RECR – 4

North Lea Joint Venture

Site Assessment 3/28/12

March 28, 2012

File No.: 122078.2-ALB12RP001

Mr. Jim Griswold New Mexico Oil Conservation Division 1200 South St. Francis Drive Santa Fe, New Mexico 87505

Subject: Limited Phase II Environmental Site Assessment North Lea Joint Venture Pit Site Northeast of Crossroads, New Mexico

Dear Mr. Griswold:

Kleinfelder West, Inc. (Kleinfelder) is pleased to submit this letter report to the New Mexico Oil Conservation Division (NMOCD). This letter report describes the scope of work, results, and conclusions of the limited Phase II Site Assessment (limited Phase II) performed at the above referenced property (Subject Site).

The Subject Site is located approximately 2 miles northeast of Crossroads, New Mexico (see Figure 1, Site Location Map). It consists of an abandoned crude oil pit that is surrounded by an earthen berm. The pit is approximately 80 feet (ft) long by 80 ft wide (see Figure 2, Boring Location Map). The earthen berm varies in height from approximately 3 to 6 ft high. It is approximately 20 ft wide at the base and 8 to 10 ft wide at the top. The pit is currently surrounded by a 4-wire barbed-wire fence. A gate is located along the western side of the pit. It appears that a portion of the western berm was pushed into the pit and may have been moved to provide access for a piece of equipment, possibly a drill rig. Photographs of the site can be found in Attachment 1.

A groundwater monitoring well is located outside of the fenced area adjacent to the southeastern corner of the pit. Depth to groundwater was observed at 121.19 ft below the top of casing (approximately 118 ft below ground surface (bgs)). Groundwater samples were collected from this well and analyzed for the following contaminants of concern (COCs):

- Benzene, toluene, ethylbenzene, and xylene (BTEX) by EPA Method 8260;
- Gasoline- and diesel-range organic total petroleum hydrocarbons (TPH DRO/GRO) by EPA Method 8015B; and
- Chloride by EPA Method 300.0.

The results of the groundwater analyses were below the laboratory reporting limit (LRL) for BTEX and TPH and chlorides was reported at 2500 milligrams per liter.

LIMITED PHASE II SUBSURFACE ASSESSMENT

It is the intent of the NMOCD to close out this pit. The purpose of this limited Phase II ESA was to:

- Assess the horizontal and vertical extent of COCs associated with the pit; and
- Provide recommendations to complete the closure of the pit.

Three borings were advanced at the Subject Site to assess the horizontal and vertical profile of TPH and chloride concentrations. The first boring was drilled within the pit, immediately adjacent to the pit material, in an area where the berm was removed. Two additional borings were drilled northeast and southeast of the corners of the pit (see Figure 2, Boring Location Map).

Project Preparation

Prior to site mobilization, Kleinfelder prepared a project-specific Health and Safety Plan (HASP). New Mexico One-Call was notified approximately 4 days prior to drilling services to facilitate the location of underground utilities and pipelines. NMOCD staff was notified several days in advance of field activities to arrange for site access.

Field Program

A Kleinfelder field engineer observed the advancement of the borings at the site. Drilling services were provided by EnviroDrill, Inc. of Albuquerque, New Mexico. Borings were drilled using a CME-75 hollow stem auger (HSA) drill rig and 8-inch outside diameter hollow stem augers. Each boring was advanced to a depth of 75 ft below bgs.

Samples were collected at approximately 10 ft bgs, every 10 ft thereafter, and the bottom of each boring using a split spoon sampler. Cuttings and samples were logged according to the Unified Soil Classification System. Selected soil samples (collected at 20, 40, 50, 60, and 70 ft bgs) were field-screened using the Petroflag Hydrocarbon Analyzer (Petroflag). The PetroFlag uses extractant chemistry and a colorimetric analyzer to provide a numeric estimate of the concentration of organics present in the sample.

Soil samples were submitted under chain of custody to Hall Environmental Analytical Laboratory (HEAL) in Albuquerque, New Mexico. The samples were analyzed for chloride by EPA Method 300. The chloride samples collected from boring B-1 were also analyzed for TPH GRO/DRO by EPA method 8015B modified. Additional TPH samples were submitted from borings B-2 (20 and 70 ft bgs) and B-3 (20 and 75 ft bgs).

Kleinfelder also collected a sample of the pit material for potential future disposal at a landfill or landfarm. The pit sample was analyzed for TPH-GRO and DRO, volatile organic compounds by EPA Method 8260; reactivity, corrosivity, and ignitability; and RCRA metals (eight metals) by EPA Methods 6010B and 7470 using the Toxicity Characteristic Leach Procedure.

Investigation Derived Waste (IDW) Management

Cuttings from borings were placed in labeled DOT-approved fifty-five gallon drums. Drums were left on site for future disposal.

RESULTS

Soils at the site consisted predominately of fine to medium grained, dense to very dense, moist to dry, light brown to reddish-brown, silty sand from ground surface to the total depth of most of the borings (75 ft bgs). See Attachment 2 for the boring logs.

The following table presents the results of the soil analytical data (See Attachment 3 for the laboratory analytical report):

Sample Location	Depth (Ft BGS)	Field Screening (PPM)	TPH (Mg/Kg)	Chloride (Mg/Kg)
B-1	20	478	Not Sampled	Not Sampled
D-1	30	Not Sampled	Not Sampled	Not Sampled
		1125	•	<u> </u>
	40		4920	4600
	50	169	3510	4600
	60	2191	3210	2800
	70	Over Range	Not Sampled	Not Sampled
	75	Not Sampled	2580	2300
B-2	20	99	<65.7	350
	50	0	Not Sampled	Not Sampled
	40	96	Not Sampled	Not Sampled
	60	10	Not Sampled	Not Sampled
	70	37	<63.7	1600
B-3	20	107	<64.7	95
	30	Not Sampled	Not Sampled	Not Sampled
	40	68	Not Sampled	Not Sampled
	50	64	Not Sampled	Not Sampled
	60	61	Not Sampled	Not Sampled
	75	139	<64.9	4500

The results of the boring laboratory data indicate the following:

- Concentrations of TPH were found above regulatory levels (100 mg/kg) in boring B-1, located within the pit. However, concentrations of TPH in borings adjacent to the pit (B-2 and B-3) were not observed above the laboratory reporting limit.
- Chloride concentrations appear to decrease with depth in boring B-1, located within the pit. However, chloride concentrations were above the NMOCD guideline concentration of 1000 mg/kg through the total depth of the boring (75 ft). Chloride concentrations in samples collected from the borings located adjacent to the pit (B-2 and B-3) were generally less than the NMOCD guideline concentration above a depth of 40 ft bgs. However, chloride concentrations in these borings increased with depth, exceeding the NMOCD guideline concentration.

The analytical results of the pit samples did not indicate the presence of any volatile organic compounds (see Attachment 2). The results of the TPH analyses were:

TPH Range	Result
Gasoline Range Organics (GRO)	<4.9 Mg/Kg
Diesel Range Organics (DRO)	2,200 Mg/Kg
Motor Oil Range Organics (MRO)	3,500 Mg/Kg

The results of the metals analyses are:

Analyte	Result
Arsenic	<2.5 Mg/Kg
Barium	130 Mg/Kg
Cadmium	<0.10 Mg/Kg
Chromium	8.3 Mg/Kg
Lead	15 Mg/Kg
Mercury	<0.033 Mg/Kg
Selenium	<2.5 Mg/Kg
Silver	<0.25 Mg/Kg

The sample was also analyzed for reactivity, corrosivity, ignitability, moisture content, and pH for potential disposal at a landfill or landfarm. The results of these analyses are:

Analyte	Result
Cyanide (reactive)	<10 Mg/kg
Ignitability	Negative
рH	7.48
Reactive Sulfide	<40 Mg/kg
Moisture Content	32.8 percent

An area of stained soil was also observed on the property (see Figure 2). Historical aerial photographs of the site indicate that an above ground storage tank (AST) was located in this area. Due to the relatively minor size of the staining that was observed (see photographs in Attachment 1), this area was not assessed. This area will be addressed during remediation of the main pit.

CONCLUSIONS AND RECOMMENDATIONS

The results of the boring laboratory data indicated the following:

- Concentrations of TPH appear to have migrated vertically, but not horizontally since they do not appear to extend laterally beyond the boundaries of the pit; and
- Concentrations of chlorides appear to have migrated vertically as well as horizontally at depth.

Migration of the TPH and chloride concentrations is most likely caused by the migration of meteoric waters through the pit material and into the subsurface.

The analytical results from the pit sample do not indicate the presence of volatile organic compounds or the presence of gasoline-range TPH. This may be due to the degradation and volatilization of these compounds due to the age of the pit.

A volumetric estimate of the berm materials indicates that there are approximately 2400 cubic yards (yd3) of available backfill soil on site (see Attachment 4, Volumetric Calculations). The berm is currently stabilized with native vegetation, a good indication that the material is suitable for use as a top soil. Kleinfelder assumes that all of the berm material came from the pit since this was a typical pit construction method at the time. If this is correct, then a back-calculation of the pit dimensions with the berm volume indicates a depth of approximately 10 ft bgs. This also indicates that there may be as much as 2400 cubic yards (in-situ) of pit material.

Based on this information, Kleinfelder proposes the following scope of work to remediate the site:

- The pit contents should be excavated to a depth of approximately 5 ft below the top of the existing material. Removal of this amount will allow for some mixing of berm soil into the pit material to increase stability and workability. Kleinfelder would mix enough berm soil into the pit material to allow for an increase in volume of about 1 foot. This would allow for 4 ft of backfill depth. This volume has been estimated at approximately 1800 yd3 (including a swell factor of 50%). These materials should be disposed of in a nearby landfarm or landfill (depending on acceptability criteria and proximity to the site). Due to the age of the material and the proposed addition of a liner (see below), Kleinfelder is recommending that not all of the material be removed, in order to reduce project costs. The presence of the liners will mimimize further infiltration of meteoric waters into the pit material and further the downward migration of TPH and chlorides.
- The stained soil area would be excavated for disposal at a landfarm or landfill.
 This area would be excavated to a maximum extent of 20 ft by 20 ft by 20 ft deep (or maximum extent of excavator). The maximum amount to be excavated would be approximately 450 yd3, including a swell factor of 50%. Soils would be field

screened during excavation. If field screening samples indicate that soils are below regulatory levels, excavation would halt to minimize the amount of soil to be excavated. Final excavation depths will be confirmed with laboratory analytical data.

- An impermeable liner would be placed in the bottom of both excavations.
- The existing berm material would be used for backfill. The backfill material would be wheel-roll compacted using the on-site equipment.
- Each area would be reseeded with a native seed mix.
- The fence would be removed from the Subject Site and properly disposed of.

With NMOCD approval, Kleinfelder will prepare a workplan in accordance with this proposed scope of work. The workplan will be an addendum to this report.

LIMITATIONS

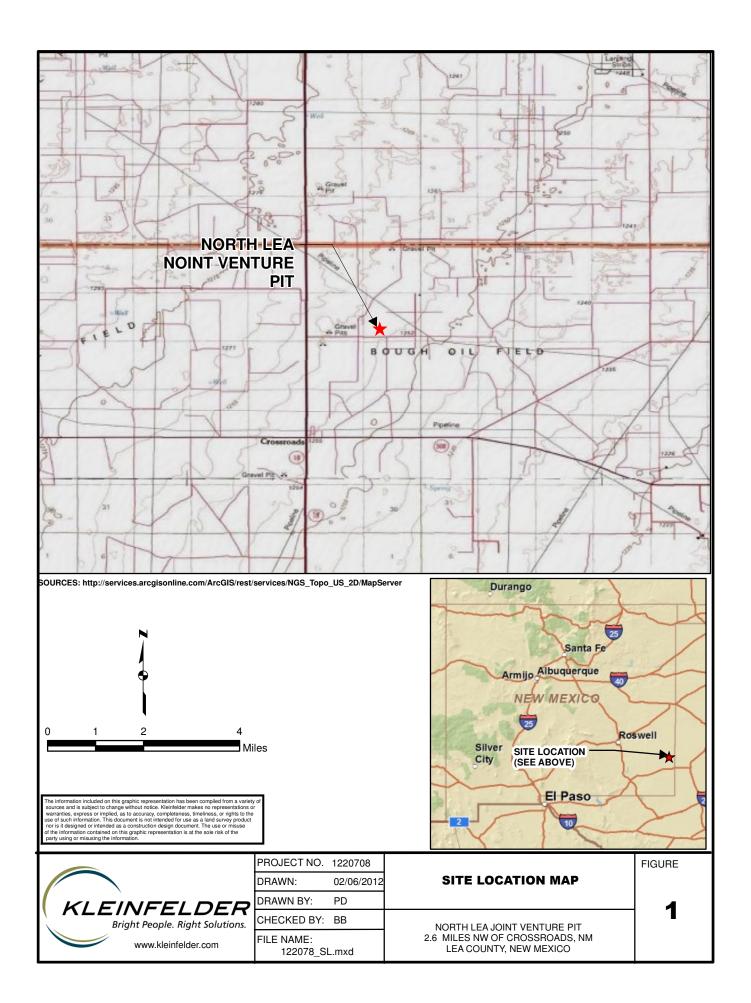
Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions are a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, our clients participate in determining levels of service that provide adequate information for their purposes at acceptable levels of risk. More extensive studies, including subsurface studies or field tests, should be performed to reduce uncertainties. Acceptance of this report will indicate that NMOCD has reviewed the document and determined that it does not need or want a greater level of service than provided.

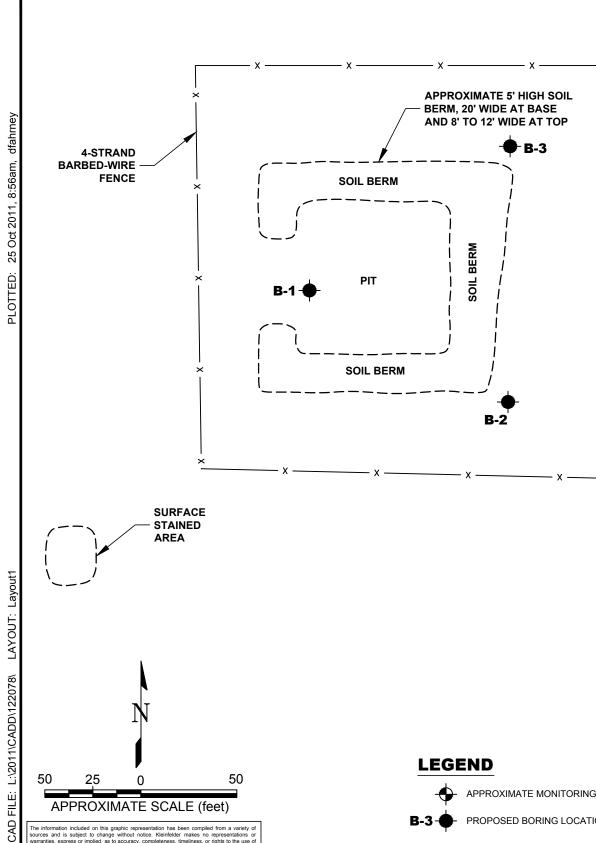
During the course of the performance of Kleinfelder's services, hazardous materials may have been discovered. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury that results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials. Nothing contained in this report should be construed or interpreted as requiring Kleinfelder to assume the status of an owner, operator, or generator, or person who arranges for disposal, transport, storage, or treatment of hazardous materials within the meaning of any governmental statute, regulation, or order. The NMOCD is solely responsible for directing notification of all governmental agencies, and the public at large, of the existence, release, treatment, or disposal of any hazardous materials observed at the project site, either before or during performance of Kleinfelder's services. The NMOCD is responsible for directing all arrangements to lawfully store, treat, recycle, dispose, or otherwise handle hazardous materials, including cuttings and samples resulting from Kleinfelder's services.

We appreciate the opportunity to provide these services to NMOCD. Should any questions arise concerning this work plan; we will be pleased to discuss them with you.

Respectfully submitted,

KLEINFELDER WEST, INC.


Bernard Bockisch, PMP Senior Project Manager Reviewed by:


Eileen Shannon, PG Project Professional

Attachments:

Figure 1 – Site Location Map
Figure 2 – Boring Location Map
Attachment A – Site Photographs
Attachment B – Soil Boring Logs
Attachment C - Laboratory Analytical Data
Attachment D – Volume Calculations

FIGURES

50 25 50 APPROXIMATE SCALE (feet)

The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.

LEGEND

APPROXIMATE MONITORING WELL LOCATION

PROPOSED BORING LOCATION

KLE	INFELDER
	Bright People. Right Solutions.
	www.kleinfelder.com

	PROJECT NO.	122078
	DRAWN:	9/2011
į	DRAWN BY:	DMF
	CHECKED BY:	ВВ
	FILE NAME:	
	122078-F1.dwg	

BORING LOCATION MAP

FIGURE

2

NORTH LEA SITE NMOCD - NEW MEXICO OIL CONSERVATION DIVISION CROSS ROADS, NEW MEXICO

ATTACHMENT A

No.1 View of Subject Property looking northeast. Note stained area in the foreground.

No.2 View of pit looking east.

No.3 View of pit looking southeast

No.4 View of interior of pit looking east

No.5 View of stained soil area noted in Figure 1.

No.6 View of monitoring well located at southeastern corner of the pit.

			Brigh		Right Solu					Soil Boring Log		Sheet 1 of 2
4)	Started	l: 1/1	18/20	12		Rig T	ype: ED	I/Dave T	anner	Proje	ect	Borehole No.
Date	Compl	eted	: 1/13	8/2012		Drille	r: EDI/D	Dave Tan	ner	North Lea Joi	nt Venture	B-1
	Backfi	led:	1/18	/2012		Drillin	ıg Co: E	DI/Dave	Tanner	Drill Method: CME 75	Project Number: 122078	
	Latitue	le: 3	3.54	504		Longitude: -103.31726				Ground Elevation: NA	Logged By: C. Vallejo	
		on.			e ot)	gu		kg)	ype	G - Grab Sample	Groundwat	
ater	Depth (ft.)	Graphical Log	E	Sample Type	Pen.Resistance (Blows per foot)	Field Screening (ppm)	TPH (mg/kg)	Chloride (mg/kg)	Sample Type	CS - 3.5" I.D. Continuous Sampler SPT - 2" O.D. 1.38" I.D. Tube Sample	Depth (ft) Hour Not observed	Date
ndw	h (ft	hica	: Take	le T	esis	Scr	(mg	ide	Samp	CUT - Cuttings NR - No Recovery	Not observed	
Grou	Jept Jept	Grap	Sample Taken	Samp	en.R Blow	Field	ΓΡΗ	hlor		DP - Macropore sampler 1.5" I.D. 4' long Visual (Classification	
			0.1		ЪЪ					1 20 2012	2 -11 33-1-1-1-1-1-1	
	0 —	.]:::]							T II2	V SAND (SM), fine to medium	dense to very dense, subround	ed to
	-								SILI	Y SAND (SM)- fine to medium, subangular, with calcareous grav	vel, brown, dry to moist	ca 10
	1:								Soil	lescription from 0 to 10 ft bgs base	sed on drill cuttings	
	-									P		
	5 _											
	3 -											
	- [.:											
	7;											
	7.											
	10_					NIC						
	10		×	SPT	50/3"	NS			Calca	reous rock fragment in sampler s ased drilling resistance from 10 to	hoe at 10 ft bgs	
	7.								Incre	ased drilling resistance from 10 to	o 12 ft bgs, possibly due to pre	sence of
	1:									cobbles or boulders		
	7.											
	15_											
	13-								Gray	color, hydrocarbon odor from 15	to 40 ft bgs	
	7:									ased drilling resistance from 16 to		
	7									C	C	
	7.											
	20_					470						
	20			SPT	50/5"	478						
	7.											
	7.											
	7:											
	25_											
]:							[]				
]:		$\cdot \cdot $					[]				
]:							[]				
	30			ļ		NS		[]				
			\mathbb{Z}	SPT	50/5"							
]:											
]:							[]				
]:											
	35_											
	<u> </u> :											
].											
	1:											
	1.											
	40			,		1125	. 4920	4600				
			::: X	SPT	41				Light	tan color, hydrocarbon odor at 4	0 ft bgs	
]:;		:: <u> </u>	1								
	<u> </u> :.											
	4	.1	[

			right	reopie. i	Right Solut	ions.				Son Doring Log		Sheet 2 of	
47	Starte	ed: 1/18	/201	12		Rig Ty	pe: ED	/Dave T	anner	Proj	Borehole No		
Date -	Comp	oleted: 1	1/18	/2012		Driller	: EDI/D	ave Tan	ner	North Lea Jo	int Venture	B-1	
-	Backf	filled: 1/	/18/	2012		Drillin	g Co: E	DI/Dave	Tanner	Drill Method: CME 75	Project Number: 122078		
	Latitu	ıde: 33.	545	04		Longit	tude: -10	3.31726		Ground Elevation: NA	Logged By: C. Vallejo		
Groundwater Depth (ft.)	Depth (ft.)	Graphical Log	Sample Taken	Sample Type	Pen.Resistance (Blows per foot)	Field Screening (ppm)	TPH (mg/kg)	Chloride (mg/kg)	Sample Type	G - Grab Sample CS - 3.5" I.D. Continuous Sampler SPT - 2" O.D. 1.38" I.D. Tube Sample CUT - Cuttings NR - No Recovery DP - Macropore sampler 1.5" I.D. 4' long Visual	Depth (ft) Hour Not observed Classification	Date	
	45								SILT	Y SAND (SM)- fine to medium, subangular, with calcareous gra	dense to very dense, subrounde vel, brown, dry to moist	ed to	
	50_			SPT	50/5.5"	169	3570	4600	Light	reddish brown color, hydrocarb	on odor from 50 to 75 ft bgs		
	55												
	60		X	SPT	72	2191	3210	2800	Black	c staining at 60 ft bgs			
	65								Incre	ased drilling resistance at 65 ft b	gs		
	70			SPT	50/4"	OR	NS.	· NS					
	75_			SPT	50/4"		2580	2300	Brok Field 75.8'	en gravel observed in sampler at screening levels too high for equ	75 ft bgs aipment to read at 75 ft bgs		

Total Depth 75.8' Boring backfilled with hydrated bentonite chips. Boring coordinates obtained with hand-held GPS device.

OR = over instrument range NS = not sampled

	1		ght F		Right Solut					Soil Boring Log		Sheet 1 of 2		
ه.	Started	: 1/18/2	201	2		Rig Ty	pe: ED	I/Dave Ta	anner	Proje	ect	Borehole No.		
Date	Comple	ted: 1/	/18/	2012		Driller	: EDI/D	ave Tanı	ner	North Lea Joi	int Venture	B-2		
	Backfill	ed: 1/1	18/2	2012		Drillin	g Co: E	DI/Dave	Tanner	Drill Method: CME 75	Project Number: 122078			
	Latitud	e: 33.5	447	79		Longitude: -103.31696				Ground Elevation: NA Logged By: C. Vallejo				
		ĝ			e ot)	ng		/kg)	ype	G - Grab Sample	Groundwate			
vater		Graphical Log	E .	Гуре	stanc er fo	eeni	TPH (mg/kg)	(mg/	Sample Type	CS - 3.5" I.D. Continuous Sampler SPT - 2" O.D. 1.38" I.D. Tube Sample	Depth (ft) Hour Not observed	Date		
ndv	H (H	hica	e Tak	ple]	esis vs po	l Scr (1	gm)	ride	Sam	CUT - Cuttings NR - No Recovery DP - Macropore sampler 1.5" I.D. 4' long	Not observed			
Grou	Depth (ft.)	Grap	Sample Taken	Sample Type	Pen.Resistance (Blows per foot)	Field Screening (ppm)	ТРН	Chloride (mg/kg)			Classification			
	0 —		П						SILT	Y SAND (SM)- fine to medium,	very dense, subrounded to suba	ingular, with		
	7.									calcareous gravel, light brown, c	dry	<i>U</i> ,		
	7.		l I .						Soil	description from 0 to 10 ft bgs ba	sed on drill cuttings			
]::													
	5 _		.											
	-		.											
	-‡∷		.											
	- ∤∷		.											
	-		.											
	10		Η.	SPT	67/9"	···NS···	NS	NS	Redd	ish-brown from 10 to 15 ft bgs				
	- ∴		Μ.	51 1					Redu	1311-010 WII 110111 10 to 13 It 053				
	1		-											
	7.													
	15_													
	<u>_</u> :.													
	-													
	20		× .	SPT	50/2"	99	NS	NS	T :-1.4		4. 50 G l			
	4.		.							tan to white, calcareous from 20 hard drilling from 21 to 23 ft bg:				
			-						very	naru urining from 21 to 23 ft og,	, possible boulders of coobles			
	4:		-											
	25		'											
	25													
	7		l I'											
]:													
	30		IJ.	SPT	50/3"	NS	NS	NS	_					
	- :::		M.	SP 1	30/3"				Brok	en gravel in sampler at 30 ft bgs				
	 		.											
	- ::-		.											
			-											
	35_		-											
	┤													
	7.													
	7:													
	40_			SPT	50/3"	96	<65.7	350						
]:			31 I	30/3				Brok	en gravel in sampler at 40 ft bgs				
	<u>:</u> ·					l		ll						
	⊣∵							'						
]		.											

\			Bright	t People.	Right Solu	tions.				Son Doring Log			Sheet 2 of		
Sta	rted:	1/1	8/20	12		Rig Ty	pe: ED	I/Dave T	anner	Pro	ect		Borehole No		
Co	mplet	ed:	1/18	8/2012		Drille	: EDI/E	ave Tan	ner	North Lea Jo		B-2			
Ba				/2012				DI/Dave		Drill Method: CME 75 Project Number: 122078					
										Ground Elevation: NA	Logged By: C				
La	Latitude: 33.54479 Longitude: -103.3169										Logged By: C.	Groundwat	er		
Depth (ft.) Depth (ft.)	Depth (ft.) Depth (ft.) Graphical Log Sample Taken Sample Type Pen.Resistance (Blows per foot)		Field Screening (ppm)	TPH (mg/kg)	Chloride (mg/kg)	ımple Typ	G - Grab Sample CS - 3.5" I.D. Continuous Sampler SPT - 2" O.D. 1.38" I.D. Tube Sample CUT - Cuttings NR - No Recovery Depth (ft) Hour								
epth epth		raph	ample Taken	ldun	n.Re lows	eld S pm)) Hd	loric	Z.	DP - Macropore sampler 1.5" I.D. 4' long					
ם ם		Ğ	Sa	Š	Pe (B	E &	Section Visual Classification								
45	<u> </u>			1				1							
									SILT	Y SAND (SM)- fine to medium	, very dense, subro	unded to suba	angular, with		
										calcareous gravel, light brown,	ary				
50	_			SPT	50/5"	0	NS	NS							
									Brown to reddish brown, fine, with calcareous material from 50 to 75 ft bgs						
	4:1														
55	_														
									Very	hard drilling from 55 to 57 ft by	gs; possible boulder	rs or cobbles			
60	-			SPT	50/5"	10	NS	NS							
	4		\mathbb{Z}^{X}	SP 1						1 '11'	1 5 71 11 5	1 6 4			
	-								Tight	drilling, augers not moving fre to free up auger at 61 ft bgs	ely. Driller adds 5	gal. of water	down hole		
										to nee up auger at or it ogs					
	-														
65	-														
	-														
	-														
	-														
	+														
70	- :			SPT	50/5.5"	37	. <63.7	-1600							
	-		∴⊬												
	+														
75	- :			SPT	50/4"				75.8'						
	ا ن		·.·/^	1 51 1	20,1	Total	Depth	75.8'		g backfilled with hydrated bent	onite chins Boring	coordinates	obtained		
							*		Dom	with hand-held GPS device.	ome emps. Donng	5 2001 41114105	o o minou		
										NS = not sampled					

122078 BH LOG \ LIBRARY KLEINFELDER ALB PLOG.GLB \ 122078 NORTH LEA.GPJ

	1		Bright	People.	Right Solu	tions.				Soil Boring Log		Sheet 1 of 2
ţe	Started							I/Dave Ta		Proj North Lea Jo	ect int Vantura	Borehole No.
Date	Comple							Dave Tann		North Lea Jo		B-3
	Backfill	led: 1	/19/	2012		Drillin	ıg Co: E	DI/Dave	Tanner	Drill Method: CME 75	Project Number: 122078	
	Latitud	e: 33	.545	528		Longi	tude: -10	03.31685		Ground Elevation: NA	Logged By: C. Vallejo	
		ĕ			ot)	ng		/kg)	ype	G - Grab Sample CS - 3.5" I.D. Continuous Sampler	Groundwat	
vater	ו ב ב	Graphical Log	en	Гуре	stanc er fo	reeni	TPH (mg/kg)	(mg	Sample Type	SPT - 2" O.D. 1.38" I.D. Tube Sample CUT - Cuttings NR - No Recovery	Depth (ft) Hour Not observed	Date
ndy	# H (#	ohica	Sample Taken	ple	Resis	d Sci	(mg	ride	Sam	NR - No Recovery DP - Macropore sampler 1.5" I.D. 4' long	110t observed	
Grou	Depth (ft.)	Grap	Sampl	Sample Type	Pen.Resistance (Blows per foot)	Field Screening (ppm)	TPH	Chloride (mg/kg)			Classification	
	0 —								SILT	Y SAND (SM)- fine to medium,	dense to very dense, subround	ed to
	1									subangular, reddish brown, dry	to moist	
	1.								Soil	description from 0 to 10 ft bgs ba	ased on drill cuttings	
	7									•	-	
	5 _											
]:									calcareous from 6 ft bgs		
]::								Incre	ased drilling resistance at 7 ft bg	gs .	
	10_					NS	··· NS· · ·	NS				
				SPT	42							
	1.											
	15											
	4											
	4.											
	4.											
	- ∷.											
	20			SPT	50/4"	107	<64.7	95	D 1	1: 1 420.01		
	4									en gravel in sampler at 20 ft bgs		
	4								With	calcareous gravel from 20 to 45	it bgs.	
	4:											
	4::											
	25											
	+:											
	4.1											
	+∷.	1.1.	•									
	20											
	30_			SPT	50/5"	NS	···NS···	NS				
	1											
	7											
	7::											
	35_					1						
	33					1						
	7.:					1						
	7:]						
	7]						
	40_			. caper	50/5"	68	NS.	NS				
	10			SPT	50/5"		110					
]:	1	• 1									
								[]				
								[
	· ·	4 . 4 .	-1	1	1	1	1	1				

									son boring Eog			
a)	Starte	ed: 1/19/20	012		Rig Ty	pe: ED	I/Dave Tanner		Proje	ect	Borehole No.	
Date	Comp	oleted: 1/1	9/2012		Driller	: EDI/D	ave Tanner		North Lea Joi	int Venture	B-3	
- [Backf	illed: 1/19	0/2012		Drillin	g Co: E	DI/Dave Tanne	r	Drill Method: CME 75	Project Number: 122078		
	Latitu	ıde: 33.54	528		Longit	ude: -10	03.31685		Ground Elevation: NA	Logged By: C. Vallejo		
				t)	ρū		(g)	pe	G - Grab Sample	Groundwat	ter	
er		[08	be	nce	nin	(g	lg/k	Sample Type	CS - 3.5" I.D. Continuous Sampler SPT - 2" O.D. 1.38" I.D. Tube Sample CUT - Cuttings	Depth (ft) Hour	Date	
wal ft.)	(F)	ial J	T Y	ista	угее	lg/k		ф	CUT - Cuttings	Not observed		
th da	(HE)	ohic	ple l	ses ws 1	d Sc n)	π)]	nide	San	NR - No Recovery DP - Macropore sampler 1.5" I.D. 4' long			
Groundwater Depth (ft.)	Depth (ft.)	Graphical Log	Sample Type	Pen.Resistance (Blows per foot)	Field Screening (ppm)	TPH (mg/kg)	Chloride (mg/kg)		Visual	Classification	•	
							1					
	45						5	SILT	Y SAND (SM)- fine to medium,	dense to very dense, subround	ed to	
	7						_		subangular, reddish brown, dry	to moist	_	
	-						I	Reddi	sh brown, fine, some calcareous	material and gravel from 45 ft	bgs	
	4											
	4											
	50_		CDT	50/5.5"	64	NS	NS					
			SPI	50/5.5"		115						
	4											
	4											
			1				l					
	55_											
	33_											
	4											
	4											
	4											
	ŀ	. -										
	(0)				<i>C</i> 1	NG						
	60_		SPT	50/5.5"	61	NS	NS	Broke	n gravel in sampler shoe at 60 ft	has		
	4	: : ··· 	٠٠٠٠٠								1 1 1	
							I	increa	sed drilling resistance at 61 ft b	gs. Driller adds 5 gal. of water	down note	
	_		1				<u> </u>					
	7											
	+											
	65_						ļ		and duilling mani-towns from 65.	. 75 € h.c.		
	_[I	ncrea	sed drilling resistance from 65 t	o /5 ft bgs		
	_[디디다			[ll					
	7											
	7											
	4											
	70_											
	_]											
]											
	7											
	4											
	4											
		· 1 · 1 : 1	1				1 1					

Boring backfilled with hydrated bentonite chips. Boring coordinates obtained with hand-held GPS device.

NS = not sampled

122078 BH LOG \ LIBRARY KLEINFELDER ALB PLOG. GLB \ 122078 NORTH LEA. GPJ

Total Depth 75.8

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 13, 2012

Bernie Bockisch Kleinfelder 9019 Washington NE Building A Albuquerque, NM 87113

TEL: (505) 344-7373 FAX (505) 344-1711

RE: North Lea Pit OrderNo.: 1201641

Dear Bernie Bockisch:

Hall Environmental Analysis Laboratory received 9 sample(s) on 1/23/2012 for the analyses presented in the following report.

There were no problems with the analytical events associated with this report unless noted in the Case Narrative. Analytical results designated with a "J" qualifier are estimated and represent a detection above the Method Detection Limit (MDL) and less than the Reporting Limit (PQL). These analytes are not reviewed nor narrated as to whether they are laboratory artifacts.

Quality control data is within laboratory defined or method specified acceptance limits except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Andy Freeman

Laboratory Manager

Only

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1201641**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/13/2012

CLIENT: Kleinfelder **Client Sample ID:** B-1, 40' bgs

 Project:
 North Lea Pit
 Collection Date: 1/18/2012 9:48:00 AM

 Lab ID:
 1201641-001
 Matrix: SOIL
 Received Date: 1/23/2012 11:10:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	GE ORGANICS				Analyst: JMP	
Diesel Range Organics (DRO)	4,100	510		mg/Kg	50	1/25/2012 8:48:32 PM
Motor Oil Range Organics (MRO)	ND	2,600		mg/Kg	50	1/25/2012 8:48:32 PM
Surr: DNOP	0	77.4-131	S	%REC	50	1/25/2012 8:48:32 PM
EPA METHOD 8015B: GASOLINE R	ANGE					Analyst: RAA
Gasoline Range Organics (GRO)	820	25		mg/Kg	5	1/25/2012 1:48:15 PM
Surr: BFB	699	69.7-121	S	%REC	5	1/25/2012 1:48:15 PM
EPA METHOD 300.0: ANIONS						Analyst: BRM
Chloride	4,600	150		mg/Kg	100	1/27/2012 7:02:13 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Lab Order **1201641**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/13/2012

CLIENT: Kleinfelder **Client Sample ID:** B-1, 50' bgs

 Project:
 North Lea Pit
 Collection Date: 1/18/2012 10:06:00 AM

 Lab ID:
 1201641-002
 Matrix: SOIL
 Received Date: 1/23/2012 11:10:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG					Analyst: JMP	
Diesel Range Organics (DRO)	2,900	500		mg/Kg	50	1/25/2012 9:10:21 PM
Motor Oil Range Organics (MRO)	ND	2,500		mg/Kg	50	1/25/2012 9:10:21 PM
Surr: DNOP	0	77.4-131	S	%REC	50	1/25/2012 9:10:21 PM
EPA METHOD 8015B: GASOLINE R.	ANGE					Analyst: RAA
Gasoline Range Organics (GRO)	670	240		mg/Kg	50	1/26/2012 1:01:49 PM
Surr: BFB	148	69.7-121	S	%REC	50	1/26/2012 1:01:49 PM
EPA METHOD 300.0: ANIONS						Analyst: BRM
Chloride	4,600	150		mg/Kg	100	1/27/2012 7:19:38 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Lab Order **1201641**

Date Reported: 2/13/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Kleinfelder **Client Sample ID:** B-1, 60' bgs

 Project:
 North Lea Pit
 Collection Date: 1/18/2012 10:27:00 AM

 Lab ID:
 1201641-003
 Matrix: SOIL
 Received Date: 1/23/2012 11:10:00 AM

Analyses	Result	RL ()ual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE	ORGANICS					Analyst: JMP
Diesel Range Organics (DRO)	2,600	500		mg/Kg	50	1/25/2012 9:32:09 PM
Motor Oil Range Organics (MRO)	ND	2,500		mg/Kg	50	1/25/2012 9:32:09 PM
Surr: DNOP	0	77.4-131	S	%REC	50	1/25/2012 9:32:09 PM
EPA METHOD 8015B: GASOLINE RAI	NGE					Analyst: RAA
Gasoline Range Organics (GRO)	610	250		mg/Kg	50	1/26/2012 1:30:35 PM
Surr: BFB	151	69.7-121	S	%REC	50	1/26/2012 1:30:35 PM
EPA METHOD 300.0: ANIONS						Analyst: BRM
Chloride	2,800	75		mg/Kg	50	2/1/2012 10:32:08 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Lab Order **1201641**

Date Reported: 2/13/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Kleinfelder

Client Sample ID: B-1, 75' bgs

 Project:
 North Lea Pit
 Collection Date: 1/18/2012 11:06:00 AM

 Lab ID:
 1201641-004
 Matrix: SOIL
 Received Date: 1/23/2012 11:10:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG					Analyst: JMP	
Diesel Range Organics (DRO)	2,100	490		mg/Kg	50	1/25/2012 9:54:06 PM
Motor Oil Range Organics (MRO)	ND	2,400		mg/Kg	50	1/25/2012 9:54:06 PM
Surr: DNOP	0	77.4-131	S	%REC	50	1/25/2012 9:54:06 PM
EPA METHOD 8015B: GASOLINE RA	ANGE					Analyst: RAA
Gasoline Range Organics (GRO)	480	250		mg/Kg	50	1/26/2012 1:59:19 PM
Surr: BFB	140	69.7-121	S	%REC	50	1/26/2012 1:59:19 PM
EPA METHOD 300.0: ANIONS						Analyst: BRM
Chloride	2,300	75		mg/Kg	50	1/27/2012 7:54:27 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Lab Order **1201641**

Date Reported: 2/13/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Kleinfelder **Client Sample ID:** B-2, 40' bgs

 Project:
 North Lea Pit
 Collection Date: 1/18/2012 2:50:00 PM

 Lab ID:
 1201641-005
 Matrix: SOIL
 Received Date: 1/23/2012 11:10:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RAN				Analyst: JMP	
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	1/25/2012 6:16:46 PM
Motor Oil Range Organics (MRO)	ND	51	mg/Kg	1	1/25/2012 6:16:46 PM
Surr: DNOP	89.3	77.4-131	%REC	1	1/25/2012 6:16:46 PM
EPA METHOD 8015B: GASOLINE R	ANGE				Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	1/25/2012 5:09:58 PM
Surr: BFB	98.7	69.7-121	%REC	1	1/25/2012 5:09:58 PM
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	350	30	mg/Kg	20	1/26/2012 11:18:26 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Lab Order **1201641**

Date Reported: 2/13/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Kleinfelder **Client Sample ID:** B-2, 70' bgs

 Project:
 North Lea Pit
 Collection Date: 1/18/2012 3:55:00 PM

 Lab ID:
 1201641-006
 Matrix: SOIL
 Received Date: 1/23/2012 11:10:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG				Analyst: JMP	
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	1/25/2012 6:38:27 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	1/25/2012 6:38:27 PM
Surr: DNOP	87.9	77.4-131	%REC	1	1/25/2012 6:38:27 PM
EPA METHOD 8015B: GASOLINE R.	ANGE				Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	1/25/2012 5:38:44 PM
Surr: BFB	97.9	69.7-121	%REC	1	1/25/2012 5:38:44 PM
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	1,600	75	mg/Kg	50	1/27/2012 8:11:52 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 6 of 18

Lab Order **1201641**

Date Reported: 2/13/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Kleinfelder **Client Sample ID:** B-3, 20' bgs

 Project:
 North Lea Pit
 Collection Date: 1/19/2012 10:00:00 AM

 Lab ID:
 1201641-007
 Matrix: SOIL
 Received Date: 1/23/2012 11:10:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE	ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	1/25/2012 7:00:11 PM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	1/25/2012 7:00:11 PM
Surr: DNOP	94.7	77.4-131	%REC	1	1/25/2012 7:00:11 PM
EPA METHOD 8015B: GASOLINE RAN	GE				Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	1/25/2012 6:07:35 PM
Surr: BFB	98.4	69.7-121	%REC	1	1/25/2012 6:07:35 PM
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	95	30	mg/Kg	20	1/27/2012 12:28:04 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Lab Order **1201641**

Date Reported: 2/13/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Kleinfelder **Client Sample ID:** B-3, 75' bgs

 Project:
 North Lea Pit
 Collection Date: 1/19/2012 11:40:00 AM

 Lab ID:
 1201641-008
 Matrix: SOIL
 Received Date: 1/23/2012 11:10:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG				Analyst: JMP	
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	1/25/2012 7:21:47 PM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	1/25/2012 7:21:47 PM
Surr: DNOP	89.1	77.4-131	%REC	1	1/25/2012 7:21:47 PM
EPA METHOD 8015B: GASOLINE R.	ANGE				Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	1/25/2012 6:36:28 PM
Surr: BFB	96.8	69.7-121	%REC	1	1/25/2012 6:36:28 PM
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	4,500	150	mg/Kg	100	1/27/2012 8:29:17 PM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/13/2012

CLIENT: Kleinfelder Client Sample ID: Pit Sample

 Project:
 North Lea Pit
 Collection Date: 1/18/2012 1:30:00 PM

 Lab ID:
 1201641-009
 Matrix: SOIL
 Received Date: 1/23/2012 11:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	GE ORGANICS					Analyst: JMP
Diesel Range Organics (DRO)	2,200	96		mg/Kg	10	1/26/2012 8:08:09 AM
Motor Oil Range Organics (MRO)	3,500	480		mg/Kg	10	1/26/2012 8:08:09 AM
Surr: DNOP	0	77.4-131	S	%REC	10	1/26/2012 8:08:09 AM
EPA METHOD 8015B: GASOLINE R	ANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.9		mg/Kg	1	1/25/2012 7:05:16 PM
Surr: BFB	97.0	69.7-121		%REC	1	1/25/2012 7:05:16 PM
EPA METHOD 7471: MERCURY						Analyst: JLF
Mercury	ND	0.033		mg/Kg	1	1/30/2012 2:38:09 PM
EPA METHOD 6010B: SOIL METALS	S					Analyst: ELS
Arsenic	ND	2.5		mg/kg	1	1/27/2012 6:58:13 AM
Barium	130	0.50		mg/kg	5	1/27/2012 7:13:01 AM
Cadmium	ND	0.10		mg/kg	1	1/27/2012 6:58:13 AM
Chromium	8.3	0.30		mg/kg	1	1/27/2012 6:58:13 AM
Lead	15	0.25		mg/kg	1	1/27/2012 6:58:13 AM
Selenium	ND	2.5		mg/kg	1	1/27/2012 6:58:13 AM
Silver	ND	0.25		mg/kg	1	1/27/2012 6:58:13 AM
EPA METHOD 8260B: VOLATILES						Analyst: NSB
Benzene	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
Toluene	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
Ethylbenzene	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
Methyl tert-butyl ether (MTBE)	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
1,2,4-Trimethylbenzene	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
1,3,5-Trimethylbenzene	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
1,2-Dichloroethane (EDC)	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
1,2-Dibromoethane (EDB)	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
Naphthalene	ND	0.099		mg/Kg	1	1/28/2012 7:21:27 AM
1-Methylnaphthalene	ND	0.20		mg/Kg	1	1/28/2012 7:21:27 AM
2-Methylnaphthalene	ND	0.20		mg/Kg	1	1/28/2012 7:21:27 AM
Acetone	ND	0.74		mg/Kg	1	1/28/2012 7:21:27 AM
Bromobenzene	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
Bromodichloromethane	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
Bromoform	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
Bromomethane	ND	0.64		mg/Kg	1	1/28/2012 7:21:27 AM
2-Butanone	ND	0.49		mg/Kg	1	1/28/2012 7:21:27 AM
Carbon disulfide	ND	0.49		mg/Kg	1	1/28/2012 7:21:27 AM
Carbon tetrachloride	ND	0.099		mg/Kg	1	1/28/2012 7:21:27 AM
Chlorobenzene	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
Chloroethane	ND	0.099		mg/Kg	1	1/28/2012 7:21:27 AM
Chloroform	ND	0.049		mg/Kg	1	1/28/2012 7:21:27 AM
Chloromethane	ND	0.15		mg/Kg	1	1/28/2012 7:21:27 AM

Qualifiers:

^{*/}X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/13/2012

CLIENT: Kleinfelder Client Sample ID: Pit Sample

 Project:
 North Lea Pit
 Collection Date: 1/18/2012 1:30:00 PM

 Lab ID:
 1201641-009
 Matrix: SOIL
 Received Date: 1/23/2012 11:10:00 AM

EPA METHOD 8260B: VOLATILES D. 0.049 mg/Kg 1 128/2012 7:21:27 AM	Analyses	Result	RL Qu	al Units	DF	Date Analyzed
4-Chlorotoluene	EPA METHOD 8260B: VOLATILES					Analyst: NSB
4-Chlorobluene ND 0.049 mg/Kg 1 128/2012 7:21:27 AM	2-Chlorotoluene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
cis-1,2-DCE ND 0.049 mg/Kg 1 128/2012 7:21:27 AM cis-1,3-Dichloropropane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2-Dibromo-3-chloropropane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Dibromochloromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM L2-Dichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,3-Dichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,4-Dichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,4-Dichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloroethane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloroethane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,3-Dichloropropane ND <	4-Chlorotoluene	ND	0.049		1	1/28/2012 7:21:27 AM
1,2-Dibromo-3-chloropropane	cis-1,2-DCE	ND	0.049		1	1/28/2012 7:21:27 AM
Dibromochloromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Dibromomethane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,2-Dichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,3-Dichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,4-Dichlorodifluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichlorodifluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloropthane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloroptopane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,3-Dichloroptopane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloroptopane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloroptopane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloroptopane ND <td>cis-1,3-Dichloropropene</td> <td>ND</td> <td>0.049</td> <td>mg/Kg</td> <td>1</td> <td>1/28/2012 7:21:27 AM</td>	cis-1,3-Dichloropropene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
Dibromomethane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,2-Dichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,3-Dichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,4-Dichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,4-Dichlorothane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichlorothane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichlorothane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloropthane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2-Dichloropropane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2-Dichloropropane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,3-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,3-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,2-Dichloropropane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloropropane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Z-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Z-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Tetrachloropethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Tet	1,2-Dibromo-3-chloropropane	ND	0.099	mg/Kg	1	1/28/2012 7:21:27 AM
1,2-Dichlorobenzene	Dibromochloromethane	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
1,3-Dichlorobenzene	Dibromomethane	ND	0.099	mg/Kg	1	1/28/2012 7:21:27 AM
1,4-Dichlorobenzene	1,2-Dichlorobenzene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
Dichlorodifluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloroethane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloroethene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2-Dichloropropane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,3-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 2,2-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Hexachlorobutadiene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Hexachorophylbenzene ND 0.49 mg/Kg 1 1/28/2012 7:21:27 AM 4-Isopropylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Isopropylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Isopropylbenzene ND <t< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td>0.049</td><td>mg/Kg</td><td>1</td><td>1/28/2012 7:21:27 AM</td></t<>	1,3-Dichlorobenzene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
1,1-Dichloroethane	1,4-Dichlorobenzene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
1,1-Dichloroethene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2-Dichloropropane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,3-Dichloropropane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 2,2-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Hexachlorobutadiene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 2-Hexanone ND 0.49 mg/Kg 1 1/28/2012 7:21:27 AM 4-Isopropyltoluene ND 0.049	Dichlorodifluoromethane	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
1,2-Dichloropropane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,3-Dichloropropane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 2,2-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloropropene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloropropene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 4-Hacholrobutadiene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 2-Hexanone ND 0.49 mg/Kg 1 1/28/2012 7:21:27 AM 4-Isopropylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Methyl-2-pentanone ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Methylene chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM n-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM n-Propylbenzene ND 0.049	1,1-Dichloroethane	ND	0.099	mg/Kg	1	1/28/2012 7:21:27 AM
1,3-Dichloropropane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 2,2-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloropropene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Hexachlorobutadiene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 2-Hexanone ND 0.49 mg/Kg 1 1/28/2012 7:21:27 AM 4-Isopropylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Isopropylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Methyl-2-pentanone ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Methylene chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM n-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM n-Propylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM n-Butylbenzene ND 0.049	1,1-Dichloroethene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
2,2-Dichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1-Dichloropropene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Hexachlorobutadiene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 2-Hexanone ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Isopropylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Isopropyltoluene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Methyl-2-pentanone ND 0.49 mg/Kg 1 1/28/2012 7:21:27 AM Methylene chloride ND 0.15 mg/Kg 1 1/28/2012 7:21:27 AM n-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM n-Bropylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM n-Broylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM sec-Butylbenzene ND 0.049 mg/K	1,2-Dichloropropane	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
1,1-Dichloropropene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Hexachlorobutadiene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 2-Hexanone ND 0.49 mg/Kg 1 1/28/2012 7:21:27 AM Isopropylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Isopropyltoluene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Methyl-2-pentanone ND 0.49 mg/Kg 1 1/28/2012 7:21:27 AM Methylene chloride ND 0.15 mg/Kg 1 1/28/2012 7:21:27 AM n-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM n-Propylbenzene ND 0.049 mg/Kg	1,3-Dichloropropane	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
Hexachlorobutadiene	2,2-Dichloropropane	ND	0.099	mg/Kg	1	1/28/2012 7:21:27 AM
2-Hexanone ND 0.49 mg/Kg 1 1/28/2012 7:21:27 AM Isopropylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Isopropyltoluene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Methyl-2-pentanone ND 0.49 mg/Kg 1 1/28/2012 7:21:27 AM Methylene chloride ND 0.15 mg/Kg 1 1/28/2012 7:21:27 AM n-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM n-Propylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM sec-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM styrene ND 0.049 mg/Kg	1,1-Dichloropropene	ND	0.099	mg/Kg	1	1/28/2012 7:21:27 AM
Isopropylbenzene	Hexachlorobutadiene	ND	0.099	mg/Kg	1	1/28/2012 7:21:27 AM
Isopropylbenzene	2-Hexanone	ND	0.49	mg/Kg	1	1/28/2012 7:21:27 AM
4-Isopropyltoluene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 4-Methyl-2-pentanone ND 0.49 mg/Kg 1 1/28/2012 7:21:27 AM Methylene chloride ND 0.15 mg/Kg 1 1/28/2012 7:21:27 AM n-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM n-Propylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM sec-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Styrene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM tert-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane (PCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane (PCE) ND	Isopropylbenzene	ND	0.049		1	1/28/2012 7:21:27 AM
Methylene chloride ND 0.15 mg/Kg 1 1/28/2012 7:21:27 AM n-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM n-Propylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM sec-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Styrene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM tert-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane (PCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM tetrachloroethene (PCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,2-DCE ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichloroethane ND 0	4-Isopropyltoluene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
n-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM n-Propylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM sec-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM sec-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM tert-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM tert-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Tetrachloroethane (PCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,2-DCE ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,3-Dichloropropene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,4-Trichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2-Trichloroptopane ND 0.049 mg/Kg 1 1/28/2012 7:	4-Methyl-2-pentanone	ND	0.49	mg/Kg	1	1/28/2012 7:21:27 AM
n-Propylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM sec-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Styrene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM tert-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Tetrachloroethene (PCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,2-DCE ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,3-Dichloropropene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND	Methylene chloride	ND	0.15	mg/Kg	1	1/28/2012 7:21:27 AM
sec-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Styrene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM tert-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane (PCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Tetrachloroethene (PCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,2-DCE ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,3-Dichloropropene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichlorobenzene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane N	n-Butylbenzene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
Styrene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM tert-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Tetrachloroethane (PCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,3-Dichloropropene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichlorobenzene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,4-Trichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichlorofluoromethane	n-Propylbenzene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
tert-Butylbenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1 trans-1,2-DCE ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichloropropene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichlorofluoromethane	sec-Butylbenzene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
1,1,1,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Tetrachloroethene (PCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,2-DCE ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,3-Dichloropropene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichlorobenzene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,4-Trichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM <td>Styrene</td> <td>ND</td> <td>0.049</td> <td>mg/Kg</td> <td>1</td> <td>1/28/2012 7:21:27 AM</td>	Styrene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
1,1,2,2-Tetrachloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Tetrachloroethene (PCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,2-DCE ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,3-Dichloropropene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichlorobenzene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,4-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichloroethene (TCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichlorofluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM <td>tert-Butylbenzene</td> <td>ND</td> <td>0.049</td> <td>mg/Kg</td> <td>1</td> <td>1/28/2012 7:21:27 AM</td>	tert-Butylbenzene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
Tetrachloroethene (PCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,2-DCE ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,3-Dichloropropene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichlorobenzene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,4-Trichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichloroethene (TCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichlorofluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM	1,1,1,2-Tetrachloroethane	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
trans-1,2-DCE ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM trans-1,3-Dichloropropene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichlorobenzene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,4-Trichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichloroethene (TCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichlorofluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM	1,1,2,2-Tetrachloroethane	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
trans-1,3-Dichloropropene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichlorobenzene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,4-Trichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichloroethene (TCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichlorofluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM	Tetrachloroethene (PCE)	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
1,2,3-Trichlorobenzene ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,4-Trichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichloroethene (TCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichlorofluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM	trans-1,2-DCE	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
1,2,4-Trichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichloroethene (TCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichlorofluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM	trans-1,3-Dichloropropene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
1,2,4-Trichlorobenzene ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,1-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichloroethene (TCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichlorofluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM	1,2,3-Trichlorobenzene	ND	0.099	mg/Kg	1	1/28/2012 7:21:27 AM
1,1,2-Trichloroethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichloroethene (TCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichlorofluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM	1,2,4-Trichlorobenzene	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
Trichloroethene (TCE) ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM Trichlorofluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM	1,1,1-Trichloroethane	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
Trichlorofluoromethane ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM 1,2,3-Trichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM	1,1,2-Trichloroethane	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
1,2,3-Trichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM	Trichloroethene (TCE)	ND	0.049	mg/Kg	1	1/28/2012 7:21:27 AM
1,2,3-Trichloropropane ND 0.099 mg/Kg 1 1/28/2012 7:21:27 AM Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM	Trichlorofluoromethane	ND	0.049		1	1/28/2012 7:21:27 AM
Vinyl chloride ND 0.049 mg/Kg 1 1/28/2012 7:21:27 AM	1,2,3-Trichloropropane	ND	0.099		1	1/28/2012 7:21:27 AM
	Vinyl chloride	ND	0.049		1	1/28/2012 7:21:27 AM
	Xylenes, Total	ND	0.099	mg/Kg	1	1/28/2012 7:21:27 AM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Lab Order **1201641**

Date Reported: 2/13/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Kleinfelder

Client Sample ID: Pit Sample

 Project:
 North Lea Pit
 Collection Date: 1/18/2012 1:30:00 PM

 Lab ID:
 1201641-009
 Matrix: SOIL
 Received Date: 1/23/2012 11:10:00 AM

Analyses Result **RL Qual Units** DF **Date Analyzed EPA METHOD 8260B: VOLATILES** Analyst: NSB Surr: 1,2-Dichloroethane-d4 91.8 70-130 %REC 1 1/28/2012 7:21:27 AM Surr: 4-Bromofluorobenzene 86.8 70-130 %REC 1/28/2012 7:21:27 AM 1 Surr: Dibromofluoromethane 110 71.7-132 %REC 1 1/28/2012 7:21:27 AM Surr: Toluene-d8 94.7 70-130 %REC 1/28/2012 7:21:27 AM

Qualifiers: */X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 11 of 18

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

120126025

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 **Project Name:**

1201641

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

120126025-001

Sampling Date

1/18/2012 Date/Time Received

1/26/2012 11:40 AM

Client Sample ID

1201641-009A / PIT SAMPLE

Sampling Time

1:30 PM

Sample Location

Matrix Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide (reactive)	ND	mg/Kg	10	2/7/2012	CRW	SW846 CH7	
Ignitability	Negative			1/26/2012	JWC	EPA 1030	
pH	7.48	ph Units		2/8/2012	KFG	EPA 9045	
Reactive sulfide	ND	mg/kg	40	2/10/2012	JTT	SW846 CH7	
%moisture	32.8	Percent		2/6/2012	KFG	%moisture	

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Hall Environmental Analysis Laboratory, Inc.

WO#: **1201641**

13-Feb-12

Client: Kleinfelder
Project: North Lea Pit

Sample ID MB-451 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 451 RunNo: 608

Prep Date: 1/26/2012 Analysis Date: 1/26/2012 SeqNo: 17273 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID LCS-451 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 451 RunNo: 608

Prep Date: 1/26/2012 Analysis Date: 1/26/2012 SeqNo: 17274 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 93.7 90 110

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 12 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **1201641**

13-Feb-12

Client: Kleinfelder Project: North Lea Pit

Sample ID MB-409 SampType: MBLK TestCode: EPA Method 8015B: Diesel Range Organics PBS Client ID: Batch ID: 409 RunNo: 517 Prep Date: 1/24/2012 Analysis Date: 1/25/2012 SeqNo: 16212 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 10 Motor Oil Range Organics (MRO) ND 50 Surr: DNOP 11 10.00 114 77.4 131

Sample ID LCS-409	SampT	ype: LC	s	TestCode: EPA Method 8015B: Diesel Range Organics						
Client ID: LCSS	Batch	ID: 40	9	RunNo: 517						
Prep Date: 1/24/2012	Analysis D	ate: 1/	25/2012	S	SeqNo: 1	6213	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	43	10	50.00	0	86.4	62.7	139			
Surr: DNOP	8.7		5.000		174	77.4	131			S

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 13 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: 1201641

13-Feb-12

Client: Kleinfelder **Project:** North Lea Pit

Sample ID MB-416 SampType: MBLK TestCode: EPA Method 8015B: Gasoline Range

Client ID: **PBS** Batch ID: 416 RunNo: 587

Prep Date: 1/24/2012 Analysis Date: 1/25/2012 SeqNo: 16706 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 920 1,000 92.5 69.7 121

TestCode: EPA Method 8015B: Gasoline Range Sample ID LCS-416 SampType: LCS

Client ID: LCSS Batch ID: 416 RunNo: 587

Prep Date: Analysis Date: 1/25/2012 SeqNo: 16712 1/24/2012 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Gasoline Range Organics (GRO) 30 5.0 25.00 120 86.4 132 Surr: BFB 980 1,000 98.5 69.7 121

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range

Analyte detected below quantitation limits J RPD outside accepted recovery limits

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Page 14 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **1201641**

13-Feb-12

Client: Kleinfelder
Project: North Lea Pit

Sample ID mb-416 SampType: MBLK TestCode: EPA Method 8260B: VOLATILES **PBS** Client ID: Batch ID: 416 RunNo: 632 Prep Date: 1/24/2012 Analysis Date: 1/28/2012 SeqNo: 17907 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 0.050 ND 0.050 Toluene ND Ethylbenzene 0.050 Methyl tert-butyl ether (MTBE) ND 0.050 1,2,4-Trimethylbenzene ND 0.050 1,3,5-Trimethylbenzene ND 0.050 1,2-Dichloroethane (EDC) ND 0.050 1,2-Dibromoethane (EDB) ND 0.050 Naphthalene ND 0.10 ND 0.20 1-Methylnaphthalene 2-Methylnaphthalene ND 0.20 ND 0.75 Acetone ND 0.050 Bromobenzene Bromodichloromethane ND 0.050 Bromoform ND 0.050 Bromomethane ND 0.65 2-Butanone ND 0.50 Carbon disulfide ND 0.50 Carbon tetrachloride ND 0.10 Chlorobenzene ND 0.050 Chloroethane ND 0.10 Chloroform ND 0.050 Chloromethane ND 0.15 2-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.10 Dibromochloromethane ND 0.050 ND 0.10 Dibromomethane ND 0.050 1.2-Dichlorobenzene 1,3-Dichlorobenzene ND 0.050 1.4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.10 1,1-Dichloroethene ND 0.050 ND 0.050 1,2-Dichloropropane 1,3-Dichloropropane ND 0.050 2,2-Dichloropropane ND 0.10 ND 0.10 1,1-Dichloropropene ND 0.10 Hexachlorobutadiene

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 15 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: 1201641

13-Feb-12

Client: Kleinfelder **Project:** North Lea Pit

Sample ID mb-416	SampType: MBLK TestCode: EPA Method					8260B: VOLA	ATILES							
Client ID: PBS	Batch ID: 416 RunNo				unNo: 6	o: 632								
Prep Date: 1/24/2012	Analysis D	oate: 1/28	/2012	SeqNo: 17907			Units: mg/Kg							
Analyte	Result	PQL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
2-Hexanone	ND	0.50												
Isopropylbenzene	ND	0.050												
4-Isopropyltoluene	ND	0.050												
4-Methyl-2-pentanone	ND	0.50												
Methylene chloride	ND	0.15												
n-Butylbenzene	ND	0.050												
n-Propylbenzene	ND	0.050												
sec-Butylbenzene	ND	0.050												
Styrene	ND	0.050												
tert-Butylbenzene	ND	0.050												
1,1,1,2-Tetrachloroethane	ND	0.050												
1,1,2,2-Tetrachloroethane	ND	0.050												
Tetrachloroethene (PCE)	ND	0.050												
trans-1,2-DCE	ND	0.050												
trans-1,3-Dichloropropene	ND	0.050												
1,2,3-Trichlorobenzene	ND	0.10												
1,2,4-Trichlorobenzene	ND	0.050												
1,1,1-Trichloroethane	ND	0.050												
1,1,2-Trichloroethane	ND	0.050												
Trichloroethene (TCE)	ND	0.050												
Trichlorofluoromethane	ND	0.050												
1,2,3-Trichloropropane	ND	0.10												
Vinyl chloride	ND	0.050												
Xylenes, Total	ND	0.10												
Surr: 1,2-Dichloroethane-d4	0.46		0.5000		92.9	70	130							
Surr: 4-Bromofluorobenzene	0.46		0.5000		92.3	70	130							
Surr: Dibromofluoromethane	0.52		0.5000		105	71.7	132							
Surr: Toluene-d8	0.48		0.5000		96.6	70	130							

Sample ID Ics-416	SampT	ype: LC	S	Tes	tCode: El	ATILES				
Client ID: LCSS	Batch	n ID: 41 0	6	R	RunNo: 6	32				
Prep Date: 1/24/2012	Analysis D	oate: 1/	28/2012	S	SeqNo: 17908			ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.96	0.050	1.000	0	96.1	70.7	123			
Toluene	0.96	0.050	1.000	0	96.2	80	120			
Surr: 1,2-Dichloroethane-d4	0.47		0.5000		93.5	70	130			
Surr: 4-Bromofluorobenzene	0.45		0.5000		89.6	70	130			
Surr: Dibromofluoromethane	0.52		0.5000		103	71.7	132			
Surr: Toluene-d8	0.47		0.5000		93.8	70	130			

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

Value above quantitation range

RPD outside accepted recovery limits

Analyte detected below quantitation limits J

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Page 16 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **1201641**

13-Feb-12

Client: Kleinfelder
Project: North Lea Pit

Sample ID MB-486 SampType: MBLK TestCode: EPA Method 7471: Mercury

Client ID: PBS Batch ID: 486 RunNo: 652

Prep Date: 1/30/2012 Analysis Date: 1/30/2012 SeqNo: 18686 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033

Sample ID LCS-486 SampType: LCS TestCode: EPA Method 7471: Mercury

Client ID: LCSS Batch ID: 486 RunNo: 652

Prep Date: 1/30/2012 Analysis Date: 1/30/2012 SeqNo: 18687 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.18 0.033 0.1667 0 107 80 120

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 17 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **1201641**

13-Feb-12

Client: Kleinfelder Project: North Lea Pit

Sample ID MB-450	MB-450 SampType: MBLK TestCode: EPA Method					PA Method	od 6010B: Soil Metals							
Client ID: PBS	Batc	h ID: 45	0	F	RunNo: 6	16								
Prep Date: 1/26/2012	Analysis D	Date: 1/	27/2012	SeqNo: 17428			Units: mg/kg							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Arsenic	ND	2.5												
Barium	ND	0.10												
Cadmium	ND	0.10												
Chromium	ND	0.30												
Lead	ND	0.25												
Selenium	ND	2.5												
Silver	ND	0.25												

Sample ID LCS-450	SampT	ype: LC	s	Tes	tCode: El	PA Method	6010B: Soil	Metals		
Client ID: LCSS	Batch	n ID: 45	0	F	RunNo: 6	16				
Prep Date: 1/26/2012	Analysis D	ate: 1/	27/2012	8	SeqNo: 1	7429	Units: mg/k	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	26	2.5	25.00	0	105	80	120			
Barium	24	0.10	25.00	0	97.8	80	120			
Cadmium	26	0.10	25.00	0	102	80	120			
Chromium	25	0.30	25.00	0.06600	98.7	80	120			
Lead	25	0.25	25.00	0	98.8	80	120			
Selenium	27	2.5	25.00	0	108	80	120			
Silver	5.1	0.25	5.000	0	102	80	120			

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Page 18 of 18

Hall Environmental Analysis Laborator) 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-410', Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Klein Work Order Number: 1201641 Logged by: **Lindsay Mangin** 1/23/2012 11:10:00 AM Completed By: Lindsay Mangin 1/23/2012 11:50:53 AM Reviewed By: 23 2 Chain of Custody Yes 🗌 No 🔲 1. Were seals intact? Not Present Yes 🗸 No 🗌 Not Present 2. Is Chain of Custody complete? 3. How was the sample delivered? Client <u>Log In</u> Yes 🗸 No 🗌 4. Coolers are present? (see 19. for cooler specific information) NA 🗌 Yes 🗹 No 🗌 5. Was an attempt made to cool the samples? NA 📗 Yes 🗸 No 🗌 NA 🔲 6. Were all samples received at a temperature of >0° C to 6.0°C Yes ✓ No 🗆 7. Sample(s) in proper container(s)? Yes 🗹 No 🗌 8. Sufficient sample volume for indicated test(s)? Yes 🗹 No 🗌 9. Are samples (except VOA and ONG) properly preserved? Yes 🗌 No 🗸 NA 🗌 10. Was preservative added to bottles? 11. Is the headspace in the VOA vials less than 1/4 inch or 6 mm? Yes No No VOA Vials 🗹 Yes 🗌 No 🗹 12. Were any sample containers received broken? # of preserved Yes 🗹 No 🗌 13 Does paperwork match bottle labels? bottles checked (Note discrepancies on chain of custody) for pH: Yes 🗹 No 🗌 14. Are matrices correctly identified on Chain of Custody? (<2 or >12 unless noted) Yes 🗹 No 🗌 Adjusted? 15. Is it clear what analyses were requested? Yes 🗹 No 🗌 16. Were all holding times able to be met? (If no, notify customer for authorization.) Checked by: Special Handling (if applicable) 17. Was client notified of all discrepancies with this order? Yes 🗌 No 🔲 NA 🔽 Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 18. Additional remarks: 19. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Not Present

Chain-of-Custody Record		Turn-Around Time:				HALL ENVIRONMENTAL														
Client:	Klein	felder		☑ Standard	□ Rush	<u> </u>			<u>-</u> '									TO		
				Project Name	North L	as P.4] =													•
Mailing	Address	9019	Rashington STNE Bldg A	7			www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109													
			erque, NM 871/3	Project #:	ject #: 122078-2			Tel. 505-345-3975 Fax 505-345-4107												
Phone a	# : (44-7373	1	1070 -21							Anal	ysis	Req	uest					
email o	r Fax#:	BBock	isch DKleinfelder com	Project Mana	iger: Berni	e Bockisch	=	nly)	sel)		·		04)				11/1			\prod
QA/QC I	Package: dard		☐ Level 4 (Full Validation)			,	TMB's (8021)	TPH (Gas only)	(Gas/Diesel				,PO4,S	PCB's			Allah se p			
Accredi				Sampler: Ca] <u>B</u>	핕		=	<u>-</u> -		No	8082			- :1	.		9
O NEL		□ Other		On Ice:	,∕rí Yes	□No	+	+	3015	418.1)	P S	<u>_s</u>	်ီ	/ Se		(A)	d'insomo			[5]
□ EDD Date	Time	Matrix	Sample Request ID	Sample Tern Container Type and #	Preservative Type	HEAL No.	BTEX + MTBE	BTEX + MTBE	TPH Method 8015B	TPH (Method	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F.C)NO3,NO2,PO4,SO4)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	Reachisty, con		i	Air Bubbles (Y or N)
1/18/12	0948	soil	B-1, 40' bgs	402 glass	ice	-1														
1/18/12	1006	Soil	B-1,50 bgs	402 glass	ice	-Z														\prod
1/18/12	1027	Soil.	B-1,60' bgs	You glass	ice	-3			7										\top	\Box
1/18/12	1106	goi/	B-1,75 bgs	402 glass	ic e	- U			7											\prod
118/12	1450	5011	B-2,40' bgs	Yor glass	ic e	- 5			\overline{A}											\prod
118/12	1555	5011	B-2,70' bgs	Hoz glass	ice	- 6			/							İ				
1/19/12	/0°00	soi/	B-3,20' bgs	407 glass	ice	د ٦		·	7											
119/12	1140	Soil	B-3, 75' bgs	402 glass	ice.	-%														
118/12	1330	50.1	Pit sample	Bot glass	ic e	-9						/					\angle			\prod
			,	1										- 1						
											\perp								\bot	
Data	-	D-N1-b	dho	Desirable		D.11.											$_{\perp}$		丄	
Date: 23/12 Date:	Time: ///o Time:	Relinquish Relinquish	Thelio	Received by:	1-8t	Date Time // 23/12 // 10 Date Time	-Ren	narks activ	Ch ity	loric com	les by	y Me	eth gnit	abi	30l Tilj	5.0. by i	nets	hods		
							<i>5/</i>	n 4.	500	and	1010	•								

SUBJECT VOLUME ESTEMATES	BY B. BOCKISCH	DATE 3/7/12
ATTACHMENT 4	REVIEWED BY	DATE
BERM VOLUME ESTEMATE:		
CROSS SECTION POLYGON:		
TOP WIOTH AND HETCHT	-20'->	
ESTIMATED DURING SITE /	1	
VISIT, BASE WILDTH	5'	
6006LE EARTH.		
LUGUE TOTAL THE TOTAL TO	35' \	
(20+35)/2 = 27.5 Ft · 5F	T= 137.5 EP	
LENGTH OF BERM (ESTIMATED F	FROM GOOGLE EARTH): A 470	OFT
TOTAL BLUME = 137.5 FT 3.4	70 Ft = 64,625 Ft3 +27 Ft	3/2 = 2393 YD"
		2400 4D3
PIT DEPTH ESTIMATE:		
PIT SIZE = 80 Ft x 80 Ft		
DEPTH = 64.635 Ft3 = 10.09'	~ loft	
6,400 - +		