change Location of Well and Place and/or Purpose of Use	Application for Extension of Time Proof of Application to Beneficial Use Application to Change Point of Diversion and Place and/or Purpose of Use from Surface Water to Ground Water Application for Test, Expl. Observ. Well Change of Ownership of Water Right Application to Repair or Deepen Non 72-12-1 Well
OFFICIAL TOTAL: _ PAYOR: <u>/</u> ZIP: <u>\$7</u>	INSTRUK remains A. Gro	, w. t. v. w. t. w	10.	12. 14. 14. 16.

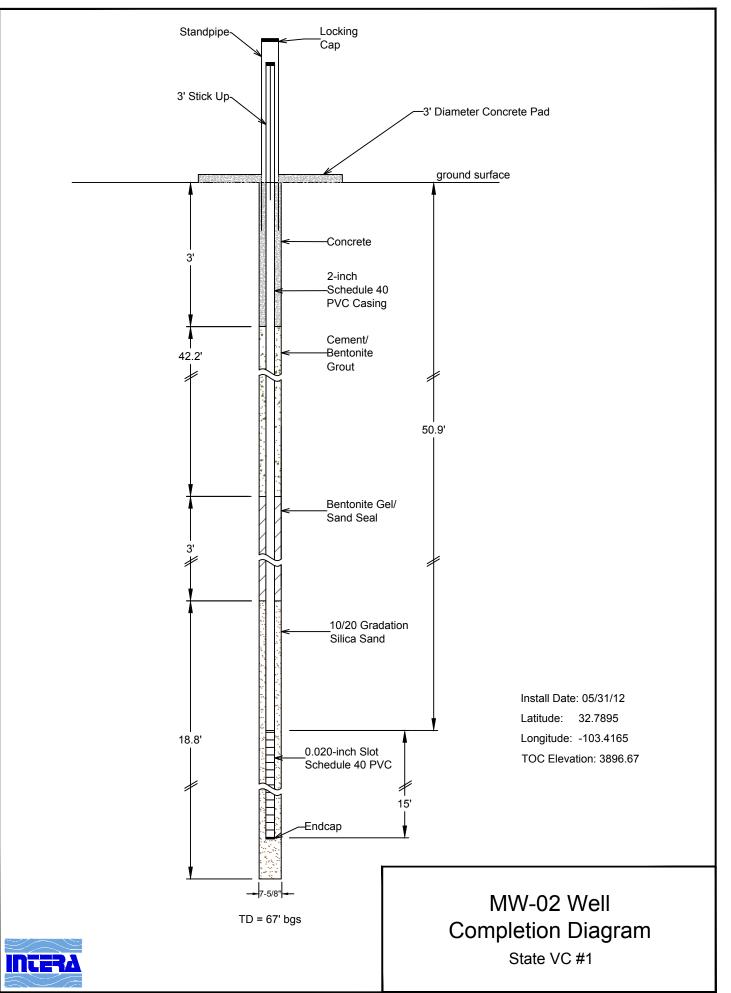
	1010	INt		RA		LOG OF BOR	RING SB-01	/MV		e 1 of 2)
		OCD -	ect Nam State V county, N	C #1	Date Started Date Completed Drilling Method Sampling Method	: 6/1/2012 : 6/1/2012 : HSA 7 5/8" OD : Continuous 5' Core Bar	Driller Depth to W Logged By rel		: :	J. Barraza 54.5' bgs L. Dalton
	Pro	ject #: NN	MGSD.N	/002.VC1	Drilling Company	: Precision Sampling				
Depth in Feet	Sample Interval	Recovery (%)	PID Reading (ppm)		DESC	RIPTION		USCS	GRAPHIC	Well: MW-01 3897.17
0-		33	0/ 0	quartz, 1% feldsp roots, loose, stror [1'-4.5' PID = 0]	ar /ithics, low plastic ng HCL, dry, no odor s, with Caliche, brow	ine-grained sand, poorly ity, caliche nodules at su n and white, no roots	graded, 99% urface-white	sc		Concrete
		62	0/ 0	[5.2'-9.5' PID = 0] SANDY CLAY wit	th Caliche, reddish-b	rown and white (caliche soft to firm, strong HCL,		CL		
10-		70	0.4	laminar, very fine feldspar/lithics, no reddish-brown po @14.4-14.5' bgs	to fine-grained sand plasticity, loose to o ckets of trace CL fro	ponate nodules (gravel s l, poorly graded, 99% qu dense, strong HCL, dry, m above, carbonate cen	artz/1% no odor, nented SC			
15-		56	0.2	(hard drilling from	s, ~75% carbonate c 14-16.5' bgs)	emented SC and caliche	e, very dense			2" SCH 40
20-		Not Reported	0	sand, low to med		rown, white, very fine to trong HCL, dry to moist, , angular		CL		PVC Casing —Grout
25-	- <u>/`</u> - -			Not sampled; har	d drilling					
30-		60	0	(predominantly ve angular to subrou	ery fine- to fine-grain inded, 99%quartz/1% e pockets effervesce	very fine- to medium-gra ed sand), trace coarse-g 6feldspar/lithics, loose, r), dry, no odor, trace car	rained sand, none to strong			
35-					s, ~20% carbonate c	emented SP		SP		
35- 40- Notes		92	0	Same as previous	<u>s </u>					
Notes: 1. X =		e interval s	ent for la	boratory analysis						

			Ct Name		Driller	(Page 1 of 2) : J. Barraza					
		OCD - S	State VO ounty, N	#1 Date Completed : 5/31/2012 M Drilling Method : HSA 7 5/8"" OD Sampling Method : Continuous 5' Core Barrel	Depth to W Logged By		:	54.5' bgs L. Dalton			
			1000.10								
Depth in Feet	Sample Interval	Recovery (%)	PID Reading (ppm)	DESCRIPTION		NSCS	GRAPHIC	Well: MW-02 3896.67			
0-+	X	76	1.8/ 0	[0'-1' PID = 1.8] CLAYEY SAND, light brown, gray-brown, whitish-brown (caliche), we fine- to fine-grained sand, poorly graded, 99% quartz/1% feldspar/lit low plasticity, few caliche, loose, medium to strong HCL, dry, no odd caliche in end of shoe [1'-4.5' PID = 0]	hics,	sc		Concre			
5 - -		36	0.1	CALICHE with Sandy Clay, white, reddish-brown, very fine- to fine-g sand, medium plasticity, soft to firm, strong HCL, no odor, laminar ba white/reddish-brown from 8.5' to 9' bgs)							
- 10- - -		30	0.1	CALICHE with Clayey Sand, white, very fine- to fine-grained sand, p graded, 99% quartz/1% feldspar/lithics, no to low plasticity, loose to dense, strong HCL, dry, no odor, carbonate cemented SC in shoe	ooorly medium						
- - 15 -		30	0.1	[14.5'-18.9' PID = 0] Same as previous, few carbonate cemented SC gravel, angular				2" SCH PVC Casing			
		84	0/ 0				· · · · · · · · · · · · · · · · · · ·	Grout			
- 20- - - -		73	0/ 0	[18.9'-19.5' PID = 0] SANDY CLAY with Caliche, reddish-brown and white, very fine- to fine-grained sand, trace carbonate (low density) gravel, angular, me plasticity, firm, strong HCL, no odor [19.5'-23.4' PID = 0] Same as previous, with fine-grained gravel, decreasing density, silic (chert like) has a carbonate rind		CL SP					
25- - - -		Not Sampled		[23.4'-24' PID = 0] Poorly graded SAND, pinkish-brown to white, very fine- to fine-grain sand, 99% quartz/1% feldspar/lithics, few silica cement fine-grained angular, loose to medium dense, no HCL, no odor, silica cement (m slick when wet), silica cement cobble in shoe Not sampled; drilled through hard material	gravel,						
- 30- - -		70	0	Poorly graded SAND, pinkish-brown, very fine- to medium-grained s (predominantly very fine- to fine-grained sand), trace coarse-grained 99% quartz/1% feldspar/lithics, angular to subrounded, loose, no HC no odor trace caliche 30.1-30.3' bgs (strong HCL)	d sand,	SP					
- 35 —				Same as previous, ~80% stratified carbonate cemented SP, weak to HCL	o strong						

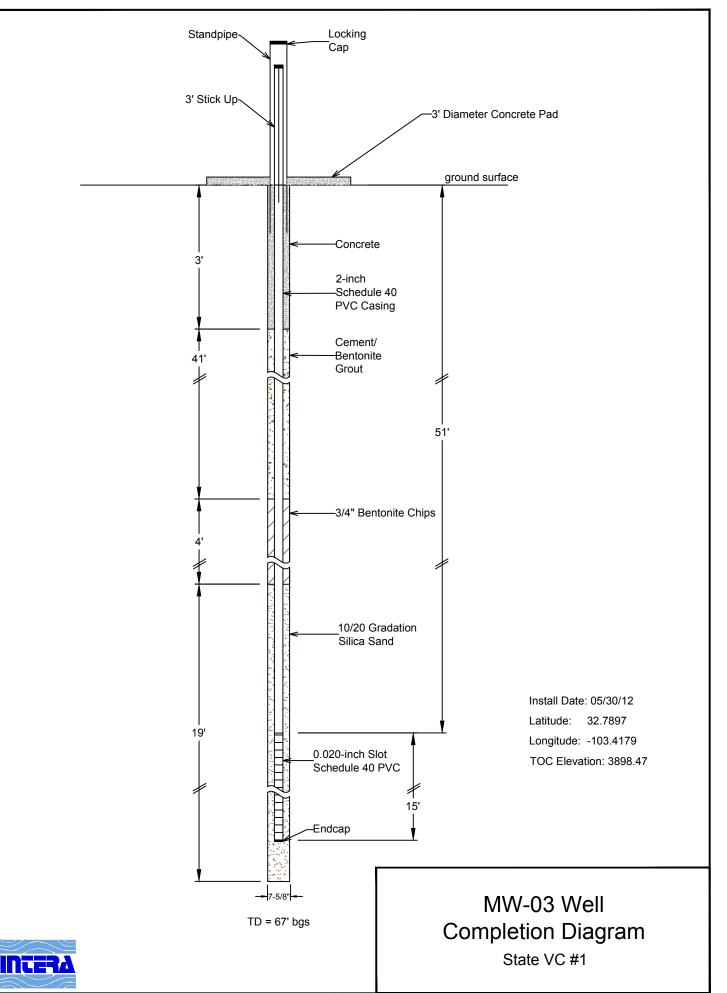
			Nī	B			LOG OF BORING	G SB-02/	/MV		2 ge 2 of	f 2)
			OCD – S Lea C	ounty, N	C #1 IM	Date Started Date Completed Drilling Method Sampling Method	: 5/31/2012 : 5/31/2012 : HSA 7 5/8"" OD : Continuous 5' Core Barrel	Driller Depth to W Logged By			: J. Barra : 54.5' bg : L. Dalto	za s
	ч Т	roje	ect #: NN	IGSD.N	1002.VC1	Drilling Company	: Precision Sampling					
Depth in Feet			Recovery (%)	PID Reading (ppm)		DESC	RIPTION		USCS	GRAPHIC	Well: 3896	MW-02 .67
35	-		82	0		s, loose, no HCL at 3	21 20 51					
40			92	0	Same as previous Same as previous weak to strong H0	s, ~30% carbonate ce	emented, stratified and/or blo	cky,				Grout 2" SCH 40 PVC Casing
45					Same as previous	5						-Bentonite Gel/
50		7	72	0	Same as previous bgs), weak HCL	s, dry to moist (52'-52	2.6' bgs), moist to wet (52.6' 5	54.5'	SP			Sand Seal
55		\backslash	82	0	Same as previous	s, wet, none to weak	HCL				.	-10/20 Silica Sand
60			Not Reported	0	Same as previous	5						0.020" Screen
-07-100- -07-07- -07- -07- -07- -07- -07	-		Not Reported	0	Same as previous	5						
06-28-2012 S:Projects/BoreLogs/OCD/VC-1/MW-02.bor 06-28-2012 S:Projects/BoreLogs/OCD/VC-1/MW-02.bor Notes 1. X =			Not Reported	0	Bottom of boring	at 67' bgs						Endcap
Notes												
7107-87-90	Sam	ple	interval se	ent for la	poratory analysis							


			RA			LOG OF BOI	RING SB-03			
								(Page 1 of	1)	
	OC Le	Project Nar D – State \ ea County,	VC #1 NM		Date Started Date Completed Drilling Method Sampling Method	: 6/8/2012 : 6/8/2012 : HSA 7 5/8 " OD : Continuous 5' Core Barrel	Driller Depth to Water Logged By	: J. Barraz : NA : L. Dalton	a	
	Project #	: NMGSD.	.M002.VC		Drilling Company	: Precision Sampling				
Depth in Feet	Sample Interval	Recovery (%)	PID Reading (ppm)			DESCRIPTION			NSCS	GRAPHIC
0		100	0/ 0.3	medium-q feldspar/l	SAND, light brown to grained sand, subang ithics, low plasticity, v	o reddish-brown, very fine- to gular to subrounded, poorly g very loose, strong HCL, dry, r	raded, 99% quartz/19	ace %	SC	
				SANDY C caliche (le CALICHE	ensed and modules), E with Sandy Clay, br	n-brown, white, very fine- to fi low plasticity, firm, strong H0 own, reddish-brown, white, v ed CL gravel, few caliche (lei	CL, dry, blocky ery fine- to fine-grain	ed	CL	
-		80	0.2	plasticity,	firm, strong HCL, dry	y, blocky				
10-		Not Sampled		Not samp Same as	pled; hard caliche cor previous	e barrel refusal				
-		88	0.1							
15—		Not Sampled			oled; hard caliche, co					
-		68	0.1	Same as HCL	previous, with carbo	nate cement fine-grained gra	vel, angular, low to si	trong		
20-				Same as	previous, trace silica	cement fine-grained gravel,	angular to subangula	ar		
100.0		76	0.1							
25				Bottom of	f Boring at 24' bgs					
30 – Notes:	1									
<u>v</u> 1. X = S	Sample inter hole plugged				mixture					

		T	RA			LOG OF BO	RING SB-04			
								(Page 1 of	1)	
	OCI Le	Project Nar D – State a County	VC #1 , NM		Date Started Date Completed Drilling Method Sampling Method	: 6/7/2012 : 6/7/2012 : HSA 7 5/8 " OD : Continuous 5' Core Barrel	Driller Depth to Water Logged By	: J. Barraz : NA : L. Dalton		
	Project #	: NMGSD	.M002.VC		Drilling Company	: Precision Sampling				
Depth in Feet	Sample Interval	Recovery (%)	PID Reading (ppm)			DESCRIPTION			nscs	GRAPHIC
0 - -		78	0.3/ Not Reported	graded, 9 roots -[1'-4.5' F	SAND, brown to redo 99% quartz/1% feldsp PID = Not Reported]	dish-brown, very fine- to fine ar/lithics, low plasticity, loos ak hydrocarbon odor from 1'-	e, strong HCL, dry to	, moist,		
5				[4.5'-9' PI	-				SC	
-		70	0/ 0	[9'-9.5' PI	ID = 0]					
10		96	0/ 0.1	[9.5'-12.5 CALICHE medium-g medium o show	i' PID = 0] E with Clayey Sand, v grained sand, poorly dense, strong HCL, d	vhite-light brown, very fine- to graded, subangular to subro ry, weak hydrocarbon odor, n, very fine- to fine-grained s	unded, no to low plas thin layer of clayey sa	sticity, and in	SC	
- 15— -	·	74	0	quartz/19 [12.5'-14. CALICHE medium-g	6 feldspar/lithics, low 5' PID = 0.1] 5 with Sandy Clay, wh	plasticity, dense, no to weak nite to light brown, very fine- gular to subrounded, few fine	to fine-grained sand,	/		
- 20- - -		82	0		previous, white, redc ed cemented fine-gra	lish brown, trace carbonate o ined gravel, angular	cemented CL, few			
25 – 25 – - - - - - - - - - - - - - - - - - - -			1	Bottom of	f Boring at 24.5' bgs					1
$\frac{1}{2}$ 1. X = 5	Sample interv hole plugged		-	•	mixture					


			5	\approx					(Page	e 1 of 2)
	Dro	OCD – Lea (ect Name State VC County, N MGSD.M	: #1 M	Date Started : 5/28/2012 Driller : J. Barraza Date Completed : 5/30/2012 Depth to Water : 56.1 Drilling Method : HSA 7 5/8 " OD/Air Rotary Logged By : L. Dalton Sampling Method : Corre Barrel Corre Barrel Corre Barrel					
	PIOJ			002.001	Drilling Company	: Precision Sampling				
Depth in Feet	Sample Interval	Recovery (%)	PID Reading (ppm)		DESC	CRIPTION		NSCS	GRAPHIC	Well: MW-03 3898.47
0	М	10	0	trace medium-gra loose, no plasticit	ined sand, subangu y, strong HCL, dry, r	own, very fine- to fine-grained lar to subrounded, trace clay, v no odor, roots		SP/ SM		-Concret
5 - -		100	0/ 0/ 0	$\begin{bmatrix} 4.5'-6.2' \text{ PID} = 0 \end{bmatrix}$ Same as previous $\begin{bmatrix} 6.2'-8.7' \text{ PID} = 0 \end{bmatrix}$ CLAYEY SAND, I sand, few caliche	s, with Caliche eddish-brown, poorl	y graded, very-fine to fine-grai	ned	SC		
- 10 - -		80	0.5	[8.7'-9.5' PID = 0] CALICHE with Sa plasticity, firm, ve	indy Clay, white, ver ry strong HCL, dry, r is, SC lens at 11.5'-'	y fine- to fine-grained sand, m	edium			
- 15— - -		66	0.2	coarse-grained gr	s, beginning at 16.5' avel size caliche no e nodules, subround	bgs, with carbonate cementec dules and fine- to coarse-grain led	l fine- to ed			2" SCH PVC Casing
- 20 -		Not Sampleo 17	d 0.1	Same as previou		ted cobble size caliche nodule	in shoe			Grout
- 25—		Not Sampled 0 Not Reported	6.2 d	✓No recovery, cot Same as previous	s, moist	usal otary from 25' -31' bgs), very h	ard			
-		Air Rotary	Not Reported							
- 30- - -		69	0.7/ 0.4	trace coarse-grain	ned sand, poorly gra nded, very loose, str 7]	wn, very fine- to medium-grain ded, 99% quartz/1% feldspar/l rong HCL, dry, no odor		SM		
35		60	0.3	Poorly graded SA trace coarse-grain subrounded, very Same as previou	ND, pinkish brown, ned sand, 99% quart lose, weak HCL, dr	rs (1/4" to 1/2") of weakly ceme	0	SP	<u>++1+1-1</u>	
40 – Notes:		1	ı I						<u>erenteren eren</u>	Hand Roofs

06-28-2012 S:\Projects\BoreLogs\OCD\VC-1\MW-03.bor


		INT				LOG OF BORIN	IG SB-05/	/MV		3 age 2 of 2)
		OCD – Lea (ect Name State VC County, N	C #1 M	Date Started Date Completed Drilling Method Sampling Method	: 5/28/2012 : 5/30/2012 : HSA 7 5/8 " OD/Air Rotary : Continuous 5' Core Barrel	Driller Depth to W Logged By			: J. Barraza : 56.1 : L. Dalton
	Proj	ect #: N	MGSD.M	002.VC1	Drilling Company	: Precision Sampling				
Depth in Feet	Sample Interval	Recovery (%)	PID Reading (ppm)		DESC	RIPTION		USCS	GRAPHIC	Well: MW-03 3898.47
40		72	0.3							Grout
- - 45				Same as previous carbonate cemen	s, weak to medium H ted SP at 49' bgs, st	ICL from 47.5'-49.5' bgs, tra rong HCL	ce			2" SCH 40 PVC Casing
		82	0.2	Same as previous 54.5' bgs, 99% qu	s, dry to moist from 4 Jartz/1% feldspar/lith	9.5' to 53' bgs, moist to wet ics	from 53' to			
-		74	0					SP		
55-		62	0	Same as previous when pinkish brow	s, wet, moderate HC wn	L in white pockets throughou	ut, no HCL			.
- - 60 -		Not	0	Same as previous HCL	s, from 62'-64.5' bgs	mostly silica cemented, wea	ak to no			
- - 65-		Reported Not		Not Sampled						Endcap
-				Bottom of Boring	at 67' bgs					
- 70 -										
- - 75-										
80-										
				oratory analysis 6 1/2'' tricone bit						

S:\Projects\OCD_State_VC_1\Graphics\Figures\ReportApril2012\WellConstructions.dwg

S:\Projects\OCD_State_VC_1\Graphics\Figures\ReportApril2012\WellConstructions.dwg

S:\Projects\OCD_State_VC_1\Graphics\Figures\ReportApril2012\WellConstructions.dwg

APPENDIX E Laboratory Reports

June 21, 2012

Joe Galemore Intera, Inc. 6000 Uptown Boulevard, NE Suite 220 Albuquerque, NM 87110 TEL: (505) 239-6414 FAX (505) 246-2600

RE: VC #1

4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

Hall Environmental Analysis Laboratory

OrderNo.: 1206093

Dear Joe Galemore:

Hall Environmental Analysis Laboratory received 3 sample(s) on 6/4/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project: VC #1

Client Sample ID: SB-05 Surface (6"-12") Collection Date: 5/28/2012 11:45:00 AM Received Date: 6/4/2012 4:20:00 PM

Lab ID: 1206093-001	Matrix:	SOIL		Received D	12 4:20:00 PM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS					Analyst: JMP
Diesel Range Organics (DRO)	ND	10)	mg/Kg	1	6/7/2012 11:39:45 AM
Motor Oil Range Organics (MRO)	ND	51		mg/Kg	1	6/7/2012 11:39:45 AM
Surr: DNOP	125	82.1-121	S	%REC	1	6/7/2012 11:39:45 AM
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0)	mg/Kg	1	6/7/2012 1:59:30 AM
Surr: BFB	91.0	69.7-121		%REC	1	6/7/2012 1:59:30 AM
EPA METHOD 300.0: ANIONS						Analyst: SRM
Chloride	1200	75		mg/Kg	50	6/11/2012 2:32:20 PM
EPA METHOD 8270C: PAHS						Analyst: JDC
		0.000		malka	4	-
Naphthalene	ND	0.020		mg/Kg	1	6/6/2012 2:53:18 PM 6/6/2012 2:53:18 PM
1-Methylnaphthalene	ND	0.020		mg/Kg	1	
2-Methylnaphthalene	ND	0.020		mg/Kg	1	6/6/2012 2:53:18 PM
Acenaphthylene	ND	0.020		mg/Kg	1	6/6/2012 2:53:18 PM
Acenaphthene	ND	0.020		mg/Kg	1	6/6/2012 2:53:18 PM
Fluorene	ND	0.020		mg/Kg	1	6/6/2012 2:53:18 PM
Phenanthrene	ND	0.020		mg/Kg	1	6/6/2012 2:53:18 PM
Anthracene	ND	0.020)	mg/Kg	1	6/6/2012 2:53:18 PM
Fluoranthene	ND	0.020)	mg/Kg	1	6/6/2012 2:53:18 PM
Pyrene	ND	0.020)	mg/Kg	1	6/6/2012 2:53:18 PM
Benz(a)anthracene	ND	0.020)	mg/Kg	1	6/6/2012 2:53:18 PM
Chrysene	ND	0.020)	mg/Kg	1	6/6/2012 2:53:18 PM
Benzo(b)fluoranthene	ND	0.020)	mg/Kg	1	6/6/2012 2:53:18 PM
Benzo(k)fluoranthene	ND	0.020)	mg/Kg	1	6/6/2012 2:53:18 PM
Benzo(a)pyrene	ND	0.020	1	mg/Kg	1	6/6/2012 2:53:18 PM
Dibenz(a,h)anthracene	ND	0.020)	mg/Kg	1	6/6/2012 2:53:18 PM
Benzo(g,h,i)perylene	ND	0.020)	mg/Kg	1	6/6/2012 2:53:18 PM
Indeno(1,2,3-cd)pyrene	ND	0.020)	mg/Kg	1	6/6/2012 2:53:18 PM
Surr: Benzo(e)pyrene	80.9	40.5-114		%REC	1	6/6/2012 2:53:18 PM
Surr: N-hexadecane	73.9	42.8-117		%REC	1	6/6/2012 2:53:18 PM
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Benzene	ND	0.050)	mg/Kg	1	6/5/2012 3:54:08 PM
Toluene	ND	0.050		mg/Kg	1	6/5/2012 3:54:08 PM
Ethylbenzene	ND	0.050)	mg/Kg	1	6/5/2012 3:54:08 PM
Methyl tert-butyl ether (MTBE)	ND	0.050		mg/Kg	1	6/5/2012 3:54:08 PM
1,2,4-Trimethylbenzene	ND	0.050		mg/Kg	1	6/5/2012 3:54:08 PM
1,3,5-Trimethylbenzene	ND	0.050		mg/Kg	1	6/5/2012 3:54:08 PM
1,2-Dichloroethane (EDC)	ND	0.050		mg/Kg	1	6/5/2012 3:54:08 PM
1,2-Dibromoethane (EDB)	ND	0.050		mg/Kg	1	6/5/2012 3:54:08 PM
Naphthalene	ND	0.000		mg/Kg	1	6/5/2012 3:54:08 PM
1-Methylnaphthalene	ND	0.10		mg/Kg mg/Kg	1	6/5/2012 3:54:08 PM
Тиступартнасте		0.20		mg/ixg	1	0.0.2012 0.04.001 10

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 1 of 18

Analytical Report
Lab Order 1206093

Date Reported: 6/21/2012

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Intera, Inc. **Project:** VC #1

1206093-001

Lab ID:

Client Sample ID: SB-05 Surface (6"-12") Collection Date: 5/28/2012 11:45:00 AM Received Date: 6/4/2012 4:20:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RA
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 3:54:08 PM
Acetone	ND	0.75	mg/Kg	1	6/5/2012 3:54:08 PM
Bromobenzene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
Bromodichloromethane	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
Bromoform	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
Bromomethane	ND	0.20	mg/Kg	1	6/5/2012 3:54:08 PM
2-Butanone	ND	0.50	mg/Kg	1	6/5/2012 3:54:08 PM
Carbon disulfide	ND	0.50	mg/Kg	1	6/5/2012 3:54:08 PM
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/5/2012 3:54:08 PM
Chlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
Chloroethane	ND	0.10	mg/Kg	1	6/5/2012 3:54:08 PM
Chloroform	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
Chloromethane	ND	0.15	mg/Kg	1	6/5/2012 3:54:08 PM
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/5/2012 3:54:08 PM
Dibromochloromethane	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
Dibromomethane	ND	0.10	mg/Kg	1	6/5/2012 3:54:08 PM
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/5/2012 3:54:08 PM
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/5/2012 3:54:08 PM
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/5/2012 3:54:08 PM
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/5/2012 3:54:08 PM
2-Hexanone	ND	0.50	mg/Kg	1	6/5/2012 3:54:08 PM
Isopropylbenzene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/5/2012 3:54:08 PM
Methylene chloride	ND	0.15	mg/Kg	1	6/5/2012 3:54:08 PM
n-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
n-Propylbenzene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM 6/5/2012 3:54:08 PM 6/5/2012 3:54:08 PM
sec-Butylbenzene		0.050	mg/Kg	1	
Styrene	ND	0.050	mg/Kg	1	
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceededND Not Detected at the Reporting Limit

ND Not Detected at the ReportinRL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 2 of 18

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. **Project:** VC #1

S

Client Sample ID: SB-05 Surface (6"-12") Collection Date: 5/28/2012 11:45:00 AM Received Date: 6/4/2012 4:20:00 PM

Lab ID: 1206093-001	Matrix:	SOIL	Received D	ate: 6/4/20	12 4:20:00 PM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8260B: VOLATILES				Analyst: RAA		
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM	
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM	
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM	
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM	
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/5/2012 3:54:08 PM	
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM	
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM	
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM	
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM	
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM	
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/5/2012 3:54:08 PM	
Vinyl chloride	ND	0.050	mg/Kg	1	6/5/2012 3:54:08 PM	
Xylenes, Total	ND	0.10	mg/Kg	1	6/5/2012 3:54:08 PM	
Surr: 1,2-Dichloroethane-d4	91.5	70-130	%REC	1	6/5/2012 3:54:08 PM	
Surr: 4-Bromofluorobenzene	103	70-130	%REC	1	6/5/2012 3:54:08 PM	
Surr: Dibromofluoromethane	102	71.7-132	%REC	1	6/5/2012 3:54:08 PM	
Surr: Toluene-d8	91.0	70-130	%REC	1	6/5/2012 3:54:08 PM	

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

Spike Recovery outside accepted recovery limits

- U Samples with CalcVal < MDL
- Page 3 of 18

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Intera, Inc.

Project: Lab ID: VC #1

1206093-002

Client Sample ID: SB-5 (24.5'-25') Collection Date: 5/28/2012 3:00:00 PM Received Date: 6/4/2012 4:20:00 PM

Lad ID: 1206093-002	Matrix:	SOIL	Received D	Received Date: 6/4/2012 4:20:00 PM			
Analyses	Result	RL Q	ual Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANG	E ORGANICS				Analyst: JMP		
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	6/7/2012 12:01:28 PM		
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	6/7/2012 12:01:28 PM		
Surr: DNOP	113	82.1-121	%REC	1	6/7/2012 12:01:28 PM		
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB		
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/7/2012 2:28:06 AM		
Surr: BFB	90.6	69.7-121	%REC	1	6/7/2012 2:28:06 AM		
EPA METHOD 300.0: ANIONS					Analyst: SRM		
Chloride	5100	300	mg/Kg	200	6/11/2012 3:46:47 PM		
EPA METHOD 8270C: PAHS					Analyst: JDC		
Naphthalene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
1-Methylnaphthalene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
2-Methylnaphthalene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Acenaphthylene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Acenaphthene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Fluorene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Phenanthrene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Anthracene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Pyrene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Benz(a)anthracene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Chrysene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Benzo(b)fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Benzo(k)fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Benzo(a)pyrene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Dibenz(a,h)anthracene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Benzo(g,h,i)perylene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Indeno(1,2,3-cd)pyrene	ND	0.020	mg/Kg	1	6/6/2012 4:00:07 PM		
Surr: Benzo(e)pyrene	81.6	40.5-114	%REC	1	6/6/2012 4:00:07 PM		
Surr: N-hexadecane	78.5	42.8-117	%REC	1	6/6/2012 4:00:07 PM		
EPA METHOD 8260B: VOLATILES					Analyst: RAA		
Benzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM		
Toluene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM		
Ethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM		
Methyl tert-butyl ether (MTBE)	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM		
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM		
1,3,5-Trimethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM		
1,2-Dichloroethane (EDC)	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM		
1,2-Dibromoethane (EDB)	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM		
Naphthalene	ND	0.10	mg/Kg	1	6/5/2012 4:22:22 PM		
1-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 4:22:22 PM		

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

 $U \qquad Samples \ with \ CalcVal < MDL$

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Intera, Inc. Project: VC #1

1206093-002

Lab ID:

Client Sample ID: SB-5 (24.5'-25') Collection Date: 5/28/2012 3:00:00 PM Received Date: 6/4/2012 4:20:00 PM

Analyses	Result	RL Qual Units		DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 4:22:22 PM
Acetone	ND	0.75	mg/Kg	1	6/5/2012 4:22:22 PM
Bromobenzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
Bromodichloromethane	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
Bromoform	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
Bromomethane	ND	0.20	mg/Kg	1	6/5/2012 4:22:22 PM
2-Butanone	ND	0.50	mg/Kg	1	6/5/2012 4:22:22 PM
Carbon disulfide	ND	0.50	mg/Kg	1	6/5/2012 4:22:22 PM
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/5/2012 4:22:22 PM
Chlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
Chloroethane	ND	0.10	mg/Kg	1	6/5/2012 4:22:22 PM
Chloroform	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
Chloromethane	ND	0.15	mg/Kg	1	6/5/2012 4:22:22 PM
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/5/2012 4:22:22 PM
Dibromochloromethane	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
Dibromomethane	ND	0.10	mg/Kg	1	6/5/2012 4:22:22 PM
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/5/2012 4:22:22 PM
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/5/2012 4:22:22 PM
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/5/2012 4:22:22 PM
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/5/2012 4:22:22 PM
2-Hexanone	ND	0.50	mg/Kg	1	6/5/2012 4:22:22 PM
Isopropylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/5/2012 4:22:22 PM
Methylene chloride	ND	0.15	mg/Kg	1	6/5/2012 4:22:22 PM
n-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM
n-Propylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM 6/5/2012 4:22:22 PM 6/5/2012 4:22:22 PM 6/5/2012 4:22:22 PM 6/5/2012 4:22:22 PM
sec-Butylbenzene	ND	0.050	mg/Kg	1 1	
Styrene	ND	0.050	mg/Kg		
tert-Butylbenzene	ND	0.050	mg/Kg	1	
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection LimitU Samples with CalcVal < MDL

Page 5 of 18

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Project: VC #1 Client Sample ID: SB-5 (24.5'-25') Collection Date: 5/28/2012 3:00:00 PM Received Date: 6/4/2012 4:20:00 PM

Lab ID: 1206093-002	Matrix:	SOIL	Received D	Received Date: 6/4/2012 4:20:00 PM		
Analyses	Result	RL Qua	al Units	DF	Date Analyzed	
EPA METHOD 8260B: VOLATILES					Analyst: RAA	
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM	
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM	
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM	
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM	
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/5/2012 4:22:22 PM	
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM	
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM	
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM	
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM	
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM	
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/5/2012 4:22:22 PM	
Vinyl chloride	ND	0.050	mg/Kg	1	6/5/2012 4:22:22 PM	
Xylenes, Total	ND	0.10	mg/Kg	1	6/5/2012 4:22:22 PM	
Surr: 1,2-Dichloroethane-d4	91.7	70-130	%REC	1	6/5/2012 4:22:22 PM	
Surr: 4-Bromofluorobenzene	105	70-130	%REC	1	6/5/2012 4:22:22 PM	
Surr: Dibromofluoromethane	99.7	71.7-132	%REC	1	6/5/2012 4:22:22 PM	
Surr: Toluene-d8	90.9	70-130	%REC	1	6/5/2012 4:22:22 PM	

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.
	-	

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- $U \qquad Samples \ with \ CalcVal < MDL$

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project:

VC #1

Client Sample ID: SB-5 (49.5'-54.5') Collection Date: 5/30/2012 9:00:00 AM Received Date: 6/4/2012 4:20:00 PM

Lab ID: 1206093-003	Matrix:	SOIL	Received Date: 6/4/2012 4:20:00 PM		
Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE	ORGANICS				Analyst: JMF
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	6/7/2012 1:07:11 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	6/7/2012 1:07:11 PM
Surr: DNOP	113	82.1-121	%REC	1	6/7/2012 1:07:11 PM
EPA METHOD 8015B: GASOLINE RAI	NGE				Analyst: NSE
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/7/2012 2:56:53 AM
Surr: BFB	91.9	69.7-121	%REC	1	6/7/2012 2:56:53 AM
EPA METHOD 300.0: ANIONS					Analyst: SRN
Chloride	ND	1.5	mg/Kg	1	6/8/2012 2:28:25 PM
EPA METHOD 8270C: PAHS			0 0		Analyst: JDC
Naphthalene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
1-Methylnaphthalene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
2-Methylnaphthalene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Acenaphthylene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Acenaphthene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Fluorene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Phenanthrene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Anthracene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Pyrene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Benz(a)anthracene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Chrysene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Benzo(b)fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Benzo(k)fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Benzo(a)pyrene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Dibenz(a,h)anthracene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Benzo(g,h,i)perylene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Indeno(1,2,3-cd)pyrene	ND	0.020	mg/Kg	1	6/6/2012 4:22:23 PM
Surr: Benzo(e)pyrene	84.6	40.5-114	%REC	1	6/6/2012 4:22:23 PM
Surr: N-hexadecane	82.9	42.8-117	%REC	1	6/6/2012 4:22:23 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM
Toluene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM
Ethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM
Methyl tert-butyl ether (MTBE)	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM
1,3,5-Trimethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM
1,2-Dichloroethane (EDC)	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM
1,2-Dibromoethane (EDB)	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM
Naphthalene	ND	0.10	mg/Kg	1	6/5/2012 4:50:33 PM
1-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 4:50:33 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Intera, Inc. Project: VC #1

1206093-003

Lab ID:

Client Sample ID: SB-5 (49.5'-54.5') Collection Date: 5/30/2012 9:00:00 AM Received Date: 6/4/2012 4:20:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8260B: VOLATILES					Analyst: RAA	
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 4:50:33 PM	
Acetone	ND	0.75	mg/Kg	1	6/5/2012 4:50:33 PM	
Bromobenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
Bromodichloromethane	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
Bromoform	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
Bromomethane	ND	0.20	mg/Kg	1	6/5/2012 4:50:33 PM	
2-Butanone	ND	0.50	mg/Kg	1	6/5/2012 4:50:33 PM	
Carbon disulfide	ND	0.50	mg/Kg	1	6/5/2012 4:50:33 PM	
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/5/2012 4:50:33 PM	
Chlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
Chloroethane	ND	0.10	mg/Kg	1	6/5/2012 4:50:33 PM	
Chloroform	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
Chloromethane	ND	0.15	mg/Kg	1	6/5/2012 4:50:33 PM	
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/5/2012 4:50:33 PM	
Dibromochloromethane	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
Dibromomethane	ND	0.10	mg/Kg	1	6/5/2012 4:50:33 PM	
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/5/2012 4:50:33 PM	
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/5/2012 4:50:33 PM	
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/5/2012 4:50:33 PM	
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/5/2012 4:50:33 PM	
2-Hexanone	ND	0.50	mg/Kg	1	6/5/2012 4:50:33 PM	
Isopropylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/5/2012 4:50:33 PM	
Methylene chloride	ND	0.15	mg/Kg	1	6/5/2012 4:50:33 PM	
n-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
n-Propylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
Styrene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM	

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

NDNot Detected at the Reporting LimitRLReporting Detection Limit

U Samples with CalcVal < MDL

Page 8 of 18

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. **Project:** VC #1

Client Sample ID: SB-5 (49.5'-54.5') Collection Date: 5/30/2012 9:00:00 AM Received Date: 6/4/2012 4:20:00 PM

Lab ID: 1206093-003	Matrix:	SOIL	Received D	12 4:20:00 PM			
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8260B: VOLATILES					Analyst: RAA		
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM		
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM		
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM		
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM		
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/5/2012 4:50:33 PM		
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM		
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM		
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM		
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM		
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM		
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/5/2012 4:50:33 PM		
Vinyl chloride	ND	0.050	mg/Kg	1	6/5/2012 4:50:33 PM		
Xylenes, Total	ND	0.10	mg/Kg	1	6/5/2012 4:50:33 PM		
Surr: 1,2-Dichloroethane-d4	91.8	70-130	%REC	1	6/5/2012 4:50:33 PM		
Surr: 4-Bromofluorobenzene	100	70-130	%REC	1	6/5/2012 4:50:33 PM		
Surr: Dibromofluoromethane	98.0	71.7-132	%REC	1	6/5/2012 4:50:33 PM		
Surr: Toluene-d8	90.7	70-130	%REC	1	6/5/2012 4:50:33 PM		

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

- nalysis exceeded
- it
- U Samples with CalcVal < MDL

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Intera, Inc.

WO#: 1206093 21-Jun-12

Project:	VC #1										
Sample ID	MB-2288	SampT	ype: ME	BLK	TestCode: EPA Method 300.0: Anions						
Client ID:	PBS	Batch ID: 2288			F	RunNo: 3	288				
Prep Date:	6/7/2012	Analysis D	ate: 6/	7/2012	5	SeqNo: 9	1410	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID	LCS-2288	SampT	ype: LC	S	Tes	tCode: El	PA Method	300.0: Anion	S		
Client ID:	LCSS	Batch	n ID: 22	88	F	RunNo: 3	288				
Prep Date:	6/7/2012	Analysis D	ate: 6/	7/2012	5	SeqNo: 9 '	1411	Units: mg/ #	ίg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	95.2	90	110			

Qualifiers:

Client:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	120	6093
	31 T	10

21-Jun-12

Client:	Intera, Inc	2.										
Project:	VC #1											
Sample ID	MB-2266	SampT	ype: ME	BLK	Tes	TestCode: EPA Method 8015B: Diesel Range						
Client ID:	PBS	Batcl	n ID: 22	66	F	RunNo: 3254						
Prep Date:	6/6/2012	Analysis D	Date: 6/	7/2012	SeqNo: 90233			Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range (Organics (DRO)	ND	10									
Votor Oil Rang	e Organics (MRO)	ND	50									
Surr: DNOP		12		10.00		116	82.1	121				
Sample ID	LCS-2266	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015B: Dies	el Range (Organics		
Client ID:	LCSS	Batcl	h ID: 22	66	F	anNo: 3	254					
Prep Date:	6/6/2012	Analysis D	Date: 6/	7/2012	S	SeqNo: 9	0234	Units: mg/k	٢g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range (Organics (DRO)	42	10	50.00	0	84.5	52.6	130				
Surr: DNOP		4.7		5.000		94.5	82.1	121				
Sample ID	1206093-002AMS	SampT	уре: М	3	Tes	tCode: El	PA Method	8015B: Dies	el Range G	Organics		
Client ID:	SB-5 (24.5'-25')	Batcl	h ID: 22	66	F	anNo: 3	254					
Prep Date:	6/6/2012	Analysis D	Date: 6/	7/2012	S	SeqNo: 9	0888	Units: mg/k	٢g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range (Organics (DRO)	38	10	50.15	0	76.5	57.2	146				
Surr: DNOP		4.6		5.015		92.4	82.1	121				
Sample ID	1206093-002AMSE) SampT	уре: М	SD	Tes	tCode: El	PA Method	8015B: Dies	el Range (Organics		
Client ID:	SB-5 (24.5'-25')	Batcl	h ID: 22	66	F	anNo: 3	254					
Prep Date:	6/6/2012	Analysis D	Date: 6/	7/2012	5	SeqNo: 9	0891	Units: mg/k	٢g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
	Organics (DRO)	39	10	50.61	0	77.5	57.2	146	2.15	24.5		
Surr: DNOP		4.5		5.061		89.3	82.1	121	0	0		

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Intera, Inc.

Project: VC #1										
Sample ID 5ML RB	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8015B: Gaso	oline Rang	e	
Client ID: PBS	Batch	h ID: R3	267	F	RunNo: 3	267				
Prep Date:	Analysis D)ate: 6/	6/2012	S	SeqNo: 9	0693	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	920		1000		91.7	69.7	121			
Sample ID 2.5UG GRO LCS	SampT	Type: LC	S	Tes	tCode: El	PA Method	8015B: Gaso	oline Rang	e	
Client ID: LCSS	Batch	h ID: R3	267	F	RunNo: 3	267				
				-						
Prep Date:	Analysis D	Date: 6/	6/2012	5	SeqNo: 9	0694	Units: mg/k	(g		
Prep Date: Analyte	Analysis D Result	Date: 6/ PQL		SPK Ref Val	SeqNo: 9 %REC	0694 LowLimit	Units: mg/F HighLimit	% RPD	RPDLimit	Qual
·	,				•		U	0	RPDLimit	Qual

Qualifiers:

Client:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 1206093

Client: Intera, Inc. Project VC #1

rojec	et:	V	C

Sample ID 5ml-rb	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBS	Batc	h ID: R3	209	F	RunNo: 3	209					
Prep Date:	Analysis [Date: 6	/5/2012	\$	SeqNo: 8	9458	Units: mg/k	ζg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	0.050									
Toluene	ND	0.050									
Ethylbenzene	ND	0.050									
Methyl tert-butyl ether (MTBE)	ND	0.050									
1,2,4-Trimethylbenzene	ND	0.050									
1,3,5-Trimethylbenzene	ND	0.050									
1,2-Dichloroethane (EDC)	ND	0.050									
1,2-Dibromoethane (EDB)	ND	0.050									
Naphthalene	ND	0.10									
1-Methylnaphthalene	ND	0.20									
2-Methylnaphthalene	ND	0.20									
Acetone	ND	0.75									
Bromobenzene	ND	0.050									
Bromodichloromethane	ND	0.050									
Bromoform	ND	0.050									
Bromomethane	ND	0.20									
2-Butanone	ND	0.50									
Carbon disulfide	ND	0.50									
Carbon tetrachloride	ND	0.10									
Chlorobenzene	ND	0.050									
Chloroethane	ND	0.10									
Chloroform	ND	0.050									
Chloromethane	ND	0.15									
2-Chlorotoluene	ND	0.050									
4-Chlorotoluene	ND	0.050									
cis-1,2-DCE	ND	0.050									
cis-1,3-Dichloropropene	ND	0.050									
1,2-Dibromo-3-chloropropane	ND	0.10									
Dibromochloromethane	ND	0.050									
Dibromomethane	ND	0.10									
1,2-Dichlorobenzene	ND	0.050									
1,3-Dichlorobenzene	ND	0.050									
1,4-Dichlorobenzene	ND	0.050									
Dichlorodifluoromethane	ND	0.050									
1,1-Dichloroethane	ND	0.10									
1,1-Dichloroethene	ND	0.050									
1,2-Dichloropropane	ND	0.050									
1,3-Dichloropropane	ND	0.050									
2,2-Dichloropropane	ND	0.10									
1,1-Dichloropropene	ND	0.10									
Hexachlorobutadiene	ND	0.10									
		5.10									

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- RPD outside accepted recovery limits R

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

21-Jun-12

Hall Environm				WO#						WO#:	1206093 21-Jun-12
	itera, Inc C #1	2.									
Sample ID 5ml-rb		Samp	Гуре: МІ	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBS		Batc	h ID: R3	209	F	RunNo: 3	209				
Prep Date:	Date: Analysis Date: 6/5/2012 SeqNo: 89458 Units: mg/Kg										
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Hexanone		ND	0.50								
Isopropylbenzene		ND	0.050								
4-Isopropyltoluene		ND	0.050								
4-Methyl-2-pentanone		ND	0.50								
Methylene chloride		ND	0.15								
n-Butylbenzene		ND	0.050								
n-Propylbenzene		ND	0.050								
sec-Butylbenzene		ND	0.050								
Styrene		ND	0.050								
tert-Butylbenzene		ND	0.050								
1,1,1,2-Tetrachloroethane		ND	0.050								
1,1,2,2-Tetrachloroethane		ND	0.050								
Tetrachloroethene (PCE)		ND	0.050								
trans-1,2-DCE		ND	0.050								
trans-1,3-Dichloropropene		ND	0.050								
1,2,3-Trichlorobenzene		ND	0.10								
1,2,4-Trichlorobenzene		ND	0.050								
1,1,1-Trichloroethane		ND	0.050								
1,1,2-Trichloroethane		ND	0.050								
Trichloroethene (TCE)		ND	0.050								
Trichlorofluoromethane		ND	0.050								
1,2,3-Trichloropropane		ND	0.10								
Vinyl chloride		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 1,2-Dichloroethane-c	d4	0.46		0.5000		91.5	70	130			
Surr: 4-Bromofluorobenze		0.51		0.5000		103	70	130			

Sample ID 100ng Ics Client ID: LCSS	SampType: LCS Batch ID: R3209			TestCode: EPA Method 8260B: VOLATILES RunNo: 3209							
Prep Date:	Analysis Date: 6/5/2012			S	SeqNo: 89745			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.97	0.050	1.000	0	97.5	70.7	123				
Toluene	0.88	0.050	1.000	0	87.9	80	120				
Chlorobenzene	0.90	0.050	1.000	0	89.5	70	130				
1,1-Dichloroethene	0.99	0.050	1.000	0	98.9	63.1	148				
Trichloroethene (TCE)	0.88	0.050	1.000	0	87.7	63.2	114				
Surr: 1,2-Dichloroethane-d4	0.46		0.5000		92.3	70	130				
Surr: 4-Bromofluorobenzene	0.50		0.5000		100	70	130				

0.5000

0.5000

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Surr: Dibromofluoromethane

Surr: Toluene-d8

0.49

0.48

- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

98.1

95.6

71.7

70

132

130

RL Reporting Detection Limit

OC SUMMARY REPORT

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Client:InteraProject:VC #1	, ,								
Sample ID 100ng Ics	SampType: L	CS	Test	Code: EF	PA Method	8260B: VOL	ATILES		
Client ID: LCSS	Batch ID: R	3209	RunNo: 3209						
Prep Date:	Analysis Date:	6/5/2012	S	eqNo: 89	9745	Units: mg/k	٤g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane	0.50	0.5000		100	71.7	132			
Surr: Toluene-d8	0.46	0.5000		92.3	70	130			

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 15 of 18

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	1206093
	21-Jun-12

Client:Intera, Inc.Project:VC #1

roject:	VC #

Sample ID mb-2242	Samp	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8270C: PAHs	5		
Client ID: PBS	Batc	h ID: 22	42	R	anNo: 3	256				
Prep Date: 6/5/2012	Analysis E	Date: 6/	6/2012	S	eqNo: 9	0370	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	0.020								
1-Methylnaphthalene	ND	0.020								
2-Methylnaphthalene	ND	0.020								
Acenaphthylene	ND	0.020								
Acenaphthene	ND	0.020								
Fluorene	ND	0.020								
Phenanthrene	ND	0.020								
Anthracene	ND	0.020								
Fluoranthene	ND	0.020								
Pyrene	ND	0.020								
Benz(a)anthracene	ND	0.020								
Chrysene	ND	0.020								
Benzo(b)fluoranthene	ND	0.020								
Benzo(k)fluoranthene	ND	0.020								
Benzo(a)pyrene	ND	0.020								
Dibenz(a,h)anthracene	ND	0.020								
Benzo(g,h,i)perylene	ND	0.020								
Indeno(1,2,3-cd)pyrene	ND	0.020								
Surr: Benzo(e)pyrene	0.29		0.3300		87.8	40.5	114			
Surr: N-hexadecane	1.3		1.460		90.9	42.8	117			
Sample ID Ics-2242	Samp	Гуре: LC	S	Tes	tCode: El	PA Method	8270C: PAHs	5		
Client ID: LCSS	Batc	h ID: 22	42	R	RunNo: 3	256				
Prep Date: 6/5/2012	Analysis E	Date: 6/	6/2012	S	SeqNo: 9	0371	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	0.27	0.020	0.3300	0	80.7	50.15	108.9			
1-Methylnaphthalene	0.28	0.020	0.3300	0	86.1	49.96	108.45			
2-Methylnaphthalene	0.28	0.020	0.3300	0	85.7	53.36	116.25			
Acenaphthylene	0.26	0.020	0.3300	0	78.8	48.44	106.25			
Acenaphthene	0.26	0.020	0.3300	0	77.5	51.23	105.53			
Fluorene	0.27	0.020	0.3300	0	80.6	48.42	104.49			
	0.2.	0.020		0	00.0	40.42	101110			
Phenanthrene	0.27	0.020	0.3300	0	81.0	51.76	107.81			
				-						
Anthracene	0.27	0.020	0.3300	0	81.0	51.76	107.81			
Phenanthrene Anthracene Fluoranthene Pyrene	0.27 0.26	0.020 0.020	0.3300 0.3300	0 0	81.0 80.2	51.76 51.74	107.81 104.29			
Anthracene Fluoranthene	0.27 0.26 0.23	0.020 0.020 0.020	0.3300 0.3300 0.3300	0 0 0	81.0 80.2 71.0	51.76 51.74 54.67	107.81 104.29 103.26			
Anthracene Fluoranthene Pyrene	0.27 0.26 0.23 0.25	0.020 0.020 0.020 0.020	0.3300 0.3300 0.3300 0.3300	0 0 0 0	81.0 80.2 71.0 76.6	51.76 51.74 54.67 57.16	107.81 104.29 103.26 111.06			
Anthracene Fluoranthene Pyrene Benz(a)anthracene	0.27 0.26 0.23 0.25 0.25	0.020 0.020 0.020 0.020 0.020	0.3300 0.3300 0.3300 0.3300 0.3300	0 0 0 0 0	81.0 80.2 71.0 76.6 77.2	51.76 51.74 54.67 57.16 59.07	107.81 104.29 103.26 111.06 102.66			
Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	0.27 0.26 0.23 0.25 0.25 0.27	0.020 0.020 0.020 0.020 0.020 0.020	0.3300 0.3300 0.3300 0.3300 0.3300 0.3300	0 0 0 0 0 0	81.0 80.2 71.0 76.6 77.2 82.3	51.76 51.74 54.67 57.16 59.07 58.19	107.81 104.29 103.26 111.06 102.66 107.82			
Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene	0.27 0.26 0.23 0.25 0.25 0.27 0.28	0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300	0 0 0 0 0 0	81.0 80.2 71.0 76.6 77.2 82.3 84.6	51.76 51.74 54.67 57.16 59.07 58.19 54.1	107.81 104.29 103.26 111.06 102.66 107.82 110.08			

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc

Client:Intera, Intera, Intera										
Sample ID Ics-2242	Samp	Гуре: LC	s	Tes	tCode: El	PA Method	8270C: PAH	5		
Client ID: LCSS		h ID: 22		F	RunNo: 3	256				
Prep Date: 6/5/2012	Analysis [SegNo: 9		Unite: ma/k	(a		
					•		Units: mg/k	-		
	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dibenz(a,h)anthracene	0.28	0.020	0.3300	0	83.7	54.55	106.56			
Benzo(g,h,i)perylene	0.29	0.020	0.3300	0	87.4	51.48	105.08			
Indeno(1,2,3-cd)pyrene	0.27	0.020	0.3300	0	83.0	55.5	104.02			
Surr: Benzo(e)pyrene	0.29		0.3300		86.4	35.28	118.46			
Surr: N-hexadecane	1.2		1.460		81.3	36.19	122.5			
Sample ID 1206093-001Ams	Samp	Гуре: М	6	Tes	tCode: El	PA Method	8270C: PAH	S		
Client ID: SB-05 Surface (6"	-1 Batc	h ID: 22	42	F	RunNo: 3	256				
Prep Date: 6/5/2012	Analysis [Date: 6/	6/2012	S	SeqNo: 9	0385	Units: mg/H	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	0.24	0.020	0.3281	0	71.9	56.8	103			
1-Methylnaphthalene	0.24	0.020	0.3281	0	72.9	45	114			
2-Methylnaphthalene	0.23	0.020	0.3281	0	70.9	54.9	107			
Acenaphthylene	0.26	0.020	0.3281	0	77.8	58	108			
Acenaphthene	0.26	0.020	0.3281	0	80.6	57.2	105			
Fluorene	0.26	0.020	0.3281	0	80.4	55.2	118			
Phenanthrene	0.29	0.020	0.3281	0	89.3	31.4	152			
Anthracene	0.28	0.020	0.3281	0	86.3	49.9	134			
Fluoranthene	0.26	0.020	0.3281	0	78.6	46.3	133			
Pyrene	0.25	0.020	0.3281	0	76.8	44	127			
Benz(a)anthracene	0.26	0.020	0.3281	0	80.3	5.46	204			
Chrysene	0.28	0.020	0.3281	0	85.7	47.3	127			
Benzo(b)fluoranthene	0.27	0.020	0.3281	0	83.4	58.6	138			
Benzo(k)fluoranthene	0.26	0.020	0.3281	0	78.0	64.9	122			
Benzo(a)pyrene	0.27	0.020	0.3281	0	82.8	45.4	134			
Dibenz(a,h)anthracene	0.27	0.020	0.3281	0	83.7	56.1	118			
Benzo(g,h,i)perylene	0.28	0.020	0.3281	0	86.6	58.1	115			
Indeno(1,2,3-cd)pyrene	0.27	0.020	0.3281	0	82.5	58.1	133			
Surr: Benzo(e)pyrene	0.26		0.3281	-	80.5	33.9	171			
Surr: N-hexadecane	1.1		1.452		76.9	51.1	118			
Sample ID 1206093-001Amso	Samo	Гуре: М	SD	Tes	tCode: El	PA Method	8270C: PAH	s		
Client ID: SB-05 Surface (6"		h ID: 22			RunNo: 3					
Prep Date: 6/5/2012	Analysis [SeqNo: 9		Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	0.24	0.020	0.3317	0	71.7	56.8	103	0.785	20	
1-Methylnaphthalene	0.26	0.020	0.3317	0	79.0	45	114	9.04	20	
2-Methylnaphthalene	0.26	0.020	0.3317	0	77.0	54.9	107	9.26	20	
, i	0.27	0.020	0.3317	0	81.9	58	108	6.25	20	
Acenaphthylene	0.27	0.020								

*/X Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: **1206093**

21-Jun-12

Client:Intera, Inc.Project:VC #1

Sample ID 1206093-001A	msd SampT	ype: MS	SD	Tes	tCode: El	PA Method	8270C: PAH	5		
Client ID: SB-05 Surface	e (6"-1 Batch	n ID: 22	42	F	RunNo: 3	256				
Prep Date: 6/5/2012	Analysis D	ate: 6/	6/2012	S	SeqNo: 9	0386	Units: mg/k	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
luorene	0.28	0.020	0.3317	0	83.8	55.2	118	5.25	20	
Phenanthrene	0.36	0.020	0.3317	0	107	31.4	152	19.5	20	
Anthracene	0.35	0.020	0.3317	0	106	49.9	134	22.0	20	R
luoranthene	0.32	0.020	0.3317	0	96.4	46.3	133	21.4	20	R
Pyrene	0.30	0.020	0.3317	0	89.8	44	127	16.7	20	
Benz(a)anthracene	0.28	0.020	0.3317	0	85.8	5.46	204	7.63	20	
Chrysene	0.30	0.020	0.3317	0	91.1	47.3	127	7.24	20	
Benzo(b)fluoranthene	0.31	0.020	0.3317	0	93.4	58.6	138	12.4	20	
Benzo(k)fluoranthene	0.32	0.020	0.3317	0	95.2	64.9	122	20.9	20	R
Benzo(a)pyrene	0.31	0.020	0.3317	0	92.6	45.4	134	12.2	20	
Dibenz(a,h)anthracene	0.32	0.020	0.3317	0	95.7	56.1	118	14.3	20	
Benzo(g,h,i)perylene	0.34	0.020	0.3317	0	101	58.1	115	16.5	20	
ndeno(1,2,3-cd)pyrene	0.32	0.020	0.3317	0	97.2	58.1	133	17.4	20	
Surr: Benzo(e)pyrene	0.31		0.3317		92.8	33.9	171	0	0	
Surr: N-hexadecane	1.2		1.467		79.9	51.1	118	0	0	

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

HALL ENVIRONMENTAL ANALYSIS LABORATORY Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-410; Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: INT	Work Order Number: 1206093
Received by/date: AG-05/31/2 Sample	s on hold water oblarliz the
Logged By: Anne Thorne 6/4/2012 4:20:0	
Completed By: Anne Thorne 6/5/2012	ane the
Reviewed By: 06/05/12	
Chain of Custody	
1. Were seals intact?	Yes 🗹 No 🗌 Not Present 🗌
2. Is Chain of Custody complete?	Yes 🗹 No 🗌 Not Present 🗌
3. How was the sample delivered?	<u>Client</u>
Log In	
4. Coolers are present? (see 19. for cooler specific information)) Yes 🗹 No 🗌 NA 🗌
5. Was an attempt made to cool the samples?	Yes 🗹 No 🗌 🛛 NA 🗌
6. Were all samples received at a temperature of $>0^{\circ}$ C to 6.0°	C Yes 🗹 No 🗌 NA 🗌
7. Sample(s) in proper container(s)?	Yes 🗹 No 🗌
8. Sufficient sample volume for indicated test(s)?	Yes 🗹 No 🗌
9. Are samples (except VOA and ONG) properly preserved?	Yes 🗹 No 🗌
10. Was preservative added to bottles?	Yes 🗌 No 🗹 🛛 NA 🗌
11. VOA vials have zero headspace?	Yes 🗌 No 💭 No VOA Vials 🗹
12. Were any sample containers received broken?	
 Does paperwork match bottle labels? (Note discrepancies on chain of custody) 	Yes V No H for preserved bottles checked for pH:
14. Are matrices correctly identified on Chain of Custody?	Yes
15. Is it clear what analyses were requested?	Yes ✔ No
16, Were all holding times able to be met?	Yes 🗹 No 🗌
(If no, notify customer for authorization.)	Checked by:
Special Handling (if applicable)	
17. Was client notified of all discrepancies with this order?	
Person Notified:	Date
By Whom:	Via: 🗌 eMail 🔲 Phone 🗌 Fax 🗌 In Person
Regarding:	
Client Instructions:	ייייייייייייייייייייייייייייייייייייי

18. Additional remarks:

19. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	2.6	Good	Not Present			

Chain-of-Custody Record	lum-Around lime: A Standard □ Rush Project Name:	HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com
	VC #2 Project #:	4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107
		Analysis
email or Fax#: jgalemore@interarcom	Project Manager:	()(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1
Level 4 (Full Validation)	Joe Colemone	5 PCB's ,PO4,5 2 2 PCB's 2 3 2 0 4,5 2 3 2 2 0 4,5 2 3 2 0 0 4,5 2 3 2 0 0 4,5 2 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Sampler: Lee De Hear (LD) On Ice : Mes Invo	Hqt + 882r (1.81 (1.40 (HA) (HA) (A 808 \ 7 7 7
	Tem	
Sample Request ID	Container Preservative HEAL No. Type and # Type 72.616.07.3	ТРН Меtho ВТЕХ + МТ ТРН Меtho ТРН (Меtho В170 (РИА 8310 (РИА 8310 (РИА 8081 Реstic 8081 Реstic 8081 Реstic 600 (УО) 82500 (УО) 82500 (УО)
50-05 Surface (6"-12")	1/403 1/mearkit Truch -001	
ナイシャイ		
the ser		
AST AST		
たいましょう		
(,52-,51)	-002	
- (inter is) - in and		
fight - Free		
(مام، 5'- 5'4s ²)		
	Received by: Date Time	Remarks: Hold Scripter - Donot arelyze
<u> </u>	Received by: Date Time	10 consent of
Ŭ	12 WWW M C C C C C B 12 1335	112 1335 NUN = DUTACE (6"-12"), 24.5-25", 49.5-54.5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 22, 2012

Joe Galemore Intera, Inc. 6000 Uptown Boulevard, NE Suite 220 Albuquerque, NM 87110 TEL: (505) 239-6414 FAX

RE: VC #1

OrderNo.: 1206097

Dear Joe Galemore:

Hall Environmental Analysis Laboratory received 6 sample(s) on 6/4/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Date Reported: 6/22/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project:

VC #1

Client Sample ID: SB-02 Surface (6"-12") Collection Date: 5/31/2012 11:20:00 AM Received Date: 6/4/2012 4:45:00 PM

Lab ID: 1206097-001	Matrix: SOIL			Received Date: 6/4/2012 4:45:00 PM			
Analyses	Result	RL	Qual U	U nits	DF	Date Analyzed	
EPA METHOD 8015B: DIESEL RANG	E ORGANICS					Analyst: JMP	
Diesel Range Organics (DRO)	110	10		mg/Kg	1	6/8/2012 10:09:48 AM	
Motor Oil Range Organics (MRO)	420	51		mg/Kg	1	6/8/2012 10:09:48 AM	
Surr: DNOP	115	77.6-140		%REC	1	6/8/2012 10:09:48 AM	
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: NSB	
Gasoline Range Organics (GRO)	ND	5.0		mg/Kg	1	6/7/2012 3:25:41 AM	
Surr: BFB	92.7	69.7-121		%REC	1	6/7/2012 3:25:41 AM	
EPA METHOD 300.0: ANIONS						Analyst: SRM	
Chloride	58	15		mg/Kg	10	6/8/2012 2:53:15 PM	
EPA METHOD 8270C: PAHS						Analyst: JDC	
Naphthalene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
1-Methylnaphthalene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
2-Methylnaphthalene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Acenaphthylene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Acenaphthene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Fluorene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Phenanthrene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Anthracene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Fluoranthene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Pyrene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Benz(a)anthracene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Chrysene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Benzo(b)fluoranthene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Benzo(k)fluoranthene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Benzo(a)pyrene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Dibenz(a,h)anthracene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Benzo(g,h,i)perylene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Indeno(1,2,3-cd)pyrene	ND	0.099		mg/Kg	1	6/6/2012 4:44:39 PM	
Surr: Benzo(e)pyrene	94.4	40.5-114		%REC	1	6/6/2012 4:44:39 PM	
Surr: N-hexadecane	111	42.8-117		%REC	1	6/6/2012 4:44:39 PM	
EPA METHOD 8260B: VOLATILES						Analyst: RAA	
Benzene	ND	0.050		mg/Kg	1	6/5/2012 5:18:52 PM	
Toluene	ND	0.050		mg/Kg	1	6/5/2012 5:18:52 PM	
Ethylbenzene	ND	0.050		mg/Kg	1	6/5/2012 5:18:52 PM	
Methyl tert-butyl ether (MTBE)	ND	0.050		mg/Kg	1	6/5/2012 5:18:52 PM	
1,2,4-Trimethylbenzene	ND	0.050		mg/Kg	1	6/5/2012 5:18:52 PM	
1,3,5-Trimethylbenzene	ND	0.050		mg/Kg	1	6/5/2012 5:18:52 PM	
1,2-Dichloroethane (EDC)	ND	0.050		mg/Kg	1	6/5/2012 5:18:52 PM	
1,2-Dibromoethane (EDB)	ND	0.050		mg/Kg	1	6/5/2012 5:18:52 PM	
Naphthalene	ND	0.10		mg/Kg	1	6/5/2012 5:18:52 PM	
1-Methylnaphthalene	ND	0.20		mg/Kg	1	6/5/2012 5:18:52 PM	

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Date Reported: 6/22/2012

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Intera, Inc. Project: VC #1

1206097-001

Lab ID:

Client Sample ID: SB-02 Surface (6"-12") Collection Date: 5/31/2012 11:20:00 AM Received Date: 6/4/2012 4:45:00 PM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RA
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 5:18:52 PM
Acetone	ND	0.75	mg/Kg	1	6/5/2012 5:18:52 PM
Bromobenzene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
Bromodichloromethane	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
Bromoform	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
Bromomethane	ND	0.20	mg/Kg	1	6/5/2012 5:18:52 PM
2-Butanone	ND	0.50	mg/Kg	1	6/5/2012 5:18:52 PM
Carbon disulfide	ND	0.50	mg/Kg	1	6/5/2012 5:18:52 PM
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/5/2012 5:18:52 PM
Chlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
Chloroethane	ND	0.10	mg/Kg	1	6/5/2012 5:18:52 PM
Chloroform	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
Chloromethane	ND	0.15	mg/Kg	1	6/5/2012 5:18:52 PM
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/5/2012 5:18:52 PM
Dibromochloromethane	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
Dibromomethane	ND	0.10	mg/Kg	1	6/5/2012 5:18:52 PM
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/5/2012 5:18:52 PM
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/5/2012 5:18:52 PM
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/5/2012 5:18:52 PM
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/5/2012 5:18:52 PM
2-Hexanone	ND	0.50	mg/Kg	1	6/5/2012 5:18:52 PM
Isopropylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
4-Isopropyltoluene	0.059	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/5/2012 5:18:52 PM
Methylene chloride	ND	0.15	mg/Kg	1	6/5/2012 5:18:52 PM
n-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
n-Propylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
Styrene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

NDNot Detected at the Reporting LimitRLReporting Detection Limit

RL Reporting Detection LimitU Samples with CalcVal < MDL

Page 2 of 26

Date Reported: 6/22/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. VC #1

Project:

Client Sample ID: SB-02 Surface (6"-12") Collection Date: 5/31/2012 11:20:00 AM **Received Date:** 6/4/2012 4:45:00 PM

Lab ID: 1206097-001	Matrix:	SOIL	Received D	Received Date: 6/4/2012 4:45:00 PM			
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8260B: VOLATILES					Analyst: RAA		
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM		
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM		
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM		
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM		
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/5/2012 5:18:52 PM		
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM		
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM		
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM		
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM		
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM		
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/5/2012 5:18:52 PM		
Vinyl chloride	ND	0.050	mg/Kg	1	6/5/2012 5:18:52 PM		
Xylenes, Total	ND	0.10	mg/Kg	1	6/5/2012 5:18:52 PM		
Surr: 1,2-Dichloroethane-d4	89.8	70-130	%REC	1	6/5/2012 5:18:52 PM		
Surr: 4-Bromofluorobenzene	99.9	70-130	%REC	1	6/5/2012 5:18:52 PM		
Surr: Dibromofluoromethane	94.3	71.7-132	%REC	1	6/5/2012 5:18:52 PM		
Surr: Toluene-d8	93.8	70-130	%REC	1	6/5/2012 5:18:52 PM		

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
	-			

- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- paration or analysis exceeded
- eporting Limit
- RL Reporting Detection Limit
- U Samples with CalcVal < MDL

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project:

VC #1

Client Sample ID: SB-02 (19.5'-24') Collection Date: 5/31/2012 1:30:00 PM Received Date: 6/4/2012 4:45:00 PM

Lab ID: 1206097-002	Matrix:	Received D	Received Date: 6/4/2012 4:45:00 PM			
Analyses	Result	RL	Qual Units	DF	Date Analyzed	
EPA METHOD 8015B: DIESEL RANGE	E ORGANICS				Analyst: JMP	
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	6/7/2012 1:29:01 PM	
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	6/7/2012 1:29:01 PM	
Surr: DNOP	117	82.1-121	%REC	1	6/7/2012 1:29:01 PM	
EPA METHOD 8015B: GASOLINE RAI	NGE				Analyst: NSB	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/7/2012 3:54:24 AM	
Surr: BFB	90.3	69.7-121	%REC	1	6/7/2012 3:54:24 AM	
EPA METHOD 300.0: ANIONS					Analyst: SRN	
Chloride	5600	300	mg/Kg	200	6/11/2012 5:38:32 PM	
EPA METHOD 8270C: PAHS					Analyst: JDC	
Naphthalene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
1-Methylnaphthalene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
2-Methylnaphthalene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Acenaphthylene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Acenaphthene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Fluorene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Phenanthrene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Anthracene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Pyrene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Benz(a)anthracene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Chrysene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Benzo(b)fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Benzo(k)fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Benzo(a)pyrene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Dibenz(a,h)anthracene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Benzo(g,h,i)perylene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Indeno(1,2,3-cd)pyrene	ND	0.020	mg/Kg	1	6/6/2012 5:06:55 PM	
Surr: Benzo(e)pyrene	83.7	40.5-114	%REC	1	6/6/2012 5:06:55 PM	
Surr: N-hexadecane	77.8	42.8-117	%REC	1	6/6/2012 5:06:55 PM	
EPA METHOD 8260B: VOLATILES					Analyst: RAA	
Benzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM	
Toluene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM	
Ethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM	
Methyl tert-butyl ether (MTBE)	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM	
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM	
1,3,5-Trimethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM	
1,2-Dichloroethane (EDC)	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM	
1,2-Dibromoethane (EDB)	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM	
Naphthalene	ND	0.10	mg/Kg	1	6/5/2012 5:47:06 PM	
1-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 5:47:06 PM	

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 4 of 26

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Intera, Inc. Project: VC #1

1206097-002

Lab ID:

Client Sample ID: SB-02 (19.5'-24') Collection Date: 5/31/2012 1:30:00 PM Received Date: 6/4/2012 4:45:00 PM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES	Result	ILL Qui		DI	Analyst: RAA
		0.00		4	-
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 5:47:06 PM
Acetone	ND	0.75	mg/Kg	1	6/5/2012 5:47:06 PM
Bromobenzene Bromo disklara methana	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
Bromodichloromethane	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
Bromoform	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
Bromomethane	ND	0.20	mg/Kg	1	6/5/2012 5:47:06 PM
2-Butanone	ND	0.50	mg/Kg	1	6/5/2012 5:47:06 PM
Carbon disulfide	ND	0.50	mg/Kg	1	6/5/2012 5:47:06 PM
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/5/2012 5:47:06 PM
Chlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
Chloroethane	ND	0.10	mg/Kg	1	6/5/2012 5:47:06 PM
Chloroform	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
Chloromethane	ND	0.15	mg/Kg	1	6/5/2012 5:47:06 PM
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/5/2012 5:47:06 PM
Dibromochloromethane	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
Dibromomethane	ND	0.10	mg/Kg	1	6/5/2012 5:47:06 PM
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/5/2012 5:47:06 PM
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/5/2012 5:47:06 PM
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/5/2012 5:47:06 PM
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/5/2012 5:47:06 PM
2-Hexanone	ND	0.50	mg/Kg	1	6/5/2012 5:47:06 PM
Isopropylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/5/2012 5:47:06 PM
Methylene chloride	ND	0.15	mg/Kg	1	6/5/2012 5:47:06 PM
n-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
n-Propylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
Styrene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

NDNot Detected at the Reporting LimitRLReporting Detection Limit

U Samples with CalcVal < MDL

Page 5 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. **Project:** VC #1

Client Sample ID: SB-02 (19.5'-24') Collection Date: 5/31/2012 1:30:00 PM Pagaived Data: 6/4/2012 4:45:00 PM

Lab ID: 1206097-002	Matrix:	SOIL	Received D	Received Date: 6/4/2012 4:45:00 PM			
Analyses	Result	RL Qua	al Units	DF	Date Analyzed		
EPA METHOD 8260B: VOLATILES					Analyst: RAA		
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM		
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM		
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM		
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM		
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/5/2012 5:47:06 PM		
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM		
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM		
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM		
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM		
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM		
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/5/2012 5:47:06 PM		
Vinyl chloride	ND	0.050	mg/Kg	1	6/5/2012 5:47:06 PM		
Xylenes, Total	ND	0.10	mg/Kg	1	6/5/2012 5:47:06 PM		
Surr: 1,2-Dichloroethane-d4	93.1	70-130	%REC	1	6/5/2012 5:47:06 PM		
Surr: 4-Bromofluorobenzene	101	70-130	%REC	1	6/5/2012 5:47:06 PM		
Surr: Dibromofluoromethane	95.2	71.7-132	%REC	1	6/5/2012 5:47:06 PM		
Surr: Toluene-d8	92.0	70-130	%REC	1	6/5/2012 5:47:06 PM		

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the
	Е	Value above quantitation range	Н	Holding times for prep
	J	Analyte detected below quantitation limits	ND	Not Detected at the Re

- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- the associated Method Blank
- eparation or analysis exceeded
- Reporting Limit
- RL Reporting Detection Limit
- U Samples with CalcVal < MDL

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project:

VC #1

Client Sample ID: SB-02 (49.5'-54.5') Collection Date: 5/31/2012 2:45:00 PM Received Date: 6/4/2012 4:45:00 PM

Lab ID: 1206097-003	Matrix:	SOIL	Received	Received Date: 6/4/2012 4:45:00 PM			
Analyses	Result	RL	Qual Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANG	GE ORGANICS				Analyst: JMP		
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	6/7/2012 1:51:06 PM		
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	6/7/2012 1:51:06 PM		
Surr: DNOP	116	82.1-121	%REC	1	6/7/2012 1:51:06 PM		
EPA METHOD 8015B: GASOLINE R	ANGE				Analyst: NSB		
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/7/2012 4:23:05 AM		
Surr: BFB	90.8	69.7-121	%REC	1	6/7/2012 4:23:05 AM		
EPA METHOD 300.0: ANIONS					Analyst: SRN		
Chloride	870	30	mg/Kg	20	6/8/2012 3:18:04 PM		
EPA METHOD 8270C: PAHS					Analyst: JDC		
Naphthalene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
1-Methylnaphthalene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
2-Methylnaphthalene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Acenaphthylene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Acenaphthene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Fluorene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Phenanthrene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Anthracene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Pyrene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Benz(a)anthracene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Chrysene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Benzo(b)fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Benzo(k)fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Benzo(a)pyrene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Dibenz(a,h)anthracene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Benzo(g,h,i)perylene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Indeno(1,2,3-cd)pyrene	ND	0.020	mg/Kg	1	6/6/2012 5:29:11 PM		
Surr: Benzo(e)pyrene	78.8	40.5-114	%REC	1	6/6/2012 5:29:11 PM		
Surr: N-hexadecane	86.9	42.8-117	%REC	1	6/6/2012 5:29:11 PM		
EPA METHOD 8260B: VOLATILES					Analyst: RAA		
Benzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
Toluene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
Ethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
Methyl tert-butyl ether (MTBE)	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
1,3,5-Trimethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
1,2-Dichloroethane (EDC)	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
1,2-Dibromoethane (EDB)	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
Naphthalene	ND	0.10		1	6/5/2012 6:15:13 PM		
1-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 6:15:13 PM		

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

NDNot Detected at the Reporting LimitRLReporting Detection Limit

U Samples with CalcVal < MDL

Page 7 of 26

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Intera, Inc. Project: VC #1

1206097-003

Lab ID:

Client Sample ID: SB-02 (49.5'-54.5') Collection Date: 5/31/2012 2:45:00 PM Received Date: 6/4/2012 4:45:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 6:15:13 PM
Acetone	ND	0.75	mg/Kg	1	6/5/2012 6:15:13 PM
Bromobenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
Bromodichloromethane	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
Bromoform	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
Bromomethane	ND	0.20	mg/Kg	1	6/5/2012 6:15:13 PM
2-Butanone	ND	0.50	mg/Kg	1	6/5/2012 6:15:13 PM
Carbon disulfide	ND	0.50	mg/Kg	1	6/5/2012 6:15:13 PM
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/5/2012 6:15:13 PM
Chlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
Chloroethane	ND	0.10	mg/Kg	1	6/5/2012 6:15:13 PM
Chloroform	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
Chloromethane	ND	0.15	mg/Kg	1	6/5/2012 6:15:13 PM
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/5/2012 6:15:13 PM
Dibromochloromethane	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
Dibromomethane	ND	0.10	mg/Kg	1	6/5/2012 6:15:13 PM
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/5/2012 6:15:13 PM
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/5/2012 6:15:13 PM
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/5/2012 6:15:13 PM
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/5/2012 6:15:13 PM
2-Hexanone	ND	0.50	mg/Kg	1	6/5/2012 6:15:13 PM
Isopropylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/5/2012 6:15:13 PM
Methylene chloride	ND	0.15	mg/Kg	1	6/5/2012 6:15:13 PM
n-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
n-Propylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
Styrene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection LimitU Samples with CalcVal < MDL

Page 8 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Project: VC #1

Client Sample ID: SB-02 (49.5'-54.5') Collection Date: 5/31/2012 2:45:00 PM Pagaived Data: 6/4/2012 4:45:00 PM

Lab ID: 1206097-003	Matrix:	SOIL	Received D	Received Date: 6/4/2012 4:45:00 PM			
Analyses	Result	RL Qua	al Units	DF	Date Analyzed		
EPA METHOD 8260B: VOLATILES					Analyst: RAA		
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/5/2012 6:15:13 PM		
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/5/2012 6:15:13 PM		
Vinyl chloride	ND	0.050	mg/Kg	1	6/5/2012 6:15:13 PM		
Xylenes, Total	ND	0.10	mg/Kg	1	6/5/2012 6:15:13 PM		
Surr: 1,2-Dichloroethane-d4	94.1	70-130	%REC	1	6/5/2012 6:15:13 PM		
Surr: 4-Bromofluorobenzene	107	70-130	%REC	1	6/5/2012 6:15:13 PM		
Surr: Dibromofluoromethane	97.2	71.7-132	%REC	1	6/5/2012 6:15:13 PM		
Surr: Toluene-d8	93.0	70-130	%REC	1	6/5/2012 6:15:13 PM		

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

- S Spike Recovery outside accepted recovery limits
- nit
- U Samples with CalcVal < MDL
- Page 9 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project:

VC #1

Client Sample ID: SB-01 Surface (6"-12") Collection Date: 6/1/2012 9:00:00 AM Paceived Date: 6/4/2012 4:45:00 PM

Lab ID: 1206097-004	Matrix: SOIL			Received Date: 6/4/2012 4:45:00 PM		
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGI	E ORGANICS					Analyst: JMP
Diesel Range Organics (DRO)	ND	9.6		mg/Kg	1	6/7/2012 2:37:20 PM
Motor Oil Range Organics (MRO)	ND	48		mg/Kg	1	6/7/2012 2:37:20 PM
Surr: DNOP	126	82.1-121	S	%REC	1	6/7/2012 2:37:20 PM
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0		mg/Kg	1	6/7/2012 4:51:50 AM
Surr: BFB	91.7	69.7-121		%REC	1	6/7/2012 4:51:50 AM
EPA METHOD 300.0: ANIONS						Analyst: SRM
Chloride	450	30		mg/Kg	20	6/8/2012 3:30:29 PM
EPA METHOD 8270C: PAHS						Analyst: JDC
Naphthalene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
1-Methylnaphthalene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
2-Methylnaphthalene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Acenaphthylene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Acenaphthene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Fluorene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Phenanthrene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Anthracene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Fluoranthene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Pyrene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Benz(a)anthracene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Chrysene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Benzo(b)fluoranthene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Benzo(k)fluoranthene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Benzo(a)pyrene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Dibenz(a,h)anthracene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Benzo(g,h,i)perylene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Indeno(1,2,3-cd)pyrene	ND	0.020		mg/Kg	1	6/6/2012 5:51:26 PM
Surr: Benzo(e)pyrene	63.2	40.5-114		%REC	1	6/6/2012 5:51:26 PM
Surr: N-hexadecane	64.2	42.8-117		%REC	1	6/6/2012 5:51:26 PM
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Benzene	ND	0.050		mg/Kg	1	6/5/2012 6:43:23 PM
Toluene	ND	0.050		mg/Kg	1	6/5/2012 6:43:23 PM
Ethylbenzene	ND	0.050		mg/Kg	1	6/5/2012 6:43:23 PM
Methyl tert-butyl ether (MTBE)	ND	0.050		mg/Kg	1	6/5/2012 6:43:23 PM
1,2,4-Trimethylbenzene	ND	0.050		mg/Kg	1	6/5/2012 6:43:23 PM
1,3,5-Trimethylbenzene	ND	0.050		mg/Kg	1	6/5/2012 6:43:23 PM
1,2-Dichloroethane (EDC)	ND	0.050		mg/Kg	1	6/5/2012 6:43:23 PM
1,2-Dibromoethane (EDB)	ND	0.050		mg/Kg	1	6/5/2012 6:43:23 PM
Naphthalene	ND	0.10		mg/Kg	1	6/5/2012 6:43:23 PM
1-Methylnaphthalene	ND	0.20		mg/Kg	1	6/5/2012 6:43:23 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection LimitU Samples with CalcVal < MDL

Page 10 of 26

Date Reported: 6/22/2012

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Intera, Inc. Project: VC #1

1206097-004

Lab ID:

Client Sample ID: SB-01 Surface (6"-12") Collection Date: 6/1/2012 9:00:00 AM Received Date: 6/4/2012 4:45:00 PM

Analyses	Result RL Q		al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RA
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 6:43:23 PM
Acetone	ND	0.75	mg/Kg	1	6/5/2012 6:43:23 PM
Bromobenzene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
Bromodichloromethane	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
Bromoform	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
Bromomethane	ND	0.20	mg/Kg	1	6/5/2012 6:43:23 PM
2-Butanone	ND	0.50	mg/Kg	1	6/5/2012 6:43:23 PM
Carbon disulfide	ND	0.50	mg/Kg	1	6/5/2012 6:43:23 PM
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/5/2012 6:43:23 PM
Chlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
Chloroethane	ND	0.10	mg/Kg	1	6/5/2012 6:43:23 PM
Chloroform	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
Chloromethane	ND	0.15	mg/Kg	1	6/5/2012 6:43:23 PM
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/5/2012 6:43:23 PM
Dibromochloromethane	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
Dibromomethane	ND	0.10	mg/Kg	1	6/5/2012 6:43:23 PM
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/5/2012 6:43:23 PM
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/5/2012 6:43:23 PM
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/5/2012 6:43:23 PM
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/5/2012 6:43:23 PM
2-Hexanone	ND	0.50	mg/Kg	1	6/5/2012 6:43:23 PM
Isopropylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/5/2012 6:43:23 PM
Methylene chloride	ND	0.15	mg/Kg	1	6/5/2012 6:43:23 PM
n-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
n-Propylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
Styrene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection LimitU Samples with CalcVal < MDL

Page 11 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. **Project:** VC #1

Client Sample ID: SB-01 Surface (6"-12") Collection Date: 6/1/2012 9:00:00 AM

Lab ID: 1206097-004	Matrix: SOIL		Received Date: 6/4/2012 4:45:00 PM		
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/5/2012 6:43:23 PM
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/5/2012 6:43:23 PM
Vinyl chloride	ND	0.050	mg/Kg	1	6/5/2012 6:43:23 PM
Xylenes, Total	ND	0.10	mg/Kg	1	6/5/2012 6:43:23 PM
Surr: 1,2-Dichloroethane-d4	91.5	70-130	%REC	1	6/5/2012 6:43:23 PM
Surr: 4-Bromofluorobenzene	102	70-130	%REC	1	6/5/2012 6:43:23 PM
Surr: Dibromofluoromethane	97.5	71.7-132	%REC	1	6/5/2012 6:43:23 PM
Surr: Toluene-d8	93.9	70-130	%REC	1	6/5/2012 6:43:23 PM

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.
	Б	Value ale and an and it at in a second

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- $U \qquad Samples \ with \ CalcVal < MDL$

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project:

VC #1

Client Sample ID: SB-1 (19.5'-24.5') Collection Date: 6/1/2012 11:45:00 AM Received Date: 6/4/2012 4:45:00 PM

Lab ID: 1206097-005	Matrix:	Received I	Received Date: 6/4/2012 4:45:00 PM			
Analyses	Result	RL	Qual Units	DF	Date Analyzed	
EPA METHOD 8015B: DIESEL RANGI	E ORGANICS				Analyst: JMP	
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	6/7/2012 2:59:18 PM	
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	6/7/2012 2:59:18 PM	
Surr: DNOP	118	82.1-121	%REC	1	6/7/2012 2:59:18 PM	
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSE	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/7/2012 7:55:11 PM	
Surr: BFB	91.2	69.7-121	%REC	1	6/7/2012 7:55:11 PM	
EPA METHOD 300.0: ANIONS					Analyst: SRN	
Chloride	430	30	mg/Kg	20	6/8/2012 4:32:34 PM	
EPA METHOD 8270C: PAHS			0.0		Analyst: JDC	
Naphthalene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
1-Methylnaphthalene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
2-Methylnaphthalene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Acenaphthylene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Acenaphthene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Fluorene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Phenanthrene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Anthracene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Pyrene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Benz(a)anthracene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Chrysene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Benzo(b)fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Benzo(k)fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Benzo(a)pyrene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Dibenz(a,h)anthracene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Benzo(g,h,i)perylene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Indeno(1,2,3-cd)pyrene	ND	0.020	mg/Kg	1	6/6/2012 6:13:40 PM	
Surr: Benzo(e)pyrene	80.1	40.5-114	%REC	1	6/6/2012 6:13:40 PM	
Surr: N-hexadecane	84.3	42.8-117	%REC	1	6/6/2012 6:13:40 PM	
EPA METHOD 8260B: VOLATILES					Analyst: RAA	
Benzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
Toluene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
Ethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
Methyl tert-butyl ether (MTBE)	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
1,3,5-Trimethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
1,2-Dichloroethane (EDC)	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
1,2-Dibromoethane (EDB)	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
Naphthalene	ND	0.10	mg/Kg	1	6/5/2012 7:11:27 PM	
1-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 7:11:27 PM	

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 13 of 26

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Intera, Inc. Project: VC #1

1206097-005

Lab ID:

Client Sample ID: SB-1 (19.5'-24.5') Collection Date: 6/1/2012 11:45:00 AM Received Date: 6/4/2012 4:45:00 PM

Analyses	Result	RL Qual Units		DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 7:11:27 PM
Acetone	ND	0.75	mg/Kg	1	6/5/2012 7:11:27 PM
Bromobenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
Bromodichloromethane	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
Bromoform	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
Bromomethane	ND	0.20	mg/Kg	1	6/5/2012 7:11:27 PM
2-Butanone	ND	0.50	mg/Kg	1	6/5/2012 7:11:27 PM
Carbon disulfide	ND	0.50	mg/Kg	1	6/5/2012 7:11:27 PM
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/5/2012 7:11:27 PM
Chlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
Chloroethane	ND	0.10	mg/Kg	1	6/5/2012 7:11:27 PM
Chloroform	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
Chloromethane	ND	0.15	mg/Kg	1	6/5/2012 7:11:27 PM
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/5/2012 7:11:27 PM
Dibromochloromethane	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
Dibromomethane	ND	0.10	mg/Kg	1	6/5/2012 7:11:27 PM
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/5/2012 7:11:27 PM
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/5/2012 7:11:27 PM
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/5/2012 7:11:27 PM
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/5/2012 7:11:27 PM
2-Hexanone	ND	0.50	mg/Kg	1	6/5/2012 7:11:27 PM
Isopropylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/5/2012 7:11:27 PM
Methylene chloride	ND	0.15	mg/Kg	1	6/5/2012 7:11:27 PM
n-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
n-Propylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
Styrene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

 $U \qquad \text{Samples with } CalcVal < MDL$

Page 14 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Project: VC #1 Client Sample ID: SB-1 (19.5'-24.5') Collection Date: 6/1/2012 11:45:00 AM Received Date: 6/4/2012 4:45:00 PM

Matrix:	SOIL	Received D	Received Date: 6/4/2012 4:45:00 PM		
Result	RL Qu	ual Units	DF	Date Analyzed	
				Analyst: RAA	
ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
ND	0.10	mg/Kg	1	6/5/2012 7:11:27 PM	
ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
ND	0.10	mg/Kg	1	6/5/2012 7:11:27 PM	
ND	0.050	mg/Kg	1	6/5/2012 7:11:27 PM	
ND	0.10	mg/Kg	1	6/5/2012 7:11:27 PM	
94.4	70-130	%REC	1	6/5/2012 7:11:27 PM	
104	70-130	%REC	1	6/5/2012 7:11:27 PM	
101	71.7-132	%REC	1	6/5/2012 7:11:27 PM	
94.5	70-130	%REC	1	6/5/2012 7:11:27 PM	
	Result ND ND	ND 0.050 ND 0.10 ND 0.10 ND 0.10 94.4 70-130 104 71.7-132	Result RL Qual Units ND 0.050 mg/Kg ND 0.10 mg/Kg ND	Result RL Qual Units DF ND 0.050 mg/Kg 1 ND 0.10 mg/Kg	

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

Spike Recovery outside accepted recovery limits

S

U Samples with CalcVal < MDL

Page 15 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project:

VC #1

Client Sample ID: SB-01 (49.5'-54.5') Collection Date: 6/1/2012 12:30:00 PM Received Date: 6/4/2012 4:45:00 PM

Lab ID: 1206097-006	Matrix:	Received	Received Date: 6/4/2012 4:45:00 PM			
Analyses	Result	RL	Qual Units	DF	Date Analyzed	
EPA METHOD 8015B: DIESEL RANGE	ORGANICS				Analyst: JMP	
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	6/7/2012 3:21:30 PM	
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	6/7/2012 3:21:30 PM	
Surr: DNOP	119	82.1-121	%REC	1	6/7/2012 3:21:30 PM	
EPA METHOD 8015B: GASOLINE RAI	NGE				Analyst: NSE	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/8/2012 5:01:26 AM	
Surr: BFB	91.7	69.7-121	%REC	1	6/8/2012 5:01:26 AM	
EPA METHOD 300.0: ANIONS					Analyst: SRN	
Chloride	2.9	1.5	mg/Kg	1	6/8/2012 4:44:59 PM	
EPA METHOD 8270C: PAHS					Analyst: JDC	
Naphthalene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
1-Methylnaphthalene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
2-Methylnaphthalene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Acenaphthylene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Acenaphthene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Fluorene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Phenanthrene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Anthracene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Pyrene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Benz(a)anthracene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Chrysene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Benzo(b)fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Benzo(k)fluoranthene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Benzo(a)pyrene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Dibenz(a,h)anthracene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Benzo(g,h,i)perylene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Indeno(1,2,3-cd)pyrene	ND	0.020	mg/Kg	1	6/6/2012 6:35:47 PM	
Surr: Benzo(e)pyrene	69.1	40.5-114	%REC	1	6/6/2012 6:35:47 PM	
Surr: N-hexadecane	62.2	42.8-117	%REC	1	6/6/2012 6:35:47 PM	
EPA METHOD 8260B: VOLATILES					Analyst: RAA	
Benzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Toluene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Ethylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Methyl tert-butyl ether (MTBE)	ND	0.050		1	6/5/2012 7:39:33 PM	
1,2,4-Trimethylbenzene	ND	0.050		1	6/5/2012 7:39:33 PM	
1,3,5-Trimethylbenzene	ND	0.050		1	6/5/2012 7:39:33 PM	
1,2-Dichloroethane (EDC)	ND	0.050		1	6/5/2012 7:39:33 PM	
1,2-Dibromoethane (EDB)	ND	0.050		1	6/5/2012 7:39:33 PM	
Naphthalene	ND	0.10		1	6/5/2012 7:39:33 PM	
1-Methylnaphthalene	ND	0.20		1	6/5/2012 7:39:33 PM	

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceededND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 16 of 26

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Intera, Inc. Project: VC #1

1206097-006

Lab ID:

Client Sample ID: SB-01 (49.5'-54.5') Collection Date: 6/1/2012 12:30:00 PM Received Date: 6/4/2012 4:45:00 PM

Analyses	Result RL Qual		al Units	DF	Date Analyzed	
EPA METHOD 8260B: VOLATILES					Analyst: RA	
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/5/2012 7:39:33 PM	
Acetone	ND	0.75	mg/Kg	1	6/5/2012 7:39:33 PM	
Bromobenzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Bromodichloromethane	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Bromoform	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Bromomethane	ND	0.20	mg/Kg	1	6/5/2012 7:39:33 PM	
2-Butanone	ND	0.50	mg/Kg	1	6/5/2012 7:39:33 PM	
Carbon disulfide	ND	0.50	mg/Kg	1	6/5/2012 7:39:33 PM	
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/5/2012 7:39:33 PM	
Chlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Chloroethane	ND	0.10	mg/Kg	1	6/5/2012 7:39:33 PM	
Chloroform	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Chloromethane	ND	0.15	mg/Kg	1	6/5/2012 7:39:33 PM	
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/5/2012 7:39:33 PM	
Dibromochloromethane	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Dibromomethane	ND	0.10	mg/Kg	1	6/5/2012 7:39:33 PM	
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/5/2012 7:39:33 PM	
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/5/2012 7:39:33 PM	
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/5/2012 7:39:33 PM	
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/5/2012 7:39:33 PM	
2-Hexanone	ND	0.50	mg/Kg	1	6/5/2012 7:39:33 PM	
Isopropylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/5/2012 7:39:33 PM	
Methylene chloride	ND	0.15	mg/Kg	1	6/5/2012 7:39:33 PM	
n-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
n-Propylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Styrene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection LimitU Samples with CalcVal < MDL

Page 17 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Project: VC #1 Client Sample ID: SB-01 (49.5'-54.5') Collection Date: 6/1/2012 12:30:00 PM Received Date: 6/4/2012 4:45:00 PM

Lab ID: 1206097-006	Matrix:	SOIL	Received D	Received Date: 6/4/2012 4:45:00 PM		
Analyses	Result	RL Qua	al Units	DF	Date Analyzed	
EPA METHOD 8260B: VOLATILES					Analyst: RAA	
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/5/2012 7:39:33 PM	
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/5/2012 7:39:33 PM	
Vinyl chloride	ND	0.050	mg/Kg	1	6/5/2012 7:39:33 PM	
Xylenes, Total	ND	0.10	mg/Kg	1	6/5/2012 7:39:33 PM	
Surr: 1,2-Dichloroethane-d4	91.0	70-130	%REC	1	6/5/2012 7:39:33 PM	
Surr: 4-Bromofluorobenzene	99.8	70-130	%REC	1	6/5/2012 7:39:33 PM	
Surr: Dibromofluoromethane	97.8	71.7-132	%REC	1	6/5/2012 7:39:33 PM	
Surr: Toluene-d8	91.5	70-130	%REC	1	6/5/2012 7:39:33 PM	

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.
	_	

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- $U \qquad Samples \ with \ CalcVal < MDL$

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Intera, Ind VC #1	2.									
Sample ID	MB-2288	SampTyp	e: MB	BLK	Tes	tCode: E	PA Method	300.0: Anion	IS		
Client ID:	PBS	Batch II): 22	88	F	RunNo: 3	3288				
Prep Date:	6/7/2012	Analysis Date	e: 6/	7/2012	5	SeqNo: 9	91410	Units: mg/k	٢g		
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID	LCS-2288	SampTyp	e: LC	s	Tes	tCode: E	PA Method	300.0: Anion	S		
Client ID:	LCSS	Batch II): 22	88	F	RunNo: 3	3288				
Prep Date:	6/7/2012	Analysis Date	e: 6/	7/2012	5	SeqNo: 9	91411	Units: mg/k	٢g		
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	95.2	90	110			
Sample ID	MB-2302	SampTyp	e: MB	BLK	Tes	tCode: E	PA Method	300.0: Anion	IS		
Client ID:	PBS	Batch II	D: 23	02	F	RunNo: 3	3315				
Prep Date:	6/8/2012	Analysis Date	e: 6/	8/2012	S	SeqNo: 9	92200	Units: mg/k	٢g		
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID	LCS-2302	SampTyp	e: LC	s	Tes	tCode: E	PA Method	300.0: Anion	S		
Client ID:	LCSS	Batch II	D: 23	02	F	RunNo: 3	3315				
Prep Date:	6/8/2012	Analysis Date	e: 6/	8/2012	S	SeqNo: 9	92201	Units: mg/k	٢g		
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	96.2	90	110			
Sample ID	1206097-006BMS	SampTyp	e: M\$	6	Tes	tCode: E	PA Method	300.0: Anion	IS		
Client ID:	SB-01 (49.5'-54.5')	Batch II): 22	88	F	RunNo: 3	3315				
Prep Date:	6/7/2012	Analysis Date	e: 6/	8/2012	S	SeqNo: 9	2232	Units: mg/k	٢g		
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		16	1.5	15.00	2.877	89.4	74.6	118			
Sample ID	1206097-006BMSI) SampTyp	e: M\$	SD	Tes	tCode: E	PA Method	300.0: Anion	S		
Client ID:	SB-01 (49.5'-54.5')	Batch II): 22	88	F	RunNo: 3	3315				
Prep Date:	6/7/2012	Analysis Date	e: 6/	8/2012	S	SeqNo: 9	92233	Units: mg/k	٢g		
Analyte		Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		16	1.5	15.00	2.877	84.8	74.6	118	4.33	20	

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc

Intera, Inc.

Project: VC #1										
Sample ID MB-2266	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015B: Dies	el Range C	Organics	
Client ID: PBS	Batch	n ID: 22	66	F	RunNo: 3	254				
Prep Date: 6/6/2012	Analysis D	ate: 6/	7/2012	5	SeqNo: 9	0233	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Notor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	12		10.00		116	82.1	121			
Sample ID LCS-2266	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015B: Dies	el Range G	Organics	
Client ID: LCSS	Batch	n ID: 22	66	F	RunNo: 3	254				
Prep Date: 6/6/2012	Analysis D	ate: 6/	7/2012	S	SeqNo: 9	0234	Units: mg/ #	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	42	10	50.00	0	84.5	52.6	130			

Qualifiers:

Client:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, Ind	c.

Intera, Inc.

Project: VC #1										
Sample ID 5ML RB	SampTyp	be: ME	BLK	Tes	tCode: El	PA Method	8015B: Gasc	line Rang	e	
Client ID: PBS	Batch ID: R3267			F	RunNo: 3	267				
Prep Date:	Analysis Dat	te: 6/	6/2012	S	SeqNo: 9	0693	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	920		1000		91.7	69.7	121			
Sample ID 2.5UG GRO LCS	SampTyp	be: LC	S	Tes	tCode: El	PA Method	8015B: Gasc	line Rang	e	
Client ID: LCSS	Batch I	D: R3	267	F	RunNo: 3	267				
Prep Date:	Analysis Dat	te: 6/	6/2012	S	BeqNo: 9	0694	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	27	5.0	25.00	0	109	98.5	133			
Surr: BFB	990		1000		98.7	69.7	121			
Sample ID LCS-2252	SampTyp	oe: LC	S	Tes	tCode: El	PA Method	8015B: Gasc	line Rang	е	
Client ID: LCSS	Batch I	D: 22	52	F	RunNo: 3	296				
Prep Date: 6/5/2012	Analysis Dat	te: 6/	7/2012	S	SeqNo: 9 '	1760	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	26	5.0	25.00	0	104	98.5	133			
Surr: BFB	980		1000		97.5	69.7	121			

Qualifiers:

Client:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 1206097 22-Jun-12

Client: Intera, Inc. VC #1

Project:	VC

Sample ID 5ml-rb	SampT	ype: MI	BLK	TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBS	Batch	ID: R3	3209	F	RunNo: 3	209				
Prep Date:	Analysis D	ate: 6	/5/2012	S	SeqNo: 8	9458	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.050								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.20								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.10								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.000								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.030								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								

Qualifiers:

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- RPD outside accepted recovery limits R

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Hall Environme	ental Anal	ysis l	sis Laboratory, Inc. WO#:							1206097 22-Jun-12
Client:InterProject:VC	ra, Inc. #1									
Sample ID 5ml-rb	Samp	SampType: MBLK TestCode: EPA Method 8260B: VOLATILES								
Client ID: PBS	Batc	h ID: R:	3209	F	RunNo: 3	209				
Prep Date:	Analysis [Date: 6	/5/2012	S	SeqNo: 8	9458	Units: mg/l	٨g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Hexanone	ND	0.50					-			
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.050								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.030								
Vinyl chloride	ND	0.050								
-	ND	0.030								
Xylenes, Total Surr: 1,2-Dichloroethane-d4	0.46	0.10	0.5000		91.5	70	130			
Surr: 4-Bromofluorobenzene	0.46		0.5000		91.5 103	70	130			
						70 71.7				
Surr: Dibromofluoromethane Surr: Toluene-d8	0.49 0.48		0.5000 0.5000		98.1 95.6	71.7	132 130			
	0.40		0.5000		90.06	70	130			
Sample ID 100ng Ics	Samp	Гуре: L(s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSS	Batc	h ID: R3	3209	F	RunNo: 3	209				
Draw Data:		-	15 10040			0745	Linita			

Client ID: LCSS	Batch ID: R3209			F	RunNo: 3	209					
Prep Date:	Analysis D	alysis Date: 6/5/2012		e: 6/5/2012 SeqNo: 89745				Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.97	0.050	1.000	0	97.5	70.7	123				
Toluene	0.88	0.050	1.000	0	87.9	80	120				
Chlorobenzene	0.90	0.050	1.000	0	89.5	70	130				
1,1-Dichloroethene	0.99	0.050	1.000	0	98.9	63.1	148				
Trichloroethene (TCE)	0.88	0.050	1.000	0	87.7	63.2	114				
Surr: 1,2-Dichloroethane-d4	0.46		0.5000		92.3	70	130				
Surr: 4-Bromofluorobenzene	0.50		0.5000		100	70	130				

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

QC SUMMARY REPORT

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Client: Intera Project: VC #	a, Inc. 1									
Sample ID 100ng lcs	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSS	Batch	n ID: R3	3209	F	RunNo: 3	209				
Prep Date:	Analysis D	ate: 6	/5/2012	S	SeqNo: 8	9745	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane	0.50		0.5000		100	71.7	132			
Surr: Toluene-d8	0.46		0.5000		92.3	70	130			

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.											1206097 22-Jun-12
Client: Project:	Intera, Inc VC #1	•									
Sample ID mb-224	12	Samp	Гуре: М І	BLK	Tes	tCode: El	PA Method	8270C: PAH	S		
Client ID: PBS		Batc	h ID: 22	42	F	RunNo: 3	256				
Prep Date: 6/5/20	12	Analysis [Date: 6/	/6/2012	S	SeqNo: 9	0370	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene		ND	0.020								
1-Methylnaphthalene		ND	0.020								
2-Methylnaphthalene		ND	0.020								
Acenaphthylene		ND	0.020								
Acenaphthene		ND	0.020								
Fluorene		ND	0.020								
Phenanthrene		ND	0.020								
Anthracene		ND	0.020								
Fluoranthene		ND	0.020								
Pyrene		ND	0.020								
Benz(a)anthracene		ND	0.020								
Chrysene		ND	0.020								
Benzo(b)fluoranthene		ND	0.020								
Benzo(k)fluoranthene		ND	0.020								

Client ID: LCSS	Batch	n ID: 224	42	R	RunNo: 32	256				
Prep Date: 6/5/2012	Analysis D	ate: 6/	6/2012	S	6eqNo: 9	0371	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	0.27	0.020	0.3300	0	80.7	50.15	108.9			
1-Methylnaphthalene	0.28	0.020	0.3300	0	86.1	49.96	108.45			
2-Methylnaphthalene	0.28	0.020	0.3300	0	85.7	53.36	116.25			
Acenaphthylene	0.26	0.020	0.3300	0	78.8	48.44	106.25			
Acenaphthene	0.26	0.020	0.3300	0	77.5	51.23	105.53			
Fluorene	0.27	0.020	0.3300	0	80.6	48.42	104.49			
Phenanthrene	0.27	0.020	0.3300	0	81.0	51.76	107.81			
Anthracene	0.26	0.020	0.3300	0	80.2	51.74	104.29			
Fluoranthene	0.23	0.020	0.3300	0	71.0	54.67	103.26			
Pyrene	0.25	0.020	0.3300	0	76.6	57.16	111.06			
Benz(a)anthracene	0.25	0.020	0.3300	0	77.2	59.07	102.66			
Chrysene	0.27	0.020	0.3300	0	82.3	58.19	107.82			
Benzo(b)fluoranthene	0.28	0.020	0.3300	0	84.6	54.1	110.08			
Benzo(k)fluoranthene	0.27	0.020	0.3300	0	80.5	52.04	108.39			
Benzo(a)pyrene	0.27	0.020	0.3300	0	83.0	53.67	103.1			

87.8

90.9

40.5

42.8

TestCode: EPA Method 8270C: PAHs

114

117

Qualifiers:

Benzo(a)pyrene

Dibenz(a,h)anthracene

Indeno(1,2,3-cd)pyrene

Surr: Benzo(e)pyrene

Surr: N-hexadecane

Sample ID Ics-2242

Benzo(g,h,i)perylene

ND

ND

ND

ND

0.29

1.3

0.020

0.020

0.020

0.020

SampType: LCS

0.3300

1.460

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: **1206097**

22-Jun-12

Client:	Intera, Inc.
Project:	VC #1

Sample ID Ics-2242	SampT	ype: LC	S	Tes	tCode: El	PA Method						
Client ID: LCSS	Batch	h ID: 22	42	F	anNo: 3	256						
Prep Date: 6/5/2012	Analysis D	Date: 6/	6/2012	5	SeqNo: 9	0371	Units: mg/K	ng/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Dibenz(a,h)anthracene	0.28	0.020	0.3300	0	83.7	54.55	106.56					
Benzo(g,h,i)perylene	0.29	0.020	0.3300	0	87.4	51.48	105.08					
Indeno(1,2,3-cd)pyrene	0.27	0.020	0.3300	0	83.0	55.5	104.02					
Surr: Benzo(e)pyrene	0.29		0.3300		86.4	35.28	118.46					
Surr: N-hexadecane	1.2		1.460		81.3	36.19	122.5					

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-410; Website: www.hallenvironmental.com

Sample Log-In Check List

Clien	t Name:	INT		Work Order	Number: 1	206097
Rece	eived by/date	: LM	06/04/12			
Logg	ed By:	Anne Thorne	6/4/2012 4:45:00 PM	1	Arm	I'm
Com	pleted By:	Anne Thorne	6/5/2012		An	Shine
Revie	ewed By:	X	06/05/12			
<u>Chai</u>	in of Cust	ody				
1. ۱	Were seals i	ntact?		Yes 🗹	No 🗌	Not Present
2.	Is Chain of C	Sustody complete?		Yes 🔽	No 🗌	Not Present
3. I	How was the	sample delivered?		<u>Client</u>		
Log	In					
		present? (see 19. fo	or cooler specific information)	Yes ⊻	No 🗆	NA 🗍
5 . \	Was an atter	mpt made to cool th	e samples?	Yes 🗹	No 🗌	
6. 1	Were all sam	nples received at a f	temperature of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗌
7. 3	Sample(s) in	proper container(s)	?	Yes 🗹	No 🗌	
8. 3	Sufficient sa	mple volume for ind	icated test(s)?	Yes 🗸	No 🗌	
9. /	Are samples	(except VOA and C	ONG) properly preserved?	Yes 🗹	No 🗌	
10. ۱	Was preserv	ative added to bottle	es?	Yes 🗌	No 🗹	NA 🗆
11. `	VOA vials ha	ave zero headspace	?	Yes 🗌	No 🗌	No VOA Vials 🗹
12. \	Were any sa	mple containers rec	veived broken?	Yes 🗆	No 🗹	
		vork match bottle la bancies on chain of		Yes 🗹	No	# of preserved bottles checked for pH:
14. /	Are matrices	correctly identified	on Chain of Custody?	Yes 🗹	No	(<2 or >12 unless noted)
15. ^I	ls it clear wh	at analyses were re	quested?	Yes 🗹		Adjusted?
		ding times able to be		Yes 🗹	No 🗌	
		customer for author				Checked by:
		ing (if applicab				••• []
17. ۱	Was client n	otified of all discrep	ancies with this order?	Yes 🗌	No	
	Person	Notified:	Date		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	The state and think
	By Who	om:	Via:	eMail (Phone [Fax In Person
	Regard					
	Client In	nstructions:		1949 - Aldreid IV - Parlinder - Angeler	a na sala ina na katak karna	Provide and the second s

18. Additional remarks:

19 Cooler Information

· · ·	Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
	1	2.6	Good	Not Present			

ustody Record	l e	
Intere	K Standard 🛛 Rush	ANALYSIS LABORATORY
	Project Name:	www hallenvironmental com
Mailing Address:	VC # 2	4901 Hawkins NE - Albuquerque, NM 87109
	Project #.	Tel. 505-345-3975 Fax 505-345-4107
Phone #: 246 - 16のつ	Nm65D. VC-2. d2	Ana
email or Fax#: jgalenoree intera.com	Project Manager:	(ÞO)
QA/QC Package:	Jee Galemore	o seð) Þið\èsé
screditation NELAP □ Other	Sampler: Lev / De Herr C 4D	H9T + 10 10 10 10 10 10 10 10 10 10
ype)	Temperature: 2,10	
Date Time Matrix Sample Request ID	Container Preservative HEAL Noted Type and # Type Process Proc	BTEX + MT BTEX + MT TPH Method TPH Method BTPH (Method B270 (PNA 8081 Pestic 8081 Pestic 8081 Pestic 8081 Pestic 7005 (Semi
5/31/41120 501 50-02 Surface (6"12)	12 your the your	
P		
7		
AAAA		
A AND		
	14.2	
112830		
WYON NOON CARD May		
	-603	
Date: Time: Relinquished by: [4]), 1645 2.	Date Time	I holding times
Date: Time: Relinquished by:	Recorded by: 111 1 Date Time	Kun: Surface (6"-12"), 17.5 - 24", 4 49.5-545 At 14 WOULD
If necessary samples submitted to Hall Environmental maybe subcontracted to other accret	intracted to other accredited laboratories. This serves as notice of this possibility.	ossibility. Any sub-contracted data will be clearly notated on the analytical report.

	AND AND ASTS LABORATORY		www.riaireitviioiiitieitiai.com 4901 Hawkins NE - Albuquerque, NM 87109		Analysis		Sʻ*Od	00 887 (1.81) (1.40 (HA) (HA) (HA) (HA) (HA) (HA) (HA) (HA)	4 80 - VO - VO - 1 - VO - VO - - VO - - - VO - - - - VO - - - - - VO - - - - - - - - - - - - - - - - - - -	HT X + XIT Arthout TPH Methou TPH (Methou BDB (Methou BDB (Methou BDB (Methou BDB (MO) BDB (YO) B081 Pestic RSF0 (YO) B081 Pestic CV) B250 (YO) B250 (YO) B2								Its: // by a fine		14. 201200 (0-12.) 14.5 - 24.2)
Turn-Around Time:	Standard 🗆 Rush	Project Name:	Nら 井上	Project #:	Nr6D. vc-1. p2				Temperature: 2, 6	Container Preservative HEAL MARK	I mak tit mak in -coy				500-			Received by: Remarks:	af freed a	Beceived by: / / Date Time NO
Chain-of-Custody Record	Client:		Mailing Address: on file		Phone #: 246-1600	email or Fax#: 392 (evere@inter.com	QA/QC Package:	Screditation	pe)	Date Time Matrix Sample Request ID	11/12 / \$900 201 / SB-\$1 SB-\$1	(state to base to allow to	$\left\{ \right\}$	the state of the state of the	(S.45-24.5) (19.5-24.5)	12.20 - C49.5-54.5)		Time: Relinquished by:	1645 Zun C	Date: Time: Relinquished by:

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 25, 2012

Joe Galemore Intera, Inc. 6000 Uptown Boulevard, NE Suite 220 Albuquerque, NM 87110 TEL: (505) 239-6414 FAX

RE: VC #1 (Buckeye)

OrderNo.: 1206759

Dear Joe Galemore:

Hall Environmental Analysis Laboratory received 7 sample(s) on 6/19/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/25/2012

CLIENT: Intera, Inc. Project: VC #1 (Buckeye) Lab ID: 1206759-001 Client Sample ID: MW-1 Collection Date: 6/17/2012 3:55:00 PM Received Date: 6/19/2012 8:40:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JD.
Benzene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
Toluene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
Ethylbenzene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
Methyl tert-butyl ether (MTBE)	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
1,2-Dichloroethane (EDC)	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
1,2-Dibromoethane (EDB)	ND	2.0	µg/L	2	6/20/2012 7:23:40 AN
Naphthalene	ND	4.0	µg/L	2	6/20/2012 7:23:40 AM
1-Methylnaphthalene	ND	8.0	µg/L	2	6/20/2012 7:23:40 AN
2-Methylnaphthalene	ND	8.0	µg/L	2	6/20/2012 7:23:40 AM
Acetone	ND	20	µg/L	2	6/20/2012 7:23:40 AN
Bromobenzene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AN
Bromodichloromethane	ND	2.0	µg/L	2	6/20/2012 7:23:40 AN
Bromoform	ND	2.0	µg/L	2	6/20/2012 7:23:40 AN
Bromomethane	ND	6.0	µg/L	2	6/20/2012 7:23:40 AN
2-Butanone	ND	20	µg/L	2	6/20/2012 7:23:40 AN
Carbon disulfide	ND	20	µg/L	2	6/20/2012 7:23:40 AN
Carbon Tetrachloride	ND	2.0	µg/L	2	6/20/2012 7:23:40 AN
Chlorobenzene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AN
Chloroethane	ND	4.0	µg/L	2	6/20/2012 7:23:40 AN
Chloroform	ND	2.0	µg/L	2	6/20/2012 7:23:40 AN
Chloromethane	ND	6.0	µg/L	2	6/20/2012 7:23:40 AN
2-Chlorotoluene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
4-Chlorotoluene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AN
cis-1,2-DCE	ND	2.0	μg/L	2	6/20/2012 7:23:40 AM
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	2	6/20/2012 7:23:40 AN
Dibromochloromethane	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
Dibromomethane	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
1,2-Dichlorobenzene	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
1,3-Dichlorobenzene	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
1,4-Dichlorobenzene	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
Dichlorodifluoromethane	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
1,1-Dichloroethane	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
1,1-Dichloroethene	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
1,2-Dichloropropane	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
1,3-Dichloropropane	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
2,2-Dichloropropane	ND	4.0	μg/L	2	6/20/2012 7:23:40 AN
1,1-Dichloropropene	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
Hexachlorobutadiene	ND	2.0	μg/L	2	6/20/2012 7:23:40 AN
2-Hexanone	ND	20	μg/L	2	6/20/2012 7:23:40 AN

Matrix: AQUEOUS

Qualifiers: */X Value exceeds Maximum Contaminant Level.

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection LimitU Samples with CalcVal < MDL

Page 1 of 18

E Value above quantitation range

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/25/2012

CLIENT: Intera, Inc. Project: VC #1 (Buckeye)			Client Sample Collection E		012 3:55:00 PM
Lab ID: 1206759-001	Matrix:	AQUEOUS	Received D	Date: 6/19/2	012 8:40:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JDJ
Isopropylbenzene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
4-Isopropyltoluene	ND	2.0	μg/L	2	6/20/2012 7:23:40 AM
4-Methyl-2-pentanone	ND	20	μg/L	2	6/20/2012 7:23:40 AM
Methylene Chloride	ND	6.0	µg/L	2	6/20/2012 7:23:40 AM
n-Butylbenzene	ND	2.0	μg/L	2	6/20/2012 7:23:40 AM
n-Propylbenzene	ND	2.0	μg/L	2	6/20/2012 7:23:40 AM
sec-Butylbenzene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
Styrene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
tert-Butylbenzene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
1,1,2,2-Tetrachloroethane	ND	4.0	µg/L	2	6/20/2012 7:23:40 AM
Tetrachloroethene (PCE)	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
trans-1,2-DCE	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
trans-1,3-Dichloropropene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
1,1,1-Trichloroethane	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
1,1,2-Trichloroethane	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
Trichloroethene (TCE)	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
Trichlorofluoromethane	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
1,2,3-Trichloropropane	ND	4.0	µg/L	2	6/20/2012 7:23:40 AM
Vinyl chloride	ND	2.0	µg/L	2	6/20/2012 7:23:40 AM
Xylenes, Total	ND	3.0	µg/L	2	6/20/2012 7:23:40 AM
Surr: 1,2-Dichloroethane-d4	100	70-130	%REC	2	6/20/2012 7:23:40 AM
Surr: 4-Bromofluorobenzene	98.9	70-130	%REC	2	6/20/2012 7:23:40 AM
Surr: Dibromofluoromethane	107	69.8-130	%REC	2	6/20/2012 7:23:40 AM
Surr: Toluene-d8	101	70-130	%REC	2	6/20/2012 7:23:40 AM
SM2540C MOD: TOTAL DISSOLVED	SOLIDS				Analyst: SNV
Total Dissolved Solids	347	20.0	mg/L	1	6/22/2012 9:02:00 AM

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Me	thod Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analy	vsis exceeded
	J Analyte detected below quantitation limits		ND	Not Detected at the Reporting Limit	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	D 0 010
	S	Spike Recovery outside accepted recovery limits	U	Samples with CalcVal < MDL	Page 2 of 18

Hall Environmental Anal	Date Reported: 6/25/2012				
CLIENT: Intera, Inc.		Client Sample ID: MW-1 Dissolved			
Project: VC #1 (Buckeye)	Collection Date: 6/17/2012 3:55:00 PM				
Lab ID: 1206759-002	Matrix: AQUEOUS Received Date: 6/19/2012 8:40:00 AM				012 8:40:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	21	10	mg/L	20	6/20/2012 3:43:42 PM

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

S Spike Recovery outside accepted recovery limits

- analysis exceeded
- nit
- $U \qquad Samples \ with \ CalcVal < MDL$

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/25/2012

CLIENT: Intera, Inc. VC #1 (Buckeye) **Project:** 1206759-003

Lab ID:

Client Sample ID: MW-2 Collection Date: 6/17/2012 4:20:00 PM

Received Date: 6/19/2012 8:40:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JD.
Benzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
Toluene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
Ethylbenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PN
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
Naphthalene	ND	2.0	µg/L	1	6/20/2012 3:11:16 PM
1-Methylnaphthalene	ND	4.0	µg/L	1	6/20/2012 3:11:16 PN
2-Methylnaphthalene	ND	4.0	µg/L	1	6/20/2012 3:11:16 PM
Acetone	ND	10	µg/L	1	6/20/2012 3:11:16 PN
Bromobenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PN
Bromodichloromethane	ND	1.0	µg/L	1	6/20/2012 3:11:16 PN
Bromoform	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
Bromomethane	ND	3.0	µg/L	1	6/20/2012 3:11:16 PM
2-Butanone	ND	10	µg/L	1	6/20/2012 3:11:16 PM
Carbon disulfide	ND	10	µg/L	1	6/20/2012 3:11:16 PN
Carbon Tetrachloride	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
Chlorobenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
Chloroethane	ND	2.0	µg/L	1	6/20/2012 3:11:16 PM
Chloroform	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
Chloromethane	ND	3.0	µg/L	1	6/20/2012 3:11:16 PM
2-Chlorotoluene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PN
4-Chlorotoluene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PN
cis-1,2-DCE	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PN
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	6/20/2012 3:11:16 PM
Dibromochloromethane	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
Dibromomethane	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PN
1,3-Dichlorobenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PN
1,4-Dichlorobenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
Dichlorodifluoromethane	ND	1.0	µg/L	1	6/20/2012 3:11:16 PN
1,1-Dichloroethane	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
1,3-Dichloropropane	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	6/20/2012 3:11:16 PM
1,1-Dichloropropene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PN
Hexachlorobutadiene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM
2-Hexanone	ND	10	µg/L	1	6/20/2012 3:11:16 PM

Matrix: AQUEOUS

Qualifiers: */X Value exceeds Maximum Contaminant Level.

> Е Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit RL U Samples with CalcVal < MDL

Page 4 of 18

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/25/2012

CLIENT: Intera, Inc. Project: VC #1 (Buckeye)		Client Sample ID: MW-2 Collection Date: 6/17/2012 4:20:00 PM				
Lab ID: 1206759-003	Matrix:	Received D	Received Date: 6/19/2012 8:40:00 AM			
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8260B: VOLATILES					Analyst: JDJ	
Isopropylbenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
4-Isopropyltoluene	ND	1.0	μg/L	1	6/20/2012 3:11:16 PM	
4-Methyl-2-pentanone	ND	10	μg/L	1	6/20/2012 3:11:16 PM	
Methylene Chloride	ND	3.0	µg/L	1	6/20/2012 3:11:16 PM	
n-Butylbenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
n-Propylbenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
sec-Butylbenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
Styrene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
tert-Butylbenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	6/20/2012 3:11:16 PM	
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
trans-1,2-DCE	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
1,1,1-Trichloroethane	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
1,1,2-Trichloroethane	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
Trichloroethene (TCE)	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
Trichlorofluoromethane	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
1,2,3-Trichloropropane	ND	2.0	µg/L	1	6/20/2012 3:11:16 PM	
Vinyl chloride	ND	1.0	µg/L	1	6/20/2012 3:11:16 PM	
Xylenes, Total	ND	1.5	µg/L	1	6/20/2012 3:11:16 PM	
Surr: 1,2-Dichloroethane-d4	96.1	70-130	%REC	1	6/20/2012 3:11:16 PM	
Surr: 4-Bromofluorobenzene	98.2	70-130	%REC	1	6/20/2012 3:11:16 PM	
Surr: Dibromofluoromethane	101	69.8-130	%REC	1	6/20/2012 3:11:16 PM	
Surr: Toluene-d8	106	70-130	%REC	1	6/20/2012 3:11:16 PM	
SM2540C MOD: TOTAL DISSOLVED	SOLIDS				Analyst: SN	
Total Dissolved Solids	1220	20.0	mg/L	1	6/22/2012 9:02:00 AM	
I otal Dissolved Solids	1220	20.0	mg/L	1	6/22/2012 9:02:00	

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank		
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded		
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit		
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	Page 5 of 18	
	S	Spike Recovery outside accepted recovery limits	U	Samples with CalcVal < MDL		

Hall Environmental Anal	Date Reported: 6/25/20				
CLIENT: Intera, Inc.			Client Sampl	e ID: MW-2	Dissolved
Project: VC #1 (Buckeye)			Collection I	Date: 6/17/2	012 4:20:00 PM
Lab ID: 1206759-004	Matrix: A	QUEOUS	Received l	Date: 6/19/2	012 8:40:00 AM
Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	500	25	mg/L	50	6/22/2012 2:44:49 PM

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Met	thod Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analy	sis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	D (
	S	Spike Recovery outside accepted recovery limits	U	Samples with CalcVal < MDL	Page 6

Analytical Report
Lab Order 1206759

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/25/2012

CLIENT: Intera, Inc.**Project:**VC #1 (Buckeye)

Client Sample ID: MW-3 Collection Date: 6/17/2012 12:20:00 PM

Project: VC #1 (Buckeye)			Collection I	Date: 6/17/2	012 12:20:00 PM
Lab ID: 1206759-005	Matrix: A	AQUEOUS	Received I	Date: 6/19/2	012 8:40:00 AM
Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JDJ
Benzene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
Toluene	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
Ethylbenzene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
Methyl tert-butyl ether (MTBE)	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,2,4-Trimethylbenzene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,3,5-Trimethylbenzene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,2-Dichloroethane (EDC)	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,2-Dibromoethane (EDB)	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
Naphthalene	ND	4.0	μg/L	2	6/20/2012 3:41:41 PM
1-Methylnaphthalene	ND	8.0	μg/L	2	6/20/2012 3:41:41 PM
2-Methylnaphthalene	ND	8.0	μg/L	2	6/20/2012 3:41:41 PM
Acetone	ND	20	μg/L	2	6/20/2012 3:41:41 PM
Bromobenzene	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
Bromodichloromethane	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
Bromoform	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
Bromomethane	ND	6.0	μg/L	2	6/20/2012 3:41:41 PM
2-Butanone	ND	20	μg/L	2	6/20/2012 3:41:41 PM
Carbon disulfide	ND	20	μg/L	2	6/20/2012 3:41:41 PM
Carbon Tetrachloride	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
Chlorobenzene	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
Chloroethane	ND	4.0	μg/L	2	6/20/2012 3:41:41 PM
Chloroform	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
Chloromethane	ND	6.0	μg/L	2	6/20/2012 3:41:41 PM
2-Chlorotoluene	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
4-Chlorotoluene	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
cis-1,2-DCE	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	2	6/20/2012 3:41:41 PM
Dibromochloromethane	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
Dibromomethane	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
1,4-Dichlorobenzene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
Dichlorodifluoromethane	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,1-Dichloroethane	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,1-Dichloroethene	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
1,2-Dichloropropane	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
1,3-Dichloropropane	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
2,2-Dichloropropane	ND	4.0	μg/L	2	6/20/2012 3:41:41 PM
1,1-Dichloropropene	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
Hexachlorobutadiene	ND	2.0	μg/L μg/L	2	6/20/2012 3:41:41 PM
		2.0	µg/∟ 	2	6/20/2012 3:41:41 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

2-Hexanone

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

ND

20

B Analyte detected in the associated Method Blank

2

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

µg/L

 $U \qquad \text{Samples with } CalcVal < MDL$

Page 7 of 18

6/20/2012 3:41:41 PM

Analytical Report Lab Order 1206759

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/25/2012

CLIENT: Intera, Inc.			Client Sample	e ID: MW-3	
Project: VC #1 (Buckeye)			Collection D	ate: 6/17/2	012 12:20:00 PM
Lab ID: 1206759-005	Matrix:	AQUEOUS	Received D	ate: 6/19/2	012 8:40:00 AM
Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JD J
Isopropylbenzene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
4-Isopropyltoluene	ND	2.0	μg/L	2	6/20/2012 3:41:41 PM
4-Methyl-2-pentanone	ND	20	μg/L	2	6/20/2012 3:41:41 PM
Methylene Chloride	ND	6.0	µg/L	2	6/20/2012 3:41:41 PM
n-Butylbenzene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
n-Propylbenzene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
sec-Butylbenzene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
Styrene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
tert-Butylbenzene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,1,2,2-Tetrachloroethane	ND	4.0	µg/L	2	6/20/2012 3:41:41 PM
Tetrachloroethene (PCE)	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
trans-1,2-DCE	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
trans-1,3-Dichloropropene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,2,3-Trichlorobenzene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,2,4-Trichlorobenzene	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,1,1-Trichloroethane	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,1,2-Trichloroethane	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
Trichloroethene (TCE)	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
Trichlorofluoromethane	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
1,2,3-Trichloropropane	ND	4.0	µg/L	2	6/20/2012 3:41:41 PM
Vinyl chloride	ND	2.0	µg/L	2	6/20/2012 3:41:41 PM
Xylenes, Total	ND	3.0	µg/L	2	6/20/2012 3:41:41 PM
Surr: 1,2-Dichloroethane-d4	97.5	70-130	%REC	2	6/20/2012 3:41:41 PM
Surr: 4-Bromofluorobenzene	104	70-130	%REC	2	6/20/2012 3:41:41 PM
Surr: Dibromofluoromethane	99.6	69.8-130	%REC	2	6/20/2012 3:41:41 PM
Surr: Toluene-d8	104	70-130	%REC	2	6/20/2012 3:41:41 PM
SM2540C MOD: TOTAL DISSOLVED	SOLIDS				Analyst: SN
Total Dissolved Solids	317	20.0	mg/L	1	6/22/2012 9:02:00 AM

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Met	hod Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analy	sis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	D 0 (10
	S	Spike Recovery outside accepted recovery limits	U	Samples with CalcVal < MDL	Page 8 of 18

Hall Environmental Anal	Date Reported: 6/25/201				
CLIENT: Intera, Inc.			Client Samp	le ID: MW-3	Dissolved
Project: VC #1 (Buckeye)			Collection 2	Date: 6/17/2	012 12:20:00 PM
Lab ID: 1206759-006	Matrix:	AQUEOUS	Received	Date: 6/19/2	012 8:40:00 AM
Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	27	10	mg/L	20	6/20/2012 4:28:37 PM

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Met	hod Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analy	sis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	D 0
	S	Spike Recovery outside accepted recovery limits	U	Samples with CalcVal < MDL	Page 9

Page 9 of 18

Analytical Report Lab Order 1206759

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/25/2012

CLIENT: Intera, Inc. Project: VC #1 (Buckeye)

Lab ID:

1206759-007

Collection Date:

Matrix: TRIP BLANK Received Date: 6/19/2012 8:40:00 AM

Client Sample ID: Trip Blank

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JDJ
Benzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Toluene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Ethylbenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Naphthalene	ND	2.0	µg/L	1	6/20/2012 4:12:05 PM
1-Methylnaphthalene	ND	4.0	µg/L	1	6/20/2012 4:12:05 PM
2-Methylnaphthalene	ND	4.0	µg/L	1	6/20/2012 4:12:05 PM
Acetone	ND	10	µg/L	1	6/20/2012 4:12:05 PM
Bromobenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Bromodichloromethane	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Bromoform	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Bromomethane	ND	3.0	µg/L	1	6/20/2012 4:12:05 PM
2-Butanone	ND	10	µg/L	1	6/20/2012 4:12:05 PM
Carbon disulfide	ND	10	µg/L	1	6/20/2012 4:12:05 PM
Carbon Tetrachloride	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Chlorobenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Chloroethane	ND	2.0	µg/L	1	6/20/2012 4:12:05 PM
Chloroform	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Chloromethane	ND	3.0	µg/L	1	6/20/2012 4:12:05 PM
2-Chlorotoluene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
4-Chlorotoluene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
cis-1,2-DCE	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	6/20/2012 4:12:05 PM
Dibromochloromethane	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Dibromomethane	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,4-Dichlorobenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Dichlorodifluoromethane	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,1-Dichloroethane	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,3-Dichloropropane	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	6/20/2012 4:12:05 PM
1,1-Dichloropropene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Hexachlorobutadiene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
2-Hexanone	ND	10	μg/L	1	6/20/2012 4:12:05 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 10 of 18

Analytical Report Lab Order 1206759

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/25/2012

CLIENT: Intera, Inc. Project: VC #1 (Buckeye)

Lab ID:

1206759-007

Client Sample ID: Trip Blank Collection Date:

Matrix: TRIP BLANK Received Date: 6/19/2012 8:40:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JDJ
Isopropylbenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
4-Isopropyltoluene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	6/20/2012 4:12:05 PM
Methylene Chloride	ND	3.0	µg/L	1	6/20/2012 4:12:05 PM
n-Butylbenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
n-Propylbenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
sec-Butylbenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Styrene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
tert-Butylbenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	6/20/2012 4:12:05 PM
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
trans-1,2-DCE	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,1,1-Trichloroethane	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Trichloroethene (TCE)	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Trichlorofluoromethane	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	6/20/2012 4:12:05 PM
Vinyl chloride	ND	1.0	µg/L	1	6/20/2012 4:12:05 PM
Xylenes, Total	ND	1.5	µg/L	1	6/20/2012 4:12:05 PM
Surr: 1,2-Dichloroethane-d4	99.3	70-130	%REC	1	6/20/2012 4:12:05 PM
Surr: 4-Bromofluorobenzene	102	70-130	%REC	1	6/20/2012 4:12:05 PM
Surr: Dibromofluoromethane	103	69.8-130	%REC	1	6/20/2012 4:12:05 PM
Surr: Toluene-d8	107	70-130	%REC	1	6/20/2012 4:12:05 PM

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated M	ethod Blank
	Е	Value above quantitation range	Н	Holding times for preparation or ana	lysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	D 11 (10
	S	Spike Recovery outside accepted recovery limits	U	Samples with CalcVal < MDL	Page 11 of 18

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 1206759 25-Jun-12

Client: Project:		Intera, Inc. VC #1 (Buckeye)
Sample ID	MB	SampType: MBLK TestCode: EPA Method 300.0: Anions
Client ID:	PBW	Batch ID: R3587 RunNo: 3587
Prep Date:		Analysis Date: 6/20/2012 SeqNo: 101235 Units: mg/L
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride		ND 0.50
Sample ID	LCS	SampType: LCS TestCode: EPA Method 300.0: Anions
Client ID:	LCSW	Batch ID: R3587 RunNo: 3587
Prep Date:		Analysis Date: 6/20/2012 SeqNo: 101236 Units: mg/L
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride		5.1 0.50 5.000 0 101 90 110
Sample ID	MB	SampType: MBLK TestCode: EPA Method 300.0: Anions
Client ID:	PBW	Batch ID: R3587 RunNo: 3587
Prep Date:		Analysis Date: 6/21/2012 SeqNo: 101297 Units: mg/L
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride		ND 0.50
Sample ID	LCS	SampType: LCS TestCode: EPA Method 300.0: Anions
Client ID:	LCSW	Batch ID: R3587 RunNo: 3587
Prep Date:		Analysis Date: 6/21/2012 SeqNo: 101298 Units: mg/L
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride		4.8 0.50 5.000 0 96.6 90 110
Sample ID	MB	SampType: MBLK TestCode: EPA Method 300.0: Anions
Client ID:	PBW	Batch ID: R3643 RunNo: 3643
Prep Date:		Analysis Date: 6/22/2012 SeqNo: 102533 Units: mg/L
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride		ND 0.50
Sample ID	LCS	SampType: LCS TestCode: EPA Method 300.0: Anions
Client ID:	LCSW	Batch ID: R3643 RunNo: 3643
Prep Date:		Analysis Date: 6/22/2012 SeqNo: 102534 Units: mg/L
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride		4.8 0.50 5.000 0 96.0 90 110

Qualifiers:

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: **1206759**

25-Jun-12

Client:Intera, Inc.Project:VC #1 (Buckeye)

Sample ID b3	SampT	Sample ID b3 SampType: MBLK						TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBW	Batcl	h ID: R3	546	RunNo: 3546											
Prep Date:	Analysis Date: 6/19/2012		SeqNo: 99835			Units: µg/L									
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
Benzene	ND	1.0													
Foluene	ND	1.0													
Ethylbenzene	ND	1.0													
Methyl tert-butyl ether (MTBE)	ND	1.0													
1,2,4-Trimethylbenzene	ND	1.0													
,3,5-Trimethylbenzene	ND	1.0													
,2-Dichloroethane (EDC)	ND	1.0													
,2-Dibromoethane (EDB)	ND	1.0													
Naphthalene	ND	2.0													
I-Methylnaphthalene	ND	4.0													
2-Methylnaphthalene	ND	4.0													
Acetone	ND	10													
Bromobenzene	ND	1.0													
Bromodichloromethane	ND	1.0													
Bromoform	ND	1.0													
Bromomethane	ND	3.0													
-Butanone	ND	10													
Carbon disulfide	ND	10													
Carbon Tetrachloride	ND	1.0													
Chlorobenzene	ND	1.0													
Chloroethane	ND	2.0													
Chloroform	ND	2.0 1.0													
Chloromethane	ND	3.0													
2-Chlorotoluene	ND	1.0													
-Chlorotoluene	ND	1.0													
is-1,2-DCE	ND	1.0													
sis-1,3-Dichloropropene	ND	1.0													
,2-Dibromo-3-chloropropane	ND	2.0													
Dibromochloromethane	ND	1.0													
Dibromomethane	ND	1.0													
,2-Dichlorobenzene	ND	1.0													
,3-Dichlorobenzene	ND	1.0													
,4-Dichlorobenzene	ND	1.0													
Dichlorodifluoromethane	ND	1.0													
,1-Dichloroethane	ND	1.0													
,1-Dichloroethene	ND	1.0													
,2-Dichloropropane	ND	1.0													
,3-Dichloropropane	ND	1.0													
2,2-Dichloropropane	ND	2.0													
,1-Dichloropropene	ND	1.0													
lexachlorobutadiene	ND	1.0													

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

e	MARY REI onmental Ana			tory, Inc.					WO#:	25
Client: Project:	Intera, Inc. VC #1 (Buckeye))								
Sample ID b3	Sam	pType: I	MBLK	Tes	tCode:	EPA Method	8260B: VOL	ATILES		
Client ID: PBW	Ba	tch ID: I	R3546	F	RunNo:	3546				
Prep Date:	Analysis	s Date:	6/19/2012	S	SeqNo:	99835	Units: µg/L			
Analyte	Result	PQI	_ SPK value	SPK Ref Val	%REC	C LowLimit	HighLimit	%RPD	RPDLimit	Qu
2-Hexanone	ND	1	0							
Isopropylbenzene	ND	1.	0							
4-Isopropyltoluene	ND	1.	0							
4-Methyl-2-pentanone	ND	1	0							
Methylene Chloride	ND	3.	0							

Prep Date:	Analysis L	Date: 6/	19/2012	5	SeqNo: 9	9835	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	1.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		99.8	70	130			
Surr: 4-Bromofluorobenzene	9.7		10.00		97.4	70	130			
Surr: Dibromofluoromethane	11		10.00		107	69.8	130			
Surr: Toluene-d8	11		10.00		105	70	130			

Sample ID 100ng icvb	SampT	ype: LC	s	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	n ID: R3	546	F	RunNo: 3	546				
Prep Date:	Analysis D	0ate: 6/	19/2012	SeqNo: 99837		Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	93.4	84.1	126			
Toluene	17	1.0	20.00	0	87.3	80	120			
Chlorobenzene	17	1.0	20.00	0	82.9	70	130			
1,1-Dichloroethene	20	1.0	20.00	0	99.8	83	130			
Trichloroethene (TCE)	19	1.0	20.00	0	94.2	76.2	119			
Surr: 1,2-Dichloroethane-d4	30		30.00		100	70	130			
Surr: 4-Bromofluorobenzene	27		30.00		91.6	70	130			

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: 1206759 25-Jun-12

Client: Intera,	Inc.	
Project: VC #1	(Buckeye)	
Sample ID 100ng icvb	SampType: LCS	TestCode: EPA Method 8260B: VOLATILES
Client ID: LCSW	Batch ID: R3546	RunNo: 3546
Prep Date:	Analysis Date: 6/19/2012	SeqNo: 99837 Units: μ g/L
	-	
Analyte		lue SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Surr: Dibromofluoromethane	31 30.0	
Surr: Toluene-d8	28 30.0	.00 92.0 70 130
Sample ID 5ml rb	SampType: MBLK	TestCode: EPA Method 8260B: VOLATILES
Client ID: PBW	Batch ID: R3588	RunNo: 3588
Prep Date:	Analysis Date: 6/20/2012	SeqNo: 101363 Units: μ g/L
Analyte	Result PQL SPK val	lue SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Benzene	ND 1.0	
Toluene	ND 1.0	
Ethylbenzene	ND 1.0	
Methyl tert-butyl ether (MTBE)	ND 1.0	
1,2,4-Trimethylbenzene	ND 1.0	
1,3,5-Trimethylbenzene	ND 1.0	
1,2-Dichloroethane (EDC)	ND 1.0	
1,2-Dibromoethane (EDB)	ND 1.0	
Naphthalene	ND 2.0	
1-Methylnaphthalene	ND 4.0	
2-Methylnaphthalene	ND 4.0	
Acetone	ND 10	
Bromobenzene	ND 1.0	
Bromodichloromethane	ND 1.0	
Bromoform	ND 1.0	
Bromomethane	ND 3.0	
2-Butanone	ND 10	
Carbon disulfide	ND 10	
Carbon Tetrachloride	ND 1.0	
Chlorobenzene	ND 1.0	
Chloroethane	ND 2.0	
Chloroform	ND 1.0	
Chloromethane	ND 3.0	
2-Chlorotoluene	ND 1.0	
4-Chlorotoluene	ND 1.0	
cis-1,2-DCE	ND 1.0	
cis-1,3-Dichloropropene	ND 1.0	
1,2-Dibromo-3-chloropropane	ND 2.0	
Dibromochloromethane	ND 1.0	
Dibromomethane	ND 1.0	
1,2-Dichlorobenzene	ND 1.0	
1,3-Dichlorobenzene	ND 1.0	
1,4-Dichlorobenzene	ND 1.0	

Qualifiers:

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 1206759

Client: Intera, Inc. VC #1 (Buckeye)

Project:	VC

Sample ID 5ml rb	SampType: MBLK TestCode: EPA Method 8260B: VOLATILES									
Client ID: PBW	Batch	D: R3	3588	R	RunNo: 3588					
Prep Date:	Analysis D	ate: 6	/20/2012	S	SeqNo: 101363					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	1.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130			
Surr: 4-Bromofluorobenzene	9.4		10.00		94.1	70	130			
Surr: Dibromofluoromethane	11		10.00		106	69.8	130			
Surr: Toluene-d8	10		10.00		104	70	130			

Qualifiers:

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

11

Intera, Inc.

ND Not Detected at the Reporting Limit

В

Η

RL Reporting Detection Limit

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Qualifiers:

Client:

Project:

Surr: Toluene-d8

*/X Value exceeds Maximum Contaminant Level.

- Е Value above quantitation range
- Analyte detected below quantitation limits J
- R RPD outside accepted recovery limits

VC #1 (Buckeye) Sample ID 100 lcs TestCode: EPA Method 8260B: VOLATILES SampType: LCS Client ID: LCSW Batch ID: R3588 RunNo: 3588 Analysis Date: 6/20/2012 SeqNo: 101365 Prep Date: Units: µg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 19 1.0 20.00 0 94.1 84.1 126 18 20.00 0 89.6 120 Toluene 1.0 80 20.00 0 88.1 70 Chlorobenzene 18 1.0 130 1,1-Dichloroethene 19 1.0 20.00 0 93.8 83 130 Trichloroethene (TCE) 19 1.0 20.00 0 92.8 76.2 119 Surr: 1,2-Dichloroethane-d4 10 10.00 99.7 70 130 Surr: 4-Bromofluorobenzene 9.7 10.00 97.2 70 130 Surr: Dibromofluoromethane 103 10 10.00 69.8 130

106

70

130

10.00

WO#: 1206759

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:InteraProject:VC #	, Inc. 1 (Buckeye)			
Sample ID MB-2484	SampType: MBLK	TestCode: SM2540C MC	OD: Total Dissolved Solids	
Client ID: PBW	Batch ID: 2484	RunNo: 3612		
Prep Date: 6/20/2012	Analysis Date: 6/22/2012	SeqNo: 101986	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual
Total Dissolved Solids	ND 20.0			
Sample ID LCS-2484	SampType: LCS	TestCode: SM2540C MC	OD: Total Dissolved Solids	
Client ID: LCSW	Batch ID: 2484	RunNo: 3612		
Prep Date: 6/20/2012	Analysis Date: 6/22/2012	SeqNo: 101987	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual
Total Dissolved Solids	1030 20.0 1000	0 103 80	120	

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

HALL ENVIRONMENTAL ANALYSIS LABORATORY Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-410; Website: www.hallenvironmental.con

Sample Log-In Check List

Clier	nt Name:	INT	W	ork Ord	er Num	iber: 1	1206759
Rece	eived by/date	·1/19-	06/19/12				
Logg	jed By:	Michelle Garcia	6/19/2012 8:40:00 AM			mi	helle Genuie
Com	pleted By:	Michelle Garcia	6/19/2012 9:11:14 AM			mi	hells Carrier
Revi	ewed By: 💊	A	00/19/12				•
<u>Cha</u>	in of Cus	tody)				
1.	Were seals	intact?		Yes	🗌 No		Not Present 🗹
2.	Is Chain of (Custody complete?		Yes	🗸 No		Not Present
3.	How was the	e sample delivered?		FedEx	٤		
Log	<u>In</u>						
4.	Coolers are	present? (see 19. for c	ooler specific information)	Yes	🖌 No		
5.	Was an atte	mpt made to cool the s	amples?	Yes	🗹 No		
6.	Were all sar	nples received at a tem	perature of >0° C to 6.0°C	Yes	🖌 No		
7.	Sample(s) ir	n proper container(s)?		Yes	🗸 No		
8.	Sufficient sa	ample volume for indica	ted test(s)?	Yes	🖌 No		
9.	Are samples	s (except VOA and ON	G) properly preserved?	Yes	🖌 No		
10.	Was preserv	vative added to bottles?		Yes	No No	\checkmark	NA 🗆
11.	VOA vials h	ave zero headspace?		Yes	No		No VOA Vials 🗹
12.	Were any sa	ample containers receiv	red broken?	Yes	No	✓	
		work match bottle labels pancies on chain of cus		Yes	V No		# of preserved bottles checked for pH:
14.	Are matrices	s correctly identified on	Chain of Custody?	Yes	🖌 No	\Box	(<2 or >12 unless noted)
15.	ls it clear wh	nat analyses were reque	ested?	Yes	🖌 No		Adjusted?
		ding times able to be m		Yes	🖌 No		
		customer for authoriza					Checked by:
Spec	<u>cial Hand</u>	ling (if applicable)	2				
17.	Was client n	notified of all discrepand	eies with this order?	Yes	No 🗌		
	Person	Notified:	Date:				
	By Whe	om:	Via:] eMail	F	hone	Fax In Person
	Regard	ling:					
	Client I	Instructions:					
40	A .I						

18. Additional remarks:

19. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	3.8	Good	Yes			

Chain	-of-Cu	Chain-of-Custodv Record	Turn-Around Time	Time:				I	1				i				
Client: AN	MARIA TUC	Two	Standard	□ Rush				- 4	A A L	HALL ENVIKONMEN I AL ANAI YSTS I ABORATORY		ENVIRONMEN I AI VSTS I ABORATOR			zĔ	E R	.≻
Ţ	~ ~		Project Name:			- <u>69</u>		5		www.hallenvironmental.com	/ironn	ental	u de			/ 	
Mailing Address	(UV) :	Mailing Address: (AND) (Jurhun RINA Se. 200	B VC#	_	Buckeye	ন ন	4901 Hawkins NE	ławki	ns NE	5 .	enbro	Albuquerque, NM 87109	NM 8	37109	_		
HIPHAN	014110	NM 88220					Tel. 505-345-3975)5-34	5-397	10	Fax	505-345-4107	5-41(07			
Phone #: V5/-24	2-17 X 2-17	2-11	- NMG5D. I	NMGSD. MOD2. VCJ	-					Ana	ysis I	Analysis Request	st				
email or Fax#:	505-2	10	Project Manager:	ger:							(†O	•	чþ	00	্তপ		
QA/QC Package:		□ 1 evel 4 (Full Validation)	_	be Galemore	ore						S'⁺Od			をりっ	75ZW		
			Sampler:	hornor.	/J. Palmer			۱)		(1	10 ⁵ '	1	هله	pinc	Spa		(N
	□ Other	er	On Ice:	X Yes	S NO			.811				<u> </u>		<u>14</u>	HÞN I		or I
🗆 EDD (Type)			Sample Temperature:	perature:	3,8			₽ þ¢						<u> </u>	n bo		<u>ل</u> ا
Date Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL No.	RTEX + MT	BTEX + Matho	Meth(EDB (Metho	AN9) 0168 M 8 AЯЭЯ	D, A) enoinA	oitea9 1808	OV) 80928 m92) 0728	sulacial	W)SQL		Air Bubbles
0 17 12 1555	Woter	MW-1	VoA	Hel	- 001							~					
61712 1555			125 ml plastic		- 002									>			
14/12 1555		MW-1	500 ml photic	None	-001										>		
0/12/12/12/12/10/10	1675	MW-2	VOA		-003							<u>د</u>					
d17 12 1555	1620	MW-2	125 ml pletic	Nore	-DOU									\geq			
C11711215855	1620	MU-2	Sconl platic		-003								_		\geq		
U[[7]12]1220		MW-3	VOA	Hel	-005												
6/17/12/1220		MW-3	125ml plashic	-	-000									\geq			
0721 21210	1	MW-3	Scontplastic	None	-005				\dashv	-		+	-+		>	1	+
		TEIPZAN	NAXZ	1-10	- 000							>					
		1 ch on	12						\dashv			-					
											_						
17/12 1430	r v	alinquished by:	Received by:		Date Time	Remarks:	rks:								ń.		
Date: Time:	ľŘ	ed by:	Received by:	mut	Date Time												

June 26, 2012

Joe Galemore Intera, Inc. 6000 Uptown Boulevard, NE Suite 220 Albuquerque, NM 87110 TEL: (505) 239-6414 FAX (505) 246-2600

RE: VC #1

OrderNo.: 1206426

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Joe Galemore:

Hall Environmental Analysis Laboratory received 5 sample(s) on 6/11/2012 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued June 19, 2012.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Project: VC #1

Lab ID:

1206426-001

 Client Sample ID: SB-04 Surface (6"-12")

 Collection Date: 6/7/2012 2:50:00 PM

 Matrix: MEOH (SOIL)
 Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE	ORGANICS					Analyst: JMP
Diesel Range Organics (DRO)	210	51		mg/Kg	5	6/15/2012 8:29:41 AM
Motor Oil Range Organics (MRO)	780	260		mg/Kg	5	6/15/2012 8:29:41 AM
Surr: DNOP	0	77.6-140	S	%REC	5	6/15/2012 8:29:41 AM
EPA METHOD 8015B: GASOLINE RAI	NGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0		mg/Kg	1	6/15/2012 2:56:31 PM
Surr: BFB	106	69.7-121		%REC	1	6/15/2012 2:56:31 PM
EPA METHOD 300.0: ANIONS						Analyst: BRN
Chloride	1300	75		mg/Kg	50	6/15/2012 6:41:33 PM
EPA METHOD 8270C: PAHS						Analyst: JDC
Naphthalene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AM
1-Methylnaphthalene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AM
2-Methylnaphthalene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AM
Acenaphthylene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AM
Acenaphthene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AM
Fluorene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AM
Phenanthrene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AM
Anthracene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AN
Fluoranthene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AM
Pyrene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AN
Benz(a)anthracene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AN
Chrysene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AN
Benzo(b)fluoranthene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AN
Benzo(k)fluoranthene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AN
Benzo(a)pyrene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AN
Dibenz(a,h)anthracene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AN
Benzo(g,h,i)perylene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AN
Indeno(1,2,3-cd)pyrene	ND	0.20		mg/Kg	1	6/15/2012 12:28:28 AN
Surr: Benzo(e)pyrene	97.0	40.5-114		%REC	1	6/15/2012 12:28:28 AN
Surr: N-hexadecane	97.5	42.8-117		%REC	1	6/15/2012 12:28:28 AN
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Benzene	ND	0.050		mg/Kg	1	6/13/2012 6:46:17 PM
Toluene	ND	0.050		mg/Kg	1	6/13/2012 6:46:17 PM
Ethylbenzene	ND	0.050		mg/Kg	1	6/13/2012 6:46:17 PM
Methyl tert-butyl ether (MTBE)	ND	0.050		mg/Kg	1	6/13/2012 6:46:17 PM
1,2,4-Trimethylbenzene	ND	0.050		mg/Kg	1	6/13/2012 6:46:17 PM
1,3,5-Trimethylbenzene	ND	0.050		mg/Kg	1	6/13/2012 6:46:17 PM
1,2-Dichloroethane (EDC)	ND	0.050		mg/Kg	1	6/13/2012 6:46:17 PM
1,2-Dibromoethane (EDB)	ND	0.050		mg/Kg	1	6/13/2012 6:46:17 PM
Naphthalene	ND	0.10		mg/Kg	1	6/13/2012 6:46:17 PM
1-Methylnaphthalene	ND	0.20		mg/Kg	1	6/13/2012 6:46:17 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 1 of 14

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. **Project:** VC #1

Client Sample ID: SB-04 Surface (6"-12") Collection Date: 6/7/2012 2:50:00 PM

Lab ID:	1206426-001

Matrix: MEOH (SOIL) Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/13/2012 6:46:17 PM
Acetone	ND	0.75	mg/Kg	1	6/13/2012 6:46:17 PM
Bromobenzene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
Bromodichloromethane	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
Bromoform	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
Bromomethane	ND	0.15	mg/Kg	1	6/13/2012 6:46:17 PM
2-Butanone	ND	0.50	mg/Kg	1	6/13/2012 6:46:17 PM
Carbon disulfide	ND	0.50	mg/Kg	1	6/13/2012 6:46:17 PM
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/13/2012 6:46:17 PM
Chlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
Chloroethane	ND	0.10	mg/Kg	1	6/13/2012 6:46:17 PM
Chloroform	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
Chloromethane	ND	0.15	mg/Kg	1	6/13/2012 6:46:17 PM
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/13/2012 6:46:17 PM
Dibromochloromethane	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
Dibromomethane	ND	0.10	mg/Kg	1	6/13/2012 6:46:17 PM
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/13/2012 6:46:17 PM
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/13/2012 6:46:17 PM
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/13/2012 6:46:17 PM
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/13/2012 6:46:17 PM
2-Hexanone	ND	0.50	mg/Kg	1	6/13/2012 6:46:17 PM
Isopropylbenzene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/13/2012 6:46:17 PM
Methylene chloride	ND	0.15	mg/Kg	1	6/13/2012 6:46:17 PM
n-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
n-Propylbenzene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
Styrene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

 $U \qquad Samples \ with \ CalcVal < MDL$

Page 2 of 14

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Lab ID:

Project: VC #1

1206426-001

Client Sample ID: SB-04 Surface (6"-12") Collection Date: 6/7/2012 2:50:00 PM Matrix: MEOH (SOIL) Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/13/2012 6:46:17 PM
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/13/2012 6:46:17 PM
Vinyl chloride	ND	0.050	mg/Kg	1	6/13/2012 6:46:17 PM
Xylenes, Total	ND	0.10	mg/Kg	1	6/13/2012 6:46:17 PM
Surr: 1,2-Dichloroethane-d4	92.1	70-130	%REC	1	6/13/2012 6:46:17 PM
Surr: 4-Bromofluorobenzene	91.1	70-130	%REC	1	6/13/2012 6:46:17 PM
Surr: Dibromofluoromethane	116	71.7-132	%REC	1	6/13/2012 6:46:17 PM
Surr: Toluene-d8	96.0	70-130	%REC	1	6/13/2012 6:46:17 PM

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Met	hod Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analyst	sis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	D 0
	S	Spike Recovery outside accepted recovery limits	U	Samples with CalcVal < MDL	Page 3 of

Page 3 of 14

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Project: VC #1

1206426-002

Lab ID:

Client Sample ID: SB-04 (19.5'-24.5') Collection Date: 6/7/2012 4:40:00 PM Matrix: MEOH (SOIL) Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RAN	GE ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	6/14/2012 10:11:53 AM
Motor Oil Range Organics (MRO)	ND	51	mg/Kg	1	6/14/2012 10:11:53 AM
Surr: DNOP	113	77.6-140	%REC	1	6/14/2012 10:11:53 AM
EPA METHOD 8015B: GASOLINE R	ANGE				Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/15/2012 3:27:15 PM
Surr: BFB	94.5	69.7-121	%REC	1	6/15/2012 3:27:15 PM
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	4800	150	mg/Kg	100	6/15/2012 5:51:53 PM
EPA METHOD 8270C: PAHS					Analyst: JDC
Naphthalene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
1-Methylnaphthalene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
2-Methylnaphthalene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Acenaphthylene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Acenaphthene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Fluorene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Phenanthrene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Anthracene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Fluoranthene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Pyrene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Benz(a)anthracene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Chrysene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Benzo(b)fluoranthene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Benzo(k)fluoranthene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Benzo(a)pyrene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Dibenz(a,h)anthracene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Benzo(g,h,i)perylene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Indeno(1,2,3-cd)pyrene	ND	0.020	mg/Kg	1	6/14/2012 7:57:21 PM
Surr: Benzo(e)pyrene	101	40.5-114	%REC	1	6/14/2012 7:57:21 PM
Surr: N-hexadecane	102	42.8-117	%REC	1	6/14/2012 7:57:21 PM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Toluene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Ethylbenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Methyl tert-butyl ether (MTBE)	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,3,5-Trimethylbenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,2-Dichloroethane (EDC)	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,2-Dibromoethane (EDB)	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Naphthalene	ND	0.10	mg/Kg	1	6/13/2012 1:53:10 AM
1-Methylnaphthalene	ND	0.20	mg/Kg	1	6/13/2012 1:53:10 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 4 of 14

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project: VC #1

Client Sample ID: SB-04 (19.5'-24.5') Collection Date: 6/7/2012 4:40:00 PM

Lab ID:	1206426-002

Matrix: MEOH (SOIL) Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/13/2012 1:53:10 AM
Acetone	ND	0.75	mg/Kg	1	6/13/2012 1:53:10 AM
Bromobenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Bromodichloromethane	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Bromoform	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Bromomethane	ND	0.15	mg/Kg	1	6/13/2012 1:53:10 AM
2-Butanone	ND	0.50	mg/Kg	1	6/13/2012 1:53:10 AM
Carbon disulfide	ND	0.50	mg/Kg	1	6/13/2012 1:53:10 AM
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/13/2012 1:53:10 AM
Chlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Chloroethane	ND	0.10	mg/Kg	1	6/13/2012 1:53:10 AM
Chloroform	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Chloromethane	ND	0.15	mg/Kg	1	6/13/2012 1:53:10 AM
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/13/2012 1:53:10 AM
Dibromochloromethane	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Dibromomethane	ND	0.10	mg/Kg	1	6/13/2012 1:53:10 AM
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/13/2012 1:53:10 AM
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/13/2012 1:53:10 AM
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/13/2012 1:53:10 AM
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/13/2012 1:53:10 AM
2-Hexanone	ND	0.50	mg/Kg	1	6/13/2012 1:53:10 AM
Isopropylbenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/13/2012 1:53:10 AM
Methylene chloride	ND	0.15	mg/Kg	1	6/13/2012 1:53:10 AM
n-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
n-Propylbenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Styrene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 5 of 14

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Lab ID:

Project: VC #1

1206426-002

Client Sample ID: SB-04 (19.5'-24.5') Collection Date: 6/7/2012 4:40:00 PM

Matrix: MEOH (SOIL) Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/13/2012 1:53:10 AM
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/13/2012 1:53:10 AM
Vinyl chloride	ND	0.050	mg/Kg	1	6/13/2012 1:53:10 AM
Xylenes, Total	ND	0.10	mg/Kg	1	6/13/2012 1:53:10 AM
Surr: 1,2-Dichloroethane-d4	92.0	70-130	%REC	1	6/13/2012 1:53:10 AM
Surr: 4-Bromofluorobenzene	101	70-130	%REC	1	6/13/2012 1:53:10 AM
Surr: Dibromofluoromethane	119	71.7-132	%REC	1	6/13/2012 1:53:10 AM
Surr: Toluene-d8	91.8	70-130	%REC	1	6/13/2012 1:53:10 AM

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Me	thod Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analy	ysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	D (
	S	Spike Recovery outside accepted recovery limits	U	Samples with CalcVal < MDL	Page 6

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Project: VC #1

Lab ID:

1206426-003

Client Sample ID: SB-03 Surface (6"-12") Collection Date: 6/8/2012 8:30:00 AM

Matrix: MEOH (SOIL) **Received Date:** 6/11/2012 12:45:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	6/14/2012 10:33:39 AM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	6/14/2012 10:33:39 AM
Surr: DNOP	106	77.6-140	%REC	1	6/14/2012 10:33:39 AM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/15/2012 3:57:58 PM
Surr: BFB	109	69.7-121	%REC	1	6/15/2012 3:57:58 PM
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	200	30	mg/Kg	20	6/12/2012 8:59:28 PM
EPA METHOD 8270C: PAHS					Analyst: JDC
Naphthalene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
1-Methylnaphthalene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
2-Methylnaphthalene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Acenaphthylene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Acenaphthene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Fluorene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Phenanthrene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Anthracene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Fluoranthene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Pyrene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Benz(a)anthracene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Chrysene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Benzo(b)fluoranthene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Benzo(k)fluoranthene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Benzo(a)pyrene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Dibenz(a,h)anthracene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Benzo(g,h,i)perylene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Indeno(1,2,3-cd)pyrene	ND	0.020	mg/Kg	1	6/14/2012 11:22:44 AM
Surr: Benzo(e)pyrene	67.4	40.5-114	%REC	1	6/14/2012 11:22:44 AM
Surr: N-hexadecane	62.5	42.8-117	%REC	1	6/14/2012 11:22:44 AM
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Toluene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Ethylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Methyl tert-butyl ether (MTBE)	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,3,5-Trimethylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,2-Dichloroethane (EDC)	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,2-Dibromoethane (EDB)	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Naphthalene	ND	0.10	mg/Kg	1	6/13/2012 2:21:29 AM
1-Methylnaphthalene	ND	0.20	mg/Kg	1	6/13/2012 2:21:29 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 7 of 14

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project:

Client Sample ID: SB-03 Surface (6"-12") Collection Date: 6/8/2012 8:30:00 AM

VC #1 1206426-003 Lab ID:

Matrix: MEOH (SOIL) Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/13/2012 2:21:29 AM
Acetone	ND	0.75	mg/Kg	1	6/13/2012 2:21:29 AM
Bromobenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Bromodichloromethane	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Bromoform	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Bromomethane	ND	0.15	mg/Kg	1	6/13/2012 2:21:29 AM
2-Butanone	ND	0.50	mg/Kg	1	6/13/2012 2:21:29 AM
Carbon disulfide	ND	0.50	mg/Kg	1	6/13/2012 2:21:29 AM
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/13/2012 2:21:29 AM
Chlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Chloroethane	ND	0.10	mg/Kg	1	6/13/2012 2:21:29 AM
Chloroform	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Chloromethane	ND	0.15	mg/Kg	1	6/13/2012 2:21:29 AM
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/13/2012 2:21:29 AM
Dibromochloromethane	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Dibromomethane	ND	0.10	mg/Kg	1	6/13/2012 2:21:29 AM
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/13/2012 2:21:29 AM
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/13/2012 2:21:29 AM
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/13/2012 2:21:29 AM
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/13/2012 2:21:29 AM
2-Hexanone	ND	0.50	mg/Kg	1	6/13/2012 2:21:29 AM
Isopropylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/13/2012 2:21:29 AM
Methylene chloride	ND	0.15	mg/Kg	1	6/13/2012 2:21:29 AM
n-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
n-Propylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Styrene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

> Е Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit RL

U Samples with CalcVal < MDL Page 8 of 14

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project: VC #1

1206426-003

Lab ID:

Client Sample ID: SB-03 Surface (6"-12") Collection Date: 6/8/2012 8:30:00 AM

Matrix: MEOH (SOIL) Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/13/2012 2:21:29 AM
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/13/2012 2:21:29 AM
Vinyl chloride	ND	0.050	mg/Kg	1	6/13/2012 2:21:29 AM
Xylenes, Total	ND	0.10	mg/Kg	1	6/13/2012 2:21:29 AM
Surr: 1,2-Dichloroethane-d4	92.1	70-130	%REC	1	6/13/2012 2:21:29 AM
Surr: 4-Bromofluorobenzene	101	70-130	%REC	1	6/13/2012 2:21:29 AM
Surr: Dibromofluoromethane	119	71.7-132	%REC	1	6/13/2012 2:21:29 AM
Surr: Toluene-d8	91.7	70-130	%REC	1	6/13/2012 2:21:29 AM

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Me	thod Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analy	sis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	D 0
	S	Spike Recovery outside accepted recovery limits	U	Samples with CalcVal < MDL	Page 9

Spike Recovery outside accepted recovery limits

Page 9 of 14

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. Project: VC #1

Lab ID:

1206426-004

Client Sample ID: SB-03 (19.5'-24') Collection Date: 6/8/2012 10:40:00 AM Matrix: MEOH (SOIL) Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG						Analyst: JMP
Diesel Range Organics (DRO)	ND	9.8		mg/Kg	1	6/14/2012 10:55:36 AM
Motor Oil Range Organics (MRO)	ND	49		mg/Kg	1	6/14/2012 10:55:36 AM
Surr: DNOP	108	77.6-140		%REC	1	6/14/2012 10:55:36 AM
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	5.0		mg/Kg	1	6/15/2012 4:28:25 PM
Surr: BFB	125	69.7-121	S	%REC	1	6/15/2012 4:28:25 PM
EPA METHOD 300.0: ANIONS						Analyst: BRN
Chloride	830	30		mg/Kg	20	6/12/2012 9:24:18 PM
EPA METHOD 8270C: PAHS						Analyst: JDC
Naphthalene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
1-Methylnaphthalene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
2-Methylnaphthalene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Acenaphthylene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Acenaphthene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Fluorene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Phenanthrene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Anthracene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Fluoranthene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Pyrene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Benz(a)anthracene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Chrysene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Benzo(b)fluoranthene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Benzo(k)fluoranthene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Benzo(a)pyrene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Dibenz(a,h)anthracene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Benzo(g,h,i)perylene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Indeno(1,2,3-cd)pyrene	ND	0.020		mg/Kg	1	6/14/2012 6:28:07 PM
Surr: Benzo(e)pyrene	69.9	40.5-114		%REC	1	6/14/2012 6:28:07 PM
Surr: N-hexadecane	60.6	42.8-117		%REC	1	6/14/2012 6:28:07 PM
EPA METHOD 8260B: VOLATILES						Analyst: RAA
Benzene	ND	0.050		mg/Kg	1	6/13/2012 2:49:46 AM
Toluene	ND	0.050		mg/Kg	1	6/13/2012 2:49:46 AM
Ethylbenzene	ND	0.050		mg/Kg	1	6/13/2012 2:49:46 AM
Methyl tert-butyl ether (MTBE)	ND	0.050		mg/Kg	1	6/13/2012 2:49:46 AM
1,2,4-Trimethylbenzene	ND	0.050		mg/Kg	1	6/13/2012 2:49:46 AM
1,3,5-Trimethylbenzene	ND	0.050		mg/Kg	1	6/13/2012 2:49:46 AM
1,2-Dichloroethane (EDC)	ND	0.050		mg/Kg	1	6/13/2012 2:49:46 AM
1,2-Dibromoethane (EDB)	ND	0.050		mg/Kg	1	6/13/2012 2:49:46 AM
Naphthalene	ND	0.10		mg/Kg	1	6/13/2012 2:49:46 AM
1-Methylnaphthalene	ND	0.20		mg/Kg	1	6/13/2012 2:49:46 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 10 of 14

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc. VC #1

1206426-004

Project:

Lab ID:

Client Sample ID: SB-03 (19.5'-24') Collection Date: 6/8/2012 10:40:00 AM Matrix: MEOH (SOIL) Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/13/2012 2:49:46 AM
Acetone	ND	0.75	mg/Kg	1	6/13/2012 2:49:46 AM
Bromobenzene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
Bromodichloromethane	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
Bromoform	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
Bromomethane	ND	0.15	mg/Kg	1	6/13/2012 2:49:46 AM
2-Butanone	ND	0.50	mg/Kg	1	6/13/2012 2:49:46 AM
Carbon disulfide	ND	0.50	mg/Kg	1	6/13/2012 2:49:46 AM
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/13/2012 2:49:46 AM
Chlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
Chloroethane	ND	0.10	mg/Kg	1	6/13/2012 2:49:46 AM
Chloroform	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
Chloromethane	ND	0.15	mg/Kg	1	6/13/2012 2:49:46 AM
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/13/2012 2:49:46 AM
Dibromochloromethane	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
Dibromomethane	ND	0.10	mg/Kg	1	6/13/2012 2:49:46 AM
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/13/2012 2:49:46 AM
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/13/2012 2:49:46 AM
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/13/2012 2:49:46 AM
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/13/2012 2:49:46 AM
2-Hexanone	ND	0.50	mg/Kg	1	6/13/2012 2:49:46 AM
Isopropylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/13/2012 2:49:46 AM
Methylene chloride	ND	0.15	mg/Kg	1	6/13/2012 2:49:46 AM
n-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
n-Propylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
Styrene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

> Е Value above quantitation range

J Analyte detected below quantitation limits

- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Reporting Detection Limit RL
- U Samples with CalcVal < MDL

Page 11 of 14

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project: VC #1

1206426-004

Lab ID:

_

Client Sample ID: SB-03 (19.5'-24') Collection Date: 6/8/2012 10:40:00 AM Matrix: MEOH (SOIL) Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/13/2012 2:49:46 AM
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/13/2012 2:49:46 AM
Vinyl chloride	ND	0.050	mg/Kg	1	6/13/2012 2:49:46 AM
Xylenes, Total	ND	0.10	mg/Kg	1	6/13/2012 2:49:46 AM
Surr: 1,2-Dichloroethane-d4	91.8	70-130	%REC	1	6/13/2012 2:49:46 AM
Surr: 4-Bromofluorobenzene	103	70-130	%REC	1	6/13/2012 2:49:46 AM
Surr: Dibromofluoromethane	118	71.7-132	%REC	1	6/13/2012 2:49:46 AM
Surr: Toluene-d8	94.2	70-130	%REC	1	6/13/2012 2:49:46 AM

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Met	thod Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analy	sis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	D 10
	S	Spike Recovery outside accepted recovery limits	U	Samples with CalcVal < MDL	Page 12

Spike Recovery outside accepted recovery limits U Samples with CalcVal < MDL Page 12 of 14

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project: VC #1

Lab ID: 1206426-005

Client Sample ID: MeOH Blank Collection Date:

Matrix: MEOH BLAN Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Benzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Toluene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Ethylbenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Methyl tert-butyl ether (MTBE)	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,3,5-Trimethylbenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,2-Dichloroethane (EDC)	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,2-Dibromoethane (EDB)	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Naphthalene	ND	0.10	mg/Kg	1	6/13/2012 3:17:59 AM
1-Methylnaphthalene	ND	0.20	mg/Kg	1	6/13/2012 3:17:59 AM
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/13/2012 3:17:59 AM
Acetone	ND	0.75	mg/Kg	1	6/13/2012 3:17:59 AM
Bromobenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Bromodichloromethane	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Bromoform	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Bromomethane	ND	0.15	mg/Kg	1	6/13/2012 3:17:59 AM
2-Butanone	ND	0.50	mg/Kg	1	6/13/2012 3:17:59 AM
Carbon disulfide	ND	0.50	mg/Kg	1	6/13/2012 3:17:59 AM
Carbon tetrachloride	ND	0.10	mg/Kg	1	6/13/2012 3:17:59 AM
Chlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Chloroethane	ND	0.10	mg/Kg	1	6/13/2012 3:17:59 AM
Chloroform	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Chloromethane	ND	0.15	mg/Kg	1	6/13/2012 3:17:59 AM
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/13/2012 3:17:59 AM
Dibromochloromethane	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Dibromomethane	ND	0.10	mg/Kg	1	6/13/2012 3:17:59 AM
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,1-Dichloroethane	ND	0.10	mg/Kg	1	6/13/2012 3:17:59 AM
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
2.2-Dichloropropane	ND	0.10	mg/Kg	1	6/13/2012 3:17:59 AM
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/13/2012 3:17:59 AM
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/13/2012 3:17:59 AM
2-Hexanone	ND	0.50	mg/Kg	1	6/13/2012 3:17:59 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

U Samples with CalcVal < MDL

Page 13 of 14

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Intera, Inc.

Project: VC #1

Lab ID: 1206426-005

-

Client Sample ID: MeOH Blank Collection Date:

Matrix: MEOH BLAN Received Date: 6/11/2012 12:45:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: RAA
Isopropylbenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/13/2012 3:17:59 AM
Methylene chloride	ND	0.15	mg/Kg	1	6/13/2012 3:17:59 AM
n-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
n-Propylbenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Styrene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/13/2012 3:17:59 AM
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/13/2012 3:17:59 AM
Vinyl chloride	ND	0.050	mg/Kg	1	6/13/2012 3:17:59 AM
Xylenes, Total	ND	0.10	mg/Kg	1	6/13/2012 3:17:59 AM
Surr: 1,2-Dichloroethane-d4	94.2	70-130	%REC	1	6/13/2012 3:17:59 AM
Surr: 4-Bromofluorobenzene	95.6	70-130	%REC	1	6/13/2012 3:17:59 AM
Surr: Dibromofluoromethane	118	71.7-132	%REC	1	6/13/2012 3:17:59 AM
Surr: Toluene-d8	92.7	70-130	%REC	1	6/13/2012 3:17:59 AM

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated M	Iethod Blank
	Е	Value above quantitation range	Н	Holding times for preparation or ana	alysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	D 14 614
	S	Spike Recovery outside accepted recovery limits	U	Samples with CalcVal < MDL	Page 14 of 14

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Intera, Inc.

Project:	VC #1										
Sample ID	MB-2347	SampT	ype: M	BLK	Tes	tCode: El	PA Method	300.0: Anion	S		
Client ID:	PBS	Batch	ID: 23	47	R	RunNo: 3	387				
Prep Date:	6/12/2012	Analysis D	ate: 6/	12/2012	S	SeqNo: 9	4687	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								

Qualifiers:

Client:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Intera, Inc.

Project: VC #1											
Sample ID MB-2373	SampT	SampType: MBLK			TestCode: EPA Method 8015B: Diesel Range Organics						
Client ID: PBS	Batch	Batch ID: 2373			RunNo: 3	419					
Prep Date: 6/13/2012	Analysis D	Date: 6/	14/2012	5	SeqNo: 9	5468	Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	ND	10									
Motor Oil Range Organics (MRO)	ND	50									
Surr: DNOP	11		10.00		113	77.6	140				
Sample ID LCS-2373	SampT	Type: LC	S	Tes	tCode: El	PA Method	8015B: Dies	el Range G	Organics		
Client ID: LCSS	Batch	h ID: 23	73	F	RunNo: 3	419					
Prep Date: 6/13/2012	Analysis D	Date: 6/	14/2012	5	SeqNo: 95469		Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	36	10	50.00	0	71.2	52.6	130				
Surr: DNOP	4.6		5.000		92.3	77.6	140				

Qualifiers:

Client:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Intera, Inc.

Project: VC #1											
Sample ID MB-2392	SampT	SampType: MBLK			TestCode: EPA Method 8015B: Gasoline Range						
Client ID: PBS	Batch	Batch ID: 2392			RunNo: 3	464					
Prep Date: 6/14/2012	Analysis D	0ate: 6/	15/2012	S	SeqNo: 9	7874	Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	ND	5.0									
Surr: BFB	950		1000		94.8	69.7	121				
Sample ID LCS-2392	SampT	ype: LC	S	Tes	TestCode: EPA Method 8015B: Gasoline Range						
Client ID: LCSS	Batch	n ID: 23	92	F							
Prep Date: 6/14/2012	Analysis D	Date: 6/	15/2012	SeqNo: 97903			Units: mg/k	٨g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	31	5.0	25.00	0	123	98.5	133				
Surr: BFB	960		1000		96.3	69.7	121				

Qualifiers:

Client:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 1206426

Client: Intera, Inc. VC #1

Project:	VC

Sample ID 5ml-rb	SampT	уре: М	BLK	TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBS	Batch ID: R3366			RunNo: 3366						
Prep Date:	Analysis D				SeqNo: 9		Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.050								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.10								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.000								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.000								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.030								
1,1-Dichloroethene	ND	0.10								
	ND	0.050								
1,2-Dichloropropane										
1,3-Dichloropropane		0.050								
2,2-Dichloropropane	ND	0.10								
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

26-Jun-12

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 1206426 26-Jun-12

Client: Intera, Inc.

Project:	VC #1

Sample ID 5ml-rb	SampT	ype: M	BLK	TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBS	Batcl	h ID: R3	366	RunNo: 3366						
Prep Date:	Analysis D	Date: 6/	12/2012	S	SeqNo: 9	4236	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.050								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 1,2-Dichloroethane-d4	0.46		0.5000		91.3	70	130			
Surr: 4-Bromofluorobenzene	0.51		0.5000		102	70	130			
Surr: Dibromofluoromethane	0.58		0.5000		115	71.7	132			
Surr: Toluene-d8	0.48		0.5000		96.0	70	130			
Sample ID 100ng Ics	SampT	ype: LC	s	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSS	Batcl	h ID: R3	366	F	RunNo: 3	366				
Prep Date:	Analysis D	Date: 6/	/12/2012	S	eqNo: 9	4237	Units: mg/K	(g		
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.92	0.050	1.000	0	92.4	70.7	123			
Toluene	0.92	0.050	1.000	0	91.7	80	120			
Chlorobenzene	0.93	0.050	1.000	0	93.2	70	130			
1,1-Dichloroethene	1.0	0.050	1.000	0	101	63.1	148			
Trichloroethene (TCE)	0.90	0.050	1.000	0	89.8	63.2	114			
Surr: 1,2-Dichloroethane-d4	0.46		0.5000		92.8	70	130			
Surr: 4-Bromofluorobenzene	0.48		0.5000		96.3	70	130			

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

26-Jun-12

Client: Intera,	Inc.									
Project: VC #1										
Sample ID 100ng lcs	Samp	Гуре: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSS	Batc	h ID: R3	366	F	RunNo: 3	366				
Prep Date:	Analysis I	Date: 6/	12/2012	S	SeqNo: 9	4237	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane	0.58		0.5000		117	71.7	132			
Surr: Toluene-d8	0.48		0.5000		95.3	70	130			
Sample ID 1206426-001a n	ns Samp⊺	Гуре: М	3	Tes	tCode: El	PA Method	8260B: VOL/	ATILES		
Client ID: SB-04 Surface	(6"-1 Batc	h ID: R3	396	F	RunNo: 3	396				
Prep Date:	Analysis [Date: 6/	13/2012	5	SeqNo: 9	5230	Units: mg/K	ζg		
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.98	0.050	1.000	0	98.0	81.3	119			
Toluene	0.89	0.050	1.000	0.009380	88.3	75	121			
Chlorobenzene	0.92	0.050	1.000	0	91.5	78.5	120			
1,1-Dichloroethene	1.1	0.050	1.000	0	110	75.3	115			
Trichloroethene (TCE)	0.96	0.050	1.000	0	95.6	67.8	119			
Surr: 1,2-Dichloroethane-d4	0.48		0.5000		95.5	70	130			
Surr: 4-Bromofluorobenzene	0.47		0.5000		93.6	70	130			
Surr: Dibromofluoromethane	0.63		0.5000		127	71.7	132			
Surr: Toluene-d8	0.47		0.5000		93.3	70	130			
Sample ID 1206426-001a n	nsd Samp	Гуре: М	SD	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: SB-04 Surface	(6"-1 Batc	h ID: R3	396	F	RunNo: 3	396				
Prep Date:	Analysis E	Date: 6/	13/2012	S	SeqNo: 9	5232	Units: mg/k	(g		
Thep Bate.								%RPD	RPDLimit	Qual
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	70111 D		
Analyte	0.90	0.050	1.000	0	90.5	81.3	119	7.96	15.7	
Analyte Benzene	0.90 0.85	0.050 0.050	1.000 1.000		90.5 84.0	81.3 75	119 121	7.96 4.95	16.2	
Analyte Benzene Foluene Chlorobenzene	0.90 0.85 0.88	0.050 0.050 0.050	1.000 1.000 1.000	0 0.009380 0	90.5 84.0 88.2	81.3 75 78.5	119 121 120	7.96 4.95 3.70	16.2 14.9	
Analyte Benzene Foluene Chlorobenzene 1,1-Dichloroethene	0.90 0.85 0.88 0.98	0.050 0.050 0.050 0.050	1.000 1.000 1.000 1.000	0 0.009380 0 0	90.5 84.0 88.2 97.5	81.3 75 78.5 75.3	119 121 120 115	7.96 4.95 3.70 11.8	16.2 14.9 31.8	
Analyte Benzene Foluene Chlorobenzene 1,1-Dichloroethene Frichloroethene (TCE)	0.90 0.85 0.88 0.98 0.87	0.050 0.050 0.050	1.000 1.000 1.000 1.000 1.000	0 0.009380 0	90.5 84.0 88.2 97.5 87.5	81.3 75 78.5 75.3 67.8	119 121 120 115 119	7.96 4.95 3.70 11.8 8.84	16.2 14.9 31.8 16.5	
Analyte Benzene Toluene Chlorobenzene 1,1-Dichloroethene Trichloroethene (TCE) Surr: 1,2-Dichloroethane-d4	0.90 0.85 0.88 0.98 0.87 0.46	0.050 0.050 0.050 0.050	1.000 1.000 1.000 1.000 1.000 0.5000	0 0.009380 0 0	90.5 84.0 88.2 97.5 87.5 92.5	81.3 75 78.5 75.3 67.8 70	119 121 120 115 119 130	7.96 4.95 3.70 11.8 8.84 0	16.2 14.9 31.8 16.5 0	
Analyte Benzene Toluene Chlorobenzene 1,1-Dichloroethene Trichloroethene (TCE) Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene	0.90 0.85 0.88 0.98 0.87 0.46 0.45	0.050 0.050 0.050 0.050	1.000 1.000 1.000 1.000 1.000 0.5000 0.5000	0 0.009380 0 0	90.5 84.0 88.2 97.5 87.5 92.5 90.3	81.3 75 78.5 75.3 67.8 70 70	119 121 120 115 119 130 130	7.96 4.95 3.70 11.8 8.84 0 0	16.2 14.9 31.8 16.5 0 0	
Analyte Benzene Toluene Chlorobenzene 1,1-Dichloroethene Trichloroethene (TCE) Surr: 1,2-Dichloroethane-d4	0.90 0.85 0.88 0.98 0.87 0.46	0.050 0.050 0.050 0.050	1.000 1.000 1.000 1.000 1.000 0.5000	0 0.009380 0 0	90.5 84.0 88.2 97.5 87.5 92.5	81.3 75 78.5 75.3 67.8 70	119 121 120 115 119 130	7.96 4.95 3.70 11.8 8.84 0	16.2 14.9 31.8 16.5 0	

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, Inc.	

WO#: 1206426

26-Jun-12

Client: Intera, Inc. VC #1

Project:	VC #

Sample ID mb-2364	Samp	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8270C: PAHs	5		
Client ID: PBS	Batc	h ID: 23	64	F	RunNo: 3	439				
Prep Date: 6/13/2012	Analysis [Date: 6/	14/2012	S	SeqNo: 9	6241	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	0.020								
1-Methylnaphthalene	ND	0.020								
2-Methylnaphthalene	ND	0.020								
Acenaphthylene	ND	0.020								
Acenaphthene	ND	0.020								
Fluorene	ND	0.020								
Phenanthrene	ND	0.020								
Anthracene	ND	0.020								
Fluoranthene	ND	0.020								
Pyrene	ND	0.020								
Benz(a)anthracene	ND	0.020								
Chrysene	ND	0.020								
Benzo(b)fluoranthene	ND	0.020								
Benzo(k)fluoranthene	ND	0.020								
Benzo(a)pyrene	ND	0.020								
Dibenz(a,h)anthracene	ND	0.020								
Benzo(g,h,i)perylene	ND	0.020								
Indeno(1,2,3-cd)pyrene	ND	0.020								
	0.32		0.3300		95.8	40.5	114			
Surr: Benzo(e)pyrene Surr: N-hexadecane			0.3300 1.460		95.8 85.1	40.5 42.8	114 117			
Surr: Benzo(e)pyrene	0.32 1.2	Гуре: LC	1.460	Tes	85.1	42.8		•		
Surr: Benzo(e)pyrene Surr: N-hexadecane	0.32 1.2 SampT		1.460		85.1	42.8 PA Method	117	;		
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364	0.32 1.2 SampT	√ype: LC h ID: 23	1.460 : S 64	F	85.1 tCode: El	42.8 PA Method 439	117			
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS	0.32 1.2 Samp ⁻¹ Batc	√ype: LC h ID: 23	1.460 S 64 14/2012	F	85.1 tCode: El RunNo: 3	42.8 PA Method 439	117 8270C: PAHs		RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte	0.32 1.2 Samp Batc Analysis I	Type: LC h ID: 23 Date: 6 /	1.460 S 64 14/2012	F	85.1 tCode: El RunNo: 3 SeqNo: 9	42.8 PA Method 439 6242	117 8270C: PAHs Units: mg/K	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte Naphthalene	0.32 1.2 Samp Batc Analysis E Result	Type: LC h ID: 23 0 Date: 6/ PQL	1.460 5 64 14/2012 SPK value	F S SPK Ref Val	85.1 tCode: El RunNo: 3 SeqNo: 9 %REC	42.8 PA Method 439 6242 LowLimit	117 8270C: PAHs Units: mg/K HighLimit	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte Naphthalene 1-Methylnaphthalene	0.32 1.2 Samp Batc Analysis E Result 0.28	Fype: LC h ID: 23 Date: 6/ PQL 0.020	1.460 S 64 14/2012 SPK value 0.3300	F S SPK Ref Val 0	85.1 tCode: El RunNo: 3 SeqNo: 9 %REC 84.2	42.8 PA Method 439 6242 LowLimit 50.15	117 8270C: PAHs Units: mg/K HighLimit 108.9	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene	0.32 1.2 SampT Batcl Analysis I Result 0.28 0.28	Fype: LC h ID: 230 Date: 6/ PQL 0.020 0.020	1.460 S 64 14/2012 SPK value 0.3300 0.3300	F SPK Ref Val 0 0	85.1 tCode: El RunNo: 3 SeqNo: 9 %REC 84.2 85.7	42.8 PA Method 439 6242 LowLimit 50.15 49.96	117 8270C: PAHs Units: mg/K HighLimit 108.9 108.45	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene	0.32 1.2 SampT Batcl Analysis E Result 0.28 0.28 0.28	Fype: LC h ID: 230 Date: 6/ PQL 0.020 0.020 0.020	1.460 5 64 14/2012 SPK value 0.3300 0.3300 0.3300	F SPK Ref Val 0 0 0	85.1 tCode: El RunNo: 3 SeqNo: 9 %REC 84.2 85.7 84.9	42.8 PA Method 439 6242 LowLimit 50.15 49.96 53.36	117 8270C: PAHs Units: mg/K HighLimit 108.9 108.45 116.25	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID ICs-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene	0.32 1.2 SampT Batc Analysis E Result 0.28 0.28 0.28 0.29	Fype: LC h ID: 230 Date: 6/ PQL 0.020 0.020 0.020 0.020	1.460 5 64 14/2012 SPK value 0.3300 0.3300 0.3300 0.3300	F SPK Ref Val 0 0 0 0	85.1 tCode: El RunNo: 3 SeqNo: 9 %REC 84.2 85.7 84.9 86.9	42.8 PA Method 439 6242 LowLimit 50.15 49.96 53.36 48.44	117 8270C: PAHs Units: mg/K HighLimit 108.9 108.45 116.25 106.25	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	0.32 1.2 Samp Batc Analysis E Result 0.28 0.28 0.28 0.29 0.31	Fype: LC h ID: 230 Date: 6/ PQL 0.020 0.020 0.020 0.020 0.020 0.020	1.460 55 64 14/2012 SPK value 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300	F SPK Ref Val 0 0 0 0 0 0	85.1 tCode: El RunNo: 3 SeqNo: 9 %REC 84.2 85.7 84.9 86.9 94.1	42.8 PA Method 439 5242 LowLimit 50.15 49.96 53.36 48.44 51.23	117 8270C: PAHs Units: mg/K HighLimit 108.9 108.45 116.25 106.25 105.53	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	0.32 1.2 Samp Batc Analysis I Result 0.28 0.28 0.28 0.28 0.29 0.31 0.29	Type: LC h ID: 23 Date: 6/ PQL 0.020 0.020 0.020 0.020 0.020 0.020 0.020	1.460 5 64 14/2012 SPK value 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300	F SPK Ref Val 0 0 0 0 0 0 0 0	85.1 tCode: El RunNo: 3 SeqNo: 9 %REC 84.2 85.7 84.9 86.9 94.1 86.4	42.8 PA Method 439 5242 LowLimit 50.15 49.96 53.36 48.44 51.23 48.42	117 8270C: PAHs Units: mg/K HighLimit 108.9 108.45 116.25 106.25 105.53 104.49	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	0.32 1.2 Samp Batc Analysis E Result 0.28 0.28 0.28 0.28 0.29 0.31 0.29 0.31	Fype: LC h ID: 23 Date: 6/ PQL 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	1.460 564 14/2012 SPK value 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300	F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0	85.1 tCode: El RunNo: 3 %REC 84.2 85.7 84.9 86.9 94.1 86.4 96.5	42.8 PA Method 439 6242 LowLimit 50.15 49.96 53.36 48.44 51.23 48.42 51.76	117 8270C: PAHs Units: mg/K HighLimit 108.9 108.45 116.25 106.25 105.53 104.49 107.81	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene	0.32 1.2 SampT Batcl Analysis D Result 0.28 0.28 0.28 0.28 0.29 0.31 0.29 0.31 0.29 0.32 0.31	Fype: LC h ID: 23 Date: 6/ PQL 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	1.460 5 64 14/2012 SPK value 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300	F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85.1 tCode: El RunNo: 3 %REC %REC 84.2 85.7 84.9 86.9 94.1 86.4 96.5 93.2	42.8 PA Method 439 6242 LowLimit 50.15 49.96 53.36 48.44 51.23 48.42 51.76 51.74	117 8270C: PAHs Units: mg/K HighLimit 108.9 108.45 116.25 106.25 105.53 104.49 107.81 104.29	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	0.32 1.2 SampT Batcl Analysis E Result 0.28 0.28 0.28 0.28 0.29 0.31 0.29 0.31 0.29 0.32 0.31 0.27	Fype: LC h ID: 23/ Date: 6/ PQL 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	1.460 5 64 14/2012 SPK value 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300	F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85.1 tCode: EI RunNo: 3 %REC 84.2 85.7 84.9 86.9 94.1 86.4 96.5 93.2 81.8	42.8 PA Method 439 6242 LowLimit 50.15 49.96 53.36 48.44 51.23 48.42 51.76 51.74 54.67	117 8270C: PAHs Units: mg/K HighLimit 108.9 108.45 116.25 106.25 105.53 104.49 107.81 104.29 103.26	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene	0.32 1.2 SampT Batcl Analysis E Result 0.28 0.28 0.28 0.29 0.31 0.29 0.31 0.29 0.32 0.31 0.27 0.26	Fype: LC h ID: 230 Date: 6/ PQL 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	1.460 564 14/2012 SPK value 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300	F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85.1 tCode: El RunNo: 3 GeqNo: 9 %REC 84.2 85.7 84.9 86.9 94.1 86.4 96.5 93.2 81.8 80.2	42.8 PA Method 439 6242 LowLimit 50.15 49.96 53.36 48.44 51.23 48.42 51.76 51.74 54.67 57.16	117 8270C: PAHs Units: mg/K HighLimit 108.9 108.45 116.25 106.25 105.53 104.49 107.81 104.29 103.26 111.06	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID ICS-2364 Client ID: LCSS Prep Date: 6/13/2012 Analyte Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	0.32 1.2 SampT Batcl Analysis E 0.28 0.28 0.28 0.28 0.29 0.31 0.29 0.31 0.29 0.32 0.31 0.27 0.26 0.27	Fype: LC h ID: 230 Date: 6/ PQL 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	1.460 564 14/2012 SPK value 0.3300	F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85.1 tCode: EI RunNo: 3 %REC 84.2 85.7 84.9 86.9 94.1 86.4 96.5 93.2 81.8 80.2 81.6	42.8 PA Method 439 5242 LowLimit 50.15 49.96 53.36 48.44 51.23 48.42 51.76 51.74 54.67 57.16 59.07 58.19	117 8270C: PAHs Units: mg/K HighLimit 108.9 108.45 106.25 105.53 104.49 107.81 104.29 103.26 111.06 102.66 107.82	g	RPDLimit	Qual
Surr: Benzo(e)pyrene Surr: N-hexadecane Sample ID Ics-2364 Client ID: LCSS Prep Date: 6/13/2012	0.32 1.2 SampT Batc Analysis E 0.28 0.28 0.28 0.29 0.31 0.29 0.31 0.29 0.32 0.31 0.27 0.26 0.27 0.29	Fype: LC h ID: 230 Date: 6/ PQL 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	1.460 564 14/2012 SPK value 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300 0.3300	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85.1 tCode: EI RunNo: 3 %REC 84.2 85.7 84.9 86.9 94.1 86.4 96.5 93.2 81.8 80.2 81.6 87.2	42.8 PA Method 439 5242 LowLimit 50.15 49.96 53.36 48.44 51.23 48.42 51.76 51.74 54.67 57.16 59.07	117 8270C: PAHs Units: mg/K HighLimit 108.9 108.45 116.25 106.25 105.53 104.49 107.81 104.29 103.26 111.06 102.66	g	RPDLimit	Qual

Qualifiers:

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: 1206426

26-Jun-12

Client:	Intera, Inc.
Project:	VC #1

Sample ID Ics-2364	SampT	ype: LC	S	Tes	tCode: El	PA Method	8270C: PAH	6		
Client ID: LCSS	Batcl	h ID: 23	64	F	RunNo: 3	439				
Prep Date: 6/13/2012	Analysis E	Date: 6/	14/2012	5	SeqNo: 9	6242	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dibenz(a,h)anthracene	0.28	0.020	0.3300	0	85.9	54.55	106.56			
Benzo(g,h,i)perylene	0.30	0.020	0.3300	0	90.4	51.48	105.08			
Indeno(1,2,3-cd)pyrene	0.29	0.020	0.3300	0	86.6	55.5	104.02			
Surr: Benzo(e)pyrene	0.28		0.3300		84.0	35.28	118.46			
Surr: N-hexadecane	1.2		1.460		83.2	36.19	122.5			

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental A Albuq TEL: 505-345-3975 F Website: www.hall	4901 . juerque FAX: 5(Hawi 2, NM 05-34	kins 1 [87] [5-4]	NE 105 107	Sam	ple	Log-l	n Cł	neck Li	st
Client Name: INT	1 / wa	ork Ore	ier N	lumi	oer: ·	1206426					
Received by/date: 14C	06/11/12										
Logged By: Lindsay Mangin	6/11/2012 12:45:00 PM				Ø.	lyttlage					
Completed By: Lindsay Mangin	6/11/2012 4:22:08 PM				(lyttlage lyttlage					
Reviewed By: TO Ob/12/12					~						
Chain of Custody											
1. Were seals intact?		Yes		No		Not P	resent	✓			
2. Is Chain of Custody complete?		Yes	✓	No		Not Pr	resent				
3. How was the sample delivered?		<u>Clien</u>	<u>t</u>								
Log In											
4. Coolers are present? (see 19. for cooler sp	ecific information)	Yes		No			ŃA				
		103	Ŀ								
5. Was an attempt made to cool the samples?	?	Yes	✓	No			NA				
6. Were all samples received at a temperature	e of ≥0° C to 6.0°C	Yes	✓	No			NA				
7 Sample(s) in proper container(s)?		Yes		No							
8. Sufficient sample volume for indicated test(s)?	Yes	✓	No							
9 Are samples (except VOA and ONG) prope	rly preserved?	Yes	✓	No							
10. Was preservative added to bottles?		Yes		No	✓		NA				
11. VOA vials have zero headspace?		Yes		No		No VOA	Vials	~			
12. Were any sample containers received broke	en?	Yes		No	✓						
 Does paperwork match bottle labels? (Note discrepancies on chain of custody) 		Yes		No		b	of pres ottles c or pH:				
14. Are matrices correctly identified on Chain of	f Custody?	Yes	\checkmark	No				(<	2 or >12	2 unless note	ed)
15. Is it clear what analyses were requested?			\checkmark				Ad	justed?			
16. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes	V	No			Che	ecked by	r . .		
Special Handling (if applicable)											_
17. Was client notified of all discrepancies with	this order?	Yes		No			NA	\checkmark			
Person Notified: By Whom: Regarding: Client Instructions:	Date: Via:] eMai	I [] Ph	one	Fax	In 	Person	 -		
18. Additional remarks:											

19. Cooler Information

.

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	3.4	Good	Not Present			*

Address: Astendard Ren g Address: C. #1 g Address: U. C. #1 http://ds: U. C. #1 http://ds: U. C. #1 htt	Chain-of-Custody Record	Turn-Around Time:			HALL		VTRC	Ž	ENVTRONMENTAL	
Project Name: Project Name: Project Name: Address: $V: C$ <th>1 Z</th> <th></th> <th>lsh</th> <th></th> <th>ANA</th> <th>LYSI</th> <th>S LA</th> <th>BO</th> <th>RATOR</th> <th>5</th>	1 Z		lsh		ANA	LYSI	S LA	BO	RATOR	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Project Name:				allenviror	mental.	E E E		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	46			4901 H	awkins NE	•	lerque, l	NM 87	109	
# 246-1600 DNvcD, nddi, U.U. ду. Freek: Yzelczowe C N-torn.com. Pojot (Managor. Balange: I Level (Full Validation) Tor. Co. la nort. Balange: I Level (Full Validation) Tor. Co. la nort. Balange: I Level (Full Validation) Tor. Co. la nort. Balange: I Level (Full Validation) Tor. Co. la nort. Balange: I Level (Full Validation) Tor. Co. la nort. Balange: I Container Preservative Maint Sample: A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.		Project #:		Tel. 50	5-345-397(505-34	5-4107		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		NM65D. MODIN	1- dr			Anal	s Reque	st		
acklege: I Level 4 (Full Validation) T.o.L. C.s. (Level 4) Bill I Level 4 (Full Validation) T.o.L. C.s. (Livel 4) Wei Other Sample: Non- Sample: Non- Non- Non- Wei Sample: Non- Non- Sample: Non- Non- Non- Sample: Non- Non- Non- Sample: Non- Non- Non- Matrix Sample: Non- Non- Sample: Non- Non- Non- Matrix Sample: Non- Non- Sample: Non- Non- Non- Matrix Sample: Non- Non- Sample: Sample: Non- Non- Matrix Sample: Non- Non- Matrix Sample: Non- Non- Matrix Sample: Non- Non- Matrix Sample: Non- <t< td=""><td>il or Fax# Jgalenore @ interneon</td><td>Project Manager:</td><td></td><td>(Vin</td><td></td><td>(*C</td><td></td><td>ડખ</td><td></td><td>ļ</td></t<>	il or Fax# Jgalenore @ interneon	Project Manager:		(Vin		(*C		ડખ		ļ
Bitlion Sampler. L. Da, H (U) Sampler. L. Da, H (U) The Ampler. L. Da, H (U) Sampler. L. Da, H (U) Sampler. L. Da, H (U) The Matrix Sampler. L. Da, H (U) Sampler. L. Da, H (U) Sampler. L. Da, H (U) The Matrix Sampler. L. Da, H (U) Sampler. L. Da, H (U) Sampler. L. Da, H (U) The Matrix Sampler. L. Da, H (U) Sampler. L. Da, H (U) Sampler. L. Da, H (U) The Matrix Sampler. L. Da, H (U) The Sampler. L. Da, H (U) The Matrix Sampler. L. Da, H (H) Sampler. L. Da, H (H) Sampler. L. Da, H (H) The Matrix Sampler. L. Da, H (H) The Sampler. L. Da, H (H) The Matrix Sampler. L. Da, H (H) LODO The Sampler. L. Da, H (H) The Remainster. L. Da Looo Looo Remainster. L. Da Sampler. L. Da Matrix Sampler. Looo Looo Looo Remainster. Looo Remainster. Looo Matrix Looo Looo Looo Lo	ige:		24	io seĐ))S'⁺Od		<u> </u>	יסקיד	
Type Time Matrix Sample Request ID Time Matrix Sample Request ID Container Time Sample Request ID Type and # Type Time Standar Matrix Sample Request ID Time Standar Standar Sample Request ID Time Standar Standar Sample Request ID Matrix Matrix A A Matrix Matrix </td <td> </td> <td>Luc</td> <td>Her (AD)</td> <td>Натч</td> <td>(1.40</td> <td></td> <td></td> <td>199 (A</td> <td>~গγ</td> <td>(N 1</td>		Luc	Her (AD)	Натч	(1.40			199 (A	~গγ	(N 1
Time Matrix Sample Request ID Container Type and # Preservative Type and # Type 145C 5.0:1 Str-4fr Container Type and # Type A A 145C 5.0:1 Str-4fr Container Type and # Type A A 145C 5.0:1 Str-4fr Container Type and # Type and # Type and B A A 145C 5.0:1 Str-4fr Lift D Container Str-4fr A A 164(10 Str-4fr Str-4fr D Container Str-4fr A A 164(10 Str-4fr D Container Str-2fr A A A 164(10 Str-4fr Str-4fr D Container Str-4fr A 164(10 Str-4fr D Container Str-4fr A A 164(10 Str-4fr D Container Str-4fr A A 164(10 Str-4fr	DD (Type)	Sample Temperature:	3,0	- 38) <u></u> 90	elst	səp	٬٥٨	21	o Y)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Matrix Sample Requ	Container Type and #		BTEX + MTI	EDB (Metho	ACRA 8 Me	bitse9 1808	-imə2) 0728	(49596)	səlddu8 riA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20:1 SB-44 SWA	2/402 hit	j P	8			8		×	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-002	×			\searrow	\sim	K	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	05.84		- 003	X				\leq		<u> </u>
The Black -005 X X M.D.H M.D.H -005 X X Image: Standard by the black 1 1 1 Image: Reinquished by the black 1 1 1	- 52-43		- 004	X			\times		$\overline{\langle}$	
MADH MADH Image: Relinquished by: Image: Relinquished by: ABBC Image: Relinquished by: Image: Relinquished by: Image: Relinquished by: ABBC Image: Relinquished by: Image: Relinquished by: Image: Time	4		-202-	N N			×			
Time: Relinquished by: Date Time Remarks: Activation 1210 1210 1210 1220 1	MADH		>							
Time: Relinquished by: Date Time Reinquished by: Date Time Remarks: ABOUT Male Multi2 0800 Time: Relinquished by: Date Time ABOUT Multi2 0800 Time: Relinquished by: Date Time ABOUT Multi2 0800 Time: Relinquished by: Multi2										
Time: Relinquished by: Date Time Relinquished by: Compared by: Date Time Relinquished by: Compared by: Date Time Ime: Relinquished by: Compared by: Date Ime: Relinquished by: Compared by: Compared by: Ime: Relinquished by: Compared by: Compared by:										
Time: Relinquished by: Date Time Dete Zue Date Time Dete Time Remarks: Lobor 1220 Vertice Vertice										
Time: Relinquished by: Date Time ABL A Received by: Date Time ABL A A A Time: Relinquished by: A A (1220 A A A										
Time: Relinquished by: Date Time Remarks: Nolding Time: Relinquished by: Date Time Remarks: Nolding 1200 Nold										1
Time: Relinquished by:	Time: $\phi \theta \phi$	Received by:	Date Time	Remarks:	イノ	bling		rem		
	Time:	Received by:	Lalue 1330							

APPENDIX F

Survey of Monitoring Well Locations

