AP-100

Unit Petroleum Gourley Fed 3Q Drillpit

Annual Report 2013

Griswold, Jim, EMNRD

From: Sent: To: Cc: Subject: Griswold, Jim, EMNRD Wednesday, April 09, 2014 9:32 AM 'Bockisch, Bernie' Gene Voreis RE: Gourley Fed #3 Annual Report

Bernie,

Proceed with blending and thin spreading of the soil cuttings at the location.

Jim Griswold Senior Hydrologist EMNRD/Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505.476.3465 email: jim.griswold@state.nm.us

From: Bockisch, Bernie [mailto:bbockisch@craworld.com]
Sent: Wednesday, April 09, 2014 9:13 AM
To: Griswold, Jim, EMNRD
Cc: Gene Voreis
Subject: Gourley Fed #3 Annual Report

Jim,

I have attached the Annual Groundwater Monitoring Report for the Gourley Fed #3. The report details the installation of two monitoring wells, one to obtain background data and one to assess down-gradient concentrations. It also includes data from the two most recent groundwater sampling events performed in October 2013 and January 2014.

Also, I reviewed the soil data from the soil borings. It appears that the chloride concentration of the sample collected at 10 feet below ground surface was 845 mg/kg (see Table 1 of the report). The rest of the samples collected from that boring were significantly lower. If we were to thin spread the cuttings, the resulting concentration would be less than 600 mg/kg. Based on this, would it be ok to thin spread the cuttings from this boring?

Bernie

Bernard Bockisch, PMP Conestoga-Rovers & Associates (CRA) 6121 Indian School Rd NE Ste. 200 Albuquerque, NM, USA 87110 Office: (505) 884-0672 Mobile: (505) 280-0572 Fax: (505) 884-4932 Email: bbockisch@craworld.com www.CRAworld.com

www.CRAworld.com

Annual Groundwater Monitoring Report

Gourley Federal #3 Well Unit H, Section 28, T-22-S, R-28_E Eddy County, New Mexico

Prepared for: Unit Petroleum Company 2nd SW 3rd Suite 205 Tuttle, OK 73089

Conestoga-Rovers & Associates

6121 Indian School Road, NE Suite 200 Albuquerque, New Mexico 87110

March 2014 • 082612

Table of Contents

Section 1.0	Introduction	1
Section 2.0	Site History	1
Section 3.0	Monitoring Well Installation	
	3.1 Soil Types	3
	3.2 Soil Analytical Results	3
Section 4.0	Quarterly Groundwater Monitoring and Sampling	3
	4.1 Groundwater Gradient	3
	4.2 Groundwater Monitoring Methodology	4
	4.3 Groundwater Monitoring Analytical Results	
Section 5.0	Conclusion and Recommendations	5

List of Figures (Following Text)

Figure 1	Site Location Map
----------	-------------------

- Figure 2 Site Detail Map
- Figure 3 June 2009 Groundwater Gradient Map (Tetra Tech)
- Figure 4 October 2013 Groundwater Potentiometric Map
- Figure 5 January 2014 Groundwater Potentiometric Map
- Figure 6 October 2013 Chloride Concentrations Map
- Figure 7 January 2014 Chloride Concentrations Map

List of Tables (Following Text)

- Table 1Soil Analytical Summary
- Table 2
 Monitoring Well Specifications and Groundwater Elevations
- Table 3Groundwater Analytical Summary

List of Appendices

- Appendix A Boring Logs
- Appendix B Analytical Results

Section 1.0 Introduction

Subsurface assessment activities were performed at the Gourley Federal #3 site from October 1, 2013 to October 3, 2013 and on January 29, 2014. The Gourley Federal #3 site (hereafter referred to as the "Site"), is located within Unit H, Sec 28, Township 22 South, Range 28 East, in Eddy County, New Mexico (32° 22' 0.48" N, 104° 5' 12.91" W) (**Figure 1**).

A meeting was held between Conestoga-Rovers & Associates (CRA) and Mr. Jim Griswold with the New Mexico Oil Conservation Division (NMOCD) on May 2, 2013 to discuss a path forward for the Site. During the meeting, Mr. Griswold agreed that additional soil remediation was not necessary and that existing data collected by Tetra Tech could qualify as two of the eight quarters of groundwater monitoring.

The scope of work for the project was developed between Unit Petroleum Company (Unit), NMOCD, and CRA personnel. CRA performed project management, general oversight of the remediation activities, soil and groundwater sampling, and documentation of the field work. Drilling and monitoring well installation was performed by Enviro-Drill, Inc. (EDI) of Albuquerque, New Mexico. The scope of services included:

- Obtaining required monitor well permits, and coordinating with stakeholders.
- Installing two additional monitoring wells, one upgradient of MW-2 and one downgradient of MW-3 (Figure 2).
- Conducting six quarterly groundwater monitoring and sampling events.

Section 2.0 Site History

In June 2007, Sweatt Construction excavated the pit to a maximum depth of six feet below ground surface (bgs). Trenches were excavated to depths up to 20 feet bgs to sample soils for chlorides. Sampling conducted on July 25, 2007 indicated that chloride concentrations within the pit were generally below 10,000 milligrams per kilogram (mg/kg) with the exception of three samples. At the request of the NMOCD, a temporary monitor well was installed on the southern edge of the pit in June 2007 to establish the depth to groundwater. The well was drilled to a depth of 50 feet bgs. Samples from that well indicated chloride concentrations of 907 milligrams per liter (mg/L) and total dissolved solits (TDS) concentrations of 3990 mg/L. The pit was not backfilled following the excavation and sampling.

On October 5, 2008, The BLM contacted the NMOCD to notify them that the pit had been left open. The NMOCD subsequently issued Unit a Notice of Violation (NOV No. 02-08-23) on November 17, 2008.

On February 19, 2009, Tetra Tech installed monitoring well MW-1 approximately 180 feet north of the northwest corner of the pit. This well was drilled to a depth of 60 feet bgs and installed with 30 feet of 0.02-inch slotted polyvinyl chloride (PVC) well screen.

On June 25, 2009, Tetra Tech installed two additional monitor wells. MW-2 was installed east of the pit and MW-3 was installed west of the pit. Both wells were installed at a depth of 60 feet bgs with 20 feet of 0.02-inch slotted PVC.

On July 17, 2009, Tetra Tech submitted a Stage I Abatement Plan (AP) to the NMOCD. However, this AP was never approved by the NMOCD. A new Stage I AP was submitted by CRA to the NMOCD on July 10, 2013 and approved via email on August 12, 2013 by Mr. Jim Griswold with the NMOCD.

Two new groundwater monitoring wells were installed during the most recent assessment performed in October 2013. MW-4 was installed upgradient of the pit to provide background groundwater concentrations. MW-5 was installed to help assess the downgradient extent of chloride concentrations in the groundwater.

Section 3.0 Monitoring Well Installation

Between October 1, 2013 and October 3, 2013, EDI installed two groundwater monitoring wells, MW-4 and MW-5, under CRA observation. Borings were advanced using a CME-75 drill rig and hollow stem augers. Soil samples were collected in five foot increments using a 1.5-foot long, 2-inch diameter split-spoon. Samples were logged by CRA personnel according to the Unified Soil Classification System and field screened for chlorides using Hach chloride test strips. Cuttings generated during monitoring well installation were placed in labeled 55-gallon drums.

MW-4 was installed to a total depth of 75 feet bgs. The well was constructed of 2-inch diameter, schedule 40, flush-joint, PVC casing and screen. The monitoring well consists of a 0.5-foot long, threaded PVC bottom plug and 20 feet of flush-joint, threaded, factory-slotted (0.020-inch) well screen. The annular space around the well screen was filled with 10/20 gradation silica sand to approximately 2.2 feet above the well screen, followed by approximately 2.8 feet of 3/8-inch bentonite chips. A cement/bentonite grout was placed from the top of the bentonite chips to ground surface. The wellhead is protected with an above-grade completion set within a 24-inch by 24-inch by 4-inch thick concrete pad.

MW-5 was installed to a total depth of 70 feet bgs. The well was constructed of 2-inch diameter, schedule 40, flush-joint, threaded polyvinyl chloride (PVC) casing and screen. The monitoring well consists of a 0.5-foot long, threaded PVC bottom plug and 20 feet of flush-joint, threaded, factory-slotted (0.020-inch) well screen. The annular space around the well screen was filled with 10/20 gradation silica sand to approximately 2.5 feet above the well screen, followed by approximately four feet of 3/8-inch bentonite chips.

A cement/bentonite grout was placed from the top of the bentonite chips to ground surface. The wellhead is protected with an above-grade completion set within a 24-inch by 24-inch by 4-inch thick concrete pad.

After installation, each well was developed using a bailer and submersible Monsoon pump until water quality parameters stabilized and turbidity was significantly decreased.

3.1 Soil Types

The first 25 to 30 feet of soils consisted mainly of tan-brown, fine-grained, silty sands, with the first three feet being very well cemented (caliche). Below the silty sands, the soils were mostly reddishbrown clays or clayey sands.

The water table was expected to be encountered at approximately 50 feet bgs. However, saturated soil conditions were not encountered until 70 and 60 feet bgs for MW-4 and MW-5, respectively. When hydrostatic equilibrium was reached inside each well casing, groundwater was gauged to be approximately 47 and 49 feet bgs for MW-4 and MW-5, respectively. This is most likely indicative of confined conditions. MW-4 and MW-5 boring logs are presented as **Appendix A**. Boring logs for MW-1, MW-2, and MW-3 could not be located.

3.2 Soil Analytical Results

Soil samples were placed in laboratory-supplied containers, labeled, placed on ice, and transported via overnight delivery under chain of custody documentation to Xenco Laboratories of Odessa, Texas (Xenco) for analysis of TPH using EPA method 8015B and chlorides using EPA method 300.0.

All soil samples returned analytical results below detection limits for TPH. The only soil sample that exceeded the NMOCD Recommended Remediation Action Level (RRAL) for chlorides was SS-082612-100213-CK-MW-5-10, which returned an analytical result of 845 mg/kg. This sample was collected from the MW-5 boring at a depth of 10 feet bgs. The RRAL for chlorides is 250 mg/kg. A summary of soil analytical results is presented as **Table 1** and the Laboratory Analytical Report is included in **Appendix B**.

Section 4.0 Quarterly Groundwater Monitoring and Sampling

Groundwater sampling events were conducted at the Site on October 2, 2013 and on January 29, 2014. Gauging of MW-5 was not performed during the October 2, 2013 event because the well had just been developed and the water level had not reached equilibrium.

4.1 Groundwater Gradient

Prior to collection of groundwater samples, depth to groundwater in each well was measured using an oil/water interface probe (**Table 2**). Previous data collected by Tetra Tech indicated that the local groundwater gradient was to the west-northwest. A groundwater gradient map from Tetra Tech is included as **Figure 3**.

However, the reported regional hydraulic gradient is to the southwest towards the Pecos River. Data from the October 2013 and January 2014 events indicate that the gradient is to the southwest. Groundwater potentiometric surface maps reflecting October 2013 and January 2014 groundwater elevations are presented as **Figures 4** and **5**, respectively. The groundwater gradient was approximately 0.0036 and 0.0042 feet per foot to the southwest for the October 2013 and January 2014 monitoring events, respectively.

4.2 Groundwater Monitoring Methodology

Site monitoring wells were purged of at least three casing volumes of groundwater using a 1.5-inch diameter, polyethylene, dedicated bailer or a submersible Monsoon pump. While purging each well, groundwater parameters were recorded using a YSI 556 multi-parameter sonde. Groundwater samples were placed in laboratory-supplied containers, labeled, placed on ice, and transported via overnight delivery under chain of custody documentation to Xenco for analysis of chlorides using EPA method 300.1 and total dissolved solids (TDS) using method SM2540C. A summary of analytical results is presented as **Table 3**.

4.3 Groundwater Monitoring Analytical Results

A summary of the data obtained from groundwater monitoring is presented as follows:

October 2013

- Chlorides: The NMWQCC domestic water supply groundwater quality standard for chloride is 250 mg/L. In October 2013, MW-1, MW-2, MW-3, MW-4, and MW-5 returned results of 1,420 mg/L, 1,030 mg/L, 1,890 mg/L, 767 mg/L, and 682 mg/L, respectively. A chloride concentration map for this event is presented as Figure 6.
- TDS: The NMWQCC domestic water supply groundwater quality standard for TDS is 1,000 mg/L. In October 2013, MW-1, MW-2, MW-3, MW-4, and MW-5 returned results of 4,910 mg/L, 4,060 mg/L, 5,620 mg/L, 3,500 mg/L, and 3,280 mg/L, respectively.

January 2014

- Chlorides: In January 2014, MW-1, MW-2, MW-3, MW-4, and MW-5 returned results of 1,380 mg/L, 999 mg/L, 1,970 mg/L, 787 mg/L, and 913 mg/L, respectively. A chloride concentration map for this event is presented as **Figure 7**.
- TDS: The In January 2014, MW-1, MW-2, MW-3, MW-4, and MW-5 returned results of 4,600 mg/L, 2,950 mg/L, 6,240 mg/L, 3,340 mg/L, and 3,500 mg/L, respectively.

Section 5.0 Conclusion and Recommendations

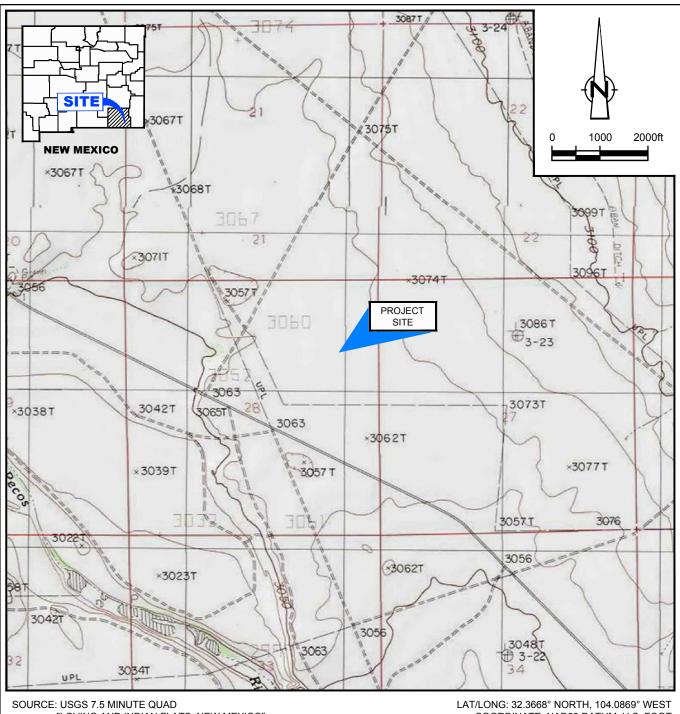
Samples collected from Site monitor wells during the October 2013 and January 2014 groundwater monitoring and sampling events exceeded the NMWQCC standards for chlorides and TDS. Samples collected from the upgradient monitor well, MW-4, were found to contain chloride concentrations above regulatory limits (767 mg/l and 787 mg/l in October and January, respectively), indicating the presence of elevated background chloride conditions.

The chloride concentrations observed in MW-5 are consistent with those found in MW-4 (683 mg/l and 913 mg/l in October and January, respectively). Since these concentrations are consistent with the background well (MW-4), CRA believes that MW-5 may delineate the down-gradient extent of chloride contributions from the pit. The observed concentrations from the remainder of the wells appear to be consistent with historical levels.

At this time, CRA recommends continued quarterly groundwater sampling at the Site in order to gather trend data. Please feel free to contact the CRA Albuquerque office if there are any questions or additional information is required.

All of which is Respectfully Submitted,

CONESTOGA ROVERS & ASSOCIATES


Cale Kanack Staff Scientist

Bernard Bockisch, PMP Sr. Project Manager

Figures

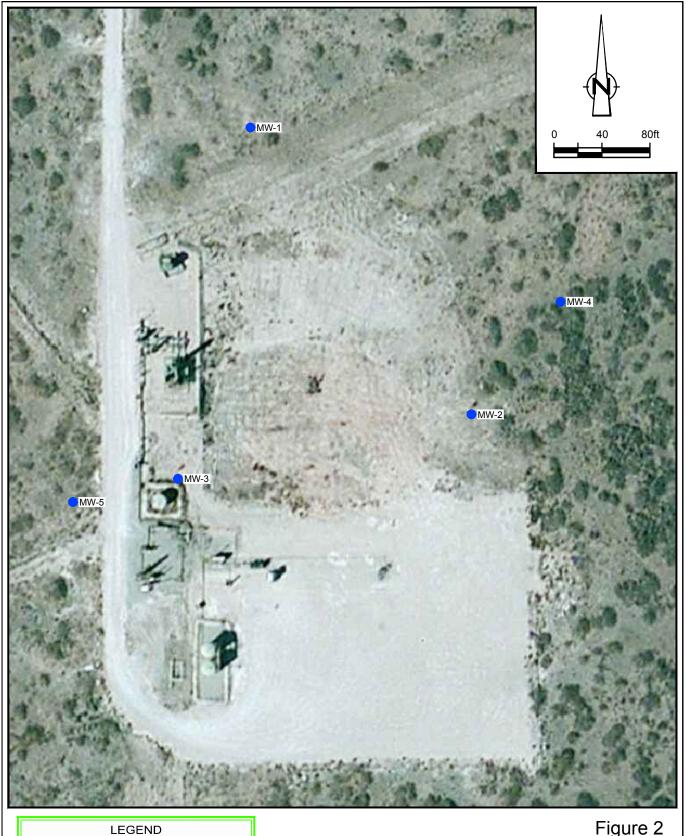
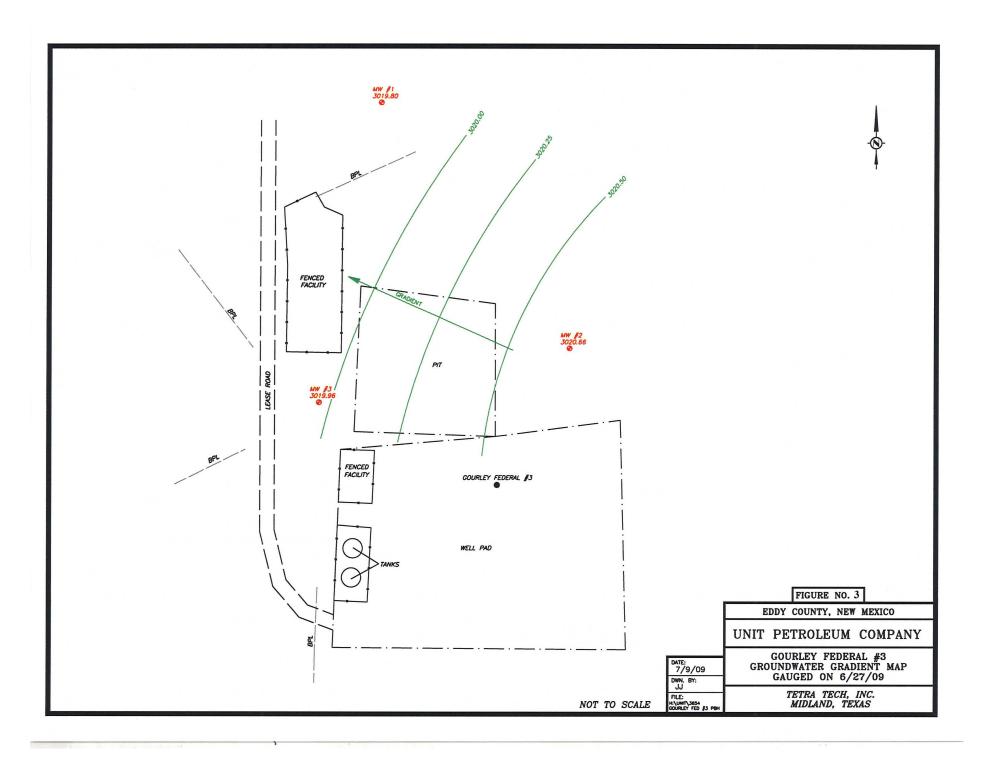
"LOVING AND INDIAN FLATS, NEW MEXICO"

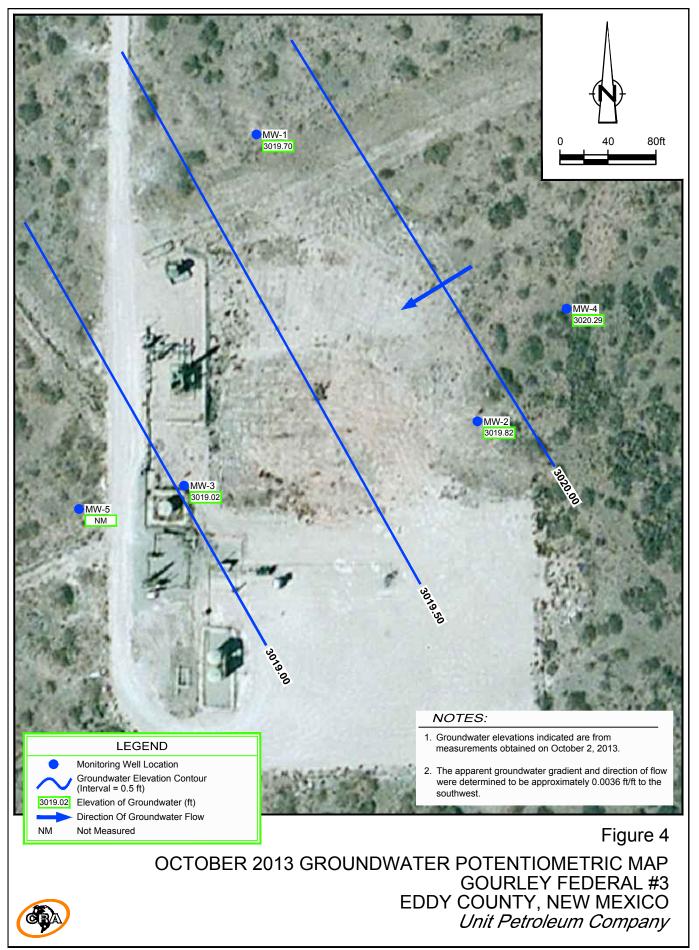
COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO EAST

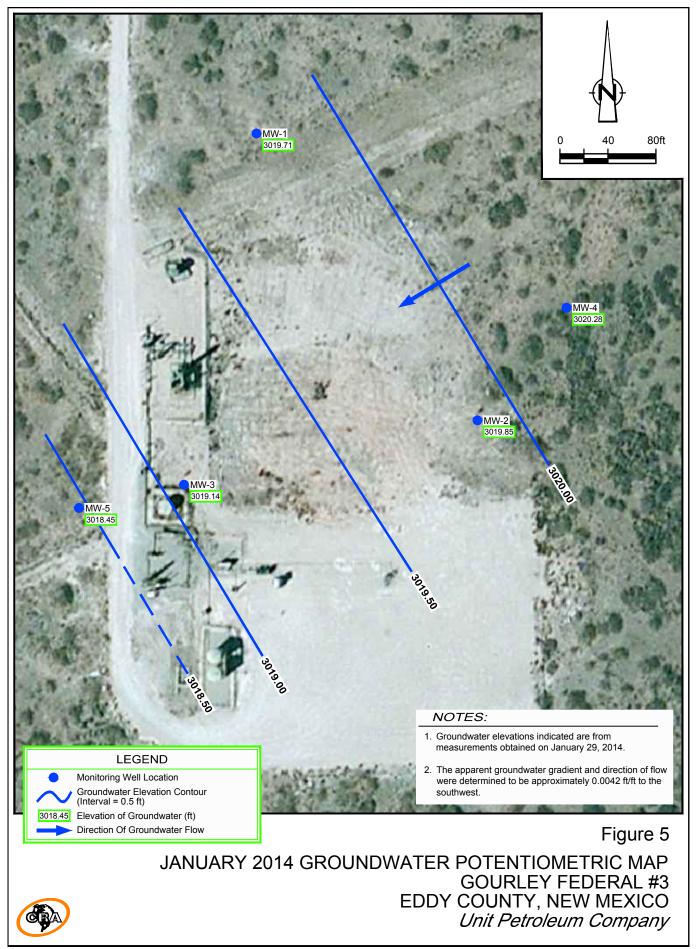
Figure 1

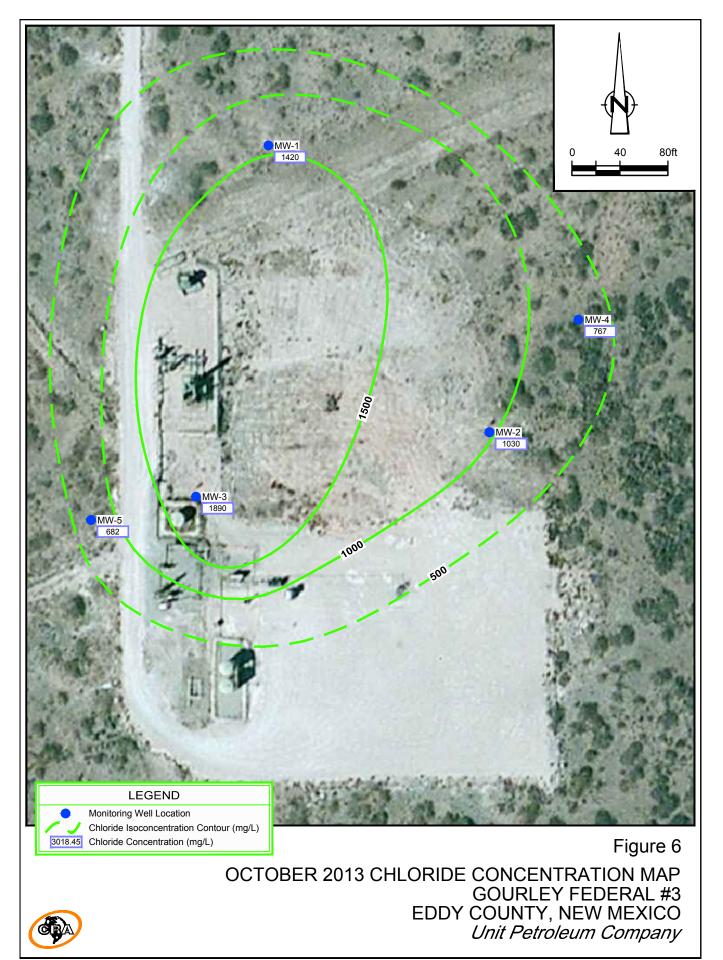
SITE LOCATION MAP **GOURLEY FEDERAL #3** EDDY COUNTY, NEW MEXICO Unit Petroleum Company

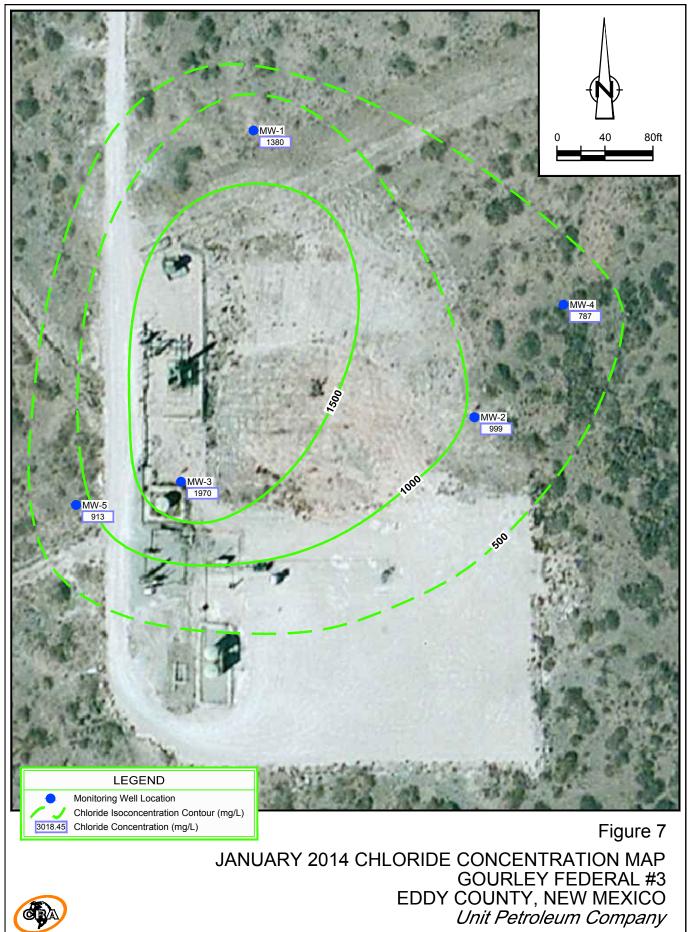
082612-00(003)GN-DL001 FEB 28/2014


Figure 2


SITE DETAIL MAP GOURLEY FEDERAL #3 EDDY COUNTY, NEW MEXICO *Unit Petroleum Company*


082612-00(003)GN-DL001 FEB 28/2014


Monitoring Well Location

Tables

Table 1 Soil Analytical Summary Gourley Federal #3 Eddy County, New Mexico

Well ID	Sample ID	formula Data	TDU CDO (mg/kg)		TDU OPO (mg/kg)	TDU Total (unglise)	(hlorida (unglisa)
well ID	Sample ID	Sample Date	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	TPH-ORO (mg/kg)	TPH Total (mg/kg)	Chloride (mg/kg)
	SS-082612-100113-CK-MW-4-35	10/1/2013	< 26.5	< 26.5	< 26.5	< 26.5	59.7
MW-4	SS-082612-100113-CK-MW-4-60	10/1/2013	< 30.1	< 30.1	< 30.1	< 30.1	136
	SS-082612-100113-CK-MW-4-70	10/1/2013	< 30.9	< 30.9	< 30.9	< 30.9	131
	SS-082612-100213-CK-MW-5-10	10/2/2013	< 27.5	< 27.5	< 27.5	< 27.5	845
MW-5	SS-082612-100213-CK-MW-5-60	10/2/2013	< 29.8	< 29.8	< 29.8	< 29.8	128
	SS-082612-100213-CK-MW-5-70	10/2/2013	< 29.6	< 29.6	< 29.6	< 29.6	97.5

Table 2 Monitoring Well Specifications and Groundwater Elevations Vacuum Glorietta East Unit Lea County, New Mexico

Well ID	Total Depth (ft below TOC)	Top of Casing Elevation*	Screen Interval (ft bgs)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Water Level (ft)
MW-1	55	3069.33		10/2/2013	49.63	3019.70
	55	5009.55		1/29/2014	49.62	3019.71
MW-2	60	3067.84		10/2/2013	48.02	3019.82
10100-2		5007.84		1/29/2014	47.99	3019.85
MW-3	60	3068.67		10/2/2013	49.65	3019.02
10100-5	00	3008.07		1/29/2014	49.53	3019.14
MW-4	75	3067.44	55 - 75	10/2/2013	47.15	3020.29
10100-4	75	5007.44	55-75	1/29/2014	47.16	3020.28
MW-5	70	3068.20	50 - 70	10/2/2013		
10100-5	70	5008.20	50-70	1/29/2014	49.75	3018.45

Appendix A

Boring Logs

Table 3 Groundwater Analytical Summary Gourley Federal #3 Eddy County, New Mexico

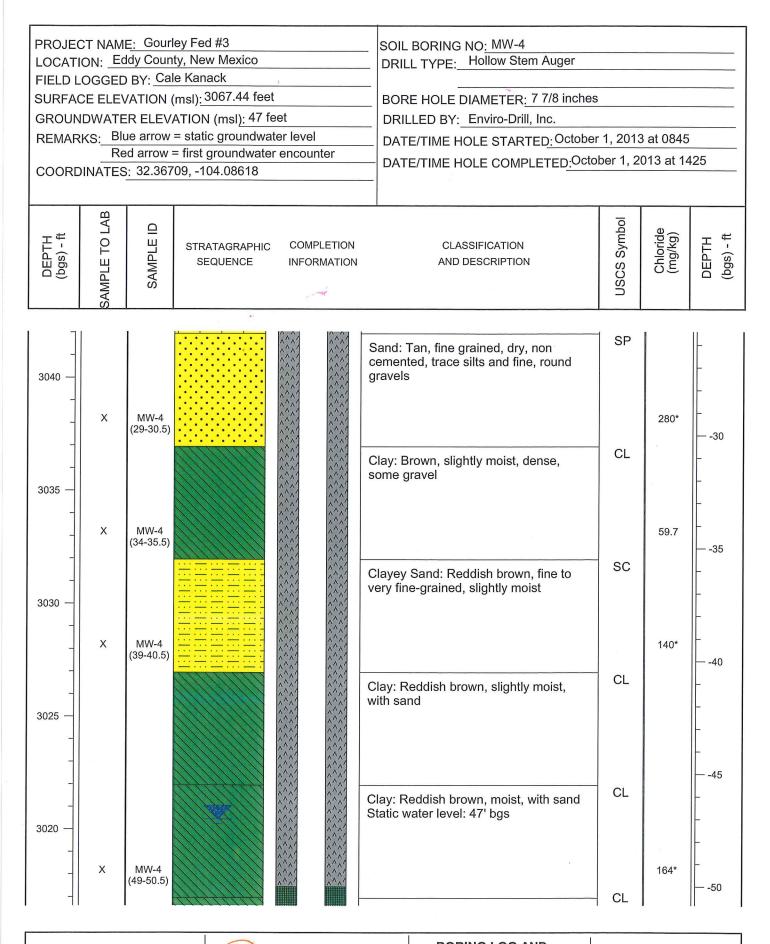
Well ID	Sample ID	Sample Date	Chloride (mg/L)	TDS (mg/L)
	MW-1	2/25/2009	3220	7800
	MW-1	6/27/2009	4140	10000
	MW-1	7/1/2010	5310	13000
MW-1	MW-1	10/23/2012	3910	8340
	MW-1	2/7/2013	1770	5810
	GW-082612-100213-CK-MW-1	10/2/2013	1420	4910
	GW-082612-012914-CK-MW-1	1/29/2014	1380	4600
	MW-2	6/27/2009	1110	3960
	MW-2	7/1/2010	983	4070
MW-2	MW-2	10/23/2012	944	4020
10100-2	MW-2	2/7/2013	956	4290
	GW-082612-100213-CK-MW-2	10/2/2013	1030	4060
	GW-082612-012914-CK-MW-2	1/29/2014	999	2950
	MW-3	6/27/2009	1270	4030
	MW-3	7/1/2010	1250	4160
MW-3	MW-3	10/23/2012	1540	4840
10100-3	MW-3	2/7/2013	1540	4980
	GW-082612-100213-CK-MW-3	10/2/2013	1890	5620
	GW-082612-012914-CK-MW-3	1/29/2014	1970	6240
	GW-082612-100313-CK-MW-4	10/3/2013	767	3500
MW-4	GW-082612-012914-CK-MW-4	1/29/2014	787	3340
	GW-082612-100313-CK-MW-5	10/3/2013	682	3280
MW-5	GW-082612-012914-CK-MW-5	1/29/2014	913	3500
	NMWQCC Groundwater Quality Stand	dards	250	1000

Notes:

NMWQCC = New Mexico Water Quality Control Commission

mg/L = milligrams per liter (parts per million)

< 0.001 = Below Laboratory Detection Limit of 0.001 mg/L


< = Below Laboratory Detection Limit

BOLD = Concentrations that exceed the NMWQCC groundwater quality standard

LOCATI FIELD L SURFAC GROUN REMAR	ON: _E OGGEL CE ELE DWATE KS:_BL	ddy Coun O BY: <u>Cal</u> VATION (ER ELEV ue arrow ed arrow	ley Fed #3 ty, New Mexico le Kanack (msl) <u>: 3067.44 feet</u> ATION (msl) <u>: 47 fe</u> = static groundwater first groundwater '09, -104.08618	et er level	SOIL BORING NO: MW-4 DRILL TYPE: Hollow Stem Auger BORE HOLE DIAMETER: 7 7/8 inches DRILLED BY: Enviro-Drill, Inc. DATE/TIME HOLE STARTED: Octobe DATE/TIME HOLE COMPLETED:Octo	r 1, 2013		
DEPTH (bgs) - ft	SAMPLE TO LAB	SAMPLE ID	STRATAGRAPHIC SEQUENCE	COMPLETION INFORMATION	CLASSIFICATION AND DESCRIPTION	USCS Symbol	Chloride (mg/kg)	DEPTH (bgs) - ft
	X	MW-4 (9.0-10.5)			Silty Sand: Light brown, very fine- grained, dry, with very well cemented caliche nodules (Very well cemented caliche from 0'-3' bgs) Silty Sand: Brown, very fine-grained, dry, well cemented (caliche)	SM	312*	- - - - - - - - - - - - - - - -
- 					Silty Sand: Tan, very fine-grained, dry, non cemented trace gravel	SM		- - -
- 3050 — - - -	х	MW-4 (19-20.5)			Silty Sand: Tan, very fine-grained, dry, non cemented, trace gravel and caliche nodules	SM	192*	- - -
_ 3045 — _ _					Silty Sand: Tan, very fine-grained, dry, non cemented, trace gravel	SM		- - - 25

CONESTOGA-ROVERS & ASSOCIATES BORING LOG AND WELL COMPLETION FORM

page 1 of 3

CONESTOGA-ROVERS & ASSOCIATES

CR

BORING LOG AND WELL COMPLETION FORM

page 2 of 3

LOCATI FIELD L SURFAC GROUN REMAR	ON: <u>E</u> OGGEE CE ELE DWATE KS: <u>B</u>	ddy Coun D BY: <u>Ca</u> VATION ER ELEV ue arrow ed arrow	ley Fed #3 ty, New Mexico le Kanack (msl) <u>: 3067.44 feet</u> ATION (msl) <u>: 47 fee</u> = static groundwate = first groundwater 709, -104.08618	er level	SOIL BORING NO: MW-4 DRILL TYPE: Hollow Stem Auger BORE HOLE DIAMETER: 7 7/8 inches DRILLED BY: Enviro-Drill, Inc. DATE/TIME HOLE STARTED: Octobe DATE/TIME HOLE COMPLETED:Octo	r 1, 2013		
DEPTH (bgs) - ft	SAMPLE TO LAB	SAMPLE ID	STRATAGRAPHIC SEQUENCE		CLASSIFICATION AND DESCRIPTION	USCS Symbol	Chloride (mg/kg)	DEPTH (bgs) - ft
- 3015 — - - - - 3010 — - - - 3005 — - - - - -	x	MW-4 (59-60.5)			Clay: Reddish brown, moist, with sand Clay: Reddish brown, slightly moist, with sand Clay: Reddish brown, slightly moist, with sand	CL	136	- - - - - - - - - - - - - - - - - - -
- 3000 — - - - - - - - - - - - 2995 — - -	x	MW-4 (69-70.5)			Clayey Sand: Reddish brown, very fine- grained, slightly moist (Harder drilling from 67'-68' bgs) Saturated at 69' bgs. Groundwater observed. Clayey Sand: Reddish brown, very fine- grained, damp	sc	131	- - - - - - - -
	х	MW-4 (74-75.5)			· ,		120*	- 75

CONESTOGA-ROVERS & ASSOCIATES BORING LOG AND WELL COMPLETION FORM

page 3 of 3

PROJECT					_ SOIL BORING NO: MW-5			0		
LOCATION: Eddy County, New Mexico FIELD LOGGED BY: Cale Kanack					DRILL TYPE: Hollow Stem Auger					
SURFACE ELEVATION (msl): 3068.20 feet										
						BORE HOLE DIAMETER: 7 7/8 inches				
			ATION (msl <u>): 49 fe</u>		DRILLED BY: Enviro-Drill, Inc.	0.0040	10040			
REMARKS	3:	d arrow :	= static groundwate = first groundwater	encounter	DATE/TIME HOLE STARTED: October					
COORDIN			63, -104.08750	encounter	DATE/TIME HOLE COMPLETED:Octo	ber 2, 20	013 at 1 ⁻	145		
o o o n D i n					_					
DEPTH (bgs) - ft	SAMPLE TO LAB	SAMPLE ID	STRATAGRAPHIC SEQUENCE		CLASSIFICATION AND DESCRIPTION	USCS Symbol	Chloride (mg/kg)	DEPTH (bgs) - ft		
- - 3065 — -					Silty Sand: Tan, very fine-grained, dry, well cemented (caliche) (White, dry, very well cemented caliche from 0' to 3' bgs)	SM		5		
3060 -	x	MW-5 (9.0-10.5)			Silty Sand: Tan, very fine-grained, dry, non cemented	SM	845	- - - - 		
- - 3055 — - -					Silty Sand: Tan, very fine-grained, dry, non cemented	SM		- - - 15		
- - 3050 — -	x	MW-5			Silty Sand: Tan to brown, medium to fine-grained, dry, non cemented, trace caliche nodules	SM	464*	-		
- - 3045 — -		(19-20.5)			Silty Sand: Tan, fine-grained, dry, non cemented, trace caliche nodules and gravel	SM		20 - - - -		

CONESTOGA-ROVERS & ASSOCIATES page 1 of 3

LOCATI FIELD L SURFAC GROUN REMAR	ROJECT NAME: Gourley Fed #3 SOIL BORING NO: MW-5 DCATION: Eddy County, New Mexico DRILL TYPE: Hollow Stem Auger ELD LOGGED BY: Cale Kanack DRILL TYPE: Hollow Stem Auger JRFACE ELEVATION (msl): 3068.20 feet BORE HOLE DIAMETER: 7 7/8 inches ROUNDWATER ELEVATION (msl): 49 feet DRILLED BY: Enviro-Drill, Inc. EMARKS: Blue arrow = static groundwater level DATE/TIME HOLE STARTED: October 2, 2013 a OORDINATES: 32.36663, -104.08750 DATE/TIME HOLE COMPLETED: October 2, 207						
DEPTH (bgs) - ft	SAMPLE TO LAB	SAMPLE ID	STRATAGRAPHIC SEQUENCE	CLASSIFICATION AND DESCRIPTION	USCS Symbol	Chloride (mg/kg)	DEPTH (bgs) - ft
- 3040 — - - - - - - - - - - - - - - - - - - -	x	MW-5 (29-30.5)		Clay: Brown, dense, with sand and some gravel Silty Sand: Tan, very fine grained, dry, non cemented, trace clay	SM	348*	- - - -
	x	MW-5 (39-40.5)		Clayey Sand: Reddish brown, fine to very fine-grained, slightly moist	sc	220*	- 35 - - - - - -
- 3025 — - - -	r			Clayey Sand: Reddish brown, fine to very fine-grained, slightly moist Clayey Sand: Reddish brown, fine to very fine-grained, damp	sc sc		- - -
- 3020 — - - -	Х	MW-5 (49-50.5)		Static water level: 49.75' bgs	- SC	192*	- -

CONESTOGA-ROVERS & ASSOCIATES .

page 2 of 3

LOCATI FIELD L SURFAC GROUN REMAR	ON: _EC OGGEE DE ELE DWATE KS:_Blu _Re	ddy Coun) BY: <u>Cal</u> /ATION (ER ELEV, ue arrow ed arrow	ley Fed #3 ty, New Mexico le Kanack (msl) <u>:</u> 3068.20 feet ATION (msl) <u>:</u> 49 fee = static groundwater = first groundwater 163, -104.08750	er level	SOIL BORING NO: MW-5 DRILL TYPE: Hollow Stem Auger BORE HOLE DIAMETER: 7 7/8 inches DRILLED BY: Enviro-Drill, Inc. DATE/TIME HOLE STARTED: October DATE/TIME HOLE COMPLETED:Octo	2, 2013		
DEPTH (bgs) - ft	SAMPLE TO LAB	SAMPLE ID	STRATAGRAPHIC SEQUENCE		CLASSIFICATION AND DESCRIPTION	USCS Symbol	Chloride (mg/kg)	DEPTH (bgs) - ft
3015 - - - - - - - - - - - - - - - - - -	X	MW-5 (59-60.5)			Clayey Sand: Reddish brown, fine to very fine-grained, damp (Hard drilling from 53' to 54' bgs) Clayey Sand: Reddish brown, fine to very fine-grained, damp Saturated at 54' bgs. Ground water observed. Clayey Sand: Reddish brown, fine to very fine-grained, wet Clayey Sand: Reddish brown, fine to very fine-grained, wet	SC SC	128	- - - - - - - - - - - - - - - - - - -
-	х	MW-5 (69-70.5)					97.5	

Appendix B

Analytical Results

Analytical Report 471653

for

Conestoga-Rovers & Associates-Albuquerque, NM

Project Manager: Bernie Bockisch

Gourley Fed #3

082612

11-OCT-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-13-15-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

11-OCT-13

Project Manager: Bernie Bockisch Conestoga-Rovers & Associates-Albuquerque, NM 6121 Indian School Rd. NE Suite 200

Albuquerque, NM 87110

Reference: XENCO Report No(s): **471653** Gourley Fed #3 Project Address: Loving, NM

Bernie Bockisch:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 471653. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 471653 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

spectfully, Hoah

 Kelsey Brooks

 Project Manager

 Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

 A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 471653

Conestoga-Rovers & Associates-Albuquerque, NM, Albuqu

Gourley Fed #3

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS-082612-100113-CK-MW-4-35	S	10-01-13 00:00		471653-001
SS-082612-100113-CK-MW-4-60	S	10-01-13 00:00		471653-002
SS-082612-100113-CK-MW-4-70	S	10-01-13 00:00		471653-003
SS-082612-100213-CK-MW-5-10	S	10-02-13 08:45		471653-004
SS-082612-100213-CK-MW-5-60	S	10-02-13 10:50		471653-005
SS-082612-100213-CK-MW-5-70	S	10-02-13 11:40		471653-006
GW-082612-100213-CK-MW-1	W	10-02-13 16:50		471653-007
GW-082612-100213-CK-MW-2	W	10-02-13 16:15		471653-008
GW-082612-100213-CK-MW-3	W	10-02-13 15:20		471653-009
GW-082612-100313-CK-MW-4	W	10-03-13 10:20		471653-010
GW-082612-100313-CK-MW-5	W	10-02-13 12:20		471653-011

Project Id: 082612

Project Location: Loving, NM

Contact: Bernie Bockisch

Certificate of Analysis Summary 471653

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerque, NM

Project Name: Gourley Fed #3

Date Received in Lab: Sat Oct-05-13 03:00 pm

Report Date: 11-OCT-13

Project Manager: Kelsey Brooks

	Lab Id:	471653-001		471653-002		471653-003		471653-004		471653-005		471653-006	
Analysis Requested	Field Id: S	S-082612-10011	3-CK-MW	SS-082612-10011	3-CK-MW	SS-082612-10011	3-CK-MW	SS-082612-10021	3-CK-MWS	SS-082612-10021	3-CK-MW	SS-082612-10021	3-CK-MW
	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-01-13 00:00		Oct-01-13 00:00		Oct-01-13 00:00		Oct-02-13 08:45		Oct-02-13 10:50		Oct-02-13 11:40	
Inorganic Anions by EPA 300/300.1	Extracted:	ted: Oct-09-13 11:00		Oct-09-13 11:00		Oct-09-13 11:00		Oct-09-13 11:00		Oct-09-13 11:00		Oct-09-13 11:00	
	Analyzed:	Oct-10-13 11:14		Oct-10-13 11:37		Oct-10-13 11:59		Oct-10-13 12:23		Oct-10-13 13:08		Oct-10-13 13:31	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		59.7	10.6	136	12.0	131	12.4	845	22.0	128	11.9	97.5	11.9
Percent Moisture	Extracted:												
	Analyzed:	Oct-07-13 13:08		Oct-07-13 13:08		Oct-07-13 13:08		Oct-07-13 13:08		Oct-07-13 13:08		Oct-07-13 13:08	
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		5.66	1.00	17.0	1.00	19.3	1.00	9.14	1.00	16.2	1.00	15.7	1.00
TPH by Texas1005	Extracted:	Oct-07-13 16:00		Oct-07-13 16:00		Oct-07-13 16:00		Oct-07-13 16:00		Oct-07-13 16:00		Oct-07-13 16:00	
Analyzed:		Oct-07-13 20:16		Oct-07-13 20:42		Oct-07-13 21:10		Oct-07-13 21:38		Oct-07-13 22:04		Oct-07-13 22:29	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	26.5	ND	30.1	ND	30.9	ND	27.5	ND	29.8	ND	29.6
C12-C28 Diesel Range Hydrocarbons		ND	26.5	ND	30.1	ND	30.9	ND	27.5	ND	29.8	ND	29.6
C28-C35 Oil Range Hydrocarbons		ND	26.5	ND	30.1	ND	30.9	ND	27.5	ND	29.8	ND	29.6
Total TPH 1005		ND	26.5	ND	30.1	ND	30.9	ND	27.5	ND	29.8	ND	29.6

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Roah

Kelsey Brooks Project Manager

Page 4 of 16

Project Id: 082612

Project Location: Loving, NM

Contact: Bernie Bockisch

Certificate of Analysis Summary 471653

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerque, NM

Project Name: Gourley Fed #3

Date Received in Lab: Sat Oct-05-13 03:00 pm

Report Date: 11-OCT-13

Project Manager: Kelsey Brooks

								v	- 0	~		
	Lab Id:	471653-0	07	471653-0	08	471653-0	09	471653-0	010	471653-0	11	
Analysis Requested	Field Id: 5W-082612-100213-CK-MV5W-082612-100213-CK-MV5W-082612-100213-CK-MV5W-082612-100313-CK-MV5W-082612-100313-CK-MV											
Analysis Kequestea	Depth:											
	Matrix:	WATE	R	WATE	R	WATER	٤	WATE	R	WATE	R	
	Sampled:	Oct-02-13	6:50	Oct-02-13 1	6:15	Oct-02-13 1	5:20	Oct-03-13 1	10:20	Oct-02-13 1	2:20	
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-08-13 18:40		Oct-08-13 19:25		Oct-08-13 19:48		Oct-08-13 20:10		Oct-08-13 20:33		
	Analyzed:	Oct-08-13	18:40	Oct-08-13 1	19:25	Oct-08-13 1	9:48	Oct-08-13 2	20:10	Oct-08-13 2	20:33	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Chloride		1420	50.0	1030	20.0	1890	50.0	767	20.0	682	20.0	
TDS by SM2540C	Extracted:											
SUB: E871002	Analyzed:	Oct-08-13 18:28		Oct-08-13 1	18:28	Oct-08-13 1	8:28	Oct-08-13 1	18:28	Oct-08-13 1	8:28	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Total dissolved solids		4910	5.00	4060	5.00	5620	5.00	3500	5.00	3280	5.00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Roah

Kelsey Brooks Project Manager

Page 5 of 16

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

LOD Limit of Detection

- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit
 SDL Sample Detection Limit
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd , Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Phone

```
Final 1.000
```


Form 2 - Surrogate Recoveries

Project Name: Gourley Fed #3

Units:	ma/ka	Date Analyzed: 10/07/13 20:16	~-		FOOTERT						
Units:	mg/kg	Date Analyzed: 10/07/13 20:16	SURROGATE RECOVERY STUDY								
	TPH	I by Texas1005	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1-Chlorooctan	e		89.3	100	89	70-135					
o-Terphenyl			41.7	50.0	83	70-130					
Lab Batch #:	924536	Sample: 471653-002 / SMP	Batch: 1 Matrix: Soil								
Units:	Imits: mg/kg Date Analyzed: 10/07/13 20:42			URROGATE R	ECOVERY S	STUDY					
TPH by Texas1005 Analytes			Amount Found [A]	Found Amount		Control Limits %R	Flags				
1-Chlorooctan	٩	Analytes	89.4	99.9	[D] 89	70-135					
o-Terphenyl	~		43.4	50.0	87	70-133					
Lab Batch #: 924536 Sample: 471653-003 / SMP			Bate			/0150					
Units:	mg/kg	Date Analyzed: 10/07/13 21:10	SURROGATE RECOVERY STUDY								
TPH by Texas1005			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
Analytes											
1-Chlorooctan	e		93.8	99.8	94	70-135					
o-Terphenyl	024526	Secondary 471652 004 / SMD	44.3	49.9	89	70-130					
Lab Batch #:		Sample: 471653-004 / SMP	Bato								
Units:	mg/kg	Date Analyzed: 10/07/13 21:38	SURROGATE RECOVERY STUDY								
TPH by Texas1005 Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctan	e		93.1	99.9	93	70-135					
o-Terphenyl			43.7	50.0	87	70-130					
Lab Batch #: 924536 Sample: 471653-005 / SMP			Bato								
Units:	mg/kg	Date Analyzed: 10/07/13 22:04	SURROGATE RECOVERY STUDY								
TPH by Texas1005			Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1-Chlorooctan	e		90.1	100	90	70-135					
o-Terphenyl			42.9	50.0	86	70-130					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Gourley Fed #3

Lab Batch #:		Sample: 471653-006 / SMP					
Units:	mg/kg	Date Analyzed: 10/07/13 22:29	SU	URROGATE R	ECOVERY S	STUDY	
	TPH	by Texas1005	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctan	e		94.9	99.9	95	70-135	
o-Terphenyl			44.4	50.0	89	70-130	
Lab Batch #:	924536	Sample: 644987-1-BLK / BL	K Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 10/07/13 19:51	SU	URROGATE R	ECOVERY S	STUDY	
		l by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctan			89.5	100	90	70-135	
o-Terphenyl	-		42.1	50.0	84	70-133	
Lab Batch #:	924536	Sample: 644987-1-BKS / BK				70 150	
Units:	mg/kg	Date Analyzed: 10/07/13 19:00		JRROGATE R		STUDY	
	TPH	l by Texas1005	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes	[]	[-]	[D]	,	
1-Chlorooctan	2		109	100	109	70-135	
o-Terphenyl			46.3	50.0	93	70-130	
Lab Batch #:	924536	Sample: 644987-1-BSD / BS	D Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 10/07/13 19:25	SU	URROGATE R	ECOVERY S	STUDY	
	TPH	l by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctan			103	100	103	70-135	
o-Terphenyl			44.3	50.0	89	70-130	
Lab Batch #:	924536	Sample: 471653-006 S / MS	Bato				
Units:	mg/kg	Date Analyzed: 10/07/13 22:54	SU	URROGATE R	ECOVERY S	STUDY	
	TPH	by Texas1005	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctan	2		109	100	109	70-135	
o-Terphenyl			46.1	50.0	92	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Gourley Fed #3

Work Ord Lab Batch #	: 924536	Sample: 471653-006 SD / N			Soil		
Units:	mg/kg	Date Analyzed: 10/07/13 23:21	SU	RROGATE RE	COVERYS	STUDY	
	TPI	H by Texas1005 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctar	ne		104	99.5	105	70-135	
o-Terphenyl			47.1	49.8	95	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Gourley Fed #3

Work Order #: 471653							Pro	ject ID:	082612		
Analyst: AMB	D	ate Prepar	ed: 10/08/20	13			Date A	nalyzed:	10/08/2013		
Lab Batch ID: 924745 Sample: 645127-1-1	BKS	Batch	n #: 1					Matrix: `	Water		
Units: mg/L		BLAN	K /BLANK	SPIKE / 2	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	25.0	23.0	92	25.0	24.2	97	5	80-120	20	
Analyst: AMB	D	ate Prepar	ed: 10/09/20	13			Date A	nalyzed:	10/09/2013		
Lab Batch ID: 924725 Sample: 645107-1-I	BKS	Batch	n #: 1					Matrix:	Solid		
Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<2.00	50.0	48.4	97	50.0	48.3	97	0	80-120	20	
Analyst: ANS	D	ate Prepar	ed: 10/08/20	13	+		Date A	nalyzed:	10/08/2013	ł	·'
Lab Batch ID: 924634 Sample: 924634-1-H	BKS	Batch	n#: 1					Matrix:	Water		
Units: mg/L		BLAN	K /BLANK	SPIKE / 2	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
TDS by SM2540C Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Total dissolved solids	<5.00	1000	937	94	1	950	-	1	80-120	10	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Gourley Fed #3

Work Order	· #: 471653							Proj	ect ID:	082612		
Analyst:	ARM	D	ate Prepar	red: 10/07/20	13			Date A	nalyzed:	10/07/2013		
Lab Batch ID	: 924536 Sample: 644987-1-3	BKS	Batc	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
	TPH by Texas1005	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analy	vtes		[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C12 G	asoline Range Hydrocarbons	<25.0	1000	848	85	1000	830	83	2	70-135	35	
C12-C28	Diesel Range Hydrocarbons	<25.0	1000	759	76	1000	771	77	2	70-135	35	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

XENCO Laboratories Project	Form 3 - M et Name: Gourley		veries		Real Production	OPI
Work Order #: 471653						
Lab Batch #: 924725			Proje	ect ID: ⁰	82612	
Date Analyzed: 10/10/2013	Date Prepared: 1	0/09/2013	А	analyst: A	MB	
QC- Sample ID: 471653-004 S	Batch #:	1	ľ	Matrix: S	oil	
Reporting Units: mg/kg	MA	TRIX / MA	ATRIX SPIKE	RECO	VERY STU	JDY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	845	550	1780	170	80-120	X
Lab Batch #: 924725	045	550	1700	170	00 120	
Date Analyzed: 10/09/2013	Date Prepared: 1)/09/2013	А	nalyst: A	MB	
QC- Sample ID: 471756-001 S	Batch #:	1		Matrix: S		
Reporting Units: mg/kg		TRIX / M/	ATRIX SPIKE			IDV
Inorganic Anions by EPA 300	Parent		Spiked Sample	KECO	Control	
	Result	Sample Spike I			Limits %R	Flag
Analytes		[D]	_			
Chloride	74.5	520	781	136	80-120	X
Lab Batch #: 924745						
Date Analyzed: 10/08/2013	Date Prepared: 1			nalyst: A		
QC- Sample ID: 471641-001 S	Batch #:	1	Matrix: Water			
Reporting Units: mg/L	MA	TRIX / MA	ATRIX SPIKE	RECO	VERY STU	JDY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	161	250	442	112	80-120	1
Lab Batch #: 924745	I	1	1		1	1
Date Analyzed: 10/08/2013	Date Prepared: 1	0/08/2013	A	nalyst: A	MB	
QC- Sample ID: 471653-007 S	Batch #:	1	Γ	Matrix: V	Vater	
Reporting Units: mg/L	MA	TRIX / MA	ATRIX SPIKE	RECO	VERY STU	JDY
Inorganic Anions by EPA 300	Parent Sample Result [A]		Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes						
Chloride	1420	1250	2850	114	80-120	

BRL - Below Reporting Limit

Project Name: Gourley Fed #3

Work Order # :	471653						Project II): 082612	2			
Lab Batch ID:	924536	QC- Sample ID:	471653	-006 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	10/07/2013	Date Prepared:	10/07/2	013	An	alyst: A	ARM					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY S	STUDY		
	TPH by Texas1005			Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
C6-C12 Gasolin	e Range Hydrocarbons	<29.7	1190	1030	87	1180	981	83	5	70-135	35	
C12-C28 Diesel	Range Hydrocarbons	<29.7	1190	912	77	1180	891	76	2	70-135	35	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Work Order #: 471653

Project Name: Gourley Fed #3

Project ID: 082612 Lab Batch #: 924531 Analyst: WRU Date Prepared: 10/07/2013 Date Analyzed: 10/07/2013 13:08 QC- Sample ID: 471653-001 D Batch #: 1 Matrix: Soil SAMPLE / SAMPLE DUPLICATE RECOVERY **Reporting Units:** % Sample Control **Percent Moisture** Parent Sample Duplicate RPD Limits Result Flag Result %RPD [A] [B] Analyte Percent Moisture 5.66 5.20 8 20 Lab Batch #: 924634 Date Prepared: 10/08/2013 Analyst: ANS Date Analyzed: 10/08/2013 18:28 Batch #: 1 Matrix: Water QC- Sample ID: 471644-002 D SAMPLE / SAMPLE DUPLICATE RECOVERY Reporting Units: mg/L TDS by SM2540C Parent Sample Sample Control RPD Duplicate Limits Result Flag Result %RPD [A] [**B**] Analyte Total dissolved solids 557 561 10 1 Lab Batch #: 924634 Date Prepared: 10/08/2013 Analyst: ANS Date Analyzed: 10/08/2013 18:28 Batch #: Matrix: Water QC- Sample ID: 471653-010 D 1 Reporting Units: mg/L SAMPLE / SAMPLE DUPLICATE RECOVERY Control Sample TDS by SM2540C Parent Sample Duplicate RPD Limits Result Flag Result %RPD [A] [B] Analyte Total dissolved solids 3500 3340 10 5

Spike Relative Difference RPD 200 * | (B-A)/(B+A) |

All Results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

1. Cull You CRA 10-4-13 1130 1.	Instituty Contact: Child Child Content (Child Child Content (Child Content (Chil	NM SAMPLE CONTAINER QUANTITY &	MS/MSD Request	A X X X X X X X X X X X X X X X X X X X	P P Other: P P P P <td< th=""><th>Ooler must be Sodium Hydroxide (NaOH) Sodium Hydroxide (NaOH) Methanol/Water (Soil VOC) EnCores 3x5-g, 1x25-g</th><th>O Image: Second secon</th><th></th><th></th><th></th><th>Contract T DATE T DATE T Old TE T T T T T T T T T T T T T T T T T T T T T T T T T T T T <tht< th=""> T</tht<></th><th></th><th>Project Name: $GOURLEY$ Project Location: $LOVING$ Sampler(s): $CALE KAN$ Containers for each sample may be combined S-082612-100113-CK S-082612-100213-CK S-082612-100213-CK S-082612-100213-CK S-082612-100213-CK GW-082612-100213-C</th></td<>	Ooler must be Sodium Hydroxide (NaOH) Sodium Hydroxide (NaOH) Methanol/Water (Soil VOC) EnCores 3x5-g, 1x25-g	O Image: Second secon				Contract T DATE T DATE T Old TE T T T T T T T T T T T T T T T T T T T T T T T T T T T T <tht< th=""> T</tht<>		Project Name: $GOURLEY$ Project Location: $LOVING$ Sampler(s): $CALE KAN$ Containers for each sample may be combined S-082612-100113-CK S-082612-100213-CK S-082612-100213-CK S-082612-100213-CK S-082612-100213-CK GW-082612-100213-C
---------------------------------	---	--------------------------------	----------------	---	--	---	--	--	--	--	--	--	---

Page 15 of 16

Final 1.000

3

XENCO Laboratories

Comments

Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga-Rovers & Associates-Albuqu	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 10/05/2013 03:00:00 PM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 471653	Temperature Measuring device used :

Sample Receipt Checklist	
#1 *Temperature of cooler(s)?	4
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	N/A
#5 Custody Seals intact on sample bottles?	N/A
#6 *Custody Seals Signed and dated?	N/A
#7 *Chain of Custody present?	Yes
#8 Sample instructions complete on Chain of Custody?	Yes
#9 Any missing/extra samples?	No
#10 Chain of Custody signed when relinquished/ received?	Yes
#11 Chain of Custody agrees with sample label(s)?	Yes
#12 Container label(s) legible and intact?	Yes
#13 Sample matrix/ properties agree with Chain of Custody?	Yes
#14 Samples in proper container/ bottle?	Yes
#15 Samples properly preserved?	Yes
#16 Sample container(s) intact?	Yes
#17 Sufficient sample amount for indicated test(s)?	Yes
#18 All samples received within hold time?	Yes
#19 Subcontract of sample(s)?	Yes
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	N/A
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

 Checklist completed by:
 Candace James
 Date: 10/07/2013

 Checklist reviewed by:
 Many Moath
 Date: 10/07/2013

 Kelsey Brooks
 Date: 10/07/2013

Analytical Report 478500

for

Conestoga-Rovers & Associates-Albuquerque, NM

Project Manager: Bernie Bockisch

Gourley Fed #3

082612

10-FEB-14

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-14-16-TX), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

10-FEB-14

Project Manager: Bernie Bockisch Conestoga-Rovers & Associates-Albuquerque, NM 6121 Indian School Rd. NE Suite 200

Albuquerque, NM 87110

Reference: XENCO Report No(s): **478500** Gourley Fed #3 Project Address: Loving, NM

Bernie Bockisch:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 478500. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 478500 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

spectfully, Hoah

 Kelsey Brooks

 Project Manager

 Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

 A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 478500

Conestoga-Rovers & Associates-Albuquerque, NM, Albuque

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
GW-082612-012914-CK-MW-1	W	01-29-14 12:00		478500-001
GW-082612-012914-CK-MW-2	W	01-29-14 15:15		478500-002
GW-082612-012914-CK-MW-3	W	01-29-14 16:35		478500-003
GW-082612-012914-CK-MW-4	W	01-29-14 14:30		478500-004
GW-082612-012914-CK-MW-5	W	01-29-14 16:05		478500-005
GW-082612-012914-CK-DUP	W	01-29-14 00:00		478500-006

Client Name: Conestoga-Rovers & Associates-Albuquerque, NM Project Name: Gourley Fed #3

 Project ID:
 082612

 Work Order Number(s):
 478500

Report Date: 10-FEB-14 Date Received: 01/30/2014

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-933558 Inorganic Anions by EPA 300/300.1 Chloride recovered above QC limits in the Matrix Spike. Samples affected are: 478500-002, -005, -003, -004, -006, -001. The Laboratory Control Sample for Chloride is within laboratory Control Limits

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerq

			G	ourley Fed #3			-	
Sample Id: Lab Sample Id	GW-082612-012914-0 d: 478500-001	CK-MW-1	Matrix: Date Collec	Water eted: 01.29.14 12.00		Date Received:01.3	30.14 11.3	0
Analytical Me Tech: Analyst: Seq Number:	ethod: Inorganic Anions AMB AMB 933558	by EPA 300/300.1	Date Prep:	02.06.14 14.15		Prep Method: E30 % Moisture:	00P	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1380	50.0	mg/L	02.06.14 14.15		50
-	ethod: TDS by SM25400	2						
Tech: Analyst:	KEB AMB					% Moisture:		
Seq Number:	933587					SUB: E871002		

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Total dissolved solids	TDS	4600	5.00	mg/L	02.04.14 16.00		1	

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerq

Sample Id:GW-082612-0129Lab Sample Id:478500-002	14-CK-MW-2	Matrix: Date Coll	Water ected: 01.29.14 15.15		Date Received:01.3	30.14 11.3	80
Analytical Method: Inorganic Ani	ons by EPA 300/300.	1			Prep Method: E30	00P	
Tech: AMB					% Moisture:		
Analyst: AMB		Date Prep	: 02.06.14 14.38				
Seq Number: 933558							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	999	100	mg/L	02.06.14 14.38		100
Analytical Method: TDS by SM2	540C						
Tech: KEB					% Moisture:		
Analyst: AMB							
Seq Number: 933587					SUB: E871002		
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Total dissolved solids	TDS	2950	5.00	mg/L	02.04.14 16.00		1

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerq

Sample Id: GW-082612-01291 Lab Sample Id: 478500-003	14-CK-MW-3	Matrix: Date Coll	Water lected: 01.29.14 16.35	Date Received:01.30.14 11.30			0
Analytical Method: Inorganic Anio	ons by EPA 300/300.	1			Prep Method: E30	00P	
Tech: AMB					% Moisture:		
Analyst: AMB		Date Prep	02.06.14 15.01				
Seq Number: 933558		-					
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1970	100	mg/L	02.06.14 15.01		100
Analytical Method: TDS by SM25	40C						
Tech: KEB					% Moisture:		
Analyst: AMB							
Seq Number: 933587					SUB: E871002		
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Total dissolved solids	TDS	6240	5.00	mg/L	02.04.14 16.00		1

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerq

Sample Id: GW-082612-0129 Lab Sample Id: 478500-004	14-CK-MW-4	Matrix: Date Colle	Water ected: 01.29.14 14.30]	Date Received:01.3	30.14 11.3	0
Analytical Method: Inorganic Anio	ons by EPA 300/300.	1]	Prep Method: E30	00P	
Tech: AMB					% Moisture:		
Analyst: AMB		Date Prep	: 02.06.14 15.23				
Seq Number: 933558							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	787	50.0	mg/L	02.06.14 15.23		50
Analytical Method: TDS by SM25	40C						
Tech: KEB					% Moisture:		
Analyst: AMB							
Seq Number: 933587					SUB: E871002		
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Total dissolved solids	TDS	3340	5.00	mg/L	02.04.14 16.00		1

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerq

Sample Id: GW-082612-0129 Lab Sample Id: 478500-005	914-CK-MW-5	Matrix: Date Coll	Water ected: 01.29.14 16.05]	Date Received:01.3	30.14 11.3	0
Analytical Method: Inorganic An	ions by EPA 300/300.	1]	Prep Method: E30	00P	
Tech: AMB				Q	% Moisture:		
Analyst: AMB		Date Prep	: 02.06.14 15.46				
Seq Number: 933558							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	913	50.0	mg/L	02.06.14 15.46		50
Analytical Method: TDS by SM2	540C						
Tech: KEB				Q	% Moisture:		
Analyst: AMB							
Seq Number: 933587				\$	SUB: E871002		
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Total dissolved solids	TDS	3500	5.00	mg/L	02.04.14 16.00		1

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerq

Total dissolved	solids	TDS	3360	5.00	mg/L	02.04.14 16.00		1
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Seq Number:	933587					SUB: E871002		
Analyst:	AMB							
Tech:	KEB					% Moisture:		
Analytical Me	ethod: TDS by SM2540	С						
Chloride		16887-00-6	975	50.0	mg/L	02.06.14 16.54		50
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Seq Number:	933558							
Analyst:	AMB		Date Prep	: 02.06.14 16.54				
Tech:	AMB					% Moisture:		
Analytical Me	ethod: Inorganic Anions	s by EPA 300/300.	1			Prep Method: E30	00P	
Lab Sample Io	d: 478500-006		Date Coll	ected: 01.29.14 00.00				
Sample Id:	GW-082612-012914-	CK-DUP	Matrix:	Water		Date Received:01.	30.14 11.3	60

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd, Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Phone

(281) 240-4200

Fax

(281) 240-4280

QC Summary 478500

Conestoga-Rovers & Associates-Albuquerque, NM

Analytical Method: Seq Number: MB Sample Id:	Inorganic Anions b 933558 650669-1-BLK	y EPA 300/		Matrix: mple Id:	Water 650669-1-	BKS			ep Metho Date Pre D Sample	ep: 02.0	0P 06.14 669-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<1.00	25.0	24.2	97	24.5	98	80-120	1	20	mg/L	02.06.14 12:45	
Analytical Method: Seq Number: Parent Sample Id:	Inorganic Anions b 933558 478772-001	y EPA 300		Matrix: mple Id:	Water 478772-00)1 S		Pr	ep Metho Date Pre		0P 06.14	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec			Limits			Units	Analysis Date	Flag
Chloride	42.1	125	174	106 106			80-120			mg/L	02.06.14 13:53	
Analytical Method: Seq Number: Parent Sample Id: Parameter Chloride	Inorganic Anions b 933558 478813-001 Parent Result 256	y EPA 300, Spike Amount 125		Matrix: mple Id: MS %Rec 124	Water 478813-00)1 S	Limits 80-120	Pr	ep Metho Date Pre		0P 06.14 Analysis Date 02.06.14 19:10	Flag X
Analytical Method:												
Seq Number: MB Sample Id:	933587 933587-1-BLK			Matrix: mple Id:	Water 933587-1-	BKS						
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec			Limits			Units	Analysis Date	Flag
Total dissolved solids	<5.00	1000	1040	104			80-120			mg/L	02.04.14 16:00	
Analytical Method: Seq Number: Parent Sample Id:	TDS by SM2540C 933587 478500-006			Matrix: mple Id:	Water 478500-00)6 D						
Parameter	Parent Result		MD Result					%RPD	RPD Limit	Units	Analysis Date	Flag
Total dissolved solids	3360		3710					10	10	mg/L	02.04.14 16:00	

		TED ACCURATELY	ALL FIELDS MUST BE COMPLETED ACCURATELY	THE CHAIN OF CUSTODY IS A LEGAL DOCUMENT	Y IS A LEG.	OF CUSTOL	THE CHAIN	,
ALC NE DE MOUL	states (subplicing to the		3.			No.	anniM-sub	
1.31-14 11:27	Xenco	iman	2 Bill Klun			Life Kolwin	nord V na	q
1-3014 1129	Mail Servi		1. Stuchette	1130	30-14	1-3	A	· Coller CR
DATE TIME	COMPANY	Y	RECEIVED BY	TIME	DATE	O	COMPANY	1 RELINGUISHED BY
		20.5	Cooler must be on COC	All Samples in		STD	ek X Other:	1 Day 2 Days Days Days 1 Week 2 Week
	quirements:	Notes/ Special Requirements:	Total Number of Containers: 6	Total Nu		rATs):	for different	TAT Required in business days (use separate COCs for different TATs):
						150.48	auto hai	
	and the set of the set of the				111	A D THE	In the second	
				A HIN A			3 of rene,	3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 2 01							etteru)	N -1
				ACD0		ing and a second se	til bed stilts	
								0-1
Wighter : Water		to?	d M is the second se		-	and edit	sinaled B	9
V SATUC	1916	8		NOC		All Company	SX10 sits	8
								7
County - Cloudy		XX		×	WG G	1	1/22/14	· Gw-oracia- oragin-ck- DUP
WE BERNS	1000	XX		×	W6 G	1605 V	1/29/14	5 GW-082612-012914-CK-MW-5
		XX		×	0 34	1430 1	1/28/14	+ GW-082612-012914-CK-MW-4
		XX		×	20 m	1635 1	1/20/14	3 6w-082612-012914-04-Mw-3
		××		×	WG 6	1515 4	1/22/14	2 6-m-082612-012814-0K-MW-2
Contransfer Clustole	120 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	××	and a second second second	×	20 G	0	1	1 6w-083612-012814-0K-MW-1
COMMENTS/ SPECIAL INSTRUCTIONS:	MS/MSE	TDS	Sodium (NaOH) Methand VOC) EnCores Other:	Nitric A	(see ba	(ht:mm) Matrix	DATE (mm/dd//yy)	The SAMPLE IDENTIFICATION (Containers for each sample may be combined on one line)
Date Shipped: 1/30/14) Request	1085- 5M2	Acid (H ₂ S Hydroxid Di/Water (s 3x5-g, 1: Dontainers/	nloric Acio cid (HNO ₃	ck of CO 3) or Com		istrationes (colementer	Sampler(s): CALE KANACY
Airbill No:		2025	x25-g		-	100 fer 100 fer	a lanua dagi	Chemistry Contact: CHRIS KNIGHT
Carrier:	ANALYSIS REQUESTED	ANALYSIS	CONTAINER QUANTITY & PRESERVATION	CONTAI	SAMPLE TYPE		C) 01 C	Project Location: EDDY CO., NM
Cooler No:	e de la companya de l La companya de la comp	Lab Quote No:	BROOKS	et: KELSEY	Lab Contact:		~	Project Name: GOURLEY FED # 3
SSOW ID: The second states	ODESSA, TX	Lab Location: OD	XENCO		Laboratory Name:	100010	6.0.071	Project No/ Phase/Task Code: 082612
$\frac{PAGE}{See Reverse Side for Instructions}$		ABQ, NM 87110	NE STE 200 1	- 284-00-7-2-	5	Address: 612	VERS	478500
COC NO.: 32877		1	H	OF CU	AIN	CH	1	

Page 13 of 14

Final 1.001

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga-Rovers & Associates-Albuqu Date/ Time Received: 01/30/2014 11:30:00 AM Work Order #: 478500

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

Sample Receipt Checklist	:	Comments
#1 *Temperature of cooler(s)?	4	
#2 *Shipping container in good condition?	N/A	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6 *Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody?	Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ received?	Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Custody?	Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	Yes	
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A	
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	N/A	
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 01/31/2014

Checklist completed by: Kelsey Brooks Checklist reviewed by: Kelsey Brooks Kelsey Brooks

Date: 01/31/2014